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Abstract 

In this thesis we investigate the impact of preferences, income and regulation on PM2.5 levels. 

The thesis uses a combined data set of income, population weighted concentration levels of 

PM2.5 for 157 countries from 1990 to 2017. Using a fixed effects model, we find evidence for 

an inverted U-shaped relationship between income and pollution, supporting the hypothesis 

of an Environmental Kuznet Curve for PM2.5. Furthermore, the curve has changed in recent 

time and pollution is more sensitive to income in from 2011 to 2017 than for the period as a 

whole. The estimated turning points are $6,015 for the full period and $2,860 for 2011-2017. 

Income is not found to have different effects on PM2.5 pollution in developed and developing 

countries.   

Assuming preferences to be constant, we find relationships between patience, negative 

reciprocity, risk taking and PM2.5 pollution.  

Greater levels of patience are seen with lower levels of estimated time invariant PM2.5 

pollution, while higher levels of negative reciprocity and risk taking are seen with lower levels 

of PM2.5. Negative reciprocity also seems to have an effect on the relationship between income 

and pollution. Countries with higher levels of negative reciprocity have a different estimated 

EKC and reaches the turning point faster ($4,620) than countries with lower levels ($12,094). 

Though the results indicate preferences and income to have effects on PM2.5 pollution, the 

analysis does not propose causality. Using a difference-in-difference approach, we analyse 

how regulations and policy can have an effect through the EU’ Directive 50/2008. The isolated 

effect of the directive is estimated to be a reduction in PM2.5 levels of 6 %. This effect is robust 

to inclusions of EKC-relationships in the estimation. 
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 Introduction 

Every year 3.1 million people die as a result of fine particulate matter (PM2.5) pollution (WHO, 

2013). Both the EU and the WHO has deemed that there is no safe level of exposure for PM2.5 

(EU, 2008) (WHO, 2003). PM2.5 pollution is present in all over the world. In Bergen, the home 

city of NHH, PM2.5 pollution during winter is often so bad asthmatics and people with 

respiratory disease have to stay indoors (Høisaker, Sundvor, Johnsrud, Haug, & Solli, 2017). 

On both a micro level and a macro level PM2.5 pollution causes great societal harm. Therefore 

understanding the relationship between PM2.5 and economic growth can help decision makers 

enact polices to combat PM2.5 pollution. Economic growth is often associated with 

environmental degradation. Several economists have challenged this view. They argue that 

though economic growth may initially have a negative effect on the environment, as a country 

grows richer this relationship will reverse itself, and environmental quality will improve. This 

hypothesis is known as The Environmental Kuznets Curve (EKC) and postulates an inverse 

U-shaped relationship between economic growth and environmental degradation. 

In this thesis we investigate relationships between PM2.5 pollution, income, preferences and 

regulatory action.  

First, we will estimate the relation between PM2.5 pollution and income using a panel of 157 

countries observed from 1990-2017. Our main hypothesis is that this relationship has an 

inverted U-shape. This means that we can estimate a turning point for PM2.5 pollution where 

pollution levels start to decline with income growth. We will also investigate if the EKC is the 

same for the entire world and if the shape of the EKC has changed over time.  

Using a new data set on economic preferences we explore the possible links between patience, 

risk taking, altruism, trust, negative and positive reciprocity and PM2.5 pollution. We 

investigate the possibility of preferences affecting both time invariant levels and income 

effects on pollution.  

Finally we will use the implementation of EUs’ Directive 50 to show how regulatory action 

can impact particulate matter levels. The EUs’ implementation of Directive 50 covers all EU-

countries. This gives us a large sample of countries which makes inference clearer. To estimate 

the effect of the Directive we use difference-in-difference estimation. We use both developed 

and developing countries as control for the effect of Directive 50. 
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  Background 

 Particulate matter 

Particulate air pollution is a measure of the number of particulates suspended in the air 

measured in µg per m3. The particulates can be either solid or liquid and are characterized by 

their aerodynamic size measured in micrometres. Commonly suspended particulate matter is 

separated into two categories: particulates between 10µm and 2.5 µm are referred to as PM10 

and particulates that are smaller than 2.5µm are referred to as PM2.5. The particulates can be 

either organic or inorganic. This type of air pollution can come for both natural and manmade 

sources. Some natural sources for PM2.5 are windblown dust, sea salt, pollen and spores. 

Manmade PM2.5 can form as a by-product of combustion such as smoke, soot or fumes. The 

emission from industrial activity contributes both directly to PM-pollution and indirectly as 

the combustion by-products can react in the atmosphere breaking down into or forming other 

harmful particulates (WHO, 2003). 

PM2.5 is generally considered to be more dangerous than PM10 as the particulates are smaller 

can enter deeper into the body (WHO, 2003).  The main mechanism in which PM2.5 enters the 

body is by inhalation. The particulates are too small to be filtered out by the respiratory system 

and enters the cardiovascular system through the lounges and transferring potentially harmful 

molecules into the bloodstream (WHO, 2003).  

PM2.5 exposure have both short and long-term harmful effects and it is estimated that 3,1 

million people die as a result of PM2.5 pollution every year (WHO, 2013). Studies have shown 

that elevated PM2.5 concentrations can impact test scores (Roth, Air pollution, educational 

achievements, and human capital formation, 2017) and increase crime in a given area on days 

with increased PM2.5 concentration (Roth, Bondy, & Sager, Crime is in the Air: The 

Contemporaneous Relationship between Air Pollution and Crime, 2018). There are also 

serious long-term health effects. Studies have shown that long term exposure to PM2.5 causes 

build-up of harmful nanoparticles in the brain increasing the risk of a range of cognitive 

diseases such as Alzheimer’s as well as impeding brain function (Maher, et al., 2016). In 

addition to this, exposure to PM2.5 is linked to an increased risk of a range of cancers 

(Weinmayr et al, 2018). 
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 Environmental Kuznets Curve 

The Environmental Kuznets Curve (EKC) is a hypothesised relationship between 

environmental degradation and economic growth. The EKC-hypothesis is that environmental 

degradation initially increases with economic growth, before it at some level of economic 

development reaches a turning point and decreases with further economic growth. Thus, the 

hypothesised relationship takes an inverted U-shaped form. The existence of this hypothesised 

relationship is typically tested empirically by modelling the chosen indicator of environmental 

degradation as a quadratic function of GDP per capita. The EKC is named after Simon S. 

Kuznets who hypothesized that inequality in income distribution first increases with economic 

growth, before it reaches a point where further economic growth leads to lower income 

inequality (Kuznets, 1955). 

 

 

The EKC concept was first introduced in Grossman and Krueger (1991). The study which 

looks at the environmental impacts of a North American Free Trade Agreement. The 

interpretation of environmental degradation is broad, but the main pillars in the literature are 

for concentrations and emissions of air, soil and groundwater pollutants. Some pollutants are 

naturally more appropriate to be measured in concentration levels, such as PM2.5, while others 

are more precisely captured by emission levels, such as CO2.  

In a background study for the World Banks’s 1992 World Development Report, Shafik and 

Bandyopadhyay (1992) state that in a complicated relationship between environmental 

Figure I 

The figure illustrates the EKC concept. 
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degradation and economic growth, income has the most consistently significant effect on all 

indicators of environmental degradation. The study claims that economic growth could solve 

some environmental problems, but stresses that “there is nothing automatic about it”, and that 

to reduce degradation, policies and investments need to be in place.  

The findings of Shafik and Bandyopadhyay (1992) were included in the World Development 

Report (1992). Studying the relationship between economic development and the 

environment, the report reads “the view that greater economic activity inevitably hurts the 

environment is based on static assumptions about technology, tastes and environmental 

investments” (World Bank, 1992, p.38). The report suggests four important drivers for 

sustainable development; structure (the goods and services produced), efficiency (input per 

unit of output), substitution (ability to move away from scarce resources) and clean 

technologies and management practice (environmental damage per unit of input or output). 

Furthermore, the report reads “as income rise, the demand for improvements in environmental 

quality will increase” (World Bank, 1992, p.39) and “without incentives to use scarce 

resources sparingly, the pressure to reduce environmental damage will be weaker” (World 

Bank, 1992, p.39) imposing greater demand for environmental quality and greater pressure for 

sustainable growth in more developed countries with higher levels of income.   

 Effects of EU law 

Shafik and Bandyopadhyay (1992) suggest that policies and investments need to be in place 

for economic growth to solve environmental problems, and that there is nothing automatic 

about the EKC. Economic growth does not decrease pollution per se but works through 

underlying mechanisms.  In light of this we want to analyse the effects of such a policy – the 

EU directive from 2008 on ambient air quality Directive 2008/50/EC. 

The directive defines and establishes new objectives for PM2.5 including an upper and a lower 

threshold for annual average exposure to the population (EU, 2008). These thresholds are 17 

μg/m3 and 12 μg/m3, respectively. 20 out of the 28 EU member states are represented in our 

dataset.  In addition, we have chosen to include Norway as EEA-members are also obliged to 

follow. In 2005, three years prior to the directive, 11 of these countries exceeded the lower 
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threshold and 5 exceeded the upper threshold1. In 2017 these numbers were decreased to 7 

countries exceeding the lower and only Poland exceeding the upper threshold. Furthermore, 

the average annual PM2.5 exposure in the 20 represented member states decreased from 14.6 

μg/m3 to 12.1 μg/m3 in the same period. 

 Preferences 

In the last decade, behavioural economics has gained increased attention and has had great 

impact in the field of economics. As a result, more data on economic preferences and 

behavioural characteristics has been made available. A lot of theories in environmental 

economics incorporate preferences as part of models, but little empirical work which include 

actual data on these preferences has been done. In this thesis, we try to bring a new perspective 

on the relationship between economic growth and environment by including such data. 

 

                                                 

1 Statistics based on data set used in this thesis. PM2.5 data from IHME.  
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 Literature Review 

There have been many studies over the years that have attempted to ascertain the relationship 

between pollution and economic development. Grossman & Krueger (1991) apply a Kuznets 

curve to study the relationship between a range of pollutants and economic development in an 

effort to assess the environmental impact of the implementation of NAFTA. Using data from 

a cross-section of urban areas in 42 countries, they investigate the relationship between 

concentrations of sulphur dioxide, particulate matter and dark matter, and per capita GDP. As 

there are different natural sources of these pollutants, they include a vector of explanatory 

variables including dummies to indicate whether the monitoring station is located near the 

coast, a desert, in a central city, an industrial or residential area. They find evidence for the 

inverted U-shaped relationship for sulphur dioxide and dark matter and turning points for both 

around $8,000. Shafik and Bandyopadhyay (1992) also find evidence of the inverted U-shaped 

relationship for various environmental indicators, including ambient levels of particulate 

matter.  

A number of papers have used the concept of an EKC to tackle a range of phenomena from 

deforestation (Koopa & Tole, 1999) to water usage (Durate, Pinilla, & Serrano, 2013). The 

most common way to apply the EKC is estimating the relationship between income and 

different pollutants. Grossman & Krueger (1995) builds on their previous work to investigate 

if there is an EKC-relationship between income and urban air pollution and a range of water 

pollutants finding turning points around $8000. In Selden & Daqing (1994) they estimate an 

EKC relationship for suspended particulate matter (as well as for NO2, SOX and CO) using 

cross-sectional data for a range of countries finding turning points around $9,500 in 1985 

dollars. Shafik (1994) finds an EKC-relation using a cross-sectional data for a range of 

pollutants including suspended particulate matter.  

There has been relatively little research specifically concerning PM2.5 and economic 

development using cross-country data when compared to other air pollutants. However there 

have been some studies using data on city or county level to investigate if there is an EKC for 

PM2.5. Brajer, W.Mead, & Xiao (2011) find in their study using a cross-section of 139 Chinese 

cities between 1990-2006 that there seems to be a significant EKC relationship between 

particulate matter and income. They estimate a turning point of 3784RMB (about $550) and 

6253 RMB (about $900) when controlling for population. Haoab & Liuab (2015) find turning 

points ranging from 9000RMB (about $1300) to 40000RMB (about $5700) using a cross-
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section of 73 cities from 2013. Using a cross-sectional dataset of US county data from 2000 

Keene & Deller (2015) find an EKC relation and estimate turning points for PM2.5 pollution 

ranging between $24000-25000.   

Over the years a number of articles criticizing the EKC-hypothesis have been published. Stern 

(2004) claims that the EKC-hypothesis is incorrect both due to it not being econometrically 

robust and because of developing countries adopting new technology earlier than developed 

countries. Several studies other have critiquing the EKC hypothesis for not being robust for a 

range of pollutants (Vollebergh, Melenberg, & Dijkgraaf, 2008) (Wagner, 2008). Stern & Dijk 

(2017) uses a dataset of 151 countries and observations of PM2.5 in 1990, 2000 and 2010. The 

authors claim that, using a convergence model, they cannot find a statistically significant 

turning point for PM2.5 pollution. 

There have also been articles trying to establish a more stylised model. Pecchenino (1994) sets 

up an overlapping generations model that analyses the relationship between economic growth 

and the environment where individuals make decisions about consumption and environmental 

abatement. Nakagawa, Sato, & Yamaguchi (2014) show in an OLG model with changes in 

abatement technology how improvements in technology in one country can improve the 

environment for both.  

This is a review of some of the literature on the EKC with regards to the most relevant articles 

for our purposes. The literature on EKC is vast and too large to be extensively covered in this 

thesis. However, we believe that in the section we have provided a brief overview of the most 

relevant parts of the literature. In general the most common approach to model PM2.5 and 

economic development is by using cross-sectional data to estimate a cubic relationship, but 

some authors have put forward strong econometric critiques of this claiming that this method 

is not sufficiently robust. 

One thing many EKC studies do is to compare their estimated turning points to the turning 

points in the literature. This is difficult to do as there has been one other study looking PM2.5 

on a country level and this study fails to estimate a significant turning point (Stern & Dijk, 

Economic growth and global particulate pollution concentrations, 2017). We cannot use the 

turning points from the studies using cross-sectional data from one country as the estimated 

turning point is for that country specifically. Our turning points are either global or estimated 

for developed or developing countries.  
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There is also a range of literature exploring effects of different environmental regulations.  In 

a widely recognized paper Chay and Greenstone (1998) estimates the cost and benefits of The 

Clean Air Act regulations in the American housing market. Focusing on total suspended 

particulates (TSP), one of their results is that TSP decreased significantly more in 

‘nonattainment’ counties – counties which had levels of TSP exceeding the federal ceiling at 

the time of the implementation.  

Greenstone (2003) investigates the effect of the same regulations for a broader set of 

pollutants, including particulate matter, in the American iron and steel industry. Controlling 

for the possibility that factories move emissions from air to water, the paper finds evidence 

that total emissions per unit of output declined in ´nonattainment´ counties.  

