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Abstract. Weanalyze relational contracts between a principal and a set of risk-neutral agents
whose outputs are correlated. When only the agents’ aggregate output can be observed, a
team incentive scheme is shown to be optimal, where each agent is paid a bonus for ag-
gregate output above a threshold. We show that the efficiency of the team incentive scheme
depends on the way in which the team members’ outputs are correlated. The reason is that
correlation affects the variance of total output and thus, the precision of the team’s per-
formance measure. Negatively correlated contributions reduce the variance of total output,
and this improves incentives for each teammember in the setting that we consider. This also
has implications for optimal team size. If the team members’ outputs are negatively cor-
related, more agents in the team can improve efficiency. We then consider the case where
individual outputs are observable. A tournament scheme with a threshold is then optimal,
where the threshold depends on an agent’s relative performance. We show that correlation
affects both the efficiency and design of the optimal tournament scheme.
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1. Introduction
Within organizations, employees’ outputs are often
correlated: many times positively, such as when they are
exposed to the same business cycles, and other times
negatively, such as when they compete for the same
resources or meet different sets of demands from cus-
tomers or superiors. For instance, professionals within
the same partnerships who specialize in different in-
dustries can have rather asymmetric income shocks.

The way in which outputs correlate is potentially
important for incentive design. Correlation affects the
gains from risk sharing if agents are exposed to joint
performance evaluation, and it filters out common
noise if agents are exposed to relative performance
evaluation (RPE) (Holmström 1982, Mookherjee 1984).
Recent contributions within the accounting literature
show how these insights affect more practical ques-
tions regarding bonus arrangements and organiza-
tional design. For instance, Huddart and Liang (2005)
show that (positively) correlated performances re-
duce the optimal size of partnerships, and Rajan and
Reichelstein (2006) show the importance of correlated
signals for the design and efficiency of discretionary
bonus pools.

A common feature in this literature is that correlated
performances affect the efficiency of incentive systems

via risk considerations. The literature is based onmodels
where at least some of the performance measures are
verifiable, and hence, first best contracts are achievable if
agents are comfortable with bearing risk. In this paper,
we show that correlated performances are highly im-
portant for incentive design, even in the absence of
risk considerations. In contrast to previous literature, we
study how correlated performances affect optimal in-
centives in situations where no verifiable performance
measures are available.
In practice, incentive contracts are often based on

performance measures that are difficult to verify by a
third party (e.g., Gibbs et al. 2004). The quality or value of
the agents’ performance may be observable to the prin-
cipal but cannot easily be assessed by a court of law. The
parties must then rely on self-enforcing relational con-
tracts. Through repeated interactions, the parties canmake
it costly for each other to breach the contract by letting
breach ruin future trade. However, relational contracts
cannot fully solve the principal’s incentive problem, be-
cause the agents’ monetary incentives (bonuses) are lim-
ited by the value of the future relationship. If bonuses are
too large (or too small), the principal (or agents) may
deviate by not paying as promised, thereby undermining
the relational contract. The principal must thus provide
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as efficient incentives as possible under the constraint
that the feasible bonuses are limited.

In this paper, we analyze optimal relational contracts
between a principal and a set of agents whose outputs
are either positively or negatively correlated. We focus
exclusively on the effects of stochastic dependencies and
therefore, exclude any “technological” dependencies
(e.g., complementarities) between the agents. This is not
to deny that the latter can be important, but their effects
are reasonably well understood (e.g., Levin 2002). We
consider two cases: (a) where only aggregate output can
be observed and (b) where individual outputs can be
observed.

We first show that the optimal contract under (a) is
a team incentive scheme, where each agent is paid a
maximal bonus for aggregate output above a threshold
and a minimal (no) bonus otherwise.1 This parallels the
characterization of Levin (2003) for the single-agent case.
We then show, for a parametric (normal) distribution,
that the efficiency of the team incentive scheme depends
on the way in which the team members’ outputs are
correlated. The reason is that correlation affects the
variance of total output and thus, the precision of the
team’s performance measure. Variance is important, not
because it affects risk (because all agents are risk neutral
by assumption) but because it affects, for any given
bonus level, the incentives for each team member to
provide effort. The lower the variance and thus, the
more precise the performance measure, the stronger the
marginal effect of each agent’s effort is on the probability
to obtain the bonus and thus, the stronger the marginal
incentives (MIs) are for effort. A team composed of
agents with negatively correlated outputs has this effect.
It reduces the variance of total output and thus, im-
proves incentives.2

This also has implications for optimal team size. We
show that the team’s efficiency decreases with its size
(number of agents n) when outputs are nonnegatively
correlated but that efficiency may increase consider-
ably with size if outputs are negatively correlated.

In case (b), where individual output is observable,
Levin (2002) showed that, for independent outputs, the
optimal relational contract entails a stark RPE scheme:
a form of tournament where at most, one agent is paid a
bonus. We point out that the efficiency of this tourna-
ment scheme increases with the number of agents and
hence, becomes progressively better compared with a
teamwhen the number of independent agents increases.
Then, we extend the analysis to correlated variables and
show for the parametric (normal) distribution that the
optimal contract is an RPE scheme with a threshold,
where the threshold depends on an agent’s relative
performance and where the conditions for an agent to
obtain the (single) bonus are then stricter for negatively
comparedwith positively correlated outputs. The reason
for this is that the losing agent’s output is informative

about the winner’s expected output when these outputs
are correlated. Under negative correlation, a bad per-
formance by one agent raises the conditional expected
performance of the other agent. Hence, to maximize
incentives, the bonus threshold should increase when
outputs are negatively correlated.
The efficiency of the tournament contract is shown to

improve with stronger correlation, both positive and
negative. The latter aspect is noteworthy, because the
efficiency of a standard tournament (i.e., a tournament
where the winner gets a fixed bonus irrespective of
performance) decreases with stronger negative corre-
lation. In contrast, when the winning agent also needs to
pass a hurdle that depends on the other agent’s output,
then correlation (both positive and negative) reduces the
importance of luck and increases the importance of
effort to achieve the bonus.
The main contribution of this paper is to analyze

