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Abstract 

Consider an infinite horizon, multi-dimensional optimization problem with arbitrary but finite 

periodicity in discrete time. The problem can be posed as a set of coupled equations. We show 

that the problem is a special case of a more general class of problems, that the general class has 

a unique solution, and that the solution can be obtained with the help of a contraction operator. 

Special cases include the classical Bellman problem and stochastic problem formulations. Thus, 

we view our approach as an extension of the Bellman problem to the special case of non-

autonomy that periodicity represents, and we thereby pave the way for consistent and rigorous 

treatment of, for example, seasonality in discrete, dynamic optimization. We demonstrate our 

method in a simple example with periodic variation in the objective function. 

Key words: Bellman, optimization, periodicity, contraction operator, solution scheme. 

t



Working Paper No. 14/17 

2 
 

1. Introduction 

Periodicity is an important characteristic of many systems that are subject to control. Rigorous 

treatment of periodicity in optimization problems is non-trivial because periodicity is a special 

case of non-autonomy. Non-autonomy typically renders many optimal control problems 

difficult and costly to deal with or even intractable. Thus, periodicity in applications is often 

treated in some ad-hoc manner or abstracted from altogether, for example by considering the 

aggregate or mean forcing. To our knowledge, periodicity in infinite horizon optimal control 

problems in discrete time is not treated formally in the theoretical literature. It turns out that the 

periodic problem is a special case of a general class of problems that can be shown to be fix-

point problems for a contraction operator. The contraction operator can be used to obtain the 

solution in an iterative procedure. The class of problems that we study include the classical 

Bellman problem, the periodic problem formulations of original interest, stochastic problems, 

and further, more esoteric formulations. Our key contribution is nevertheless an extension of 

the classical Bellman result to the special case of non-autonomy that periodicity represents. 

 Examples of periodicity in decision problems include demand systems subject to supply 

control. In particular, annual or seasonal, even weekly, cycles in demand is well-known for 

electricity (Cappers et al. 2010) and energy in general, and a broad range of consumer goods 

have seasonal fluctuations in demand; see McClain and Thomas (1977) for an early linear 

programming approach to seasonal demand, or Bradley and Arntzen (1999) for a mixed-integer 

algorithm. Nagaraja et al. (2015) provide a brief and recent review of related theory on seasonal 

demand problems. Other dynamic decision problems with periodic features are found in 

transport and logistics systems subject to routing control (see Liebchen 2008 on the use of 

optimization in the periodic event-scheduling problem), or natural systems subject to 

management control. For example, renewable resources such as fish stocks may have 

periodicity in growth or other natural processes as well as periodicity in prices and costs; see 

Smith (2012) and Huang and Smith (2014). 

 To illustrate our approach to periodic problems, we apply our numerical scheme to a 

stylized decision problem with periodicity in the objective function. The example serves to 

demonstrate the feasibility of our approach, and also suggests significant, practical implications 

of taking periodicity explicitly into account. In particular, the solution of the periodic problem 

has features that are not typically present in problems with no periodicity.  

 Given the prevalence of periodic characteristic of many systems subject to control, we 

think our contribution is important and highly valuable. We show that the classical Bellman 

problem approach can be extended to periodic problems, and that this extension is, while 
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nontrivial, both conceptually and numerically feasible and practical. Ultimately, a broader class 

of problems can be treated with our approach, but the Bellman problem and the periodic 

problem are directly applicable to real-world decision problems and thus we keep our focus on 

these formulations. Further, as the periodic problem is the motivation for considering the 

problems we target in our most general result, we start out our analysis by showing how the 

general problem formulation suggests itself from the periodic problem setup. 

 

2. A contraction operator for the periodic problem 

A general, infinite horizon, autonomous, dynamic, discounted, discrete-time optimization 

problem considers the following: 

 max
{𝑢𝑘}𝑘=0

∞
∑ βk+1 ⋅ Π(𝑥𝑘, 𝑢𝑘)

∞

𝑘=0
 (1) 

such that 𝑥𝑘+1 = 𝐹(𝑥𝑘, 𝑢𝑘), 𝑢𝑘 ∈ 𝑈(𝑥𝑘), 𝑘 = 0, 1, 2, …, and 𝑥0 ∈ 𝑋 given. 0 < 𝛽 < 1 is a 

discount factor. 𝑋 ⊂  ℝ𝑛 is the feasible state space, 𝑥𝑘 is the dynamic state variable at the 

beginning of time interval1 𝑘. 𝑈: 𝑋 → ℝ𝑝 is a nonempty and compact valued correspondence 

that specifies the admissible controls 𝑢𝑘 at the state 𝑥𝑘. That is, 𝑢𝑘 is the decision or control 

variable that has to be decided for each instant of the infinite time sequence {𝑡0, 𝑡1, 𝑡2, … }. 

