

#### INSTITUTT FOR FORETAKSØKONOMI

DEPARTMENT OF BUSINESS AND MANAGEMENT SCIENCE

FOR 16 2018 ISSN: 1500-4066 December 2018

## **Discussion paper**

# **CO**<sub>2</sub> intensity and GDP per capita

BY **Rögnvaldur Hannesson** 



NORWEGIAN SCHOOL OF ECONOMICS .

### CO<sub>2</sub> intensity and GDP per capita

Rögnvaldur Hannesson Norwegian School of Economics Helleveien 30 N-5045 Bergen

#### Abstract

The relationship between  $CO_2$  intensity and GDP per capita is studied. Most rich countries show falling  $CO_2$  intensity over time and a negative correlation with GDP per capita. Many poor and medium rich countries show the opposite, a positive time trend and a positive correlation with GDP per capita. For the majority of countries with a negative correlation between  $CO_2$  intensity and GDP per capita a non-linear function fits the data better than a linear one, implying that  $CO_2$  intensity falls at a diminishing rate as countries get richer. Hence, economic growth will not by itself go very far in reconciling economic growth and reductions in  $CO_2$  emissions. There are indications that poor and medium rich countries experience a boost in  $CO_2$  intensity as they embark on industrialization. This will also make it harder to reconcile economic growth and cuts in  $CO_2$  emissions.

Keywords: carbon dioxide, economic growth, CO2 intensity

JEL classification: O44, Q43, Q54

#### Introduction

Is economic growth compatible with reduction in carbon dioxide emissions? If so, carbon dioxide emissions per unit of GDP (hereafter  $CO_2$  intensity) will have to fall. New technologies for energy production on a grand scale are likely to be necessary for this, but it would also help if there are structural trends accompanying economic growth that would bring the  $CO_2$  intensity down. This is not unlikely, as economic growth is accompanied by disproportionate growth of services, which are less energy intensive than material production (Medlock and Soligo, 2001).

What is the historical record? As part of its battery of world economic indicators, the World Bank publishes carbon dioxide content per unit of GDP at fixed prices for most countries in the world. In this paper we use this data to investigate the historical record across countries and, in particular, how  $CO_2$  intensity is related to GDP per capita. We get mixed results, but yet a tendency that the  $CO_2$  intensity falls as countries get richer.

According to the BP Statistical Review of World Energy, more than 80 percent of primary commercial energy still comes from fossil fuels. Since most CO<sub>2</sub> emissions are caused by burning fossil fuels, what has happened to CO<sub>2</sub> intensity is in large measure a reflection of what has happened to energy intensity. Many papers on that subject have been published, and most indicate that energy intensity falls as GDP per capita increases, or that the relationship has an inverted U-shape. Csereklyei, Rubio-Varas and Stern (2016) find, for a sample of 99 countries, that energy intensity falls as countries grow richer, but point out that energy intensity may increase in countries experiencing no growth. They also point out that the increasing energy intensity often observed for poor countries could be due to a transition from non-commercial biomass energy to commercial energy. They include non-commercial energy in their data, but recognize the unreliability of such data. Most other studies use only commercial energy. Medlock and Soligo (2001) find the inverted U-shape for intensity of commercial energy, for a panel of 28 countries.

In a recent paper, Semieniuk (2018) investigates the "green growth hypothesis", that is, whether a faster development in productivity will reduce the energy intensity of the economy. Using a large but unbalanced panel—180 countries 1950-2014—he finds that faster growth is not greener; a higher rate of labor productivity growth is typically associated with a higher rate of growth of energy input per unit of labor, canceling the effect on energy intensity. Hence, faster productivity growth will not contribute to reconciling economic growth and reduction in  $CO_2$  emissions.

Two papers study the relationship between  $CO_2$  emissions and GDP. Bella, Massidda and Mattana (2014) study the relationship between total  $CO_2$  emissions and total GDP for a panel of 22 OECD-countries. They find an inverted U-shape for most countries, which most likely implies a similar shape as well for  $CO_2$  intensity and GDP per capita, as for most countries GDP and GDP per capita have moved in the same direction. Jakob et al. (2012) study the growth of  $CO_2$  emissions and GDP for a sample of 51 countries. They break their sample into developing and industrialized countries and find that both grew at a rate higher than average in developing countries while there is no significant relationship between the growth rates of GDP and the use of energy for developed countries. These results are not directly comparable to ours, but neither do they contradict them.