correlated performance measures in multiagent re-
lational contracts. To the best of our knowledge, this has
not yet been analyzed in the literature. Our secondary
contribution is to vary the number of agents in themodel
and thus, also analyze the effects of team size. Although
the literature on team incentives generally recognizes
team size as an important determinant for team per-
formance, questions concerning optimal team size have
received limited attention.3 Most notable are the con-
tributions within the accounting literature: in particular,
Huddart and Liang (2003, 2005) and Liang et al. (2008)
show that team size can affect monitoring activities
within teams as well as how teams respond to exoge-
nous shocks. An interesting implication from Huddart
and Liang (2005) is that partnerships are less likely to
increase in size if outputs are positively correlated. It
follows from the general idea of Holmström (1982) that
larger teams can achieve more efficient risk sharing
given that team members’ contributions are not per-
fectly correlated. We point to a different mechanism:
Addingmore agents to the teamwhen contributions are
positively correlated leads to less precise performance
measures.
An important difference between the works of

Huddart and Liang (2003, 2005) and our paper is thatwe
have a principal who can withhold payments to agents.
Our relational contracting approach may thus be more
relevant for teams within corporations than for part-
nerships. Previous literature on relational contracts be-
tween a principal and multiple agents considers
situations in which there exist observable signals about
individual performances (Levin 2002; Kvaløy and Olsen
2006, 2008; Rayo 2007; Baldenius et al. 2016; Deb et al.
2016; Glover and Xue 2018). However, individual
contributions to the firm’s output are often unobserv-
able, which was underscored by Alchian and Demsetz
(1972). Surprisingly then, relational contracts between
a principal and a team of agents, where only aggregate
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output is observable, have (to our best knowledge) not
yet been studied.4

The rest of the paper is organized as follows. Section 2
presents the model and analyzes team incentives given
that only total output can be observed. Section 3 deals
with the case where individual outputs can be observed,
whereas Section 4 concludes.

2. Model
We analyze an ongoing economic relationship between
a principal and n (symmetric) agents. All parties are risk
neutral. Each period, each agent i exerts effort ei, in-
curring a private cost c(ei). Costs are strictly increasing
and convex in effort (i.e., c′(ei)>0, c′′(ei)> 0, and c(0) �
c′(0) � 0). Each agent’s effort generates a stochastic
output xi, with marginal density f (xi, ei). Expected out-
puts are given by x̄(ei) � E(xi| ei) �

∫
xi f (xi, ei)dxi, and

total surplus per agent isW(ei) � x̄(ei) − c(ei). First best is
then achieved when x̄′(eFBi ) − c′(eFBi ) � 0. Outputs are
stochastically independent (given efforts) across time.

The parties cannot contract on effort provision. We
assume that effort ei is hidden and only observed by
agent i. With respect to output, we consider two cases:
either individual outputs xi are observable, or only total
output y � Σxi is observable. In both cases, we assume
that outputs are nonverifiable by a third party. Hence,
the parties cannot write a legally enforceable contract
on output provision but have to rely on self-enforcing
relational contracts.

2.1. Team: Only Total Output Observed
We first consider the case where individual output is
unobservable, and hence, the parties can only contract
on total output provision.We focus here on team effects
generated by stochastic dependencies among agents’
contributions, and thus, we assume a simple linear
“production structure” but allow individual outputs to
be stochastically dependent.

Each period, the principal and the agents then face the
following contracting situation. First, the principal offers
a contract saying that agent i receives a noncontingent
fixed salary αi plus a bonus bTi (y), i � 1 . . .n conditional
on total output y � Σxi from the n agents.5 Second, the
agents simultaneously choose efforts, and value reali-
zation y is revealed. Third, the parties observe y, and the
fixed salary αi is paid. Then, the parties choose whether
to honor the contingent bonus contract bTi (y).

Conditional on efforts, agent i’s expected wage in the
contract is then wi � E(bTi (y)

∣∣ e1 . . . en) + αi, whereas the
principal expects E(y∣∣ e1 . . . en) − Σwi � ΣiE(xi| ei) − Σwi.
If the contract is expected to be honored, agent i chooses
effort ei to maximize his payoff; that is,

ei � argmax
e′i

E(bTi (y)
∣∣ e′i , e−i) − c(e′i )

( )
. (IC)

The parties have outside (reservation) values normal-
ized to zero. In the repeated game that we consider, like

Levin (2002), a multilateral punishment structure is
used, where any deviation by the principal triggers
punishment from all agents. The principal honors the
contract only if all agents honored the contract in the
previous period. The agents honor the contract only if
the principal honored the contract with all agents in the
previous period. Thus, if the principal reneges on the
relational contract, all agents take their outside option
forever after and vice versa: if one (or all) of the agents
reneges, the principal takes her outside option forever
after.6 A natural explanation for this is that the agents
interpret a unilateral contract breach (i.e., the principal
deviates from the contract with only one or some of the
agents) as evidence that the principal is not trustworthy
(see discussions in Bewley 1999 and Levin 2002).
Now (given that (IC) holds), the principal will honor

the contract with all agents i � 1, 2, . . . ,n if

−Σiαi − ΣibTi (y) +
δ

1 − δ
(E(y∣∣ e1 . . . en) − Σwi) ≥ −Σiαi,

(EP)

where δ is a common discount factor. This condition can
be seen as an enforcement constraint for the principal.
The left-hand side (LHS) of the inequality shows the
principal’s expected present value from honoring the
contract, which involves paying out the promised bo-
nuses and then receiving the expected value from re-
lational contracting in all future periods. The right-hand
side (RHS) shows the expected present value from re-
neging, which implies breaking up the relational con-
tract and receiving the reservation value (zero) in all
future periods.
Agent i will accept the bonus offered if

αi + bTi (y) +
δ

1 − δ
(wi − c(ei)) ≥ αi, (EA)

where this can similarly be seen as an enforcement
constraint for agent i. The LHS shows the agent’s ex-
pected present value from honoring the contract,
whereas the RHS shows the expected present value
from reneging.
Following established procedures (e.g., Levin 2002),

we have the following.

