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Abstract   Struggles over the single-seat preferential election method IRV, Instant Runoff Voting, 

(a.k.a. AV, Alternative Vote or RCV, Ranked-Choice Voting) go on in many arenas: legislatures, 

courts, websites, and scholarly journals.  

Monotonicity failures, i.e. elections (preference distributions) that may allow the startling tactical 

voting of Pushover or its reverse, has come to the forefront. An analysis of 3-candidate elections 

concludes that monotonicity failures, while not rare, are hard to predict and risky to exploit; it 

also explains the scarcity of evidence for effects on election results.  

A more unfortunate possibility is the No-Show accident; the number of ballots with preference 

order XYZ grows beyond a critical size and cause Z to win instead of Y. An analysis concludes that 

this must happen often enough to justify a modification of the rules.  

Pictograms and constellation diagrams are visualization tools that organize the set of possible 

elections efficiently for the analysis, which obtains explicit classification of elections where 

Pushover or a No-Show accident may occur or may already have occurred, and of bounds for the 

number of voters that must be involved.   

The analysis takes place in close contact with two frameworks for preferential election methods, 

one mathematical and one legal/political; these frameworks are themes for two survey sections.   
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Introduction: Non-monotonicity and constellations in 3-candidate IRV 

IRV (Instant Runoff Voting), also known as Alternative Vote and Ranked-Choice Voting, is one of 

many single seat preferential election methods. Every ballot contains a ranking of the candidates. 

The IRV tally has several rounds. In each round, the candidate with the smallest number of top-

ranks is eliminated from all ballots; here some tiebreak rule is assumed. The ballot counts for the 

top-ranked among its remaining candidates. A candidate who reaches > 1/2 of the top-ranks 

becomes IRV-winner. A candidate with exactly 1/2 will at least qualify for tiebreaks. We focus 

first on the round with three candidates and assume each candidate has < 1/2 of the top ranks.  

Notation   Consider an IRV tally with N voters, where 3 candidates, X, Y, and Z remain. Each ballot 

contains one of six orderings: XYZ, XZY, ZXY, ZYX, YZX, or YXZ. Let |X| voters rank X on top; let 

|XYZ| of them have ranking XYZ. Thus,  

(0.1)                                   N = |X| + |Y| + |Z|,    |X| = |XYZ| + |XZY|,   etc.  

(0.2)       Deficiencies    X, Y, Z tell how many top-ranks X, Y, Z are away from 50%:   

|X| + X = |Y| + Y = |Z| + Z = N/2.  Thus, 

X + y + z = N/2, |X| = Y + Z , |Y| = Z + X , |Z| = X + Y.  

The supporters of X decide the pairwise comparison in {Y, Z}; equality occurs when 

                        |Y| + |XYZ| = |Z| + |XZY|, i.e.  |XYZ| = Y ,  |XZY|  =  z, etc. 

When three candidates remain, the IRV tally uses two social preference relations. One relation 

orders the candidates by number of top-ranks. The other is the Condorcet relation (the relation 

of pairwise comparisons). Both may be any of the six orderings, but the Condorcet relation may 

also be one of two cycles, for short denoted XYZX and XZYX. A main theme in this paper is effects 

on the outcome, more or less unwanted, from voter actions that either change the size |XYZ| of 

a single voter category or moves voters from one category to another, e.g. in strategic voting.      

(0.3)     Strategic voting     In single-seat preferential elections, three kinds of strategic (also 

called tactical) voting get most attention. With three candidates, X, Y, and Z, they are as follows:  

1) “Compromise”:   original ballot ranking XYZ lets Z win; new ranking YXZ lets Y win.  

2) “Burying”:            original ballot ranking XYZ lets Y win; new ranking XZY lets X win. 

3) “Pushover”:          original ballot ranking XYZ lets Z win; new ranking YXZ lets X win. 
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Standard labelling When a 3-candidate preferential election is a reference throughout a 

discussion, it is convenient to label the candidates according to how they fare in an IRV tally of 

the reference election. With two rounds left in IRV, three candidates, A, B, and C, remain:  

(0.4)                           C is eliminated because |C| < |A| and |C| < |B|;    

                                    B is runner-up because |B| + |CBA|  <  |A| + |CAB|;   

                                    A is IRV-winner.  

With (x, y) = (|ACB), |BCA|), information ignored in the IRV tally, the vote vector is:  

(0.5)                               (|ABC|, |ACB|, |CAB|, |CBA|, |BCA|, |BAC|) 

                                            =   (|A|–x, x, |CAB|, |CBA|, y, |B|–y).  

Monotonicity failure and Frome 2009  

Our main reference is an IRV election in Frome, South Australia, analyzed in section 1. The 

electoral board published more data, in effect revealing x = 3801 in the vote vector (0.5). An 

estimate, y = 2748, then gives the vote vector in row 1 of the table in (0.6), visualized in the middle 

“pictogram” of Figure (1.3). In both, the labelling is as in (0.4). Thus:     

After elimination of C, A defeated B.  

Two different changes of row 1 are ingredients in the Pushover strategy of (0.3):  

(*)   100 new voters join the election of row 1 in category CBA. C passes A in top-ranks:  

After elimination of A, B defeats C. 

 (**)   100 voters leave the election of row 1 from category BCA. Alone, (**) keeps A as winner:  

After elimination of C, A defeats B.  

If (**) happens alone, it gives row 2 in the table (0.6); the original tally is repeated with adjusted 

numbers, and A wins. Constant electorate size is obtained by balancing (*) with (**). Together, 

(**) and (*) give row 3. With adjusted numbers, the tally goes as if (*) happens alone, and B wins.  

(0.6)       |ABC| |ACB| |CAB| |CBA| |BCA| |BAC| |A| |C| |B| 

 1761 3801 4425 1107 2748 5467 5562 5532 8215 

(**) 1761 3801 4425 1107 2648 5467 5562 5532 8115 

(**) & (*) 1761 3801 4425 1207 2648 5467 5562 5632 8115 

To construct the Pushover mechanism, glue together (**) and (*): Identify those who leave BCA 

in (**) with those who enter CBA in (*). Now, concerning rows 1 and 3, the narrative is: 

Down-ranking of B in 100 ballots is the only change, and B wins instead of A;    

in reverse: Up-ranking of B in 100 ballots is the only change, and A wins instead of B.  
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A single winner preferential election method is monotonic if up-ranking winner W cannot make 

W a non-winner [down-ranking a non-winner L cannot make L a winner], while nothing else is 

altered on any ballot. Thus, IRV is a non-monotonic method, and this term is a misnomer. Focus 

on (**), i.e. less top-ranks to B, is misleading. It has nothing to do with B’s victory. A competes 

with C to challenge B in the final tally round: The explanation is (*), i.e. more top-ranks to C.  

The expression “down-ranking of B” deflects readers’ attention away from the decisive (*) by 

hiding it as a chosen but not mentioned concomitant to (**); see Example (0.1). By construction, 

Pushover or its reverse are possible in some preference distributions called “monotonicity 

failures”, and receive an attention it is hard to ignore, e.g. Gierzinsky (2009, 2011), Ornstein and 

Norman (2014), Miller (2017), and Supreme Court treatment: Minnesota (2009), Maine (2017).   

If some voters with a BCA-ranking see Pushover as a realistic way to win, they have an incentive 

to perform it, but how realistic is it? Are there reasons for practical concern? Points in case are    

• how frequently opportunities to win a 3-candidate IRV-election by Pushover occur;  

• which structural features in a preference distribution that allow Pushover;   

• how easy it is to detect an opportunity before election and perform Pushover;   

• how strong the incentives to join a Pushover action really are.   

Empirical evidence for Pushover actions in IRV is hard to find, but in this paper, the tally 

mechanism itself illuminates possibilities and incentives. The conclusions are, in short version:  

• quite frequent; • N/4 < |A| < N/3 and |A|+|ACB| < N/2 – 1; • difficult and risky; • very weak.  

EXAMPLE (0.1)   A website for election science claims about Frome 2009: ”That is, the Liberal 

Party [B] lost because some voters ranked him too high”. This is misleading. In IRV, a ballot never 

harms its top-ranked candidate X: An extra ballot with top-rank strengthens X in all tally rounds. 

In row 1 of (0.6), each BCA-ballot has changed exactly one account, i.e. |BCA|. The context makes 

it clear that the writer had in mind the reverse of Pushover.1  Theoretically, row 1 of (0.6) may 

include 100 (say) BCA voters who had consciously moved from a planned CBA to BCA in their 

ballots and changed an imagined row 3 to row 1. If so, they may regret that they thereby caused 

A to replace C in the final tally round and to go on and win. Without evidence, a claim that this 

really happened, and that |CBA| really had been significantly larger, is creative accounting.      

                                                           
1 Out of context, the formulation is a false claim of a “No-Show accident”, actually of its “strong version”, which by 
Theorem (0.2) cannot even occur in IRV. Neither did the “weak version”, which occasionally is a nuisance in IRV, 
occur in Frome 2009.  The reality was that the B-supporters missed an opportunity to win by Pushover.    
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No-Show   Arguably, a more unfortunate possibility than Pushover and its reverse is the No-Show 

Paradox, which also may hit row 1 of (0.6): Let 100 new voters enter the election and vote CAB. 

Then |C| increases to 5632, elimination of A follows and B defeats C. The new voters would have 

gotten a better winner according to their own ballots, i.e. A instead of B, by not showing up at 

the poll-site to participate. This “No-Show accident” changes only one component of the vote 

vector: There is no creative accounting. Evidence is in the new vote vector: The new vote vector 

then contains the evidence: Reduction of the |CAB|-account by 100 leads back to row 1 of (0.6), 

and restores A as winner instead of B.    

Standard tally   In 3-candidate IRV with labelling (0.4), also the tally will be called standard if  

(0.7)                (|A|, |B|, |CAB|, |CBA|) is the information revealed.   

However, the unknown (x, y) in (0.5) determines how action by a voter group may cause a change 

of winner, e.g. by means of Pushover or a No-Show accident. The interplay between two social 

relations, ranking by top-ranks and Condorcet’s pairwise comparison, is central to such changes. 

A constellation diagram is a tool for visualization of the interplay and for natural reasoning. 

Constellations  

(0.8) Definition   There are eight constellations shown in the diagrams (3x3-tables) in Figure 

(0.1), and labelled i, ii, iii, iv, v, vi, i(cyclic) and iii(cyclic). There is one candidate in each column and 

one in each row. Number 1 (Plurality winner), 2, and 3 in top-ranks are in column 1, 2, and 3, 

respectively. In pairwise comparison, the candidate in row 1 [2] beats the one in row 2 [3]. In the 

cyclic cases i.e. i(cyclic) and iii(cyclic), the candidate in row 3 beats the one in row 1.  

                                           i(cyclic)                 v                      iii(cyclic)              vi    

             
                   i                      ii                        iii                    iv   

FIGURE (0.1)   Information not revealed in the standard IRV tally 

All eight diagrams show that C is eliminated (C in the right hand column) and that A wins over 

B in the final round (A in the higher row). The standard IRV-tally tells nothing about how C 

does in pairwise comparisons. By increasing y in (0.5), B-supporters may change i to i(cyclic) and 

iii to iii(cyclic). By decreasing x, A-supporters may change v to i(cyclic) and vi to iii(cyclic). Only vi is 

non-cyclic and gives an IRV-winner who is neither Condorcet- nor Plurality winner.  
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In Figure (0.1), the notation C, B, and A for candidates is according to the IRV tally as in (0.4). 

Similar cyclic versions of ii, iv, v, and vi exist, but cyclic permutations of the rows show that 

i(cyclic)  =  iv(cyclic)  =  v(cyclic)  and   iii(cyclic)   =   ii(cyclic)  =  vi(cyclic). 

With tiebreak rules in cases of equality, every 3-candidate vote vector (0.5) belongs to one of the 

eight constellations.  

 (0.9) Definition   The constellation family A consists of i, ii, v, and i(cyclic), where the IRV-winner 

A is also Plurality winner. Family B consists of iii, iv, vi, and iii(cyclic), where the runner-up B is 

Plurality winner. See (0.8) and Figure (0.1). The standard 3-candidate IRV tally (0.7) reveals what 

family the election belongs to, but all constellations in the family are compatible with the tally.  

Two facts, known in other formulations, are that only constellations iii and iii(cyclic)  

●   may allow some supporters of another candidate to let their favorite snatch  

      victory from A by applying the strategic (tactical) voting of Pushover;  

●   may let additional voters in one voting category cause a worse result according  

      to their own ballot ranking through a No-Show accident.  

There are different ways to establish these facts. However, constellation diagrams allow a hands-

on reasoning, in close touch with the tally process. They also help to explain why the only voter 

actions that may cause these effects are the Pushover strategy and the No-Show accident.  

 

THEOREM (0.1) The preference distributions that allow supporters of B or C to make their 

favorite become IRV-winner with any kind of strategic voting, form a subset of all preference 

distributions in constellations iii and iii(cyclic). The only possibility is then that suitably many 

supporters of B yield their top-rank to C, as in the Pushover strategy. 

Proof: The voters who rank C on top cannot change their ballots in a way that prevents 

elimination of C. We must consider what may be possible for the supporters of B. 

The voters who rank B on top cannot make B an IRV-winner in constellations ii, iv, v or vi, because 

no change in their ballots can change the fact that B is Condorcet loser and, if promoted to the 

final round, will lose whether the opponent is C or A.  

The voters who rank B on top cannot make B an IRV-winner in constellations i or i(cyclic) either:  No 

change in their ballots can prevent that A, as Plurality winner, thus with more than 1/3 of the top-
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ranks, qualifies for the final round. In order to win, they must ensure that B still qualifies for the 

final round, but no change in their ballots can prevent that A wins over B in pairwise comparison. 

Only constellations iii and iii(cyclic) remain. The supporters of B cannot change the fact that a 

majority prefers A to B. The only possibility is to get rid of A; a suitable number of B-supporters 

yield top-rank to C, promote C to the final round and get A eliminated.   

If |A| < N/4, then |A|+|C| < N/2 < |B| and B wins. If N/3 < |A|, then A cannot be eliminated:  

(0.10)    With regard to Pushover and its reverse, the scope of this paper is N/4 < |A| < N/3.  

REMARK (0.1)    By Theorem (0.1), a move from BAC or BCA into categories CBA or CAB is the only 

way for supporters of another candidate X to make X defeat A through strategic voting. Moves 

into CBA and CAB have the same effect after elimination of A, so it is enough to consider moves 

into CBA. Moves from BAC and BCA also have the same effect. A contribution from category BAC 

is required only if |BCA| is too small. It may be decomposed: BAC → BCA → CBA. 

Thus, it is enough to concentrate on categories BCA and CBA, i.e. voters who rank IRV-winner A 

last; then the action is a case of Pushover (0.3). A Pushover attempt to help B may miss, but cause 

C to win, e.g. if 400 voters up-rank C from BCA to CBA in row 1 of (0.6). This is an improvement for 

both voter groups involved, BCA and CBA. C is then a fallback security for the actionists who start 

from BCA. In effect, the action becomes a case of Compromise strategy (0.3), common in Plurality 

elections. However, voters who start from BAC, run a risk to turn their bottom-ranked candidate 

C into a winner; this risk is an argument against joining a Pushover attempt.   

 

THEOREM (0.2)   The preference distributions that allow new voters to be added to one of the 

six voter categories and cause a candidate whom they rank after the IRV-winner A to become 

new IRV-winner, form a subset of all preference distributions in constellations iii and iii(cyclic). 

The only possibility is then that the new voters have preference CAB. 

Proof: We first establish that the new voters must have preference CAB. The new voters cannot 

give top-rank to IRV-winner A, because with higher margin than before, A would qualify for the 

final round, and there win against B with higher margin than before.  

They cannot rank A last either, because then there cannot be a new winner whom they rank after 

A. Thus the extra voters must give A second rank and vote either BAC or CAB. 
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If they vote BAC, then C still is last in top-ranks, and the new winner cannot be the one they rank 

after A. Therefore, the only possibility is that they vote CAB and make B new IRV-winner. However, 

A will still beat B in a final, so they must eliminate A.  

In what constellations from Figure (0.1) may additional CAB-ballots cause elimination of the IRV-

winner A? In constellations i, i(cyclic), ii, and v, A is ahead of B in top ranks, and cannot possibly be 

eliminated. 

In constellations iv and vi B is already Condorcet loser and cannot possibly win the final tally round. 

Thus only iii and iii(cyclic) remain.   

 REMARK (0.2)   If Pushover is possible, then a No-Show accident is possible too.   

To see this, suppose that h voters switching from BCA to CBA will succeed in helping B to win with 

Pushover. With some good luck, B may become IRV-winner without Pushover: Suppose instead 

that extra top-ranks for C come from h new voters who vote CBA or CAB. A is eliminated, and B 

wins over C with higher margin than if the new top-ranks for C came through Pushover.   

If the new voters vote CBA, they have B as a fallback security, and may feel some happiness if 

they cause B to win instead of A. If they change mind and switch from CBA to CAB, they still 

eliminate A and still get B as IRV-winner. Causing B to win, they are “victims” of a No-Show 

accident, i.e. they would have been better off if they had not participated. Thus, IRV fails the 

Participation criterion, i.e. that a ballot never causes a worse result according to the ballot’s own 

ranking.   

The possibility of a No-Show accident is a frequently used argument against the use of IRV. 

However, a preferential election method cannot be blamed if h switches from CBA to CAB are 

insufficient to let A win instead of B. The h new CAB-voters simply let C spoil the election for A.  

Non-participation in order to avoid B would be a very artificial remedy. Participation with h new  

ACB-ballots instead would just have made A’s win more secure. If some of the unfortunate new 

voters had switched from CAB to ACB, they could have helped A by Compromise (0.3). One cannot 

blame CAB-voters for not seeing that their ballots are counter-productive, but adjustments in the 

IRV tally rules considered in section 4 will eliminate No-Show events in 3-candidate IRV.   