Bennear (2007) evaluates the effect of management-based regulations for toxic chemical 

controls during the 1990s in American manufacturing. Management-based regulations do not 

set given goals or measures but, require regulated entities to evaluate their production 

processes and set goals themselves. Using a difference-in-difference approach, the paper finds 

that management-based regulations had a negative effect on regulated manufacturing plants 

releases of toxic chemicals.  
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 Data 

We need a range of different data to conduct the three parts of our analysis. Firstly, the 

Environmental Kuznets Curve estimation requires data on PM2.5 pollution for a broad set of 

countries over time. Secondly, we a comparable measure of the respective countries’ GDP per 

capita. Thirdly, we need to establish a measure for the socio-economic development in order 

to investigate if the estimated EKC differs for developed and developing countries. Fourthly, 

we need to obtain data on economic preferences. Descriptive statistics of the gathered data is 

presented in 4.2. We have decided to present these without further comments.  

 Data collection 

 Environmental Kuznets Curve data collection 

We use a data set on particulate matter concentrations from the (IHME, 2018), which is a 

collaboration between Health Effects Institute and the Institute for Health Metrics and 

Evaluation. It includes population-weighted concentrations of ambient PM2.5 pollution in 195 

countries every fifth year between 1990 and 2010, and every year from 2010 to 2017. To 

estimate the concentrations of fine particulate matter, the contributors combine data from air 

pollution monitoring stations, satellite observations and global chemical transport models. 

Concentration levels are reported as population-weighted annual means.  

We use a socio-demographic index (SDI) from the same report (IHME, 2018) in our further 

analysis to distinguish between developed and developing countries. It includes both an annual 

socio-demographic score for each country and a classification using the 2015 scores. Countries 

are classified as low, low-middle, middle, high-middle or high SDI countries. There are some 

countries for which we have SDI scores, that the classification is missing2. This includes 

countries such as Brazil, China, India, Japan, Kenya, Mexico, Saudi Arabia, South Africa, 

Sweden, the United States and the United Kingdom. To classify these countries, we have made 

thresholds to be the minimum SDI value within each classification level, using the socio-

demographic scores of 2015. Different countries have experienced different socio-

                                                 

2 For some countries in the IHME data SDI classification is split into regions and cities, and thus miss classification on an 

aggregated level. 
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demographic development from 1990, and thus some countries would have been classified 

differently in previous years. The benefit of using a static classification is that when we want 

to distinguish between developed and developing countries, all data observations of one 

country is within the same classification group. Thus, rather than classifying each observation, 

we classify each country and hold this constant for all observations of the given country.  

We use gross domestic product per capita from the World Bank International Comparison 

Program database (The World Bank, 2019). GDP data is measured in constant 2011 

international dollars. An international dollar has the same purchasing power over GDP as the 

US dollar has in the United States. 

When analyzing the hypothesized EKC relationship we make use of data of all countries that 

have a full set of particulate matter and GDP per capita data in the years 1990, 1995, 2000, 

2005 and 2010-2017. Typically, some countries in the particulate matter data set miss data 

points on GDP as they were declared independent states at a later stage in time. Thus, we have 

a sample of 157 countries covering 96% of the world population in 1990.  See Appendix A-5 

for the list of countries. Our complete dataset of 1884 observations is presented in the 

following figure:  

 

From Figure II it seems hard to identify a clear pattern between PM2.5 exposure and GDP per 

capita based on eyeballing econometrics. However, we remark that there seem to be fewer 

The figure plots PM2.5 pollution against GDP/P for all 157 countries in the data set. 

 Correlation (PM2.5, GDP/P) = -0.3177 

Figure II 
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observations of high PM2.5 exposure for countries with higher income. Thus, there might be a 

weak tendency of PM2.5 concentrations decreasing with economic development. 

The pattern appears clearer when analyzing a sub sample of 77 more developed countries, 

classified as high and high-middle SDI countries. In our sub sample of more developed 

countries, the negative relationship between PM2.5 concentration and GDP per capita seems to 

be clearer.  

 

For both the full sample and the sub sample of more developed countries, we see the same 

patterns in the sub periods 1990-2005 and 2010-2017. We might believe there is a need for a 

certain level of socio-demographic development to be in place for a negative relationship 

between PM2.5 concentration and GDP per capita to exist. The relatively lower correlation 

between income and pollution for developed countries might indicate that the relationship 

exists also for low income countries.  

 

 

Figure III 

The figure plots PM2.5 pollution against GDP/P for all high and high-middle SDI countries. Because of 

extraordinary levels of PM2.5, Bahrain and Saudi-Arabia are excluded from the sub sample of visual reasons. 

Correlation (PM2.5, GDP/P) = -0.1744 
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 Preference data 

From Falke et. al. (2018) we obtain data on six measures of economic preferences for 66 of 

the countries in our dataset.  Through the Global Preference Study, Falke et. al. has collected 

data on levels of patience, negative and positive reciprocity, willingness to take risk, altruism 

and trust for 80 000 individuals across 76 countries. We make use of the aggregated data. The 

data is constructed as weighted scores of different survey items for each preference measure 

(Falke et.al., 2015). Brief explanations of the six preference measures are given in table I. An 

overview of the survey items from Falke et.al. (2018) is reported in Table B-I, appendix B.  

 

   

Preference Definition 

Patience Willingness to give up something good today to receive more of it 

tomorrow.  

Risk taking Willingness to risk something good to potentially receive more of it. 

Positive 

reciprocity 

Propensity to return a favour, or show gratefulness materially after 

receiving a favour. 

Negative 

reciprocity 

Propensity to take revenge if you think you or someone else is treated 

unfairly. 

Altruism Willingness to give to a good cause without getting anything in return.  

Trust Belief in only good intentions of other people. 

 Table I describes the preference measures from Falk et. al (2018). 
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 Descriptive statistics 

 

 

Table II 

World 

N = 157 

1990 - 2017 

(T = 12) 

Observations Mean Standard error Min Max 

PM2.5  

 

GDP/P 

 

ln PM2.5 

 

ln GDP/P 

1,884 

 

1,884 

 

1,844 

 

1,844 

28.41 

 

15,495 

 

3.18 

 

9.02 

17.29 

 

17,267 

 

0.58 

 

1.20 

5.9 

 

373 

 

1.78 

 

5.92 

101 

 

110,433 

 

4.62 

 

11.61 

 Higher SDI 

N = 79 (77) 

1990 - 2017 

(T = 12) 

Observations Mean Standard error Min Max 

 

PM2.5  

 

 

GDP/P 

 

 

ln PM2.5 

 

 

ln GDP/P 

 

SDI 

    High SDI = 1 

     (N=32) 

 

    High-middle SDI =1 

     (N = 47) / (N = 45) 

 

948 

(924) 

 

948 

(924) 

 

948 

(924) 

 

948 

(923) 

 

384 

(384) 

 

564 

(540) 

 

21.57 

(20.19) 

 

26,047 

(25,562) 

 

2.93 

(2.90) 

 

9.92 

(9.90) 

 

1 

(1) 

 

1 

(1) 

12.50 

(9.12) 

 

18,583 

(18,564) 

 

0.52 

(0.48) 

 

0.73 

(0.73) 

 

0 

(0) 

 

0 

(0) 

5.9 

(5.9) 

 

2,173 

(2,173) 

 

1.77 

(1.77) 

 

7.68 

(7.68) 

 

0 

(0) 

 

0 

(0) 

97 

(45) 

 

110,433 

(110,433) 

 

4.57 

(3.81) 

 

11.61 

(11.61) 

 

1 

(1) 

 

1 

(1) 

 Lower SDI 

N = 77 

1990 - 2017 

(T = 12) 

Observations Mean 

 

Standard error Min 

 

Max 

PM2.5  

 

GDP/P 

 

ln PM2.5 

 

ln GDP/P 

SDI 

    Middle SDI = 1 

    (N = 27) 

    Low-middle SDI =1 

    (N = 27) 

    Low SDI = 1 

    (N = 23) 

924 

 

924 

 

924 

 

924 

 

324 

 

324 

 

276 

35.56 

 

4,584 

 

3.44 

 

8.08 

 

1 

 

1 

 

1 

18.68 

 

4,433 

 

0.51 

 

0.82 

 

0 

 

0 

 

0 

10 

 

373 

 

2.30 

 

5.92 

 

0 

 

0 

 

0 

101 

 

35,632 

 

4.62 

 

10.48 

 

1 

 

1 

 

1 

Table II describes the data used in the EKC estimations. N notes the number of countries and T number of time 

periods in years. Number in parentheses for statistics of Higher SDI countries are statistics for the group excluded 

Bahrain and Saudi-Arabia. We miss SDI data for Russia in our World sample, thus the two sub samples add up 

to N = 156. Data is retrieved from The State of Global Air website, HEI, and World Bank. 
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Table III 

World 

N = 66 

2012 

(T = 1) 

Observations Mean Standard error Min Max 

Patience  

    (Low  < 0)  

    (High  > 0) 

   

Positive reciprocity 

    (Low  < 0)  

    (High  > 0) 

 

Negative reciprocity 

    (Low  < 0)  

    (High  > 0) 

 

Risk taking  

    (Low  < 0)  

    (High  > 0) 

 

Altruism 

    (Low  < 0)  

    (High  > 0) 

 

Trust 

    (Low  < 0)  

    (High  > 0) 

 

 SDI 

    Low SDI = 1 

    Low-middle SDI =1 

    Middle SDI = 1 

    High-middle SDI = 1 

    High SDI = 1 

66 

37 

29 

 

66 

34 

32 

 

66 

33 

33 

 

66 

33 

33 

 

66 

27 

39 

 

66 

27 

39 

 

 

3 

12 

11 

21 

18 

0.0157 

1 

 1 

 

-0.0430 

1 

 1 

 

-0.0042 

1 

 1 

 

0.0312 

1 

 1 

 

-0.0104 

1 

 1 

 

-0.0388 

1 

 1 

 

 

1 

1 

1 

1 

1 

0.3885 

0 

0 

 

0.3476 

0 

0 

 

0.2641 

0 

0 

 

0.3080 

0 

0 

 

0.3398 

0 

0 

 

0.2838 

0 

0 

 

 

0 

0 

0 

0 

0 

-0.6152 

0 

0 

 

-1.0380 

0 

0 

 

-0.4893 

0 

0 

 

-0.9396 

0 

0 

 

-0.9396 

0 

0 

 

-0.7064 

0 

0 

 

 

0 

0 

0 

0 

0 

1.0701 

1 

 1 

 

0.5700 

1 

 1 

 

0.6648 

1 

 1 

 

0.9706 

1 

 1 

 

0.9065 

1 

 1 

 

0.6090 

1 

 1 

 

 

1 

1 

1 

1 

1 

Table III describes the preference data used in section 6.2.  We have preference data but not SDI data for Russia. 

Thus, the observations for SDI adds up to 65. SDI is here included for the sole purpose of giving a brief insight 

to the variance of countries in the preference dataset. Data is retrieved from (Woolridge, 2015) (Wooldridge, 

Abadie, Athey, & Imbens, 2017), and HEI’s website.  

 

  



 21 

 Empirical method 

5.0.1 Econometric approach 

In this thesis, we want to investigate the relation between PM2.5 and economic growth. To do 

this we will utilize three approaches. The first is to estimate the direct relation between PM2.5 

pollution and GDP using a range of econometric techniques on a panel of countries. The 

second approach is to investigate if there is a relation between countries’ PM2.5 levels and a 

range of economic preferences. The third will utilize the EUs’ adoption of PM2.5 regulation in 

2008 to estimate whether regulatory actions can affect the harmful levels of PM2.5. 

5.0.2 Functional form 

Before describing the different econometric approaches, we need to discuss the functional 

form of our regressions. Our preferred approach is to estimate a log-log model. This functional 

form has two advantages over using a linear model. Firstly, the log-log model allows us to 

interpret the estimated coefficients as the elasticity of PM2.5 pollution with regard to GDP per 

capita. By doing so we are able to interpret the estimated coefficients as a 1% change in GDP 

per capita has a given percentage effect on PM2.5 pollution. This makes the interpretation of 

the results more intuitive. The second benefit is that the log-log approach reduces the impact 

of outliers by narrowing the range of values in the data (Woolridge, 2015, p.191). This is 

helpful as there are a few outlier countries with high levels of both PM2.5 pollution and GDP 

per capita. These countries are typically oil producing, heavily desert countries like Saudi 

Arabia and Bahrain. Since both GDP per capita and PM2.5 are strictly positive there is no 

technical drawback to the logarithmic conversion (Woolridge, 2015, p.191). A third reason for 

using a logarithmic form is presented by Stern (2004), in that he states “regressions that allow 

levels of indicators to become zero or negative are inappropriate (…). A logarithmic dependent 

variable will impose this restriction.” Naturally PM2.5 pollution has a minimum boundary of 

zero, and this restriction applies to our analysis.  

We also estimate the model with other functional forms to check the sensitivity of our results. 

Results of these are presented in appendix A with discussions of the implications.  



 22 

 Environmental Kuznets Curve estimations 

 Panel data estimation  

To investigate if the proposed inverted U-shaped relationship between economic development 

and PM2.5 pollution is true we use both a fixed effects and a random effects regression model. 

As stated in the previous section our preferred functional form is a log-log model. To estimate 

the economic relationship, we use a linear and squared term for GDP per capita. To control 

for a possible time trend, we include yearly dummies.  

We therefore use the following unobserved effects model:  

log 𝑃𝑀2.5𝑖,𝑡
=  𝛽0 + 𝑎𝑖 + 𝛽1 × (log 𝐺𝐷𝑃/𝑃𝑖,𝑡) + 𝛽2 × (log 𝐺𝐷𝑃/𝑃𝑖,𝑡)

2
+ 𝛾𝑡 + 𝜀𝑖,𝑡 ,        (𝟏)  

 

The dependent variable is the natural logarithm of population weighted PM2.5 pollution in 

country i, year t. The term ai captures unobserved non-time varying country specific effects 

like geography and climate. The β1 and β2 coefficients estimate the linear and the non-linear 

effect of GDP per capita on pollution. γt estimates the time effects and 𝜀𝑖,𝑡 is the idiosyncratic 

error term. β0 is an intercept and represent the sample average country fixed effects. Normally 

this is not reported when performing fixed-effect estimation as this term is added to the country 

specific effects. We have chosen to split the two in order to obtain an estimate of the country 

specific fixed effects independent from the average sample effects. Furthermore, it yields an 

easily accessible term to interpret effects for the average country. 

To estimate turning points, given in GDP per capita, we use the following formula: 

exp (
−𝛽1

2𝛽2
) ,          (𝟐) 

We have also estimated our preferred model using sub samples of countries with either high 

or low SDI-scores to control for any possible differences between the more and less developed 

countries, as well to see if there is a joint EKC for the entire world3. We also estimated EKCs 

                                                 

3 Countries classified as high and high-middle SDI countries according to (IHEI, 2018) are grouped to Higher SDI countries. 

Countries classified as middle, low-middle and low are grouped to Lower SDI countries.  
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before and after 2010. This is for two reasons. Firstly, as discussed in the outline of the dataset, 

we only have pollution data for every five years until 2010 and this allows us to control for 

any possible differences arising from the different in the frequencies of the data. Secondly, we 

can check if there is a structural break across time in the estimated relation between pollution 

and economic development.  