Lemma 1. For given efforts e � (e1 . . . en), there is a wage
scheme that satisfies (IC), (EP), and (EA) and hence, im-
plements e if and only if there are bonuses bTi (y) and fixed
salaries αi with bTi (y) ≥ 0, i � 1, . . . ,n, such that (IC) and
condition (EC) below hold:

ΣibTi (y) ≤
δ

1 − δ
ΣiW(ei). (EC)

The lemma implies that the enforcement constraints
(EP) and (EA) for the principal and the agents, re-
spectively, can be replaced by the aggregate enforce-
ment constraint (EC). To see sufficiency, set the fixed
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wages αi such that each agent’s payoff in the contract
equals his reservation payoff (i.e., αi + E(bTi (y)

∣∣ e) −
c(ei) � 0). Then, (EA) holds, because bTi (y) ≥ 0. More-
over, the principal’s payoff in the contract will be
ΣiW(ei) (i.e., the surplus generated by the contract).
Then, (EC) implies that (EP) holds. Necessity follows by
standard arguments.

Unless otherwise explicitly noted, we will follow the
standard assumption in the literature, and we will
assume that the first-order approach (FOA) is valid and
hence, that each agent’s optimal effort choice is given
by the first-order condition (FOC)

∂

∂ei
E(bTi (y)

∣∣ e1 . . . en) � c′(ei). (1)

Given that FOA is valid, the agents’ optimal choices are
characterized by the condition (1), which wewill refer to
as a “modified” (IC) constraint. We will further assume
that the “monotone likelihood ratio property” (MLRP)
holds for aggregate output y in the following sense: its
density is assumed to be of the form g(y; l(e1 . . . en))with
lei (e1 . . . en)> 0 and such that gl(y,l)

g(y,l) is increasing in y.
The optimal contract now maximizes total surplus

(ΣiW(ei) � Σi(E(xi| ei) − c(ei))) subject to (EC) and the
modified (IC) constraint (1). Then,we have the following.

Proposition 1. The optimal symmetric scheme pays a max-
imal bonus to each agent for output above a threshold (y> y0)
and no bonus otherwise. The threshold is given by gl(y0,l(e))

g(y0,l(e)) � 0.
For l(e1 . . . en) � Σiei, no asymmetric scheme can be optimal.

The maximal symmetric bonus is, by (EC), bTi (y) �
bT(y) � δ

1−δW(ei) when efforts ei are equal for all i. This
result parallels that of Levin (2003) for the single-agent
case. The threshold property comes from the fact that
incentives should be maximal (minimal) where the
likelihood ratio is positive (negative). Because this ratio
is monotone increasing, there is a threshold y0 where it
shifts from being negative to positive, and hence, in-
centives should optimally shift from being minimal to
maximal at that point.7

2.2. Team Size, Correlation, and Efficiency
We will here study how team size and correlations
among individual contributions to team output affect
efficiency. To see how efficiency is affected, note from
Proposition 1 that the (IC) constraint (1) can now be
written

c′(ei) � bT
∂

∂ei
Pr(y> y0

∣∣ e1 . . . en),
where the term on the RHS is agent i′s marginal rev-
enue from effort. The latter is determined by the bonus
and the extent to which higher effort for the agent
affects the probability of obtaining the bonus. The
strength of this effect is, for given efforts by the other

agents, determined by the distribution of the aggregate
team output y, and it is given by

∂

∂ei
Pr(y> y0

∣∣ e1 . . . en) �
∫
y> y0

gi(y; e1 . . . en)dy, (2)

where gi denotes the partial derivative of the density
with respect to ei. The optimal solution ei � e∗i (the
maximal effort per agent that can be implemented) is
thus given by

c′(e∗i )∫
y> y0

gi(y; e∗)dy � bT � δ

1 − δ
W(e∗i ). (3)

The first equality shows the required bonus (per
agent) to implement effort e*i (from the (IC) constraint).
The second equality shows the feasible (maximal)
bonus.
When team size n increases, a single agent’smarginal

influence on his expected bonus payment will be af-
fected. In the case of independent outputs, this mar-
ginal influence is reduced. Hence, for a fixed bonus (to
each agent), every agent will provide less effort. This
outcome is similar to the classical free-rider problem,
but the mechanism is different. It is not that a given
bonus has to be divided between more agents, it is
rather that each agent’s influence on the team’s prob-
ability of reaching the bonus threshold becomes lower.
Moreover, this lower effort will in turn reduce the
surplus and hence, lower the maximal feasible bonus.
This will further reduce effort; thus, it is clear that
equilibrium effort will be reduced in such a case.
However, with correlated outputs, more agents in

the team will not necessarily reduce effort. To see this,
we first analyze the effects of correlated outputs for
fixed team size, and then, we consider the effects of
varying the number of agents.
Regarding stochastic dependencies (correlations)

among individual outputs, we see that their effects on
efficiency will be determined by their effects on the
marginal probability of obtaining the bonus (2). To
make the analysis tractable, we will assume that out-
puts are (multi-)normally distributed and correlated.
Given this assumption and (by symmetry) with each xi
being N(ei, s2), then total output y � Σxi is also normal
with expectation Ey � Σei and variance

s2n � var(y) � Σivar(xi) + Σi ��jcov(xi, xj)
� ns2 + s2Σi��jcorr(xi, xj).