Π: 𝑋 ×  𝑈 →  ℝ is bounded and continuous and gives the performance measure (return) at the 

end of each interval. 𝐹: 𝑋 ×  𝑈 → 𝑋 is a continuous operator that governs the state variable 

such that 𝑥𝑘+1 = 𝑦𝑘 is the state at the beginning of interval 𝑘 + 1. With these conditions in 

place, optimal controls {𝑢𝑘
∗ }𝑘=0

∞  and corresponding paths {𝑥𝑘
∗}𝑘=0

∞  exist, as does the value 

function of the problem, 𝑉(𝑥) =  ∑ βk+1 ⋅ Π(𝑥𝑘
∗ , 𝑢𝑘

∗ )∞
𝑘=0  with 𝑥0 = 𝑥. The value function is the 

fixed point of the Bellman operator 𝑇𝐵, which is defined on the space 𝐵𝐶(𝑋) of real, bounded, 

and continuous functions on 𝑋 and given by 

 𝑇𝐵𝑉 = max
𝑢∈𝑈(𝑥)

{β ⋅ Π(𝑥, 𝑢) + 𝛽 ⋅ 𝑉(𝑦)} (2) 

with 𝑉 ∈ 𝐵𝐶(𝑋) and 𝑦 = 𝐹(𝑥, 𝑢). See Bertsekas (2001) for a more general treatment of 

problems of type (1). 

We now consider the non-autonomous but periodic problem where Π𝑘(𝑥, 𝑢) is the return 

function and 𝐹𝑘(𝑥, 𝑢) is the time evolution operator for interval 𝑘. Sets for the feasible states 

(𝑋𝑘 ⊆ 𝑋) and admissible controls (𝑈𝑘) may also vary between intervals. The control set may 

vary with the state such that we have 𝑈𝑘 = 𝑈𝑘(𝑥𝑘), but we typically omit the state argument. 

                                                           
1 We use the term ‘interval’ rather than ‘period’ here and reserve the latter to denominate the periodic length 

characteristic. 
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The problem is periodic in the sense that for a finite integer 𝑁 ≥ 1, we have Π𝑘 =  Π𝑘+𝑁,  F𝑘 =

 F𝑘+𝑁,  𝑋𝑘 = 𝑋𝑘+𝑁, and 𝑈𝑘 = 𝑈𝑘+𝑁. We say that the problem is periodic with period 𝑁 and that 

the performance or return measure and the dynamic constraint functionally repeats themselves. 

Without adding complexity, we can allow for varying interval length. Thus, each different 

interval has potentially different discount factor values. We write the length of interval 𝑘 as 

𝑇𝑘 = 𝑡𝑘 − 𝑡𝑘−1 and its discount factor as 𝛽𝑘. Periodicity implies 𝑇𝑘 = 𝑇𝑘+𝑁 and 𝛽𝑘 = 𝛽𝑘+𝑁. 

The length of the cycle of 𝑁 intervals is then 𝑇 = ∑ 𝑇𝑖
𝑁
𝑖=1 = 𝑡𝑁 − 𝑡0, and the discount factor for 

the cycle of 𝑁 intervals is 𝛽 =  ∏ 𝛽𝑖
𝑁
𝑖=1 . Figure 1 accounts for interval index references. 

 

Figure 1: Interval index reference for periodic problems. Note that the return (Π𝑘) is yielded 

at the end of interval 𝑘, but that 𝑉𝑘 refers to the beginning of interval 𝑘. 

 

Although a real discounted problem cannot have periodic present value, the running value will 

be periodic under a constant per time discounting if involved operators (Π𝑘, 𝐹𝑘) or spaces (𝑈𝑘, 

𝑋𝑘) are periodic. That is, for a problem of type (1) to be periodic, one or more of Π𝑘, 𝐹𝑘, 𝑈𝑘, 

and 𝑋𝑘 need to have a periodic feature. As suggested above, a periodic feature is such that it 

repeats itself with some inherent period. If a problem includes several periodic features, the 

problem period 𝑁 has to be the least common multiple of the potentially different inherent 

periods of the different features. 