(0.10)    Equal preference     Like in most Australian IRV-elections, the voters in our main example 

(Frome 2009) were obliged to express a complete and strict ranking of the candidates. If voters 
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are allowed to declare equal preference, e.g. that j candidates share the ranks k+1, k+2, …, k+j, 

the tally can be done through symmetrizing: It is done as if such a ballot is replaced by j! “mini-

ballots” of weight 1/(j!), one for each permutation of the j candidates. In many IRV elections, like 

the one in Example (3.2) (Burlington 2009), voters are allowed to rank strictly k of n candidates 

from top, 1, 2, …, k, and leave out the remaining n–k, and the result is the same as if equal 

preference for the remaining n–k is treated with symmetrizing.     

Structure of the paper 

Section 1: In Figure (1.1) of the xy-plane, the sub-rectangles show the changes of constellation. 

The curves illustrate a problem too often ignored: what preferential distributions are normal?  A 

cycle (Condorcet Paradox) is visibly not normal.  With a survey figure like Figure (1.1) for every 

standard IRV tally (0.7), the set of all 3-candidate IRV elections is organized in a convenient way 

for a study of monotonicity failures and No-Show events, because the criteria derived in sections 

2 and 3 are intervals that x or y must belong to, defined by the standard tally. There are just two 

types of figures, like Figure (1.1) for family B and a similar one for family A.   

Section 2: The topic is monotonicity failure in 3-candidate IRV. When does (x, y) define an election 

where a non-monotonic event (“trick” or “trap”) may happen or may have happened? For each 

standard tally (0.7), the unknown (x, y) defines a trick position [a trap position] if and only if x [y] 

is in a specified interval. The numerical example in Figure (2.5) shows monotonicity failures of 

both types. Central to the paper is the description of the “action space” for Pushover trick in 

Figure (2.1) and Figure (2.2). Theorem (0.1) is the background. 

Section 3: The topic is the anomaly of No-Show in 3-candidate IRV. When does (x, y) define an 

election where new voters in one component of the vote vector may cause a worse result 

according to their ballots? The dual question is also studied: when may a suitable number of 

voters leave a component (abstain from participation, or theoretically, cancel their ballots) and 

cause an improved result? For each standard tally (0.7), (x, y) allows a No-Show accident 

[abstention strategy] if and only if x [y] is in a specified interval. The numerical example in Figure  

(3.3) shows both a No-Show accident and a win by abstention.  Theorem (0.2) is the background.   

Section 4: The findings in previous sections are included in a discussion of the IRV-rules in a 

context of some basic methods of single seat preferential election. Arguably, IRV will be more 
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widely accepted as a fair election method if pairwise comparisons come already in the 

penultimate round, i.e. one round earlier than now.    

Section 5: Results of Arrow (1950) and Black (1948) form a mathematical framework for the 

theory of preferential elections. Actually, it is Wilson’s improved version (1972) of Arrow’s 

“impossibility theorem” that is useful in this context. The purpose of Black’s “Single Peak 

condition” was to describe a structural condition on the electorate’s preference distribution that 

avoided “Condorcet cycles”. The concept of “Perfect Pie-sharing” appears as a natural extension 

of Black’s condition.  

Section 6: Two kinds of elections to legislatures are common: In some, each elected candidate is 

the representative of one local community, e.g. in UK and US. Others give several parties that 

pass a certain threshold criterion, a number of representatives roughly proportional to their 

number of votes.  The MMP (Mixed Member Proportional) method combines these two ideas, 

but with present rules, the price is that the total number of representatives may vary a lot. IRV 

for local representatives seems to improve the situation.  

The supreme courts of Minnesota 2009 and Maine 2017 treated the question whether IRV is 

unconstitutional. The first concerned the modern theme of monotonicity failures, but a claimed 

precedent from 1915 gives a time perspective back to the “Progressive Era”. An obstacle to IRV 

in Maine’s constitution has a special historic root from events in 1879-80.    
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1 The standard IRV tally and Frome 2009 

A by-election in Frome, South Australia in 2009, for a single seat in the state assembly, had six 

candidates. As usual in Australian IRV elections, ballot were required to specify one of the 6! = 

720 complete, strict, and transitive preferences. Three candidates remained for tally round 4:  

(1.1)          (A, B, C) = (Brock – independent,   Boylan – liberal,   Rohde – labor) 

(1.2)                Round 4 established |A| = 5562, |B| = 8215, and |C|= 5532.  

                         Round 5 established |CAB| = 4425   and   |CBA| = 1107.   Thus,  

       A became IRV-winner with 5562 + 4425 = 9987, while B got 8215 + 1107 = 9322 

After the standard tally in (1.2), the vote vector (0.5) still keeps the number of subsidiary ranks 

given to C by the supporters of A and B as unknowns x and y:  

(1.3)                       (|ABC|, |ACB|, |CAB|, |CBA|, |BCA|, |BAC|)  

                                = (5562–x  ,   x  ,  4425,  1107,  y ,   8215–y).  

The unknowns are x = |ACB| ∈ [0, 5562], y = |BCA| ∈ [0, 8215].   

The standard IRV-tally is the same for all (x, y) in Figure (1.1). However, properties of IRV that 

many voters find important depend on (x, y). How often will (x, y) define a vote vector (0.5) which 

allows or may be caused by either Pushover or a No-Show accident? Figure (1.1) illustrates a 

discussion that uses both constellation diagrams and pictograms.  

Pictograms   A unique pictogram represents the 3-candidate vote vector (0.5) faithfully 

(Stensholt 1996). A pictogram for (0.5) with specified (x, y) consists of a unit circle and three 

chords that meet pairwise inside or on the circle. Distinct chords form an “empty” triangle T, i.e. 

not corresponding to any voter group. In real elections, T is usually very small. The pictograms of 

Figure (1.2) illustrate three realistic choices of (x, y) in (1.3).  

“Ideal points” A, B, and C, are the corners of a “candidate triangle” ΔABC, inserted so that its 

perpendicular bisectors almost coincide with the chords of the pictogram. Exact coincidence 

occurs in “Perfect Pie-sharing”, and does not “waste” any area with T; then the chords are not 

distinct or T has zero area. The other areas are proportional to the components of the vote vector.  

Perfect Pie-sharing is a 2D model of spatial voting inspired by the familiar 1D “Single Peak”-model 

(Black 1948): The voters are distributed uniformly in the unit circle, and each voter ranks the 

candidates according to the Euclidean distance from the voter to the ideal points. 2 

                                                           
2 The candidate triangle ΔABC is unique in shape, but not in size. One may see from Figure (1.2) that the size 
changes with homothetic transformations centered on the intersection point of the perpendicular bisectors.  
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Main features of Figure (1.1)   The 5563x8216 possible points (x, y) with integer coordinates 

form a grid in the big rectangle of Figure (1.1). One main feature is the partitioning into four sub-

rectangles labelled SW, SE, NE, and NW, defined by two lines where A or B, in the rôle of X in 

(0.2), gives N/2 – |C| second ranks to C, N = |A|+|B|+|C|. In Condorcet’s pairwise comparison,  

(1.4)                    A makes C tie with B at x = N/2 – |C| = 4122.5 = C 

(1.5)                    B makes C tie with A at y = N/2 – |C| = 4122.5 = C  

In each sub-rectangle is a constellation diagram from Figure (0.1) that changes when a line, (1.4) 

or (1.5), is crossed. Only pairwise comparisons change; A, B, and C stay in columns 2, 1, and 3, 

respectively. When x < C and y < C, Plurality loser C is also Condorcet loser. Thus, in SW, C 

occupies the lower right corner in the constellation diagram, and the constellation in SW is either 

i or iii; see Figure (0.1). According to the standard tally in (1.2), B is Plurality winner in Frome 

2009; thus, the constellation is iii.  

Another main feature is a set of three curves. The middle curve connects two corners. In the 

corner (x, y) = (0, 0), no voter ranks C as number 2. The pictogram degenerates, i.e. two chords 

coincide, and there is Perfect Pie-sharing. In the NE corner, (x, y) = (|A|, |B|), no voter ranks C 

last; the preference distribution is single peaked, and there is again Perfect Pie-sharing.  

Along the middle curve, (x, y) maintains Perfect Pie-sharing. Three choices of grid points close to 

the curve in SW, SE, and NE, give the pictograms in Figure (1.2). They illustrate that the Condorcet 

relation is transitive along the middle curve. The reason is that, with Perfect Pie-sharing, the 

Condorcet relation ranks the candidates according to their distance from the circle center.  

The transitivity implies that the middle curve cannot pass through the NW sub-rectangle where 

all points (x, y) define a cyclic vote vector. The other curves have endpoints on the edges of the 

rectangle and give pictograms where triangle T covers a fraction 0.001 of the circle area.  

Why Condorcet cycles are rare     In real 3-candidate elections with this many voters, mostly 

with reasonably similar perceptions of the political landscape, a pictogram usually fits the Perfect 

Pie-sharing model visually well; (x, y) is often very close to the middle curve and is very unlikely 

to be outside the “0.001-zone” between the upper and the lower curve. Only a tiny part of the 

0.001-zone may be in the NW. Figure (1.1) shows that, in Frome 2009, the 0.001-zone does 

contain a small set of cycles.  
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FIGURE (1.1)   The last two rounds of the standard IRV tally in Frome 2009    

The quantitative information (|A|, |B|, |CAB|, CBA|) = (5562, 8215, 4425, 1107) is all that 

is found in the standard tally. Both x = |ACB| and y = |BCA| are unknown.   

The constellation changes within family B when x or y passes C = 4122.5. Additional 

information from the electoral board revealed that x = 3801. The real election corresponds 

to an unknown point on the stapled line. Pictograms for selected points on the line are in 

Figure (1.3), Figure (2.5), and Figure (3.3). Except for the stapled line, the figure builds on 

information from the standard tally (1.2).  

Along the middle curve are the (x, y) that represent a vote vector (1.3) with Perfect Pie-

sharing; pictograms for selected (x, y) are in Figure (1.2). Along the other curves, T covers 

0.001 of the pictogram area.  
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Constellation vi   The NE sub-rectangle in Figure (1.1) has a diagram of constellation vi. It is the 

only noncyclic constellation where the IRV-winner is neither Plurality winner nor Condorcet 

winner. B is Plurality winner but Condorcet loser; for C it is the other way around. The diagram 

visualizes a double incentive IRV gives to candidates and their parties: Work for primary support 

from enthusiastic followers (A beats C in top-ranks), but also for subsidiary support from political 

neighbors (A beats B in pairwise comparison). That “two silver” are better than “one gold and 

one bronze” has, sometimes, a didactic value since an idea behind IRV is to achieve a balance 

between high rankings and broad acceptance. However, in IRV, “two silver”, are always the best, 

and there are cases that most people probably would find unreasonable, e.g the one illustrated 

with the third pictogram in Figure (1.2).  

The fate of the Condorcet winner   The double incentive seen in constellation vi is a common 

argument in favor of IRV, but this does not imply that it is wise to keep a rule that always declares 

A as winner in constellation vi. Consider (x, y) = (5300, 7062), close to the middle curve in Figure 

(1.1), which gives the third pictogram in Figure (1.2). C defeats both A and B pairwise, with wide 

margins: (12794 – 6715) and (10832 – 8477). With A having just a tiny advantage over C in top-

ranks, what will the public reaction be if this is a real election and A wins ahead of C?  

All three pictograms in Figure (1.2) correspond to a grid-point (x, y) close to the middle curve:  

       

FIGURE (1.2)   Perfect Pie-sharing compatible with the standard tally  

Imagine that (x, y) moves along the middle curve in Figure (1.1), with snapshots taken at 

(x,y) = (1090, 410) in SW; (4300, 3737) in SE, and (5300, 7062) in NE.  

Moving closer to the corner in SW, all subsidiary support for C disappears; in the limit, two 

chords coincide, and the pictogram degenerates.  

In NE, the constellation is vi, and the eliminated candidate C is Condorcet-winner. C has the 

smallest number of bottom-ranks: 262+1153. Moving closer to the corner, all bottom-ranks 

for C disappear; in the limit, the preference distribution is single-peaked.     
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The constellation in the NE is either v (family A) or vi (family B); in both cases, C is Condorcet 

winner, but last in top-ranks.   

Cycles are too rare to influence a discussion. When is it justified to eliminate a Condorcet winner? 

In Frome 2009, both A and C had between 28% and 29 % of the top-ranks. It seems reasonable to 

declare both as eligible, and C as winner in constellation vi. One idea is to stop the elimination 

based on top-ranks at some stage, and then use a Condorcet method; see section 4. 

Additional information in Frome 2009   Fortunately, the reality in Frome 2009 was far from 

the scenario of the third pictogram in Figure (1.2). Since the winner A was an independent 

candidate, the electoral board published also the pairwise comparison between the candidates 

of the major parties. There,  

(1.6)                in the pair (B, C}, B won with 9976 versus C with 9333. 

This reveals that in (1.3), x = |ACB|= 3801. With only one unknown, the vote vector was  

(1.7)                              (|ABC|, |ACB|, |CAB|, |CBA|, |BCA|, |BAC|)  

                                         =    (1761, 3801, 4425, 1107, y, 8215–y),  

It is likely that the real (x, y) was in the 0.001-zone with 1662 < y < 4067. In the pictograms 

below, y = |BCA| = 1663; 2748; 4066. A natural estimate for the unknown y is 2748.  

       
FIGURE (1.3)   Pictograms on the stapled line in Figure (1.1)   
The grid points (x, y) = (3801, 1663); (3801, 2748); (3801, 4066) are close to the curves in 

Figure (1.1). For y = |BCA| = 2748, the triangle T defined by the chords covers a fraction 

4.10–11 of the circle area, a good approximation to Perfect Pie-sharing.  

T changes continuously with y. For 1663  ≤ y  ≤ 4066, T covers < 0.001 of the circle area. 

This illustrates the robustness of the Perfect Pie-sharing model. The arrow shows how, in 

all three cases, h voters perform Pushover by switching from BCA to CBA, 31 ≤ h ≤ 321.  

Figures (2.5) and (3.3) show pictograms of cyclic elections in NW, on the stapled line in 

Figure (1.1).  
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2 How Pushover works 

Only in some elections in constellations iii or iii(cyclic) from family B, is it possible to make one’s 

top-ranked candidate defeat an IRV-winner by means of strategic voting, see Theorem (0.1). A 

suitable number (h) of supporters of Plurality winner B in Figure (1.1) may, for some values of x 

= |ACB|, apply Pushover (0.3) to snatch victory from the IRV-winner A in Figure (1.1). The target 

A is also Condorcet winner in constellation iii.  

It is convenient to focus on the anti-A voters, categories BCA and CBA; see Remark (0.1). They 

turn A into Plurality loser, and B beats C in the final round. Figures (2.1) and (2.2) show the 

possibilities the anti-A voters have to avoid election of A.  

Action space with pitfalls 

Let h Pushover actionists switch ballot ranking from BCA to CBA, starting at h = 0 in constellation 

iii or iii(cyclic), in the SW or NW of Figure (1.1). Increasing h may cause B to snatch the IRV victory 

from A by creating a new constellation where B is winner. The anti-A group has |CBA|+|BCA| 

members, so the full action space is given by –|CBA| ≤ h ≤ |BCA|. By Remark (0.1), all B-

supporters may join a Pushover action by first increasing |BCA|. In notation from (0.2), the 

ranking by top-rank changes when h passes , , and , where   

(2.1)  =  |A| – |C|  =  C – A; 

 =  |B| – |A|  =  A – B;  

 =  (|B | – |C|)/2  =  ( + )/2 =  (C – B)/2  

|A| < N/3, see condition (0.10), is necessary for elimination of A without tiebreak. Then  

(2.2)  <    <     

When an increasing h passes ; ; then, respectively, in terms of top-ranks, 

C passes A;   C passes B;   B passes A. 

In the constellation diagram, the columns are switched for A and C; B and C; A and B.  

The pairwise comparison changes once with h. This happens in {B, C}, but obviously not in {A, B} 

or {A, C}. After h ballot switches from BCA to CBA, the vote vector (0.5) is  

  (2.3)                                   (|ABC|, |ACB|, |CAB|, |CBA| + h, |BCA| – h, |BAC|) 

     =  (|A| – x,   x ,  |CAB|, |CBA| + h,  y – h,  |B| – y) 

B and C are equal in pairwise comparison when  

(2.4)                            (y – h) + (|B|– y) + (|A|– x)   =   x + |CAB| + (|CBA| + h), 

2C  =  N – 2|C|   =   |A| + |B| – |C|   =   2(x + h)  
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Thus, the rows of the constellation diagram are permuted once, i.e. at h =  , where  

(2.5)                                              + x   =   N/2 – |C|   =   C         

By (1.4) and Figure (1.1),  0  ≤  x  ≤  C  in constellation iii and iii(cyclic); thus,    ≤    ≤  C. and  

(2.6) =  forx A;=forx (B + C)/2;=forx C – A + B  

When , ,, and  are distinct, x = |ACB| defines one of four different sequences:     

(2.7)                       sequence 1:           <    <    <       for                  A  <  x  ≤  C 

                               sequence 2:           <    <    <       for    (B + C)/2  <  x  <  A  

                               sequence 3:           <    <    <       for   C – A + B  <  x  <  (B + C)/2  

                               sequence 4:           <    <    <       for                    0  ≤  x  <  C – A + B   

Cycles are very rare, so in the vast majority of cases, a Pushover action must start at h = 0 in 

constellation iii. All four sequences end up in constellation iii, with new rôles for B and C. In Figure 

(2.1), each sequence follows a unique path of arrows from the upper left to the lower right 

constellation diagram. Figure (2.2) shows the sequences after a start in iii(cyclic).  

 

FIGURE (2.1)     Action space: Pushover from constellation iii, N/4 < |A| < N/3  

Starting at h = 0 in the upper left constellation iii, sequences 2, 3, and 4 lead to v or vi, and 

B wins by Pushover if the ballot changes stop in time, before the pitfalls at  and : Passing 

 makes B Plurality loser, and passing  makes B Condorcet loser. Passing  and  but not  

makes C win by Compromise (0.3). At the other end of the action space, by symmetry, C-

supporters may follow sequences 3, 2, and 1 in reverse, reduce h, move from constellation 

iii to v or vi, and win if they stop in time, before the pitfalls at h =  and h = .  

