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Abstract 

We examine mean reversion and seasonality in heating oil futures prices 

using an affine N-factor Gaussian model and NY Harbor ULSD futures. We 

find strong empirical evidence for mean reversion and seasonality in 

heating oil futures prices. 

 

Introduction 

The valuation and hedging of commodity contingent claims are of great importance to 

commodity producers, commodity consumers, financial intermediaries, and speculators. 

Consequently, appropriate modeling and estimation of the stochastic behavior of commodity 

prices are vital for these market participants’ applications of sound investment and risk-

management strategies. 

In this thesis, we consider an affine N-factor Gaussian model developed by Cortazar and 

Naranjo (2006), and study its ability to explain the stochastic behavior of heating oil futures 

prices. In doing so, we determine the parsimonious number of latent unobservable factors to 

include in the N-factor model, which depends on the existence and scale of mean reverting 

properties in heating oil’s price process under an equivalent martingale measure. Furthermore, 

we examine seasonality in heating oil futures prices, which depends on the existence and scale 

of seasonality in heating oil’s price process under an equivalent martingale measure. Lastly, 

we examine some implications of our findings regarding the mean reverting properties and 

seasonality in heating oil futures prices, utilizing model estimated heating oil futures prices 

and model estimated prices of a European call option on a heating oil futures contract. 

The base model for this thesis is Schwartz and Smith’s (2000) two-factor model, which is a 

two-factor version of Cortazar and Naranjo’s (2006) N-factor model. The seasonal adjustment 

to this base model is modeled as a deterministic continuous trigonometric function with 

seasonal frequencies, similar to the seasonal adjustment suggested by Sorensen (2002). 

The model parameters are estimated using maximum-likelihood techniques and the Kalman 

filter. We conduct a simulation study of the parameter estimation procedure, following 

Andresen and Sollie (2013), to highlight potential econometric issues. We find that the 

models are robust for use in valuation problems and generally not robust for forecasting 
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purposes, confirming Schwartz and Smith’s (2000) and Andresen and Sollie’s (2013) 

findings. 

In Cortazar and Naranjo’s (2006) study of crude oil price modeling, the authors found 

grounds for using three- or four-factor models, suggesting two or three mean reverting factors 

in crude oil’s price process under an equivalent martingale measure. Furthermore, the authors 

found that the accuracy of model estimated futures prices given by a two-, three- and four-

factor model was comparable for futures maturities between 3 months and 3 years, and that 

for maturities between 3 and 7 years the two-factor model was substantially less accurate than 

the three- and four-factor models. Crude oil is a major cost driver for heating oil as heating oil 

is refined from crude oil. Hence, mean reversion in heating oil’s price process under an 

equivalent martingale measure is probable. Indeed, based on parameter estimates of a two-

factor model, fitted on NY Harbor ULSD futures, we find significant mean reversion in 

heating oil’s price process under an equivalent martingale measure. However, we could not 

find grounds for including more than one mean reverting factor in the model. The maximal 

time to maturity of the futures contracts used to estimate parameters in this thesis is 

approximately 3 years, so we believe the difference in maximal contract maturity is the root 

cause of the difference in our findings regarding the appropriate number of mean reverting 

factors. Still, we cannot rule out that the difference in findings reflect differences in the two 

commodities’ price process under an equivalent martingale measure. 

Heating oil’s use as a heating fuel implies that there is an area dependent seasonal distillate 

fuel oil consumption pattern that is inversely related to the temperature in that area. We find 

signs of this seasonality in the U.S. distillate fuel oil inventory, and there appears to be a 

positive correlation between changes in the U.S. distillate fuel oil inventory and changes in 

the expected development of heating oil prices. Hence, seasonality in heating oil’s price 

process is probable. Indeed, based on likelihood-ratio tests of the two-factor base model and 

seasonally adjusted two-factor base models, we find that there is statistically significant 

seasonality in heating oil’s price process under an equivalent martingale measure. 

Furthermore, we find that allowing for more than two inflection points to capture this 

seasonality provided a statistically significantly better fit. In Roberts and Lin’s (2006) study 

of seasonality in the price process for different commodities the authors found significant 

seasonality in crude oil’s price process under an equivalent martingale measure, though the 

authors could not find grounds for allowing more than two inflection points in describing this 

seasonality. The contrast to our results indicates that there are significant differences between 
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the seasonality of the two commodities’ price process under an equivalent martingale 

measure. 

The outline for this thesis is as follows. In Section 1, we present an overview of heating oil 

and NY Harbor ULSD futures. In Section 2, we provide a brief overview of the commodity 

price model literature, present the chosen model, and derive some of its properties, which are 

important for parameter estimation and valuation and hedging of commodity contingent 

claims. In Section 3, the parameter estimation procedure is presented and tested in a 

controlled environment through simulation. In Section 4, the NY Harbor ULSD futures price 

panel is presented. In Section 5, estimation results are presented and reviewed. Lastly, in 

Section 6, we provide examples of practical implications of our findings, conclude, discuss 

assumptions and questions open for further study. 

 

Section 1   

In this section we present an overview of heating oil and NY Harbor ULSD futures, and 

extract some features of these that will be used for appropriately modeling the heating oil 

price process.1 

1.1 Heating Oil 

Heating oil is one of the petroleum products produced by refining crude oil (EIA (c), 2019). 

Heating oil is classified as a distillate alongside other petroleum products with similarities in 

chemical make-up (EIA (a), 2019). In this thesis, we use the distillate naming convention used 

by the United States Energy Information Administration (EIA). In EIA’s (a) (2019) naming 

convention, No. 2 fuel oil (heating oil) and No. 2 diesel fuel are considered as different kinds 

of No. 2 distillate, and No. 2 distillate is one of the distillates considered as distillate fuel oil. 

No. 2 diesel fuel is mainly used in diesel engines and No. 2 fuel oil (heating oil) is mainly 

used in atomizing type burners. To better align this naming convention with heating oil 

futures and to ease reading we use “heating oil” as a substitute for “No. 2 fuel oil (heating 

oil)”. 

                                                 
1 Hull (2012), defines a futures contract as a contract that obligates the holder to buy or sell an asset at a 
predetermined delivery price during a specified future time period with a given settlement scheme. 
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Heating oil is mainly used for commercial and residential space and water heating (EIA (c), 

2019). In the United States, the northeastern region accounts for most of the heating oil 

consumption, and the other regions of the United States typically use Natural Gas for space 

and water heating (EIA (c), 2019). 

There are numerous factors driving fluctuation in heating oil prices, and we will now discuss 

the most important ones. 

Figure 1 shows daily Cushing, OK Crude Oil Future Contract 1 (Dollars per Barrel) prices, 

daily New York Harbor No. 2 Heating Oil Future Contract 1 (Dollars per Gallon) prices 

multiplied by 42 and the daily heating oil crack spread from January 2, 2001 to December 12, 

2018. The time series are sourced from EIA (2019) which defines Contract 1 as a futures 

contract specifying the earliest delivery date, often called the front month. As both products 

have, for each month in a year, a single futures contract with delivery date in that month, the 

average time to delivery for Contract 1 is approximately 11 business days.2 

The heating oil crack spread represents a theoretical profit margin for heating oil refineries. It 

is defined as the price difference between heating oil futures and crude oil futures with the 

same delivery month and the same unit (CME Group (b), 2019). As 42 gallons is equivalent 

to one barrel we derive the crack spread by multiplying the heating oil dollars per gallon 

futures prices by 42 and subtract crude oil dollars per barrel futures prices. 

As futures prices tend towards the spot price when the time to maturity goes to zero (Hull, 

2012), the futures prices shown in Figure 1 provides a good approximation for their respective 

spot prices. 

                                                 
2 We’re assuming 250 business days in a year such that average time to delivery is + 1 × ≈ 11 business 

days. 
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Figure 1. Crude oil front month, heating oil front month and crack spread. Daily Cushing, OK Crude Oil 
Future Contract 1 (Dollars per Barrel), New York Harbor No. 2 Heating Oil Future Contract 1 (Dollars per 
Gallon) times 42 and heating oil crack spread. 

From Figure 1 we see that heating oil and crude oil prices are very volatile and highly 

positively correlated. Moreover, since the cost of crude oil is a primary cost driver in heating 

oil production, we can assert that the price of heating oil generally follows the cost of crude 

oil. Consequently, the factors that impact worldwide supply and demand for crude oil and 

expected supply and demand for crude oil will indirectly impact the price of heating oil. As an 

example, the pre-2008 crude oil price growth was driven by supply factors like production 

falls due to lack of investments and the Venezuelan oil worker strike, expected supply factors 

like decline in Saudi spare capacity and concerns about stability in the Middle East and 

demand factors like rapid economic development in Asia (World Economic Forum, 2016). 

The price drop in 2008 was caused by the global financial crisis (World Economic Forum, 

2016). Moreover, heating oil’s price dependence on the cost of crude oil suggests similarity 

between heating oil’s price process and crude oil’s price process, and as crude oil’s price 

process has been extensively studied in the commodities literature, we can find useful 

guidance regarding appropriate modeling of heating oil’s price process in the commodities 

literature (see Section 2). 

Figure 1 also shows that there have been substantial differences in the yearly average heating 

oil crack spread from 2001 to 2018. Though it’s less visually apparent from Figure 1, the 
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short-term variability in the heating oil crack spread have also been substantial from 2001 to 

2018. The fluctuation in the heating oil crack spread is driven by current and expected 

changes in supply and demand for heating oil. EIA (b) (2019) segments factors which impact 

current and expected changes in supply and demand into the categories Consumption, 

Production, Trade, Balance and Financial Markets. In the following we will define and 

examine the categories Consumption and Balance (see the Appendix for a brief description of 

the remaining categories). Statements regarding Consumption and Balance are sourced from 

EIA (b) (2019) unless otherwise specified. 

Consumption is directly linked to demand, and at present distillate fuel oil is the most 

consumed petroleum product worldwide. Global distillate fuel oil consumption has increased 

substantially from 1999 to 2016, with an annual continuous growth rate of approximately 2%. 

The observed distillate consumption growth is partially a reflection of the robust economic 

growth several developing countries have shown in this time window. Economic growth in 

developing countries tends to increase distillate fuel oil demand as economic growth in 

developing countries is usually centered around growth in the industry rather than services. 

Conversely, if the global economy were to become more services-oriented one would expect a 

decline in distillate consumption. 

Heating oil’s use as a heating fuel drives an area dependent seasonal distillate fuel oil 

consumption pattern that is inversely related to the temperature in that area. In addition, this 

relationship can lead to substantial unexpected spikes in consumption caused by deviations 

from expected weather patterns. 

The Balance category deals with inventory management questions induced by the storability 

of distillates and other petroleum products. Hence, Balance is linked to supply. Essentially, 

expected price growth encourages inventory builds to satisfy future demand while expected 

price decline encourages inventory drawdowns to satisfy current demand. 
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Figure 2. EOM U.S distillate fuel oil inventory. Boxplot of 2000 to 2018 end of month U.S distillate fuel oil 
inventory measured in million barrels. White points indicate the median, lines indicate the interquartile range and 
black points indicate the minimum and maximum values. 

 

Figure 2 shows a boxplot of 2000 to 2018 end of month United States distillate fuel oil 

inventory measured in million barrels. We see signs of the seasonal consumption pattern of 

heating oil in the inventory drawdowns in the late winter months and inventory buildups prior 

to the winter months. Furthermore, the interquartile inventory range is relatively narrow in 

December and wide in March fitting the seasonal consumption pattern of heating oil through 

increased uncertainty regarding future supply and demand relations as winter progress. There 

is a clear inventory drawdown tendency in October that is difficult to link to the seasonal 

consumption pattern of heating oil. However, this does explain the tendency to start builds as 

early as in July. 

Figure 3 shows year-over-year end-of-quarter change in United States distillate fuel oil 

inventory measured in million barrels, and year-over-year end-of-quarter change in NY 

Harbor ULSD futures 3rd less 1st-month prices measured in cents from 2001 to 2019. We see 

that distillate inventory drawdowns and builds is related to the market expectation of future 

price development. 
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Figure 3. YOY comparison of distillate fuel oil inventory and heating oil futures spread. Year-over-year 
end-of-quarter change in U.S distillate fuel oil inventory (million barrels) and year-over-year end-of-quarter 
change in NY Harbor ULSD Futures 3rd less 1st-month price (cents).  

 

Hence, seasonality in heating oil’s price process is probable as heating oil have an area-

dependent seasonal consumption pattern, and there are signs of seasonality in U.S. 

Distillate fuel oil inventory and there appears to be a positive correlation between changes 

in U.S. Distillate fuel oil inventory and changes in the expected development of heating 

oil prices. 

1.2 NY Harbor ULSD Futures (HO) 

The heating oil futures used in this thesis is NY Harbor ULSD futures, ticker symbol HO. NY 

Harbor ULSD futures are New York Mercantile Exchange (NYMEX) listed futures with daily 

settlement and physical delivery at New York Harbor (NYH) upon expiration (CME Group 

(a), 2019).  The NY Harbor ULSD futures contract unit is 42000 gallons, priced in USD with 

minimal fluctuation of $0.0001 per gallon (CME Group (a), 2019). At a given point in time 

different NY Harbor futures contracts are listed, maturing in the current month, one of the 

remaining months in the current year, one of the months in the three years following the 

current year and the month following the three years following the current year (CME Group 

(a), 2019). The futures are settled by CME Group staff based on information gathered from 

trading activity like prices, volume and calendar spreads, using one set of rules for the closest 
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to maturity contract and a different set of rules for all other contracts (CME Group (c), 2019). 