Looking at the relationship between  $CO_2$  intensity, or energy intensity, and GDP per capita implies that a structural change in GDP as countries grow richer is seen as a driver of changes in  $CO_2$ emissions or energy use. A rationale has already been advanced; as countries get richer, more and more of presumably less energy intensive services is produced and  $CO_2$  intensity falls, while in countries just beginning their industrialization the opposite might happen. But things are more complicated than that. Energy or  $CO_2$  intensity might fall with no change in GDP per capita because of technological progress leading to increased energy efficiency across economic sectors or a transition from fossil fuels to other energy sources, or even between different fossil fuels (such as less reliance on coal and greater use of natural gas). Two studies of the US economy try to tease out how much of energy savings is due to increased energy efficiency (better technology) and how much is due to structural changes following changes in GDP per capita. Metcalf (2008) found that most of the reduction in energy intensity is due to improvements in energy efficiency while Huntington (2010) came to the opposite result. As pointed out by Huntington, the difference could be due to the degree of disaggregation in the data. So, to analyze this question, one needs not only country-specific disaggregated data, but the level of aggregation could have a critical bearing on the answer.

There are more devils in the details. In a recent paper, Croner and Francovic (2018) study structural versus efficiency factors behind changes in energy intensity, using detailed input-output coefficients for a number of countries. They point out that production-based data give more importance to structural factors than consumption-based data would do, because rich countries have to a large extent outsourced the production of CO<sub>2</sub>-intensive goods to developing countries, a point also made by Dieter Helm (2012) with the British economy as an example. This present study uses GDP data at a country level and makes no pretense at distinguishing between structural and technological factors behind changes in  $CO_2$  intensity. That said, looking at the relationship between  $CO_2$  intensity and GDP per capita at the country level is interesting in its own right and a first approximation to what is going on.

#### The time trend

Figure 1 shows the development of the  $CO_2$  intensity world wide, for real GDP measured in 2010 US dollars. The  $CO_2$  intensity fell steadily from 1960 to 2000 and stagnated after that. This is curious, as efforts to develop green energy and otherwise reduce carbon dioxide emissions have been particularly strong after 2000. When China is removed from the sample of nations the stagnation disappears. Nevertheless, the  $CO_2$  intensity has fallen more slowly for the world excluding China in this century than it did before, so we still face the paradox why efforts at decarbonization have achieved so little since they appeared on the world agenda.

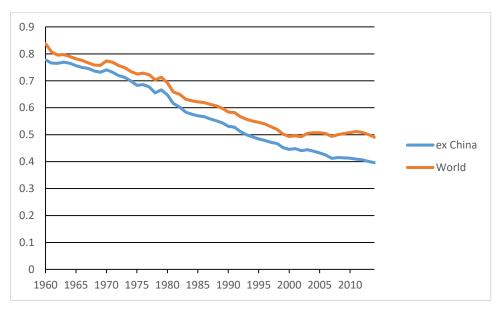



Figure 1: World  $CO_2$  emissions (kg per 2010 US\$ of GDP) 1960-2014 with and without China. Data from the World Bank.

What is the time trend across countries? Table A1 in the Appendix shows which countries had a significant (at the 5% level) time trend for  $CO_2$  intensity 1960-2014 (not all countries are represented for the entire period). Most countries with a GDP per capita of more than 23,000 dollars, and there are 36 of them, have a negative time trend, but for five the trend coefficient is insignificant. Below 23,000 dollars of GDP per capita a significantly positive time trend begins to show up, and then we are down to what may be termed medium rich countries; the richest ones of those with a positive time trend are

Greece, Portugal and Saudi Arabia. For the remaining 154 countries, which may be characterized as medium rich or poor, we get a significantly positive time trend for about a half (69), while for 58 we get a significantly negative time trend, and for 28 we get no significant trend at all. The  $CO_2$  intensity has thus tended to rise rather than fall for medium rich and poor countries, contrary to what has happened in rich countries.

#### CO2 intensity and GDP per capita

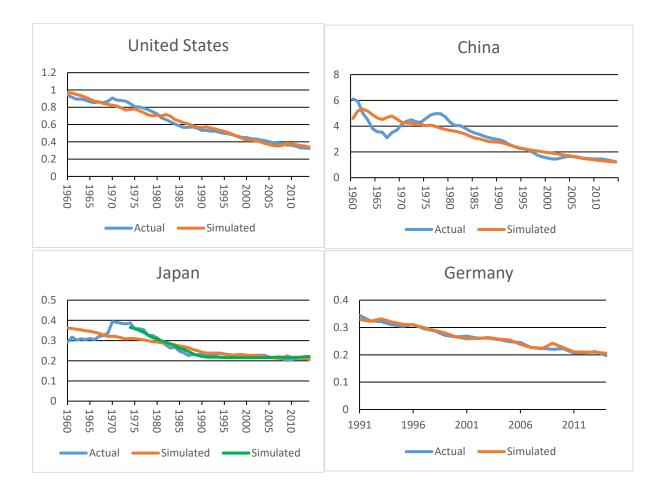
One reason why the  $CO_2$  intensity has been falling over time in many countries is that GDP per capita has been increasing. If  $CO_2$  intensity falls as GDP per capita increases, for reasons already mentioned, this will show up as a falling time trend of  $CO_2$  intensity. We now turn to investigating the relationship between  $CO_2$  intensity and GDP per capita. We focus attention on countries with a negative relationship between these two and specify three models, a linear model, a second degree equation, and a power equation, as follows:

$$y = a - bx$$
$$y = a - b_1 x + b_2 x^2$$
$$y = ax^{-b}$$

where *y* is CO<sub>2</sub> intensity and *x* is GDP per capita. The coefficients are estimated with linear regression, with the last equation on logarithmic form. We retain the model with the largest explanatory power  $(\mathbf{R}^2)$  and significant coefficients.

The results are summarized in Table A1. We get a significantly negative correlation between  $CO_2$  intensity and GDP per capita for 93 countries, slightly more than show a significantly negative time trend (88). The countries with a negative time trend and a negative correlation with GDP per capita are mostly the same. For only 47 do we get a positive correlation between  $CO_2$  intensity and GDP per capita, far fewer than those which show a significantly positive time trend (69), so there are more countries with no significant correlation between  $CO_2$  intensity and GDP per capita (50) than those with an insignificant time trend (33).

For the majority of countries where  $CO_2$  intensity falls as GDP per capita increases a non-linear relationship is a better description than a linear one (57 of 93), implying less and less decline in  $CO_2$  intensity as GDP per capita increases further (the type of function is reported in Table A1). This is a potential explanation of why the  $CO_2$  intensity has fallen more slowly after 2000; many enough countries may have reached the level of GDP per capita where further gains in declining  $CO_2$  intensity are small. While many countries are still so poor that they are unlikely to have reached that level, what happens in rich countries, which are responsible for most  $CO_2$  emissions, may be decisive.


#### An illustration

It would require too much space to illustrate the modeling results for all countries, but it is of interest to compare our modeling results with the actual development in the largest economies of the world. After all these countries have, by their sheer size, most effect on world GDP and also on world emissions of  $CO_2$ , even if the  $CO_2$  intensity of GDP varies considerably between countries (the  $CO_2$  intensity of China's GDP is about four times that of the United States). Figure 2 shows the development of the  $CO_2$  intensity for the eight countries with the highest total GDP in 2014 and compares it with our modeling results. The model reproduces the actual development in the United States, Germany, France and the United Kingdom quite well (note that we only have data from Germany after 1991). For three of these our best model is non-linear, while for France it is linear. The result is less good for China; in that country the  $CO_2$  intensity shows a rickety ride, with a rapid fall in the 1960s, then a rise, and a fall again from the late 1970s. Our best model, which is non-linear, makes

a certain sense from that time on. Likewise the results for Japan are mixed. The  $CO_2$  intensity of the Japanese GDP increased to the mid-1970s and has fallen thereafter. If we estimate our model with data from 1974 on the model captures the actual development quite well. That 1974 is a watershed is probably not a coincidence; this was the time of the first energy crisis. It may also be explained by Japan emerging from a period of rapid economic growth and industrialization implying possibly a rising  $CO_2$  intensity of GDP. An argument against this being valid in general is the fall in the Chinese  $CO_2$  intensity after the late 1970s, which coincided with rapid economic growth and industrialization.

Lastly there are Brazil and India. In Brazil the  $CO_2$  intensity has fluctuated without trend, and in India it rose until the early 1990s, but has fallen since. The model simulations shown in the diagrams for these countries explain very little or nothing of what has happened.

The results for Japan, Brazil and India suggest that there may be a phase in the development of poor and medium rich countries where the  $CO_2$  intensity of GDP increases with GDP per capita, in order to fuel rapid industrialization. Figure 3 shows the  $CO_2$  intensity and the GDP per capita in two countries, Singapore and Thailand, that have experienced rapid economic growth. Singapore appears to have had a phase of increasing and then high  $CO_2$  intensity during its first phase of rapid development up until about 1980. After that the  $CO_2$  intensity has fallen rather evenly, but seems recently to have reached a plateau. In Thailand the  $CO_2$  intensity grew with GDP per capita until 1997, but has since been fairly steady.