Frome 2009 had sequence 2, x = 3801 and () = (32, 321.5, 1342.5, 2653).  

The symmetry of Figure (2.1) shows that in the end constellation iii, C and B have changed rôles: 

C has become Plurality winner, and reversing all arrows illustrate the possibilities for C to win 

over A by Pushover, moving voters from CBA to BCA and reducing h.  
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Since Condorcet-cycles are rare, a start in constellation iii has more practical interest than a start 

in iii(cyclic). The transition points , , , and  in Figure (2.2), with start in iii(cyclic), are as in Figure 

(2.1), with start in iii. However, with start in iii(cyclic), all four sequences in (2.4) lead to 

constellation i, and there is no complete reversal symmetry like the one in Figure (2.1).   

 

FIGURE (2.2)    Action space: Pushover from constellation iii(cyclic), N/4 < |A| < N/3 

The figure shows all possibilities for supporters of B to win by Pushover starting from a 

Condorcet cycle. The points of change in (2.1) and (2.5) depend on |A|, |B|, |C|, and x = 

|ACB|; they are the same for a start in iii, see Figure (2.1), and a start in iii(cyclic).  

The IRV-winner A and Pushover attempts from B-supporters 

The supporters of A determine x and therefore have the power to prevent Pushover: By making 

 ≤ , they avoid sequences 2, 3, 4 in (2.1), and Figures (2.1) and (2.2) show that increasing h-

values then do not lead to any constellation won by B.  By (2.5–7),  ≤ , means that  

 (2.8)                                                            N/2 – |A|   =   A   ≤   x = |ACB|   

Obviously |ACB| ≤ |A|, so this is possible since N/4 ≤ |A|.  

With |A| < N/3, (2.8) shows that a necessary condition for sequence 1 is  

(2.9)                                                                      N/6   <   x  

If N/3 < |A|, then A is not vulnerable to Pushover. Otherwise, Figures (2.1) and (2.2) show that 

by (2.5), A-supporters may choose x and  so that participants in a Pushover attempt for B [C] 

drops into a pitfall, by making ≤  [≤ ]. This is a “prophylactic remedy” against a Pushover 

attempt from the B-supporters. Figures (2.1) and (2.2) show that if, say, BCA-voters then attempt 

Pushover and let h pass , h must pass too, and C wins.  
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However, it is not a practical remedy. Raising x and lowering  requires A-supporters moving from 

ABC to ACB in order to move the pitfall location, and thus prophylactically prevent Pushover. 

However, this prophylactic remedy is not good for ABC-voters. The reason is that if supporters of 

B really make a Pushover attempt, then the ABC-voters are better off with  < , because  < h 

does not keep A as winner anyway, and  < h <  lets B win instead of C.   

Problems for Pushover actionists: Risk and motivation 

The structure of the action space, shown in Figures (2.1) and (2.2), enables us to follow up the 

introductory discussion of Pushover based on the table in (0.6). Pushover with h actionists 

switching from BCA to CBA, works if and only if h passes  but none of the pitfalls at  or : 

(2.10)                   h ϵ ( ,  min(, ))  =  (|A| – |C|,  min(|B| – |A|, N/2 – |C| – x)) 

An h outside the interval in (2.10) means a failed Pushover attempt. For several reasons it will be 

problematic for the B-supporters in constellation iii to plan and conduct a Pushover action:   

•   Predictions of |A|, |B|, |C|, and x will often not be reliable enough to give a useful 

estimate of the interval in (2.10) that h must belong to.  

•   It is unlikely that organizers of a Pushover action can reliably conduct BCA-voters’ 

switches to CBA such that h hits the stochastic interval of (2.10).  

With  < h < , either B wins by Pushover, or C wins by Compromise. The voters in BCA and CBA 

are all better off if they avoid election of A. However, usually A is the second choice for a majority 

of B-supporters in constellation iii; see Figure (1.1). A Pushover action, with switches from BCA 

to CBA will hardly be acceptable for BAC-voters, and may damage the unity in B’s party. Some 

BCA-voters, with a strong anti-A attitude may want to join a combined Pushover/Compromise 

action with a CBA-ballot, but most BCA-voters are likely to share many opinions with the BAC-

voters, and their subsidiary preference for C to A is likely to be weak.  

•   Therefore, the motivation for joining a Pushover action is also likely to be weak.  

•   BCA-voters may see the tally method as fair when it picks Condorcet-winner A.   

 

Tricks and traps 

There are two kinds of monotonicity failure. They allow Pushover or its reverse, and the terms 

“trick” and “trap” emphasize that they are closely related. Figures (2.1) and (2.2) show how 

Pushover actionists perform a “non-monotonicity trick”: Voters move from BCA to CBA, down-
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rank B, up-rank C and eliminate A in sequences 2, 3, 4. They cause B to be elected instead of A, 

provided they stop before the pitfall at h = min( ).   

Arrows in Figure (2.1) show that Pushover, with start in constellation iii, leads to constellation v 

(sequences 2, 3, and 4) or to vi by passing through v (sequences 3 and 4). Figure (2.2) shows that 

Pushover with start in iii(cyclic) leads to i(cyclic) or iii(cyclic), but the possibility is rare. The point of the 

Pushover trick is that the anti-A voters distribute their top-ranks on B and C in such a balanced 

way that IRV-winner A (before the trick) loses on top-ranks and becomes eliminated.  

A reversal of these moves leads into a “non-monotonicity trap”: Voters who originally rank CBA, 

but change their mind and sincerely switch to BCA, quite likely intending to strengthen IRV-

winner B in order to avoid A, are trapped. They move the election from constellation v or vi  [i(cyclic) 

or iii(cyclic)] and back to iii [iii(cyclic)], and thereby cause A to snatch the IRV-victory from B. This is 

bad for all anti-A voters, both the BCA-group and the CBA-group.        

Thus, tricks and traps belong together in the same action space, which is on a straight line crossing 

the xy-plane in Figure (1.1) when h = 0. By Theorem (0.1), tricks are only possible from certain 

“trick positions” in constellations iii and iii(cyclic).  The trick effect leads to a trap position; the trap 

effect leads to a trick position. Trap positions exist only in constellations that may be reached by 

a trick: v or vi in Figure (2.1) and i(cyclic) or iii(cyclic) in Figure (2.2); v and i(cyclic) belong to family A.  

REMARK (2.1)   An obvious complication for Pushover comes with a larger number of candidates. 

Will B-supporters in a 6-candidate election anticipate eliminations of L, M, and N and up-rank C 

from BLMNCA to CBLMNA in order to join a Pushover action against A? Will they become aware 

of an opportunity? In Frome 2009, B, C, A, L, M, N, got respectively, 7576, 5041, 4557, 1267, 734, 

134 top-ranks in the first tally round. Even a rough pre-election opinion poll should detect the big 

gap from A to L and establish that up-ranking C would not harm L, M, or N. However, some sincere 

voters intend a ballot ranking BLMNCA as expression of their true opinion. In the 6-candidate 

election, B-supporters have reason to be even more unwilling than in a 3-candidate election to 

join a Pushover action.  

Moreover, that the independent A besides getting so many top-ranks, also should receive as 

much as 5562 – 4557 = 1005 of the 2135 votes transferred from {L, M, N}, and thereby become a 

serious challenger to the major parties, was clearly a surprise. 
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Natural sortition 

One source of randomness in , , , and  is the unpredictability of changes in voter rankings, 

perhaps influenced by the last days of campaigning. Another source is “natural sortition”.  

Ordinary sortition is a planned lottery in an appointment process. There are good reasons to use 

lottery in some situations, e.g. selection of jury members in many countries. The idea is old, but 

Socrates criticized the practice in Athens to appoint Archons entirely by lottery.3 Could he have 

accepted a sortition that only influences the composition of an electoral college? Venice, a city 

republic until 1797, had an elaborate sortition process to establish an electoral college that finally 

elected the Doge (Finlay 1980).   

In most countries, the fraction of the electorate that will participate in an election is quite 

unpredictable. Everyday random events have effects that cause non-participation. Even bad 

weather in parts of a country may reduce participation and change the relative strengths of the 

parties. The final campaigning efforts have an effect, but many other last-day effects are a 

“natural sortition” of the electorate that brings even more randomness to the vote vector.  

In Australia voting is compulsory, and non-participation leads to a fine, but voters who are not 

motivated to vote according to their own individual assessments, values and interests may 

produce ballot rankings with some other kind of randomness.  

Occasionally, a 3-candidate vote vector lands in “A-territory”, close to the territory of B or C, or 

even both. Natural sortition and other random last day events have consequences for all six 

components. Together they may result in a border crossing, in either direction. This can hardly 

be detected and, even more unlikely, be identified as cause of a non-monotonicity event.   

EXAMPLE (2.1)      Frome 2009 was a trick situation, and could theoretically have been caused 

by a trap effect where a group, of at least 31 voters, had moved from CBA to BCA; see Example 

(0.1).  Moves from |CAB| to |ACB|, changing |A|<|C| to |A|>|C|, are more likely than a non-

monotonicity event. Since natural sortition is unavoidable and perturbs all six voting categories, 

it remains unknown if such moves took place and had the effect they theoretically may have.   

                                                           
3 “But, said his accuser, he taught his companions to despise the established laws by insisting on the folly of 
appointing public officials by lot, when none would choose a pilot or builder or flautist by lot, nor any other craftsman 
for work in which mistakes are far less disastrous than mistakes in statecraft. Such sayings, he argued, led the young 
to despise the established constitution and made them violent.” (Xenophon ca 370 BC).  
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Non-monotonicity events; conditions and requirements 

The non-monotonicity trick (Pushover)   The vote vector in (2.3) shows when the move of h 

voters from BCA to CBA causes Pushover. First, C must pass A in top-ranks:  

(|A| – x) + x   <   |CAB| + (|CBA| + h) 

|A|  –  |C|  <   h  

Next, B must stay ahead of C in pairwise comparison:  

x + |CAB| + (|CBA| + h)  <   (y – h) + (|B| – y)  +  (|A| – x) 

h   <   N/2 – |C| – x  

Thus, since h and x are integers, (2.10) requires h actionists, where 

(2.11)                                          |A|  –  |C|  +  1   ≤   h   <   min(|B| – |A|, N/2 – |C| –  x)   

(2.12)                                                              0   ≤   x   <   N/2 – |A| – 1  

Figures (2.1) and (2.2) show in detail how h voters moving from BCA to CBA make B snatch the 

IRV-victory from A with Pushover.   Pushover changes the rôles of the candidates. Row II of Figure 

(2.3) shows an unspecified election with candidates A, B, and C in their standard rôles of (0.4). 

Row I shows their new rôles after a Pushover action.  Thet are the same whether the Pushover 

trick leads to constellation v, vi, i(cyclic) or iii(cyclic).    

 

FIGURE (2.3)     Candidate rôles changed by the non-monotonicity trick 

At the start of a non-monotonicity trick, i.e. a Pushover action, candidates C, B, A have their 

standard rôles in row II. By Remark (0.1), the only strategy that can make B, the runner-up, 

snatch IRV-victory from A includes Pushover: a suitable number h of actionists switch from 

BCA to CBA and give the candidates the new rôles shown in row I.   

The non-monotonicity trap    Where are the points (x, y) in Figure (1.1) that make a trap? First, 

consider how a trap changes the rôles. Row II of Figure (2.4) shows an unspecified election with 

candidates A, B, C in their standard rôles of (0.4). Row III shows their new rôles after a trap effect. 

Figure (2.3) forces row III because the reverse action, from row III to row II, is a trick effect 

(Pushover). Thus, the rôle changes are the same as those in Figure (2.3). Equivalently, Figure (2.4) 

states that a non-monotonic trap works against the arrows and in effect changes the rôles from 

those of row II to those of row III. Changing IRV-winner from A to C, the figure shows how the 

trap requires a suitable number g of voters to switch their ranking from BAC to ABC: 
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FIGURE (2.4)   Candidate rôles changed by the non-monotonicity trap 

At the end of a Pushover action, candidates C, B, A have their standard rôles in row II. The 

only way that the rôles of row II can be due to Pushover performed by g voters is that the 

Pushover action started with the non-standard rôles in row III. The rôle changes are the 

same as those in Figure (2.3). The trap requires g voters to move against the arrows. 

According to Figure (2.4), a non-monotonicity trap effect changes the vote vector (2.3) to  

      (|ABC| + g, |ACB|, |CAB|, |CBA|, |BCA|, |BAC| – g) 

=    (|A| – x + g,   x  ,  |CAB|, |CBA|,     y,  |B| – y – g)      

Clearly g  ≤  |B| – y. The trap requires that B is eliminated, so that C meets A in the final. This is 

obtained without tiebreak if C gets more top-ranks than B:    

y + (|B| – y – g)   <   |CAB| + |CBA|, i.e. |B| – |C|   <   g, and so 

 (2.13)                                             1 + |B| – |C|   ≤   g   ≤   |B| – y  

The trap also requires C to win the final pairwise comparison with A. Without tiebreaks this 

means   

(|B| – y – g) + (|A| – x + g) + x  <  |CAB| + |CBA| + y;   i.e   N/2 – |C|   <   y 

From (2.13) follows 1 – |C|  ≤   – y. Thus, a non-monotonicity trap requires     

(2.14)                                               N/2  –  |C| + 1  ≤   y   ≤ |C| – 1.  

This implies that  

(2.15)                   a necessary condition for a non-monotonicity trap  

                              in a 3-candidate IRV election is that N/4 < |C|  

In Frome 2009, the condition (2.12) becomes x  ≤  4191 and is satisfied; (2.14) and (2.13) become 

(2.16)                                                  4123   ≤   y   ≤   5531  

(2.17)                                                  2684   ≤   g   ≤   8215 – y  

Trick positions that also are trap positions     Each (x, y) in Figure (1.1) defines an election 

where C is eliminated and A wins. Inequalities (2.12) and (2.14) together define a sub-rectangle 

in the NW where (x, y) defines a cyclic election that allows both a trick and a trap: 

EXAMPLE (2.2)   The point (x, y) = (3801, 4200) is on the stapled line in Figure (1.1), in the NW, 

quite close to the 0.001-zone, see Figure (1.1). The pictogram is in Figure (2.5).  
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FIGURE (2.5)  A trick (Pushover) and a trap are both possible 4:   
With (x, y) = (3801, 4200), on the stapled line in Figure (1.1), the election is cyclic; thus, 

triangle T covers the circle center. T also covers a fraction 0.001213 of the circle area.  

The election is compatible with the standard tally of Frome 2009: C gets eliminated and A 

becomes IRV-winner.   

The constellation is iii(cyclic); the vote vector (1.3) is (1761, 3801, 4425, 1107, 4200, 4015).  

Conditions (2.12) for a trick and (2.14) for a trap are satisfied. 

If h voters switch from BCA to CBA, 31 ≤ h ≤ 321, A is eliminated, and B wins.  

If g voters switch from BAC to ABC, 2684 ≤ g ≤ 4015, B is eliminated, and C wins.  

With a trap position in family B, the trap needs usually, like here, a relatively large number 

g of “victims”. This is because the line that connects the trap position with a trick position 

must pass through a constellation in family A; see Figures (2.1) and (2.2).  

(2.18) Monotonicity failures – a summary      As theoretic possibilities, the two kinds of failure 

occur quite often according to (2.12) and (2.14), i.e. tricks and traps. The trick (Pushover) is a 

voting strategy that an action group, conceivably, might attempt to use. The structure of the 

action space, Figure (2.1) and Figure (2.2), shows how a lack of reliable predictions of the standard 

tally (0.7) and of the unknown x = |ACB| makes a Pushover action a risky enterprise. It requires 

a number h of actionists that satisfies (2.10). If reliable estimates makes the interval for h so large 

that a conducted action seems worthwhile, there is still a question of motivation. Actionists 

reduce the BCA-category and increase the CBA-category, targeting Condorcet winner A in the 

non-cyclic cases, but must state their ranking in {B, C} insincerely. A is a central candidate and 

widely accepted as winner. Voters with sincere BCA-ranking will not be enthusiastic actionists.   

Last day random events always influence voter participation and change the vote vector. They 

decide when the vote vector lands in “A-territory”, close to the territory of B or of C, or even 

both. Moves between BCA and CBA are included, but so are, say, moves between ACB and CAB, 

with a more obvious impact on C v A. When tally data reveal such closeness, a claim that a 

                                                           
4 As indicated in Figure (1.1), cycles are very rare in political elections, but are useful to illustrate, as in Figure (2.5), 
both non-monotonic events, tricks and traps, with the same choice of (x, y), i.e. in the same pictogram.   
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monotonicity failure really caused such moves to help A to win, may be true, but not a likely one 

in the case of Frome 2009. As usual in elections won with small margins, last day ranking changes 

may have changed the outcome. The very possibility that a trap effect occurred is upsetting, but 

it should not derail public attention away from other arguments, both for and against IRV.    

However, one must expect, in very rare cases, identification of some “victims” of a trap effect:   

(2.19)    Caught in the trap – reaction of the “victims”    When it was reported that the election 

in Frome 2009 landed on the trick side close to a border, Example (2.1), many saw it as revealing 

a serious flaw of IRV. Imagine that h voters, 31 ≤ h ≤ 321, had moved from CBA to BCA because 

the last days of campaigning made them agree that B was the best candidate. If such agreement 

is a proven fact, the trap effect appears as real, not just as a case of creative accounting.   

The trap is just the Pushover trick in reverse, but often preferred as argument in attacks on IRV. 

It appears as a more serious flaw than the trick, because voters who seriously up-rank B, not only 

destroy B’s victory, but even cause their bottom-ranked A to become the new IRV-winner instead 

of B. This trap narrative has impact on public opinion, but courts want evidence. The Minnesota 

Supreme Court 2009 stated that the appellants who attacked IRV, gave ”no evidence, much less 

proof, of the extent to which it [the trap effect] might occur”. See Section 6.   