 The Bellman equation for the problem in (1) is, using the operator defined in (2), written 

simply as 𝑉 = 𝑇𝐵𝑉. The periodic problem intuitively suggests the set of 𝑁 nested equations: 

 

𝑉𝑘(𝑥) = max
𝑢𝑘∈𝑈𝑘(𝑥)

{𝛽𝑘Π𝑘(𝑥, 𝑢𝑘) +  𝛽𝑘𝑉𝑘+1(𝑥′)} ,   𝑘 = 1, … , 𝑁 − 1 

𝑉𝑁(𝑥) =  max
𝑢𝑁∈𝑈𝑁(𝑥)

{𝛽𝑁Π𝑁(𝑥, 𝑢𝑁) +  𝛽𝑁𝑉1(𝑥′)} 
(3) 

In (3), 𝑥′ = 𝐹𝑘(𝑥, 𝑢𝑘) is shorthand notation for the state variable one interval ahead. If 𝑉𝑘 is 

interpreted as the value function for interval 𝑘, the equation set (3) follows from value additivity 

with its inherent economic logic that present value is what you earn presently plus the 

discounted value of future earnings. ‘Earn’ is not necessarily meant in its strict, monetary sense, 

but can be any type of utility-like flow. 
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Now, consider functional equations of type 

 𝒱(𝑥) = 𝒯𝒱(𝑥) (4) 

 where 𝒱(𝑥) is an 𝑁-dimensional bounded vector function in 𝐵(𝑋), and further 𝑥 ∈ 𝑋 ⊂  ℝ𝑛. 

The components of the operator 𝒯 are defined as 

 𝒯𝑘𝒱(𝑥) ≜ max
𝑢∈𝛤𝑘(𝑥)

{ Π̂𝑘(𝑥, 𝑢) +  𝛽𝑘ℒ𝑘𝒱(𝑥′)} ,    𝑘 ∈ (1, … 𝑁) (5) 

In (5), ℒ𝑘 are Lipschitz operators with Lipschitz constants 𝛾𝑘, Π̂𝑘(𝑥, 𝑢) are bounded functions, 

and the correspondence Γ𝑘(𝑥) specifies admissible sets. Π̂𝑘(⋅) may take on two forms 

depending on the timing of the return. If returns are realized at the end of each interval, as in 

(3), the returns are discounted and we have Π̂𝑘(𝑥, 𝑢) = 𝛽𝑘Πk(𝑥, 𝑢). If, on the other hand, 

returns are realized at the beginning of each interval, returns are not discounted and we have 

Π̂𝑘(𝑥, 𝑢) = Πk(𝑥, 𝑢). The parameters 𝛽𝑘 ∈ (0,1). As we will argue below, (3) is a special case 

of (4) with 𝒯 defined by (5). 

The definition in (4) is further a special case of two different stochastic formulations. 

Let 𝑧 ∈ 𝑍 ⊆ ℝ𝑞 be a real-valued, q-dimensional vector of stochastic elements that are 

realizations of a known, stochastic process (that is, the probability transition function 𝑄(𝑧, 𝑑𝜇𝑧) 

is known and the expectation operator 𝐸𝑧 is well-defined, see Stokey et al., 1989, p. 241). The 

stochastic elements can be present in both the return functions and the operators governing the 

state variables that are considered to be Markov decision processes. We thus write Πk(𝑥, 𝑢, 𝑧) 

and 𝐹𝑘(𝑥, 𝑢, 𝑧); these are both measureable. If both present and future realizations of the 

stochastic process is uncertain, we consider the following definition of 𝒯: 

 𝒯𝑘𝒱(𝑥) ≜ max
𝑢∈𝛤𝑘(𝑥)

𝐸𝑧{Π̂𝑘(𝑥, 𝑢, 𝑧) + 𝛽𝑘ℒ𝑘𝒱(𝑥′)} ,    𝑘 ∈ (1, … 𝑁) (6) 