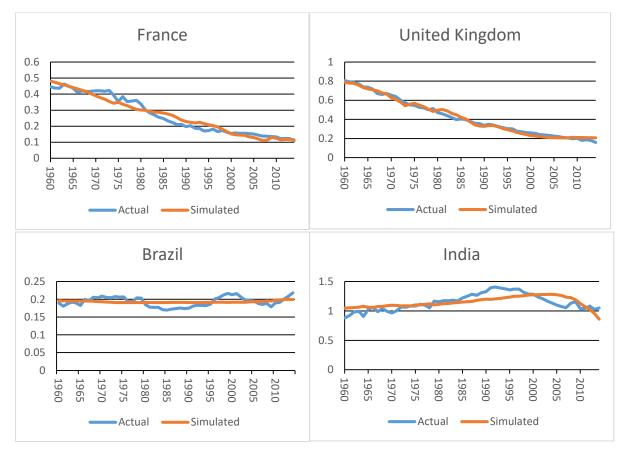



Figure 2: Actual and simulated CO<sub>2</sub> intensity (kg per dollar GDP) in the six largest economies of the world.

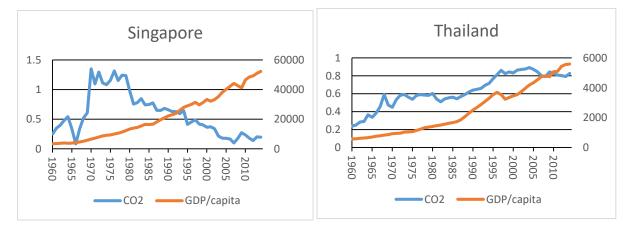



Figure 3: CO<sub>2</sub> intensity (left axis) and GDP per capita (right axis) in Singapore and Thailand.

#### Does CO2 intensity fall at a diminishing rate?

For the majority of countries,  $CO_2$  intensity appears to fall as they get richer, and for these the relationship is non-linear in the majority of cases, implying that the  $CO_2$  intensity falls at a diminishing rate. This is supported by estimating the second degree equation for the entire panel of data, with country-specific dummy variables. The results are shown in Table 1, with dummies omitted.

#### Table 1

| a        | $b_1$    | $b_2$    | R <sup>2</sup> |
|----------|----------|----------|----------------|
| 1.028136 | 0000147  | 7.23e-11 | 0.8244         |
| (25.07)  | (-13.49) | (6.54)   |                |

Results from estimating the equation  $y = a + b_1 x + b_2 x^2$ , with t-values in parentheses.

The estimated curve is shown in Figure 4, together with the  $CO_2$  intensity in select countries, adjusted to the level of the United States, which is used as base for the dummies. The data for Thailand, the United States, the United Kingdom and Singapore were shown in Figures 2 and 3 and commented on in the previous section. Thailand and Singapore do not follow this overall tendency at all in their early phase. Data for the three richest countries in the world in 2014, Luxembourg, Norway and Switzerland, are also shown. The  $CO_2$  intensity for the latter two is fairly flat. The  $CO_2$  intensity for Luxembourg falls rapidly in the beginning, but is fairly flat in later years. Luxembourg is an example of a country that has developed rapidly towards a service-based, wealthy economy.

It could be argued that the results in Table 1 are biased because we have an unbalanced panel. For many countries data are not reported for the early years; there is a large influx of countries in the early 1990s, associated with the downfall of the Soviet Union and the disappearance of the iron curtain. Estimating the equation for data from 1992 onwards still gives significant coefficients with the same sign, but their numerical values now produce a U-shaped curve with a minimum at a GDP per capita of about 70,000 dollars. It is unlikely that the  $CO_2$  intensity will begin to increase again at higher GDP levels, so we take this as a further evidence that the  $CO_2$  intensity does indeed fall with GDP per capita, but at a diminishing rate.

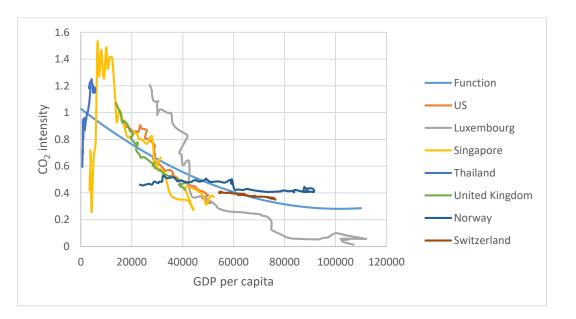



Figure 4: The equation  $y = a - b_1 x + b_2 x^2$  (y = CO<sub>2</sub> intensity, x = GDP per capita), as estimated for the entire panel of countries, and the CO<sub>2</sub> intensity of 7 selected countries.