It follows from the form of the normal density
that the likelihood ratio is linear and given by
gi(y,e1...en)
g(y,e1...en) � (y − Σei)/s2n. As shown above, the optimal
bonus is maximal (minimal) for outcomes where the
likelihood ratio is positive (negative), and hence, it
has a threshold y0 � Σe∗i in equilibrium. Applying the
normal distribution, it then follows (as shown in the
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online appendix) that the marginal return to effort for
each agent in equilibrium is given by

bT
∫
y> y0

gi(y; e∗)dy � bT/(Msn), M � ����
2π

√
. (4)

The marginal return to effort is thus inversely pro-
portional to the standard deviation of total output in
this setting. This implies that a team composition that
reduces this standard deviation and thus, increases the
precision of the available performance measure (total
output) will improve incentives and be beneficial here.8

An intuition for this is the following. In equilibrium,
the team members obtain a bonus when team output y
exceeds a hurdle set at the expected output, an event
that occurs with probability 1/2 in this setting. For
a fixed bonus scheme and thus, a fixed hurdle, addi-
tional effort by an individual team member will move
the mean of the y distribution and by that increase, the
probability of obtaining the bonus. The effect on this
probability is stronger themore narrow the distribution
(i.e., the lower the variance of team output). Thus, the
lower this variance is, the stronger the marginal effect
of more individual effort is on the probability to obtain
the bonus and thus, the stronger the MIs are for effort.

The (IC) condition (1) for each agent’s (symmetric)
equilibrium effort is now c′(ei) � bT/(Msn). It then
follows from (3) that the maximal effort per agent that
can be sustained is given by

c′(e∗i )snM � bT � δ

1 − δ
W(e∗i ). (5)

When all agents’ outputs are fully symmetric in the
sense that all correlations as well as all variances are
equal across agents (i.e., var(xi) � s2 and corr(xi, xj) � ρ
for all i, j), then the variance in total output will be

s2n � ns2 + s2Σi��jcorr(xi, xj) � ns2(1 + ρ(n − 1)).
For fixed team size (n ≥ 2), the variance of total output
will increase with increasing correlation (ρ). This will
then be detrimental for individual incentives, because
the marginal return to effort is (for a fixed bonus) in-
versely proportional to the standard deviation of output.
Individual efforts must then be reduced in equilibrium,
and increased correlation thus reduces efficiency for
the team.

Practitioners and empirical researchers may be in-
terested in how the threshold in the bonus scheme varies
with correlation. Recall that this threshold is (for the
case of normally distributed output) given by y0 � Σie∗i
(i.e., the optimal threshold is specified as the equilibrium
expected value of total output). The scheme thus awards
each agent a bonus if the team’s output realization is
higher than expected. Because increased correlation
reduces equilibrium efforts, it consequently reduces the

threshold for the bonus scheme as well. Increased
correlation will thus lead to a lower and hence, less
demanding threshold in the bonus scheme.
The detrimental effect of increased correlation is

caused by the second best nature of the relational bonus
contract. If team output was verifiable, the first best
could be implemented when all parties are risk neutral,
and the principal can function as a budget breaker.
Stochastic dependencies would then play no role. If
team output is verifiable and the agents are risk averse,
the first best cannot generally be achieved, and in-
creased correlation may again be detrimental through
its effect on the agents’ exposure to risk. This would be
the case (e.g., in a setting like that of Holmström and
Milgrom 1990), where increased correlation will in-
crease the variance of the performance measure (y); in
turn, this would increase the risk costs of providing
incentives and lead to reduced incentives and efforts in
equilibrium. The detrimental effect in our setting does
not operate via risk costs (because there are none) but
exclusively via lower-powered incentives for effort.
More risk does not lead to higher costs of providing
incentives but rather, leads to a lower incentive effect
from a given bonus. The principal cannot compensate
for this negative effect by providing higher monetary
incentives, because such bonus payments are bounded
by the self-enforcement constraint.
Consider now a variation in team size. If ρ ≥ 0, the

variance will increase with n, and this will be detri-
mental for efficiency.9 Optimal size n should, therefore,
be smaller with larger ρ. Moreover, the standard de-
viation of total output (sn) increases rapidly with n
when ρ ≥ 0 (at least of order

��
n

√
); hence, the effort per

agent that can be sustained will then decrease rapidly
with n . Large teams are, therefore, very inefficient if all
agents’ outputs are nonnegatively correlated.
For negative correlations, the situation is quite dif-

ferent. If ρ<0, one can in principle reduce the variance
to (almost) zero by including sufficiently many agents.
The model then indicates that adding more agents to
the team is beneficial, at least as long as 1 + ρ(n − 1)>0
and the conditions for FOA to be valid are fulfilled. As
shown by Hwang (2016), this is the case as long as the
variance of the performance measure (here s2n) is not too
small. Adding agents is not beneficial because of any
technological complementarities—because there are
none by assumption—but it is beneficial, because
adding agents provides a more precise performance
measure; this, in turn, improves individual incentives.
Note that assuming symmetric pairwise negative

correlations among n stochastic variables only makes
sense if the sum has nonnegative variance and hence,
1 + ρ(n − 1) ≥ 0.10 Given ρ< 0, there can thus only be
a maximum number n of such variables (agents). Also,
given n>2, we must have ρ> − 1

n−1.
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Note also that, for given negative ρ> − 1
2, the variance

is first increasing and then decreasing in n (it is max-
imal for n � 1

2 (1 − 1
ρ)). Hence, the optimal team size in

this setting is either very small (n � 2) or “very large”
(includes all of the relevant agents).

Proposition 2. For normally distributed outputs and
symmetric agents and for a fixed team size (n), efficiency
decreases with increasing correlation (ρ) among outputs. For
fixed correlation, efficiency decreases with team size if out-
puts are nonnegatively correlated. For negatively correlated
outputs, efficiency first decreases (for n > 2) and then in-
creases with increasing team size.