In (6), 𝐸𝑧{⋅} is the expectancy operator with regard to 𝑧. The definition in (6) aligns with the 

typical formulation in Bertsekas (2001). Other problem formulations, however, consider the 

present realization of the stochastic process as known. Such formulations require the stochastic 

elements to be considered as part of the state vector. Consider 𝑠 = (𝑥, 𝑧) as an extension of the 

state and consider the following definition of 𝒯: 

 𝒯𝑘𝒱(𝑠) ≜ max
𝑢∈Γ𝑘(𝑠)

{Π̂𝑘(𝑠, 𝑢) +  𝛽𝑘𝐸𝑧′ℒ𝑘𝒱(𝑠′)} ,    𝑘 ∈ (1, … 𝑁) (7) 

The definition (7) aligns with the typical formulation in Stokey et al. (1989). By inspection, we 

see that (5), the deterministic case, is a special case of both (6) and (7). The following theorem 

holds for all these potential definitions of 𝒯; (5), (6), or (7). 
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Theorem: 𝒯 is a contraction operator on bounded vector functions if 𝜂 ≜ max{𝛽𝑘𝛾𝑘|𝑘 =

1, … , 𝑁} < 1. 

Proof: Let 𝒱(𝑥) and 𝒲(𝑥) be arbitrary elements in 𝐵(𝑋) and let || ⋅ || denote the sup-norm. 

For component 𝑘, we have: 

 

𝒯𝑘𝒱 = 𝒯𝑘(𝒲 + 𝒱 − 𝒲) 

≤ 𝒯k𝒲 + ||𝛽𝑘𝐸𝑧′ℒ𝑘(𝒱 − 𝒲)|| 

≤ 𝒯𝑘𝒲 +  𝛽𝑘||ℒ𝑘(𝒱 − 𝒲)|| 

≤  𝒯𝑘𝒲 +  𝛽𝑘𝛾𝑘||𝒱 − 𝒲|| 

(8) 

The first inequality in (6) follows from properties of the sup-norm. The second inequality 

follows from the expectancy operator having a Lipschitz constant of one. The final inequality 

follows from properties of the Lipschitz operator ℒ𝑘. From (8), we have 𝒯𝑘𝒱 −  𝒯𝑘𝒲 ≤

𝛽𝑘𝛾𝑘||𝒱 − 𝒲||. We can revert the roles of 𝒱 and 𝒲 in (8) to obtain 𝒯𝑘𝒲 −  𝒯𝑘𝒱 ≤ 𝛽𝑘𝛾𝑘||𝒱 −

𝒲|| and conclude: 

 |𝒯𝑘𝒱 − 𝒯𝑘𝒲| ≤ 𝛽𝑘𝛾𝑘||𝒱 − 𝒲|| (9) 

Inequality (9) holds for all 𝑘, and we have 

 ||𝒯𝒱 − 𝒯𝒲|| ≤ 𝜂||𝒱 − 𝒲|| (10) 

where 𝜂 ≜ max{𝛽𝑘𝛾𝑘|𝑘 = 1, … , 𝑁}. That is, 𝒯 is a contraction operator if 𝜂 < 1, and this 

concludes the proof. 

 

If 𝒯 is operating on a compact function space, for example 𝐵(𝑋), then 𝒯 has an existing and 

unique fix-point. Because 𝒯 is a contraction, the fix-point can be obtained by iterations. 

For our result to apply to the periodic problem, it remains to show that (3) is a special 

case of (4) and that the requirement on 𝜂 holds. The left-hand sides of (3) and (4) are identical 

by definition. We thus need to show that the right-hand side in (3), for all 𝑘, is a special case of 

(5) which defines the right-hand side of (4). Because we have proved contraction also for the 

stochastic formulations in (6) and (7), our result also applies to stochastic analogous extensions 

of (3).  We summarize this result in the following corollary: 

 

Corollary: The periodic optimization problem in (3) and analogue stochastic problems are 

contraction problems and have unique solutions, that is, the value functions. 

Proof: The operator defined by ℒ𝑘𝑉 ≜ 𝑉𝑖 for all 𝑘, with 𝑖 = 𝑘 + 1 for 𝑘 ∈ (1, … , 𝑁 − 1) and 

𝑖 = 1 for 𝑘 = 𝑁, is a Lipschitz operator with Lipschitz constant 𝛾𝑘 = 1. That is, (3) is a special 
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case of (4). The 𝛽𝑘 in (3) are discount factors, and for all 𝑘 we have 𝛽𝑘 < 1. Thus, 𝜂 < 1, and 

the corollary follows from the theorem. 

