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Abstract

In this paper we investigate the statistical measure of skewness in a portfolio management

setting at Oslo Stock Exchange (OSE). Our analysis follows earlier research on the topic

of non-normal investor preferences which prices skewness as a relevant factor. We analyze

distributional properties of monthly returns in individual assets and find on OSE that 1)

skewness is pervasive, 2) positive skewness has a moderate level of persistence in the long

term and can reasonably be predicted, and 3) diversification and skewness are negatively

correlated. As a second major focal point, we form strategies which include a preference for

skewness using Polynomial Goal Programming. We compare them to traditional portfolios

using a traditional financial performance measure (Sharpe Ratio) and skewness. With two

model specifications we find mixed results regarding skewness - the strategies are only able to

produce higher portfolio skewness than the classical mean-variance portfolio in one scenario.

A second finding is that we can not reject a null hypothesis of equal Sharpe Ratio between

the skewness-strategies and the mean-variance portfolio. We also find that the two skewness-

strategies are 1) less diversified than the other portfolios and 2) more risky as a consequence.

Skewness and variance seem to be opposing goals for an individual with non-normal investor

preferences.
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1 Introduction

In this paper we study portfolio management at Oslo Stock Exchange (OSE) where we at-

tempt to improve asset allocation by including skewness in addition to mean and variance.

First we make an account of skewness of stock returns at OSE and investigate related distri-

butional properties of single assets and portfolios. An overview of skewness by sector is also

provided. Then we create a portfolio strategy with the first three central moments, called

the Mean-Variance-Skewness (MVS) portfolio. The strategy is compared to other traditional

portfolio strategies using the Sharpe Ratio in addition to assessing portfolio skewness to see

if including skewness enables an investor to make significant gains. The aim is to make

qualitative statements about the role of skewness in portfolio management where distribu-

tional properties of stock returns and non-normal investor preferences are the main points of

consideration. In other words, we want to know if skewness is a worthwhile goal to include

when forming portfolios consisting of risky assets trading at OSE.

The motivation for this analysis is based on a critical view of the weaknesses of Modern

Portfolio Theory (MPT), mainly the simplistic model formulations and assumptions. MPT

implicitly assumes normally distributed returns and normal investor preferences. Expanded

versions of MPT could provide more explanatory power and add new intuitions; while stan-

dard deviation of returns shows how much risk an investor faces, skewness better reveals

what type of risk investors choose to take. This thesis thus makes the implicit assumption

that skewness is relevant for investors in a portfolio management setting. E.g. Harvey and

Siddique (2000) find that skewness is in fact a priced factor which means investors are willing

to trade expected return (or accept higher risk) for higher skewness. A closer examination

of MVS-strategies at OSE is therefore a worthwhile endeavor.

In our research, we only extend the analysis to skewness and not to kurtosis (the fourth

standardized central moment) or even higher moments. Firstly, only considering skewness

as an extension of the MPT framework allows a sharper focus. Secondly, there may not exist

strong behavioristic arguments for investor attitude towards kurtosis that are comparable to

the first three moments (Kraus and Litzenberger, 1976), making skewness a clearer objective
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to research.

To cover the topic of skewness in portfolio management at OSE, we pursue two main lines

of inquiry. Firstly, can we use skewness in portfolio management at OSE? This is covered

in three parts: We calculate skewness in individual assets to ascertain whether normality

in returns is a reasonable assumption. A brief overview of different sectors of the economy

is also provided. Then we investigate whether skewness is persistent in individual assets,

which is an indicator for how well we can predict future skewness. Finally we look into

the effect portfolio size has on portfolio skewness which has implications on optimal asset

allocation.

Secondly, does taking skewness into account in portfolio management improve out-of-sample

performance using Polynomial Goal Programming? We form an optimal portfolio strat-

egy called the Mean-Variance-Skewness portfolio and compare out-of-sample Sharpe Ratio

and skewness with the Mean-Variance portfolio (MV), Global Minimum Variance Portfolio

(GMV), and the equally-weighted portfolio (EW). Assessment of performance of the differ-

ent portfolios are done by comparing Sharpe Ratio (SR) and Adjusted for Skewness Sharpe

Ratio (ASSR).

The rest of the thesis is structured as follows. In section 2, we review relevant literature

on the topic of non-normal investor preferences. In section 3 we present the data used in

the analysis which include monthly stock returns from OSE and monthly returns from the

Oslo Stock Exchange Benchmark Index (OSEBX). In section 4, we explain our methodology

and the implementation of the MVS portfolio. We present the results and interpretation in

section 5. Conclusion follows in section 6. Weaknesses and suggestions for further research

are pointed out in section 7.
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2 Literature Review

Since the initial research into portfolio management by Markowitz (1952), considerable effort

has gone into researching skewness as a natural extension of the framework. We present

relevant literature on the topic to create a brief review of work that has been done regarding

non-normal investor preferences. The most important points of discussion pertain to the

existence of skewness, behavioural explanations of non-normal investor preference, and how

inclusion of higher moments affect optimal portfolio selection. Additionally we summarize

relevant developments in portfolio optimization with higher moments to motivate our choice

of method in this paper.

Throughout the literature slightly different definitions of skewness have been used for dif-

ferent purposes. For the sake of consistency, whenever this paper refers to skewness, it is

defined as the standardized third central moment. We thus make a distinction regarding the

separate (but closely related) statistical measure of the third central moment.1 Additionally,

positive skewness is characterized by a distribution of returns whose right tail is longer; for

negative skewness the left tail is longer. With no skewness, returns are normally distributed

with similar tails on either side. In economic terms, skewness signifies an increased possibility

of extreme returns in either direction.

Figure 1: Illustration of a Distribution with Positive Skewness.

1The third central moment of a distribution is given by E[(X − E[X])3]. Skewness, the standardized

third moment, is on the form E[(X−E[X])3]

(E[(X−E[X])2])
3
2
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2.1 General Insights

Early research into skewness has revealed some general results relevant to portfolio selec-

tion. Regarding the existence of skewness, Singleton and Wingender (1986) and Beedles and

Simkowitz (1980) find in the US stock market that the distribution of stock returns clearly

deviate from normality, and more importantly, that skewness is an abundant and persistent

phenomenon. Both papers also point out another important finding, namely that positive

skewness is significantly more common than negative. Beedles and Simkowitz (1980) note

that twice as many stocks are positively skewed than negative and that the average skew-

ness for all 500 stocks for all 5 year-periods from 1927 to 1976 is positive (skewness > 0).

Singleton and Wingender (1986) find similar trends: roughly 50-75% of simple asset returns

with dividends from 1961 to 1980 exhibit significant positive skewness (skewness > 0.3).2 As

to our knowledge, no comparable research has been done to shed light on skewness of stocks

at OSE.

A well-established result regarding non-normal preferences is that investors will accept a

lower expected return to obtain skewness in their portfolio all else equal. In other words:

they are willing to ‘trade’ return for skewness. In particular, investors prefer positively

skewed assets and portfolios and avoid negative skewness. This insight is supported by a

host of empirical research in different markets and time periods, including papers on the

New York Stock Exchange from 1936-1970 (Kraus and Litzenberger, 1976), 17 international

stock indices from 1993-2000 (Prakash et al., 2003) among others (Chunhachinda et al.,

1997; Harvey and Siddique, 2000; Canela and Collazo, 2007). The conclusion were drawn

from two different methodological angles: (1) how well expanded models of the Capital

Asset Pricing Model (CAPM) which included skewness fit empirical data, or (2) how well

skewness-based portfolios performed relative to other strategies. The behavioral explanation

commonly given is that an average risk averse person seeks lottery-like returns (small but

frequent losses, extreme but rare gains), but dislikes the opposite situation where unlikely

2Classification of skewness is in this paper is based on a commonly used heuristic used by e.g. Singleton

and Wingender (1968): positive skewness is ŝ > 0.3, negative skewness ŝ < −0.3, and no skewness |ŝ| ≤ 0.3.

For reference: a normally distributed variable has a skewness of 0 (which is a standard assumption in MPT).
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but extreme losses are present.

Research also suggest that skewness does not only have statistical and theoretical significance,

but can also create impacts of economic and practical importance. Lai (1991), Chunhachinda

et al. (1997), Prakash et al. (2003) and Lai et al. (2006) find that including the third

moment in a portfolio optimization problem causes a major change to the optimal allocation

of assets, resulting in the aforementioned trading of mean for skewness. They argue that

this result provides grounding for the claim that the MV portfolio is not optimal under the

assumption of non-normal investor preference, and that the MVS portfolio may be a more

realistic framework.

However, there may be difficulties in implementing the MVS portfolio because of a lack of

predictability in skewness. Singleton and Wingender (1986) find in the US market (CRSP

database) from 1961-1980, that skewness in single stocks and in portfolios does not persist

over time. This is surprising given the fact that Beedles and Simkowitz (1980) also discovered

that the share of skewed assets from 1927-1976 in the US market was fairly stationary and

predictable. The conclusion that follows from a lack of persistence is that past skewness in

assets or portfolios may not predict future skewness very well, making it more difficult to

pick assets with desirable properties out-of-sample. On the other hand, Sun and Yan (2003)

provides evidence from the US and Japanese markets in the period 1975-1995 that suggest

the MVS portfolio may have better skewness persistence than other types of portfolios such

as MV.