 Fixed effects model 

The unobserved effects model in (1) becomes the fixed effects model when we time-demean 

all variables (Woolridge, 2015 p. 387). For each country, i, we average the unobserved effects 

model over time:  

log 𝑃𝑀̅̅ ̅̅ ̅̅ ̅̅
2̅.5𝑖

=  𝛽0 + 𝑎𝑖 + 𝛽1 × (log 𝐺𝐷𝑃/𝑃̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝑖,𝑡) + 𝛽2 × (log 𝐺𝐷𝑃/𝑃̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑖,𝑡)
2

+ 𝛾̅ + 𝜀𝑖̅ 

where log 𝑃𝑀̅̅ ̅̅ ̅̅ ̅̅
2̅.5𝑖

=  
∑ log 𝑃𝑀2.5𝑖,𝑡

𝑇
𝑖=1

𝑇
 , and so on. 

We derive the equation appropriate for OLS regression by subtracting the time-demeaned 

model from the original unobserved effects model: 

log 𝑃𝑀2.5𝑖,𝑡
 ̃ =   𝛽1 × (log 𝐺𝐷𝑃/𝑃𝑖,𝑡)̃ + 𝛽2 × (log 𝐺𝐷𝑃/𝑃𝑖,𝑡)

2̃
+ 𝛾𝑡̃ + 𝜀𝑖̃,𝑡 ,          (𝟑) 

where log 𝑃𝑀2.5𝑖,𝑡
 ̃ =  log 𝑃𝑀2.5𝑖,𝑡

− log 𝑃𝑀̅̅ ̅̅ ̅̅ ̅̅
2̅.5𝑖

, and so on.  

We notice that the constant β0 and the constant country specific unobserved effects, ai, are 

eliminated from the time-demeaned equation. The fixed effect method means estimating the 

time-demeaned equation (3) using pooled OLS. In our estimation, we add the time dummies 

after doing the time-demeaning. This implies that the estimated time effects accounts for 

differences to the base year, rather than to an average.  

 Random effects model 

While we in the fixed effects estimation only analyse the variation within each country, we 

also utilize some of the cross-country variation in random effects estimation. That is, we only 

remove a fraction of the average values when we perform the time-demeaning:  

𝜃 log 𝑃𝑀̅̅ ̅̅ ̅̅ ̅̅
2̅.5𝑖

=  𝜃𝛽0 + 𝜃𝑎𝑖 +  𝜃𝛽1 × (log 𝐺𝐷𝑃/𝑃̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝑖,𝑡) + 𝜃𝛽2 × (log 𝐺𝐷𝑃/𝑃̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑖,𝑡)
2

+ 𝜃𝛾̅ + 𝜃𝜀𝑖̅ 
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The unobserved model becomes the random effects model when we quasi-demean the data: 

log 𝑃𝑀2.5𝑖,𝑡
 ̈ =   log 𝑃𝑀2.5𝑖,𝑡

− 𝜃 log 𝑃𝑀̅̅ ̅̅ ̅̅ ̅̅
2̅.5𝑖

=  𝛽0(1 − 𝜃) + 𝑎𝑖(1 − 𝜃) +

 𝛽1 × (log
𝐺𝐷𝑃

𝑃 𝑖,𝑡
− 𝜃 log

𝐺𝐷𝑃

𝑃

̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑖,𝑡

) + 𝛽2 ×  ((log
𝐺𝐷𝑃

𝑃 𝑖,𝑡
)

2

− 𝜃 (log
𝐺𝐷𝑃

𝑃 𝑖,𝑡
)

2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
) +

      𝛾𝑡(1 − 𝜃𝛾𝑡̅) + 𝜀𝑖,𝑡(1 − 𝜃) ,          (𝟒)      

   

where log 𝑃𝑀2.5𝑖,𝑡
 ̈ is the quasi-demeaned log 𝑃𝑀2.5𝑖,𝑡

, and the parameter 𝜃 is given by 

0 < 𝜃 = 1 − (
𝜎𝜀

2

𝜎𝜀
2 + 𝑇𝜎𝑎

2
)

2

< 1 ,          (𝟓) 

where 𝜎𝜀
2 is the variance of the idiosyncratic error terms 𝜀𝑖,𝑡, and likewise for the country 

specific unobserved time invariant effects ai. We never truly know 𝜎𝜀
2, 𝜎𝑎

2 or 𝜃, but calculate 

the parameter based on consistent estimators  𝜎𝜀
2̂ and 𝜎𝑎

2̂ (Woolridge, 2015 p. 395).  These 

estimators are calculated based on the estimated composite residuals 𝑣𝑖,𝑡 using pooled OLS on 

the unobserved effects model, where 𝑣𝑖,𝑡 = 𝑎𝑖 + 𝜀𝑖,𝑡. 

The random effect method means estimating the quasi-demeaned equation using pooled OLS. 

In our estimation, we add the time dummies after doing the quasi-demeaning. This implies 

that the estimated time effects accounts for differences to the base year, rather than to an 

average. 

 Fixed or random effects? 

A key feature of both models is that they fully or partly remove the country specific 

unobserved effects ai from the estimation, which otherwise would be captured in the error 

term. If captured fully by the error term, they would create serial correlation in the residuals, 

which would hurt the efficiency of the OLS estimators. 

The fixed effects estimator is unbiased and efficient under the assumptions that the 

idiosyncratic error terms, 𝜀𝑖,𝑡, are strictly exogenous, homoskedastic and serially uncorrelated 

(Woolridge, 2015, p.388).  
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We test for serial correlation and heteroskedasticity in the idiosyncratic error terms 𝜀𝑖,𝑡. We 

regress the residuals 𝜀𝑖,𝑡 on one lag of the residuals and perform a t-test on the autocorrelation 

coefficient. The Breusch-Pagan test tests for violation of the assumption of homoskedastic 

error terms (Woolridge, 2015, p.220). We regress the squared residuals on the explanatory 

variables log GDP/P and (log GDP/P)2 and perform an F-test on the coefficients of the 

explanatory variables. A null hypothesis of all coefficients equal to zero implies 

homoskedastic error terms as the explanatory variables do not have a statistically significant 

effect on the squared residuals.  

In a panel dataset, the variance of the residuals may differ across groups, while the error term 

is still homoskedastic within groups and vice versa. To test for country wise heteroskedasticity 

in the residuals, uit, of the fixed effect models, we use a modified Wald test proposed by Greene 

(2000, p.235).  

For the random effects estimator to be unbiased, in addition to the fixed effects assumptions, 

the country specific effects ai have to be independent of all explanatory variables in all time 

periods (Woolridge, 2015, p.395). The assumption of the fixed effects model is looser in the 

sense that it allows for correlation between the country specific effects ai and the income terms.  

There are advantages of the random effects model. One is the possibility to include explanatory 

variables that are constant over time, which with fixed effects estimation would be swept away 

by the country fixed effects (Woolridge, 2015, p. 399). Furthermore, when the random effects 

model is estimated consistently it is more efficient than fixed effects as it also utilizes some of 

the cross-country variance, where fixed effects only uses the within-country variance. 

Woolridge (2015, p.399) pinpoints however, that country time-invariant effects which truly 

are unrelated to the explanatory variables are rare.  

From the random effects model, we can see that when  4 → 1, the random effect estimators 

of the income terms and error term go towards the estimators and error term of the fixed effects 

                                                 

4 See (5) section 5.1.3 
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model5 (Woolridge, 2015, p. 397). The smaller the , the larger fraction of the unobserved 

effect is left to the error term in the random effects model, and the larger the asymptotic bias 

of the random effects estimator. When the variance of ai is small relative to the variance of the 

idiosyncratic error term 𝜀𝑖𝑡,   tends to 1. Following, the bias term goes to zero as the random 

effects estimator tends to the fixed effects estimator which is unbiased under the fixed effects 

assumptions. Hence, to formalize the consideration between the two models, we test for 

statistically significant differences in the coefficients of the time-varying explanatory variables 

(log GDP/P, (log GDP/P)2 and year) between the two models, using the Hausman (1978) test 

(Woolridge, 2015, p.399). The test’s null hypothesis is that differences between the 

coefficients are not systematic, and thus that there is not a significant difference between the 

two models. If we fail to reject this, the RE model is generally preferred as it is more efficient. 

 Clustering 

The default t-statistics and standard errors of the explanatory variables in panel data 

estimations, rely on the assumption of independently and identically distributed (i.i.d.) error 

terms.  In economic cross-country analysis, there are often reasons to suspect error terms to be 

serially correlated and heteroskedastic as observations are not independently drawn. In the 

presence of heteroskedastic and serially correlated error terms it can be shown that the 

estimator is still unbiased, but the standard errors and test statistics will not be valid (Williams, 

2015).  

A common approach to escape this inference issue and obtain robust standard errors in 

empirical work in economics is to cluster on units (Wooldridge, Abadie, Athey, & Imbens, 

2017). Woolridge et. al. (2017) argues that the decision of clustering or not should not be based 

solely on whether it makes a difference on the standard errors, but also on a careful discussion 

if it is meaningful. Specifically, the authors conclude that one should cluster if either sampling 

or treatment was clustered4.  

                                                 

5 When 𝜃 →  1, (4) given by; 𝑦𝑖𝑡 − 𝜃𝑦̅𝑖𝑡 = 𝛽0(1 − 𝜃) + 𝛽1(𝑥𝑖𝑡1 − 𝜃𝑥̅𝑖𝑡1)+. . 

+𝛽𝑘(𝑥𝑖𝑡𝑘 − 𝜃𝑥̅𝑖𝑡𝑘) + (𝑣𝑖𝑡 − 𝜃𝑣̅𝑖), where (𝑣𝑖𝑡 − 𝜃𝑣̅𝑖) = (1 − 𝜃)𝑎𝑖 + 𝜀𝑖𝑡 − 𝜃𝜀𝑖̅𝑡, goes toward 

𝑦𝑖𝑡 − 𝑦̅𝑖𝑡 = +𝛽1(𝑥𝑖𝑡1 − 𝑥̅𝑖𝑡1)+. . +𝛽𝑘(𝑥𝑖𝑡𝑘 − 𝑥̅𝑖𝑡𝑘) + (𝜀𝑖𝑡 − 𝜀𝑖̅𝑡) which is the FE model (3).  
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As our sample of 1884 observations on PM2.5 concentrations are not randomly drawn, but 

rather a selection of 12 annual observations for 157 countries, we view our sampling to be 

clustered on countries. By clustering on countries, we loosen up on the assumption of 

independent observations, and allow for correlation within countries. We thereby obtain robust 

standard errors, accounting for serial correlation and heteroskedasticity in the error terms. 

If the assumption of i.i.d. error terms is violated, the default standard errors are likely to be 

downwards biased (Cameron & Miller, 2015). By allowing for within-country correlation 

between observations, the clustered standard errors are the inflated i.i.d. standard errors with 

an approximate factor; 

√1 + 𝜌𝑥𝜌𝜀(𝑁̅ − 1) , 

where 𝜌𝑥 is the within-country correlation between the observations of the explanatory 

variable x,  𝜌𝜀 is the within-country error correlation, and  𝑁̅ is the average number of 

observations within each cluster (Cameron & Miller, 2015). Explanatory variables are the 

income terms, log GDP/P and (log GDP/P)2, and the error correlation the correlation between 

the idiosyncratic error terms 𝜀𝑖,𝑡. Thus, from the inflation factor we notice that inference is 

more difficult for groups of countries where error terms or/and observations of income terms 

are more correlated, as clustered standard errors increase more.  

 Non-stationarity and co-integration 

In analysis of time series, there might be found relationships between indicators which are in 

reality unrelated. This may happen when two series follow a similar underlying trend or 

movement. Observations of such series are impacted by previous observations. We call these 

series non-stationary (Woolridge 2015, p. 306). 

Use of non-stationary series might lead to spurious results. That is the regressions results 

indicate relationships that are truly non-existing. An easily accessible example is number of 

drownings and ice cream consumption. Of course the true effect of ice cream consumption on 

drownings is zero, but because both increase during summer the regression results might 

indicate a significant relationship.  

Some non-stationary series are also highly-persistent. That is that the series follow a random 

walk, where the covariance between yt and yt-1 is close to one. The series is then said to have 
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a unit root. Unit root series might be stationary after first-differencing6. Such series are said to 

be integrated of order one.  

The problem of non-stationarity and spurious results might be eliminated if both series used 

are non-stationary co-integrated. If both series are integrated of order one it they might cancel 

each other out. The residuals of the regression model will then be stationary, and we do not 

need to worry about spurious results. 

Log GDP/P and log PM2.5 are series that might be non-stationary. If they are co-integrated 

however, and the residuals in (1) is stationary, we can use them in our regression without the 

risk of spurious results (Woolridge 2015, p. 512). We investigate for unit root of all 

explanatory variables, independent variables and the residuals 𝜀𝑖,𝑡 using a modified Dickey 

Fuller test for panel data with large N and fixed T7 (Harris, et. al., 1999). It tests if 𝜃 is 

significantly different from 0 in;  

△ 𝑦𝑖𝑡 = 𝑎 + 𝜃𝑦𝑖𝑡−1 + 𝑒𝑡 

where  △ 𝑦𝑖𝑡 = 𝑦𝑖𝑡 − 𝑦𝑖𝑡−1 

where yit is the variable we test, i.e. log GDP/P, log PM2.5 and the residuals 𝜀𝑖,𝑡 from the panel 

estimation. If 𝜃 is zero, the tested variable y follows a random walk and is non-stationary. 

Thus if 𝜃 is significantly different from zero we reject a null hypothesis that the series is non-

stationary. If log GDP/P and log PM2.5 co-integrate and the residuals are stationary, we do not 

have indications of spurious results. 

 Chow test 

In order to test for differences between developed and developing countries, or a structural 

change across time, we utilize the Chow test. Allowing for different intercepts across groups, 

the Chow test is a F-test which tests for statistically significant differences in the coefficients 

of the income terms. This allows us to see (1) if the estimated model is the same for the entire 

                                                 

6The first-differenced of y is given by; △ 𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−1 

7 N is number of countries and T is number of years.  
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world, or if there are differences in the estimated paths of developed and developing countries, 

and (2) if there is a structural break in time. 

The null hypothesis of the Chow test is that all slope coefficients are equal. Formally, we 

estimate the fixed or random effects model based on the equation: 

log 𝑃𝑀2.5𝑖,𝑡
=  𝛽0 + 𝑎𝑖 + 𝛽1 × (log 𝐺𝐷𝑃/𝑃𝑖,𝑡) + 𝛽2 × (log 𝐺𝐷𝑃/𝑃𝑖,𝑡)

2
+ 𝛿1 × (log 𝐺𝐷𝑃/

𝑃𝑖,𝑡) ×  𝑆𝑢𝑏𝑠𝑎𝑚𝑝𝑙𝑒𝑖𝑡 + 𝛿2 × (log 𝐺𝐷𝑃/𝑃𝑖,𝑡)
2

× 𝑆𝑢𝑏𝑠𝑎𝑚𝑝𝑙𝑒𝑖𝑡 + 𝛾𝑡 + 𝜀𝑖,𝑡,           (𝟔) 

When testing for differences across groups, Sub sample, is a dummy variable taking the value 

1 if country i is part of the sub sample of higher SDI countries, zero if not. Likewise, when 

testing for structural breaks across time, Sub sample, takes the value 1 if the observation is 

from 2011 or later.  