As settlement prices calculated by CME Group staff are used for marking to market all 

account balances, they are widely scrutinized by all market participants and therefore 

represent a very accurate measure of the true market price (Trolle & Schwartz, 2008). 

In May 2013, the New York Mercantile Exchange altered the contract specification for the 

heating oil futures contracts to the ultra-low sulfur diesel specification (ULSD) (EIA (d), 

2019). The ULSD specification requires that the delivered distillate fuel oil contains less than 

15 parts per million (ppm) of sulfur (EIA (d), 2019), which is in line with the specification of 

most diesel fuels (EIA (d), 2019). As a reference, distillate fuel oil with sulfur content up to 

2000 ppm have historically been allowed for delivery on heating oil futures contracts (EIA 

(d), 2019). In general, the switch makes it easier for market participants to hedge their 

distillate fuel oil investments, unless they specifically want to hedge traditional heating oil, 

which has a higher sulfur content (EIA (d), 2019).  

In 2012, New York imposed a sulfur content limit on distillate fuel oil used for heating 

purposes and other northeastern states plan to follow suit (EIA (d), 2019). Therefore, though 

the ticker symbol is HO, which stands for heating oil, and the actual futures contract name 

contain “Diesel Fuel”, it’s more accurate to think of the underlying product in terms of the 

broader category distillate fuel oil with a sulfur restriction. 

A futures contract’s liquidity is given by how frequently it is traded, volume, and its total 

number of outstanding positions, open interest (Hull, 2012). In this thesis, we make extensive 

use of theoretical financial results which assume infinite liquidity, so that high or at the very 

least decent liquidity is required for the results to be valid/applicable. Figure 4 shows yearly 

aggregated NY Harbor ULSD futures volume in the time window 2012 to 2018. We see that 

NY Harbor ULSD futures are frequently traded and that the trading volume has increased 

from 2013 onwards, possibly due to the contract specification change making the NY Harbor 

ULSD futures better suited to hedge other low sulfur distillates or a reflection of distillate fuel 

oil consumption growth. According to the Futures Industry Association, (FIA, 2019), NY 

Harbor ULSD futures was the 13th most traded future or option in 2018 worldwide. As a 

reference point, the second and fourth most traded future or option in the world in 2018 were 

the NYMEX traded WTI Light Sweet Crude Oil futures and Henry Hub Natural Gas futures 

with 2018 volumes of 306.5 and 114.3 million contracts traded, respectively (FIA, 2019). 

2018 end of year open interest figures for WTI Light Sweet Crude Oil futures, Henry Hub 

Natural Gas futures and NY Harbor ULSD futures were 2, 1.2, and 0.4 million contracts 
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outstanding, respectively (FIA, 2019). Hence, the liquidity of NY Harbor ULSD futures may 

be classified as high. 

 

Figure 4. NY Harbor ULSD futures volume. Aggregated yearly NY Harbor ULSD futures volumes, measured 

in million contracts traded. 

Section 2   

In this section we provide a brief overview of the commodity price model literature, building 

on Cortazar and Naranjo’s (2006) overview while focusing on the parts relevant for 

appropriate specification of a heating oil price model. Furthermore, we present our chosen 

model and derive some of its properties. The derived properties are either required for 

parameter estimation or properties that are important for valuation and hedging of commodity 

contingent claims. 

2.1 The Commodities Literature 

There are many different models of the stochastic process followed by commodity prices 

proposed in the literature. In general, the models differ in how they specify cost of carry and 

spot price innovations. The cost of carry summarizes the relationship between futures prices 

and spot prices and is defined as the storage cost of an asset plus the interest that is paid to 

finance the asset less the income earned on the asset (Hull, 2012). The income earned on the 
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asset, benefitting the asset holder and not the futures contract owner, is in the commodities 

literature called convenience yield and is often represented as a dividend yield (Hull, 2012). 

A frequently used and highly tractable model of commodity prices is the one-factor geometric 

Brownian motion model for the commodity spot price with a constant interest rate and 

convenience yield, proposed by Brennan and Schwartz (1985). This model implies a constant 

cost of carry and exhibits a constant volatility term structure of futures returns. This latter 

property contradicts the Samuelson Hypothesis, which predicts increasing futures price return 

volatility as contract expiration nears (Bessembinder, Coughenour, Seguin, & Smeller, 1996). 

Bessembinder, Coughenour, Seguin, and Smeller (1996) showed that the Samuelson 

Hypothesis should be expected to hold if there is negative covariation between spot returns 

and changes in the slope of the futures term structure.3 Furthermore, they argue and show 

empirically that the hypothesis will hold in markets where spot prices are mean reverting and 

the reversion is associated with variation in the cost of carry. These properties are typically 

found in commodity markets where convenience yields exist and display substantial 

intertemporal variation. Notably, Bessembinder, Coughenour, Seguin, and Smeller (1996) 

found strong support for the Samuelson Hypothesis in markets for crude oil. Moreover, 

several studies published after 1996 (see e.g. Schwartz (1997), Schwartz and Smith (2000), 

Cortazar and Schwartz (2003), Roberts and Lin (2006) and Cortazar and Naranjo (2006)) 

have found significant mean reversion in crude oil spot prices indicating that Bessembinder, 

Coughenour, Seguin, and Smeller’s (1996) findings are persistent for crude oil markets. As 

explained in Section 1, the cost of crude oil is a major cost driver for heating oil, and as 

several studies have found persistent mean reversion in crude oil spot prices, mean reversion 

in heating oil spot prices is probable. 

Several alternative one-factor models of commodity prices that account for mean reversion in 

commodity prices have been proposed. A remaining issue, common for all one-factor models, 

is that under the assumption that there is only a single source of uncertainty, it follows that 

futures prices with different maturities are assumed to be perfectly correlated, which 

contradicts existing evidence (Cortazar & Naranjo, 2006). 

                                                 
3 Bessembinder, Coughenour, Seguin, and Smeller (1996) defines “the slope of the futures term structure” as 𝑠  
where the value of 𝑠  is given by 𝐹 , = 𝑃 × e ( ), where 𝐹 ,  denotes the futures price at time 𝑡 for a contract 
maturing at time 𝑇 and 𝑃  denotes the spot price of the underlying product of the futures contract at time 𝑡.  
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In later years, commodities price models with multiple sources of uncertainty have been 

proposed. These models have in previous empirical studies outperformed single-factor models 

with respect to futures price and volatility term structure fit metrics (see e.g. Schwartz (1997) 

and Cortazar and Naranjo (2006)). 

The model chosen for this thesis is Cortazar and Naranjo’s (2006) N-factor Gaussian 

model, derived from Dai and Singleton’s (2000) A0(N) canonical representation of interest 

rates models, using Schwartz and Smith’s (2000) two-factor model as the base model.4 

We chose this model because it is tractable for an arbitrary number of risk factors, 

flexible with regards to mean reverting properties and seasonality, and nests most 

Gaussian models commonly found in the literature. This latter property is highly desirable 

as we want our findings to be as independent of the model specification as possible. 

2.2 Mathematical Representation of the Model 

We now turn to the precise mathematical description of Cortazar and Naranjo's (2006) model. 

We begin by defining the model under the subjective probability measure (Miltersen, 2003), 

also called the original probability measure (Miltersen, 2003), the real-world measure (Hull, 

2012) and the P-measure (Hull, 2012), often denoted P. The subjective probability measure is 

the probability measure that investors have and use to calculate expectations, variances, 

covariances, etc., of future prices and returns (Miltersen, 2003). At a later stage, under 

“Nested Models”, we define the model under an equivalent martingale measure, often, and 

hence forth denoted 𝑄, which will be used for pricing purposes. We denote Wiener 

increments under 𝑃 𝑑𝑤, and Wiener increments under 𝑄 𝑑𝑤 . 

Let 

 

 
𝑙𝑛(𝑆 ) = 𝟏 𝒙 + 𝑠(𝑡), (1) 

where 𝑙𝑛(𝑆 ) is the natural logarithm of a spot price at time 𝑡, 𝑠(𝑡) is a deterministic function 

of time and  

 

 

 

𝒙  = 

𝑥

𝑥
⋮

𝑥

  

                                                 
4 Cortazar and Naranjo (2006) use “Gaussian” when referring to their own model and equivalent models found in 
the commodities literature, where Gaussian refers to distributional properties of the model. 
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is a vector of latent unobservable state variables. The vector of state variables follows the 

process  

 

 
𝑑𝒙  = (−Κ𝒙 + 𝛃)𝑑𝑡 + Σ𝑑𝐰 , (2) 

where 

 

 

 

 

Κ = 

κ ≡ 0 0 ⋯ 0
0 κ ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ κ

, κ > 0 ∀ i ∈ {2,3, … , m},  

 

 

 

 

𝜷 =  

𝜇
0
⋮
0

,  

 

 

 

 

Σ = 

σ 0 ⋯ 0
0 σ ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ σ

, σ ≥ 0 ∀ i ∈ {1,2, … , m}  

and    

 

 

 

 

𝑑𝒘  = 

𝑑𝑤

𝑑𝑤
⋮

𝑑𝑤

.  

Here 𝑑𝒘  is a vector of correlated Wiener increments such that 𝑑𝒘 𝑑𝒘 = Ω𝑑𝑡, 

where 

 

 

 

 

 

Ω = 

1 ρ ⋯ ρ
ρ 1 ⋯ ρ

⋮ ⋮ ⋱ ⋮
ρ ρ ⋯ 1

  

and ρ ∈ [−1,1] ∀ i, j ∈ {1,2, … , m} are the instantaneous correlations between state variables 

𝑖 and 𝑗.  
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From this model definition, it follows that the state variables have a multivariate normal 

distribution. 

𝑥  is defined as a geometric Brownian motion with drift coefficient μ and diffusion 

coefficient σ . Therefore, 𝑥  is non-stationary for σ ≠ 0 and μ ≠ 0, which introduces the 

possibility of non-stationarity in the spot price process. There are several ways to remove this 

non-stationarity possibility, e.g. by setting κ > 0, μ ≡ 0 and 𝑠(𝑡) = μ × 𝑡. However, 

Cortazar and Naranjo (2006) found no significant difference in comparing model estimates 

with and without a non-stationarity assumption imposed for crude oil markets. A look at 

Figure 1 indicates that allowing the possibility of a unit root is appropriate for heating oil 

markets. Moreover, allowing the possibility of a unit root is in line with traditional models 

found in the commodities literature (Cortazar & Naranjo, 2006).  

The changes in 𝑥  capture changes in supply or demand, caused by for instance changes in 

technology and preferences, that are expected to persist (Schwartz & Smith, 2000). 

The remaining state variables, 𝑥 , 𝑥 , … , 𝑥 , follow an Ornstein–Uhlenbeck process that 

reverts to zero at a mean reversion rate given by κ , κ , … , κ , respectively. Changes in these 

state variables capture transitory changes in supply and demand, caused by for instance 

weather variations and irregular supply disruptions (Schwartz & Smith, 2000). Furthermore, 

the effect of time to maturity is captured by these state variables (Power & Turvey, 2008). 

This will become apparent from the closed form formulas for futures and option prices 

derived at a later stage in Section 2. 

Seasonality will in this thesis be modeled through 𝑠(𝑡), which we define in the last subsection 

of Section 2. 

2.3 Nested Models 

Cortazar and Naranjo’s (2006) model is unusual in that it makes no mention of convenience 

yields. Yet, choosing parameters and assumptions correctly it can be specialized to models 

equivalent to, “nests”, most existing two and three-factor Gaussian models found in the 

commodities literature, Gibson and Schwartz (1990), Schwartz (1997), Roberts and Fackler 

(1999), Schwartz & Smith (2000), Cortazar and Schwartz (2003), among others, and can 

therefore be expressed in terms of the parameters of these models. This nested models 

property is desirable because it ensures that empirical findings using Cortazar and Naranjo’s 

(2006) model are directly transferable to a wide range of commodity price models found in 
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the literature. In other words, we get tractability and flexibility with respect to mean reverting 

properties and seasonality without loss of generality or theoretical soundness. 

Following Cortazar and Naranjo (2006), the nested model property can be derived using the 

following series of arguments: 

Let 𝒚  be the state vector of a model that can be written on the form: 

 

 
𝑙𝑛(𝑆 ) = 𝒉 𝒚 + �̅�(𝑡)  

 

 
𝑑𝒚  = −Κ𝒚 + 𝛃 𝑑𝑡 + Σd𝐰   

Where 𝑑𝒘 𝑑𝒘 = Ω𝑑𝑡, �̅�(𝑡) is a deterministic function of time, 𝒉 and 𝛃 are vectors and 𝐾 

and Σ are matrices. 

Next, consider a model with state vector 𝒛 with the same dimensions as 𝒚 defined by an affine 

transformation of 𝒚 such that 𝒛 = 𝐿𝒚 + 𝛗(𝑡), where the matrix L is invertible and 𝝋(𝑡) is a 

vector of deterministic functions of time with dimensions matching the dimensions of 𝒚 . 