Another important point of note is that portfolio skewness decreases rapidly with increas-

ing diversification (Beedles and Simkowitz, 1978; Beedles, 1979; Singleton and Wingender,

1986). The authors use portfolio size as a proxy to measure diversification. As such it is a

näıve interpretation we also use in the rest of this paper: ‘one should put ones eggs (money)

in several baskets (assets) to limit the loss in case there is a hole in a basket (negative devel-

opment of asset price)’. In particular, an analysis by Beedles and Simkowitz (1978) find that

over 92% of diversifiable skewness is eliminated in portfolios of 5 stocks. This implies that

portfolio optimization with skewness actually revolves around systematic (non-diversifiable)
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and not total skewness. The authors argue that the diversification effect presents a trade-

off between two competing goals: one should diversify assets in order to remove unwanted

risk (variance) in a portfolio, but one should also decrease diversification in order to attain

desired portfolio skewness. This adds another layer of complexity on top of the original

tradeoff between wanting more return but simultaneously desiring lower risk. Related to

this point, Mitton and Vorkink (2007) and Beedles and Simkowitz conclude from the US

market that when investor preference for skewness is introduced, the optimal portfolio tends

to be relatively under-diversified. Mitton and Vorkink also discover that under-diversified

investors outnumber diversified investors with a ratio of 26 to 1 among 65 562 US households

which may reveal a widespread interest for skewness. Proposing non-normal preferences as

an explanation for under-diversification may put to question a typical assertion of lack of

rationality or otherwise imperfect capital markets.

2.2 Portfolio Optimization with Skewness

Expanding the MPT framework naturally increases the theoretical complexity and the com-

putational requirements for pricing assets or constructing optimal portfolio strategies. There

exists several techniques to solve portfolio optimization problems with higher moments, two

of which have gained recognition in the literature. The first is called Polynomial Goal Pro-

gramming (PGP) (also known as ‘the primal approach’), originally developed by Tayi and

Leonard (1988) and first put in use in portfolio selection by Lai (1991). It has seen appli-

cation in different settings by e.g. Chunhachinda et al. (1997), Prakash et al. (2003) and

Canela and Collazo (2007). The second is called ‘the dual approach’, a method with recent

contributions made by e.g. Harvey et al. (2002), Jondeau and Rockinger (2006) and Briec

et al. (2007). The two methods use different approaches: PGP is based on optimizing the

distributional properties of a portfolio (mean, variance, skewness) by targeting several goals

simultaneously, while ‘the dual approach’ applies a Taylor-series expansion with reference

to the investor’s utility function. PGP has seen more widespread use because of its main

advantages, namely that (1) a globally optimal solution is guaranteed, (2) there is flexibility

in including different investor preferences for the three moments, and (3) the computational

7



requirements are relatively simple (Lai, 1991). The main disadvantage of PGP is that the

objective function cannot be directly related to a utility function due to preference for the dif-

ferent moments being entirely ad-hoc (Jondeau and Rockinger, 2006). Conversely, the main

advantage of ‘the dual approach’ is a clear relation to investor preference which harmonizes

with well-established portfolio theory, but one of its drawbacks is not being able to guarantee

a globally optimal solution due to inherent non-convexity (Briec et al., 2007).

Ultimately, there is no consensus on how to unify different optimization methods and conse-

quently no ‘correct’ way to solve problems with higher moments, making analysis of optimal

asset allocation a more difficult task than analyzing the MPT framework. We employ the

PGP method for our optimization purposes. Further details on the method is found in the

following section.
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3 Methodology

In this section we outline the methodology underlying the implementation of portfolio op-

timization with skewness. The practical steps are the following. We start by separating

the dataset into two categories: in-sample periods where estimation of the three moments

is performed, and out-of-sample periods where the portfolio strategy is tested. We use the

rolling window procedure to structure the dataset appropriately. The next step consists

of specifying and implementing the method for moment estimation using the data in the

in-sample periods. We use so-called robust moment estimation to calculate asset means,

variance-covariance- and skewness-coskewness terms. An important aspect to note is that

the robust moments found in the methodology section are only used for optimization pur-

poses. They have no direct statistical or economic interpretation, and elsewhere in the paper

we consistently use the sample third moment and sample skewness for all other purposes. In

the third step we solve an optimization problem which create optimal asset weights that de-

fine the different investment strategies. Polynomial Goal Programming (PGP) is employed,

a method that handles optimization in the presence of multiple conflicting goals. Finally,

the resulting portfolios from the optimization are tested in all out-of-sample periods and

different measures are used to assess the relative performance of each strategy.

Additionally, we have chosen to include transaction costs in our analysis to create a slightly

more realistic framework. Transaction costs are used in the formulation of the PGP opti-

mization model but they are also applied to out-of-sample testing of each strategy when they

accrue returns.

3.1 Rolling Window Procedure

The rolling window procedure is a common economic forecasting technique often used in

portfolio management. It imposes structure in the following way. First, a subset of length

m of the data is chosen. The first l months of this “window” is the in-sample period which

is used for estimating moments. After month l, optimal asset weights are calculated and the

portfolio is rebalanced at month l + 1. Then the portfolio is held for h months, allowing it
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to accrue returns in the out-of-sample period [l + 1, l + h]. The “window” is then shifted h

months to obtain next subsample, and the procedure is repeated until the end of the dataset

is reached.

We chose an estimation window of length l = 120 and holding period of length h = 3. As an

illustration, the first estimation period is the months 1-120 and the first holding period the

months 121-123. The second estimation period is the months 4-123 and the second holding

period months 124-126, and so on. In practice, the choice of estimation- and holding period

length is arbitrary; our choice is partly based on earlier research conducted in situations

similar to ours, e.g. DeMiguel et al. (2009). With a dataset of 168 monthly observations of

returns, we have 16 “windows” in total which generate T − l = 48 monthly out-of-sample

returns from the months 121-168. Thus 10 years of returns are in-sample and a total of 4

are out-of-sample.

Figure 2: Illustration of Rolling Window Procedure for the First Two Periods.

3.2 Robust Moment Estimation

To calculate portfolio moments in the optimization procedure, one first needs to estimate

moments for individual assets. In the MVS framework, this translates to calculating the

mean, the variance-covariance matrix and the skewness-coskewness matrix of the stock re-

turns. It is common to use historical ’plug-in’ sample-moments for this purpose, where the

mean and individual elements of the variance-covariance matrix and skewness-coskewness

matrix are respectively
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µ̂i =
1

T

T∑
t=1

rit ∀i (1)

σ̂ij =
1

T

T∑
t=1

(rit − r̄i)(rjt − r̄j) ∀i, j (2)

ŝijk =
1

T

T∑
t=1

(rit − r̄i)(rjt − r̄j)(rkt − r̄k) ∀i, j, k (3)

where r̄ denotes the sample mean.

There are several commonly known problems with using sample-moments. Firstly is the curse

of dimensionality: the amount of parameters one has to estimate increases exponentially with

the number of stocks. With a portfolio of 20 stocks, one would need 45 years of monthly

data to merely exceed the number of parameters needed to estimate portfolio variance,

skewness and kurtosis (Martellini and Ziemann, 2010). A second problem is that the sample

moments exhibit significant estimation error - deviations from the true values of what is

being estimated.

To alleviate these shortcomings, one can replace sample estimators with robust moment

estimators. Different classes of estimators have been used in financial and statistical liter-

ature, such as Maximum-likelihood-estimators (M-estimators). Another approach is called

Shrinkage Estimation. The method was originally formalized by Stein (1956), adopted for es-

timating expected returns by Jorion (1986), further developed by Ledoit and Wolf (2003) to

create a robust variance-covariance matrix, and finally extended to the skewness-coskewness

and kurtosis-cokurtosis matrices by Martellini and Ziemann (2010). We use shrinkage esti-

mation to create robust mean, variance-covariance and skewness-coskewness estimates. The

method used for estimating the mean is slightly different from the two higher moments and

we will give them separate treatments in the two following sections.
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3.2.1 Robust Estimation of Expected Return

To compute robust estimates of expected return for each asset, we use the so-called Bayes-

Stein estimator developed by Jorion (1986). The method builds upon the principles of

shrinkage estimation by Stein (1956) and improves estimation of the expected return in

presence of significant estimation error caused by e.g. outliers in the data. Bayes-stein

estimation consists of calculating the usual sample estimates Y , choosing a suitable target

Y0, and weighing the two components together to ’shrink’ the sample-estimates towards the

target. Y0 can be any vector - even a vector of zeros - but the greatest gains are made

when the target is closer to the true expected value. In his analysis, Jorion uses the average

return of the minimum variance portfolio as the shrinkage target Y0 and finds that robust

estimation with this target consistently outperforms the sample mean. In this paper, we

apply this recommended Y0.

In general, Bayes-Stein estimation is on the form

µ̂BS = (1− ŵ)Y + ŵY01N (4)

with a shrinkage intensity ŵ ∈ [0, 1]. In empirical applications, Jorion suggests using the

following shrinkage intensity:

ŵ =
N + 2

(N + 2) + (Y − Y01N)T Σ̂−1(Y − Y01N)
(5)

where 1N is a vector of ones and Σ̂ = T−1
T−N−2 .