To conclude whether there is a statistically significant difference between the estimated 

curves, the Chow test performs a joint significance test of the coefficients of the income terms, 

𝛿1 and 𝛿2. The null hypothesis is that both are equal to zero and that pooling the groups of 

observations do not affect the estimated EKC significantly. A rejection of the null hypothesis 

thus implies that there is not a statistically significant (I) difference in the estimated EKC 

across groups, or (II) structural change across time.  

 Estimating with preferences 

In the previous section, we outlined our preferred method of estimating the EKC. When 

performing the fixed effects estimation, we obtain a parameter that captures time invariant 

pollution levels in a given country. Assuming that preferences are constant over time we know 

that the potential effect of these are captured in this term. We can explore how much of the 

country specific effect on PM2.5 pollution can be explained by differences in economic 

preferences. 

 Ordinary least squares 

There are data on preferences for 66 countries, measured in 2012, in our dataset. We assume 

these preferences to be constant over time. Under this assumption, we can investigate if 

preferences can explain some of the variation in the country fixed effects. Utilizing a cross-

sectional dataset with information on country fixed effects, patience, positive and negative 
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reciprocity, altruism, trust and risk taking, we perform a multiple regression analysis on the 

country fixed effect of pollution using the ordinary least squares method: 

 𝑎𝑖 =  𝛽0 +  𝛽1 ×  𝑝𝑎𝑡𝑖𝑒𝑛𝑐𝑒𝑖 + 𝛽2 ×  𝑝𝑜𝑠. 𝑟𝑒𝑐𝑖𝑝𝑟𝑜𝑐𝑖𝑡𝑦𝑖 +  𝛽3 ×  𝑛𝑒𝑔. 𝑟𝑒𝑐𝑖𝑝𝑟𝑜𝑐𝑖𝑡𝑦𝑖 + 𝛽4 ×

 𝑟𝑖𝑠𝑘 𝑡𝑎𝑘𝑖𝑛𝑔𝑖 + 𝛽5 × 𝑎𝑙𝑡𝑟𝑢𝑖𝑠𝑚𝑖  + 𝛽6 ×  𝑡𝑟𝑢𝑠𝑡𝑖 + 𝜀𝑖 ,          (𝟕) 

where the dependent variable ai is the country fixed effects for the 66 countries with preference 

data in our dataset, retrieved from the fixed effects model run on the full sample from Table 

IV8. As the country fixed effects are measured in natural logarithms of PM2.5 exposure, the 

interpretation of the coefficients of the explanatory variables is that a unit increase in 

preference score k leads to ßk units increase in the country fixed effects, implying a ßk 

percentage increase in the non-time varying levels of PM2.5 concentration in country i. ß0 is an 

estimated intercept and does not have a meaningful interpretation in this model. ß0 to  ß6 are 

chosen simultaneously to minimize the sum of the squared error terms 𝜀𝑖 (Woolridge, 2015, 

p.61). Under the five Gauss-Markov assumption our estimated coefficients 𝛽0̂, 𝛽1̂, … 𝛽6̂ are the 

best linear unbiased estimators of the true effects ß0,  ß1,…,  ß6 (Woolridge, 2015, p.90). 

 Model specification 

Decisions of including or excluding additional explanatory variables should be based first and 

foremost on the purpose of the estimation, and thereafter on a consideration of the trade-off 

between efficiency and bias (Woolridge, 2015, p.86). We should therefore always consider 

which effects we want our model to estimate. 

If we are only interested in the effect of e.g. patience, we do not care about correlation between 

positive reciprocity and altruism. If we however also care about the effect of positive 

reciprocity and altruism on the country effects, we need to analyse the trade-off between 

efficiency and bias.  

The trade-off between efficiency and bias relies on the true effect of the explanatory variables 

on the dependent variable. If the true value ßk equals zero, then it should be excluded as it 

cannot help explaining variance in the country fixed effects, ai. It can only increase 

                                                 

8 The country fixed effects are listed in Appendix A, table A-V. Country fixed effects used for the preference estimations are 

listed in column 1.  
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multicollinearity, correlation between explanatory variables, and lead to less efficient 

estimators (Woolridge, 2015 p.86). If the true value ßk is non-zero however, the question is 

more complex where including the explanatory variables may lead to inefficient estimators 

due to multicollinearity, and exclusion may lead to omitted variable bias in estimators due to 

ignoring true effects. 

As we are interested in the effects of several of the preferences, we might face multicollinearity 

problems. To test for the severity of the multicollinearity we calculate the variance inflation 

factor (VIF). The variance inflation factor for explanatory variable k is given by 

 𝑉𝐼𝐹𝑘  =  1/(1 − 𝑅𝑗
2), where R2

j is the R-squared from regressing xj on all other explanatory 

variables. However, there is no clear cut-off value for which multicollinearity is a severe 

problem. A common rule of thumb in empirical works in economics is that values below 10 

indicates that the estimations do not suffer from multicollinearity (Brooks, 2004).  

Finally, the choice of model specification is based on a consideration if we believe there exists 

a meaningful relation between the preference variable and the country fixed effects of 

pollution. 
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 Difference in difference and the effect of EU law 

In 2008 the EU implemented Directive 50 (EU, 2008). We can exploit this to perform a 

difference-in-difference estimation to investigate whether the regulation has had an effect on 

PM2.5 levels in member countries. When estimating the effect, we are comparing the trend 

before and after the implementation in EU countries to (I) the full sample and (II) the sub 

sample of socio-economically developed countries.  

The difference-in-difference method allows us to account for differences between the EU 

countries and the comparison groups which were already in place before the directive. Thus, 

the method seeks to estimate the isolated effect the directive has had on PM2.5 pollution in EU 

countries. We estimate the following equation: 

log 𝑃𝑀2.5𝑖,𝑡
=  𝛽0 + 𝛽1 ×  𝐸𝑈𝑖 + 𝛽2 × (𝑃𝑜𝑠𝑡 2008𝑡) + 𝛽3 × (𝐸𝑈 𝑝𝑜𝑠𝑡 2008𝑡) + 𝛽4 ×  𝑣

+ 𝛾𝑡 + 𝑖,𝑡 ,          (𝟖) 

Where log 𝑃𝑀2.5𝑖,𝑡
is the natural logarithm of the PM2.5 pollution in country i in year t. EUi is 

a dummy taking the value 1 if country i is part of the EU, and 0 if not. Post 2008t is a dummy 

taking the value 1 if the observation is for a year post year of policy implementation, 2008, 0 

if not. EU post 2008i,t is a dummy taking the value 1 if country i is part of the EU and year, t, 

of the observation is post policy implementation. t is the time effects, equal across countries. 

𝑖,𝑡 is the residuals and v a vector of other control variables. 

The constant 𝛽0 is the average PM2.5 mean exposure before 2008 for countries which are not 

part of the EU. 𝛽1 captures the average difference between PM2.5 exposure in a EU country 

and a non-EU country before 2008. 𝛽2expresses the average trend in a non-EU country after 

2008. 𝛾𝑡 are the time effects, v is a vector of other control variables unrelated to the directive, 

and  is the error term. The coefficient 𝛽3, known as the DiD-estimator, is the main variable 

of interest. The DiD-estimator can be expressed as (Woolridge, 2015 p.367): 

𝛽3̂ = (log 𝑃𝑀2.5 
𝑎2008,𝐸𝑈

− log 𝑃𝑀2.5 
𝑎2008,𝑛𝑜𝑛−𝐸𝑈

) − (log 𝑃𝑀2.5 
𝑏2008,𝐸𝑈

−  log 𝑃𝑀2.5 
𝑏2008,𝑛𝑜𝑛−𝐸𝑈

) 

 

where subscript b2008 and a2008 indicates before and after 2008 respectively. The DiD-

estimator thereby captures the difference in the average trend after 2008 between EU countries 
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and non-EU countries. Under a ceteris paribus assumption, the DiD-estimator is thus able to 

capture the isolated effects of the 2008 directive on PM2.5 pollution in EU (Woolridge, 2015 

p.367).  

In the simplest form of the model, we are not controlling for other variables than time effects, 

i.e. 𝑣 =  0 in (8). To account for possible presence of an EKC, or at least a relationship 

between PM2.5 and GDP, we sophisticate our model by including for linear and non-linear 

relationships with the natural logarithm of GDP per capita. Main variable of interest is still the 

DiD-estimator however, and additional control variables should only be seen as instruments 

to make this estimator more efficient and plausible.  
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 Results  

In this part, we will present the estimation results before discussing them further in chapter 7. 

In section 6.1 we present our results from estimating an EKC for PM2.5.  

First, we present the results for the full sample, and look for differences between developed 

and developing countries. Following this we estimate World EKCs based on observations 

from different time spans and look for a structural break in time.  

In section 6.2, we use preference data to explain differences across time invariant country 

specific levels of PM2.5. We also group countries according to preferences, and use the fixed 

and random effects model to investigate if there are different EKCs for these groups.  

In 6.3 we utilize the difference-in-difference estimation method to investigate whether the EU 

directive of 2008 on PM2.5 had an effect on pollution levels in member states.  

 Environmental Kuznets Curve for PM2.5 

 Estimated EKCs and differences across groups 

Table IV presents the results from estimating (1). Columns 1,3 and 5 show the results from a 

fixed effects estimation and columns 2, 4, and 6 show results from the random effect 

estimation. Columns 1 and 2 show the results for the whole sample, while 3 and 4 show the 

results for countries with a higher SDI score and 5 and 6 for countries with a lower SDI score.  

We will refer to the two sub samples as developed and developing countries from now on, 

except in tables and figures. 

  



 35 

TABLE IV 

Regression results 

1990-2017 

(log-log) 

 

Region 

 

 

World 

N = 157 

 

Higher SDI 

N = 77 

 

Lower SDI 

N = 78 

 

Model 

Fixed effects Random 

effects 

Fixed effects Random 

effects 

Fixed effects Random 

effects 

ln GDP/P 0.4177*** 

(4.68) 

0.4377*** 

(4.77) 

0.2674 

(1.19) 

0.3252 

(1.43) 

0.2782*** 

(2.47) 

0.2630** 

(2.36) 

       

(ln GDP/P)2 -0.0240*** 

(-4.69) 

-0.0260*** 

(-4.95) 

-0.0140 

(-1.18) 

-0.0179 

(-1.50) 

-0.0164** 

(-2.49) 

-0.0156** 

(-2.39) 

       

       

Constant 

 

 

Turning point 

 

p 

AR(1) 

 

Dickey-Fuller 

test1 

 

Breusch-Pagan 

test 

 

Wald test 

 

 

Chow F-test 

 

 

Hausman test 

 

Time effects 

1.4496*** 

(3.73) 

 

6,015 

 

0.705*** 

(35.92) 

 

0.7257** 

(0.0102) 

 

3.42** 

(0.0330) 

 

10,726*** 

(0.0000) 

 

1.05 

(0.3526) 

 

 

 

Yes 

1.4295*** 

(3.53) 

 

4,525 

 

0.703*** 

(35.80) 

 

0.7223*** 

(0.0062) 

 

3.40 

(0.337) 

 

 

 

 

3.18 

(0.2043) 

 

38.79*** 

(0.0000) 

Yes 

1.7041 

(1.60) 

 

14,045 

 

0.661*** 

(22.24) 

 

0.6950*** 

(0.0028) 

 

0.66 

(0.5160) 

 

25,265*** 

(0.0000) 

 

 

 

 

 

 

Yes 

1.5013 

(1.39) 

 

8,811 

 

0.658*** 

(22.13) 

 

0.6913*** 

(0.0018) 

 

0.68 

(0.5072) 

 

 

 

 

 

 

 

27.98*** 

(0.0000) 

Yes 

2.3104*** 

(4.83) 

 

4,826 

 

0.677*** 

(24.25) 

 

0.6868*** 

(0.0010) 

 

4.13** 

(0.0164) 

 

2,775.1*** 

(0.0000) 

 

 

 

 

 

 

Yes 

2.3790*** 

(4.98) 

 

4,580 

 

0.678*** 

(24.25) 

 

0.6869*** 

(0.0010) 

 

4.19** 

(0.0155) 

 

 

 

 

 

 

 

3.56 

(0.1688) 

Yes 

Observations 

Adjusted. R2 

1884 

0.3260 

1884 924 

0.6306 

924 936 

0.1334 

936 

Table IV shows results from estimating unobserved effects (1) for the full sample period 1990-2017. Dependent variable is 

the level of population weighted mean exposure to PM2.5, in country i in year t, in natural logarithms. Figures in parentheses 

are t statistics for regression coefficients and significance levels for the Dickey-fuller, Breusch-Pagan, Wald, Chow and 

Hausman test statistics. t statistics are calculated based on robust standard errors that allow for within-country correlation. 

Turning points are in 2011 purchasing power parity international dollars. AR(1) is a t-test on the residual autocorrelation 

coefficient p. H0 in Breusch-Pagan and Wald2 tests is homoskedastic error terms. H0 in the Chow F-test is that all slope 

coefficients are equal across classification groups. The null hypothesis of the Hausman test is that RE estimators are unbiased. 

The Hausman test is performed using covariance matrices based on the estimated disturbance variance from the consistent 

estimator. Bahrain and Saudi-Arabia are excluded from the Higher SDI sample, and Russia is included in the Lower SDI 

sample. 1 The DF-test finds that log GDP/P and log PM2.5 are integrated of order one. 2Within-country homoskedasticity 

Significance levels: * p < 0.1, ** p < 0.05, *** p < 0.01.  
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Estimating for the full sample, we find evidence for an EKC. The linear term is positive and 

the squared term negative, which satisfies the properties of the hypothesised relationship.  

The estimated coefficient for the linear term is 0.4177 meaning that a 1 % increase in income 

changes pollution by 0.4177 %. The estimated coefficient for the squared term is -0.0240 

meaning that a 1 % increase in income causes a change in pollution by -0.0240 times the 

squared value of the log of income. The total effect of income on pollution is the sum of these 

two terms. For the world sample, the greatest level of PM2.5 pollution is reached at $6,015. For 

countries with larger income than the estimated turning point pollution levels decline when 

income increases. For the World estimation, presented in column 1, the results are significant 

at the 1 % level for both income terms and the estimated constant, which is the sample average 

country effect.  

For the World EKC results in columns 1 and 2, both the Wald-test and Breusch-Pagan test 

indicate presence of heteroskedasticity. Results of AR(1) test indicate that the residuals are 

autocorrelated. To control for this, we base inference on clustered standard errors. The 

Hausman-test suggests that the random effects estimators are biased, and that we should prefer 

the fixed effects model. 

We believe the estimated results is evidence of a true relationship between pollution and 

income. For all periods, the Dickey-Fuller rejects unit roots in the first-differenced of log PM2.5 

and log GDP/P. There is thus evidence that both are integrated of order one and therefore co-

integrated. It also rejects unit root in the residuals of the panel estimations, and we do not have 

indications of spurious results. 

Main result 1: Our full sample estimation finds evidence for an EKC for PM2.5 in the period 

1990-2017.  