There is a one-to-one relationship between the state vectors  𝒛  and 𝒚 . Moreover, it follows 

that 

 

 
𝑙𝑛(𝑆 ) = 𝒉 𝒛 + 𝑠(𝑡)  

 

 
𝑑𝒛  = (−K𝒛 + 𝛃)𝑑𝑡 + Σd𝐰   

where 𝒉 = 𝒉 𝐿 , 𝑠(𝑡) = �̅�(𝑡) − 𝒉 𝛗(𝑡), 𝐾 = 𝐿𝐾𝐿 , β = 𝐾𝛗(𝑡) + 𝐿𝜷 +
𝝋( )

,5 

Σ = 𝐿Σ, 𝑑𝒘 𝑑𝒘 = Ω𝑑𝑡 and ΣΩΣ = 𝐿ΣΩΣL . 

From the analysis of Dai and Singleton (2000) and Cortazar and Naranjo (2006), it follows 

that for any model that can be expressed like the model containing state vector 𝒚 , where Κ 

have term wise different eigenvalues, there exists an affine transformation 𝒛 = 𝐿𝒚 + 𝛗(𝑡) 

such that the model containing state vector 𝒛  equals our chosen model containing state vector 

𝒙 . Hence, any model that can be expressed like the model containing state vector 𝒚 , where Κ 

have term wise different eigenvalues, is nested in our chosen model. 

                                                 
5 Cortazar and Naranjo (2006) write this equation as 𝛃 = Κ𝛗(𝑡) + 𝐿𝜷. We belive this is a typo, see Appendix. 
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Schwartz and Smith (2000) showed how to transform a two-factor version of a model given 

by (1) and (2) to the two-factor stochastic convenience yield model presented in Schwartz 

(1997). Next, we show, building on Schwartz and Smith’s (2000) derivation, that a two-factor 

stochastic convenience yield model with time-dependent equilibrium convenience yield level 

is nested within our chosen model.6  

Let 

 

 
𝑙𝑛(𝑆 ) = [1 0]𝒚   

 

 
𝑑𝒚  = −

0 1
0 𝜅

𝒚 +
𝜇 −

1

2
𝜎

𝜅𝛼(𝑡)
𝑑𝑡 +

𝜎 0
0 𝜎

𝑑𝐰 ,  

where 𝑦( ) is the natural logarithm of a time 𝑡 spot price, 𝑦( ) is the time 𝑡 convenience yield, 

α(𝑡) is a deterministic function of time and 𝑑𝐰  is defined as in (2). By letting  

 

 

 

 

𝒙  = 
1

−1

𝜅

0
1

𝜅

𝒚 +

1

2
𝜎 𝑡 + α(𝑡)  𝑑𝑡

−𝑒 α(𝑡) 𝑒  𝑑𝑡

  

and applying the transformation relations previously shown, we get the model 

 

 
𝑙𝑛(𝑆 ) = [1 1]𝒙 −

1

2
𝜎 𝑡 − α(𝑡)  𝑑𝑡 + 𝑒 α(𝑡) 𝑒  𝑑𝑡  

 

 

 

 

 

𝑑𝒙  = −
0 0
0 𝜅

𝒙 +
𝜇
0

𝑑𝑡 +

⎣
⎢
⎢
⎢
⎡

σ −
2ρσ σ

κ
+

σ

κ
0

0
𝜎

𝜅 ⎦
⎥
⎥
⎥
⎤

𝑑𝒘 ,  

where 𝑑𝐰 𝑑𝐰 = Ωdt =
1 ρ
ρ 1

𝑑𝑡 and ρ =  (−𝜅𝜌𝜎 + 𝜎 ) .7 

                                                 
6 A two-factor stochastic convenience yield model with time-dependent equilibrium convenience yield level has 
been used by Roberts and Fackler (1999), Roberts and Lin (2006), among others, to test for seasonality in 
convenience yield in several different futures markets. Note that the two-factor stochastic convenience yield 
model with time dependent equilibrium convenience yield level naturally nests the two-factor stochastic 
convenience yield model with constant convenience yield level found in Schwartz (1997). 
7 The change of Wiener process is derived using that almost surely, we can find a constant 𝑎 such that 𝑎𝑊 =
𝑏𝑊 + 𝑐𝑊  where 𝑊 denote a Wiener process and 𝑎, 𝑏 and 𝑐 are constants. 



17 

This latter model is a two-factor version of the model given by (1) and (2) expressed with the 

parameters of a two-factor stochastic convenience yield model with time-dependent 

equilibrium convenience yield level. As the matrix 𝐿 is invertible, we conclude that a two-

factor stochastic convenience yield model with time dependent equilibrium convenience yield 

level is equivalent to a model specified by (1) and (2). 

A similar exercise can be done with 𝒚’s process under an equivalent martingale measure. 

However, carrying out this exercise, an econometric difference between the classical 

convenience yield models and Cortazar and Naranjo’s (2006) model becomes apparent. 

Utilizing Girsanov’s theorem (Hull, 2012) and assuming constant risk premiums, 𝛌, it can be 

shown that the risk-adjusted dynamics of (2) are 

 

 
𝑑𝒙  = (−Κ𝒙 + 𝛃 −  𝛌)𝑑𝑡 + Σ𝑑𝒘  (3) 

where 𝑑𝒘  is a vector of correlated Wiener increments under 𝑄. Furthermore, it can be 

shown that under 𝑄, the drift of the spot price of a commodity, must be equal to the difference 

between the continuous risk-free interest rate, 𝑟, and the commodity’s continuous 

convenience yield (see e.g. Schwartz (1997) or Hull (2012)), e.g. 𝑦( ), such that 𝒚′𝑠 risk 

adjusted dynamics are  

 

 
𝑑𝒚  = −

0 1
0 𝜅

𝒚 +
𝑟 −

1

2
𝜎

𝜅𝛼(𝑡) −  λ
 𝑑𝑡 +

𝜎 0
0 𝜎

𝑑𝐰 ,  

where 𝑑𝒘  is a vector of correlated Wiener increments under 𝑄. 

By counting the number of parameters present in 𝑙𝑛(𝑆 ) = 𝑓(𝒚 ,⋅) and 𝑑𝒚  under 𝑃 and 𝑄, 

and 𝑙𝑛(𝑆 ) = 𝑓(𝒙 ,⋅) and 𝑑𝒙  under 𝑃 and 𝑄, where 𝒚 and 𝒙 have similar dimensions, we 

find that the model expressed in terms of 𝒙 is short one parameter compared to the model 

expressed in terms of 𝒚. Given the formal equivalence of the two models, this suggest that 

one of the parameters in the model expressed in terms of 𝒚 is econometrically redundant. 

Indeed, Schwartz and Smith (2000) found that the interest rate rate 𝑟 is not required for 

specifing spot price dynamics under 𝑃 or 𝑄, nor for valuing futures contracts or estimating 

models from futures prices. 
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2.4 Futures Prices and Volatility Term Structure of Futures Returns 

In this subsection we derive the closed form futures price formula in terms of the variables of 

a model defined by (1), (2) and (3). Based on this futures price formula, we derive the formula 

for the volatility term structure of futures returns. We use these formulas for parameter 

estimation, model inspection and to examine some practical implications of our findings. 

In an economy where we assume fixed interest rates, the price of a futures contract at time 𝑡 

maturing at time 𝑇 will be equal to the expected value of the underlying asset of the contract 

at time 𝑇 under an equivalent martingale measure (Cox, Ingersoll, & Ross, 1981). 

Using this equivalent martingale measure property, we have that  

 

 
𝐹 ,  = 𝐸 (𝑆 ),  

where 𝐹 ,  is the price of a futures contract at time 𝑡 maturing at time 𝑇 where 𝑇 − 𝑡 ≥ 0.  

The conditional distribution of 𝑆  within our chosen mode framework is lognormal. 

Therefore, using well known properties of lognormal variables it follows that 

 

 
𝐸 (𝑆 ) = 𝑒𝑥𝑝 𝐸 (𝑙𝑛(𝑆 )) +

1

2
𝑉𝑎𝑟 (𝑙𝑛(𝑆 )) . (4) 

For a model given by (1), (2) and (3), this simplifies to  

 

 
𝐸 (𝑆 ) = 𝑒𝑥𝑝 𝟏 𝐸 (𝒙 )  +  𝑠(𝑇)  +  

1

2
(𝟏 𝐶𝑜𝑣 (𝒙 )𝟏) , (5) 

where, using properties derived by Schwartz and Smith (2000) and Cortazar and Naranjo 

(2006), 

 

 

 

 

𝐸 𝑥  = 

𝑥  + (𝜇 −  𝜆 )(𝑇 − 𝑡), 𝑖 = 1

𝑒𝑥𝑝(−κ (𝑇 − 𝑡))𝑥  −  
1 − 𝑒𝑥𝑝 −κ (𝑇 − 𝑡)

κ
𝜆 , 𝑖 ≠ 1

  

and 

𝐶𝑜𝑣 𝑥 , 𝑥  = 

(𝜎 ) (𝑇 − 𝑡), 𝑖 = 𝑗 = 1

𝜎 𝜎 𝜌  
1 − 𝑒𝑥𝑝 − κ + κ (𝑇 − 𝑡)

κ + κ
, 𝑖 ≠ 1 𝑜𝑟 𝑗 ≠ 1

.  
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By applying the natural logarithm to both sides of (5) we get a linear futures price formula in 

terms of the variables and parameters present in our chosen model, 

 𝑙𝑛 𝐹 ,  = 

⎣
⎢
⎢
⎡

1
𝑒𝑥𝑝 −κ (𝑇 − 𝑡)

⋮
𝑒𝑥𝑝 −κ (𝑇 − 𝑡) ⎦

⎥
⎥
⎤

𝒙  (6) 

 

 
  + 𝑠(𝑇) + 𝐴(𝑇 − 𝑡)  

where  

 

 
𝐴(𝑇 − 𝑡) = (𝜇 − 𝜆 )(𝑇 − 𝑡)  

   −
1 − 𝑒𝑥𝑝 −κ (𝑇 − 𝑡)

κ
𝜆   

   + 
1

2
(𝟏  𝐶𝑜𝑣 (𝒙 )𝟏).  

and 𝑠(𝑇) is a deterministic function of time. 

Furthermore, by applying Ito’s lemma to 𝑙𝑛 𝐹 ,  given by (6) we have that, 

 

 

 

𝑑 𝑙𝑛 𝐹 ,  = 
𝜕𝑙𝑛 𝐹 ,

𝜕𝑡
𝑑𝑡 + ∇𝒙𝑙𝑛 𝐹 , 𝑑𝒙 ,  

where ∇𝒙𝑙𝑛 𝐹 , = 𝑒𝑥𝑝 −κ (𝑇 − 𝑡) ⋯ 𝑒𝑥𝑝 −κ (𝑇 − 𝑡) , and so the model 

variance term structure of futures returns is given by 

 

 

 

 

∇𝒙𝑙𝑛 𝐹 , ΣΩΣ ∇𝒙𝑙𝑛 𝐹 ,  = σ σ ρ 𝑒 ( ),  κ ≡ 0. (7) 

Hull (2012) defines volatility term structure as the variation of volatility with time to maturity, 

where volatility is a measure of the uncertainty of the return realized on an asset. We follow 

the usual convention of measuring uncertainty in standard deviations, so that the that the 

model volatility term structure of futures returns is given by the square root of the model 

variance term structure of futures returns defined in (7). 
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From (7) we see that in our framework the model volatility term structure of futures returns is 

independent of the state variables. Furthermore, we see that the geometric Brownian motion 

factor does not induce time to maturity dependence in the model volatility term structure of 

futures returns, because as 𝑇 − 𝑡 approaches 0 the volatility approaches the volatility of 

𝑙𝑛(𝑆), i.e. the volatility approaches the volatility of the sum of the short-term factors and the 

long-term factor, and as 𝑇 − 𝑡 approaches infinity the volatility approaches the volatility of 

the geometric Brownian motion factor, i.e. the volatility approaches σ , which is the volatility 

of the long-term factor (Schwartz & Smith, 2000). 

2.5 European Call Option on a Futures Contract 

In this subsection we derive the closed form formula for the value of a European call option 

on a futures contract in terms of the variables of a model defined by (1), (2) and (3). We use 

this formula to examine some practical implications of our findings. 

Hull (2012) defines a European call option as an option to buy an asset at a certain price at a 

certain date. By using (6) and the distributional properties of 𝒙  we can, following Schwartz 

and Smith (2000), derive a closed form formula for the value of a European call option on a 

futures contract expiring at time 𝑇 with strike price 𝐾 and time 𝑡 until option maturity, where 

𝑇 − 𝑡 ≥ 0. 

Let 𝑐  denote the value of a European call option on a futures contract expiring at time 𝑇 with 

strike price 𝐾 and time 𝑡 until option maturity where 0 < 𝑡 ≤ 𝑇. 

As 𝐹 ,  is lognormally distributed under 𝑄 it follows that  

 

 
𝑐  = 𝑒𝑥𝑝(−𝑟𝑡)𝐸 𝐹 , − 𝐾  (8) 

 

 
  𝑒𝑥𝑝(−𝑟𝑡) 𝐹 , 𝑁(𝑑) − 𝐾𝑁 𝑑 − σ , ,  

 
where 𝑁(∙) indicates cumulative probabilities for the standard normal distribution, 

 

 

 

σ ,  = 𝑉𝑎𝑟 𝑙𝑛 𝐹 ,   
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 = 

𝑒𝑥𝑝 −κ (𝑇 − 𝑡)

⋮
𝑒𝑥𝑝 −κ (𝑇 − 𝑡)

𝐶𝑜𝑣 (𝒙 )
𝑒𝑥𝑝 −κ (𝑇 − 𝑡)

⋮
𝑒𝑥𝑝 −κ (𝑇 − 𝑡)

,  κ ≡ 0  

and 

 

 
𝑑 = 

𝑙𝑛
𝐹 ,

𝐾

σ ,
 +  

1

2
σ , .  