A point of note is that the shrinkage intensity ŵ tends to decrease with increased sample

size because expected returns are then more accurately estimated by the sample estimator.

Conversely, this implies that Bayes-Stein estimation is especially effective in the case of

relatively few observations.

3.2.2 Robust Estimation of Variance and Skewness

Single-target shrinkage estimation of the variance-covariance- and skewness-coskewness ma-

trix was defined by Martellini and Ziemann (2010). Using skewness estimation as an il-

lustration (variance is conceptually similar), the method involves calculating the sample
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matrix Φ̂, choosing a suitable target matrix T̂ , and weighing the two components together.

Single-target shrinkage estimation is on the form

Φ̂ST = (1− λ)Φ̂ + λT̂ (6)

with a shrinkage intensity λ ∈ [0, 1]. In practical applications, one needs to consider two

questions: (1) what is an appropriate target matrix T̂ , and (2) what is the optimal shrinkage

intensity λ?

Among the most prominent target choices in the literature are the latent 1-factor model by

Simaan (1993); the 1-factor model Martellini and Ziemann (2010); adjusted constant corre-

lation, independent marginals, independent and identical marginals, and central-symmetric

matrix by Boudt et al. (2017). It is not immediately clear what the best choice of T̂ is for

any given situation, but contemporary research suggests that all models will decrease esti-

mation errors significantly, especially for the skewness-coskewness matrix. As an example,

Boudt et al. finds that in some applications, shrinkage estimation with the adjusted con-

stant correlation target decreases estimation errors by up to 37% for skewness-coskewness

estimates.

Regarding question (2): the optimal shrinkage intensity is dependent on choice of target

matrix. The general idea is to use the relationship between the asymptotic variance for

the sample estimator (π), mis-specification of the structured target estimator (ρ) and the

asymptotic covariance between the sample estimator and target estimator (γ). The optimal

shrinkage intensity is given by

λ =
1

T

π − ρ
γ

(7)

A point of note is that the shrinkage intensity is heavily dependent on the bias of the sample

estimators. An overestimation of the bias tends to yield a large λ which puts more weight

on the less biased target matrix; it is not entirely uncommon to observe λ close to 100%

(Boudt et al., 2017). Additionally - and similarly to Bayes-Stein estimation - when then

number of observations is large, λ tends to be smaller as the sample estimates naturally have

less estimation error. We will not focus further on the derivation of single-target shrinkage
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estimation and refer to e.g. Martellini and Ziemann (2010) or Boudt et al. (2017) for more

details on the technique.

Shrinkage estimation has been further generalized to Multi-Target Shrinkage (MTS), with

Bartz et al. (2014) as one of the first contributors. As the name suggests, the method uses

several target matrices T̂ to shrink the sample-estimates towards and is thus a straightforward

extension of the single-target case. This becomes apparent when considering the general form

of MTS:

Φ̂MT =

(
1−

M∑
m=1

λm

)
Φ̂ +

M∑
m=1

λmT̂m (8)

where M is the number of target matrices and
∑
λm ≤ 1 and λm ≥ 0. Compared to simple-

target shrinkage, multi-target shrinkage creates even more robust estimates, especially in a

portfolio optimization setting (Boudt et al., 2016). Some of the best estimates (i.e. yielding

the smallest estimation error) can be produced by using 5 of the 6 goals mentioned earlier,

leaving out Simaan’s (1993) latent 1-factor model.

With these considerations in mind, our approach for estimating robust moments is the follow-

ing: For the skewness-coskewness matrix, we use multi-target estimation with the 1-factor,

adjusted constant correlation, independent marginals, independent and identical marginals,

and the central symmetric matrix as targets. For the variance-covariance matrix we leave

out the central symmetric target as the method is only defined for skewness-coskewness. The

second and third moment thus use slightly different robust estimators, but in practical terms

both robust estimators will yield better results than their sample counterparts.

An important note for the Martellini-Ziemann 1-factor target matrix has to be made. To

use this target, an observed factor (vector of returns) which correlates with the assets under

investigation (assets trading on OSE) has to be supplied. Stock indices are typically used

for this purpose in empirical applications. We choose returns from the Oslo Stock Exchange

Benchmark Index as the required factor as they should correlate well with our selection of

stocks from the same market.
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3.3 Constructing the MVS Portfolio

To obtain optimal portfolio weights for each out-of-sample period we need to solve a multi-

objective optimization problem where the first and third portfolio moments (mean and un-

standardized skewness) are maximized while the second (variance) is minimized. We employ

Polynomial Goal Programming which was introduced by Lai (1991) for use in portfolio se-

lection, a technique which has seen broad acceptance and use in empirical applications (e.g.

Chunhachinda et al.,1997; Prakash et al., 2003). We use definitions and notation found in

a later paper by Lai et al. (2006) where the method is further refined. In this paper they

extend the PGP-model up to the fourth moment, but we exclude kurtosis and only consider

the third moment (unstandardized skewness) in addition to mean and variance for reasons

discussed in the introduction. As their framework is a generalized result and the optimiza-

tion model applies for an arbitrary amount of moments, this difference in specification is

therefore a trivial change.

3.3.1 Model Assumptions

In order to implement the optimization technique, our framework has to be well-defined. We

base our assumptions on papers by Lai (1991) and Chunhachinda et al. (1997). They can

be summarized as follows

1. Investors are risk-averse individuals who maximize the expected utility of their end-of-

period wealth.

2. There are N assets and no risk-free asset.

3. All assets are marketable, perfectly divisible, and have limited liability.

4. The capital market is perfect with no taxes.

5. Transaction costs exist when buying or selling an asset.

6. Short-sale of assets is not allowed.
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These assumptions differ slightly from the two previously mentioned papers. Firstly, we have

included transaction costs which incur whenever one or more assets are traded. If transaction

costs are not included in the optimization model itself but were instead applied only in the

out-of-sample testing, we may find potentially unrealistic solutions: Intuitively, without

punishment from transaction costs, it could be reasonable for the optimization procedure

to make great changes of the portfolio weights from one holding period to the next, where

in practice this would be undesirable (where transaction costs exist). A further simplifying

assumption is that transaction costs are a constant share of the total transaction amount;

we include no minimum fee for transactions which are often present in practice. For stock

trading at OSE, relevant transaction costs are 0.05% of the total transaction amount, based

on quotes from two major trading platforms in Norway (DNB, 2019; Nordnet, 2019). As

a second note, we are not concerned with the tradeoff between wealth allocation in risky

and non-risky assets in the PGP optimization itself: we only care about creating an optimal

risky portfolio allocation. We exclude a risk-free asset for simplicity.

3.3.2 Portfolio Optimization with PGP

The PGP procedure consists of two steps. In the first step, one finds the portfolio weights

that yield the best possible value for each of the three portfolio moments separately. To

describe the model, we introduce the following mathematical notation. X = (x1, x2, ..., xN)T

is the portfolio weights where xi is the percentage of wealth invested in the ith risky asset.

R = (R1, R2, . . . , Rn)T is monthly asset returns where Ri is the monthly rate of return on

the ith asset for the months 1, 2, ... , 168. R̄ = (R̄1, R̄2, . . . , R̄N)T is the mean asset returns,

where R̄i is the mean return of the ith asset. V is the N ×N variance-covariance matrix of

the asset returns. S is the N ×N2 skewness-coskewness matrix of the asset returns.

Based on this formulation, the three first portfolio moments are defined as

Portfolio mean ≡ Rp = XT R̄.

Portfolio variance ≡ Vp = XTV X.

Portfolio third moment ≡ Sp = XTS(X ⊗X).
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where ⊗ denotes the kronecker product. Step 1 of the PGP procedure can then be sum-

marized in the following three subproblems (SPs) where each moment is optimized without

taking the others into account where we obtain the solution as the optimal portfolio moments

R∗p, V
∗
p and S∗p .

SP (1) =



Maximize Rp = XT R̄

subject to XT1N = 1

X ≥ 0

(9)

SP (2) =



Minimize Vp = XTV X

subject to XT1N = 1

X ≥ 0

(10)

SP (3) =



Maximize Sp = XTS(X ⊗X)

subject to XT1N = 1

X ≥ 0

(11)

In the second step of PGP we find the portfolio weights that maximize the mean and third

moment, and minimize the variance simultaneously. The method now introduces three

distance variables: d1, d2 and d3. The solutions from subproblems 1, 2 and 3 are the

“best case scenario” for the three moments, and since the distance variables are assumed to

always be greater than zero, they represent underachievement of the multi-goal-optimization

in relation to the optimal values for each of the three moments (R∗p, V
∗
p and S∗p). The goal of

the second step is to minimize this underperformance, adjusted for the investors preference

for mean, variance and skewness, denoted by λ1, λ2 and λ3 respectively where λi ≥ 0. A value

of (λ1, λ2, λ3) = (1, 1, 0) defines the mean-variance portfolio, (0, 1, 0) the global minimum
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variance portfolio, for instance. Optimal moment values, distance variables and investor

preference are integrated in an objective function by applying the Minkowski distance which

is given by

Z =
m∑
k=1

∣∣∣∣ dkAk
∣∣∣∣λk (12)

where Ak are the optimal moments from step 1.