For developed countries none of the estimated coefficients are significant. When looking at 

the result for the Wald-test we see that the test score is very high, which indicates severe 

within-country heteroscedasticity. This inflates the clustered standard errors and makes 

inference more difficult. If we make inference based on the regular standard errors we get the 

result that both income terms are statistically significant. However, these results might be 

spurious. For qualitative considerations discussed in 5.1.5, we believe standard errors should 

be clustered, and thus prefer these results despite statistically insignificant results. 



 37 

However, it may still be useful to consider the estimated coefficients. The results for the 

developed countries follow the same general pattern as the estimation for the whole sample. 

The linear term is positive while the squared term is negative. The turning point given by the 

estimated coefficients amounts to $14,085. However, the level of pollution at the turning point 

is lower than for the world sample, but as the coefficients are not significant we cannot say 

whether there is in fact a true turning point. 

For developing countries, the Hausman-test indicates that we cannot reject that the estimated 

coefficients from the FE and RE are equal. Normally we would prefer the random effects 

model in this case as it is considered more efficient than the fixed effect model, but we believe 

that there are country specific characteristics that correlate with income. It seems rather 

unlikely that all country specific unobserved effects would be uncorrelated to GDP, which 

works a proxy for all economic activity in a country. Therefore, we prefer the fixed-effects 

model as it allows for this correlation. There are indications of heteroscedasticity and 

autocorrelation in the residuals.  

The estimated coefficients in column 5 are 0.2782 for the linear income term and -0.0164 for 

the squared term. The estimated turning point of $4,826 for developing countries is lower than 

for the full sample, but implies greater levels of pollution for the average country. 

Figure IV illustrates the estimated World EKC along with the EKCs for developed and 

developing countries. When comparing the estimated EKCs we see that the curve for 

developing countries is flatter, have a lower turning point and greater levels of pollution for 

all levels of income. This is most likely due to developing countries having greater levels of 

pollution than the sample average. The estimated curve for developed countries is lower for 

the same reasons as developing countries EKC is higher. The turning point is above the sample 

average and the level of pollution is lower for every level of income.  
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We cannot reject that there is a single World EKC, as the Chow-test cannot reject that the 

estimated slope coefficients are equal for developed and developing countries. This implies 

that we should disregard the estimated EKCs for developing and developed countries. The 

World EKC is more sensitive to changes in income, meaning that economic growth has greater 

impacts on pollution in the World EKC than in the developed and developing countries EKC.  

Main result 2: We do not find evidence that economic growth has greater effects in developed 

or developing countries, and we thus believe there is a World EKC for fine particulate matter.   

The fixed effects model also yields estimations of the country invariant time effects. This is 

illustrated in Figure V. The fixed time effects show the country independent changes in 

pollution levels. Changes are relative to the base year of 1990, and allows for a stochastic 

trend. These time effects can be viewed as technological progress. We see that the time effects 

have been greater in developed countries in recent times. This might be an indication that the 

technological progress across developed countries has increased relative to developing 

countries. 

 

 

Figure IV 

EKC estimations from the fixed effects model using all obs. 1990-2017 for full sample and the two samples. 

Log-log model. See table I. Note that the time effects are excluded. 
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 Structural break in time 

Table V presents the results from estimating (1) for different time periods. Columns 1,3 and 5 

show the results from a fixed effects estimation and columns 2, 4, and 6 show results from the 

random effect estimation. Columns 1 and 2 show the results for the whole sample over the 

entire period. Columns 3 and 4 show the estimation for the period 1990-2010. Columns 5 and 

6 show the estimation for the period 2011-2017. The estimations in columns 1 and 2 in Table 

V is the same as the estimations in columns 1 and 2 in Table IV.  

Figure V 

Fixed time effects for World, Higher SDI countries and Lower SDI countries EKC for the log-log model using 

all observations 1990-2017. Expressed in logarithmic differences in PM2.5 exposure relative to the base year 

1990. 
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Table V 

Regression results 

World 

(log-log) 

  

World 

N = 157 

 

T 

 

 

1990 - 2017 

n = 1884 

 

1990 - 2010 

n = 785 

 

2011 - 2017 

n = 1099 

 

Model 

Fixed effects Random 

effects 

Fixed effects Random 

effects 

Fixed effects Random 

effects 

ln GDP/P 0.4177*** 

(4.68) 

0.4377 

(4.77) 

-0.0154 

(-0.15) 

0.0183 

(2.88) 

1.4421*** 

(2.60) 

1.3040*** 

(2.92) 

       

(ln GDP/P)2 -0.0240*** 

(-4.69) 

-0.0260 

(-4.95) 

0.0026 

(0.41) 

-0.0005 

(-0.08) 

-0.0906*** 

(-2.97) 

-0.0843*** 

(-3.42) 

Constant 

 

 

Turning point 

 

p 

AR(1) 

 

Dickey-fuller 

test1 

 

Breusch-Pagan 

test 

 

Wald test 

 

 

Chow F-test 

 

 

Hausman test 

 

Time effects 

1.4496*** 

(3.73) 

 

6,015 

 

0.705*** 

(35.92) 

 

0.7257** 

(0.0102) 

 

3.42** 

(0.0330) 

 

10,726*** 

(0.0000) 

 

7.50*** 

(0.0008) 

 

 

 

Yes 

1.4295 

(3.53) 

 

4,525 

 

0.703*** 

(35.80) 

 

0.7223*** 

(0.0062) 

 

3.40** 

(0.0337) 

 

 

 

 

15.17*** 

(0.0005) 

 

38.79*** 

(0.0000) 

Yes 

3.1706*** 

(7.01) 

 

19(-) 

 

0.425*** 

(10.90) 

 

0.59522 

0.9928 

 

7.34*** 

(0.007) 

48,177*** 

(0.0000) 

 

 

 

 

 

 

 

Yes 

3.1151*** 

(5.25) 

 

88631688 

 

0.423*** 

(10.89) 

 

0.58522 

(0.9858) 

 

8.60*** 

(0.002) 

 

 

 

 

 

 

 

55.88*** 

(0.0000) 

Yes 

-2.2702 

(-0.90) 

 

2,860 

 

0.577*** 

(21.16) 

 

0.62962
 

(0.9580) 

4.78*** 

(0.0086) 

21,844*** 

(0.0000) 

 

 

 

 

 

 

 

 

Yes 

-1.6451 

(-0.82) 

 

2,285 

 

0.581*** 

(21.20) 

 

0.63162 

(0.9630) 

 

4.69*** 

(0.0094) 

 

 

 

 

 

 

 

38.79*** 

(0.0000) 

Yes 

Observations 

Adjusted. R2 

1884 

0.3260 

1884 785 

0.0547 

785 1099 

0.2812 

1099 

Table V shows the results from estimating (1) for the World sample over different sub periods. Dependent variable is log 

PM2.5, in country i in year t. Figures in parentheses are t statistics for regression coefficients and significance levels for the 

Breusch-Pagan, Wald, Chow and Hausman test statistics. t statistics are calculated based on clustered standard errors. Turning 

points are in 2011 purchasing power parity international dollars. AR(1) is a t-test on the residual autocorrelation coefficient 

p. H0 in Breusch-Pagan and Wald3 tests is homoskedastic error terms. H0 in the Chow F-test is that all slope coefficients are 

equal across classification groups. The null hypothesis of the Hausman test is that RE estimators are unbiased. The Hausman 

test is performed using covariance matrices based on the estimated disturbance variance from the consistent estimator. 1log 

GDP/P and log PM2.5 are integrated of order one. 2 Using Kao (1999) co-integration we find evidence for co-integration. 
3Within-country homoskedasticity. Significance levels: * p < 0.1, ** p < 0.05, *** p < 0.01. 
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We do not find evidence for an EKC relationship in the sub period 1990-2010, as none of the 

income terms are significant or jointly significant. The fixed-effect model estimates a negative 

linear term while the squared term is positive. The estimated turning point is $19, which 

contrary to the other turning points is a minimum point. There are indications of 

autocorrelation, within-country and cross-country heteroskedasticity. The Hausman-test 

indicates that the RE estimators are biased. Since the estimated coefficients are not significant 

we cannot make any statements on the relationship between income and pollution in the period 

between 1990 and 2010.  

We find an EKC for PM2.5 in the sub period 2011–2017, as both income terms are statistically 

significant at the 1 % level. The linear income term is 1.4421, while the squared income term 

is -0.0906. The 2011-2017 EKC has a turning point of $2,860. There is presence of 

heteroskedasticity and autocorrelation, and we base inference on clustered standard errors. The 

Hausman test indicates that we cannot reject that the RE and FE estimators are equal, but we 

still prefer the fixed effects model as we believe there are country specific fixed effects 

correlated to income. 

We find evidence for a structural break in time. The Chow-test rejects that the slope 

coefficients are equal for the two sub periods. This means that the EKC estimated after 2010 

is statistically different from an EKC based on the whole period. When comparing the 

estimated EKCs for 2011-2017 and the full sample, we see that the 2011-2017 EKC is steeper.  

The estimated pollution at the turning point is slightly higher for the 2011-2017 EKC, but as 

the eventual negative income effect is greater, since the curve is steeper the decline in pollution 

will be more rapid in this period than in the period as a whole, as illustrated in Figure VI. This 

suggests that poorer countries struggling with elevated PM2.5 pollution levels will experience 

a sharper decline in PM2.5 pollution as they develop compared to the past. However, it also 

suggests that the poorest countries will experience higher levels of pollution than earlier 

estimated on their way there all else equal.  

Main result 3: We find evidence that the EKC for PM2.5 has changed over time. Income growth 

had greater effects in the sub period 2011-2017 than in the period 1990-2017 as a whole, and 

the turning point is reached at an earlier stage of economic growth.  
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Though we cannot reject unit roots in the residuals, we believe the estimated results is evidence 

of a true relationship. For the world sample in the whole period, the Dickey-Fuller rejects unit 

roots in the first-differenced of log PM2.5 and log GDP/P. There is thus evidence of co-

integration. However, non-stationary residuals might lead to spurious results. We do however 

not believe this is present as the results are consequently pointing in the same direction 

different sub samples across different time periods9.  

 

 

 

 

 

                                                 

9 See Table IV together with Table V, A-III and A-IV. 

 

Figure VI 

World EKCs from the fixed effects model based on different time periods. 

Log-log model See Table V. Note that the time effects are excluded. 
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 Back-of-the-envelope calculations on the matter of time          
frames for the EKC estimations in the example of Bangladesh 

 To illustrate the implications of using different time frames for the EKC estimations, we 

highlight Bangladesh. Bangladesh is among the ten biggest countries in the world with a 

population of approximately 165 million people10. They are less developed and struggle with 

high levels of pollution. In 2017, the mean exposure of PM2.5 was 61 μg/m3, which is far above 

all recommended levels.  

In the previous section we showed that the EKC changes shape depending on which time 

period one uses. Specifically, if one estimates the curve based only on data from the seven last 

years in the sample, the curve is steeper but turns faster than a curve based on observations 

from the whole period. This has several important implications. Firstly, for less wealthy 

countries it matters for the predicted consequences of economic growth. According to the 

“old” EKC (1990-2017), they are yet to reach the turning point, which means that we expected 

air quality to decrease with economic growth. If one rather base predictions on the “new” EKC 

(2011-2017), they might have already passed the turning point. In that case, further economic 

growth will improve air quality. One such country is Bangladesh. 

With an income of $3,524 in 2017, Bangladesh is in between the estimated turning points of 

the two EKCs. Figure VII illustrates the differences between the EKCs based on the full time 

period and the last seven years. The solid line is Bangladesh’ estimated EKC based on the full 

sample, while the dashed line illustrates the EKC estimated on data between 2011 and 2017. 

The figure illustrates estimated levels of annual mean pollution in Bangladesh on the vertical 

axis for given levels of economic growth on the horizontal axis. A vertical reference line is 

included to mark Bangladesh’ level of GDP per capita in 2017. We adjust the intercepts of 

both models such that both curves go through the true values of Bangladesh anno 2017 with 

61 μg/m3 PM2.5 pollution and income of $3,524. The slopes are unaffected and the adjustment 

enables us to easier read the consequences of economic growth in true values. 

                                                 

10 World Bank Group Development Indicators  
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The “new” EKC predicts an immediate and greater decline in pollution in Bangladesh with 

further economic growth.  This is opposite of the “old” estimates, which predicts a period of 

worsened air quality with economic growth. Furthermore, even after reaching the turning 

point, the “old” estimate predicts only a small decrease in pollution levels. Even at a level of 

economic development at $160,000 of income, the “old” EKC predicts pollution levels above 

50 μg/m3. Thus, though it predicts increase in air quality eventually, it does not present a great 

outlook for Bangladesh’ air quality. Though the “new” EKC predicts greater and immediate 

increases in air quality, it still takes time to reach acceptable levels.  

As an example, let us assume Bangladesh will experience yearly economic growth of 2 % the 

next twenty years, increasing their income to approximately $5,200. Following the EKC based 

on the full period, pollution will then increase to 61.4 μg/m3, all else equal. For the same 

economic growth, the EKC estimated on the more recent data predicts pollution to decrease to 

59.3 μg/m3. Thus, we see that the estimated decrease is more than four times the size of the 

estimated increase, but that pollution all in all remains rather stable.  

Figure VII 

Estimated EKCs for Bangladesh from the fixed effects model based on 

different time periods. Log-log model See Table V. Note that time effects 

are excluded. 
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New estimates, based only on post 2011 data, gives reasons to be more optimistic about air 

quality in Bangladesh. They predict immediate and sharper decreases in pollution with 

economic growth. We see however, that the effects on absolute pollution levels are rather 

small for reasonable levels of economic growth in the short term. This implies that 

Bangladesh, and other countries, also rely on cross border technological progress.  

 Effects of preferences 

In this section we present our approach to explain differences in estimated EKCs, based on 

cross-country differences in preference measures. We thus seek to explain differences between 

countries by behavioural characteristics of populations. In doing so, the analysis takes two 

different approaches. In the first section, we use the parameters of country fixed effects 

estimated in 6.1 and estimate the effect of six measures of preferences on these time invariant 

country fixed effects of pollution. In the second section, we go back to the fixed and random 

effects methods and perform the estimation on sub samples of countries grouped according to 

preferences. While the first part investigates preferences’ effect on the country specific 

intercepts of the EKC, the fixed and random effects methods allow us to investigate whether 

preferences affect the shape of the curve.   

A brief explanation of the six preference parameters was given in Table I. A more detailed 

description from Falk et.al. (2018) is reported in the appendix. 

 Preferences and country fixed effects 

This section presents results from the multiple regression analysis seeking to explain the cross-

country variation in time invariant levels of pollution by behavioural characteristics of 

populations. This is done by regressing scores for six different preference measures from Falk 

(2018) on the country fixed effects retrieved from the World EKC model in Table IV. The 

multiple regression is based on equation (7) for the 66 countries in the Falk sample. We add 

explanatory variables one by one according to their raw correlations with country effects. The 

results are presented in Table VI and discussed in the following paragraphs.  