 

The proof of the corollary can be readily modified to show that also the classical Bellman 

problem (that is, set 𝑖 = 𝑘 for all 𝑘 in the proof) is a special case of (4), as is any choice for 

𝑖 ∈ {1, … , 𝑁}. Further, there exists a huge set of Lipschitz operators that fulfill the requirements 

of the theorem, and potential applications of (4) are many. 

 Please note that when we use the sup-norm in the theorem above, it represents the worst-

case scenario with regard to convergence. Thus, in most applications, we expect convergence 

to be faster than that implied by 𝜂. 

Varying interval length requires suitable adaptions of Π𝑘, 𝐹𝑘, 𝑋, and 𝑌𝑘 (or the 

comparable stochastic elements), as well as the following specification of 𝛽𝑘. If interval 𝑘 

represents a share 𝛿𝑘 of the 𝑁-cycle, such that 𝑡𝑘 − 𝑡𝑘−1 = 𝛿𝑘 ⋅ (𝑡𝑁 − 𝑡0),  we have 𝛽𝑘 = 𝛽𝛿𝑘. 

In many applications, the 𝑁-cycle represents a year, and 𝛽 is then the annual discount factor. 

The extension to varying interval length is an important and useful extension, not least because 

it allows for reductions in dimensionality. For example, consider a problem that is formulated 

on an annual level, but where one month is different such that the problem is periodic. Without 

the option of varying interval length, the model would have 𝑁 = 12. With varying interval 

length, 𝑁 = 2 suffices. 

We have established a numerical routine based on the above results – using the set of 

equations in (3). Below, we apply this routine to an example which suggests that taking account 

of periodicity may have significant practical implications. The numerical results were obtained 

from code written in standard FORTRAN. 

 

3. Applications 

We derived the above results while working on periodic optimization problems. The major 

innovation is to consider a vector function rather than a scalar value function. The use of a 

vector function and our theorem above may be useful in applications other than periodic 

optimization problems. In the following, we discuss some potential applications and discuss 

how problems may be formulated for our result to apply. We presume here that (6) is a suitable 

definition, but depending on the problem formulation, (5) or (7) may be better suited. 

 An application closely related to periodic optimization problems is finite time 

optimization problems. Finite time optimization problems are typically solved by backward 
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induction. Such solutions may be cumbersome to conciliate with given initial values. Our 

approach applies directly, however, where each interval is represented by an element in the 

vector function. Any form of non-autonomy may be accommodated (as with backward 

induction). Thus, for interval 𝑘, we have 

 𝑉𝑘(𝑥) ≜ max
𝑢∈Γ𝑘(𝑥)

𝐸𝑧{Π̂𝑘(𝑥, 𝑢, 𝑧) +  𝛽𝑘𝑉𝑘+1(𝑥′)} ,    𝑘 ∈ (1, … 𝑁) (11) 

With 𝑉𝑁+1(𝑥) = 𝐺(𝑥) representing salvage value, (11) can be interpreted as a finite time 

optimization problem with 𝑁 periods. The above corollary applies and shows that (11) is a 

contraction problem that in general can be solved. Solutions are on general feedback form that 

are readily conciliated with any given initial value. The argument of the above corollary shows 

that the theorem applies and thus that (4), with (11) defining the vector function, has a unique 

and existing solution.  

 Some game theoretic problems may also be addressed by our methodology. Consider 

dynamic games over infinite time with non-cooperative (self-serving) behavior of 𝑁 agents, but 

where the decisions of others partly or fully influence the return of any individual agent. Many 

common-pool resource games (Ostrom et al. 1994) fall within this type of games. For agent 𝑘, 

the problem is to maximize over one’s own decisions while taking account of the decisions of 

others on both the current return and future returns. Further, decisions may depend or be 

restricted by a state vector 𝑥. Elements in the state vector may be common or private goods. 