The intuition can be summarized as follows. The
agent’s marginal influence on expected bonus payments
(i.e., his or her marginal benefit of effort) depends es-
sentially on the variance of the performance measure s2n.
Adding one more agent then has two effects. First, it
increases the variance of total output (even if there is no
correlation in output). This means that team output
becomes more “spread out,” and hence, each agent’s
marginal benefit of effort is reduced. Second, the cor-
relation in output (induced by the extra agent) again
affects the variance. Positive correlation increases the
variance and hence, reduces the marginal benefit of
effort. Negative correlation, in contrast, decreases the
variance and therefore, increases the marginal benefit of
effort. When the correlation is positive, both effects go
the same way and reduce the marginal benefit of effort.
When the correlation is negative, these two effects go the
opposite way, and the effect from negative correlation
dominates for large-enough n, implying that the effect is
U shaped in the number of agents.

The assumption of equal pairwise correlations among
all involved agents is somewhat special, but it illustrates
in a simple way the forces at play when the team size
varies. In reality, correlations among agents may vary;
theremight, for example, be positive correlations among
some agents and negative correlations among others.
Such features may in fact be straightforwardly incor-
porated in our team model (i.e., we may allow corre-
lation coefficients to vary across agents). This follows
from Proposition 1, which justifies that a symmetric
bonus scheme is optimal, and the ensuing analysis
leading to the equilibrium condition (5). The only re-
quired modification is that the output variance should
then be given by the general expression s2n � ns2 +
s2Σi��jρij, where the correlation coefficients ρij may vary
across agent pairs. A procedure to pick agents to obtain
the most precise performance measure would then be,
for each n, to pick those n agents that yield the smallest
variance for the team’s output.

Remark (On Multitasking).11 We finally note that the
model in this section can alternatively be interpreted as
a model of a single agent with n tasks, where task i

yields an unobservable contribution xi to aggregate
output y � Σixi. Only y is observable and can be a basis
for effort incentives. These incentives and the resulting
equilibrium will then be identical to those derived for
the team setting when the agent’s cost structure is
additive (of the form Σic(ei)) and thus, has no in-
teraction effects among efforts. In this setting, the
model predicts that the agent’s efficiency is decreasing
in the level of correlation (ρ) among tasks and that
adding more tasks will be beneficial only when this
correlation is negative.

3. Observable Individual Outputs
Consider now the case where individual outputs are
observable but still nonverifiable. The principal can
then offer a bonus contract bIi (x1 . . . xn) to each agent
i � 1 . . .n conditional on all individual outputs. Now, if
the contract is expected to be honored, agent i’s ex-
pected wage is then, for given efforts, wi �
E(bIi (x1 . . . xn)

∣∣ e1 . . . en) + αI
i , whereas the principal ex-

pects Σx̄(ei) − Σwi. The agent then chooses effort

ei � argmax
e′i

E(bIi (x1 . . . xn)
∣∣ e′i , e−i) − c(e′i )

( )
. (6)

In the repeated relationship, we still assume that the
principal honors the contract only if all agents honored
the contract in the previous period and that the agents
honor the contract only if the principal honored the
contract with all agents in the previous period.
Now (given that the (IC) condition (6) holds), the

principal will honor the contract with all agents i �
1, 2, . . . ,n if

−ΣibIi (x1 . . . xn) +
δ

1 − δ
(ΣiE(xi| ei) − Σiwi) ≥ 0. (7)

Agent i will accept the bonus offered if

bIi (x1 . . . xn) +
δ

1 − δ
(wi − c(ei)) ≥ 0. (8)

It is now straightforward to show (as in the previous
case, where only y � Σixi is observed) that we have the
following lemma.

Lemma 2. For given efforts e � (e1 . . . en), there is a wage
scheme that satisfies (6), (7), and (8) and, hence, implements
e if and only if there are bonuses bIi (x1 . . . xn) and fixed
salaries αI

i with bIi (x1 . . . xn) ≥ 0, i � 1 . . .n, such that (6)
and condition (9) below hold:

ΣibIi (x1 . . . xn) ≤
δ

1 − δ
ΣiW(ei). (9)

Here, W() denotes (as before) surplus per agent:
W(ei) � E(xi| ei) − c(ei). Assuming that the FOA is valid,
we can replace the (IC) constraint (6) with the FOC

∂

∂ei
E(bIi (x1 . . . xn)

∣∣ e1 . . . en) � c′(ei). (10)
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The optimal contract then maximizes total surplus
(ΣiW(ei)) subject to (9) and (10). All results in the fol-
lowing assume that the FOA is valid.

3.1. Independent Outputs
Consider first independent outputs. Thesewere analyzed
by Levin (2002), who showed that the optimal contract
entails RPE with a bonus paid to at most one agent,
namely the agent whose outcome yields the highest
likelihood ratio. Moreover, the bonus is paid to this agent
only if the likelihood ratio is positive. Given symmetric
agents and strictly increasing likelihood ratios, thismeans
that the agent with the largest output wins the bonus,
provided that his output exceeds some threshold x0
(where the likelihood ratio is positive for xi > x0).

The intuition for this result is that, because the bonus
pool is bounded because of the enforcement constraint (9)
and because the agents are not averse to risk, the op-
timal scheme entails maximizing individual incentives
by letting the agents compete for a single bonus. We
will now use this result to analyze how the efficiency of
this scheme varies with the number of agents (for in-
dependent outputs). The next section considers cor-
related outputs.

With n agents, agent i’s probability of winning
the bonus bI, given own output xi � x> x0 and
given symmetric efforts ej from all others, is now
Pr(maxj xj < x) � F(x; ej)n−1. Hence, the expected bonus
payment to agent i is bI

∫∞
x0
F(xi; ej)n−1f (xi; ei)dxi, and for

symmetric efforts, the (IC) condition (10) takes the form

bI
∫ ∞

x0
F(xi; ei)n−1fei (xi; ei)dxi � c′(ei). (11)

In passing, it is worth noting that the integral here
extends only over values of xi, where fei(xi; ei)> 0. In
a standard tournament, where agent i would obtain
a bonus when he had the largest output, the integral
would extend over all values of xi. The payment
scheme here, which we may call a modified tourna-
ment, thus provides stronger incentives (for a given
bonus bI) than a standard tournament scheme.