 

2.6 Seasonality Function 

We can now define the seasonality function, 𝑠(𝑡), with knowledge of how 𝑠(𝑡) impacts 𝐹 ,  

and 𝑐 . From (6) we have that 𝑠 affects the level of 𝑙𝑛(𝐹 , ). From (8) we have that 𝑠 impacts 

𝑐  though a percentage adjustment of 𝐹 ,  and a level adjustment of 𝑑 scaled by σ , . 

Following Roberts and Fackler (1999), Sorensen (2002), Roberts and Lin (2006) and Power 

and Turvey (2008), we define 𝑠(𝑡) as 

 

 
𝑠(𝑡) = 𝛾 cos(2𝜋𝑖𝑡)  + 𝛾∗sin(2𝜋𝑖𝑡)   

where the upper limit of 𝑖 determines how many inflection points 𝑠(𝑡) can have in a year. As 

𝑠 captures price movements that are related to the season, the value of γ  and 𝛾∗, number of 

inflection points and location of the inflection points is determined by the seasonal patterns in 

the spot price. 

The main benefit of this specification of 𝑠(𝑡) is that it provides much flexibility with few 

parameters. The main potential drawback of this specification of 𝑠(𝑡) is that it is continuous 

and does not differentiate between 𝑇 and 𝑇 +  𝑎 ∈  ℤ > 0. 

Considering the seasonal consumption pattern of heating oil described in Section 1, general 

knowledge about how the four seasons in the northern hemisphere develop throughout a year 

and the pattern seen in Figure 2, we do not expect that 𝑠′𝑠 continuity will pose an issue, i.e. 

we do not expect several systematic seasonal heating oil price spikes or drops. 
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Section 3   

In this section we present the chosen estimation procedure and test this procedure in a 

controlled environment utilizing simulation. The aim is to ensure that the codes used in the 

estimation procedure are working properly and to highlight potential problem areas. 

3.1 Estimation Method 

In Section 2 we derived a closed-form formula relating the natural logarithm of futures prices 

to the value of latent unobservable state variables. Therefore, assuming no measurement 

errors, it is possible to estimate the value of the latent unobservable state variables by 

inverting the futures price formula relating futures prices to state variable values. Schwartz 

and Smith (2000) defines measurement errors as errors in the reported futures prices or errors 

in the model’s fit to observed prices. Several empirical studies (see e.g. Schwartz (1997), 

Schwartz and Smith (2000), Cortazar and Naranjo (2006), among others) have found 

statistically significant measurement error variability, i.e. the measurement errors cannot be 

assumed to be constantly equal to zero, using a similar setup to that of this thesis on several 

different futures markets. Therefore, it is reasonable to assume that some degree of 

measurement errors will be observed in fitting our chosen model using observed heating oil 

futures prices. 

An estimation methodology that can handle multifactor models, latent unobservable state 

variables and measurement errors is the Kalman filter. The Kalman filter is an estimation 

methodology that is widely used in the commodities price modeling literature, see e.g. 

Schwartz (1997), Roberts and Fackler (1999), Schwartz and Smith (2000), Sorensen (2002), 

Cortazar and Naranjo (2006), among others. 

3.2 The Kalman Filter 

The Kalman filter, first introduced by R.E Kalman in 1960, is a set of mathematical equations 

that provides an efficient computational means to estimate the state of a process such that the 

mean of the squared error is minimized (Welch & Bishop, 2006). Moreover, the Kalman filter 

provides a means for estimating the parameters that defines a state space model with 

unobservable variables through maximum likelihood techniques. 

We now describe the filter more precisely, following Koopman and Durbin (1998). Consider 

the multivariate Gaussian linear state space model with continuous states and discrete time 

intervals 𝑡 ∈  {1,2, … , 𝑛} given by 
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𝒚  = 𝑍 𝛂 + 𝛆  (𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛) 

 

 
𝛂  = T 𝛂 + 𝑅 𝛈  (𝑠𝑡𝑎𝑡𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛) 

where 𝛆 ~𝑁(0, 𝐻 ), 𝛈 ~𝑁(0, 𝑄 ) and 𝛂 ~𝑁(𝒂, 𝑃) are mutually independent. Here 𝒚  is a 

𝑢 × 1 vector of observations, 𝛂  is a 𝑚 × 1 vector of unobservable states and 𝛆  is a vector 

of disturbances. The state vector follows a Markov process with a 𝑚 × 1 disturbance vector 

𝜼 . The system matrices, 𝑍 , 𝐻 , T , 𝑅  and 𝑄 , have appropriate dimensions and need not be 

time varying. 

The Kalman filter recursions evaluate the mean of the vector of unobservable states 

conditional on the observations, 𝒂 = 𝐸(𝛂 |{𝒚 , 𝒚 , … , 𝒚 }), usually called the one-step-

ahead prediction, and its covariance matrix 𝑃 = 𝑣𝑎𝑟(𝛂 |{𝒚 , 𝒚 , … , 𝒚 }) for 𝑡 ∈

 {1,2, … , 𝑛}. The Kalman filter recursion equations are: 

 

 
𝒗  = 𝒚 − 𝑍 𝜶 ,   

 

 
𝐹  = 𝑍 𝑃 𝑍 + 𝐻 , 8  

 

 
𝐾  = 𝑃 𝑍 ,  

 

 
𝒂  = T (𝒂 + 𝐾 𝐹 𝒗 ),  

and    

 

 
𝑃  = T (𝑃 − 𝐾 𝐹 𝐾 )T + 𝑅 𝑄 𝑅 .  

𝒗 is usually called the prediction error and 𝐹 is its related covariance matrix. The formal proof 

of these equations can be derived through the properties of the multivariate normal 

distribution. 

The estimated mean of the vector of unobservable states conditional on the observations, 

𝒂 = 𝐸(𝛂 |{𝒚 , 𝒚 , … , 𝒚 }), can be used as estimates for the state vector, or as inputs for 

                                                 
8 Note that 𝐹 does not denote a futures price in the current subsection. 
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a smoothing algorithm producing state vector estimates based on the full set of observations, 

𝑌 = {𝒚 , 𝒚 , … , 𝒚 }. 

If the system matrices, 𝑍 , 𝐻 , T , 𝑅  and 𝑄 , are dependent upon a vector of unknown 

parameters, 𝜓, the log-likelihood for a given ψ can be computed with output from the Kalman 

filter as 

 

 

 

𝑙𝑜𝑔(𝐿) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 −
1

2
𝑙𝑜𝑔|𝐹 | + 𝒗 𝐹 𝒗 .  

This allows for maximum likelihood estimation of ψ through maximization of 𝑙𝑜𝑔 𝐿|ψ . 

To get a better feel for the internal logic of the Kalman filter equations it is useful to step 

through an iteration. Imagine that we are at time 2 such that that 𝒂  =  𝒂 and 𝑃 =  𝑃, 

derived from 𝛂 ~𝑁(𝒂, 𝑃) assumed known a priori for now. From the state equation we can 

compute the one-step-ahead prediction, 𝒂  |   = T 𝒂 , providing an initial estimate for 

the vector of unobservable state variables at time 𝑡, and its covariance matrix 𝑃  |    =

T   𝑃   T   +  𝑅   𝑄   𝑅   . Next, we can, using the observation equation and the 

initial estimate for vector of unobservable state variables at time 𝑡, compute the one-step-

ahead predicted 𝒚-values, 𝒚  |   = 𝑍 𝒂  |  . As 𝒚 is observable, we can compute a 

measure of the accuracy of our predictions and its covariance matrix. This accuracy measure 

is the one-step-ahead prediction error, computed as 𝒗 = 𝒚  −  𝒚  |    with covariance 

matrix 𝐹 = 𝑍 𝑃  |  𝑍 + 𝐻 . Now we have an initial estimate for the vector of 

unobservable state variables at time 𝑡, a measurement of how well this estimate agrees with 

something observable and their variability measures. Intuitively, all these values contain some 

information about what a good one-step-ahead prediction for the vector of unobservable state 

variables should be, so it should be possible to produce a new and improved one-step-ahead 

prediction for the vector of unobservable state variables at time 𝑡 using these values. Indeed, 

in the last step in a single iteration, we calculate a new, updated, estimate for the vector of 

unobservable state variables at time 𝑡 using all the previously calculated values, 𝒂  =

𝒂  |    +  𝑃  |   𝑍 𝐹 𝒗 , and its covariance matrix 𝑃  =  𝑃  |   −

𝑃  |   𝑍 𝐹 𝑍 𝑃  |   . 

In walking through an iteration, we see that the Kalman filter requires initial values for 𝒂 and 

𝑃, supplied through α ~𝑁(𝒂, 𝑃). If these initial values are unknown, we can make an 
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educated guess based on assumed properties and available data or use numerical techniques 

like diffuse initialization. Koopman and Durbin (1998) suggest that if the vector of 

unobservable states contains non-stationary components, which is probable in our case, 

utilizing diffuse initialization is preferred for some elements of the state vector. 

3.3 State Space Representation of a Model Defined By (1), (2) and (3) 

We’ve seen that to implement maximum likelihood parameter estimation for a model defined 

by (1), (2) and (3) through output from the Kalman filter we need to express the model in state 

space form. 

Using well known solutions to the stochastic differential equations in (2) and relations shown 

in Section 2 we can cast our model as a multivariate Gaussian linear state space model with 

continuous states and discrete time intervals 𝑡 ∈  𝑡 ,𝑡 = 𝑡 + ∆𝑡, … , 𝑡 = 𝑡 + ∆𝑡  given 

by 

 

 
𝑙𝑛 𝑭 ,𝑻  = 𝒃 + 𝑍 𝒙 + 𝛆  (𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛) 

 

 
𝒙  = 𝒄 + T 𝒙 + 𝛈  (𝑠𝑡𝑎𝑡𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛) 

where 𝛜 ~𝑁(0, 𝐻 ), 𝛈𝐭~𝑁(0, 𝑄 ) and 𝒙 ~𝑁(𝒂, 𝑃) are mutually independent. Furthermore, 

 

 
𝑙𝑛 𝑭 ,𝑻  = 

𝑙𝑛 𝐹 ,

⋮

𝑙𝑛 𝐹 ,

,  

 

 
𝒃𝒕 = 

𝑠(𝑇 ) + 𝐴(𝑇 − 𝑡)
⋮

𝑠 𝑇 + 𝐴 𝑇 − 𝑡
,  

 

 
𝑍  = 

1 𝑒𝑥𝑝 −κ (𝑇 − 𝑡) ⋯ 𝑒𝑥𝑝 −κ (𝑇 − 𝑡)

⋮ ⋮ ⋮ ⋮

1 𝑒𝑥𝑝 −κ 𝑇 − 𝑡 ⋯ 𝑒𝑥𝑝 −κ 𝑇 − 𝑡

,  

 

 
𝐻  = [𝜉 ⋯ 𝜉 𝜉 ⋯ 𝜉 𝜉 ⋯ 𝜉 ]𝐼 ,  

 

 
𝒄  = 

𝜇∆𝑡
0
⋮
0

,  

 T  = [1 𝑒𝑥𝑝(−κ ∆𝑡) ⋯ 𝑒𝑥𝑝(−κ ∆𝑡)]𝐼 ,  
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and    

 

 

 

𝑄  = 

(𝜎 ) ∆𝑡, 𝑖 = 𝑗 = 1

𝜎 𝜎 𝜌  
1 − 𝑒𝑥𝑝 − κ + κ ∆𝑡

κ + κ
, 𝑖 ≠ 1 𝑜𝑟 𝑗 ≠ 1

.  

 

In parameterizing the covariance of the measurement errors, 𝐻 , we’ve opted to follow 

Schwartz (1997), Schwartz and Smith (2000), Cortazar and Naranjo (2006), among others, 

and assumed independence. Furthermore, as there are for each date, more than 36 listed NY 

Harbor ULSD futures contracts with different maturities, the dimensionality of our problem is 

large, i.e. 𝑢  is large. Therefore, we’ve opted to follow Cortazar, Kovacevic and Schwartz 

(2013) and cast 𝐻  as [𝜉 ⋯ 𝜉 𝜉 ⋯ 𝜉 𝜉 ⋯ 𝜉 ]𝐼  using three maturity 

groups of equal length to reduce the number of estimated parameters. 

3.4 Simulation 

To create a controlled environment where we can test the Kalman filter and parameter 

estimation procedure we simulate futures price panels, estimate parameters and review the 

results. We limit the simulation study to a two-factor version of a model given by (1), (2) and 

(3), because the simulation study is very demanding in terms of computational resources, and 

because a simulation study using a two-factor model is likely sufficient for the insights we are 

after here. 