Now we expand the optimization model of Lai et al. (2006) by including transaction costs

in the following way:

TCt = (|Xt −X ′t−h| × 0.0005)T1N (13)

where Xt are the optimal weights at the start of a holding period at time t and X ′t−h are the

normalized optimal weights from the previous holding period

X ′t−h =

Xt−h ×
t∏

i=t−h
(1 +Ri)

(Xt−h ×
t∏

i=t−h
(1 +Ri))T1N

. (14)

We include transaction costs (TC) in the first restriction of the optimization problem where

deviation from the optimal mean portfolio return R∗p is determined. It should be noted

that our implementation of transaction costs still allows big portfolio rebalances from one

period to the next because we chose a ‘weak’ restriction where the optimization is merely

punished for rebalancing. In that sense, the optimization problem may still find ‘impractical’

solutions for real life, but we have ensured model parity between different specifications

(equally weighted, GMV, MV and MVS) and applied a reasonable transaction cost to limit

extreme turnover.
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Finally, optimization problem 2 in the PGP procedure is on the following form

P (2) =



Minimize
∣∣∣ d1R∗

p

∣∣∣λ1 +
∣∣∣ d2V ∗

p

∣∣∣λ2 +
∣∣∣ d3S∗

p

∣∣∣λ3
subject to XT R̄− TC + d1 = R∗p

XTV X − d2 = V ∗p

XTS(X ⊗X) + d3 = S∗p

XT1N = 1

X ≥ 0

d1, d2, d3 ≥ 0

(15)

which yields the optimal weights X* for each out-of-sample period. The PGP procedure is

done for all 16 sub-periods in our dataset, creating 16 sets of optimal portfolio weights.

3.4 Performance Criteria

Our performance criteria will be the Sharpe Ratio (SR) and Adjusted for Skewness Sharpe

Ratio (ASSR), introduced by Zakamouline and Koekebakker (2009). The SR is a well estab-

lished performance criterion, both in literature and in practice (Sharpe, 1994). However, SR

can be problematic to use if the distribution of return is non-normal. Empirical evidence,

both from the literature and recent data retrieved from OSE, support that the distribution

of return are not normal (see, for example Brooks and Kat, 2002). On the contrary, there

has also been evidence in favor of SR, a claim that although the underlying assumption of

SR is somewhat violated, the performance criterion is still sufficient to rank performance on

equal footing with performance criterias that do take non-normality into account (see for

example Eling and Schuhmacher, 2007). Eling and Schuhmacher find that the Sharpe Ratio

ranked 2,763 hedge funds virtually the same as 12 other performance measures, where some

of them directly dealt with non-normality by adjusting for higher moments like skewness

and kurtosis. The formula for SR is given by:
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SR =
E[Ra −Rf ]

σa
=

E[Ra −Rf ]√
var[Ra −Rf ]

(16)

where R is return, a is the underlying asset (or portfolio of assets) and f is the risk-free

component.

We also include a performance criterion, the ASSR, that can evaluate portfolio performance

adjusted for skewness. This way we can compare the MVS with our benchmark portfolios

with a performance criterion for both scenarios of normal and non-normal investor prefer-

ences. ASSR is SR adjusted for portfolio skewness, where a positive (negative) skewness will

lead to a higher (lower) ASSR value. This means positive skewness will be rewarded, and

vice versa, negative skewness will be punished. The formula for ASSR is given by

ASSR = SR

√
1 + b3

Sk

3
SR (17)

where Sk is the portfolio skewness and b3 is the investor preference for skewness. It is

expressed as

b3 =
ρ+ 1

ρ
(18)

where ρ is the investor’s degree of risk aversion. A lower risk aversion yields a higher demand

for positive skewness and a stronger dislike of negative skewness ceteris paribus. Zakamouline

and Koekebakker (2009) argue for different levels of this parameter, and conclude that a

high level of risk aversion and thus b3 = 1 may be reasonable for a representative investor.

Note that preference for skewness in ASSR is different from the investor preference in the

optimization problem, λ3.

3.5 Measuring Portfolio Concentration

As explained in the literature review, empirical evidence suggests that diversifying a portfolio

may lead to lower portfolio skewness, and conversely, that portfolios with higher skewness

should be less diversified. Thus it may be of interest to characterize the asset allocation of
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the different strategies by calculating portfolio concentration. It should be noted that diver-

sification in the broad sense encompasses a variety of methods and performance measures,

and the efficacy of diversification relies on factors such as volatility and correlations of assets.

Our goal is to characterize the strategies by concentration, assessing what’s often referred

to as ‘weight diversification’ (Richard and Roncalli, 2015). We use the Diversification Index

(DI) for this purpose which is defined as the complement of the concentration, a common

practice in the Industrial Organization literature (see e.g. Woerheide and Persson, 1993).

The (weight) diversification index is defined as

DI = 1−
N∑
i=1

X2
i (19)

where Xi is the portfolio weight of asset i. DI ranges from 0 to (1 - 1
N

), where a higher score

signifies a portfolio weight lower concentration (higher weight-diversification). The EW

portfolio where total wealth is perfectly spread among all assets will by definition represent

the lowest amount of concentration possible and yields the highest DI. A portfolio consisting

of a single stock (100% weight) will naturally have the minimum possible DI of 0.
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4 Data

We consider a dataset of 80 randomly chosen stocks trading at OSE over the period 2004 to

2017. The data are used for two different purposes: For the descriptive analysis, all 80 asset

returns are examined to gain insight into the properties of the Norwegian stock market. The

data for the 80 stocks are retrieved from ‘Børsprosjektet NHH’, an initiative at the Norwegian

School of Economics which gets returns directly from OSE market data. Of the 80 firms, 21

operate in the Industrial sector, 19 in Finance, 15 in Energy, 9 in Information Technology, and

16 Other.3 The stock returns are monthly observations, adjusted for dividends and special

events (such as stock-splits) for consistency. Missing data due to e.g. stocks not being traded

the entire period account for < 1% of observations. This is handled by inserting a value of

0, representing no return for the investor for the relevant period.

Due to the fact that skewness is sensitive to portfolio size (see e.g. Beedles and Simkowitz,

1978; Beedles, 1979), we include different specifications for consideration in portfolio opti-

mization. In this paper we investigate portfolios which contain 5 and 15 assets. Ideally, we

would like a broader range of configurations but we find computing power to be a limiting

factor. The two sets of stocks are randomly chosen. The 15 stocks are a subset of the 80;

the 5 are a subset of the 15. Despite not including a larger selection of stocks for asset

allocation, it may be enough to gain some qualitative insights on the role of skewness in

portfolio management. An overview of the relevant stocks used in optimization is provided

in table 1.

As mentioned earlier, we use robust moment estimates. This requires estimation of a 1-factor

model where an observed factor needs to be provided. For this purpose, we use returns from

Oslo Stock Exchange Benchmark Index (OSEBX). We retrieve the daily divided-adjusted

index price from the Oslo Børs website (Oslo Børs, 2019) and manually calculate monthly

returns.

3The ’Other’ category include Real estate, Health care, Consumer staples, Communication services and

Materials.
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Table 1: Overview of Stocks Used in Optimization

Asset name Sector Return Standard

deviation

Skewness

DNO Energy 0.0263 0.1749 1.0028

Ekornes Consumer Discretionary 0.0083 0.0728 -0.0316

Fred. Olsen Energy Energy 0.0150 0.1779 2.8418

Jinhui Shipping and Trans-

portation*

Industrials 0.0193 0.1859 0.5885

Kongsberg Gruppen Industrials 0.0154 0.0764 0.3656

Lerøy Seafood* Consumer Staples 0.0230 0.0990 0.0583

Norske Skogindustrier Materials -0.0117 0.2164 1.1497

Orkla Consumer Staples 0.0141 0.0744 -0.5164

Petroleum Geo-Services* Energy 0.0081 0.1353 -0.5026

SAS AB Industrials 0.0018 0.1643 1.3745

Sparebank 1 SMN* Finance 0.0146 0.0729 -0.1899

Statoil Energy 0.0109 0.0648 0.1630

Subsea 7* Energy 0.0205 0.1112 -0.1916

Tomra Systems Industrials 0.0127 0.0884 -0.0449

Veidekke Industrials 0.0200 0.0832 0.1526

Numbers are monthly figures. Data are from 2004-2017. All assets in the table are used in the 15-stock

optimization; assets with stars (*) are used in 5-stock optimization.
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5 Results

In this section we present the results of our analysis. Consistent with the research questions,

there are two main points of consideration. First we recount our findings on the existence

and persistence of skewness for assets at OSE. Following this is a look at how portfolio size

affects portfolios in relation to skewness. These three points are addressed in sections 5.1.1,

5.1.2 and 5.1.3 respectively. The findings provide important context and implications for

portfolio management with higher moments. Regarding the second research question, we

present the results from the asset allocation procedure with the MVS portfolio in focus. The

goal is to see whether the MVS portfolio is able to outperform the traditional MV portfolio

at OSE by assessing end-of-period wealth, portfolio moments, and a classical performance

measure (Sharpe Ratio) during the out-of-sample period spanning 2014-2017. These results

are found in section 5.2.

5.1 Skewness of Stock returns at Oslo Stock Exchange

5.1.1 Existence of Skewness in Asset Returns

We now provide insights into the distributional properties of individual assets at OSE and

discuss some of the implications. We consider development of OSE over time using all 80

stocks of our dataset. Sample skewness is calculated using 4-year rolling estimates from 2006

to 2017, leaving out the first two years of our dataset. Skewness for the entire 12-year period

is included as well.