The optimal RPE bonus is maximal (i.e., bI � δ
1−δ·ΣiW(ei)), where W(ei) is total surplus (for agent i).

Hence, from (11), we have, in symmetric equilibrium,

c′(ei)∫∞
x0
F(x; ei)n−1fei(x; ei)dx

� bI � δ

1 − δ
nW(ei). (12)

Consider now variations in the number of agents.
Higher n increases the competition to obtain the bonus
(the probability of winning is reduced), and therefore,
the bonus must be increased to maintain effort; this is
captured by the first equality in (12). The second
equality shows how much the bonus can be increased,
namely by the increased total surplus. The question is

then whether the latter is sufficient to compensate for
the reduced probability of winning.
The answer is affirmative, and the reason is essen-

tially that, although the surplus on the RHS increases
proportionally with n, the marginal probability (in the
denominator) on the LHS decreases less rapidly. This
allows a higher effort per agent to be implemented, and
therefore, we have Proposition 3.

Proposition 3. For observable and independent individual
outputs, effort per agent in the RPE scheme (the modified
tournament) increases with the number of agents.

When individual output measures are available and
these outputs are independent, we thus see that effi-
ciency in the (modified) tournament is improved by
including more agents. This is in sharp contrast to
efficiency in a team for independent outputs: as we saw
above, the team efficiency rapidly decreases under such
conditions. The reason for the difference is as follows.
Under both team and tournament incentives, the MI
effect from a given bonus is reducedwhen addingmore
agents. However, under a tournament scheme, only
one agent (at most) is awarded the bonus, and hence,
the firm can increase the bonus without violating the
self-enforcement constraint if more agents are in-
cluded. In contrast, team bonuses are awarded to all of
the agents, and hence, the firm cannot compensate for
the lower incentive effect by increasing the bonus.

3.2. Stochastically Dependent Outputs
Consider now stochastically dependent outputs. As
before, we limit attention to symmetric agents and thus,
symmetric efforts in equilibrium. The basic insight
from Levin (2002) that at most one agent should be
rewarded a bonus extends to this environment; thus,
a type of modified tournament is still optimal. How-
ever, the tournament is not necessarily one based on
raw outputs x but rather, one based on what we may
call indexes: one for each agent. The relevant index for
agent i is the likelihood ratio

li(x; e1 . . . en) � fei (x| e1 . . . en)
f (x| e1 . . . en) (13)

evaluated at (symmetric) equilibrium efforts. Denote
this as l∗i (x); thus, l∗i (x) � li(x; e1 . . . en) with ei � e∗, the
common equilibrium effort, for all i.12 As we show in
the online appendix, the optimal symmetric scheme
pays a maximal bonus to the agent with the highest
such likelihood ratio, provided that this ratio is posi-
tive, and no bonus to the other agents.

Lemma 3. There are indexes l∗i (x1, . . . xn), i � 1 . . .n, one
for each agent and given by the respective likelihood ratios,
such that the optimal symmetric scheme pays a single and
maximal bonus to the agent with the highest index value,
provided that this value is positive.
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For a given vector of output realizations x, the agents
are thus compared in terms of the indexes l∗i (x), and the
agent with the highest index value is awarded the
bonus, provided that this value exceeds a threshold,
which here is zero. The index for agent i will generally
depend on the whole vector x of individual output
realizations. The special feature of stochastically in-
dependent outputs is that each agent’s index depends
only on his own realization in that case.

It is again instructive to consider the multinormal
distribution, in particular because the indexes then take
a simple form. A very convenient feature of this dis-
tribution is that likelihood ratios—and therefore, the
relevant indexes—are linear functions of the variables,
and this considerably simplifies comparisons of these
entities.

Therefore, assume now that x � (x1 . . . xn)multinormal
with Exi � ei, var(xi) � s2 and (identical) correlations13

corr(xi, xj) � ρ. From the form of the multinormal dis-
tribution (see the online appendix), the likelihood ratio for
agent i is now

li(x; e1 . . . en) � k1 · (xi − ei) + k2Σi��j(xj − ej), (14)

where ki � ki(n, ρ, s2), i � 1, 2 are coefficients with k1 > 0,
k1 > k2.

The indexes l∗i (x) for the tournament in Lemma 3
are thus linear functions of the output realizations.
Moreover, from symmetry (including symmetric ef-
forts in equilibrium; ei � e∗ for all i), we see that
l∗i (x) − l∗j (x) � (k1 − k2)(xi − xj), which implies that the
agent with the highest output will here also have the
highest index value. This agent will thus win the
tournament and obtain the bonus if the index value is
positive. As shown in the online appendix, the index
value is positive if and only if

xi > e∗ + ρ

(n − 2)ρ + 1
Σj ��i(xj − e∗) � E(xi| x−i). (15)

This condition says that agent i’s performance must
exceed his expected performance, conditional on the
performance of all other agents. Thus, we have the
following proposition.