Following Andresen and Sollie (2013), the initial step of the simulation study is to simulate 

state variable paths for the two-factor model with the following algorithm: 

1. Generate 𝜖 ,  where 𝜖~𝑁(0, ΣΩΣ) 

2. 𝒙 ≡ 𝒂 ≡ 𝟎 

3. 𝒇𝒐𝒓 𝑖 =  2 𝒕𝒐 2501 𝒅𝒐 

3.1. 𝑥( )
= 𝑥

( )
+ 𝜇∆𝑡 + √∆𝑡ϵ ,  

3.2. 𝑥( )
= 𝑥

( )
𝑒𝑥𝑝(−κ ∆𝑡) +

( ∆ )
ϵ ,  

4. 𝒆𝒏𝒅 𝒇𝒐𝒓 

Given the simulated state vectors we evaluate (6) using parameter estimates presented in 

Schwartz and Smith (2000) and suitable time to maturity to get a price panel 𝑙𝑛(𝐹), 
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𝑑𝑖𝑚(𝑙𝑛(𝐹)) = 2500 × 20. The panel of maturities are generated by assuming end of month 

settlement and no holidays. The first column in 𝑙𝑛(𝐹) contains 2500 daily observations of the 

natural logarithm of simulated futures prices for contracts that are closest to maturity, the 

second column of 𝑙𝑛(𝐹) contains 2500 daily observations of the natural logarithm of 

simulated futures price for contracts that are second closest to maturity, and so forth. By 

assuming 52 weeks in a year we get that the average time to maturity for contracts in the first 

column is 
×

+ 1 × ≈ 11 business days, in the second column is 
×

 + 11 ≈ 32 

business days, in the third column is 
×

× 2 + 11 ≈ 54 business days, and so forth. 

Lastly, we add a small measurement error, 𝜀~𝑁(0,0.001 ), to each element in 𝑙𝑛(𝐹). 

We repeat these steps 100 times creating an array with dimensions 2500 × 20 × 100 such 

that each slice of the array contains a panel of the natural logarithm of simulated futures 

prices with characteristics as previously described. 

For each slice of the array we estimate a parameter vector, 𝜓, by maximizing a function that 

performs Kalman filtering and returns the log-likelihood for a given 𝜓. 

We used the Kalman filter implementation created by Helske (2017), which is based on the 

works of Koopman and Durbin. Helske’s (2017) Kalman filter implementation is a univariate 

version of the Kalman filter presented in “The Kalman Filter” that utilize exact diffuse 

initialization as described in Koopman and Durbin (1998). 

We maximized the log-likelihood by applying an evolutionary search algorithm and quasi-

Newton optimization algorithms.9 

  

                                                 
9 In choosing an optimization procedure we tested all the most promising candidates presented in Mullen (2014) 
and found that the Genoud algorithm, presented in Mebane and Sekhon (2007), provided the best combination of 
user control, accuracy and speed. The Genoud algorithm combines a genetic evolution strategy with a quasi-
Newton optimizer for local hill climbing. The quasi-Newton optimizer we used was the base R implementation 
of a LBFGS algorithm. As we did not have an analytical gradient we used Richardson’s extrapolation to 
approximate the gradient numerically. We also tried several different completely derivative free optimizers and 
found their performance lacking compared to the chosen procedure. 
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Table I 
Summary statistics of parameter estimates based on simulated futures price panels 

Summary statistics of parameter estimates based on 100 simulated futures price panels. Each panel of 
simulated futures price consist of daily observations of 20 futures prices for 2500 business days. The average 

time to maturity for contracts in the first column of each panel is 
×

+ 1 × ≈ 11 business days, the 

average time to maturity for contracts in the second column of each panel is 
×

 + 11 ≈ 32 business days, 

the average time to maturity for contracts in the third column of each panel is 
×

× 2 + 11 ≈ 54 business 

days, and so forth. Row Actual reports the true parameter values, row Min. reports the minimum of the 
estimated parameter values, row 1st and 3rd Qu. reports the first and the third quarter of the estimated 
parameter values, row Mean reports the mean of the estimated parameter values and row Max. reports the 
maximum of the estimated parameter values. Negative values are reported in parenthesis. 
Note that μ = μ − λ . 

 

Table I shows the distribution of a set of parameter estimates based on the natural logarithm 

of 100 simulated futures price panels with dimensions 2500 × 20, using parameter estimates 

presented in Schwartz and Smith (2000) as the actual parameter value. We see that for all the 

parameters the mean estimated value is approximately equal to the actual value, indicating 

that our estimation procedure is working. Moreover, we see that for μ = μ −

λ , κ , ρ , σ , σ  and 𝜀 the distribution of estimated values is narrow and that μ, λ  and λ  are 

not estimated with much accuracy, comparatively. 

The lack of accuracy in the estimates of μ, λ  and λ  is due to econometric issues. However, 

Schwartz and Smith (2000) provide an economic explanation which offers valuable insights. 

As we do not have direct observations of expected future spot prices we cannot accurately 

determine the expected future spot price location nor its long-term growth rate. Therefore, μ is 

poorly estimated as it’s partially determined by the long-term growth rate of expected future 

spot prices. Furthermore, λ  is poorly estimated as it’s partially determined by the difference 

between the long-term growth rate of expected future spot prices and long-term growth rate of 

observed futures prices. Lastly, λ  is poorly estimated as it’s partially determined by the 

difference between the long-term tangent line intercepts of expected future spot prices and the 

long-term tangent line intercepts of observed futures prices. Andresen and Sollie (2013) 

μQ μ κ2 λ1 λ2 ρ12 σ1 σ2 ε

Actual 0.016 (0.039) 1.190 (0.055) 0.014 0.189 0.115 0.158 0.001

Min. 0.016 (0.153) 1.188 (0.169) (0.099) 0.149 0.111 0.154 0.001
1st Qu. 0.016 (0.066) 1.190 (0.082) (0.024) 0.175 0.114 0.157 0.001
Mean 0.016 (0.041) 1.190 (0.057) 0.019 0.189 0.115 0.158 0.001
3rd Qu. 0.016 (0.014) 1.191 (0.030) 0.055 0.205 0.116 0.159 0.001
Max. 0.017 0.063 1.194 0.047 0.167 0.231 0.120 0.162 0.001



29 

showed that though the indeterminacy is only partial, the increase in parameter estimate 

accuracy as a function of number of observations is weak. 

Note that μ = μ − λ  is less affected by this indeterminacy issue as it is solely determined by 

the long-term growth rate of the observed futures prices. 

Thus, using futures data, we can precisely estimate the process for spot prices under an 

equivalent martingale measure, i.e. under 𝑄, but we cannot precisely estimate the process 

under P. Consequently, the indeterminacy issue does not affect the robustness of the model 

for use in valuation problems, but robustness for forecasting purposes is generally lacking. To 

precisely estimate risk premia and, indirectly, the long-term growth rate of expected future 

spot prices, either a large time window or observations related to the spot price process under 

P is required (Schwartz and Smith (2000) and Andresen and Sollie (2013)). 

 

Section 4   

In this section we present and review the NY Harbor ULSD futures price panel. 

4.1 The Data 

The data used to estimate model parameters and test the models consists of daily observations 

of NY Harbor ULSD futures nominal settlement prices from December 31, 2015 to December 

31, 2018, sourced from Thomson Reuters Datastream (2019). We do not adjust the settlement 

prices for inflation, which is justified by the relatively short time span of the time series, 

though Casassus and Collin-Dufresne (2005) suggest that mean reversion in real prices is 

more likely than in nominal prices. 

Using the same notation as in Schwartz (1997), we denote the contracts that are closest to 

maturity F01, the second closest to maturity F02, and so forth. This procedure generates 49 

generic futures contracts of whom 38 are continuously observable. 

We limited the contract depth to the first 38 contracts because by discarding contract F39 to 

F49 we get contracts with maturity ranges that are continuously observable, which is 

preferred given our relatively narrow time window. Moreover, the liquidity pattern painted by 

open interest and volume figures suggest that for maturities greater than approximately four 

weeks liquidity reduces as maturity increases. Thus, discarding the tail contracts increases the 

average sample liquidity. 
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Of these 38 contracts, we used the even-numbered contracts for parameter estimation, leaving 

the odd-numbered contracts for within time window out-of-sample statistics. The choice of 

using even-numbered contracts for parameter estimation was based on the fact that open 

interest and volume was higher for F02 than F01, and F02 settlement prices are less effected 

by investors rolling their positions as maturity nears.10 

Table II shows summary statistics for contract F1 to F38, which is the contract depth for this 

thesis. From Table II we see that mean futures prices increase with increased time to maturity, 

indicating that the average market is a normal market, as opposed to an inverted market where 

the futures price decreases with the maturity of the futures contract (Hull, 2012). Furthermore, 

we see that the standard error of mean futures prices decreases as time to maturity increases, 

indicating time to maturity dependence in the volatility term structure of futures returns. 

  

                                                 
10 Mean daily volume, mid-month open interest and end-of-month open interest for F01 and F02 was 48396, 
75528 and 1430, and 50314, 95780 and 124062, respectively.     
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Table II 
Statistics of heating oil futures contracts 

Statistics for daily observations of heating oil futures contracts from December 31, 2015 to December 31, 
2018. Settlement prices are in dollars per gallon and maturities are in years. The contract denomination 
specifies relative closeness to maturity and the approximate number of months to maturity. 

 

  

Contract Number of observations Mean price (SE) Maturity (SE)
F01 756 1.71 (0.348) 0.040 (0.024)
F02 756 1.71 (0.342) 0.123 (0.025)
F03 756 1.72 (0.336) 0.206 (0.025)
F04 756 1.72 (0.328) 0.290 (0.025)
F05 756 1.73 (0.321) 0.373 (0.025)
F06 756 1.73 (0.313) 0.456 (0.025)
F07 756 1.74 (0.305) 0.539 (0.025)
F08 756 1.74 (0.299) 0.623 (0.025)
F09 756 1.74 (0.293) 0.706 (0.025)
F10 756 1.75 (0.289) 0.789 (0.025)
F11 756 1.75 (0.285) 0.872 (0.025)
F12 756 1.75 (0.282) 0.955 (0.024)
F13 756 1.76 (0.280) 1.039 (0.024)
F14 756 1.76 (0.278) 1.122 (0.024)
F15 756 1.76 (0.275) 1.205 (0.025)
F16 756 1.76 (0.272) 1.289 (0.025)
F17 756 1.76 (0.270) 1.372 (0.025)
F18 756 1.76 (0.267) 1.455 (0.025)
F19 756 1.77 (0.264) 1.538 (0.025)
F20 756 1.77 (0.260) 1.622 (0.025)
F21 756 1.77 (0.256) 1.705 (0.025)
F22 756 1.77 (0.252) 1.788 (0.025)
F23 756 1.77 (0.248) 1.872 (0.025)
F24 756 1.77 (0.243) 1.955 (0.024)
F25 756 1.78 (0.240) 2.039 (0.024)
F26 756 1.78 (0.236) 2.122 (0.024)
F27 756 1.78 (0.231) 2.205 (0.025)
F28 756 1.78 (0.226) 2.288 (0.025)
F29 756 1.78 (0.220) 2.372 (0.025)
F30 756 1.79 (0.215) 2.455 (0.025)
F31 756 1.79 (0.210) 2.538 (0.025)
F32 756 1.79 (0.205) 2.622 (0.025)
F33 756 1.79 (0.202) 2.705 (0.025)
F34 756 1.80 (0.198) 2.788 (0.025)
F35 756 1.80 (0.194) 2.872 (0.024)
F36 756 1.80 (0.191) 2.955 (0.024)
F37 756 1.80 (0.187) 3.038 (0.024)
F38 756 1.80 (0.184) 3.122 (0.024)
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Figure 5 shows time to maturity for contract F01, F03, F05, F07 and F09 from December 31, 

2015 to December 31, 2018 measured in years. We see that time to maturity remains within a 

narrow range for each contract. This pattern of time to maturity is representative for all the 

contracts in the dataset. 

 

 

Figure 5. Time to maturity as a function of time. Time to maturity for contract F01, F03, F05, F07 and F09 
from December 31, 2015 to December 31, 2018 measured in years (y). The y-axis tick-marks are mean time to 
maturity measured in years for contract F01, F03, F05, F07 and F09. 

 

Figure 6 shows daily settlement prices for contract F01 and F18 from December 31, 2015 

to December 31, 2018 in dollars per gallon. We see a price dip in the lead and tail of the time 

series with an intermediate growth period. Furthermore, the F18 – F01 spread alternate signs, 

indicating mean reversion in heating oil prices under an equivalent martingale measure 

(Casassus & Collin-Dufresne, 2005). Alternating signs in the F18 – F01 spread suggest 

periods of strong backwardation. Strong backwardation is present if 𝑆 − 𝐹 , > 0, and due to 

convergence 𝑆 ≈ F01 (Trolle & Schwartz, 2008).11 In terms of the classical convenience 

yield models, strong backwardation implies that the convenience yield of a commodity 

exceeds the cost of storing the commodity plus the interest forgone (Bessembinder, 

Coughenour, Seguin, & Smeller, 1996). Intermittent periods of strong backwardation imply 

                                                 
11 Note that if strong backwardation is present for all maturities the market will also be an inverted market. 
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mean reversion in one or more of these quantities, convenience yield, cost of storage and 

interest forgone, a property that is normally assigned to the convenience yield. 

When it comes to seasonality, it’s difficult to discern any clear sinusoidal pattern from Figure 

6. This could be explained by the high volatility, the growth and decline periods or a lack of 

seasonality. 