#### **Policy implications**

A falling  $CO_2$  intensity as GDP per capita grows would contribute to reconciling economic growth and reduction in  $CO_2$  emissions. But there is considerable evidence that this is primarily the case in rich countries and that the effect becomes smaller and smaller as countries get still richer. This will increase the burden on alternative technologies to deal with emissions. Furthermore, the need for alternative technologies will increase if the poor and medium rich countries of the world must go through a phase of increased energy use as they grow out of poverty. Hence, reconciling economic growth and reduction in  $CO_2$  emissions would seem to depend critically on the development of energy sources other than fossil fuels. Economic growth by itself will not sweep this problem away.

#### References

Bella, G., C. Massidda and P. Mattana (2014): The relationship among CO2emissions, electricity power consumption and GDP in OECD countries. *Journal of Policy Modeling* 36: 970-985.

Croner, D. and I. Frankovic (2018): A Structural Decomposition Analysis of Global and National Energy Intensity Trends. *The Energy Journal* 39(2): 103-122.

Csereklyei, Z., M.d.M. Rubio-Varas and D.I. Stern (2016): Energy and Economic Growth: The Stylized Facts. *The Energy Journal* 37(2): 223-255.

Helm, D. (2012): The Carbon Crunch. Yale University Press, New Haven.

Huntington, H.G. (2010): Structural Change and U.S. Energy Use: Recent Patterns. *The Energy Journal* 31(3): 25-39.

Jakob, M., M. Haller and R, Marschinski (2012): Will history repeat itself? Economic convergence and convergence in energy use patterns. *Energy Economics* 34: 95-104.

Medlock, K.B. and R. Soligo (2001): Economic Development and End-Use Energy Demand. *The Energy Journal* 22(2): 77-105.

Metcalf, G. (2008): An Empirical Analysis of Energy Intensity and Its Determinants at the State Level. *The Energy Journal* 29(3): 1-26.

Semieniuk, G. (2018): Energy in Economic Growth: Is Faster Growth Greener? SOAS Department of *Economics Working Paper Series No 208*, School of Oriental and African Studies, University of London.

#### APPENDIX

#### Table A1

Countries in the sample, their GDP per capita (2010 us dollars in 2014), whether CO2 intensity has a significant time trend, whether CO<sub>2</sub> intensity is correlated with GDP per capita, and what type of model best fits the relationship between CO<sub>2</sub> intensity and GDP per capita.

|                      |          | Time trend |     |     | Correlation w GDP/cap |     |     |            |
|----------------------|----------|------------|-----|-----|-----------------------|-----|-----|------------|
|                      | GDPcap   | Pos        | Neg | Ins | Pos                   | Neg | Ins | Model      |
| Luxembourg           | 107152.9 |            | x   |     |                       | x   |     | Power      |
| Norway               | 89274.96 |            | X   |     |                       | x   |     | Linear     |
| Bermuda              | 79251.78 |            | X   |     |                       |     | x   |            |
| Switzerland          | 76410.86 |            | x   |     |                       | x   |     | Linear     |
| Macao                | 69749.16 |            | X   |     |                       | x   |     | 2nd degree |
| Qatar                | 67901.22 |            | X   |     |                       | x   |     | 2nd degree |
| Denmark              | 59437.93 |            | x   |     |                       | x   |     | Linear     |
| Australia            | 54546.2  |            | X   |     |                       | x   |     | Linear     |
| Ireland              | 54052.95 |            | X   |     |                       | x   |     | 2nd degree |
| Sweden               | 53561.89 |            | X   |     |                       | x   |     | Power      |
| Singapore            | 52244.44 |            | X   |     |                       | x   |     | Linear     |
| United States        | 50871.67 |            | X   |     |                       | x   |     | 2nd degree |
| Netherlands          | 50497.24 |            | x   |     |                       | x   |     | Linear     |
| Canada               | 50221.84 |            | X   |     |                       | x   |     | Linear     |
| Austria              | 47922.34 |            | X   |     |                       | x   |     | 2nd degree |
| Japan                | 46484.16 |            | X   |     |                       | x   |     | Linear     |
| Greenland            | 46443.76 |            | X   |     |                       | x   |     | 2nd degree |
| Finland              | 45239.37 |            | X   |     |                       | x   |     | Linear     |
| Germany              | 45022.57 |            | x   |     |                       | x   |     | 2nd degree |
| Iceland              | 44775.64 |            | x   |     |                       | x   |     | 2nd degree |
| Belgium              | 44676.66 |            | x   |     |                       | x   |     | 2nd degree |
| France               | 41374.76 |            | x   |     |                       | x   |     | Linear     |
| United Kingdom       | 40908.75 |            | X   |     |                       | x   |     | 2nd degree |
| Andorra              | 40785.05 |            | X   |     |                       | x   |     | Power      |
| United Arab Emirates | 39146.11 |            |     | x   |                       | x   |     | 2nd degree |
| Kuwait               | 36259.67 |            |     | x   |                       | x   |     | Power      |
| New Zealand          | 36142.52 |            |     | х   |                       | x   |     | Linear     |
| Hong Kong            | 35717.68 |            | x   |     |                       | x   |     | Linear     |
| Italy                | 33615.97 |            | x   |     |                       | x   |     | Linear     |
| Brunei               | 33313.83 |            |     | х   |                       |     | х   |            |
| Israel               | 32661.29 |            | X   |     |                       | x   |     | Linear     |
| Spain                | 29496.38 | 1          | 1   | X   |                       | 1   | X   |            |
| Bahamas              | 27246.48 |            | x   |     |                       | X   |     | Power      |
| S Korea              | 24323.57 | 1          | x   | 1   |                       | х   |     | Linear     |
| Malta                | 23676.03 | 1          | x   | 1   |                       | х   |     | Power      |
| Slovenia             | 23224.4  | 1          | x   | 1   |                       | X   |     | 2nd degree |
| Greece               | 22565.68 | x          | 1   |     | x                     | 1   |     |            |