When reading the results, one should bear in mind the magnitude of the underlying values of 

both the dependent and independent variables. Country fixed effects are given in natural 

logarithms and vary from roughly -1.25 to 1.28. The coefficients of Table VI represent the 
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percentage change in country fixed effects following a unit change in the corresponding 

preference variable. However, all preference variables are reported as scores varying roughly 

from -1 to 1. Thus, speaking of a unit change in either of these does not make sense. In the 

discussion and interpretation of the results, we will consistently consider the effects of a 10th 

of a unit change. Following, we will consider the effects of a 0.1 increase in the score of 

preference k, which leads to a 𝛽𝑘/10 change in the country fixed effects. Furthermore, because 

the country fixed effects are measured in natural logarithms, this implies an approximate 

change of 100 × (𝛽𝑘/10) % in a country’s time invariant pollution level. Table A-V in the 

appendix presents a helpful overview of the magnitude and variance of the variables used in 

this section. 

Optimally, we would like to include all preference measures in our model, but it might hurt 

the efficiency of our estimators. However, for the full model of column 6, all VIFs are below 

3 and does not indicate problems of multicollinearity according to this rule of thumb. Thus, 

we do not have indications of multicollinearity hurting the efficiency of our estimators. 

However, we see that the estimated effect of positive reciprocity loses some efficiency, but is 

still significant in the full model. As we do not reject the possibility that all preference 

variables have a true effect on pollution, we believe excluding variables might lead to omitted 

variable bias. Thus, as we do not believe there are severe problems of multicollinearity present, 

we evaluate potential omitted variable biases to be more problematic than the efficiency issue. 

Our preferred model with inclusion of all explanatory variables, is presented in column 6 of 

Table VI. We also present a pairwise correlation matrix in Table VII, and pay attention to 

highly correlated pairs of preference variables. 
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Table VI 
OLS regressions 

Dep. var.: 
Country effects 

 (1) (2) (3) (4) (5) (6) 

Patience -0.713*** -0.704*** -0.854*** -0.924*** -0.878*** -0.891*** 

 (-4.20) (-4.18) (-5.06) (-5.49) (-5.25) (-5.21) 

       

Positive 

reciprocity 

 -0.266 

(-1.41) 

-0.120 

(-0.64) 

-0.0115 

(-0.06) 

-0.383 

(-1.38) 

-0.416 

(-1.44) 

       

Negative 

reciprocity 

  0.719*** 

(2.80) 

0.683*** 

(2.72) 

0.682*** 

(2.76) 

0.650** 

(2.52) 

       

Risk taking    0.431** 0.358* 0.358* 

    (2.03) (1.68) (1.67) 

       

Altruism     0.482* 0.470* 

     (1.79) (1.73) 

       

Trust      0.114 

      (0.46) 

       

Constant 0.00811 -0.00348 0.00818 0.000331 -0.00912 -0.00677 

 

Breusch-

Pagan test 

(0.12) 

0.23 

(0.6321) 

(-0.05) 

0.29 

(0.7476) 

(0.13) 

1.67 

(0.1827) 

(0.01) 

1.92 

(0.1186) 

(-0.15) 

1.31 

(0.2703) 

(-0.11) 

1.01 

(0.4263) 

Observations 

Adj. R2 

66 

0.20 

66 

0.22 

66 

0.29 

66 

0.33 

66 

0.35 

66 

0.34 

Table VI presents the OLS estimators from regressing equation (7). The dependent variable country effects 

are the individual fixed effects retrieved from the FE-estimation of the World sample using all obs. 1990-2017 

(Table IV). Figures in parentheses are t statistics for coefficients and significance levels for Breusch-Pagan 

test statistics. H0 in Breusch-Pagan test is homoskedastic error terms.  

Significance levels: * p < 0.1, ** p < 0.05, *** p < 0.01 

 

Table VII 

Correlation matrix 

 Country 

effects 

Patience Positive 

reciprocity 

Negative 

reciprocity 

Risk taking Altruism 

Country effects 1      

Patience -0.465*** 1     

Positive reciprocity -0.171 0.0336 1    

Negative reciprocity 0.171 0.297** -0.258** 1   

Risk taking 0.157 0.216* -0.295** 0.206* 1  

Altruism 0.0549 -0.0528 0.744*** -0.207* -0.118 1 

Trust -0.0441 0.243** 0.391*** 0.193 -0.0364 0.332*** 

Table VII shows the pairwise correlation. Country effects are the individual fixed effects retrieved from the 

FE estimation of the World sample using all obs. 1990-2017 (Table IV). 

Significance levels: * p < 0.1, ** p < 0.05, *** p < 0.01 
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Our model explains 34% of the variation in country fixed effects, and a Chow-test strongly 

rejects that none of the preference measures have effects. We find that populations’ level of 

patience, negative reciprocity, risk taking and altruism have significant effects on the country 

fixed effects of pollution in the 66 countries analysed. All effects are prone to endogeneity 

issues however. We can therefore only draw conclusions on correlations, and not causality. 

Discussions on how relationships can go both directions are elaborated in the analysis 

presented in section 7.  

Our first result is that country fixed effects decreases by -0.891 for each unit increase in 

patience. Thus, a 0.1 score point increase in patience decreases the time invariant pollution by 

approximately 8.9%. For an average country, this amounts to a decrease of 0.36 μg/m3. The 

effect is statistically significant and the sign of the coefficient is meaningful. When 

populations are more patient, they depreciate future utility less, and consume less goods and 

services with negative environmental externalities today. Following this line of thought, 

countries with more patient populations have lower concentrations of particulate matter. The 

size of the effect is also rather robust for different model specifications. 

Next, if a population’s score for negative reciprocity is increased by 0.1, the level of time 

invariant particulate matter increases by approximately 6.5 % in that country. For the average 

country, this corresponds to an increase of 0.26 μg/m3. The effect is statistically significant 

and has a positive sign in line with expectations. We believe negative reciprocity and positive 

reciprocity tells two stories of the classical problem where one only cares as much as you 

experience others to care. For negative reciprocity, it implies that if your neighbour ignores 

your desire for clean air in the morning when he takes his car to work, you take revenge of his 

desire for clean air when you drive to work the next morning. For positive reciprocity, the 

opposite arguments go; if your colleague rides her bike to work, you are more likely to also 

ride your bike to work. Thus, the coefficients for both negative and positive reciprocity is in 

line with expectations. However, of the two, only the effect of negative reciprocity is 

statistically significant. The coefficient of positive reciprocity might be inefficient due to high 

correlations with other explanatory variables. Especially, the estimator seems influenced by 

altruism. We therefore focus on the effect of negative reciprocity, but bear in mind that there 

could be an opposite effect of positive reciprocity as part of the story.  
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If a population scores 0.1 point higher on risk taking, the time invariant pollution will increase 

by approximately 3.6 %, implying an increase of 0.15 μg/m3 for the average country. The 

effect might work through a hypothesis where risk willing people are more likely to neglect 

the negative effects of pollution to consume more. The effect is statistically significant only at 

the 10 % level, but rather robust for different model specifications.  

Altruism has a positive effect on pollution of 0.47 % in the preferred model. The effect of 

altruism is statistically significant at the 10 %-level, but the sign of the coefficient does not 

support a hypothesis that more altruistic populations will act in ways that improve air quality 

for the community. However, the relationship might be more complex. All in all, one should 

be careful in interpreting the effect of altruism as the size and significance of it varies greatly 

for different model specifications. In example, if we exclude positive reciprocity from the 

model, the effect of altruism drops significantly to 0.2, and is not statistically significant. Thus, 

the estimated effect of altruism might be driven by the correlation with positive reciprocity.  

Lastly, we have controlled for the effect of trust which is small and statistically not significant. 

There are indications that there is multicollinearity between altruism and positive reciprocity 

as they were sensitive to inclusion and exclusion of the other. We can thus not make inference 

about the effects of these, but including them as control variables are valuable as long as they 

are not collinear with other variables.  

Main result 4: Countries with higher levels of patience experience less time invariant 

pollution, while higher levels of negative reciprocity and risk taking is associated with higher 

levels of PM2.5.  

 Differences in estimated EKC across preferences 

In this subsection, we investigate whether preferences can not only affect the time invariant 

pollution, but also affect the form of the EKC. In order to answer this question, we group 

countries according to their preference scores and go back to panel estimations. This opens up 

for the possibility that preferences can impact the effects of economic growth on pollution and 

thus also the turning points. 

In order for us to answer these questions, we split all 66 countries in two groups for all 

preference measures. Thus, for each preference measure, we have two sub samples of 

countries – one for countries with higher scores, and one for lower. For simplicity, both in 
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methodology and interpretation of the estimated results, we set the cut-off between the two 

groups to be zero for all preference variables. This threshold splits the countries into two 

roughly equally large groups for all five preference variables (see Table III).  

We estimate individual EKCs for all ten sub samples, using the fixed and random effects 

models on equation (1). For each pair of sub samples, we perform a Chow test to conclude 

whether the pairwise difference in the estimated curves is statistically significant. The relevant 

estimation results are presented in Table VIII. 
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Table VIII 
Regression results 

Negative reciprocity 
(log-log) 

 

T 

 

 

Falk sample 

N = 66 

 

Negative reciprocity > 0 

N = 33 

 

Negative reciprocity < 0 

N = 33 

 

Model 

Fixed effects Random 

effects 

Fixed effects Random 

effects 

Fixed effects Random 

effects 

ln GDP/P 0.6636*** 
(5.03) 

0.7011*** 
(4.70) 

0.7652*** 
(4.17) 

0.7942*** 
(3.99) 

0.7375*** 
(5.05) 

0.8704*** 
(5.07) 

       

(ln GDP/P)2 -0.0368*** 
(-4.94) 

-0.0403*** 
(-4.69) 

-0.0407*** 
(-4.01) 

-0.0431*** 
(-3.82) 

-0.0437*** 
(-4.18) 

-0.0566*** 
(-5.06) 

Constant 

 

 

Turning point 

 

p 

AR(1) 

 

Breusch-

Pagan test 

 

Wald test 

 

 

Chow F-test 

 

 

Hausman test 

 

 

Time effects 

0.2896 
(0.48) 

 

8,236 

 

0.754*** 

(24.76) 

 

2.92* 

(0.0546) 

 

10,726*** 

(0.0000) 

 

4.14** 

(0.0204) 

 

 

 

 

Yes 

0.2387 
(0.36) 

 

5,994 

 

0.750*** 

(24.58) 

 

2.84* 

(0.0587) 

 

 

 

 

9.73*** 

(0.0077) 

 

21.64*** 

(0.0000) 

 

Yes 

-0.2037 
(-0.24) 

 

12,094 

 

0.684*** 

(16.73) 

 

2.33* 

(0.0990) 

 

48,177*** 

(0.0000) 

 

 

 

 

 

 

 

Yes 

-0.2682 
(-0.29) 

 

10,031 

 

0.684*** 

(16.71) 

 

2.18 

(0.1144) 

 

 

 

 

 

 

 

10.83*** 

(0.0044) 

 

Yes 

0.0782 
(0.15) 

 

4,620 

 

0.684*** 

(16.71) 

 

1.89 

(0.1528) 

 

21,844*** 

(0.0000) 

 

 

 

 

 

 

 

Yes 

-0.0843 
(-0.13) 

 

2,184 

 

0.738*** 

(16.09) 

 

2.20 

(0.1346) 

 

 

 

 

 

 

 

28.28*** 

(0.0000) 

 

Yes 

Observations 

Adjusted. R2 

792 

0. 3680 

792 396 

0. 3472 

396 

 

396 

0. 4014 

396 

Table VIII shows the results from estimating unobserved effects equation (1) for the Falk sample and the two 

sub samples of higher and lower levels of negative reciprocity over the full sample period 1990-2017. 

Dependent variable is the level of population weighted mean exposure to PM2.5, in country i in year t, in natural 

logarithms. Figures in parentheses are t statistics for regression coefficients and significance levels for the 

Breusch-Pagan, Wald, Chow and Hausman test statistics. t statistics are calculated based on robust standard 

errors that allow for within-country correlation. Turning points are in 2011 purchasing power parity 

international dollars. AR(1) is a t-test on the residual autocorrelation coefficient p. H0 in Breusch-Pagan and 

Wald1 tests is homoskedastic error terms. H0 in the Chow F-test is that all slope coefficients are equal across 

classification groups. The null hypothesis of the Hausman test is that RE estimators are unbiased. The 

Hausman test is performed using covariance matrices based on the estimated disturbance variance from the 

consistent estimator. Bahrain and Saudi-Arabia are excluded from the Higher SDI sample, and Russia is 

included in the Lower SDI sample. 

Significance levels: * p < 0.1, ** p < 0.05, *** p < 0.01. 1Within-country homoskedasticity 
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The analysis finds that countries with higher levels of negative reciprocity experience greater 

effects on pollution from economic growth than countries with lower levels, as the Chow test 

rejects equal effect for the income terms for lower and higher negative reciprocity countries. 

This also implies that these countries reach the turning point later. We cannot conclude on a 

causal relationship between higher levels of negative reciprocity and the polluting effects of 

economic growth, but there is a pattern where countries with higher levels also have higher 

effects of income. 

For all other pair of sub samples, the Chow test cannot reject the null hypothesis of equal slope 

coefficients for lower and higher scores of the other five preference variables. Thus, for other 

preferences, we do not find evidence that higher or lower levels matter for the form of the 

EKC.  

When performing the Chow test, testing for differences in the estimated slope coefficients (ln 

GDP/P and ln(GDP/P)2) between two sub samples, all countries are assumed to follow the 

same time trend. This might not be true of course. However, it is only for the sub samples of 

higher and lower risk taking we find evidence for different time trends through a joint 

significance test of the sub sample individual time effects. If we allow for different time trends 

for these sub samples, the Chow test still cannot reject equal EKCs however.  

The estimated EKCs for the two sub samples on negative reciprocity is presented in Table 

VIII. The estimated coefficients of ln(GDP/P) are 0.7652 and 0.7375 for countries with 

negative reciprocity scores above and below zero respectively. For the squared term, (ln 

GDP/P)2, the estimated coefficients are -0.0407 and -0. 0437 for the same groups. The 

Hausman test rejects equal estimators for the FE and RE models for the pooled sample and 

both sub samples. Estimators from all three RE models are thus biased, and the preferred 

models are the three FE models. 

The two Environmental Kuznets Curves for countries with higher and lower negative 

reciprocity are illustrated in Figure VIII. The solid line is the estimated EKC for countries with 

higher levels of negative reciprocity in the population, while the dashed line is the estimated 

curve for countries with lower levels of negative reciprocity. Notice that the vertical axis 

showing economic development is exponential. 
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As seen from Figure VIII the estimated EKC for countries with higher negative reciprocity is 

steeper in incline, but reaches the turning point later than the estimated EKC for countries with 

higher negative reciprocity. Initially, economic development has a greater increasing effect on 

pollution in countries with higher levels of negative reciprocity in early stages. This supports 

the hypothesis proposed in the previous subsection, that more negatively reciprocated 

individuals care less about air quality when others do neither. Thus in an economy with 

polluting goods and services, there will be air quality depletion.   