Trap “victims” will perhaps not be amenable to explanations based on natural sortition or to 

consolation by the fact that it was a Condorcet winner (A) they happened to save from 

elimination. However, in other words, they just contributed to create a ballot distribution where 

BCA-voters missed an opportunity to win with Pushover.   

When A is Condorcet winner and B Plurality winner, |CAB| > |CBA|; in Frome 2009 almost 80% 

of the C-supporters voted CAB. In most of constellation iii, a large majority of B-supporters vote 

BAC. Voters who move from CBA to BCA, into the trap, do not fit a “victim rôle” more than other 

BCA-voters do; see also Figure (1.3). The dual emphasis on primary support and general 

acceptance is the basic property of IRV. In non-cyclic 3-candidate cases, non-monotonicity events 

occur on the border of constellations iii (Condorcet-winner wins) and v (Plurality winner wins).  

In the elimination process of ITV only primary support counts. In the context of monotonicity 

failure, elimination of the Condorcet-winner in constellations v or vi should be seen as, at most, 

a minor nuisance. However, the third pictogram of Figure (1.2) shows the result of a No-Show 

accident, and is a reason to reconsider the IRV rules.    
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3 The No-Show accident 

A No-Show accident occurs when a group of new voters with the same ranking causes a new 

result that is worse than the original result according to their own ranking. In a 3-candidate IRV 

election, this is only possible in constellations iii and iii(cyclic) and requires a sufficient number k of 

new CAB voters; see Theorem (0.2). The first known example (constructed) of a No-Show 

accident, and equivalently, its reverse, is in Fishburn and Brams (1983).  

The accident, when and how?   New voters change the vote vector from (1.3) to:  

(|ABC|, |ACB|, |CAB| + k, |CBA|, |BCA|, |BAC|) 

=   (|A| – x ,  x , |CAB| + k,  |CBA| ,  y ,   |B| – y). 

One condition is that C passes A in top-ranks. This happens without tiebreak if   

(|A| – x) + x   <   (|CAB| + k) + |CBA| 

(3.1)                                                           |A| – |C|   <   k 

Another condition is that B still wins over C in pairwise comparison. This happens without 

tiebreak if  

x + (|CAB| + k) + |CBA|   <   y + (|B| – y) + (|A| – x)   

(3.2)                                                                     k   <   N – 2|C| – 2x    

with  N = |A| + |B| + |C|.  Since the numbers are integers, (3.1) and (3.2) are equivalent to  

(3.3)                                           |A| – |C| + 1   ≤   k   ≤   N – 2|C| – 2x – 1    

The maximal value for x follows from (3.3): 

(3.4)                                                                      x   ≤   |B|/2 – 1  

No-Show and change of rôles   In a 3-candidate IRV-election with N voters, a No-Show accident 

may occur if a suitable number k of new voters join one of the six voting categories. Row II in 

Figure (3.1) describes the start, with the candidates in the rôles from (0.4). According to Theorem 

(0.2), the start in row II must be in constellation iii or iii(cyclic) and the No-Show accident occurs 

when suitably many join the election and vote CAB, i.e. 

(3.5)                             1) eliminated;  2) IRV-winner;  3) runner-up  

Row I in Figure (3.1) shows how the rôles of the candidates change for C, B, and A, i.e. from  

(3.6)        eliminated to runner-up; runner-up to IRV-winner; IRV-winner to eliminated.   
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FIGURE (3.1)     Candidate rôles changed by a No-Show accident  

The candidates have labels C, B, and A, according to their rôles in row II. The k new CAB-

voters cause the No-Show accident and the candidates get the new rôles in row I.   

No-Show accident reversed   The dual question is: When may an election result itself be 

explained as the result of a No-Show accident caused by q new voters? In Figure (3.2), row II is 

now an unspecified preference distribution with candidates labelled according to (0.4). With start 

in row III, the rôles change according to (3.6). This forces row III of Figure (3.2). The q new voters 

must have voted as in (3.5). According to row III, this means BCA.   

 

FIGURE (3.2)     Candidate rôles changed by reversal of a No-Show accident  

The candidates have labels C, B, and A, according to their rôles in row II. Row III describes 

what rôles A, B, C must have had at the start. They must lead to the same changes as 

described in Figure (3.1). The reversed accident reverses the arrows and reduces |BCA|.  

The original vote vector, before the q BCA voters entered in row III, was  

      (|ABC|, |ACB|, |CAB|, |CBA|, |BCA| – q, |BAC|)  

=   (|A|– x,   x , |CAB|, |CBA|, y – q, |B|– y).  

In row III, B loses to C in top-ranks. This happens without tiebreaks if     

(y – q) + (|B| –  y)   <  |CAB| + |CBA| 

(3.7)                                                             |B| – |C|   <   q 

A must lose to C in pairwise comparison. This happens without tiebreak if  

(|B|– y) + (|A|– x) + x   <   |CAB| + |CBA| + (y – q)  

(3.8)                                                            q   <   2|C| – N + 2y  

Since the numbers are integers, (3.7) and (3.8) imply 

(3.9)                                    |B| – |C| + 1    ≤   q   ≤   2|C| – N + 2y – 1  

Clearly y ≤ |B|; another condition follows from (3.9):  

(3.10)                                            |B| – |C| + |A|/2 + 1   ≤   y   ≤   |B|  
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From (3.10) follows a necessary condition for an election to be the result of a No-Show accident:  

(3.11)                                                         |A|/2   ≤   |C| – 1 

In case (3.11) is satisfied, choose y to satisfy (3.10); if q then satisfies (3.9) and q BCA-votes are 

cancelled, the election drops from row II to row III in Figure (3.2). C replaces A as IRV-winner.  

EXAMPLE (3.1) Assuming that y = 5600 in Frome 2009, then Figure (1.1) shows that the election 

is in constellation iii(cyclic) with (x, y) on the stapled line. Since |A| = 5562 and |C| = |5532|, 

condition (3.11) is clearly satisfied.  By (3.10) and (3.9),  

5395  ≤   y  ≤  8215, and  
2684   ≤   q   ≤   2954 

If q BCA-voters (are allowed to) cancel their ballots “ex-post”, B will be eliminated, but C kept as 

IRV-winner (with enough subsidiary votes from the remaining BCA-voters); if not, they get A.  

With x = 3801, i.e. on the stapled line in Figure (1.1), also (3.4) is satisfied, and by (3.3) states  

31   ≤   k   ≤   642 

In Frome 2009, with counterfactual (x, y) = (3801, 5600), k more CAB-voters would have spoilt the 

election for C and caused B to win, while q BCA-voters less would have meant victory for C.  

Only some of the cyclic elections, i.e. in constellation iii(cyclic) can allow both a No-Show accident 

(condition on x) and itself be caused by a No-Show accident (condition on y).    

 
FIGURE (3.3)   No-Show accident and abstention strategy are both possible 

With (x, y) = (3801, 5600), on the stapled line in Figure (1.1), the election is cyclic; thus, 

triangle T covers the circle center. T also covers a fraction 0.005049 of the circle area. The 

vote vector (1.3) is (1761, 3801, 4425, 1107, 5600, 2615), and the constellation is iii(cyclic)  

If k voters join CAB, 31 ≤ k ≤ 642, A is eliminated and B wins instead of A.  

If q voters leave BCA, 2684 ≤ q ≤ 2954, B is eliminated and C wins instead of A.   

Realistic vote vectors with Perfect Pie-sharing are obtained by following straight lines, x = 

3801 and y = 5600, until intersection with the middle curve in Figure (1.1).   
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EXAMPLE (3.2)       Burlington’s mayoral election 2009 

The election in Burlington, Vermont, 2009, was in family B. In the second last round, respectively 

M (Montroll, democrat); W (Wright, republican); K (Kiss, progressive),  

had standard rôles C = M; B = W; A = K. The election was in constellation vi, with vote vector  

  (|KWM|, |KMW|, |MKW|, |MWK|, |WMK|, |WKM|) 

(3.12)                                          (655, 2327, 1559.5, 994.5, 2157.5, 1139.5) 5   

It has repeatedly been claimed that he victory for A = K was due to a No-Show accident, e.g. 

(Gierzynski 2009, 2011). Only the necessary condition (3.11) is satisfied. By (3.10), the claim is 

false, because y is too small by 2235.5 – 2157.5 = 78 votes:    

|B| = |W| = 3297,   |C| = |M| = 2554,   |A| = |K| = 2982,   y = |BCA| = 2157.5, 

 y < |B| – |C| + |A|/2 +1   =   2235.5    

However, the condition (2.14) for a non-monotonicity trap was satisfied in Burlington:  

N/2 – |C| + 1  =  1863.5  ≤  y  ≤  2553  =  |C| – 1     

    

 Before the trap effect; const. vi     After the trap effect; const. iii 

FIGURE (3.4)   Pictogram of the Burlington vote vector (3.12) and trap effect  

T covers a fraction 0.000098 of the circle area. The arrow in the first pictogram (the real 

election) indicates how g voters are trapped if they move from WKM to KWM, 744 ≤ g ≤ 

1139. The right hand pictogram shows the result for g = 770; T then covers a fraction 

0.009807 of the circle, and the arrow shows the reverse effect, i.e. a trick effect (Pushover). 

Thus, the real vote vector (3.12) could have been the result of Pushover, but only from a 

very unrealistic start position.         

                                                           
5 Vote vector data appear with small and insignificant differences in different places. Here they are from a table in 
RangeVoting.org. Incomplete ballot rankings were accepted, and a ballot ranking that only contained X is in (3.12) 
counted as half a vote for XYZ and half a vote for XZY. Thus, by symmetrizing, 1289 ballots that supported W without 
showing a preference in {K, M}, contribute with 644.5 to both |WMK| and |WKM| in the vote vector (3.12). All 
ballots are then included in the picture of the political landscape, and without changing the tally result.  
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According to (2.10), g voters might then have moved from WKM to KWM, i.e. from BAC to ABC, 

walked together into the trap and activated it, thus causing the elimination of B = W and a victory 

for C = M in pairwise comparison with A = K,   

(3.13)                                     1 + |B| – |C| = 744   ≤   g   ≤   1139.5 = |B| – y 

Thus, the Burlington vote vector is a trap position. If activated, a trap is a practical consequence 

of non-monotonicity, but it is hard to see what reason so many voters should have for a move 

from WKM to KWM; see Remark (2.2).   

Still, in a “case study” of Burlington 2009, Ornstein and Norman (2014) conclude: “The Burlington 

election offers a compelling illustration of monotonicity failure’s practical importance, but so 

detailed IRV ballot data are rare.” 

Burlington 2009 is compelling as an illustration of a theoretic possibility. So are many 3-candidate 

IRV-elections with data only from a standard IRV-tally (0.7). Even without any published details 

on (x, y), a figure similar to Figure (1.1) and inequalities (3.4) and (3.10) always show the 

theoretical possibilities. Moreover, although x and y usually are unknowns in Australian IRV-

elections, opinion polls and “how-to-vote” cards will often give a good idea on (x, y), but a 

judgment of IRV should build on evidence on voter behavior as well as on theoretic possibilities. 

By (3.13), 744 moves were necessary to produce a non-monotonic effect in Burlington 2009, and 

utterly unrealistic. The distance to the non-monotonic change is a practically important barrier 

against an accidental trap effect in 3-candidate elections in family B. 

In a referendum 2010, Burlington repealed IRV, and went back to the common 2-day election, 

which people in many countries know e.g. from French presidential elections.  

EXAMPLE (3.3)    The 2-day election, a.k.a. TRS (Two Round System), allows a strategy akin to 

Pushover, but easier to see in the simpler setting of TRS: In France 2002, LePen (far right) 

squeezed out Jospin (center-left) on day one; on day two, incumbent Chirac (center-right) won a 

landslide victory with massive support from the left. How many alert Chirac-supporters voted 

LePen on day one in order to avoid the strong challenger Jospin on day two? 6  

                                                           
6 LePen was particularly suited as a tool for such strategic voting, because it was clear that he would receive only an 
insignificant number of new voters on day two. First, however, he caused elimination of all the small parties of the 
left.  With IRV, vote transfers between the left wing parties would have made at least one of them strong enough to 
eliminate LePen and give the incumbent Chirac a strong opponent in a final IRV tally round.    
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(3.14)    No-Show effects – a summary    The third pictogram of Figure (1.2), constellation vi, is 

compatible with the standard tally of Frome 2009. It could have been caused by a No-Show 

accident, taking IRV-victory from C to A.7 Equivalently, if a suitable number q of voters in category 

BCA had abstained, or could cancel their ballots, then C could have won, since y =|BCA| = 7062 

satisfies condition (3.10):   

                                                   (|ABC|, |ACB|, |CAB|, |CBA|, |BCA| – q, |BAC|)  

(3.15)                                          =  (262,   5300,   4425,   1107,   7062 – q,   1153). 

Here q must satisfy (3.9), i.e. 2684 ≤ q ≤ 5878; after cancellation of q BCA-ballots, B is eliminated 

and C will defeat A with support from remaining BCA-voters. For a 3-candidate election in family 

B, the abstention strategy usually requires many participants, because the q-step path from 

constellation vi to constellation iii must pass another constellation.  

In some realistic vote distributions in constellations vi or v, the voter group BCA would gain if a 

suitable number of their ballots were cancelled. When this happens, the accounting is real, and 

the case is fundamentally different from a claim that a monotonicity failure has occurred and had 

a practical consequence (Example (0.1).      

It seems unreasonable that q BCA-voters who enter in (3.15) prove insufficient to help C or B, just 

because of A’s tiny 30-vote lead over C in top-ranks. 8   

Moreover, the election in (3.15), with q = 0, is close to Perfect-Pie-sharing according to the 

pictogram, and must be seen as realistic in a politically split society where most supporters of the 

Plurality winner B give strong subsidiary support to the Condorcet winner and “lesser evil” C on 

the opposite wing.  

In a judgment of IRV, the fact that it always eliminates the Condorcet winner C in constellations 

v and vi, deserves attention even if criterion (3.10) is not satisfied. When it is, fairness to 

candidates A and C and fairness to supporters of Runner-up B are themes that get even more 

closely connected and urgent, but the present IRV-rules ignore |BCA| and |BAC|.            

                                                           
7 It was the extra information, x = 3801, which showed that the real Frome election was in constellation iii or, 
possibly, iii(cyclic), and certainly could have been the starting point for Pushover action and for a No-Show accident. 
Possibly, but unlikely, y satisfied (2.14), so that a trap also existed: Moves from BAC to ABC could then have let C win 
instead of A; see Figure (2.5). Possibly, but very unlikely, y satisfied (3.10); if so, then an abstention/cancellation 
strategy of BCA-voters could have let C win instead of A; see Figure (3.3).   
8 The common dramatization of No-Show narratives with “new” voters entering is, hopefully, more didactic than 
misleading. Of course, a continued influx of new BCA-votes would eventually cause B to win. The problem is that 
|BCA| is, temporarily, too small to elect B instead of A and too large to elect C instead of A: B prevents promotion 
of C to the final, but with q cancellations, q as in (3.9), the B-supporters could avoid A as IRV-winner.   
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4 Electoral basis, fairness and legitimacy 

A ballot from voter v in any n-candidate preferential election may be reshaped as an nxn-matrix 

Con(v) with 1 in position (X, Y) if voter v ranks X before Y, all other entries being 0. Two auxiliary 

column vectors are derived from Con(v): In Plu(v), entry X = 1 if X is top-ranked, while the other 

entries are 0. In Bor(v), the entries give the Borda-points, n–1 , n–2, …, 0.   

EXAMPLE (4.1)   If voter v is in the CAB-category in a 3-candidate election, then 

Plu(v)  =  [
𝟎
𝟎
𝟏
];   Con(v) = [

𝟎 𝟏 𝟎
𝟎 𝟎 𝟎
𝟏 𝟏 𝟎

];   Bor(v)  =  [
𝟏
𝟎
𝟐
]  

Summing over all v, the election in the second pictogram of Figure (1.2) gives these sums: 

(4.1)                    Plu = [
𝟓𝟓𝟔𝟐
𝟖𝟐𝟏𝟓
𝟓𝟓𝟑𝟐

];     Con =  [
𝟎 𝟗𝟗𝟖𝟕 𝟏𝟎𝟎𝟒𝟎

𝟗𝟑𝟐𝟐 𝟎 𝟗𝟒𝟕𝟕
𝟗𝟐𝟔𝟗 𝟗𝟖𝟑𝟐 𝟎

];     Bor = [
𝟐𝟎𝟎𝟐𝟕
𝟏𝟖𝟕𝟗𝟗
𝟏𝟗𝟏𝟎𝟏

] 

Condorcet and Borda    

Condorcet methods ignore top-ranks: Plu in (4.1) shows that B is Plurality winner but this cannot 

be retrieved from Con, although Plu(v) is trivially retrieved from Con(v). Aggregation loses 

information. The Borda Count in Bor is an over-aggregation, since not just information on top-

ranks, but also most information on pairwise comparisons is lost in Bor.  

However, one connection survives the aggregation; we see from Bor that if there is a Condorcet 

winner, it has to be candidate A, who is the only candidate with above average Borda-score: In 

both {A, B} and {A, C}, A is supported by > 50% of the voters, and Bor is the column sum of Con.  

Thus, (4.1) illustrates a fact well known: 

 (4.2)                          A Condorcet winner has above average Borda-score.  

The fact (4.2) allows special Condorcet methods defined through an elimination tally similar to 

IRV, but with Bor in the rôle of Plu: Calculate Bor and eliminate  

(4.3)               either all candidates with average Borda-score or less (Nanson 1882)  

or the candidate with the lowest Borda-score (Baldwin 1926).  

Then calculate the new Bor, etc. By (4.2), a Condorcet winner survives all eliminations.  