Table 2: Percent of Assets with Skewness in Different Periods

Time period 2006-09 2010-13 2014-17 2006-17

Positive Skew 40 49 68 58

Negative Skew 31 8 11 15

No Skew 29 43 21 27

All entries in percent.
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For the 80 asset returns, 58% had positive skew, 15% negative, and 27% no significant

skewness using data from the period 2006 to 2017. The fact that there are roughly twice

as many assets with positive skewness than negative is a significant discovery, which is also

in line with comparable numbers in the US stock market (Singleton and Wingender, 1986).

Concerning the three sub-periods, we note that the proportion of positively skewed stocks

from period 1 to 3 grows from 40% to 68%, and the proportion of negatively skewed shrinks

from period 1 to 3 from 31% to 11%. There may be several explanations for why we observe

a preponderance of assets with positive skewness rather than negative. One is survivorship

bias: the fact that our stock selection only include firms that survived for the entire 2004-

2017 period means that firms which went bankrupt (and may in advance have experience

extreme negative losses) have been excluded from our sample.

As expected, the period where the market exhibited the lowest amount of positive skewness

and the highest amount of negative was around the peak of the financial crisis (2008). The

economic story is quite clear: when the market as a whole is experiencing great sustained

devaluation, we would then expect to see this reflected in individual stocks as more extreme

losses. The Norwegian stock market also had a smaller crisis around 2015 caused by the

sharp decline in the oil price, but curiously this is not reflected in the skewness: moving

from the second to the third 4-year period, the market share of positively and negatively

skewed stocks both grew (the share of negative only slightly).

To follow up on the investigation on distributional properties of stocks at OSE, we confirm

that returns are not normally distributed by performing the Shapiro-Wilk test (Shapiro and

Wilk, 1965). The null hypothesis of the test asserts that a given distribution is normal,

while the alternative hypothesis specifies deviation from normality. Based on the test results

(not included in the paper for brevity), we note three things: First, a total of 89% of stocks

reject the null of normality at the 5% significance level. Secondly, all assets with positive

or negative skewness (|ŝ| > 0.3) reject the null hypothesis. Thirdly, some assets reject the

null hypothesis despite having no significant skewness. The first point establish the main

finding, namely that the overwhelming majority of individual assets returns at OSE are not
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normally distributed. The second and third point together reveal another result: skewness is

a sufficient but not necessary condition for non-normality. I.e. if a stock has skewed returns,

it is not normal, but it can also be non-normal without significant skewness. Several causes

can be proposed: (1) the rule-of-thumb value of 0.3 is not an accurate measure of skewness,

(2) there are impacts of kurtosis or even higher moments which skewness does not inform us

of, (3) outliers in the data impact the Shapiro-Wilk test more than the measure of sample

skewness, and (4) like any statistical test, the Shapiro-Wilk test is prone to being overly-

sensitive when the sample size is large which causes rejection of normality even when the

distribution is reasonably normal. At any rate, we conclude that asset returns on OSE are

generally non-normal, and some subset of these are non-normal specifically because of the

presence of skewness.

It is useful to further characterize stocks at OSE by analyzing skewness by sector. This gives

a more detailed view of the exchange. Table 3 shows average 4-year rolling skewness for

individual assets over time by 4 sectors.

Table 3: Average Skewness by Sector

Industrials Finance Energy Information

Technology

Others All

2006-2009 0.0892 0.0602 -0.3661 0.8771 0.4551 0.1588

2010-2013 0.6899 0.4356 0.2844 0.7858 0.3806 0.5024

2014-2017 1.1269 0.1825 0.7306 1.5688 0.7228 0.7972

Number of assets: Industrials = 21, Finance = 19, Energy = 15, Information Technology = 9,

Others = 16, All = 80. The ’Others’ category include Real estate, Health care, Consumer staples,

Communication services and Materials.

As is apparent from the table, average skewness of all 80 stocks have increased significantly

over time. This is consistent with table 2 which states that the amount of assets with

positive skewness has increased as well. The rising trend is reflected in all sectors. All

sectors have exhibited positive average skewness for the entire time frame except for the
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energy sector in the years 2006-2009. Possibly, this sector experienced more extreme negative

returns during the financial crisis than the others. Industrials, Finance and Energy have low

average skewness during the financial crisis, with Information technology and ‘Others’ as

an exception. Industrials and Information Technology have the highest average skewness

overall; technology firms are particularly famous for experiencing rapid or extreme growth,

contributing to high positive skewness.

We now have an indication that it is possible to construct positively skewed portfolio returns

as roughly 40% to 70% of stocks have positive skewness over the period 2006-2017. At the

very least there exists trivial portfolios consisting of a single stock with positive skewness.

A description of individual assets, however, does not adequately describe the portfolio man-

agement setting at OSE. One has to be mindful of the synergistic nature of a portfolio, i.e.

how the attributes of a portfolio of stocks differ from the individual stocks themselves. In

particular, we find that the effect of portfolio diversification is significant. This is explored

in section 5.1.3. First, we examine whether future skewness can be predicted from past

skewness.

5.1.2 Persistence of Skewness

Empirically it is well established that the assumption of constant mean and variance does not

always hold, especially in turbulent periods such as financial crises; times when it is the most

important for a given framework to be robust. We extend this train of thought to consider

persistence of skewness, similar to the analysis by Singleton and Wingender (1986). We

calculate rolling 4-year-estimates of sample skewness over our 14-year time period (leaving

out the first two years) for all 80 stocks and note whether the asset has the same type of

skewness (positive or negative) in two adjacent sub-periods.
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Table 4: Percent of Assets with

Persistent Skewness in Adjacent Periods

Time period 1-2 2-3 1-2-3

Positive Skew 56 69 6

Negative Skew 12 0 0

Periods: 2006-2009 = 1, 2010-2013 = 2, 2014-

2017 = 3. All entries in percent.

The results reveal moderate levels of skewness persistence for individual assets: 56% have

positive skewness in both period 1 and 2, increasing to 69% in period 2 and 3. In other

words: if one were to predict positive skewness in the future, it is reasonable to base oneself

on past skewness. Although a sizeable portion of stocks aren’t persistent, at the very least

one could reasonably expect to beat a coin-toss. For negative skewness the conclusion is

different. Only 12% of stocks showed persistence from the first to the second 4-year period,

dropping to 0% for the second and third. This is a strikingly low persistence, implying that

negative skewness may be incredibly difficult to predict. Focusing on all three periods, barely

any stocks show persistence of any kind. Only 6% of stock returns with positive skewness in

period 1 kept their skewness throughout three consecutive 4-year periods, while none kept

negative skewness for the same three periods.

Overall then, we find that skewness of stocks at OSE is fairly persistent for assets with

positive skewness, but not with negative. It should be noted that this finding may be

sensitive to the length of the estimation period for skewness, and our conclusion holds only

for the long term (4 year periods). There is no guarantee of more or less persistence in the

short term. The prediction horizon is important to keep in mind for the portfolio selection

done in this paper: we predict skewness 1-3 months into the future based on data from the

preceding 120 months. Proving a moderate persistence in positive skewness in the long term

bodes well for investors with a preference for skewness.
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5.1.3 Effect of Portfolio Size on Portfolio Skewness

As mentioned earlier, diversification has implications on portfolio management with skew-

ness. It is a well known result that the risk (standard deviation) of a portfolio falls with

increased diversification. Regarding skewness, previous research indicate that increasing di-

versification also causes a reduction in portfolio skewness (e.g. Beedles, 1979; Singleton and

Wingender, 1986). To investigate the claim that skewness is reduced with increased diver-

sification in our dataset, we follow Beedles’ research (1979). Beedles uses portfolio size as

a näıve approach to diversification. As such, the definition (which we adopt for use in this

section) is slightly restrictive and does not encompass all facets of the term in the classical

sense. Nevertheless, we are interested in an ‘all else equal’ effect on skewness, which Beedles

argues for. The method is outlined by the following:

1. Sort all individual assets from lowest to highest risk

2. Choose a portfolio size of m assets

3. Create an equally weighted portfolio of the m first assets, then the subsequent m assets

and so on

4. Compute skewness for each portfolio4

5. Report the average of the aforementioned statistic, for each m

We choose m = 1, 5, 10, 20, 40 and 80. Statistics for portfolio mean and standard deviation

are included for completeness. Note that the mean is the same for all portfolio sizes; it is

mathematically guaranteed with equally weighted portfolios.

4Beedles presented the cube root of the third moment in his paper while we calculate sample skewness.

Although the magnitude of the numbers are different, the qualitative result remains the same. We report

sample skewness for consistency in this paper.
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Table 5: Effect of Diversification on Portfolio Moments

Portfolio size #Portfolios Mean (%) SD (%) Skewness

1 80 1.10 12.11 0.922

5 16 1.10 7.05 0.053

10 8 1.10 6.07 -0.381

20 4 1.10 5.52 -0.618

40 2 1.10 5.22 -0.718

80 1 1.10 5.00 -0.879

Data is based on monthly returns of 80 assets from the period 2004-2017.