Countries with lower levels of negative reciprocity also reach the turning point at a later stage 

of economic growth. Countries with lower levels of negative reciprocity reach the turning 

point at $4,260 GDP per capita, almost two thirds less than countries with higher levels of 

negative reciprocity at $12,094. As the incline in the estimated EKC for countries of higher 

negative reciprocity is both steeper and longer lasting, the average country in this group also 

experiences higher levels of particulate matter before reaching the turning point. Thus, we see 

Figure VIII 

Estimated EKCs for the sub samples of countries with higher and lower negative reciprocity. Curves are 

estimated based on the fixed effects model in log-log, but illustrated in level-level. Notice that the horizontal 

axis is exponential and ticks approximate. See table VIII. 
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that rather small differences in the estimated effects of economic development yield large 

differences in turning points.  

Main result 5: Countries with higher levels of negative reciprocity experience greater effects 

on pollution from economic growth than countries with lower levels, and reach the turning 

point later. 

 Back-of-the-envelope calculations on the effects of 
preferences 

In this subsection, we present back-of-the-envelope calculations to illustrate the estimated 

effects of preferences on a specific country’s estimated EKC. First, we highlight Italy to 

illustrate preferences’ effects on the time invariant pollution levels, and what implications this 

may have for Italy’s total pollution levels. Secondly, we highlight Tanzania to illustrate the 

matter of negative reciprocity for their estimated EKC path, and the implications of higher 

negative reciprocity going forward.  

6.2.3.1 Effects of preferences on time invariant pollution in the 
example of Italy 

In the first subsection on preferences, we found that patience, negative reciprocity, risk taking 

and altruism have statistically significant effects on country fixed effects of pollution. We also 

remember however that we were especially cautious in interpreting the effects of altruism. 

Because patience seemed to be the preference variable with the greatest and most stable effect, 

we will elaborate how changes in level of patience affect the estimated EKC of a given 

country. 

Because we assume preferences to be constant over time, patience does only affect the 

intercept of the EKC in this scope of the analysis, namely the country fixed effects. A change 

in patience will thus only lead to a parallel vertical shift in the curve, and not change the slope. 

This parallel shift corresponds to the change in the time invariant pollution levels – the country 

fixed effects.  

To illustrate, we highlight Italy, which population scores rather low on patience with a score 

of approximately 0.11. In 2017, Italy had a gross national product per capita amounting to 

$35,220, and a mean PM2.5 exposure of 17 μg/m3. For comparison, we also highlight Spain. 

Across the Mediterranean for Italy, the Spanish population is slightly more patient with a score 

of approximately 0.20. Thus, the Spaniards score almost 0.1 points higher in patience than 
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their Italian friends. The effect of this difference in patience on country fixed PM2.5 exposure, 

is estimated in section 1 to be approximately 8.9 %. Thus, if Italians had, and had always had, 

the same level of patience as the Spaniards, the intercept of their estimated EKC would be 

8.9% lower, all else equal. Following, for all levels of economic development, Italians would 

experience 8.9 % lower pollution levels. This implies a mean level of PM2.5 at 15.47 μg/m3 in 

2017, 1.53 μg/m3 less than the true value. 

The isolated effect of patience on country fixed pollution is illustrated in Figure IX below, by 

the example of Italy. The solid line is Italy’s estimated EKC from the World FE model from 

subsection 6.1.1, and dotted line is Spain’s estimated EKC from the same model. The dashed 

line is Italy’s estimated curve if they had had the same patience level as the Spanish population, 

all else equal. The vertical line indicates Italy’s level of economic development in 2017. PM2.5 

on vertical and GDP per capita on horizontal axis are in levels, but the vertical axis showing 

economic development is exponential.  

 

 

Figure IX 

Estimated EKC for the Italy and Spain. Slope and country fixed effects retrieved from FE estimation on World 

sample (Table IV, col. 1). Curves are estimated in log-log, but illustrated in level-level. Notice that the 

horizontal axis is exponential. Vertical line indicates Italy’s level of GDP/P as of 2017. The shift from solid to 

dashed curve is parallel in log-log. See Table IV and VI. 
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From Figure IX we observe that the estimated EKC of Italy shifts towards the curve for Spain. 

There is still a substantial difference in the levels of the curves, which explanation lies in 

differences in other constant characteristics of the countries. We could go one, and even two, 

steps further and also take differences in negative reciprocity and risk taking into account. 

Italians are both more willing to take revenge and risk. Following the same line of arguments 

and assumptions as for preferences, Italy’s levels of PM2.5 exposure would be approximately 

2.311 % and 8.712 % lower respectively, if their population had the same levels of negative 

reciprocity and risk willingness as the Spaniards. Adjusting these preferences for Italy brings 

the estimated EKC closer to the parallel13 EKC of Spain, as shown in Figure X. 

 

                                                 

11 (0.18 − 0.311) × 0.65 

12 (−0.09 − (−0.16)) × 0.358 

13 The curves are parallel in their estimated functional form, log-log.  

Figure X 

Estimated EKC for Italy and Spain. Slope and country fixed effects retrieved from FE estimation on World sample 

(Table IV, col. 1). Curves are estimated in log-log, but illustrated in level-level. Notice that the horizontal axis is 

exponential with approximate values at tics. See table IV and VI. Vertical line indicates Italy’s level of GDP/P as of 

2017. 
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We see that there is still a difference between the two modified EKCs of Italy and the EKC of 

Spain, implying that there are other differences in constant attributes of the two countries that 

has an effect on particulate matter. However, these back-of-the envelope calculations illustrate 

that preferences can explain a substantial amount of the differences in the country fixed PM2.5 

exposure. Differences in patience, negative reciprocity and risk taking are together able to 

explain approximately 35 % of the difference in country fixed effects between Italy and Spain. 

6.2.3.1 Effects of negative reciprocity on estimated EKC in the 
example of Tanzania 

In 6.2.2, we found that countries with higher levels of negative reciprocity experience a steeper 

and longer way to the turning point of the EKC. Both prior to the turning point and after, 

economic growth has greater effects on pollution in countries with higher levels of negative 

reciprocity. In this section, we seek to illustrate the differences for a given country, here being 

Tanzania. Tanzania is chosen as they have a slightly positive level of negative reciprocity 

(0.05) and is yet to reach the estimated turning points of both models, with a gross national 

product per capita in 2017 at $2,683. Thus, if they would have had slightly lower levels of 

negative reciprocity, they would be estimated to follow an EKC which would make predict 

them to reach the turning point sooner, and limiting the temporary increase in pollution along 

the way.  

Because one cannot make inference about the results from the fixed effects method out of 

sample, we cannot say if Tanzania would have had negative levels of negative reciprocity, 

they would follow the EKC of the sub sample of lower negative reciprocity countries estimated 

in Table VIII. Thus, we give Tanzania a score of negative reciprocity below zero (and for this 

illustration it does not matter how much below), and move them from the sub sample of 

countries with higher negative reciprocity to the sub sample of lower negative reciprocity.  

We estimate new EKCs using the fixed effects model on the modified sub samples. Performing 

Chow tests tells us that including Tanzania in the lower negative reciprocity sub sample has 

statistically significant effects on the estimated EKC for this group, but they also tell that there 

is still a significant difference between the two groups. Furthermore, the pattern remains as all 

coefficients of the income terms change in the same direction. Countries with higher levels of 
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negative reciprocity still experience a greater and longer lasting increase in pollution along 

economic growth. We present the numerical results of this in appendix B. 

The implied consequences for Tanzania, of having a lower level of negative reciprocity in the 

population is illustrated in Figure XI below. The solid line is the estimated curve for countries 

with higher levels of negative reciprocity, with the specific intercept of Tanzania. The dashed 

line is the estimated EKC for Tanzania if they had scored below zero on negative reciprocity, 

all else equal. The vertical line indicates the level of GDP per capita in Tanzania per 2017. 

Curves are estimated in log-log, but illustrated in levels. Notice that the vertical axis showing 

economic development is exponential. 

 

 

Figure XI explicitly illustrates the differences in the estimated EKC of Tanzania depending on 

their level of negative reciprocity. Remember that the dashed line is a hypothesized line, which 

should be interpreted as the EKC for Tanzania if they had, and had always had, a lower level 

of negative reciprocity. Still in the zone where economic growth is seen with increased 

pollution levels, the differences in paths is significant. In a world where the Tanzanian people 

Figure XI 

Estimated EKCs for Tanzania where the difference in estimates is caused by level of negative reciprocity. 

Illustration based on models in col 3 and 51 of table VIII. Curves are estimated in log-log, but illustrated in 

level-level. Notice that the horizontal axis is exponential with approximate values at tics. Vertical line 

indicates Tanzania’s level of GDP/P as of 2017. 
1 Model in illustration slightly different due to including Tanzania in estimation. See the model used in appendix B-II 
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had been less negative reciprocated, they would be estimated to reach the turning point at a 

level of GDP per capita of $4,682, which is $7,412 less than the estimate based on their true 

level of negative reciprocity. Furthermore, they would limit pollution on their way there. At 

$4,682 GDP per capita, they are estimated to be exposed to PM2.5 at a level of 33.6 μg/m3. The 

levels are also estimated to increase more reaching 34.9 μg/m3 at the most. At the same time, 

the estimated path if they would have had lower levels of negative reciprocity, peaks at 31.2 

μg/m3. Thus, the informal calculations illustrate how negative reciprocity may not only affect 

the positioning of the estimated EKC in the vertical landscape, but also the form of it. 

Exemplified by Tanzania, we see how levels of negative reciprocity can affect both turning 

points and levels of exposure experienced along the way. 

 Diff-in-diff results 

Table IX shows the results of estimating the effect of the Directive 50 on PM2.5 in EU countries 

using a difference-in-difference estimation technique. Columns 1 through 3 shows the results 

from estimating the effect of Directive 50 when comparing to all other countries in the sample. 

Columns 4 through 6 shows the results for estimating the effect of Directive 50 on the subset 

of developed countries. To account for the effect of economic development we have included 

income terms in columns 2, 3, 5 and 6. This allows us to assess the effect of Directive 50 

independent of changes in income.  
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TABLE IX 

Difference in difference 

EU Directive 50 2008 

1990-2017 

 

Comparison 

group 

  

  

World 

N = 157 

    

Higher SDI countries 

N = 82 

  

Model 

  

Col 1 

  

Col 2 

  

Col 3 

    

Col 4 

  

Col 5 

  

Col 6 

EU  -0.675*** 
 (-7.55) 

-0.661*** 

(-7.15) 

-0.627*** 
 (-6.93) 

  -0.475*** 

(-4.69) 

-0.455*** 

(-4.50) 

-0.455*** 

(-4.49) 

                

Post 2008 -0.118*** 

 (-10.57) 

-0.1114*** 
 (-9.70) 

-0.110*** 

 (-9.64) 

  -0.173*** 

(-9.66) 

-0.161*** 

(-8.62) 

-0.161*** 

(-8.71) 

                

EU post 2008 

  

  

Constant 

  

  

R2 

Observations 

-0.0755*** 

 (-9.75) 

  

3.326*** 

 (73.20) 

  

0.1904 

1884 

-0.0765*** 

 (-9.87) 

  

3.393*** 

 (30.96) 

  

0.1990 

1884 

-0.0620*** 

 (-7.00) 

  

2.012*** 

(5.13) 

  

0.2098 

1884 

  -0.0617*** 

 (-6.09) 

  

3.127*** 

(47.78) 

  

0.2068 

984 

-0.0647*** 

 (-6.36) 

  

3.346*** 

(14.36) 

  

0.2185 

984 

-0.0644*** 

 (-5.58) 

  

3.296*** 

(3.03) 

  

0.2189 

984 

Control variables: 

log GDP/P 

  

(log GDP/P)2 

  

Time-fixed 

effects 

  

No 

  

No 

  

Yes 

  

-0.00797 

(-0.67) 

No 

  

Yes 

  

0.3186*** 

(3.59) 

-0.0190*** 

(-3.77) 

Yes 

    

No 

  

No 

  

Yes 

  

-0.0234 

(-1.02) 

No 

 

Yes 

  

-0.0126 

(-0.06) 

-0.0006 

(-0.05) 

Yes 

Table IX shows the regression results of the from difference-in-difference method (DiD). The dependent 

variable is log PM2.5 exposure. Columns 1-3 compare the EU countries for which the regulation affects to all 

other countries in our world sample, while column 4-6 compare to all Higher SDI countries. All 21 EU/EEA 

countries are part of the sub sample Higher SDI countries. The DiD-estimator is “EU post 2008”. The constant 

is the average level of PM2.5 exposure in the world (col 1-3) and higher SDI countries (col 4-6). EU is the 

difference in intercepts between the EU countries and the comparison group. Post 2008 is the joint slope 

coefficient of EU countries and the comparison group before the policy introduction. While the comparison 

group follow this slope also after the policy introduction, the slope of EU countries also takes in the DiD-

estimator -EU post 2008 - which is the effect of the policy. The slope of the EU countries after introduction of 

the regulation is thus Post 2008 + EU post 2008. See Figure XII for illustration of Table IX. Figures in 

parentheses are t statistics calculated based on robust standard errors clustered on countries. Bahrain and Saudi 

Arabia are not excluded from Higher SDI countries. Significance levels: * p < 0.1, ** p < 0.05, *** p < 0.01 
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The coefficient EU captures the average difference between EU countries and non-EU 

countries existing before the introduction of the directive. We see that EU countries had 

significantly lower emission than countries outside of the EU. This effect is significant in the 

full sample and when comparing EU-countries to other developed countries. Compared to the 

world sample the EU-countries have 45% lower PM2.5 levels14. When estimating using the 

sample of developed countries, EU-countries have about 35 % lower pollution levels than 

other developed countries. We also see that there is a significant negative effect on pollution 

after 2008. For the entire sample, we see that post 2008 PM2.5 levels are 10.4% lower than 

before 2008. The effect is greater for developed countries where pollution levels are about 

14.9 % lower after 2008.  

For both the full sample and the sub sample of developed countries however, pollution in EU 

countries decreases significantly more after 2008. The EU post 2008-term captures the effect 

of a country being an EU member after 2008. This is the term of interest as it captures the 

possible effect of the implementation of Directive 50. The estimated effect of is about 6 % and 

is significant at the 1 %-level. This suggests that the regulation implemented in 2008 has had 

an effect on the level of PM2.5 pollution. 

Main result 6: Implementing Directive 50 in the EU had a significant negative effect on PM2.5 

pollution in member states.  

Including the EKC relationship in the estimation has little effect on the estimated coefficients. 

The estimated coefficients change little when including the two income terms. Neither does it 

affect the significance of the results. The R2 increases slightly when including the EKC-

relation. When including income terms in the estimation of the full sample we find the same 

relation between economic development and PM2.5 exposure as in Table IV. The linear income 

term is positive, and the squared term is negative. When looking only at developed countries 

                                                 

14 Do note that because there are relatively large coefficients, and thus the approximate 

interpretation that a unit change in the explanatory xk leads to a 100 ×  𝛽𝑘% change in the 

dependent variable is too unprecise. Thus, for relatively large coefficients we use the exact 

percentage effect given by; 100 × (exp(𝛽𝑘) − 1). 
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we find that the GDP terms are not significant. This is the same relation as we found in Table 

IV. We prefer to include the income terms however, as the presence of a World EKC indicates 

that there is a true relationship between economic growth and pollution. 