Eliminations based on top-ranks were proposed before Nanson (University of Melbourne) 

proposed his variation on the Condorcet theme (1882). STV (Single Transferable Vote) was for 

multi-seat elections, and the idea of one-by-one eliminations was well known to Nanson, who 
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also knew Ware’s suggestion to use it in single-seat elections. Nanson still preferred en-bloc 

eliminations, because they give a shorter tally process. When Baldwin suggested a more 

elaborate tally than Nanson, IRV, the single-seat version of STV, was also already in use in 

Australia (McLean 2002). Thus, Baldwin suggested a Condorcet method compatible with a 

familiar concept of one-by-one eliminations. This familiarity is not an explicit argument in his 

paper, but he argues that with his tally-technical guidelines, the extra time spent on one-by-one 

eliminations would be just a matter of minutes.   

Plurality v Borda Count: Coarseness v Cruelty 

A common kind of strategic voting is Compromise (0.3) in Plurality elections. The voter casts an 

instrumental vote for a tolerable candidate or “the lesser evil” among the candidates with a 

reasonable chance to win, instead of casting an expressive vote for the candidate that seems best 

suited for the office. Plurality elections expose voters to some coarseness. The decision can be 

painful. In both cases, the voter should expect some scolding. Either: You waste your vote!  Or: 

You commit favorite betrayal!  However, there is no insincerity behind instrumental voting; 

voters simply include electability among their ranking criteria, with high weight. With pre-

election opinion polls, substantial application of Compromise shows up in real accounting:     

EXAMPLE (4.2)   In the UK general election of 2017, the opinion poll (by the market research 

company YouGov) and the election result one month later were as follows for “East of England”:   

 

The sample size was 1339. There is a clear decrease in two accounts for top-ranks: UKIP down by 

6.5%, LibDem down by 4.1%, while Lab (Labour) went up by 13.7%. The unavoidable inaccuracies 

in opinion polls can only explain a part of the account changes. Moves from UKIP to Lab were 

common in England. In some constituencies, they sufficed to make the Lab candidate pass the 

Con (Conservative) candidate.        

The Borda Count is a remedy worse than the Plurality ailment it should cure. In political elections, 

the urge to apply “Burying” (0.3) must be overwhelming: In a race with front-runners P and Q, 
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every voter who switches from PQRSTUVW to PRSTUVWQ makes up for seven others who rank 

Q first, P second. Attempting to trade part of their soul for power, they contribute insincere 

ranking in the pairs {Q, R}, {Q, S}, {Q, T}, {Q, U}, {Q, V}, and {Q, W}. Fear that a political enemy 

will use Burying to make Q defeat P motivates more voters to join the action. The switchers are 

under pressure from a “cruel” dilemma imposed by the Borda Count.  

Mutually stimulated insincerity may hide a reality where a majority would prefer both P and Q 

to the declared winner, and be a step in the direction of anarchy. 9    

Balanced methods: Condorcet or IRV? 

In elections less coarse, intimidating and polarizing than Plurality and less anarchistic and cruel 

than the Borda Count, the tally must process more ballot information than Plurality does, and 

not forget the top-ranks in the aggregation, as the Borda Count does. Condorcet methods and 

IRV follow different ways to pick a winner with a reasonable electoral basis.  

Condorcet methods    In all Condorcet methods the ballot rankings in all pairs influence the tally. 

However, if X wins a 3-candidate cycle, the supporters of X could have created the cycle by 

switching from XYZ to XZY, snatching the win from Condorcet winner Y, starting from a realistic 

vote vector (Perfect Pie-sharing). Different Condorcet methods give different opportunities for 

winning this way (Stensholt 2013).10  

Some professional organizations actually use a Condorcet method. A Condorcet method is likely 

to function better in decisions based on judgment than in decisions based on interest.11 

                                                           
9 On Borda’s suggestion, the French Academy of Sciences for a while used the already controversial Borda Count for 
its election of new members. The combined efforts of two other prominent members caused its repeal: P-S de 
Laplace and his younger associate N. Bonaparte (Szpiro 2010).    
10 In Nanson’s and Baldwin’s methods, the elimination rule may also allow Pushover: In a cycle XYZX, ballot switches 
from XYZ to YXZ improves Y’s Borda-score and may cause elimination of Z instead of Y.   
11 In an election with fifteen candidates to the Wikimedia Foundation Board of Trustees 2008, a candidate quartet 
formed a cycle, i.e. two overlapping cyclic triples. Thus, 2 of 15•14•13/6 = 455 triples were cyclic. The narrowest 
pairwise win in the five pairs involved (745 – 737) was in both cycles; a reversal in this pair would give a transitive 
tally preference. The quartet members all lost to the five first candidates and won against the last six. The aggregated 
15×15-matrix Con of (4.1) is published in RangeVoting.org.   
Similar results were found by Tideman (Gehrlein 2006, p.47-48). A possible mechanism behind such fluke cycles is 
like this: Voters apply several criteria in their judgment and give them different weights. Roughly equal voter groups, 
I; II; III, emphasize criterion 1; 2; 3, respectively, but may agree that each criterion alone would give ranking XYZ; 
YZX; ZXY. This may cause a cycle XYZX in the middle range, with small margins among candidates who are strong 
according to one criterion and weak according to another.  
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In a No-Show accident, new ballots that rank X before Y cause Y to win instead of X.  The accident 

is of the “strong” kind if X is top-ranked in the extra ballots, otherwise it is of the “weak” kind.  

The strong kind is impossible in IRV, since more top-ranks to X never can harm X. Obviously, it 

cannot harm a Condorcet winner in any Condorcet method either.12  

The property that seems to limit the use of Condorcet methods in political elections is apparent 

from the candidate triangle ΔABC in pictograms of Perfect Pie-sharing cases, e.g. in Figure (1.2):  

The Condorcet winner is the candidate closest to the center. This gives the candidates a bizarre 

incentive for their election campaigns:  

(4.4)                       Appear to the electorate as being the most central candidate!  

Such a guideline hardly promotes a political clarification of contested issues for the voters. It is 

likely to have real impact even if formulations are more equivocal than (4.4). Marquette, 

Michigan, used the Nanson variation in city elections in the 1920s (McLean 2002), seemingly a 

unique reference in election literature. Melbourne University repealed Nanson’s method for 

Council elections in 1983. The reason given should not surprise anybody (McLean 2002):    

“The reason for abandoning the Nanson system was that it was perceived to advantage 

inoffensive but not outstanding candidates as against those who attracted strong support.” 

IRV and the B-supporters    The eliminations in an IRV-tally makes Burying and its reverse 

impossible since no information on a ballot ranking after candidate X is available to the tally 

officials as long as X is still “hopeful”, i.e. not yet  eliminated. A huge advantage of IRV over the 

Borda Count is its immunity to the “Burying” strategy (0.3). To varying degree, this is an 

advantage over the Condorcet methods too. However, there is a high price for this immunity.  

The ERS (Electoral Reform Society) compares IRV with Plurality: “For voters, there is less need for 

tactical voting, as voters can cast a vote for their favourite candidate without worrying that their 

vote will be wasted.”13  In family B (0.9), A challenges Plurality winner B in the final tally round, 

and according to ERS, B-supporters should have no reason to worry about wasting their vote. The 

                                                           
12 All Condorcet methods with ≥ 4 candidates sometimes allow No-Show accidents (Moulin 1988). The strong kind 

requires an election without a Condorcet winner. Moulin’s paper and later investigations are of considerable 
combinatorial interest, but they do not appear as connected to significant practical problems in Condorcet elections.  

13 https://www.electoral-reform.org.uk/voting-systems/types-of-voting-system/alternative-vote/  

https://www.electoral-reform.org.uk/voting-systems/types-of-voting-system/alternative-vote/
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ERS statement concerns the vote transfer rule, which is essential in IRV (and all other STV-

methods). It is a central argument used by IRV-protagonists.  

Still, voters who give the runner-up B top-rank in their original ballots, experience that their 

favorite finally loses, and that no other information from their ballots counts in the tally. As under 

Plurality, the BCA-voters might well have obtained a better result through “Compromise” 

(instrumental voting). However, in IRV it is less likely that they will be aware of need and 

opportunity for Compromise. Their ballots are just as wasted in IRV as votes for a loser are in a 

Plurality election. Voters have reason to worry. This is the price.  Is it too high?  

EXAMPLE (4.3)   In Burlington 2009, constellation vi, see Example (3.2), (3.12) and Figure (3.4), 

B (= Wright) had 33% of the top-ranks already in round one. C (= Montroll) was a clear Condorcet-

winner, but the tally ignored all subsidiary preferences of the B-supporters. As the central 

transfer rule of IRV is concerned, this is a decisive disenfranchisement of one large voter group. 

IRV’s treatment of the supporters of Plurality winner B was part of the background when 

Burlington repealed IRV in a referendum 2010.  

Even abstention from voting may sometimes improve the result in IRV. The criterion is (3.10), and 

(3.8) tells how many BCA-ballots that must be cancelled in order to reach a constellation where 

C wins instead of A. This makes a difference in constellations v and vi.  The BCA-voters will learn 

that a No-Show accident turned some of their own ballots into a “destructive surplus”, in fact 

making their votes worse than wasted.       

EXAMPLE (4.4)     In Frome 2009, A won, qualifying for the final with a narrow margin over C. In 

the 19309 ballots, the runner-up, B (= Boylan), had 7576 top-ranks from start, i.e. 39%, see 

Remark (2.1), but the subsidiary rankings from B’s supporters were ignored in the tally. The third 

pictogram of Figure (1.2), constellation vi, deserves particular attention. Although counter-

factual, it is realistic and compatible with the standard IRV tally.  C is Condorcet winner and faces 

elimination because of the disenfranchisement of all B-supporters. Thus, an IRV-tally ignores 

their massive subsidiary preference for C in C v A. Moreover, (3.10) is satisfied, i.e. y = |BCA| is 

so large that it harms the BCA-voters; see Example (3.1) and Figure (3.3).    
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Eliminations and subsidiary rankings 

Two important, but not compatible, principles for a preferential election method are:  

Principle  I : Avoid the Burying strategy (0.3) and, equivalently, its reverse.  IRV achieves this goal 

with its sequence of eliminations based on top-ranks.  

Principle II : If no subsidiary rankings of a complete ballot counts, then the ballot must be one 

that ranks the election winner on top.  This is a central principle, which, if implemented, would 

have substantiated the claim that voters have no reason to worry that they waste their votes.       

IRV follows Principle I consistently, but Examples (4.3) and (4.4) show that it is not even close to 

Principle II. However, rule (4.5) follows Principle II consistently, and still follows Principle I with 

eliminations based on top-ranks, until only 3 candidates, A, B, and C, remain:   

(4.5)  IRV/Condorcet    When three candidates remain in an IRV-tally, continue with 

     a Condorcet method, either always or when some criterion is satisfied. 

Supporters of candidate X cannot help X to a place in the 3-candidate Condorcet final by changing 

their subsidiary rankings. Here we just consider a criterion in terms of y = |BCA|:  

Choose ϵ [0, 1] and define   

(4.6)                        () = (1) ∙ C  +  ∙ (|B| – |C| + |A|/2  + 1)   

Then continue with IRV if y < (), but with a chosen Condorcet method if () ≤ y. Thus,  = 0 

means to use the Condorcet method always when 3 candidates remain. In non-cyclic cases, it 

makes a difference only in v and vi, with a Condorcet winner last in top-ranks. With  = 1, it is 

used only when, otherwise, A would win in a No-Show accident, see (3.10).  

When the IRV elimination sequence reaches the stage (4.5), it has eliminated every other 

candidate X before any change after X in any ballot could influence the outcome. Therefore, 

Burying cannot help any fourth candidate X to replace A, B, or C in the final Condorcet tally.14  

People are likely to have different opinions on what candidate that is most acceptable as a fair 

and legitimate election winner in constellation v or vi. When y is just above the bound C in (1.5) 

and makes C a Condorcet winner with narrow margin, it is still acceptable to argue that a clear 

advantage to A over C in top-ranks is more important.  With = 1 in (4.6), A (= Kiss) will still win 

over Condorcet-winner C (= Montroll) in Burlington, Example (4.3), but Condorcet-winner C wins 

the election in Example (4.4) and a No-Show accident is avoided.    

                                                           
14 Theoretically, an action akin to Pushover may still, under favorable circumstances, let a fourth candidate D replace 
C (say) in the final. Most likely, however, D’s prospects in a Condorcet final with {A, B, D} will not be good.     
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IRV in a split society    If a voter group is a 60% majority, another a 40% minority, and transfers 

are internal in each, then one minority candidate reaches the 2-candidate final in the ordinary 

IRV tally, and the minority voters’ ranking of majority candidates get ignored. A Condorcet final 

gives voters and campaigning candidates an incentive to cross a dividing line in a society divided 

by ethnicity, religion, ideology, or social class. To promote crossover voting, it is likely that some 

citizens will prefer to let a Condorcet final come earlier, while c electable candidates still remain 

in the race, c > 3, or when all remaining candidates have reached a certain share of the current 

top-ranks, e.g. 20%.   

Two Condorcet methods; are they suitable in (4.5)?  

With a Condorcet final, the possibility of defeating a Condorcet winner with strategic voting 

becomes an issue. The following discussion concerns Burying in 3-candidate elections, (0.3). Two 

Condorcet methods appear as a particularly natural choice in (4.5):   

(4.7)    IRV as cycle-break     One natural idea is to return to IRV for a cycle-break if there is no 

Condorcet winner. Then A wins all cycles, and in constellations i, ii, iii, iv, the IRV-winner A is 

already Condorcet-winner; see Figure (0, 1). C is Condorcet winner in v and vi, but with rule (4.7), 

A wins by Burying, reducing x, and creating a cycle. Figure (1.1) illustrates that by decreasing x 

below C, thus creating a cycle with a move from ACB to ABC, supporters of A can always snatch 

the IRV/Condorcet victory from C, i.e. Burying (0.3), and without any risk.  

(4.8)    Baldwin’s Condorcet method    Another natural idea is to apply Baldwin’s variation (4.3) 

when three candidates remain: The only change is to use the Borda sum instead of top-ranks 

when three candidates remain; it is not necessary to check if there is a cycle. 

Of the cycles in the NW of Figure (1.1), some are won by A, some by B, and some by C. The Borda 

ranking changes when one of three lines through the point (x, y) = (3790, 4455) is crossed. Burying 

actions from C-supporters in constellation iv are visualized in a 3D generalization of Figure (1.1).15        

                                                           
15 The 3D-model is a rectangular box |A|×|B|×|C| = (B +C) × (C +A) × (A +B) cut accordingly in 8 sub-boxes with 

edges of lengths in {A, B,C}, one for each constellation (Stensholt 2013). Two sub-boxes of volume A∙B∙C, at 

diagonally opposite corners, contain the cycles.  Figure (1.1) is replaced by a layer of thickness B. Constellation vi is 

always the smallest box, of volume B∙A∙B. The subsidiary votes from C-supporters, in accounts |CAB| and |CBA|, 
determine which family, A or B, the election belongs to, Figure (0.1).  
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How to choose the Condorcet method      Every cycle in i(cyclic) or iii(cyclic) may be created by voters 

who support a Condorcet runner-up and switch their second and third preference. A cycle in 

iii(cyclic) (say), may be created by supporters of A, B, or C starting from a constellation where their 

favorite is second in pairwise comparisons, i.e. from vi, iii, or ii, respectively. Thus, the cycle could 

be due to a successful Burying action for the candidate the cycle-break rule awards it to.  

The target is a Condorcet winner, accepted as fair winner also by many opponents, so there is not 

likely to be much enthusiasm for joining an action.  Still, the two cycle-break methods described 

above are significantly different.      

If IRV is used for cycle-break in (4.5), only A can win with Burying, and the target must be C, but 

there are not many possibilities since relatively few 3-candidate IRV-elections are in constellation 

v or vi. However, if the election is reliably predicted to land in constellation v or vi, then the task 

for the A-supporters is quite easy: Just reduce x in Figure (1.1) and push the election into the 

adjacent set of cyclic constellations. When Burying is easy, it may be tempting for some A-

supporters to apply it. If the tally shows a cycle, suspicion of a win by Burying may reduce the 

general confidence in the election method.   

The Baldwin method gives many opportunities for the (Condorcet) runner-up to win with Burying, 

but this must happen at the polls, when constellations and other geometric conditions depending 

on |A|, |B|, and |C| are still unknown. Baldwin awards some cycles to A, some to B, and some 

to C. On many occasions, post-election analysis with access to additional data will show that 

supporters of the runner-up missed an opportunity to defeat a Condorcet winner with the 

strategy of Burying. Most likely, one may then also see that their task was unrealistic for a reason 

similar to a reason that makes Pushover unrealistic in IRV; see Figure (2.1): Before election, one 

cannot know the lower and upper bounds for the number of actionists. A failed Burying attempt 

may well make the outcome worse.  
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5 A mathematical framework for preferential elections 

Although some basic ideas in election theory appear in medieval writings, see e.g. (Colomer 

2013), much work from the last two generations clearly belongs to a dual tradition from Duncan 

Black’s focus on the structure of preference distributions (1948) and Kenneth Arrow’s axiomatic 

approach (1950).   

Arrow’s conditions 

Arrow adapted his work into a philosophic context, see e.g. Morreau (2014). Mathematically, it 

concerns a multivariate “social map” of relations  

(5.1): (R1, R2, …, RN) → R   

R is the social preference relation “at least as good as” over a set of H ≥ 3 candidates, obtained 

by aggregating the ballot preferences Rj of voters j ϵ {1, 2, …, N} over the same candidate set, 

(5.2)                                                                    {C1, C2, C3, …, CH} 

Let Pj and P [Ij and I] denote the associated strict preference [indifference] relations:  

(5.3)                            X P Y when X R Y but not Y R X, [X I Y when X R Y and Y R X], etc. 

Today, it is common to derive Arrow’s result from the following set of axioms:  

1) UD “Unrestricted Domain”   Voter j chooses Rj as any complete and transitive ordering, 

and  accepts every combination of them for input.   

2) SO “Social Ordering”   R is a complete and transitive ordering of the candidates. 