For single stocks the average skewness is positive at 0.922, while increasingly diversified

portfolios have much lower - even negative - skewness. At the 80 stocks equally-weighted

portfolio, we calculate a skewness of -0.879. This suggests that unsystematic (diversifiable)

skewness is quickly diversified away, and at 20 stocks it seems further diversification has

a small impact. We also confirm the well known fact that portfolio risk rapidly decreases

with portfolio size; most of the relevant diversification is achieved at 10 stocks. After this

point, additional diversification has diminishing returns. These results show that risk and

skewness are in fact goals that point in opposite directions: desire of low risk incentivizes the

portfolio manager to diversify, but seeking highly positively skewed returns should ideally

lead to undiversified portfolios.

The (under)diversification effect of skewness can also be explained from a purely analytical

standpoint. Using robust moment estimators, we find that the vast majority of coskewness-

terms are negative. Similar to how positive covariance terms increases portfolio variance with

diversification, having negative coskewness-terms will cause portfolio skewness to decrease

with diversification. This observation is consistent with an analysis by Albuquerque (2012)

where the author finds that while individual stocks may exhibit positive skewness, the market

skewness (a portfolio of all stocks) is almost always negative. As an addition to this point,

we measure the skewness of the OSEBX to be -1.25 using data for the period 2004-2017.
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The investor with a preference for positive skewness should therefore abstain from passive

index investment to attain their desired portfolio (although there are other reasons to invest

passively). This motivates an inquiry into optimal asset allocation with differently sized

portfolios which we have done by using 5 and 15 assets.

5.2 Asset Allocation with Skewness

We perform PGP optimization on the assets from OSE to form optimal portfolio strategies.

The implementation will be briefly explained and then the results are presented for the

different portfolios.

Implementation of the EW-portfolio strategy is straightforward: in each rebalancing period

we simply reallocate resources so each stock has equally as much weight in the portfolio.

The GMV portfolio is constructed using PGP by setting the investor preference for mean

and skewness equal to zero. More specifically we apply (λ1, λ2, λ3) = (0, 1, 0) with λ1 being

preference for expected return, λ2 variance, and λ3 the third moment. The MV portfolio is

constructed by setting the preference for skewness equal to zero: (1, 1, 0). Similarly, the MVS

portfolio is defined by equal preference for the three moments: (1, 1, 1). In addition to these

portfolios we also include a model specification were the investor has a greater preference

for skewness. This provides insight into how different skewness preferences may affect the

performance of the portfolio allocation. The Modified MVS (MMVS) portfolio is given by

(1, 1, 3). Note that the EW and GMV strategies are strictly speaking reference portfolios

and the most pertinent comparison is between MV, MVS and MMVS when assessing the

efficacy of skewness in portfolio management.

To characterize the outcomes of the strategies, we will in section 5.2.3 include a consideration

of the performance measures mentioned in the methodology section, namely Sharpe Ratio

and Adjusted for Skewness Sharpe Ratio. Of note is the fact that we annualize in-sample

and out-of-sample moments to more clearly differentiate the portfolios while the performance

measures is based on monthly data to allow for better statistical inference.
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As mentioned earlier, there are two different scenarios under consideration: one where the

investor has 15 assets available, and one where they have 5. We first present the 15-asset

scenario, then the 5-asset one.

5.2.1 In-sample Results

15 stocks

Before commenting on the out-of-sample results we first present the in-sample solutions.

In-sample moments are obtained when solving step 2 of the PGP procedure for the differ-

ent specifications listed above.5 A table summarizing the average values of the in-sample

moments is presented below. It should be noted that in-sample, the PGP optimized for the

third moment and not skewness (standardized third moment). We report this measure in

the table to accurately represent the solution of the PGP procedure according to what is

optimized.

Table 6: Average Value of Robust In-Sample Moments. 15

stocks

Strategy Return Standard

deviation

3rd moment

(x1000)

MV 0.1135 0.1785 -0.1445

MVS 0.1129 0.1793 -0.1332

MMVS 0.1117 0.1766 -0.1284

GMV 0.1098 0.1711 -0.1372

EW 0.1080 0.1785 -0.1282

All numbers are annualized.

5All in-sample moments mentioned in this section are robust estimates; out-of-sample moments are sample

estimates. Robust moments do not have the same economic interpretation as sample moments and even tiny

differences can be significant.
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We find that the GMV portfolio predictably yield the lowest average in-sample standard de-

viation (17.11%) and also second lowest return (10.98%). The MV portfolio is characterized

by the highest average return of 11.35%, but also the second highest average standard devi-

ation of 17.85%. The explanation is straightforward: to get high returns, one may need to

also take risks. The MVS portfolio attains the third highest average in-sample third moment

of 0.1332, but curiously also the highest average standard deviation of 17.93%. The MMVS

portfolio has the second highest in-sample third moment at -0.1284 and lower standard de-

viation (17.66%) than both MV and MVS. Finally, EW performs the worst in regards to

return (10.80%) and has similar (high) standard deviation (17.85%) to the MV portfolio.

Remarkably, the EW portfolio has the highest third moment of all the portfolio strategies

(-0.1282), even higher than MMVS. Although one would expect MMVS to attain better

third moment, it needs to be emphasized that the strategy also prioritizes other goals where

the EW clearly falls short. Thus the MVS can be said to have better ‘return-risk’ adjusted

third moment. Ultimately we see that the MVS portfolio(s) accept lower return, but also

manages to acquire a higher third moment compared to the MV portfolio. Later, in section

5.2.3, we use performance measures to evaluate the portfolio strategies and in particular the

MVS portfolio(s). The goal is to see if they make a significant trade of the first two moments

in order to acquire a higher third moment.

5 stocks

For the results on the 5 stock-scenario, we again start with a comment on in-sample moments.

The average annual values of in-sample moments are enclosed in table 7.
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Table 7: Average Value of Robust In-Sample Moments. 5

stocks

Strategy Return Standard

deviation

3rd moment

(x1000)

MV 0.1640 0.2511 -0.0613

MVS 0.1639 0.2525 -0.0598

MMVS 0.1639 0.2545 -0.0571

GMV 0.1639 0.2511 -0.0615

EW 0.1635 0.2568 -0.0593

All numbers are annualized.

Of note is the fact that average annual return for all strategies are very similar - around

16.4%. The MV portfolio manages a marginally better return than MVS, MMVS and GMV.

EW performs the worst in this regard. The reason for the nearly identical returns between

the strategies is twofold: First, robust estimators create very small difference in expected

return for the 5 assets due to shrinkage toward a common goal with a big shrinkage intensity.

Secondly, one asset is heavily weighted (> 50%) in every portfolio strategy due to being better

than all other assets in all three moments. Assessing risk, the EW strategy produces the

highest annual average standard deviation at 25.68%, followed by the MMVS portfolio at

25.45%. With an equal prioritization of the three moments and less emphasis on the third

moment, the MVS strategy manages a slightly lower standard deviation at 25.25%. MV and

GMV have the lowest risk and performed similarly, both with an equal standard deviation of

25.11%. With the third moment, differences are even more pronounced. MMVS obtains the

highest value of -0.0571. Like in the 15 stock scenario, EW performs very well in-sample with

the third moment at -0.0593, only beat by the MMVS. MVS performs similarly to EW at -

0.0598. Despite this fact, MVS still outperforms EW in the two other aspects, yielding better

overall performance. MV and GMV achieve almost identical third moments of -0.0613 and

-0.0615 respectively, emphasizing how similar the outcomes of these two strategies are.
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Ultimately, in-sample results give insight into the PGP optimization results, and how the

solutions are characterized. The results show the predictions for the portfolio moments the

model makes for the unknown out-of-sample period. For 15 stocks, the procedure is able to

formulate strategies with clear distinctions. For 5 stocks, the robust portfolio returns are

very similar, and strategies are only able to be distinguished based on risk and the third

moment. Thus, the in-sample results for 15 stocks give clear expectations for the out-of-

sample results, while it is more ambiguous for 5 stocks. This helps explain the out-of-sample

results found in the next section.

5.2.2 Out-of-Sample Results

15 stocks

To review out-of-sample performance of the different strategies, we first assess the cumulative

return to see how much end-of-period wealth the investor achieves. Returns are calculated by

using the weights found by using the PGP procedure where transaction costs are subtracted

when rebalancing the portfolio each quarter.

Figure 3: Monthly Cumulative Out-of-Sample Returns. 15 Stock Portfolios.
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The MV and MVS portfolio end up with the highest cumulative return, achieving 74% and

72% respectively. Despite the similar outcomes at the end, MV consistently outperforms

MVS throughout the entire 4-year period. The MMVS portfolio which puts relatively less

weight on return, follows the two strategies closely at 68% end-of-period return - a 6 and

4 percentage point return deficit respectively over the 4 year out-of-sample period. Fur-

thermore, we note that GMV performs significantly worse than the three aforementioned

strategies. It ends up at 57% cumulative return and thus lags 11 percentage points behind

the MMVS portfolio. Finally, the ‘näıve’ EW portfolio greatly underperforms, achieving

only 23% cumulative return over 4 years. Notably, the strategy produces negative cumula-

tive returns the first 3 years before improving in 2017.

To further assess the strategies, we consider mean, standard deviation and skewness in

addition to a measure of weight-diversification, DI. The results are summarized in table

8.