Proposition 4. For normally distributed outputs, the op-
timal symmetric scheme pays a maximal bonus to the agent
(say i) with the highest output, provided that this output
satisfies xi >E(xi| x−i).
For n � 2 agents, we now have that agent 1 gets the

bonus if and only if he has the highest output (x1 > x2)
and x1 − e∗ >ρ(x2 − e∗). This is illustrated in Figure 1 for
ρ � 1

2 (Figure 1(a)) and ρ � − 1
2 (Figure 1(b)). Agent 1 is

to get the bonus for outcomes in the shaded region in
Figure 1 (to the right of the broken lines in Figure 1).
In both cases, the agent with the highest output gets

the bonus if both of them have outputs that are above
average (x1, x2 >Exi � e∗). If agent 2 has below-average
output (x2 <Exi � e∗), the requirement for agent 1 to get
the bonus is less strict when there is positive correlation
than when there is negative correlation. In the latter
case, agent 1 must have an output well above average
to obtain the bonus, and more so, the worse is the
output for agent 2. Under negative (positive) correla-
tion, a bad performance by agent 2 raises (lowers) the
expected conditional performance of agent 1 and thus,
raises (lowers) the requirement—the hurdle (thresh-
old)—for agent1 to get the bonus.14

Having characterized the optimal scheme, we will
now consider its incentive properties. To make the
analysis tractable, we restrict attention to n � 2 agents.
Consider then agent 1’s incentives in this scheme, with
“reference point” (equilibrium) e∗1 � e∗2. His probability
of obtaining the bonus is

Pr(x1 > max[x2, e∗1 + ρ(x2 − e∗2)]| e1, e∗2)
≡ Pr(B) �

∫
x∈B

f (x| e1, e∗2).
(16)

Figure 1. Bonus Regions for Correlation Coefficients 0.5 (Panel A) and −0.5 (Panel B)
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Therefore, the marginal gain from effort is
∫
B fe1(x| e1, e∗2),

and in symmetric equilibrium e∗1 � e∗2 � e∗, we will
then have

bI
∫
B fei(x| e∗, e∗) − c′(e∗) � 0.

An interesting question is then as follows. For given
effort e∗ to be implemented, how do MIs vary with
correlation ρ? For example, do these MIs become
stronger when ρ increases, implying that a lower bonus
is required to implement the same effort? It is well
known that a standard tournament scheme performs
well for positive correlation but poorly for negative
correlation, and this might indicate that similar features
should be present here. However, the optimal scheme
here is not a standard tournament; it is modified by
a relative performance element associated with the
hurdle that must be passed to win the bonus. Because
the hurdle is related to relative performance, the optimal
scheme is thus an RPE scheme, and we also know that
such schemes generally work well for both positive and
negative correlations in other settings.15 It turns out that
the latter property also holds here.

Proposition 5. For normally distributed variables and
n � 2, the agent’s FOC for (symmetric) equilibrium effort is

bI
1����
2π

√
s

1
2

1��������
1 − ρ2

√ + 1�������
1 − ρ

√ 1��
2

√
( )

� c′(e∗). (17)

The MI (i.e., the expression on the LHS) is increasing in
the correlation coefficient ρ for ρ> ρ0 ≈ −0.236 and de-
creasing in ρ for ρ<ρ0. Hence, implementing a given effort
requires a lower (higher) bonus when the correlation ρ in-
creases for ρ> ρ0 ( for ρ<ρ0).16

This is illustrated in Figure 2, which depicts theMI as
a function of ρ for the RPE scheme and a standard
tournament (Figure 2, dashed line).

As a function of ρ, theMI for effort is thusU shaped in
the optimal scheme, which again is a modified tour-
nament. In comparison, in a standard tournament, the

MI is monotone increasing in ρ (as shown by Figure 2,
dotted line; this MI is given by d

de1
Pr(x1 > x2) � 1���

2π
√

sd
,

where sd �
�����������
2(1 − ρ)√

s is the standard deviation of
x1 − x2, and the formula follows from the normal dis-
tribution). In comparison the modified tournament
yields higher MI for effort for every ρ (which allows
a higher effort to be implemented with the same bonus),
and the MI is high for both strongly positive correlated
and strongly negative correlated outputs.
The latter property is caused by the specific criteria to

obtain the bonus in the modified tournament as illus-
trated in the figures. In a standard tournament, agent 1
wins and gets a bonus if x1 > x2, whereas in the modified
tournament, he gets a bonus only if x1 > x2 and x1 − e∗ >
ρ(x2 − e∗). Therefore, the probability of obtaining the
bonus is (all else equal) higher in a standard tournament,
but the marginal effect of own effort on the probability
(the MI) is higher in the modified tournament.
The last proposition shows that, as a function of cor-

relation ρ, the MIs in the modified tournament are
minimal not for ρ � 0 but for ρ0 < 0. This can be explained
by taking into account the two aspects of this incentive
scheme: the pure tournament aspect (largest outputwins)
and the hurdle aspect. The former yields MIs that are
monotone increasing in ρ, such as just illustrated, but the
second yields (in isolation) MIs17 that are increasing in ρ2

and therefore, symmetric around ρ � 0. The combination
of the two effects thus yields incentives that are increasing
at ρ � 0 and minimal for some negative ρ.

4. Concluding Remarks
We investigate how stochastic dependencies between
employees affect optimal incentive schemes in situa-
tions where performance measures are nonverifiable.
We show that the way that the employees’ outputs
correlate is an important determinant for the efficiency
of team-based incentives and the efficiency and design
of tournament rewards.
With respect to teams, we derive testable theoretical

predictions on team size and team composition. We do
so by analyzing optimal self-enforcing (relational)
contracts between a principal and a set of agents, where
only aggregate output can be observed, and we show
that the principal can use team size and team compo-
sition as instruments to improve incentives. In partic-
ular, the principal can strengthen the agents’ incentives
by composing teams that utilize stochastic dependencies
between the agents’ outputs.
Our model predicts that teams are more efficient

when the team members’ outputs are negatively cor-
related. This relates to questions concerning optimal
team composition. A central question is whether teams
should be homogenous or heterogeneous with respect
to tasks (functional expertise, education, and organi-
zational tenure) as well as biodemographic character-
istics (age, gender, and ethnicity). One can conjecture

Figure 2. MIs as Functions of ρ
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that negative correlations are more associated with
heterogeneous teams than homogenous teams and also
more associated with task-related diversity than with
biodemographic diversity. Interestingly, a comprehen-
sive metastudy by Horwitz and Horwitz (2007) finds
no relationship between biodemographic diversity and
performance but a strong positive relationship between
team performance and task-related diversity. An ex-
planation is that task-related diversity can both reduce
risk and create positive complementarity effects. We
point to an alternative explanation, namely that di-
versity may create negative correlations that reduce
variance and thereby, increase MIs for effort. The team
members “must step forward when others fail.” Di-
versity and heterogeneity among team members can
thus yield considerable efficiency improvements.18

Team incentives are generally not optimal when
individual outputs are observable. For a parametric
(normal) distribution, we have shown that the optimal
relational contract is then an RPE scheme: a form of
a tournament where the conditions for an agent to
obtain the (single) bonus are stricter for negatively
compared with positively correlated outputs. The ef-
ficiency of the RPE contract is shown to increase with
the number of agents and improve with stronger cor-
relation, both positive and negative.