3) IIA “Independence of Irrelevant Alternatives”   Whether X P Y, Y P X, or X I Y, depends 

exclusively on the restrictions of the Rj to {X, Y}; i.e. all ballot information about other 

candidates is irrelevant.    

4) WP “Weak Pareto condition”   If X Pj Y for all j, then X P Y.16  

Arrow’s “(im)possibility theorem” states that if H ≥ 3, then UD, SO, IIA, and WP together imply 

that one voter, d, is dictator, i.e.  

 (5.4)                                                                    if X Pd Y, then X P Y.  

Thus, if d has strict preferences, then R = Pd. A common, equivalent formulation is that five 

desiderata, viz. UD, SO, IIA, WP, and ND (Non-Dictatorship), are incompatible.    

                                                           
16 The strong Pareto condition says that if all voters say X Rj Y, and at least one of them says X Pj Y, then, in the 
social relation R, X is strictly preferred to Y, i.e. X P Y.     
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Social Choice theory is the study of social maps, both in welfare economics and voting theory. 

Arrow’s impossibility theorem is basic in the welfare part of modern Social Choice theory, where 

WP is a natural requirement. However, it hardly says anything useful about voting methods.   

The reason is WP, which becomes active only if there is a pair of candidates {X, Y} where X Pj Y 

for every voter j ϵ {1, 2, …, N}. The unanimity implies that Y gets 0 top-ranks, which must be 

extremely rare since Y, presumably, gets some top-ranks from those who nominated Y.   

If, hypothetically, Y is last and X second last in every ballot ranking, then WP requires that X P Y. 

That is impossible in a single-seat preferential election method designed to distribute H ≥ 3 

candidates into one singleton class (elected) and one indifference class with H–1  candidates (not 

elected). Obviously, such a design is in conflict with WP, which here requires at least one singleton 

indifference class for Y, another one for X, and a third one for the winner.  

Any preferential election designed to give an R with two indifference classes, must fail to satisfy 

WP. One may still hope that removal of WP will allow the construction of democratic, new, and 

useful preferential election methods that satisfy axioms UD, SO, IIA, and ND, and fail WP only.  

Wilson’s improvement     Robert Wilson (1972) showed that such hope must be in vain. A useful 

impossibility result should say so. It makes no sense to include WP with the other conditions. 

Dropping WP, Wilson found that UD, SO, and IIA together imply that there is either a dictator d, 

or else one of a few other equally undemocratic arrangements. They are as follows:    

●   (AD)     an Anti-Dictator a (if X Pa Y, then YPX), or  

●   (TI)       a Total Indifference (X I Y for all X and Y), or more generally,  

●           gives an “imposed” constant social preference R, sometimes called a “tradition”, 

            e.g. that R ranks the candidates by age, no matter how the ballots are.    

Wilson’s reduced axiom system is not logically equivalent to Arrow’s, because removal of WP 

opens for an Anti-Dictator or an Imposed R (including TI). Thus, it may seem that the removal of 

WP makes no practical difference, but it does. In Wilson’s words, 

”… the fact remains, that Arrow’s other conditions suffice to exclude all of the democratic 

social choice processes of interest”.    

WP is harmful to applications since Arrow’s original version with WP keeps back this message 

from Wilson to constructors of preferential election methods.  
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In a survey article, Morreau (2014) brings together UD, WO, IIA, WP, and ND as the “canonical 

form” into which Arrows conditions have settled. Since this axiom set has not been through a 

normal pruning process, such “canonization” is still premature – long after Wilson’s result.    

Very Weak Pareto condition     Proofs of Arrow’s impossibility result still make some use of WP. 

However, it seems harmless to replace WP with the condition VWP:  

(5.5)                      VWP     “Very Weak Pareto”   If X Pj Y for all j, then X R Y.  

UD, SO, IIA, and VWP suffice to imply either TI or Dictatorship. If there is no TI, Cassels’ short 

proof (1981) of Arrow’s original version works with minor modifications if VWP replaces WP. 

Arrow’s conclusion (5.4) follows and implies WP, but WP as axiom makes the result insignificant 

for elections. It is unlikely that seriously suggested preferential methods will violate VWP.         

Arrow’s theorem soon received wide attention, and a theme in the debate was how Arrow’s 

conditions might be relaxed in order to allow more acceptable methods than Dictatorship. 

Wilson’s improvement shows that removal of WP clears the stage of one unnecessary prop, but 

more relaxation is required. It seems natural that this debate has had focus on IIA and UD.   

However, the most important forms of strategic voting, including those of (0.3) considered above, 

would clearly not be possible if IIA was satisfied. The SO axiom requires that cycles do not occur 

in R. Thus, a basic problem is how to satisfy both SO and IIA. The Condorcet relation of pairwise 

comparisons satisfies IIA, but is not necessarily transitive. It turns out that with a certain 

restriction on UD, due to Duncan Black, it also satisfies SO.   

Black’s Single-Peak Condition 

Even before Arrow hit the stage, Black (1948) had shown that if the voters have a certain common 

feature in their cognition of the political landscape, then their ballot preferences naturally 

become coordinated such that the Condorcet relation of pairwise comparison is transitive.  

List the H candidates from left to right in an ordered H-tuple, by a political or any other principle, 

(5.6)                                                             (C1, C2, C3, …, CH) 
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Single-Peak for a single voter    The ballot preference from voter j is said to satisfy the Single-

Peak Condition with respect to (5.6) if it is complete, strict, and transitive, and moreover,  

(5.7)             for every triple {Cu–1 , Cu, Cu+1}, 2 ≤ u ≤ H–1,  Cu Pj Cu-1, or Cu Pj Cu+1, or both.  

                     Thus, voter j ranks the middle candidate Cu first or second in the triple.  

This means that the ranking in j’s ballot falls away from the top-ranked candidate Cpeak.  

 

FIGURE (5.1)    A single-peaked ballot preference with respect to (5.6)  

The ranking C4 C5 C3 C2 C6 C1 is single-peaked with C4 = Cpeak. Such rankings are likely to be 

common if many voters perceive the candidates as located on a left-to-right axis. There are 

2H–1 single-peaked rankings with respect to (5.6), because either C1 or CH comes last after 

one of 2H–2 possible single-peak rankings of the other H–1 candidates.  

Figure (5.1) illustrates that if voter j has a single-peaked preference with respect to (5.6), then, 

after cancellation of any candidate, the shortened ballot ranking is single-peaked with respect to 

the shortened version of (5.6). This way every triple {Cr, Cs, Ct}, r < s < t, can be reached, and  

(5.8)                 every voter ranks the middle candidate Cs first or second in the triple.  

Single-Peak and the electorate      Black required all ballot preferences Rj to be single-peaked 

with respect to (5.6). An intention was to present a structural feature of the preference 

distribution that avoids Condorcet cycles. In a Condorcet cycle of length > 3, one may draw a 

chord and obtain a shorter cycle. Thus, it is enough to see that Black prevents 3-cycles:  

Because of (5.8), in the notation of (0.1),   

(5.9)                                                 |CrCtCs| = |CtCrCs| = 0 if r < s < t  

Thus, in a pictogram for {Cr, Cs, Ct}, the chords meet at the circle periphery, the empty triangle T 

shrinks to a point (Perfect Pie-sharing), and T is so far away from the center as possible. On the 
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other hand, if a triple is cyclic, T must have positive area and cover the circle center, as in Figures 

(2.5) and (3.3). Thus, the condition (5.9) is an extreme over-fulfillment of Black’s intention. With 

respect to avoiding a cycle, a single-peak case therefore has some robustness to perturbations.  

In Figure (1.1), the only point that gives a single-peak election is (x, y) = (|A|, |B|), i.e. the NE 

corner and end-point of the middle curve. However, continuation along the middle curve, keeps 

Perfect Pie-sharing, and cycles do not occur. Figure (1.1) illustrates that in a triple, Perfect Pie-

sharing generalizes the Single-Peak Condition as a sufficient criterion for transitivity.    

The Single-Peak Condition for the electorate is a tall order. It demands that all ballots are in a 

subset of only 2H–1 in the set of all H! complete and strict rankings. However, a single-peak 

preference distribution is just a theoretical construction. Perturbations of the H!-component vote 

vector will violate (5.9), but unless they are too large, they still keep each triple {Cr, Cs, Ct} within 

constellation v or vi, and give a realistic approximation to a given single-peak distribution.   

REMARK (5.1)   The Single-Peak Condition gets attention in its own right in models of preference 

distributions where voters agree in their perception of a 1D-structure of the political landscape.  

For tables of the frequencies of various combinations of anomalies in IRV with H = 3 candidates, 

see Smith (2010; revised 2016). Based on three probability distributions of the vote vector, a large 

number of elections are simulated. One distribution generates 3-candidate IRV-elections by 

randomly picking three candidate positions in the line segment [0, 1] and then also a number of 

voters who rank the candidates by distance, i.e. according to (5.6), and submit one of the four 

single-peaked ballots. In 11.11% of the elections, the election lands at the NE corner in Figure (1.1) 

or an analogue, where condition (3.10) is satisfied.17  

In Figure (1.1), most realistic (x, y) are in the 0.001-zone, but only if y ≥ 5395 are they caused by a 

No-Show accident. Thus, the 11.11% is an upper bound for the frequency of real elections where 

a “win by cancellations” is possible. This bound is many times higher than the real frequency, 

because the NE corners are the only points visited in the simulation. Thus, it records a “hit” when 

                                                           
17 Obtained by adding the probabilities of anomaly combinations where a No-Show accident has happened:  

2.3750 + 4.5139 + 1.7916 + 2.4305 ≈ 11.11. The simulation results on monotonicity failures count only elections were a 

non-monotonicity event theoretically may have happened.   
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just a small part of the large rectangle (in constellation v or vi) could have been the result of a 

No-Show accident. Nevertheless, (3.11) and Figure (1.1) indicate that (3.10) is satisfied so often 

that rule (4.5) and (4.6) should be considered.   

REMARK (5.2)    Already for H = 4, it is difficult to assign in a meaningful way an “ideal point” to 

each voter on the same line as to the candidates: Assume voter 1 ranks C2C3C4C1, and voter 2 

ranks C3C2C1C4. Both preferences are single-peaked, but {C2, C3} shows voter 1 as more “leftist” 

than voter 2, while {C1, C4} shows voter 2 as the most “leftist”.   
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6 Political and legal frameworks  

For all sides to accept the outcome of a single-winner election as fair, it helps that the winner can 

claim support by more than 50% of the votes. This applies to elections for president, governor, 

mayor, and a single seat in a legislature. However, elections designed to produce such a winner 

(2-day election or IRV) are more expensive and time-consuming than Plurality elections (a.k.a. 

FPTP, “First-Past-The-Post”), and they may require special effort from the voters.   

Presidential elections    Many countries consider that a presidential election is important 

enough to justify the expense, the time, and the voters’ “cognitive costs”:  

EXAMPLE (6.1) A table in “New Handbook”, i.e. Electoral System Design: A New International 

IDEA Handbook  (Reynolds & al. 2005) shows that 78 countries use a 2-day election similar to the 

French method, see Example (3.3), while only 22 use the Plurality method. However, only Ireland 

uses IRV (a.k.a. AV, “Alternative Vote”) for presidential elections. 18  

Legislature elections    Mostly, elections to a legislature belong to one of two categories. The 

table in New Handbook classify 72 cases of “Proportionality”, where the number of seats won by 

a party is roughly proportional to its number of votes nationwide; usually there are multi-seat 

constituencies where voters choose between party lists, but some countries use STV (Single 

Transferable Vote). IRV is the single seat version of STV.   

There are 91 cases of “Plurality/Majority”. Most of them use Plurality or a 2-day election in single-

seat constituencies. A Plurality tradition strongly stimulates the development or preservation of 

a two-party system (“Duverger’s law”). The winners’ electoral bases include, to varying degree, 

instrumental votes from voters whose alternative was to give an expressive vote to another 

candidate. Subsidiary preferences mean more in a 2-day election, but they do not appear in the 

ballots. A winning candidate may still be strongly committed to promoting the policy of one party. 

With a preferential method, they appear in the ballots, tallies find facts about subsidiary 

preferences, and campaigners are likely to think about the structure of their electoral basis.   

                                                           
18 A purely technical objection against IRV concerns the complication in tallying ballots in several constituencies.  In 
Ireland, 43 constituencies count the top-ranks simultaneously, report the numbers to a central where addition is 
done, the candidate with the smallest number of top-ranks nationwide is identified, and the elimination is reported 
back to the constituencies before the next round. If one initial report from each constituency should be enough (e.g. 
like the matrix Con of (4.1) in a Baldwin election), it would, most likely, have to contain much more information, and 
make the process less transparent.        
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Mixed Member Proportional  

“Mixed Systems” is a third category with 30 cases, defined in “New Handbook” as: ”A system in 

which the choices expressed by voters are used to elect representatives through two different 

systems, one proportional representation system and one plurality/majority system.” Each 

constituency elects one candidate by plurality/majority.   

Germany uses a kind of Mixed System, called MMP (“Mixed Member Proportional”), for electing 

the federal legislature (Bundestag). Each voter has two votes, both in the same ballot.  

The first vote (“Erststimme”) counts in a Plurality election of one district representative from each 

of D constituencies; the voter supports just one candidate.  

There is a total of S seats, S > D. With the second vote (“Zweitstimme”), the voter supports just 

one party. The Zweitstimme determine the value of S and distribute S – D party seats to parties 

that pass a threshold criterion of support.    

Notation    The parties are Z1, …, Zt, of which Z1, …, Zk pass the threshold, k ≤ t;  

(6.1)             (Zj) is the set of voters with Zweitstimme to party Zj (in the whole nation);  

                     (A, Zj) is the subset with Erststimme to candidate A (in the constituency of A).    

Sometimes a party does not nominate a candidate in a constituency. Also in other cases, many 

voters split their votes: Their Erststimme then supports, perhaps instrumentally, a district 

candidate A not from the party Zj that they support with their Zweitstimme. Thus, a district seat 

winner W has an electoral basis, Bas(W), which is a disjoint union of all sets (W, Zj), 1 ≤ j ≤ t:  

(6.2)                                       Bas(W)   =   (W, Z1) U (W, Z2) U … U (W, Zt)  

This decomposition of Bas(W) has no rôle in the present tally rules in MMP, but Erststimme and 

Zweitstimme appear in the same ballot, so it is available for an alternative tally considered here.  

REMARK (6.1)     It may happen that a district winner W is candidate for party Zj with k < j ≤ t. In 

this notation, an independent W belongs to an “imagined party” Zj with (Zj) empty.   

The Zweitstimme are intended to achieve a nationwide distribution of seats “proportional” to 

the size |(Zj)| of (Zj), 1 ≤ j ≤ k; here all S district- and party-seats are seen together. A suitable 

“accounting principle” is of the essence here, as it also is in the study of non-monotonic events 

in IRV; see Example (0.1).   
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The present accounting rule records a district winner W from party Zj on an account for (Zj):  

(6.3)       Present accounting rule:   

W’s district seat counts as one full seat won by (Zj) if W comes from Zj, 1 ≤ j ≤ t. 

 However, all voters in Bas(W), (6.2), give one Erststimme to W, and (6.4) is an alternative to (6.3):  

(6.4)        Alternative accounting rule:        

A fraction |(W, Zj)|∙|Bas(W)|–1 of W’s seat counts as won by (Zj), 1 ≤ j ≤ t. 

Accounting rules (6.3) and (6.4) give two different definitions of D(Zj), the number of district seats 

which the Erststimme tally records on (Zj)’s account, 1 ≤ j ≤ t. The Zweitstimme tally gives a non-

negative number P(Zj) of party seats to (Zj), 1 ≤ j ≤ k. The central requirement in MMP is (6.5):   

(6.5)         Proportionality rule:    

 = Zweitstimme per seat (district- and party-is the same for all parties that pass the threshold:   

 =  |( Zj)|∙ [D(Zj) + P(Zj)] –1, 1 ≤ j ≤ k;     P(Zj)  =  0   for  k < j ≤ t. 

Geographical allocation of party seats and necessary round-offs to integers are not discussed 

here; solutions (, P(Z1), … , P(Zk)) of (6.5) are in non-negative reals. In any solution, may be 

reduced, and then properly increased P(Zj), 1 ≤ j ≤ k, give another solution. Thus, since P(Zj) ≥ 0,  

                           maximal  occurs when P(Zm) = 0 for some party Zm, where 1 ≤ m ≤ k.    

More explicitly, rewrite (6.5) and get     

(6.6)                                    –1 – D(Zj)∙|( Zj)|–1  =  P(Zj)∙|( Zj)|–1  ≥  0,    1 ≤ j ≤ k   

Define * and m so that, with j ϵ {1, … , k},        

(6.7)                  *)–1  =  maxj D(Zj) ∙|( Zj)|–1  =  D(Zm)∙|( Zm)|–1  

Thus, party Zm has most district seats per Zweitstimme. By (6.6) and (6.7),   

–1 ≥ D(Zm)∙|( Zm)|–1  = *)–1 ; 

(6.8)                  thus, (6.5) has no solution with  > *,   and    = * when P(Zm)  =  0;   

There are S = j [D(Zj) + P(Zj)] seats, 1 ≤ j ≤ t,  and  = * gives the “critical” assembly size S*:   

(6.9)                                         S* = j [D(Zj) + P(Zj)], where P(Zm) = 0  

S is chosen as small as possible, provided that So “ordinary seats” are filled. Thus,  

S = max {So, S*}, and if S* > So, then S* – So “extra-ordinary seats” are created. 

Rules (6.3) and (6.4) define D(Zj) differently and may cause big difference in S; see Example (6.2).   
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EXAMPLE (6.2)    Germany uses accounting rule (6.3) and has So = 2D = 598 ordinary seats. 

 In the Bundestag election 2017, the district candidates from CSU 19 together got  

3255487 Erststimme and 46 district seats, but only |(CSU)| = 2869688 Zweitstimme. 

Presumably, some number u of ballots from (CSU) also showed a split vote, u ≥ 0, so that  

3255487 – (2869688 – u) = 385799 + u voters supported one of CSU’s district  

candidates without also supporting the party CSU with their Zweitstimme.  