| Bahrain                | 22390.68 |   | X |   |   | Х |   | 2nd degree |
|------------------------|----------|---|---|---|---|---|---|------------|
| Portugal               | 21533.49 | х |   |   | х |   |   |            |
| Saudi Arabia           | 21183.46 | х |   |   |   | x |   | Linear     |
| Czech Republic         | 20343.68 |   | X |   |   | x |   | 2nd degree |
| Cyprus                 | 20009.06 |   | x |   |   | х |   | 2nd degree |
| Slovak Republic        | 18003.54 |   | X |   |   | Х |   | Power      |
| Estonia                | 17453.37 |   | X |   |   | x |   | 2nd degree |
| Oman                   | 17167.05 | х |   |   | х |   |   |            |
| Trinidad and Tobago    | 16641.74 | х |   |   | х |   |   |            |
| Equatorial Guinea      | 16028.25 |   |   | х |   |   | X |            |
| Barbados               | 15901.9  | х |   |   | х |   |   |            |
| St. Kitts and Nevis    | 15029.62 | х |   |   | х |   |   |            |
| Lithuania              | 14935.54 |   | х |   |   | Х |   | Power      |
| Chile                  | 14681.33 |   | х |   |   | Х |   | Power      |
| Hungary                | 14119.07 |   | х |   |   | Х |   | 2nd degree |
| Poland                 | 14090.62 |   | X |   |   | х |   | Power      |
| Uruguay                | 13856.7  |   | х |   |   | Х |   | 2nd degree |
| Latvia                 | 13758.96 |   | X |   |   | Х |   | Power      |
| Venezuela              | 13709.04 | х |   |   |   | Х |   | 2nd degree |
| Croatia                | 13651.99 |   | X |   |   | Х |   | Linear     |
| Turkey                 | 13312.46 | х |   |   | X |   |   |            |
| Seychelles             | 12850.49 | х |   |   | X |   |   |            |
| Antigua and Barbuda    | 12403.53 |   | x |   |   | x |   | 2nd degree |
| Brazil                 | 11870.15 |   |   | x |   |   | X | 2nd degree |
| Russia                 | 11865.03 |   | x |   |   | х |   | Power      |
| Kazakhstan             | 10646.03 |   | x |   |   | х |   | Power      |
| Malaysia               | 10398.23 | x |   |   | x |   |   |            |
| Panama                 | 10350.4  |   | x |   |   | X |   | Power      |
| Argentina              | 10323.21 |   |   | x |   | X |   | Linear     |
| Palau                  | 9692.272 |   |   | X |   | х |   | Power      |
| Mexico                 | 9536.6   | x |   |   | x |   |   |            |
| Gabon                  | 9508.285 |   |   | X | X |   |   |            |
| Romania                | 9227.437 |   | x |   |   | x |   | Power      |
| Caribbean small states | 9169.713 | x |   |   | X |   |   |            |
| Mauritius              | 9163.633 | x |   |   | x |   |   |            |
| Costa Rica             | 9065.026 | x |   |   | x |   |   |            |
| Suriname               | 8942.961 |   | x |   |   | х |   | 2nd degree |
| St. Lucia              | 8147.524 | x |   |   | x |   |   |            |
| Maldives               | 8124.708 | х |   |   | X |   |   |            |
| Grenada                | 7932.668 | x |   |   | X |   |   |            |
| South Africa           | 7582.553 | X |   |   |   |   | x |            |
| Botswana               | 7574.282 |   |   | x |   |   | x |            |
| Lebanon                | 7447.364 |   | x |   |   | х |   | Linear     |
| Bulgaria               | 7299.549 |   | x |   |   | X |   | Power      |
| Colombia               | 7291.692 |   | X |   |   | x |   | 2nd degree |