 

 

Figure 6. Futures prices. Contract F01 and F18 daily settlement prices from December 31, 2015 to 
December 31, 2018 in dollars per gallon. 

 

Section 5   

In this section we present and review three different two-factor versions of the model defined 

by (1), (2) and (3) in Section 2. Model 1 have no seasonal adjustment, Model 2 have a 

seasonal adjustment with two inflection points and Model 3 have a seasonal adjustment with 

four inflection points. Furthermore, we examine the one-factor model and models with more 

than two-factors defined by (1), (2) and (3). 
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5.1 Estimated Parameters 

Table III 
Maximum-Likelihood Parameter Estimates 

Maximum-likelihood parameter estimates for the two-factor model defined by (1), (2) and 
(3) in Section 2 for heating oil daily settlement prices from December 31, 2015 to December 
31, 2018. Standard errors are estimated as the square root of the diagonal entries of the 
inverse of the estimated observed Fisher information matrix. 

 

Table III shows maximum-likelihood parameter estimates for the two-factor model presented 

in Section 2 applied to heating oil daily settlement prices from December 31, 2015 to 

December 31, 2018. Standard errors are estimated as the square root of the diagonal entries of 

the inverse of the estimated observed Fisher information matrix.12 The observed Fisher 

information matrix is calculated as the negative hessian of 𝑙 ψ  where 𝑙 is a log-likelihood 

function. 

Comparing the three models we see high consistency in parameter estimates. Furthermore, we 

see that μ and λ  have standard errors which are large compared to their absolute value and 

are not significantly different from zero. This is in accord with the indeterminacy issue 

discussed in Section 3. 

                                                 
12 Given certain restrictions, it can be shown that ψ  is asymptotically normally distributed with mean ψ and 
covariance matrix equal to the inverse Fisher information matrix (see e.g. Hallam (2019)). 

Parameter Estimate (SE) Estimate (SE) Estimate (SE)

μQ
-0.002 (0.001) -0.003 (0.001) -0.003 (0.001)

μ -0.014 (0.077) -0.011 (0.080) -0.013 (0.079)

κ2 0.330 (0.007) 0.341 (0.007) 0.332 (0.007)

λ2 0.143 (0.126) 0.144 (0.130) 0.145 (0.131)

ρ12 0.534 (0.044) 0.557 (0.041) 0.541 (0.042)

σ1 0.134 (0.005) 0.138 (0.005) 0.137 (0.005)

σ2 0.218 (0.009) 0.224 (0.010) 0.226 (0.010)

γ1 0.005 (0.000) 0.005 (0.000)

γ1* -0.001 (0.000) -0.001 (0.000)

γ2 0.001 (0.000)

γ2* 0.001 (0.000)

ξ1 0.011 (0.000) 0.009 (0.000) 0.009 (0.000)

ξ2 0.010 (0.000) 0.010 (0.000) 0.010 (0.000)

ξ3 0.005 (0.000) 0.004 (0.000) 0.004 (0.000)

Log-likelihood

Model 1 Model 2 Model 3

45,610 47,527 47,688
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The estimated value for μ = μ − λ  is barely significantly different from zero in Model 1 

and significantly different from zero in Model 2 and Model 3, with an estimated value close to 

zero. The lack of significance for μ  in Model 1 is possibly due to the relatively small sample 

size compared to the simulation study, or the major shifts in the long-term growth rate of the 

observed futures prices throughout our sample period, indicated by Figure 6, which puts stress 

on the constant parameter assumption. 

Furthermore, we see that κ , ρ , σ , 𝜎 ,ξ , ξ  and ξ  are highly significant. 𝜅  is estimated to 

be approximately 0.33. This indicates strong mean reversion where deviations from zero in 

𝑥 , the factor that captures the effect of transitory changes in supply and demand, are 

expected to halve in approximately 2.1 years.13 

𝜎  and 𝜎  are estimated to be approximately 14% and 22%, respectively, reflecting the high 

volatility in heating oil prices. 

The value of the estimated standard deviation of the measurement errors, ξ , ξ  and ξ , 

reduces as time to maturity increases for Model 1, indicating reduction in errors in the 

reporting of prices or increase in the model’s fit to observed prices as maturity increases. ξ  

and ξ  are lower in Model 2 and Model 3 than in Model 1, indicating that the increase in the 

model’s fit to observed prices caused by the seasonal adjustment is greater for short and long 

maturity contracts. 

5.2 Likelihood-Ratio Tests 

As Model 1 and 2 are restricted versions of Model 3, fitted on the same sample, we can use 

likelihood-ratio tests to determine if the seasonal adjustments are statistically significant. 

  

                                                 
13 2𝑒 = 1 ⇔ 𝑡 =

( )
,   

( )

.
≈ 2.1 
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Table IV 
Likelihood-Ratio Tests 

The table shows the results of likelihood-ratio tests for Model 1 and Model 2 (γ = γ∗ = 0), Model 1 and 
Model 3 (𝛾 = 𝛾∗ = 𝛾 = 𝛾∗  = 0) and Model 2 and Model 3 (𝛾 = 𝛾∗ = 0). The likelihood-ratios are 
calculated as −2(log-likelihood of the restricted model less log-likelihood of the unrestricted model). The 
critical values for the likelihood-ratio tests at the 5% significance level is given by 𝑃𝑟𝑜𝑏 χ  ≥  c = 0.05, 
where df denotes degrees of freedom and c is the critical value for the test.  

 

Table IV shows likelihood-ratio test for Model 1 and Model 2 (𝛾 = 𝛾∗ = 0), Model 1 and 

Model 3 (𝛾 = 𝛾∗ = 𝛾 = 𝛾∗  = 0) and Model 2 and Model 3 (𝛾 = 𝛾∗ = 0) and the 5% 

significance level for each restriction. We see that γ  and γ∗ , γ , γ∗ , γ  and γ∗  and γ  and γ∗  

are jointly significant. We conclude that there is statistically significant seasonality in heating 

oil futures prices, and that more than two inflection points per year provide a statistically 

significant improvement in describing this seasonality. In Roberts and Lin’s (2006) study of 

seasonality in the price process for different commodities the authors found significant 

seasonality in crude oil’s price process under an equivalent martingale measure, though the 

authors could not find grounds for allowing more than two inflection points in describing this 

seasonality. The contrast to our results indicates that there are significant differences between 

the seasonality of the two commodities’ price process under an equivalent martingale 

measure. 

5.3 Estimated Seasonality Function 

From (5) we have that 

 

 
𝐹 ,  = 𝑒𝑥𝑝 𝟏 𝐸 (𝒙 ) +  

1

2
(𝟏 𝐶𝑜𝑣 (𝒙 )𝟏) × 𝑒𝑥𝑝 𝑠(𝑇, 𝛄) ,  

so that 𝑠(𝑇, 𝛄) can be viewed as a seasonal percentage adjustment. Furthermore, from Table 

II we see that the natural logarithm of the mean of 𝐹 ,  is approximately 0.5 so that the 

proportion of 𝐹 ,  explained by seasonal variations is approximately 2 × 𝑠(𝑇, 𝜸). Though we 

think this latter approximation has some value it must be stressed that it’s a crude 

approximation, even more so for negative values of 𝑠(𝑇, 𝜸), and it is less applicable for 

contracts with longer maturities. 

Model Restriction Likelihood-Ratio Prob(χ2
df  ≥ c) = 0.05

(1-2) γ1 = γ1* = 0 3,835 df = 2, c = 5.99

(1-3) γ1 = γ1* = γ2 = γ2* = 0 4,158 df = 4, c = 9.49

(2-3) γ2 = γ2* = 0 323 df = 2, c = 5.99
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Figure 7 shows 𝑠(𝑇, γ , γ∗) and 𝑠(𝑇, γ , γ∗ , γ , γ∗ ) where 𝛄 takes on the estimated parameter 

values for Model 2 and Model 3, respectively. We see that the seasonal percentage adjustment 

at a given point in time ranges between approximately −0.6% and 0.6% for both models. By 

multiplying these ranges by 2 we get a crude approximation of the proportion of 𝐹 ,  

explained by seasonal variation. 

Sorensen (2002), using a similar setup, examined seasonality in corn, soybean and wheat 

futures prices. Naturally, corn, soybean and wheat are not directly comparable with heating 

oil, but since corn, soybean and wheat are known for having substantial seasonal price 

dependence the ranges estimated by Sorensen (2002) provide a useful reference point to 

evaluate the limits of the ranges for heating oil. Sorensen (2002) found that the seasonal 

percentage adjustment for Corn, Soybean and Wheat ranged between approximately −2.5% 

and 2.5%. In light of Sorensen’s (2002) estimates, the magnitude of the limits of our 

estimated ranges seems reasonable. 

 

 

Figure 7. Futures prices seasonality. The solid line is 𝑠(𝑇, γ , γ∗) with estimated parameters for Model 2 and 
the dashed line is 𝑠(𝑇, γ , γ∗ , γ , γ∗ ) with estimated parameter for Model 3 

 

In Section 1 we found that United States distillate fuel oil inventory changes appear to be 

positively correlated with changes in the NY Harbor ULSD 3rd less 1st-month futures spread. 



38 

Moreover, we found signs of seasonality in United States distillate fuel oil inventory 

descriptive statistics. If we compare Figure 2 with Figure 7 we find strong pattern similarity, 

which is to be expected. Furthermore, we see that 𝑠(𝑇, γ , γ∗ , γ , γ∗ )’s pattern is closer to the 

pattern of United States distillate fuel oil inventory with reduced ascent around September. 

5.4 Accuracy 

Table V 
In time window dollar accuracy 

Root mean squared error (RMSE) in dollars and mean error (ME) in dollars for Model 1, Model 2 and 
Model 3 from December 31, 2015 to December 31, 2018. The pairs of odd and even contracts displayed 
in the table represents minimum values, maximum values or turning points for RMSE or ME as a 
function of time to maturity. 

 

 

Table V shows Root mean squared error (RMSE) in dollars and mean error (ME) in dollars 

for Model 1, Model 2 and Model 3 from December 31, 2015 to December 31, 2018.14 We 

calculated RMSE and ME for all 38 contracts using Model 1, Model 2 and Model 3 and 

selected pairs of odd and even contracts to display in Table V. The pairs of odd and even 

contracts displayed in Table V represents minimum values, maximum values or turning points 

for RMSE or ME as a function of time to maturity. 

From Table V we see that it’s difficult to separate Model 2 and Model 3 in terms of monetary 

accuracy. Furthermore, we see that the seasonally adjusted models are more accurate than the 

unadjusted model, with less prevalent differences for contracts with time to maturity around 

                                                 
14 Formulas for RMSE and ME are 𝑅𝑀𝑆𝐸(𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡 ) = ∑ 𝐹 , | − 𝐹 , |  and 𝑀𝐸(𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡 ) =

∑ 𝐹 , | − 𝐹 , | , respectively. 

Model 1 2 3 1 2 3
F1 0.0325 0.0286 0.0292 -0.0074 -0.0067 -0.0067
F2 0.0285 0.0243 0.0250 -0.0053 -0.0049 -0.0050
F10 0.0168 0.0107 0.0107 0.0029 0.0032 0.0032
F11 0.0167 0.0113 0.0113 0.0031 0.0033 0.0034
F19 0.0250 0.0233 0.0232 0.0011 0.0008 0.0009
F20 0.0256 0.0245 0.0242 0.0008 0.0007 0.0007
F26 0.0144 0.0137 0.0134 -0.0033 -0.0037 -0.0036
F27 0.0137 0.0117 0.0113 -0.0029 -0.0034 -0.0034
F33 0.0051 0.0043 0.0040 0.0007 0.0009 0.0008
F34 0.0055 0.0040 0.0035 0.0006 0.0008 0.0007
F1-F38 0.0173 0.0153 0.0153 -0.0001 -0.0002 -0.0002

RMSE in dollars ME in dollars
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20 months. There is no fourth digit difference in full sample accuracy for the seasonally 

adjusted models and a third digit full sample accuracy difference between the unadjusted 

model and the seasonally adjusted models. 

All the models are less accurate for shorter time to maturity contracts with accuracy 

increasing toward an approximate time to maturity of 10 months. After the 10th month 

maturity mark, accuracy decreases towards the 20th month maturity mark, followed by 

another increase towards peak accuracy with time to maturity at around 33 months. This 

accuracy pattern is in line with the estimated standard deviation of the measurement errors. 

Furthermore, in comparing the accuracy for odd and even contracts we cannot detect out-of-

sample accuracy differences that are not better explained by the time to maturity difference 

between said odd and even numbered contracts. 

From the mean error measurements, we see that all the models tend to underestimate shorter 

time to maturity contract value, overestimate contract values with time to maturity of around 

10 months and underestimate contract values for contracts with time to maturity of around 26 

months. Overall the models have a fourth digit tendency to underestimate contract value. 

Figure 8.A and 8.B shows the term structure of the natural logarithm of NY Harbor ULSD 

futures prices on November 11, 2016 and January 1, 2018, respectively. The crosses are the 

observed futures prices, the dashed line represent Model 1 estimated futures prices and the 

solid line represent Model 3 estimated futures prices. Note that Figure 8.A and 8.B have 

different y-axis ranges, so one must be careful in comparing distances observed in the figures. 

In both Figure 8.A and 8.B we see clear signs of seasonality in heating oil futures prices. 