Present rule     If CSU should get y party seats too, y ≥ 0, (6.3) and (6.5) give a bound for ,  

(6.10)                       = 2869688/(46 + y)  ≤  2869688/46  ≈  62384.5  Zweitstimme per seat. 

The tally showed that all other parties in {Z1, … , Zk} needed some party seats in order to get a 

ratio as low as 62384.5; CSU = Zm, y = 0, and  ≈  62384.5  is the price in Zweitstimme per seat. 

Together, Z1, … , Zk received a total of j |(Zj)| = 44189959 Zweitstimme.20  All D = 299 district 

seats were won by candidates from parties that passed the threshold. It follows from (6.5) that   

(6.11)                           S   =   S*   =   44189959/   ≈   44189959/62384.5   ≈   708.4   

With rules (6.3) and (6.5), and round-offs, the Bundestag got S = 709 members.   

(CSU) was the only Zweitstimme group without party seats.  

Alternative rule    Rule (6.4) records that 385799 + u voters used a split vote to support a CSU-

candidate in the Plurality elections, u ≥ 0. Ballots with Erststimme to a winning CSU candidate 

and Zweitstimme to party Zj add up to give (Zj)’s fraction of the district seat.  

Constituencies are roughly equal in size. An estimate of the sum of (CSU)’s own fractions of 

district seats is 46 ˙ (2869688 – u)/3255487  ≈  (40.5487 – u ˙ 0.00001423) seats. 21  

Analogically to (6.10), if CSU should get y party seats, we have a bound:   

(6.12)      =  (2869688 – u)/(40.5487 – u ˙ 0.00001423 + y)  ≤  (2869688 – u)/(40.5487 – u ˙ 0.00001423)    

                                   =  3255487/46  ≈   70771  Zweitstimme per seat.  

If all other parties need party seats to get a ratio ≤ 70771, then y = 0. Since also = 3255487/46 

Erststimme per district seat, “the price is right” for all seats.  

                                                           
19 CSU is the smaller partner of the CDU/CSU coalition in the Bundestag work; in elections, CSU operates only in 
Bavaria and CDU only in the 15 other states.  

20 Parties that passed the threshold (CDU, CSU, SPD, AfD, FDP, Left, Green) got all district seats but received 44966765 
Erststimme, i.e. more than ¾ million from ballots with Zweitstimme to a party that did not pass it.   

21 CSU’s candidates won all district seats in Bavaria, and thus no fraction of a district seat won by another party.  
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We check if CDU with 14030751 Erststimme and 185 district seats needs party seats: With ratio 

14030751/185  =  75842 Erststimme per seat,  

it seems that CDU too needs some party seats to reach 70771, but this is not quite clear: Some of 

the 14030751 Erststimme to CDU were in constituencies not won by CDU, but CDU would also 

have obtained shares of some district seats won by candidates from other parties. However, it 

seems that only CSU is without party seats at the critical assembly size S*: Analogically to (6.11),  

(6.13)                                            S   =  S*  ≈   44189959/70771   ≈   624.4   

Thus, with rules (6.4) and (6.5), and round-offs, S = 625 is a likely Bundestag size.  

Proportional influence and assembly size      With rule (6.4), a party whose candidates win 

many district seats, does not push the ratio equally far down as it does with rule (6.3). Thus, 

the number of extra-ordinary seats decreases with rule (6.4).  Example (6.2) shows a decrease 

from 709 – So = 111 to 625 – So = 27.   

The 111 extra-ordinary seats in the 2017 election is not an extreme case with rule (6.3). When all 

parties are relatively small, there can be a much bigger demand for extra-ordinary seats:         

EXAMPLE (6.3)    If eight parties each have  ca. 10% of the Zweitstimme, and one has 20%, spread 

evenly in all constituencies, the latter wins all D district mandates unless massive vote-splitting 

helps a smaller party. According to (6.3) and (6.5), the Bundestag gets S = 5D = 1495 seats.  

With rule (6.3) the parties Z1, …, Zk are represented in proportion to the sizes |(Z1)|, …, |(Zk)| 

of the groups who give them Zweitstimme, as though party Zj owns the voter group (Zj). With 

rule (6.4), (Zj) is treated as a self-owning unit: The rule takes into account the variation inside 

the group in the district elections. Different voters in different constituencies adapt in different 

ways, e.g. to the usual problem in a Plurality election: Vote expressively or instrumentally?        

Voters’ satisfaction    Accounting rule (6.3) fits with a view that only those 2869688 – u voters 

who gave both Zweitstimme and Erststimme to CSU in Example (6.2), got any “satisfaction” from 

a district winner they supported. However, voters who give their Zweitstimme to different parties 

form the electoral basis for a district winner; see (6.2): They share 46 “seat-units of satisfaction” 

in Example (6.2) already before the Zweitstimme tally. Moreover, a voter from (W, Zj) where W 

is district winner, get more satisfaction than one from (L, Zj) where L is a district loser.   
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Rule (6.3) is as if the 46 district representatives from CSU in Example (6.2) represent the 2689688 

voters in (CSU) who supported the CSU party with their Zweitstimme, and none of the 385799 

+ u other voters who really supported a CSU candidate with their Erststimme. Conceptually, the 

adoption of accounting rule (6.3) is somewhat surprising, since a district winner W from Zj could 

even (also conceptually) have empty (W, Zj) in (6.2).     

With Erststimme and Zweitstimme appearing in the same ballot, rule (6.4) requires no change for 

the voters and it reflects their different degrees of satisfaction.  

Preferential Erststimme 

There are two basic ideas in the election of legislatures: An MP (Member of Parliament) 

represents either a constituency or a political party. The table in New Handbook reflects how 

most nations choose the one or the other. Some mixed-member systems are of the parallel kind; 

a party seat tally and a district seat tally are not connected. The district component usually 

prevents full proportionality, and an almost paradigmatic difference remains.  

MMP is an ambitious and noteworthy attempt to combine a large district component with full 

proportionality (for parties who pass a threshold). As seen in Example (6.2) and Example (6.3), in 

an increasingly fragmentized political landscape the present accounting rule (6.3) and the 

proportionality rule (6.5) bring the number of seats out of control. The alternative accounting 

rule (6.4) brings down the seat number, but even in the not too bad 2017 election, 27 extra-

ordinary seats would be required.      

IRV fulfills a widely accepted 50%-criterion of fairness in single seat elections, and thereby 

promotes the legitimacy of district representatives in a way that Plurality elections cannot do.  

The MMP setting is a very special political framework for a single-seat method: It creates a niche 

where IRV, potentially, also has another beneficial effect. The ratio * = |(Zm)|∙|D(Zm)|–1 is 

likely to get much higher. An IRV-tally of ranked Erststimme gives accounting rule (6.4) greater 

effect, since > 50% of the votes in a constituency support the district winner in the last tally round 

and spread “satisfaction” to accounts of different Zweitstimme groups; see (6.2).  

In the Bundestag election, Example (6.2), there were about 7.4 million ballots in Bavaria. In order 

to win the 46 district seats with IRV, the CSU-candidates would have needed at least 3.7 million 

Erststimme after IRV eliminations, instead of the 3.26 million they got in the Plurality tally. Larger 
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parts of the district seats would have come on other parties’ accounts, and S* would have been 

further reduced.   It must be a worthwhile project to assess how IRV can fit in. 

 Cognitive costs with IRV 

Burlington repealed IRV in a referendum 2010, 52% v 48%, and went back to a 2-day method. The 

background was the election in 2009, Example (3.2). The tally’s neglect of subsidiary rankings 

from the supporters of the runner-up, Plurality winner Wright, may well have been decisive. 

However, in a 2-day election, the preference distribution in Burlington 2009 gives the same final 

round, and K still wins over W; see Example (3.2). 22   

In 2011 UK decided in a referendum to keep Plurality elections to the House of Commons: 

13013123 for Plurality; 6152607 for IRV. On that occasion, most voters had no personal 

experience with IRV, but might have expected that preparation of a full ballot ranking for IRV 

would mean a bigger effort than just making one choice for a Plurality election. The prospect of 

a new heavy burden may have meant more than IRV neglecting subsidiary rankings from 

supporters of the runner-up and more than repeated claims about non-monotonicity events.23  

In the aftermath of the Burlington election, Gierzynski (2009) emphasized such cognitive costs: 

“If states in the US were to adopt IRV for all (or even some) of their elections, the situation would 

only be made worse. Instead of simply choosing the preferred candidate for president, senator, 

representative, governor, lieutenant governor, secretary of state, treasurer, and so on, the public 

would be asked to rank each candidate. Ranking each candidate in all these races means that the 

cognitive costs of voting would double, triple, or even quadruple.” Gierzynski emphasizes the 

importance of “recognizing the limits to what a political system can ask of its citizens and 

                                                           
22 With the preference distribution in Frome 2009, a 2-day election eliminates the IRV- and Condorcet-winner Brock; 
see Remark (2.1). A 2-day election may also cause a final round so lopsided that a second day to many will look like 
a waste of public resources, as in France 2002 (Chirac 82.21%, LePen 17.79%); see Example (3.3). A final round in a 2-
day election may even occur between candidates R (far right) and L (far left), while any X from center/right to 
center/left is prematurely eliminated, but would have won landslide pairwise victories in {X, R} and {X, L}.  
  
23 Advice from party leaders were clearly important. To have a referendum was part of the agreement when 
Conservatives and Liberal Democrats formed their coalition government. The referendum campaign strained their 
relations. Only the Liberal Democrats wanted a change from Plurality to IRV. A common second choice for both 
Conservative and Labour voters, they often have the Condorcet winner and therefore win just by qualifying for the 
final round. Many voters must have thought that, in reality, the referendum was about introducing a lower threshold 
for MP status for Liberal Democrats than for other parties.    
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recognizing that adding complexity to an already complex ballot will disproportionally harm 

some groups of people more than others”.   

However, Australia has experience in these matters since 1918, so there is some study material.  

Although citizens must vote or pay a fine, their burden is not necessarily heavy. Usually, a 

complete and strict ranking is required, but there is also a remedy to reduce the cognitive costs: 

Parties generally offer a “how-to-vote card” which recommends subsidiary preferences to their 

supporters.24  

This practice encourages negotiations on mutual support between neighbor parties. The voters’ 

burden may get lighter even until they hardly notice any. The parties’ production of how-to-vote 

cards may become mandatory and with a format regulated by law. Voters may then accept with 

one pencil mark the subsidiary rankings officially suggested by their chosen party. Acceptance 

may even be their default choice.    

Litigation and constitutionality  

The US presidential election in Florida 2000 (technically for the Florida seats in the Electoral 

College) ended officially with 2912790 for Bush, 2912253 for Gore. In such a close election, 

“natural sortition” decides; see also Example (2.1). However, with votes cast, the possibility of a 

decisive mistake in ballot handling or violation of tally rules raises more questions. Many 

remember the legal dispute under time pressure before inauguration.    

Legal disputes on the constitutionality of the election rules themselves also attract attention, but 

mainly concern how an election method functions in a normal political landscape, not only in a 

terrain where natural sortition decides.   

A constitution may demand a particular election method (Maine 2017) or a method with 

particular properties (Germany 2008).   

(6.14)    The German Federal Constitutional Court 2008     Allocation of seats according to 

different proportionality conditions (e.g. to states according to size or to parties according to their 

                                                           
24 Still, “donkey voting” is a recognized problem: Some voters rank the candidates by a simpler principle, e.g. in the 

order of appearance in the ballot paper. One remedy is “Robson rotation”; with a sufficient variation in the order of 
appearance in the printed ballots, donkey procedures will not systematically (dis)favor particular candidates.     
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Zweitstimme) is notoriously difficult (Balinsky and Young 1983). The distinction between district 

and party representation is an additional complication.  

On July 3rd 2008, the court considered the fact that the election rules then used in Bundestag 

elections gave several violations of the Participation Criterion. Sometimes some increase 

(decrease) of Zweitstimme for a party would have decreased (increased) the number of seats 

won by that party. This was the so-called “Negatives Stimmgewicht”.25 The ruling was to reduce 

this effect as far as possible. The remedy was to allow S* – S0 extra-ordinary seats, as required by 

the present rules (6.3) and (6.5).   

(6.15)    Opinion of Maine Supreme Court 2017    On Election Day in Maine 2016, a majority 

recommended, in a referendum, a change from Plurality to IRV (there called “Ranked-Choice 

Voting”) for elections of governor, senators, and members in the House of Representatives. A 

citizen action had collected enough signatures to require a referendum, but the constitutionality 

of IRV had already become an issue. After amendments in 1847, 1875, and 1880, the state 

constitution required Plurality for Governor, House, and Senate. See e.g. Shepherd, referring to 

events of 1879-1880 (Bangor Daily News, January 20th-21st, 2016).26  

                                                           
25 Assume party Zr from a total of S seats receives D(Zr) district seats based on Erststimme. A strictly proportional 

distribution of all S seats based on Zweitstimme, S ≥ D (= 299), will give it Q(Zr) = S|(Zr)|/j |(Zj)| seats: The 
difference D(Zr) – Q(Zr) depends on S; if positive, it is called the overhang for party Zr.  

“Overhang mandates” was a common concept in the political and legal discussions on Negatives Stimmgewicht. This 
unfortunate effect could be due to repercussions caused by interplay between the detailed rules for distribution of 
party seats between parties and member states, if increased support gave a party one more district seat.  

For S < S*, there must be overhang seats. At S = S*, the last overhang disappears. At S = 2D = 598, the positive 
overhangs in 2017 totaled 46 seats. However, the number S* – 2D = 111 of extra-ordinary seats was determined by 
the smallest number of Zweitstimme per district seat, 62384.5, obtained by Zm = CSU. Only the difference, here (111 
– 46 = 65), is called compensatory seats (“Ausgleichmandate”), despite the fact that the 46 (unidentified) winners 
share 299 ordinary seats with all other district winners. Party list candidates sit in all 111 extra-ordinary seats.     

26 In the gubernatorial election on September 7th 1879 (for a term starting in January 1880), Republican candidate 
Daniel F. Davis obtained a plurality, but no majority. According to the state constitution, the new legislature, elected 
at the same time, should then elect governor. Local tallies showed comfortable majorities for the Republicans. Thus, 
it seemed clear that Davis would win. 
However, a “Committee of Returns”, in the administration of Garcelon (Democrat, and still governor), had to 
scrutinize the tally reports. It disqualified many of the local results, and the Republican majority disappeared in both 
chambers.   
The development of the next weeks culminated with a standoff in the capital Augusta between two armed groups. 
Each supported their own group of would-be senators and representatives who arrived to occupy the same seats. 
With his personal authority, Joshua Chamberlain dampened the conflict, persuaded armed people to go home, and 
gave the Supreme Court time to treat the case. Finally, Davis won. See Pullen (1999).  
Next, the constitution was changed, and Plurality is still (2018) the method in all elections it regulates.    
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The state senate requested an opinion from the Maine Supreme Court. On May 23rd 2017, in an 

“opinion of the justices of the supreme judicial court”, the seven justices concluded without 

dissent: “Yes, the Ranked-Choice Voting Act conflicts with the Maine Constitution.”   

The Maine legislature then voted to delay any implementation of the referendum result until 

2021, and IRV-proponents got some time to propose necessary Constitutional amendments.27  

Minnesota Supreme Court 2009 

In a referendum 2006, Minneapolis had recommended IRV for its municipal elections. After 

appeal, the claim that IRV was in conflict with Minnesota’s constitution came before the Supreme 

Court as:  

Minnesota Voters Alliance, et al. (appellants)  vs.  The City of Minneapolis, et al. (respondents). 

FairVote Minnesota, Inc. was intervenor-defendant. FairVote works for the introduction of STV 

(including IRV) in American elections. Claimed unconstitutionality of IRV/STV was a facial 

challenge, not just an as-applied challenge; if successful, the appellants would have struck out all 

intended use of the method. This looks as an uphill fight, but the appellants claimed a precedent 

in the same court from 1915. Thus, it was essential to compare the new with the older case,   

Brown v Smallwood (1915):   In 1915, the state’s Supreme Court declared another voting 

method, adopted in Duluth, to be unconstitutional. The Duluth method belongs to the wide 

family of Bucklin methods.28 The rules appear from the tally as reported in the decision:  

 

A voter made a 1st choice, had the option to name another candidate for 2nd choice, and also to 

add more names for additional choice. The tally was in 3 rounds; no candidate got ½ of the 1st 

                                                           
27 The Maine constitution does not regulate mayoral elections and from 2011, Portland elects its mayor with IRV. It 
does not regulate primary elections either; for its statewide primaries, Maine uses IRV from 2018.  
28 The idea is also in writings of Condorcet, but is likely to occur independently to many people. James W. Bucklin 
(1856-1902), of Grand Junction, Colorado, was a lawyer, politician, and supporter of Henry George’s economic 
theory, and he promoted the election idea in the US. It gained popularity during the “Progressive Era”.    
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choices; no candidate got ½ of the 1st & 2nd choices; finally Smallwood won with most 1st, 2nd & 

add(itiona)l choices. The Duluth method is just one of many Bucklin variations. The number of 

rounds and the number of candidates to be chosen for round 1, 2, … , may be varied.29  The 

candidates, for short L, N, S, and W (incumbent), ran for a position as municipal judge.  

Fifty-six years further back    Central to the court’s judgment in 1915 was its understanding of 

the state’s Constitution from 1859. The Constitution was not explicit on voting methods. 

However, a majority took judicial notice of the assumed meaning of the word “vote” before the 

“Progressive Era” with its many reforms and proposals in electoral and other matters:   

When the Constitution was framed, and as used in it, the word “vote” meant a choice for a 

candidate by one constitutionally qualified to exercise a choice. Since then it has meant 

nothing else.    

The court considers two violations of the assumed meaning: 

(*) It was never thought that with four candidates one elector could vote for the candidate of 

his choice, and another elector could vote for three candidates against him.  