The problem can be formulated as follows: 

 𝑉𝑘(𝑥) ≜ max
𝑢𝑘∈Γ𝑘(𝑥)

𝐸𝑧{Π̂𝑘(𝑥, 𝑢𝑘 , 𝑢−𝑘, 𝑧) +  𝛽𝑘𝑉𝑘(𝑥′)} ,    𝑘 ∈ (1, … 𝑁) (12) 

The notation Π̂𝑘(𝑥, 𝑢𝑘, 𝑢−𝑘 , 𝑧) makes explicit that the return for agent 𝑘  depends on the 

decisions of that agent (𝑢𝑘) and the decisions of all other agents (𝑢−𝑘). That the return function 

depends on the entire vector of decision variables ([𝑢1, … , 𝑢𝑁]) necessitates the consideration 

of a vector function ([𝑉1, … , 𝑉𝑁]). The proof of the corollary can be modified (with 𝑖 = 𝑘) to 

show that (4) with (12) defining the vector function may have a unique feedback solution. It 

relies on the specificities of the game and whether or not they imply the properties needed for 

the various sets involved. 

 Multi-objective optimization, where multiple objective functions are dealt with, is 

pursued mainly along two methodological tracks (Deb 2005). One method is to assign 

preference weights to the different objective functions and consider the weighted sum of 

objectives with classical (single-objective) optimization methods. A second method considers 

the different objectives separately with classical methods to produce a frontier of solutions, for 

then to pose a second problem of choosing a final solution on this frontier. Both methods require 
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‘higher-level’ information, either to construct preference weights or to solve the frontier 

problem (Deb 2005). We suggest to consider the different objective functions separately, 

consistent with the first method just described, but simultaneously in vector form. For objective 

𝑘, the problem is as follows: 

 𝑉𝑘(𝑥) ≜ max
𝑢∈Γ𝑘(𝑥)

𝐸𝑧{Π̂𝑘(𝑥, 𝑢, 𝑧) +  𝛽𝑘𝑉𝑘(𝑥′)} ,    𝑘 ∈ (1, … 𝑁) (13) 

The objective Π̂𝑘(⋅) depends on parts of or the full state vector 𝑥 and the decision vector 𝑢. 

Complicated interdependencies can thus be allowed, for example where two objectives share 

no state or decision variables and thus may be considered separately unless they both share state 

or decision variables with a third objective. The optimization problem implied by (13) is 

identical to that implied by (11), and, as argued above, our approach may apply. 

 

4. A simple one-dimensional example 

To illustrate the use of our method and the numerical scheme, we return to the problem that 

lead to the developments above. In addition to demonstrating our method, the following 

example shows the relevance and potential importance of considering periodic features in 

operational decision problems. 

We consider a growth model typically used in natural capital management studies. The 

problem has periodic features with different interval lengths. We have 

 𝑥𝑘+1 = 𝐹𝑘(𝑥𝑘) − 𝑢𝑘 (14) 

where 𝑥𝑘 is the level of natural capital at the begining of interval 𝑘, 𝑢𝑘 is the level of 

exploitation, and the function 𝐹𝑘 is a fourth-order Runge-Kutta discrete time representation of 

a typical continuous growth function; a modified logistic growth function (see Smith 2012 and 

references therein). We consider 𝑦𝑘 = 𝑥𝑘+1 as our decision variable (𝑢𝑘 is eliminated with 

𝑢𝑘 = 𝐹𝑘(𝑥𝑘) − 𝑦𝑘). The return functions are 

 Π𝑘(𝑥𝑘, 𝑦𝑘) = 𝐹(𝑥𝑘) − 𝑦𝑘  − 𝛿𝑘
−𝛾

𝑐𝑘 ⋅ (𝐹(𝑥𝑘) − 𝑦𝑘)1+𝛾 (15) 

where 𝑐𝑘 is an exploitation cost parameter, and 𝛾 > 0 is a convexity parameter.2 Assume 

exploitation costs are periodic, with relative brief intervals of low cost and normal costs in the 

remaining intervals. The cost parameter is half of the normal level when low, and we write this 

as 𝑐𝐿𝐶 = 𝑐𝑁𝐶/2; subscripts refer to low cost and normal cost. There are thus two intervals each 

period, 𝑁 = 2, and 𝛿𝐿𝐶 = 1/4, 𝛿𝑁𝐶 = 3/4. That is, if a period is one year, the low cost interval 

is a quarter and the normal cost interval is three quarters. The difference in cost may reflect a 

                                                           
2 Equation (15) derives from the typical expression 𝑢𝑘 − 𝛿𝑘𝑐𝑘(𝑢𝑘/𝛿𝑘)1+𝛾 where the exploited capital has a unit 

price and costs are convex and depends on the exploitation rate; again see Smith (2012) and references therein.  
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situation where the resource, for example a fish stock, concentrates (seasonally) in a smaller 

area to spawn. 