Moreover, we see that the seasonally adjusted model, Model 3, captures this seasonality well, 

though less so for contracts with maturities between 13 and 24 months. 

Furthermore, we see that the unadjusted model, Model 1, provides a decent fit. Naturally, it 

cannot compete with the seasonally adjusted model in terms of accuracy, but it captures both 

the average slope and location tendency well. 
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8.A 

8.B 

Figure 8. Term structure of the natural logarithm of futures prices. Figure 8.A and 8.B shows the term 
structure of the natural logarithm of NY Harbor ULSD futures prices on November 11, 2016 and January 1, 
2018, respectively. The crosses are the observed futures prices, the dashed line represent futures prices estimated 
with Model 1 and the solid line represent futures prices estimated with Model 3. Note that Figure 8.A and 8.B 
have different y-axis ranges. 
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5.5 Volatility Term Structure of Futures Returns  

 

 

Figure 9. Volatility term structure of futures returns. The solid line shows the theoretical volatility term 
structure of futures returns given by (7) and the estimated parameters of Model 3. The crosses show the 
empirical volatility of futures returns based on NY Harbor ULSD futures contracts from December 31, 2015 to 
December 31, 2018. 

 

Figure 9 shows the theoretical volatility term structure of NY Harbor ULSD futures returns 

given by (7) and Model 3’s parameter estimates, and the empirical volatility of futures returns 

based on NY Harbor ULSD futures contracts from December 31, 2015 to December 31, 2018. 

We calculated the empirical volatility of futures returns by first calculating a return series for 

each individual actual contract in the dataset, i.e. not the generated F# contracts. Next, we 

mapped these return values to the F# contracts and calculated sample standard deviations of 

these series using standard techniques and annualized by multiplying with 1/∆𝑡 . 

We see that the Samuelson Hypothesis holds for heating oil futures in our time window, 

which is to be expected as we’ve established significant mean reversion in heating oil’s price 

process under an equivalent martingale measure. Moreover, we see that the theoretical and 

empirical volatility term structure of futures returns follow each other closely, though the 

theoretical volatilities are slightly overstated. Nevertheless, we think the proximity of the 
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estimates is striking as volatility term structure of futures returns is not directly fitted on 

returns series. 

For a one-factor model defined by (1). (2) and (3) the theoretical volatility term structure of 

futures returns is given by a horizontal line. The uppermost portion of the white space in 

Figure 9, between 0% and 19.2%, is where we should expect to find the theoretical volatility 

term structure of futures returns for a one-factor model. Indeed, when we fitted one-factor 

models we found that that σ  for these models was around 19%. 

5.6 One-Factor, Three-Factor and Four-Factor Model 

In addition to the models presented in Table III we investigated a one-factor, a three-factor 

and a four-factor model. 

The objective function for the one-factor model was well behaved and quickly converged to 

points on the log-likelihood surface yielding economically sensible parameter estimates. 

However, the one-factor model could not compete with the two-factor model in terms of 

accuracy. Indeed, if we look at (6) from Section 2 in terms of a one-factor model we get  

 

 

 

𝑙𝑛 𝐹 , − 𝑠(𝑇) = 𝑥 + μ +
1

2
σ (𝑇 − 𝑡).  

Hence, the one-factor model assumes that the seasonally adjusted natural logarithm of the 

term structure of futures prices is linear and only allows for parallel shifts in the natural 

logarithm of the term structure of futures prices as time progresses. In view of Figure 6, Table 

III and to some extent Table II, we see that these assumptions do not hold in our time 

window. However, when we relax the fixed parameter assumption, allowing for time 

dependence in μ + σ , the one-factor model performs well in longer subsections of our 

time window, though the two-factor models presented in Table III (still) provide a better fit. 

The objective function for models with more than two factors was less well behaved and 

converged slowly to points on the log-likelihood surface yielding economically insensible 

parameter estimates. We believe this was caused by overparameterization as we observed 

similar behavior when conducting simulated overparameterization tests.15 However, in the 

simulated overparameterization tests we got accurate estimates for some of the actual 

                                                 
15 As a simulated overparameterization test we tried to fit a three-factor model using some of the futures price 
panels used in the simulation study presented in Section 3 Simulation. 
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parameters, leading us to believe that sample size was a contributing factor in the problems 

with parameter estimates using real data. 

In order to test the overparameterization hypothesis, we examine the linear properties of the 

relationship between futures prices and Model 3 for each date in our sample through ordinary 

least squares (OLS) regression. Furthermore, we examine the trade-off between goodness-of-

fit and parsimony using the output from the OLS regressions. 

From (6) we have that 

 

 

𝑙𝑛 𝐹 , − 𝑠(𝑇) − 𝐴(𝑇 − 𝑡)
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𝑦 ,  = α + 𝛃

𝑒𝑥𝑝 −κ (𝑇 − 𝑡)

⋮
𝑒𝑥𝑝 −κ (𝑇 − 𝑡)

. (9) 

 

Using (9) we regressed 𝑦 , , ,…,
 on 𝑒𝑥𝑝 −𝜅 𝑇( , ,…, ) − 𝑡  for each date in our sample, 

using Model 3’s estimated parameter values to calculate 𝑒𝑥𝑝 −𝜅 𝑇( , ,…, ) − 𝑡 , 𝑠(𝑇) 

and 𝐴(𝑇 − 𝑡). Next, we gathered 𝑅  for each regression and inspected its distribution. We 

found that the minimum value of 𝑅  was 0.9, the interquartile range was [0.97,1], the mean 

was 0.98 and the median was 0.99. In other words, 𝑦 ,  is approximately linear with respect 

to 𝑒𝑥𝑝 −𝜅 𝑇( , ,…, ) − 𝑡  when 𝑒𝑥𝑝 −𝜅 𝑇( , ,…, ) − 𝑡 , 𝑠(𝑇) and 𝐴(𝑇 − 𝑡) are 

calculated with Model 3’s estimated parameter values. 

Next, let’s consider adding a second independent variable in (9), using the sample size 

adjusted Akaike information criterion (AIC) to measure the trade-off between goodness-of-fit 

and parsimony. AIC for a least squares model is given by 

 

 
𝐴𝐼𝐶 = 𝑛 × log

SSR

n
+ 2𝑘 +

2𝑘(𝑘 + 1)

𝑛 − 𝑘 − 1
,  
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where 𝑆𝑆𝑅 is the sum of the squared residuals for a least squares model, 𝑛 is the number of 

observations and 𝑘 is the total number of parameters including 𝑆𝑆𝑅 and the intercept (see e.g. 

Burnham and Anderson (2004)). Clearly, the first summand of AIC measures goodness-of-fit 

in terms of prediction error and the last two summands provide a penalty for increased model 

complexity (so that we seek to minimize AIC). 

As 𝑅 = 1 − ≈ 1 for 75% of our sample, where 𝑆𝑆𝑇 is the total sum of squares, it follows 

that 𝑆𝑆𝑅 is approximately 0 for 75% of our sample, so that adding a second independent 

variable to (9) would result in an increase in AIC. Hence, the AIC tells us that adding a 

second independent variable to (9) is ill advised in terms of the trade-off between goodness-

of-fit and parsimony. 

Therefore, adding more factors to the two-factor models can be considered if 𝛼 ≉ 𝑥
( ) and 

𝛽 ≉  𝑥
( ), else adding more factors would for 75% of the sample provide a worse trade-off 

between goodness-of-fit and parsimony. We found that the mean absolute deviation between 

α  and 𝑥( ) and between β  and 𝑥( ) was 0.0082 and 0.0112, respectively. Furthermore, we 

found that for approximately 95% of the sample, 𝑥( ) and 𝑥( ) was within the 95% 

confidence interval of 𝛼  and 𝛽 , respectively. 

This result holds regardless of change in 𝑠 and 𝐴 caused by adding more factors to the two-

factor model. In fact, taking 𝐴 into account strengthens the result as adding more factors 

increases the number of parameters in 𝐴, which reduces parsimony. This reduction in 

parsimony is not directly observable in our examination, but can be inferred through the 

general idea of penalizing the inclusion of more parameters. 

In Cortazar and Naranjo’s (2006) study of crude oil price modeling the authors found grounds 

for using three or four-factor models, suggesting two or three mean reverting factors in crude 

oil’s price process under an equivalent martingale measure. Furthermore, the authors found 

that the accuracy of a two-, three- and four-factor model was comparable for maturities 

between 3 months and 3 years, and for maturities between 3 and 7 years the two-factor model 

was substantially less accurate than the three- and four-factor models. The maximal time to 

maturity of the futures contracts used in this thesis is approximately 3 years, so we believe the 

difference in maximal contract maturity is the root cause of the difference in our findings 

regarding the appropriate number of mean reverting factors. However, we cannot rule out that 
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the difference in findings reflect differences in the two commodities’ price process under an 

equivalent martingale measure. 

 

Section 6  

In this section we provide examples of practical implications of our findings, conclude, 

discuss assumptions and questions open for further study.  

6.1 Practical Implications 

In this subsection we examine some of the implications of our findings regarding mean 

reversion and seasonality in heating oil futures prices, using the relations derived in Section 2 

and two simple business examples to provide context. In particular, we use the relation 

between futures prices and spot prices under 𝑄 given constant interest rates, the closed form 

solution to the value of a futures contract and the closed form solution to the value of a 

European call option on a futures contract. 

First, let’s consider a business example where a heating oil refinery generate profits given by 

π , where π  is linear with respect to the spot price of heating oil: 

 

 
π  = 𝐾𝑆 − 𝐹 .  

Here 𝐾 is maximal output per period, 𝑆  is the heating oil spot price per gallon at time 𝑡 and 

𝐹  is the fixed cost per period.16 Assuming constant interest rates 𝑟, the present value of π , 

where 𝑇 > 0, is given by 

 𝑃𝑣(π ) = 𝑒 𝐸 (𝐾𝑆 − 𝐹 ) (10) 

  = 𝑒 𝐾𝐸 (𝑆 ) − 𝐹   

 

 
 = 𝑒 𝐾𝐹 , − 𝐹 ,  

where 𝐹 ,  is the current heating oil futures price for a contract maturing at time 𝑇. This result 

follows straightforwardly from 𝐹 , = 𝐸 (𝑆 ), and equivalent martingale properties (see e.g. 

Hull (2012)). From (10) we see that changes in 𝐹 ,  yield a similar change in 𝑃𝑣(π ) scaled 

by 𝑒 𝐾. In other words, the error in 𝑃𝑣(π ) caused by a lack of seasonal adjustment of the 

                                                 
16 This setup is taken from class notes in the course ECO423 - Principles of Derivatives Pricing and Risk 
Management.  
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estimated futures price is equal to the error in the estimated futures price caused by the lack of 

seasonal adjustment multiplied by a discount factor multiplied by an output factor. Though 

the discount factor is important, the major implication here is that the error scales with output. 

For example, Table V tells us that for a heating oil futures contract with time to maturity at 

approximately 10 months, the accuracy improvement in 𝑃𝑣 π /  provided by including a 

seasonal adjustment is approximately $0.0061× 𝑒 × × 𝐾. If we let the interest rate 𝑟 be 0 

and output K equal to the contract unit of a NY Harbor ULSD futures contract, 42000 gallons, 

the accuracy improvement is $252.6. 

Next, let’s consider a business example where a firm that utilize heating oil to generate profit 

has been offered a contract giving them the right to enter into a long position in a heating oil 

futures contract for a fixed price K at time t, where the heating oil futures contract matures at 

time T, where 0 < 𝑡 ≤ T. The present value of the contract offered to the firm is equal to the 

value of a European call option on a heating oil futures contract expiring at time 𝑇 with strike 

price 𝐾 and time 𝑡 until option maturity. 

From Table III, we have that for a two-factor model defined by (1), (2) and (3) the shared 

parameters of the seasonally adjusted models and the unadjusted model are similar. Hence, (8) 

tells us that the seasonal adjustment mainly affects the value of the contract through changes 

in estimated 𝑙𝑛 𝐹 ,  and not the volatility of 𝑙𝑛 𝐹 , . 

From Figure 10 we see that if we use Model 1 to estimate futures prices, which lacks a 

seasonal adjustment, we get both positive and negative estimation errors of the present value 

of the contract, dependent upon the year placement of 𝑇. For example, assuming a contract 

unit of 42000 gallons, the error in present value estimates on November 11, 2016 using Model 

1 for a contract with strike price 𝐾 = 1.42, option and futures maturities 𝑡 = 𝑇 ≈  14/12 and 

interest rate 𝑟 = 0 is estimated to be $0.0126 ×  42000 =  $529.2. Furthermore, we see that 

the magnitude of the estimation error is slightly dependent upon moneyness, which is due to 

differences in the estimated volatility of 𝑙𝑛 𝐹 ,  using the estimated parameters of Model 1 

and Model 3. 
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Figure 10. The value of a European call option on a heating oil futures contract at different levels of 
moneyness, with futures prices estimated by using a seasonally adjusted and an unadjusted model defined 
by (1), (2) and (3). The value of a European call option on a heating oil futures contract with futures prices 
estimated by using a seasonally adjusted and an unadjusted model defined by (1), (2) and (3). The solid lines 
shows option value at different levels of moneyness using a two-factor model with the parameter estimates of 
Model 3, and the dashed line shows option value at different levels of moneyness using a two-factor model with 
the parameter estimates of Model 1. 𝐹 ,  is equal to 𝑒 raised to the power of the values presented in Figure 8.A 
for Model 3 and Model 1, the strike prices 𝐾 are 𝐹 ,

 − 0.2, 𝐹 ,
  and 𝐹 ,

  + 0.2, option maturities 
are equal to futures maturities and the interest rate 𝑟 is 0. 