Table 8: Out-of-Sample Results. 15 stocks

Strategy Return Standard

deviation

Skewness DI

MV 0.1481 0.1085 -0.0838 0.8829

MVS 0.1452 0.1123 0.0296 0.8627

MMVS 0.1385 0.1196 -0.0191 0.8614

GMV 0.1185 0.1370 0.2878 0.8828

EW 0.0535 0.1681 0.1533 0.9333

Numbers are annualized averages.

Considering average out-of-sample return, the MV and MVS portfolios perform similarly at

14.81% and 14.52% respectively, beating the other strategies. At the same time, they attain

the lowest risk (standard deviation) at 10.85% and 11.23% respectively. MMVS gains a

slightly lower average return (13.85%), likely due to a higher prioritization of skewness. It is
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also slightly more risky than the two aforementioned portfolios with an annualized standard

deviation of 11.96%. Focusing on the reference portfolios, both GMV and EW generate

poor returns which is also evidenced in figure 3. With 5.35% average annualized return,

EW produces under half the return of GMV (11.85%). They are also the riskiest portfolios,

with EW having close to 17% standard deviation compared to 11-12% for the MV, MVS

and MMVS. The GMV strategy has the second highest risk at 13.70%, which is surprising

since its sole purpose is to minimize risk. It turns out both EW and GMV are significantly

affected by an outlier in the data - this is discussed in section 5.2.3.

Moving on to skewness, we first note that no strategy is strictly speaking significant in this

regard (ŝ > |0.3|). Due to the fact that all portfolios diversify away most unsystematic

skewness at 15 stocks, we are mainly left with systematic skewness where even small differ-

ences between strategies can be of interest despite no individual strategy having significant

skewness on their own. While MV has a skewness of -0.0838, the MVS portfolio achieves

0.0296 - a 0.1134 difference. MMVS achieves only -0.0191 skewness which is slightly worse

than MV. This contradicts what we would expect based on: (1) the MMVS portfolio has a

higher preference for skewness than MVS, and (2) the portfolio manages to acquire a higher

in-sample third moment. In-sample results seemingly does not persist out-of-sample. Re-

markably, GMV has the highest skewness and is close to the rule-of-thumb of 0.3 at 0.2878.

The EW portfolio manages a skewness of 0.1533; while not enough to be significant on its

own, it is higher than the three main strategies.

Regarding the level of portfolio concentration, we find that the MVS and MMVS strategies

are more concentrated than the MV portfolio because of their attempt to achieve higher

skewness out-of-sample. They obtain DI values of 0.8627 and 0.8614 respectively, against

0.8829. The EW is by definition minimally concentrated with a DI of 0.9333 (1 - 1
15

). This

observation aligns with the literature and shows one strategy to achieve higher skewness:

choose more concentrated portfolios. EW and GMV seemingly counter this result by having

higher average DI but also higher skewness than the other 3 strategies. But as pointed out

earlier there is one outlier that greatly affects the two reference portfolios with respect to
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skewness which we will discuss in section 5.2.4. Nonetheless, in the 15-stock scenario, we

affirm the tendency of decreased weight-diversification when adding skewness as a concern

in portfolio management.

5 stocks

Now we switch focus to out-of-sample performance of the portfolio strategies. First we

consider cumulative returns.

Figure 4: Monthly Cumulative Out-of-Sample Returns. 5 Stock Portfolios.

We find that the MMVS portfolio produces the highest cumulative return at 74%, followed

by the MV (68%), the GMV (65%) and the MVS (54%) portfolio. This ranking is somewhat

surprising because we would initially expect that the MV portfolio should be able to gain

the highest return out-of-sample; still it performs reasonably well. The EW strategy yields

the lowest cumulative return of 2% over the 4 years - virtually indistinguishable from 0. Like

in the 15 stock scenario, EW produces negative cumulative returns in 3 of 4 years. In the

graph for cumulative return we note that the 5-stock portfolios seem to perform worse than

the 15 stock portfolio in the period 2014 to 2016. One contributing factor for this is that the
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5 stock portfolio has a higher share of companies that are directly related to the oil industry,

and were therefore negatively affected by the oil price crisis in 2015.

We will now further assess the different strategies by presenting the portfolio mean, standard

deviation, skewness and the measure for portfolio concentration DI. The results are presented

in table 9.

Table 9: Out-of-Sample Results. 5 stocks

Strategy Return Standard

deviation

Skewness DI

MV 0.1383 0.1612 0.0762 0.6296

MVS 0.1145 0.1655 0.0435 0.5781

MMVS 0.1484 0.1652 0.0370 0.5260

GMV 0.1329 0.1607 0.0912 0.6250

EW 0.0059 0.2206 0.1499 0.8000

Numbers are annualized averages.

Consistent with the results for cumulative returns, the MMVS portfolio dominates with an

average annual return of 14.84% while being the third most risky with a standard deviation

of 16.52%. MV also performs well: it has the second highest return of 13.83% in addition

to having the second lowest standard deviation of 16.12% which is on par with GMV. The

MVS portfolio performs poorly with return of 11.45% and standard deviation of 16.55%.

These results make MVS worse than GMV which posts an average return of 13.29% and

standard deviation of 16.07% - a surprising result given that GMV does not prioritize return

in contrast to MVS. Similar to the trend observed with cumulative returns, the EW portfolio

severely underperforms on other metrics as well. While having the lowest average return of

0.59%, it has by far the highest risk of 22.06%.

Regarding skewness, we find that no strategy manages to surpass the limit of 0.3 in order to

achieve significant skew. We also note that no skewness is below 0, in contrast to the 15-stock
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case. The two reference portfolios - GMV and EW - have the highest skewness of 0.0912 and

0.1499 respectively. MV has the third highest skewness of 0.0762 with the MVS following

with 0.0435. The MMVS strategy which obtains the highest third moment in-sample, has

the lowest skewness out-of-sample at 0.0370. The ranking of these three strategies are the

opposite of what we expect based on different investor preferences for skewness. This may be

an indication that in-sample results did not predict out-of-sample results well with respect

to skewness.

The DI of the different portfolios is as we would expect. MMVS has the lowest DI of 0.5260,

making it the most concentrated portfolio. This is followed by MVS with an DI of 0.5781.

GMV and MV are similar with 0.6250 and 0.6296 respectively. EW has an DI of 0.8000,

which by definition is the highest possible value. These observations are consistent with

the trend we saw with 15 stocks: the strategies with a focus on skewness (MVS, MMVS)

produce more concentrated portfolio weights on average. Note that although the portfolios

in question did not actually obtain higher skewness out-of-sample, the weights are based on

in-sample data where they did outperform the remaining portfolios.

5.2.3 Performance Measures

In financial literature it is common to present performance measures to evaluate the relative

efficacy of a given portfolio strategy. We consider the Sharpe Ratio and the Adjusted for

Skewness Sharpe Ratio to be representative for normal investor preferences and non-normal

investor preferences, respectively. A hypothesis test is conducted on the SR to obtain a

proper statistical inference about relative performance. However, to our knowledge, no such

test has been developed for the ASSR and we thus include this second measure as a point

of reference with the intent to see if taking skewness into account markedly changes the

measure, or if ranking of the strategies change.

The hypothesis test for the SR is developed by Ledoit and Wolf (2008) where robust inference

about the measure is the goal. The null hypothesis states that there are no difference between

the SRs of two given strategies a and b; the alternative hypothesis asserts that there is
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We use the MV portfolio as a natural benchmark which every other strategy is compared

against. A low (high) P-value means that the Sharpe Ratio of strategy b is significantly (not

significantly) different from the Sharpe Ratio of the MV portfolio. Further details on the

test can be found in the cited paper.

15 stocks

Table 10: Performance Measures. 15 stocks.

Strategy Sharpe

Ratio

ASSR

b3 = 1

ASSR

b3 = 3

P-value

MV 0.3847 0.3775 0.3626 -

MVS 0.3662 0.3685 0.3731 0.8078

MMVS 0.3315 0.3303 0.3279 0.4614

GMV 0.2558 0.2665 0.2866 0.0843

EW 0.1130 0.1141 0.1163 0.0013

*Using skewness prefrence b3 = 1. Figures are based on monthly

data. P-values are related to whether the Sharpe Ratios of a given

strategy is equal to the MV strategy.

Considering 15 stocks, we see that MV, MVS and MMVS are very close in regards to the

SR, with only 0.05 disparity between MV (0.3847) and MMVS (0.3315). The null is not

rejected as a result of high P-values (0.81 and 0.46 for MVS and MMVS), supporting the

statement that the skewness-strategies did not give up a statistically significant amount of

return (or add significant amounts of risk) in the pursuit of higher skewness. As seen in the

out-of-sample results, the GMV portfolio fares less favorably than MV, resulting in a SR of

only 0.2558 which is a 0.13 deficit. This is a significant difference at the 10% confidence
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level, implying that one may be reasonably suspicious about the null. The EW strategy

clearly underperforms with a SR of only 0.1130 with a clear rejection of the null of equality

with MV at even the 1% level. While there exist some literature that support the claim that

the ‘näıve’ EW strategy is competitive with more complex strategies (e.g. DeMiguel et al.,

2009), this notion does not seem to be supported with our findings.