| Montenegro                     | 7045.116 |   |   | х |   |   | Х |            |
|--------------------------------|----------|---|---|---|---|---|---|------------|
| Dominica                       | 6951.032 | X |   |   | X |   |   |            |
| Libya                          | 6697.103 |   |   | X |   | x |   | 2nd degree |
| Belarus                        | 6664.097 |   | X |   |   | х |   | Power      |
| St. Vincent and the Grenadines | 6467.158 | X |   |   | x |   |   |            |
| Turkmenistan                   | 6399.271 |   | x |   |   | x |   | Power      |
| Dominican Republic             | 6203.726 | X |   |   |   |   | Х |            |
| Cuba                           | 6182.774 |   | x |   |   | x |   | Power      |
| Iran                           | 6161.104 | X |   |   |   |   | Х |            |
| Azerbaijan                     | 6122.98  |   | x |   |   | x |   | Power      |
| China                          | 6108.239 |   | x |   |   | x |   | Power      |
| Namibia                        | 5901.243 |   |   | X |   |   | Х |            |
| Peru                           | 5825.198 |   |   | X |   |   | Х |            |
| Serbia                         | 5593.061 |   | X |   |   | x |   | Linear     |
| Thailand                       | 5591.106 | x |   |   | X |   |   |            |
| Ecuador                        | 5428.714 | x |   |   | х |   |   |            |
| Iraq                           | 5253.627 |   | x |   |   | x |   | 2nd degree |
| Bosnia and Herzegovina         | 4992.949 | X |   |   | х |   |   |            |
| Macedonia                      | 4920.216 |   | x |   |   | х |   | Linear     |
| Jamaica                        | 4714.861 |   |   | X |   |   | X |            |
| Algeria                        | 4675.885 | x |   |   | X |   |   |            |
| Albania                        | 4413.562 |   | x |   |   | x |   | Linear     |
| Belize                         | 4411.856 |   | x |   |   | X |   | Linear     |
| Tunisia                        | 4271.327 |   |   | X |   |   | Х |            |
| Fiji                           | 4084.2   |   | X |   |   |   | Х |            |
| Swaziland                      | 3980.774 |   | X |   |   |   | Х | 2nd degree |
| Mongolia                       | 3901.867 |   | X |   |   |   | Х |            |
| Georgia                        | 3851.723 |   | x |   |   |   | X |            |
| Armenia                        | 3827.343 |   | X |   |   | x |   | Power      |
| Paraguay                       | 3761.912 | х |   |   | х |   |   |            |
| Angola                         | 3746.66  | X |   |   |   |   | X |            |
| Indonesia                      | 3692.943 | X |   |   | X |   |   |            |
| Guyana                         | 3595.925 |   | x |   |   | x |   | Linear     |
| Tonga                          | 3581.837 | Х |   |   | X |   |   |            |
| Samoa                          | 3524.596 |   | X |   |   | x |   | 2nd degree |
| Sri Lanka                      | 3506.871 |   | x |   |   | х |   | 2nd degree |
| Cabo Verde                     | 3369.643 |   |   | X |   |   | Х |            |
| Jordan                         | 3348.827 | X |   |   |   |   | Х |            |
| Marshall Islands               | 3333.361 | x |   |   | X |   |   |            |
| El Salvador                    | 3272.74  | х |   |   | X |   |   |            |
| Tuvalu                         | 3196.979 | 1 |   | x |   |   | Х |            |
| Morocco                        | 3160.526 | X |   |   | X |   |   |            |
| Pacific island small states    | 3116.11  |   | X |   |   | X |   | Power      |
| Guatemala                      | 3007.9   | x |   |   | X |   |   |            |