(**) The preferential system directly diminishes the right of an elector to give an effective vote 

for the candidate of his choice. If he votes for him once, his power to help him is exhausted. If 

he votes for other candidates he may harm his choice, but cannot help him.    

W, the incumbent, had a plurality of 1st choices, but most of the 992 + 3417 + 3496 = 7895 voters 

with L, N, or S as 1st choice were clearly anti-W, since only 604 + 54 = 658 of them gave 2nd or add’l 

choice to W.  An anti-W voter would obviously not choose W at all, but could follow (*), give 1st, 

2nd & add’l choice to {L, N, S}, and hope that one in the triple would beat W.  

With its distinction between 1st, 2nd and add’l choices, a Duluth ballot may distinguish between 

four candidates just as a Borda ballot. With counting of approval points in each round, one must 

expect some similarity in properties of the two methods. In (**), the court points to the strategy 

now called “Burying”; (0.3) describes it with three candidates. Without being anti-Y, a voter has 

                                                           
29 The table does not show data that allow counting with IRV or Condorcet methods. Each round is reminiscent of 
“Approval voting”, where a ballot specifies two indifference classes, i.e. of approved and not approved candidates, 
(freely chosen), but there the candidate with most approvals wins. A Bucklin winner may be a candidate first to 
appear in the choice of 50% of the voters, but a visible feature in the tally table is that this is not enough in the Duluth 
variation: After round 2, Smallwood was already chosen by 6341 of the 12313 voters, but the tally went on.   
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reason to fear that 1st choice X will be harmed by a strong Y as 2nd choice, and therefore not 

choose Y at all, neither as 2nd nor add’l.   

REMARK (6.2)    The Borda Count urges voters to behave as described in (*) and (**) of the 1915 

ruling. Confronted with the idea behind “Burying” (0.3), Borda is reported as saying “My scheme 

is only intended for honest men” (Black 1958).  However, it is easy to see that the Borda Count 

has a serious weakness even when all voters are honest and well qualified to have an opinion:   

Sports journalists elect their country’s “athlete of the year”. Comparison of candidates in the 

same sport may be objective, based on results. Comparison of candidates from different sports 

is much more demanding and cannot be equally fine-tuned. Candidate A in sport I has 60% of the 

top-ranks, and B in sport II has 40%. However, in everybody’s mind, C in sport II is very close to 

B, just slightly behind B according to results. Thus, every ballot is ABC… or BCA… . The Borda 

Count gives every B-supporter a double vote in {A, B}, and B becomes Borda-winner.  

A set of k candidates are “clones” if they occupy k consecutive ranks in every ballot (Tideman 

1987). The Borda protagonist Michael Dummet (1998) was concerned about the (dis)similarity 

effect, where A loses to B because of dissimilarity between a small group of candidates similar to 

A and a larger group similar to B. Clones just make a special case suited for theoretical study.  

In the sports journalist case, A would win in round 1 with the Duluth method, but statement (*), 

indicates that the Minnesota Supreme Court in 1915 was alert to (dis)similarity effects.    

REMARK (6.3)    Smallwood was elected, with the Duluth method, on April 6th 1915 and installed 

in the office on May 3rd, before the Supreme Court, on July 30th 1915, decided that Smallwood 

was not entitled to the office because the method was unconstitutional. According to Field 

(1935), this led to new “… tangled situations … as a result of conflicting claims to the salary … ”  

in Windom v Prince (state ex. rel.), Smallwood v Windom (state ex. rel.), and Windom v Duluth.    

Ninety-four years later    In 2009, the same court summarized its finding in a “syllabus”:  

Instant Runoff Voting as adopted in Minneapolis is not facially invalid under the United States 

or Minnesota Constitution, and does not contravene any principles established by this court 

in Brown v. Smallwood, 150 Minn. 492, 153 N.W. 953 (1915)  
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The court considered “the burden that appellants contend IRV imposes on the right to vote”. The 

eliminations in IRV means that no ballot counts as supporting several candidates at the same 

time, see statement (*) from 1915, and that Burying is impossible, see statement (**).   

The last burden claimed in 2009 was, despite a wrong formulation, linked to non-monotonicity:   

•   by creating the possibility that casting a vote for a preferred candidate may harm the 

chances for that candidate to win office.  

A candidate can never become IRV-winner through cancellation of some ballots where the 

candidate is top-ranked.30 However, the court interprets this final claim as a complaint against 

the trap effect: “… the final assertion relates to appellants’ argument that IRV burdens the right 

to vote because it is non-monotonic”.      

The court compared IRV to the 2-day “primary/general” election, used in Minneapolis before 

adoption of IRV, and still the alternative to IRV. Obviously, the 2-day election has many features 

in common with IRV, in particular strategic voting with an idea akin to Pushover; see Example 

(3.3), but it was not under attack.  

Naturally enough, the appellants could not establish that non-monotonicity was a significant real-

life effect and not just a possibility. “Although it is apparently undisputed that the IRV 

methodology has the potential for a non-monotonic effect, there is no indication, much less proof, 

of the extent to which it might occur, and so there is no way to know whether the alleged burden 

will affect any significant number of voters.”  

The real-life effect requires a change in two “accounts”; see Example (0.1). It is not likely that 

anyone can prove to a court that 100 BCA-votes, say, cast at the polls, “originally” belonged to 

the category CBA, but see (2.19).    

Election rules and Rule of law 

Many anomalies are ubiquitous in the field of election rules, but they do not always concern the 

fundamental rights one should associate with the Rule of Law.   

The Frome election was a “trick” position: The tally and a piece of additional information showed, 

in hindsight, that a suitable group of B-supporters might have moved from BCA to CBA, and let B 

                                                           
30 In (many) Condorcet methods, some 3-cycles allow this “strong” No-Show paradox; then cancellation of some 
ballots with candidate X on top turns X into winner. In IRV only the “weak” kind occurs (section 3).   
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snatch A’s IRV-victory with Pushover, as shown e.g. in Figure (2.5). Every trick position and a trap 

position obtained from it with Pushover (section 2) form a “non-monotonicity pair”.31   

(6.16)    The fallacy of the “rightful winner”   This is an argument that IRV always picks a “wrong 

candidate” in at least one of the two elections in a non-monotonicity pair. This purported result 

receives some attention, in particular because a Wikipedia definition of monotonicity, itself 

trivially but significantly fallacious, is a background:    

“A ranked voting system is monotonic if it is neither possible to prevent the election of a 

candidate by ranking them higher on some of the ballots, nor possible to elect an otherwise 

unelected candidate by ranking them lower on some of the ballots (while nothing else is 

altered on any ballot)”.  

Trivially, up- or down-ranking of B is possible only if something else is altered, and that on the 

same ballot. Significantly, in IRV it is this concomitant, opposite move of C, which changes the 

next elimination and decides whether B will be challenged by A or C. B loses despite more top-

ranks, not because of it; see Example (0.1). Alert readers may notice that a change in top-ranks 

can decide between A and C, but a fallacy repeated in places purported to inform about IRV, has 

a psychological effect. The “rightful winner argument” goes like this:         

In a non-monotonicity pair, A wins the trick position, and B the trap position. Assume that B 

also is the “rightful winner” in the trap position. Then B is the “rightful winner” in the trick 

position too, because there B has more support.    

The notion that an election has a “rightful winner” reminds of a medieval view; “voting was 

conceived as a way to reveal God’s will and discover the truth” (Colomer 2013, p. 318). Other 

medieval ordeals served the same purpose, and a “voice of the people” may be equally difficult 

to discern.32 Rule of law should sustain fundamental standards of fairness not based on any 

nebulous ideas about “rightful winner” or “voice of the people”.  

                                                           
31 Possibly, but rather unlikely, the unknown subsidiary votes of the B-supporters created the Condorcet cycle, 

constellation iiicyclic , in Figure (2.5). If so, the real Frome election is a “trap” position and a “trick” position at the same 

time, with “non-monotonicity” partners in constellation icyclic; see Figure (2.2).        

32 In a letter to Charlemagne, Alcuin made a distinction: ’And those people should not be listened to who keep saying 

the voice of the people is the voice of God, since the riotousness of the crowd is always very close to madness’’.    
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(6.17)  Election rules and their limitations    The G-S impossibility theorem, (Gibbard 1973, 

Satterthwaite 1975), provides another background. It is linked to Arrow’s theorem and is valid 

for any preferential single seat election method, with three or more candidates, such that  

1)  it always picks a unique winner;  

2)  every candidate will win with a suitable preference distribution.  

The G-S concludes that if there is no dictator (i.e. a special voter who picks the winner), then 

preference distributions exist which allow strategic voting, but with a very broad definition.  

In the sense of G-S, a voter who ranks X before Y, performs a successful strategic voting by 

changing the ballot in any way that makes X win instead of Y: The intention expressed by the first 

ballot is more effectively represented by the second ballot. With such a wide definition, the result 

of G-S is perhaps less surprising than the effort that a proof of G-S requires from a reader.  

REMARK (6.4)    Together, the definitions of Compromise and Pushover for n = 3 candidates in 

(0.3) are extended to n > 3: An actionist reshuffles the candidates ranked above the target Z, and 

one of them wins instead of Z. A very wide strategy definition is essential for G-S. It includes 

strategies that are not formulated anywhere and may work in election methods never defined. 

Just as IRV avoids Burying, one might hope to find a method that avoids both Burying and 

extended Compromise/Pushover without violating one of the “symmetry conditions”.33    

Unfortunately, that is not the case:  Assume that a 3-candidate preferential single seat election 

method treats both voters and candidates in symmetric ways (”anonymity” and ”neutrality”), 

and that it avoids both Burying and Pushover. If the order by top-ranks is XYZ, then Z cannot beat 

X in the social ordering (Stensholt 2010). The consequences are quite annoying:  

EXAMPLE (6.3)     In constellation v and vi, the Condorcet winner C is last in top-ranks. By Remark 

(6.4), Condorcet winner C can then only win if the method either violates a symmetry condition 

or allows one of the strategies Burying and Pushover. Sometimes the public may find it very unfair 

that IRV eliminates C. Consider e.g. the two elections in constellation vi shown above: One is 

counterfactual, but realistic and compatible with the standard tally in Frome 2009, Figure (1.2), 

third pictogram; another is the real Burlington 2009 in Figure (3.4), first pictogram.  

                                                           
33 As illustrated in Figures (2.1) and (2.2), Pushover and Compromise are closely related, but they are very distinct 
from Burying. One preferential method that obviously does not allow extended Compromise/Pushover lets the 
candidate with the smallest number of bottom-ranks win. Are there other preferential single seat election methods, 
seriously suggested, that never allow a voter group to gain by extended Compromise/Pushover?   
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A legal ban against rules that allow an annoying anomaly may have consequences that are even 

more annoying. Proposed election rules should be simple and understandable, but the Rule of 

law requires them also to protect and promote fundamental voting rights and people’s notions 

of fairness. G-S shows that perfection, or at least an interpretation of it, is unattainable. That calls 

for a balanced assessment of pros and cons for the election rules rather than an unconditional 

red or green light for a method that allows Burying, Pushover, or No-Show.  See (6.18) below.  

(6.18)  Plurality and Compromise    Among all strategies, the Plurality method allows only 

“Compromise”, which means a switch from expressive to instrumental voting. For protagonists 

of the Plurality method it is an obvious argument that Compromise is a “sincere manipulation” 

(Dowding and Van Hees 2008). The method contributes to shaping and keeping up a political 

landscape with two major parties (Duverger’s law), which many see as a good thing. However, 

when and how a 2-party system develops into destructive polarization of a society remains a 

topic in political science and public debate.  

In Plurality elections, existence of minor parties urges voters who would like to support them to 

consider the Compromise strategy. In a political landscape shaped by a Plurality tradition, opinion 

polls give voters information about the preference distribution, which is useful to those who 

consider voting instrumentally. One must expect that some voters experience external pressure 

and mental stress in their choice between expressive and instrumental voting.  

In other Plurality elections, a voter may have no way to know what candidates that various 

alliances of other voters will support, and therefore be at a disadvantage.   

Like all strategic voting, Compromise leaves no trace in the tally accounts, see Example (0.1), but 

there is abundant evidence that Compromise is important in Plurality elections. Still, opinion polls 

as in Example (4.2) reflect only voters who shortly before election decide to vote instrumentally. 

Is this only the tip of an iceberg? Those who, without qualms, always vote instrumentally to avoid 

wasting their votes, remain invisible.       

(6.19)  Monotonicity failure on the balance scale    In the Minnesota Supreme Court decision 

2009, the former decision of 1915 was understood to allow IRV, since, at any tally stage, only the 

top-ranks are available to the tally officials. The court recognized that IRV is non-monotonic in 
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the sense that trick- and trap-effects may occur, but the lack of proof from the appellants’ side 

“of the extent to which it might occur”, was decisive.   

Could the appellants, with proper preparation, have proven for the court any case of real 

occurrence? In Frome 2009, constellation iii, h BCA-voters, 31 ≤ h ≤ 321, could possibly have come 

from CBA and unfortunately walked into a non-monotonicity trap, but how to substantiate that 

it really happened? A more likely possibility was that f ACB-voters, 16 ≤ f ≤ 3801, came from CAB 

and, with the Compromise strategy, fortunately avoided election of B; see Figure (1.3).  

For a simple ballot change, one cannot assume “everything else being equal”; this phrase is just 

convenient in theories. Even if an unpleasant experience as in (2.19) really occurs, in the real 

world’s context of Compromise and its reversal, of natural sortition etc, it is wrong to blame the 

trap effect.   

(6.20)  The Participation criterion on the balance scale    The third pictogram of Figure (1.2), 

constellation vi, is realistic and compatible with the standard tally in Frome 2009; fortunately it 

is counterfactual. C wins clearly against B(56% v 44%) and crushingly against A (66% v 34%), while 

A’s win over B is more modest (52% v 48%). With “Perfect Pie-sharing”, nothing is “pathological” 

in the preference distribution. Similar situations must occur now and then in the penultimate 

round of real IRV-tallies. If q of the y = 7062 BCA-voters stay home, 2684 ≤ q ≤ 2954, then C wins 

instead of A; see also Example (3.1), y = 5600, on the stapled line in Figure (1.1).   

Many citizens will find A’s victory unfair to Condorcet-winner C and particularly unfair to those 

BCA-voters who supported runner-up B from round 1 and must see that a tally by the present 

rules ignores their overwhelming subsidiary support for C. If it also became clear that the 

Participation criterion was violated (a suitable reduction of |BCA| would change the IRV-winner 

from A to C) one should expect strong reactions. The alternative rule (4.5) lets C win.   

Formulations in the Minnesota judgment 2009 do not distinguish between the No-Show accident 

and the non-monotonicity trap; this reflects a serious lack of preparation from the appellants. 

Therefore, it remains an open question what the Minnesota Supreme Court would have said if 

required to consider the fact that IRV violates the Participation criterion. Is this fact, in turn, a 

violation of the constitution or incompatible with the Rule of law?    
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The ruling of The German Federal Constitutional Court (6.14) concerned an anomaly, in a 

multi-seat context, but akin to the strong form of the No-Show paradox where candidate X may 

win through cancellation of some ballots with top-rank to X. According to Theorem (0.2), this 

cannot happen in the usual IRV. In a 3-candidate Condorcet final (4.5), depending on the chosen 

Condorcet variation, a number of extra ballots with the winner X on top may destroy the election 

for X, but obviously only if there already is a cycle.   

(6.21)  The Burying strategy on the balance scale   A variation of IRV considered in (4.5) 

eliminates according to the Borda ordering (instead of the top-rank ordering) when exactly three 

candidates remain. The idea is to obtain more fairness, by avoiding both results like A’s victory in 

the third pictogram of Figure (1.2) and a tally that always neglects the subsidiary rankings from 

supporters of the runner-up. However, when the final rounds are a 3-candidate Condorcet 

method, the price is that Burying sometimes must become possible.  

The Bucklin methods have the Burying strategy in common with the Borda Count, but clearly not 

to an equally destructive extent. In a Baldwin method, it is difficult to target a Condorcet winner, 

since actionists need a reliable prediction and must accurately create a suitable cycle with the 

Condorcet winner, where their favorite wins. Moreover, potential actionists are likely to not be 

sufficiently motivated.   

Would the 1915 Minnesota decision have worked as a precedent, and led the same court in 2009 

to declare all preference methods unconstitutional if they allow Burying? Such a zealous 

interpretation of the 1915 decision will block a change to (4.5), and thus keep violations of the 

Participation criterion.    

(6.22)    The ordeal of eliminations based on top-ranks    With three candidates, the IRV 

variation defined by (4.5) and restriction  = 1 in (4.6) suffice to avoid No-Show. With  = 0 (no 

restriction), monotonicity failures also disappear. In non-cyclic cases, the remedy is to keep the 

Condorcet winner, who is otherwise eliminated in constellations v and vi.  

With n ≥ 4 candidates, those anomalies will occur. In a political landscape with two major parties, 

the competition for third place may be similar to competition for victory in ordinary IRV. Thus, a 

No-show accident or a non-monotonic event is still possible. With hindsight and more data, an 
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analysis may sometimes show that a voter group could have changed their ballots and caused 

the elimination sequence to give a different final candidate triple, and a, for them, better result.   

Voters ought to know that throughout the ordeal of eliminations, a ballot never harms its top-

ranked candidate: Cancellation of the ballot cannot possibly help the candidate. Moreover, an 

attempt to gain through extended Compromise/Pushover may go very wrong and cause a worse 

result. Voters ought to be sceptic against attempts to organize strategic voting.  

Without being perfect, the elimination ordeal of IRV finds, for the tally final, three worthy 

contenders who show strength by the top-ranks they obtain.   

If  = 0 in (4.6), there will always be a Condorcet final with three candidates. If 0 <  ≤ 1, the 

subsidiary rankings of the B-supporters are not neglected; thus, all voters who did not give top-

rank to the elected candidate, influence the tally through their subsidiary rankings. If y = |BCA| 

≥ (), there will also be a Condorcet final. 
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