 

As the shared parameters of Model 1 and Model 3 are similar, a comparison of the differences 

in contract value caused by the differences in the volatility of 𝑙𝑛 𝐹 ,  holds little interest. 

However, from the examination of the term structure of volatility of futures returns, we found 

major differences between theoretical volatilities of futures returns using parameter estimates 

of a one-factor and a two-factor model defined by (1), (2) and (3). These differences translate 

to differences in the volatility of 𝑙𝑛 𝐹 , , which in turn impacts contract value. 

Figure 11 shows the difference between contract value estimates using a two-factor model and 

a one-factor model, where the estimated futures price is assumed to be equal for the two 

models. Hence, Figure 11 shows the difference between contract value estimates using a two-

factor model and a one-factor model that is caused by differences in the estimated volatility of 

𝑙𝑛 𝐹 , . We see that the difference between contract value estimates using a two-factor 

model and a one-factor model decreases with moneyness. Moreover, we see that as the 
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difference between 𝑇 and 𝑡 increases, the difference between contract value estimates using a 

two-factor model and a one-factor model decreases. Intuitively, this makes sense as the 

additional factor in the two-factor model captures transitory changes in supply and demand of 

heating oil, which has less impact on the volatility of 𝑙𝑛 𝐹 ,  as 𝑇 − 𝑡 grows large. 

From Figure 9 we see that the theoretical volatility of futures returns is slightly overstated 

using parameter estimates of a two-factor model and that the theoretical volatility of futures 

returns is substantially understated using parameter estimates of a one-factor model for short 

maturities. Hence, the contract value will lie somewhere between the solid line and the dashed 

line in Figure 11, closer to the solid line for small 𝑇 − 𝑡. For example, assuming a contract 

unit of 42000 gallons, option maturity 𝑡 = 1, futures maturity 𝑇 = 1.25, futures price 

𝐹 , .  = 1, strike price 𝐾 = 0.75 and interest rate 𝑟 = 0, the present value of the contract is 

estimated to be between $0.1695 × 42000 =  $7119 and $0.1937 × 42000 =  $8135.4, 

closer to $8135.4 than $7119. 

 

 

Figure 11. The value of a European call option on a heating oil futures contract at different levels of 
moneyness, with volatility of the natural logarithm of future prices estimated by using a one-factor model 
and a two-factor model defined by (1), (2) and (3). The figure shows the value of a European call option on a 
heating oil futures contract given by (8). The volatility of the natural logarithm of futures prices are estimated by 
using a model defined by (1), (2) and (3). The solid lines shows option value at different levels of moneyness 
using a two-factor model with the parameter estimates of Model 3, and the dashed line shows option value at 
different levels of moneyness using a one-factor model with σ ≡ 19.2%. The remaining inputs of (8) are 𝐹 , =

1, the strike price 𝐾 is 0.75, 0.8 and 0.85 and the interest rate 𝑟 is 0. 
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6.2 Conclusions 

In this thesis, we’ve considered an affine N-factor Gaussian model developed by Cortazar and 

Naranjo (2006), and studied its ability to explain the stochastic behavior of heating oil futures 

prices. In doing so, we’ve determined the parsimonious number of latent unobservable factors 

to include in the N-factor model, which depends on the existence and scale of mean reverting 

properties in heating oil’s price process under an equivalent martingale measure. Furthermore, 

we examined seasonality in heating oil futures prices, which depends on the existence and 

scale of seasonality in heating oil’s price process under an equivalent martingale measure. 

The model parameters were estimated using maximum-likelihood techniques and the Kalman 

filter. We conducted a simulation study of the parameter estimation procedure, following 

Andresen and Sollie (2013), to highlight potential econometric issues. We found that the 

models are robust for use in valuation problems and generally not robust for forecasting 

purposes, confirming Schwartz and Smith’s (2000) and Andresen and Sollie’s (2013) 

findings. 

The cost of crude oil is a major cost driver for heating oil, and as several previous studies 

have found mean reversion in crude oil’s price process under an equivalent martingale 

measure mean reversion in heating oil’s price process under an equivalent martingale measure 

is probable. Furthermore, from an examination of two timeseries of heating oil futures prices 

with different maturities we found that the long-term growth rate of observed heating oil 

futures prices alternate signs, indicating presence of mean reversion in heating oil’s price 

process under an equivalent martingale measure. 

In Cortazar and Naranjo’s (2006) study of crude oil price modeling, the authors found 

grounds for using three- or four-factor models, suggesting two or three mean reverting factors 

in crude oil’s price process under an equivalent martingale measure. Furthermore, the authors 

found that the accuracy of model estimated futures prices given by a two-, three- and four-

factor model was comparable for futures maturities between 3 months and 3 years, and that 

for maturities between 3 and 7 years the two-factor model was substantially less accurate than 

the three- and four-factor models. Based on parameter estimates of a two-factor model, fitted 

on NY Harbor ULSD futures, we found significant mean reversion in heating oil’s price 

process under an equivalent martingale measure. However, we could not find grounds for 

including more than one mean reverting factor in the model. The maximal time to maturity of 

the futures contracts used to estimate parameters in this thesis was approximately 3 years, so 
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we believe the difference in maximal contract maturity is the root cause of the difference in 

our findings regarding the appropriate number of mean reverting factors. Still, we cannot rule 

out that the difference in findings reflect differences in the two commodities’ price process 

under an equivalent martingale measure. 

Heating oil’s use as a heating fuel implies that there is an area dependent seasonal distillate 

fuel oil consumption pattern that is inversely related to the temperature in that area. We found 

signs of this seasonality in the U.S. distillate fuel oil inventory, and there appears to be a 

positive correlation between changes in the U.S. distillate fuel oil inventory and changes in 

the expected development of heating oil prices. Hence, seasonality in heating oil’s price 

process is probable. Indeed, based on likelihood-ratio tests of the two-factor model and 

seasonally adjusted two-factor models, we found that there is statistically significant 

seasonality in heating oil’s price process under an equivalent martingale measure. 

Furthermore, we found that allowing for more than two inflection points to capture this 

seasonality provided a statistically significantly better fit. In Roberts and Lin’s (2006) study 

of seasonality in the price process for different commodities the authors found significant 

seasonality in crude oil’s price process under an equivalent martingale measure, though the 

authors could not find grounds for allowing more than two inflection points in describing this 

seasonality. The contrast to our results indicates that there are significant differences between 

the seasonality of the two commodities’ price process under an equivalent martingale 

measure. 

Lastly, we provided two simple business examples to show some simple practical 

implications of our findings. In the first example, we evaluated the present value of a cash 

flow that is linear in the price of heating oil and find that errors in estimates of heating oil 

futures prices, caused by for example an omitted seasonal factor, yield a similar error in 

estimates of the present value of the cash flow scaled by a discount factor and output. In the 

second example, we evaluate the value of a contract offer with characteristics equal to a 

European option on a heating oil futures contract. We show that seasonality in heating oil 

futures prices affects the present value of such a contract, and that errors caused by omitting 

the seasonal factor have magnitude and sign dependent upon the year placement of futures 

maturity. Furthermore, we find that omission of mean reverting properties in heating oil’s 

price process under an equivalent martingale measure impacts the volatility term structure of 

futures returns, which in turn impacts the estimated present value of the contract. We find that 

contract value estimates based on a model without mean reverting properties will generally 
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understate the present value of a contract offered on futures with short maturities and will be 

fairly accurate for a contract offered on futures with longer maturities. The contract value 

accuracy problems of a model without mean reverting properties are reduced when 

moneyness increases. 

6.3 Assumptions and Further Works 

The three main assumptions of this thesis are the no-arbitrage assumption, the functional form 

of the stochastic process for heating oil prices and the constant parameter assumption. 

The no-arbitrage assumption is reasonable considering the high liquidity and the product 

maturity of NY Harbor ULSD futures. 

The functional form assumption can always be debated, though we’ve shown that the chosen 

functional form is equal to the functional form utilized in several previous comparable studies 

of commodities with similar properties to that of heating oil. Moreover, the standard deviation 

of the measurement errors and accuracy estimates indicate that the functional form is 

relatively close to the true process. 

The constant parameter assumption is known to be a simplification, as it violates previous 

empirical findings and general knowledge (e.g. interest rates are not constant). For example, 

Casassus and Collin-Dufresne (2005) found empirical evidence for time varying risk premia 

which implies mean reversion in commodity prices under the subjective measure. However, 

we’ve seen that the constant parameter simplification is less critical for the two-factor model 

and given this study’s time span we do not expect that findings regarding existence of mean 

reversion or seasonality will change if we relax this assumption. 

In future work one could relax some of the assumptions and utilize additional sources of 

information to pin down the parameter values. As an example, one could use the capital asset 

pricing model (CAPM) (see e.g. Hull (2012)) β’s to implement time varying CAPM restricted 

risk premia, lifting the constant risk premia assumption and reducing the indeterminacy issue. 

One could utilize option implied volatility, lifting the constant volatility assumption and 

providing market guidance for the values of the parameters. Furthermore, there might be room 

for a more complex seasonality function, i.e. one that takes on different values for 𝑇 and 𝑇 +

 𝑎 ∈  ℤ > 0. 

Lastly, assuming well-functioning markets, one could examine the implications of our 

findings in terms of different economic quantities such as convenience yield. 
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Appendix 

Production, Trade and Financial Markets 

For completeness, we here briefly discuss the factors impacting the current and expected 

supply and demand for heating oil that were not discussed in Section 1. Statements regarding 

Production, Trade and Financial Markets are sourced from EIA (b) (2019). 

Production is directly linked to supply. In general, refineries adjust their product mix and 

volumes according to long-term price and demand signals through long-term investment 

decisions and other long-term strategy decisions. The more complex refineries can also adjust 

their product mix and output volume according to short-term price and demand signals. 

The refinery’s response to price signals is reflected in, among other metrics, the positive 

correlation between the distillate to gasoline production ratio and the spread between 

distillate- and gasoline futures prices. The effect of the refinery’s response to demand signals 

is reflected in the aggregated growth or decline in distillate production and the seasonal 

production adaptations induced by the seasonal consumption pattern of heating oil and other 

petroleum products. 

Trade represents import and export-related factors. In general, the level of free trade impacts 

the size of the total marketplace and the local market’s ability to cover unexpected shortages 

and surpluses. 

Financial Markets represent supply and demand factors related to supply and demand for 

financial instruments like futures, options and crack spreads that are connected to heating oil. 

As an example, the rapid price decline in 2008 shown in Figure 1 was mostly due to financial 

market factors brought forth by the global financial crisis. 
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Nested Model Relation Equations 

In Section 2.3, Nested Models, we presented a set of equations derived by Cortazar and 

Naranjo (2006) relating the parameters of two models through an affine transformation. We 

believe there is a typo in one of these equations (𝛃 =  𝐾𝛗(𝑡)  +  𝐿𝛃) based on the following: 

Let 

 

 
𝒇(𝑡, 𝒚 ) = 𝒛  (A.1) 

 

 
 = 𝐿𝒚 + 𝛗(𝑡)  

where L is a time invariant matrix, 𝒛 and 𝒚 are vectors of Ito processes and 𝛗(𝑡) is a vector of 

functions of time. As 𝑓 , ,…,  is linear in 𝒚 Ito’s lemma states that  

 

 
𝑑𝑧  = 

𝜕𝑓

𝜕𝑡
𝑑𝑡 + ∇𝒚𝑓 𝑑𝒚 , (A.2) 

where ∇𝒚𝑓  is the gradient of 𝑓  with respect to 𝒚. 

Next, let 

 

 
𝑑𝒚  = −Κ𝒚 + 𝛃 𝑑𝑡 + Σd𝐰  (A.3) 

By combining equation A.1, A.2 and A.3, we get 

 

 
𝑑𝒛  = 

𝜕𝒇

𝜕𝑡
𝑑𝑡 +  𝐿𝑑𝒚   

 

 
 = 𝐿 −Κ𝒚 + 𝛃 + 𝐿

𝜕𝒇

𝜕𝑡
𝑑𝑡 + LΣd𝐰   

 

 
 = 𝐿 −ΚL 𝒛 − 𝛗(𝑡) + 𝛃 + 𝐿

𝜕𝒇

𝜕𝑡
𝑑𝑡 + LΣd𝐰   

 

 
 = −LΚ𝐿 𝒛 + LΚ𝐿 𝛗(𝑡)  + L𝛃 +

𝜕𝒇

𝜕𝑡
𝑑𝑡 + LΣd𝐰   

 

 
 = (−𝐾𝒛 + 𝛃 )𝑑𝑡 + Σ𝑑𝒘 ,  
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where 𝐾 = 𝐿𝐾𝐿 , 𝛃 = 𝐾𝝋(𝑡) + 𝐿𝜷 +
𝝋( )

 and Σ = 𝐿Σ. The change of Wiener process is 

derived using that almost surely, we can find a constant 𝑎 such that 𝑎𝑊 = 𝑏𝑊 + 𝑐𝑊  where 

𝑊 denote a Wiener process and 𝑎, 𝑏 and 𝑐 are constants. 