| Ukraine               | 2967.213 |   | Х |   |   | х |   | 2nd degree |
|-----------------------|----------|---|---|---|---|---|---|------------|
| Congo, Rep.           | 2922.973 |   |   | X |   |   | X |            |
| Vanuatu               | 2909.775 |   | X |   |   |   | Х |            |
| Micronesia            | 2716.323 | X |   |   |   |   | X |            |
| Egypt                 | 2608.375 |   |   | X |   |   | X |            |
| Nigeria               | 2563.092 |   |   | X |   |   | X |            |
| Timor-Leste           | 2547.159 |   |   | X |   | x |   | Linear     |
| West Bank and Gaza    | 2529.996 | X |   |   |   |   | Х |            |
| Philippines           | 2505.819 |   |   | X |   |   | Х |            |
| Bhutan                | 2500.26  | х |   |   |   |   | х |            |
| Papua New Guinea      | 2329.891 | х |   |   |   | х |   |            |
| Bolivia               | 2317.257 | х |   |   |   | x |   |            |
| Honduras              | 2059.475 | X |   |   |   | x |   |            |
| Moldova               | 1986.941 |   | х |   |   | X |   | Power      |
| Sudan                 | 1837.138 |   | x |   |   |   | Х |            |
| Nicaragua             | 1812.995 | х |   |   |   | X |   | 2nd degree |
| Uzbekistan            | 1744.491 |   | x |   |   | x |   | 2nd degree |
| Ghana                 | 1659.797 | Х |   |   |   |   | Х |            |
| India                 | 1645.326 | х |   |   |   |   | х |            |
| Zambia                | 1620.823 |   | x |   | X |   |   |            |
| Kiribati              | 1565.243 | X |   |   |   | x |   | Power      |
| Vietnam               | 1565.02  | х |   |   | х |   |   |            |
| Solomon Islands       | 1475.528 |   |   | Х |   | х |   | Power      |
| Laos                  | 1470.5   | х |   |   | х |   |   |            |
| Cameroon              | 1428.216 | х |   |   | х |   |   |            |
| Cote d'Ivoire         | 1384.91  | х |   |   |   |   | Х |            |
| Mauritania            | 1326.159 | х |   |   |   |   | Х |            |
| Lesotho               | 1323.238 |   | х |   |   | х |   | 2nd degree |
| Myanmar               | 1266.124 |   | х |   |   | х |   | Power      |
| Sao Tome and Principe | 1241.459 |   |   | х |   |   | Х |            |
| Pakistan              | 1111.196 |   |   | х |   |   | Х |            |
| Yemen                 | 1101.117 | Х |   |   | х |   |   |            |
| Kenya                 | 1075.659 |   | х |   |   | х |   | 2nd degree |
| Senegal               | 1018.393 | Х |   |   |   | х |   | Linear     |
| Kyrgyzstan            | 1003.51  |   | х |   |   |   | Х |            |
| Cambodia              | 972.9792 |   |   | х |   |   | Х |            |
| Chad                  | 967.1028 |   |   | х |   |   | Х |            |
| Zimbabwe              | 939.7803 |   | х |   |   |   | Х |            |
| Bangladesh            | 922.1611 | х |   |   | Х |   |   |            |
| Tajikistan            | 892.64   |   | X |   |   |   | X |            |
| Benin                 | 833.6409 | х |   |   | Х |   |   |            |
| Tanzania              | 782.6772 | х |   |   | Х |   |   |            |
| Comoros               | 779.8398 | X |   |   |   | X |   | Power      |
| Haiti                 | 728.7803 | х |   |   |   | х |   | Power      |
| Guinea                | 714.1633 |   |   | X |   |   | x |            |

| Mali                     | 705.7885 |    |    | Х  |    |    | х  |            |
|--------------------------|----------|----|----|----|----|----|----|------------|
| Nepal                    | 675.7353 | Х  |    |    | х  |    |    |            |
| Rwanda                   | 672.6396 | х  |    |    |    |    | х  |            |
| Uganda                   | 642.8774 | Х  |    |    | Х  |    |    |            |
| Burkina Faso             | 639.7096 | х  |    |    | х  |    |    |            |
| Sierra Leone             | 562.8597 |    | х  |    |    |    | х  |            |
| Guinea-Bissau            | 545.8985 |    |    | Х  |    |    | х  |            |
| Togo                     | 531.1561 | Х  |    |    |    |    | х  |            |
| Gambia                   | 530.3189 | Х  |    |    | Х  |    |    |            |
| Eritrea                  | 514.1796 |    | х  |    |    |    | х  |            |
| Mozambique               | 493.2533 |    | Х  |    |    | х  |    | Power      |
| Malawi                   | 484.3686 |    | х  |    |    | х  |    | Power      |
| Ethiopia                 | 452.7782 |    |    | Х  |    |    | х  |            |
| Madagascar               | 408.661  | Х  |    |    |    | х  |    | Power      |
| Congo, Dem. Rep.         | 397.582  |    | Х  |    | Х  |    |    |            |
| Niger                    | 386.7258 | Х  |    |    |    | х  |    | Power      |
| Liberia                  | 376.5889 | х  |    |    |    | х  |    | 2nd degree |
| Central African Republic | 302.5465 | х  |    |    |    | Х  |    | 2nd degree |
| Burundi                  | 243.1019 | х  |    |    | х  |    |    |            |
| Total                    |          | 69 | 88 | 33 | 47 | 93 | 50 |            |