As a final remark, it should be noted that our main
results are shown in the parametric setting of a normal
distribution and that some properties derived in this
setting may well not be generally valid. Among other
things, a convenient feature of the normal distribution is
that aggregate team output satisfies the MLRP, and this
leads to a simple structure of optimal bonus schemes.
However, even if some features of our model are not
generally valid, it is a general fact that stochastic de-
pendencies do affect performancemeasures and by that,
incentives and efficiency in relational contracts. Our
model forcefully illustrates this point and provides in-
teresting and testable implications for settings where
normal distributions can be taken as a reasonable
assumption.
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Endnotes
1Although a team’s aggregate output may be easier to verify than
individual outputs, there is still a range of situations inwhich a team’s
output is nonverifiable. Teams are also, like individuals, exposed to
discretionary bonuses and subjective performance evaluation, which
by definition, cannot be externally enforced.

2 In our model, negatively correlated signals reduce the moral hazard
problem even with risk-neutral agents. In this respect, our finding
relates to insights from Diamond (1984), who showed that correlated
signals may reduce output variance and thus, reduce entrepreneurs’
moral hazard opportunities toward investors.
3Economists studying teams, beginning with Alchian and Demsetz
(1972), have mainly focused on the free-rider problem, in particular the
conditions under which the first best outcome will be achieved
(Holmström 1982, Rasmusen 1987, Legros and Matthews 1993). If in-
dividual signals are observable, the literature has also shown how the
principal can foster cooperation (Holmström and Milgrom 1990; Itoh
1991, 1992, 1993;Macho-Stadler andPerez-Castrillo 1993) or exploit peer
effects (Kandel and Lazear 1992, Arya et al. 1997, Che and Yoo 2001).
4Although we focus on the multiagent case, our paper is indebted to
the seminal literature on bilateral relational contracts. The concept of
relational contracts was first defined and explored by legal scholars
(Macaulay 1963; Macneil 1974, 1978), whereas the formal literature
started with Klein and Leffler (1981), Shapiro and Stiglitz (1984), and
Bull (1987). MacLeod and Malcomson (1989) provide a general
treatment of the symmetric information case, whereas Levin (2003)
generalizes the case of asymmetric information.
5We thus assume stationary contracts, which have been shown to be
optimal in settings like this (Levin 2002, 2003).
6 See Miller and Watson (2013) for alternative strategies and “dis-
agreement play” in repeated games.
7The assumption that total team output y has a distribution that
satisfies MLRP is not entirely innocuous. It holds true for the case of
normally distributed individual contributions (xi) assumed below,
but it may not hold true for other cases. If MLRP does not hold for
output y, then the optimal bonus scheme may be nonmonotonous;
thus, it pay a bonus for, for example, low and high realizations of y
but no bonus for intermediate realizations. Although theoretically
feasible, such schemes are rarely observed in reality.
8There is, however, a caveat, because the FOA is valid only if the
standard deviation (sn) is not too small (e.g., Kvaløy and Olsen 2014,
Hwang 2016). For numerical indications, these papers show that, for
isoelastic effort costs (c(e) � kem, m ≥ 2), the FOA is valid for pa-
rameters such that e∗i/sn < k0

��������
m − 1

√
, with k0  2.2. For sufficiently

small sn, the FOA is not valid, and the analysis must be modified. It
turns out that the optimal bonus scheme is still a hurdle scheme and
that lower variance also improves incentives and increases efforts in
that case (Chi and Olsen 2018).
9For verifiable team output, the higher variance induced by increased
size n will have similar effects as those just discussed for increased
correlation and fixed n.
10 Indeed, 1 + ρ(n − 1)>0 is the condition for the covariance matrix to
be positively definite and hence, the multinormal model to be well
specified.
11We thank a referee for suggesting this interpretation of the model.
12 In this section, it is convenient to let e∗ be a scalar and denote the
symmetric equilibrium effort level.
13To guarantee full symmetry among agents, we consider here only
the case where all pairwise correlations are identical.
14To illustrate these points, if ρ � 0.5 and agent 2 has output 10%
below expected (x2/e∗ � 0.9), agent 1 can only win if his output is no
more than 5% below expected. However, if ρ � −0.5, agent 1 must
perform at least 5% better than expected to be eligible for the bonus (if
in addition, he wins).
15Fleckinger (2012) provides a general treatment of stochastic de-
pendencies and RPE for verifiable outputs and shows that greater
correlation in outcomes does not necessarily call for RPE schemes.
16This rests on the FOA being valid. It can be verified analytically that
this will be the case as long as the variance s2 is not too small. For the
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case of quadratic effort costs, it can be verified numerically that FOA
holds if s

e∗1
≥ K(ρ), where K(ρ) is a U-shaped function with K(−0.75) �

0.737, K(0) � 0.514, and K(0.75) � 0.742.
17By this, we mean the marginal effect of effort on the probability of
x1 − e∗ >ρ(x2 − e∗), which can be seen to be increasing in ρ2.
18Hamilton et al. (2003) provide one of the very few empirical studies
on teams within the economics literature. They find that more het-
erogeneous teams (with respect to ability) are more productive
(average ability held constant).
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