We solve (3), subject to (14) and (15), numerically and derive periodic optimal feedback 

decision rules as functions of the capital level at the beginning of each interval: 𝑦𝐿𝐶(𝑥) and 

𝑦𝑁𝐶(𝑥). Figure 2 reports these decision rules together with the replacement curve (the 45-

degree line). If the curves of the decision rules are below the replacement curve, the capital 

level is effectively reduced in the given interval and for the given initial capital level. The 

replacement curve also serves as the identity map used to transfer between subsequent periods 

(𝑦𝑘 = 𝑥𝑘+1). Figure 2 shows a dynamic path from the initial capital level 𝑥0 = 1,500, which 

quickly converges to stable two-cycle at relatively high capital levels.  

 

 

Figure 2: Decision rules for the two intervals (𝑦𝐿𝐶, 𝑦𝑁𝐶), the replacement curve (45-degree 

line), and the dynamic path (solid line) for initial capital level 𝑥0 = 1,500. 

 

 At capital levels from approximately 750 to 1,500, 𝑦𝐿𝐶 is below the replacement curve. 

In this region, the exploitation level is higher than the natural growth (𝑢𝑘 >  𝐹𝑘(𝑥𝑘)), and this 

creates a local attractor near these capital levels. This phenomenon is shown in figure 3, where 

𝑦𝐿𝐶 and 𝑦𝑁𝐶 together with a dynamic path from the initial capital level 𝑥0 = 500 is shown. As 
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seen in the figure, the path is trapped at levels near 𝑥𝑘 = 1,000. Thus, if the capital level is low 

prior to the implementation of this scheme, it may get trapped at low levels. That is, there is a 

poverty trap. Dynamic behavior as shown in Figure 3 is not expected for optimized systems 

like this (Clark 1990) and serves as a simple example of potentially dramatic practical 

consequences of considering periodic features in optimization problems. The results also 

suggest that if regulations are based on an approach that abstracts from underlying, periodic 

features, while rational economic agents optimally adapt to the periodicity, outcomes may be 

significantly disturbed. 

 

 

Figure 3: Decision rules at low capital levels for the two intervals (𝑦𝐿𝐶, 𝑦𝑁𝐶), the replacement 

curve (45-degree line), and the dynamic path (solid line) for initial capital level 𝑥0 = 500. 

 

 

 

5. Final remarks 

A method to solve periodic optimization problems is potentially a valuable tool in a wide range 

of settings. The resource capital example suggests that complex and untypical dynamics arise 

for a relatively modest deviation from the autonomous formulation. Figure 3 shows that the 
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optimal periodic solution has a trap at low capital levels (that is, a local attractor). Low capital 

levels in the long run are usually undesirable in most natural capital problems. Moreover, 

abstracting from periodicity, for example by heuristic approaches like considering an average 

effect rather than a periodic effect, may quickly lead astray. Further examples show that such 

heuristics have severe, adverse consequences if decisions are based on an autonomous 

approximation while agents, subject to these decisions, observe and adapt to the periodic 

phenomenon. Inter-annual or within-season inefficiencies that agrees well with these examples 

are observed in empirical studies of fisheries and have gained considerable attention (Smith 

2012, Huang and Smith 2014). 

 Our results are an intuitive extension of the Bellman result. The classical Bellman result 

is valid for a scalar value function. The periodic problems given in (3) and implied by (5), (6), 

and (7) are non-autonomous, their value functions are autonomous vector functions, and the 

Bellman result does not apply. But when the periodic cycle is perceived as the time unit, 

periodic problems can be perceived as autonomous in higher dimension.  
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Consider an infinite horizon, multi-dimensional optimization problem with arbitrary but 
finite periodicity in discrete time. The problem can be posed as a set of coupled equations. 
We show that the problem is a special case of a more general class of problems, that the 
general class has a unique solution, and that the solution can be obtained with the help of a 
contraction operator. Special cases include the classical Bellman problem and stochastic 
problem formulations. Thus, we view our approach as an extension of the Bellman problem 
to the special case of non-autonomy that periodicity represents, and we thereby pave the 
way for consistent and rigorous treatment of, for example, seasonality in discrete, dynamic 
optimization. We demonstrate our method in a simple example with periodic variation in 
the objective function.
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