With a skewness preference of b3 = 1, ASSR of the different strategies does not change from

SR in any appreciable way. The strategies which achieve positive skewness (MVS, GMV,

EW) improve at most by 0.01, and those with negative (MV, MMVS) worsen at most by

-0.007. The ranking remains the same as with SR in this case. Investors with a higher

preference for skewness (and thus lower risk aversion), b3 = 3, see a slightly greater change.

By the numbers, MVS now ranks higher than MV at 0.3731 and 0.3636 respectively, but it

is still reasonable to claim they are equal. GMV which has the highest skewness, sees the

biggest change from SR by ∼0.03; a negligible amount.

5 stocks

Table 11: Performance Measures. 5 stocks.

Strategy Sharpe

Ratio

ASSR

b3 = 1

ASSR

b3 = 3

P-value

MV 0.2556 0.2584 0.2641 -

MVS 0.2131 0.2142 0.2165 0.2118

MMVS 0.2661 0.2676 0.2706 0.7631

GMV 0.2477 0.2509 0.2572 0.7162

EW 0.0383 0.0384 0.0387 0.0202

*Using skewness prefrence b3 = 1. Figures are based on monthly

data. P-values are related to whether the Sharpe Ratios of a given

strategy is equal to the MV strategy.

For 5 stocks, we note that the performance measures reflect the out-of-sample results. MMVS
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is highest ranked according to SR, with MV slightly behind (0.2661 and 0.2556). MVS, due

to poor return, falls behind GMV with 0.2131 against 0.2477 respectively. EW produces a

SR of 0.0383 and comes in last by a wide margin. Compared to MV, we note that MVS,

MMVS and GMV all fail to reject the null, and as such they can be said to have the same SR.

Only EW seems to be significantly worse than MV at any reasonable confidence level.

Adjusting SR for skewness yield results similar to the 15-stock case, namely that there are

only marginal impacts. Both with b3 = 1 and b3 = 3, ASSR barely budges from the SR

value and the ranking of the portfolios remain the same. The small impact of skewness on

ASSR stems from a low initial SR value, causing a low leveraging effect of skewness. This

is shown in the EW figures: despite having the highest (annualized) out-of-sample skewness

of 0.1499, this strategy due to a low SR (0.0383) experienced the lowest delta of any ASSR

against SR.

5.2.4 Sensitivity to Outliers - 15 stocks

In the results for the 15-stock scenario, we mention that one outlier has a significant effect

on the performance of the GMV and EW portfolios. The asset that causes this outlier (Fred.

Olsen Energy/Dolphin Drilling) has an abnormally high return (135%) in a single month,

which yields a significantly higher average return, standard deviation and skewness for the

two portfolios in question. The outlier month can be seen in figure 3, toward the end of

2017 for the EW and GMV portfolios. MV, MVS and MMVS were not affected by the

outlier because they did not invest significantly in this asset. To understand why we look at

the in-sample moments. The asset in question has a low variance, but also very low return

and skewness. The GMV strategy - which only prioritizes minimizing risk - thus includes

the asset in the portfolio, while the MV, MVS and MMVS strategies which prioritize other

moments, avoid this asset. EW was affected by the outlier because the portfolio by design

has to invest some wealth in every asset no matter what. We include in table 12 the results

where the one outlier month is removed for the GMV and EW strategies. The 3 other

strategies are not included as they did not change significantly.
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Table 12: Out-of-Sample Results for GMV

and EW. 15 stocks

Strategy Return Standard

deviation

Skewness

GMV 0.1185 0.1370 0.2878

GMV* 0.0745 0.1097 -0.2096

EW 0.0535 0.1681 0.1533

EW* 0.0177 0.1532 0.0553

Numbers are annualized averages.

As the table suggests, GMV and EW perform significantly worse with the outlier removed

although the overall ranking of the 5 strategies do not change. The strategies experience

a decline in average return of roughly 3.6 and 4.4 percentage points (67% and 37% lower

returns, respectively). In the absence of the extreme month, GMV and EW achieved a

lower standard deviation, 2.7 and 1 percentage points respectively. In particular, the GMV

portfolio is now second only to the MV portfolio, with a negligible difference between the

two, indicating that the risk-minimizing strategy works quite well when taking the outlier

into account. Removing the outlier changes the skewness of GMV and EW by -0.5 and -0.1

respectively - a very significant change. This exemplifies the fact that skewness is a very

sensitive measure, as a change in only 1 out of 48 observations (∼2% of the out-of-sample

dataset) has a drastic impact.

44



6 Conclusion

In this thesis we pursue two main lines of inquiry. Firstly, can we use skewness in portfolio

management at Oslo Stock Exchange (OSE)? Secondly, does taking skewness into account in

portfolio management improve out-of-sample performance using Polynomial Goal Program-

ming (PGP)?

To answer the first question we investigate the ubiquity of skewness, the persistence of skew-

ness and the effect of portfolio size on the average portfolio skewness for 80 randomly chosen

individual asset returns. With regards to ubiquity of skewness in the market, we find that

58% of stocks have positively skewed return, 15% negative, and 27% no significant skewness

using data from the period 2006 to 2017. In addition, we find that the average skewness

of stocks at OSE has increased in the same time frame, and that there are significant dif-

ferences between sectors of the economy. This provides motivation for us to further study

non-normal investor preferences. Afterwards, we count the number of assets that has per-

sistent skewness in two following time periods. We find that 56% to 69% of assets returns

at OSE are positively skewed in adjacent periods; comparable numbers are 12% and 0%

for negative skewness. This means that it is to a certain extent possible to predict future

(positive) skewness for individual assets. Lastly, we see that skewness and amount of stocks

are negatively correlated.

With the first main point as a basis, we answer the second main point by creating a portfolio

that takes skewness into account. We do this by performing the PGP procedure to create two

strategies that incorporates skewness: the Mean-Variance-Skewness (MVS) and the Modified

Mean-Variance-Skewness (MMVS) portfolio. Out-of-sample results are compared with the

traditional Mean-Variance (MV), the Global-Minimum-Variance (GMV) and the Equally-

Weighted (EW) portfolio strategies. When evaluating all of the portfolios we find that the

MV portfolio manages to obtain the highest Sharpe Ratio for the scenario of 15 stocks and

the second highest for 5 stocks. However, when we adjust of skewness, we find that the MVS

portfolio is able to obtain the highest out-of-sample Adjusted for Skewness Sharpe Ratio

(ASSR) with a high preference for skewness (b3 = 3) for 15-stocks. The MMVS obtains the
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highest out-of-sample ASSR for 5-stocks with both low and high preference for skewness.

On the other hand, in the 5-stock scenario, MVS performs worse than the MV portfolio with

regards to ASSR. Results are therefore mixed in the two different cases.

Our findings suggests skewness is difficult to accurately predict in portfolio management.

For the 5-stock portfolio, we find that MVS and MMVS does not achieve a higher skewness

than the MV portfolio. For the 15-stock portfolios, both the MVS and the MMVS obtain

higher skewness than the MV portfolio. This could indicate that it is possible to predict

systematic skewness for a portfolio size of 15. Additionally, MVS consistently outperforms

MMVS in regards to out-of-sample skewness despite having a lower skewness preference.

Greater skewness preference does not predict out-of-sample skewness.

We find two noteworthy points regarding diversification. First, the strategies obtain slightly

higher portfolio skewness on average in the 5-asset scenario than the 15-asset scenario. Sec-

ondly, the two strategies with a preference for skewness are less diversified than the alter-

natives. As a consequence, they also has higher standard deviation (risk). The implication

is that (1) a preference for skewness leads to less diversified portfolios and (2) skewness and

risk are opposing goals.

By performing a sensitivity analysis, we find that one outlier had a significant effect on

portfolio performance with regards to skewness. In the 15-stock scenario, skewness of the

GMV portfolio changes from 0.29 to -0.21 when removing the outlier; for EW the numbers

are 0.15 and 0.06. Investors with skewness preference thus need to be particularly careful

about ex-ante performance measurement.
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7 Weaknesses and Further Research

We chose firms based on the criteria that they traded the entire period 2004-2017 which

naturally excludes companies that went bankrupt during this time. This introduces a sur-

vivorship bias into our analysis, which may affect skewness of returns. Possibly, firms that

go bankrupt are overrepresented in extreme negative returns before they dissolve. To re-

move the bias, one should not have a barrier towards firms that went bankrupt (or even got

delisted).

On a technical note, we used Polynomial Goal Programming to create optimal strategies.

An inherent weakness of the method is the fact that preferences are not derived from the

investor’s utility function, making the magnitude of the preference parameters entirely arbi-

trary. This makes ex-post comparisons of MVS to other strategies more difficult. There are

alternative methods which may yield comparable or better results which include techniques

like Taylor-approximation (‘the dual approach’). Additionally, estimating moments remains

a difficult task due to significant estimation error.

For further research on skewness in portfolio management, one could take a look at the effect

of different company sizes and how they might have an effect on overall skewness. We would

expect that if one discriminates assets based on market capitalization, there could be a trend

for skewness. For example, we hypothesize that smaller sized companies are more prone to

large one-month return which can have a sizeable effect on the overall portfolio skewness, as

explained in our sensitivity analysis. Another topic of interest may be investigating high vs

low growth firms. Yet another is a deeper analysis on how securities from different sectors of

the economy are differentiated in regards to skewed returns, and more importantly why.
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