Figure XII illustrates the estimations from columns 3 and 6. The vertical line indicates the 

introduction of Directive 50. The solid grey line shows the continuous trend of PM2.5 exposure 

in non-EU countries. The solid black line shows the trend in EU countries over the whole 

period. We see that before 2008 the EU had significantly lower emission compared to both the 

world sample and the high-SDI sample. 

The dashed black line is the trend in EU countries after the implementation, while the dotted 

line is an extension of pre-2008 trend in EU countries. The latter is thus a hypothesized path 

for EU countries had the regulation not been implemented. Following, the effect of the 

regulation on PM2.5 exposure in EU countries is illustrated by the difference between the black 

dashed line and the dotted line. We see that, due to the regulation, the decline in PM2.5 exposure 

after 2008 is steeper for EU countries than for non-EU countries.  

 

Higher SDI countries 

(6) 

World 

(3) 

Figure XII 

Difference-in-Difference 

 

See table IX for regression results and model specifications.  
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 Analysis 

In the following sections, we analyse and explain the results presented in chapter 6. The 

reasoning and explanations are based both on comparisons to existing literature and economic 

intuition.  

 EKC-analysis 

From estimating the EKC in section 6.1 we have two insights. There seems to be a World EKC 

which have shifted and is steeper in the period 2011-2017 than in the period as a whole. 

A World EKC implies that developed and developing countries move along the curve in the 

same way. One way to understand this is to analyse the empirical relationship using the 

insights from (Pecchenino, 1994). In this model a country chooses between investing in a 

consumption good or an abatement good. For a world EKC to be present then firms should 

have access to the same set of production technology but have different levels of capital which 

translates into different levels of income. We can interpret countries decision in the following 

way: If a country is to the left of the turning point prefer it prefers to consume more over 

investing in abatement good. The opposite if countries are to the right of the turning point. Our 

estimated turning point is $2,860 for 2011-2017, which is lower than for the period as a whole 

of $6,015.  
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There are several possible reasons for why the EKC has changed shape over time. One possible 

reason is reduced costs of technology. Since the curvature is steeper this could be an indication 

that technology is implemented earlier in the developing cycle. If poor countries can gain 

access to cars and fossil fuel-based power generation for example, this should make countries 

grow faster but with more pollution. If also abatement technology has become cheaper over 

the period this should allow countries to adopt cleaner technologies earlier, and reach the 

turning point earlier, as a cleaner environment is relatively cheaper. 

Another possible reason for the steeper decline in pollution is that research has revealed PM2.5 

to be more dangerous than previously believed (WHO, 2003). Increased knowledge and 

awareness about the health risks of PM2.5 should make policymakers respond by implementing 

stronger regulations. We see several countries passing or strengthening regulation in the 

period. The EU passed comprehensive regulations in 2008 (EU, 2008). The US strengthened 

its regulation in 2012 (EPA, 2012) and China passed comprehensive air quality reform in 2013 

(Zhang, 2018). This indicates that several countries are concerned about the impact of PM2.5. 

With more comprehensive regulations countries’ pollution levels should decline more rapidly. 

Figure IX 

World EKCs from the fixed effects model based on different time periods. Estimation based on log-log 

model, but here illustrated in levels. See Table V. Note that the time effects are excluded. Horizontal axis 

is exponential and ticks are approximate. 
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This effect should be stronger in democratic countries. Assuming individuals to have 

preferences for a cleaner environment, voters should prefer candidates who enforce stricter 

regulation of pollutants. As there has been increased democratization over the last decades 

(IIDEA, 2017), this effect should be stronger today. 

 Analysing the relationship between preferences and 
PM2.5 pollution 

This section presents discussions of the estimated relationships between preferences and 

pollution. Using basic econometric methods, we find significant correlations between time 

invariant pollution levels and patience, risk taking, negative reciprocity and altruism. We also 

find that the effects of economic growth are significantly higher in countries with higher levels 

of negative reciprocity. Though our results are prone to possible endogeneity issues, the results 

point out interesting correlations and raise questions for further research.    

Preferences are affected by exogenous country characteristics such as geography, climate, 

ethnic diversity and religion (Falk, et al., 2018). According to Falk’s estimates, 53% of the 

variance in preferences across countries can be explained by these characteristics. The same 

numbers for risk taking and altruism are around 25 %. Generally, “preferences are spatially 

and culturally correlated” (Falk 2015). Western-European countries tend to be more patient 

and negative reciprocated. Eastern Europe and East and South Asia are on average more risk 

averse and less patient. South Americans tend to be more impatient and less negative 

reciprocated. Thus, if we believe one or more of these characteristics to have an effect also on 

pollution levels, our estimate of patience’s effect on pollution is biased due to omitting these 

variables. While it seems questionable if ethnic diversity and religion have true effects on 

pollution, it seems reasonable that there are true effects of geographical and climatic variables 

as PM2.5 has both man-made and natural sources. Thus, we should be aware that our estimated 

effects of preferences on pollution might be biased. As patience is generally the most 

correlated preference, we suspect it’s effect to be biased. 

Due to these possible endogeneity issues, we cannot make causal claims but the relationships 

between preferences and pollution still seem relevant. The estimated results support different 

hypothesised mechanisms between individual behaviour and aggregate pollution levels. 

Though the relationships might work both ways, we believe preferences have effects on 

pollution both through daily decisions and through life choices and accumulation processes of 
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individuals and institutions.  

A lot of economic theory and research include patience and risk taking to explain both short 

and long term decisions that affect a range of economic outcomes which in turn affect the 

environment. We thus believe patience and risk taking to have true effects on time invariant 

pollution. In a micro perspective, we believe it has effects on individual consumption as 

impatient individuals discount future utility relatively less. Thus, in an economy where 

pollution is a negative externality of consumed goods and services, patient individuals will 

pollute less through decreased consumption today. This can be supported by the correlation 

between saving decisions and patience in Falk et.al. (2018). 

Furthermore, we believe patience to work the same ways through accumulation decisions and 

life choices. Falk et.al. (2018) find that more patient populations have higher levels of 

education. Thus patience might affect pollution through increased information and knowledge. 

Education and awareness are two underlying determinants that Stern (2004) argues have an 

effect on environmental quality through proximate mechanisms such as economic structures, 

product and input mixes, technology and scale.  

Patience is also correlated with the degree of institutional development (Falk, et al., 2018). 

Thus, more patient populations experience higher air quality as there are stronger institutions 

to limit pollution and incentivise abatement in these countries. In markets with negative 

externalities there is a need for market intervention to avoid market failure such as harmful 

levels of pollution.  

In 6.2.1 we argued that negative reciprocity might be an indicator of individuals’ lack of will 

to put more effort into abatement than others. The implications would be that people abate if 

it increases their own utility, and care less about the wellbeing of others. Consequently, in 

countries with populations with higher degrees of negative reciprocity one would expect to 

see more pollution. Thus, if this is true, one would assume negative correlations between 

negative reciprocity and altruistic behaviour. There are indications of negative relationships 

between negative reciprocity and altruistic actions, such as donating money, volunteering and 

helping strangers, though none of these are statistically significant (Falk, et al., 2018).  

The positive effect of risk taking on pollution can be seen in light of the ongoing debate about 

climate risk from an environmental perspective. One side of the climate risk is policy risk, 

which should be transferable to air pollution. If populations are more risk willing, individuals 
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and enterprises are more likely to ignore these risks. Furthermore, individuals might also be 

more willing to ignore the negative effects of PM2.5 in their decision making. 

For all preference variables, causality might go the other way, by pollution levels forming 

preferences. Ambient levels of PM2.5 have proven negative health effects which over time 

might reduce populations average accumulation of knowledge and awareness. Even more, this 

discussion raises questions of causality between preferences and proximate mechanisms. It 

seems hard to find measurable variables that are truly exogenous except geographic and 

climate. Most likely, preferences, institutions, and cultures coevolve and it is hard to find the 

causal effects of either one of them. 

 Difference-in-difference  

For the difference-in-difference estimation to identify the effect of the implementation of 

Directive 50 there are two main assumptions. Firstly the trends of the two groups need to be 

parallel. If this is not true we cannot be sure whether it is the effect of the implemented law 

we capture or the different trends of EU-countries and other countries developing over time. 

The second condition that needs to be satisfied is no anticipation. To make sure we are picking 

up the effect of the implemented regulation we need to make sure that none of the EU-countries 

pre-emptively changed their behaviour. If this was the case we cannot describe the full effect 

of Directive 50. 

We found evidence for an EKC for PM2.5 in section 6.1. This implies that there is a relationship 

between income and pollution levels, which is the same for all countries. Therefore we control 

for income effects, to isolate the general trends in pollution. Evidence for a World EKC implies 

that these controls should pick up income effects equally good for developed and developing 

countries, and strengthen the isolating effect. The post-2008 term is highly significant and 

changes little when including income terms. From this we can be reasonably sure that the trend 

for the EU is the same as for the control samples.  

If there were non-EU countries implementing PM2.5 regulations at the same time, this would 

bias the estimator of the isolated effect. Likewise, the estimator would be biased if there were 

EU-countries not complying to the Directive. There are some countries that have passed 

regulations after 2008. This biases the estimated effect of Directive 50 negatively, but since 

the control sample is large and only some countries have passed regulations this should be 
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dampened by most countries not implementing regulations. All in all we believe that the 

assumption of parallel trends is satisfied, even though there may be problems with negative 

bias.  

There are several reasons for why we believe that the no anticipation assumption holds. Firstly, 

it is likely that the salience among the public that the EU had plans to regulate PM2.5 pollution 

was low. The legislative process in the EU is complicated and unless the proposed regulations 

directly impact businesses it is unlikely that many people are aware of the proposed changes. 

Furthermore, if we assume the public was aware of the proposed directive it is unlikely that 

they would change their behaviour in advance. For both business and individuals changing 

behaviour is costly. PM2.5 has a wide range of sources from heating, driving and industrial 

activity, so the pollution levels are dependent on a range of sources. If there is an anticipation 

effect in one of the sources, the total effect will still be limited. For example, driving causes 

PM2.5 pollution but individual drivers are unlikely to drive less based on knowledge of a 

coming EU directive as the possible benefit of implementing change early would have to be 

greater than the cost of changing behaviour early. This is unlikely to be the case.  

The directive requires each member state to institute measures they deem adequate to comply 

with the goals set by the directive. This makes it more difficult for firms to pre-emptively 

comply with coming regulation as firms in each country have to follow the legislative process 

in the EU but also pay close attention to the process to their home country to comply with 

future laws. For firms the production processes are inflexible in the short run, meaning it is 

unlikely that they will make changes unless they are legally required to do so. Even more, as 

our latest observation prior to the implementation is from 2005, it seems less likely that 

observations of pollution are affected by anticipation. Therefore, we can say that it is 

reasonable to assume that the no anticipation assumption holds as it would be unreasonable to 

expect firms and individuals to follow and act based on a complicated legislative process. 

Based on our deliberation we can say with a reasonable degree of certainty that the two 

assumptions using difference-in-difference are satisfied. One thing to note is that when 

estimating the effect of the directive the closest observations are in 2005 and 2010, meaning 

we are estimating the effect of the directive based on observations three and two years removed 

from the implementation in 2008. This can have influenced the magnitude of the estimated 

effect, as the general trends might have had structural breaks around that time for other reasons 

than anticipation. However, since we are still comparing effects that are reasonably close to 
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and after the implementation we still believe that we are capturing the effect of the directive. 

In the estimation both when comparing to the full sample and a sub-sample of developed 

countries the effect of Directive 50 is about 6 % reduction in pollution. 

Therefore, we can say that implementing regulations in the EU had a negative effect on PM2.5 

pollution. For policymakers, this result should be heartening that, as it shows that, regulatory 

action can be an important tool to affect change in the fight for cleaner air. 
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 Conclusion  

In this thesis we have explored the relationship between particulate matter pollution and 

income. We have found evidence that there is an EKC for PM2.5. Furthermore we cannot find 

evidence that the relationship between income and pollution is different for developed and 

developing countries. This implies that there is a single World EKC.  

We find that there is a structural break in time and that the estimated curve has shifted over 

the years. A “new” EKC based on 2011-2017 shows that pollution is more sensitive to changes 

in income than for the period as a whole. The estimated turning point for the full sample EKC 

is $6,015 while the “new” turning point is $2,860. This is most likely due to declining costs 

of technology and increased salience about the health hazards of PM2.5 pollution. The country 

invariant time effect is also increasing in the sample, especially after 2010. This indicates that 

in general better technology has been adopted, and more so for developed countries. We find 

evidence of income and pollution to co-integrate. However, we cannot reject non-stationary 

residuals and these results may be caused by spurious correlations. 

Economic preferences may explain some of the estimated country fixed effect from the EKC 

estimation. Through multiple regression analysis, we found that patience has significant 

negative correlations with country specific time invariant levels of PM2.5 pollution, while 

negative reciprocity and risk taking have significant positive correlations. Risk taking is also 

seen with greater impacts on pollution from economic growth, where countries with higher 

levels of negative reciprocity follow a steeper EKC.  

We need to be careful interpreting the results as the estimated EKCs does not represent a causal 

impact of income on pollution. Income measured in GDP per capita is only a proxy for many 

different processes that cause PM2.5 pollution. Our findings represent interesting correlations 

between PM2.5 pollution, income and preferences. 

The evidence of a single World EKC for PM2.5 can be an indication that economic growth is 

not synonymous with environmental degradation. However, for countries struggling with 

harmful pollution levels there is still the need for regulations as we cannot establish a causal 

relationship between income and pollution. 

The implementation of Directive 50 in the EU had a significant negative effect on pollution 

levels in member countries. We believe that the difference-in-difference estimator 
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successfully identifies the effect of Directive 50 as the no anticipation and the parallel trend 

assumptions are satisfied. The effect of the directive is a 6 % reduction both when comparing 

to the full sample and the sample of developed countries. The effect is robust to inclusion of 

an EKC-relationship.  

Directive 50 is likely to have had a causal impact on pollution because the difference-in-

difference assumptions are satisfied. These results indicate that policies and regulations can 

work. While our analysis captures the average effect for the EU countries as a whole, more 

work could be done in analysing effects in specific countries. The effect might differ across 

countries, and such analysis would add to the findings of this thesis.  

In the future more research can be done on the relationship between preferences and PM2.5 

pollution. The type of data we obtain from Falk et. al. (2018) is still relatively scarce, and more 

research within this field will help extend the possibilities to investigate relationships between 

individual behaviour and pollution. With more observations over a period of time, we could 

draw more robust conclusions, and more interestingly investigate the relationships with 

preference changes over time.   
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Appendices 

Appendix A 

Table A-I 

Regression results 

1990-2017 

(lin-log) 

 

Region 

 

 

World 

N = 157 

 

Higher SDI 

N = 77 

 

Lower SDI 

N = 78 

 

Model 

Fixed effects Random 

effects 

Fixed effects Random 

effects 

Fixed effects Random 

effects 

ln GDP/P 6.5728* 

(1.97) 

6.8782** 

(2.03) 

-2.3873 

(-0.49) 

-1.2752 

(-0.26) 

9.1563* 

(1.67) 

8.5510 

(1.60) 

       

(ln GDP/P)2 -0.3934** 

(-2.10) 

-0.4358** 

(-2.31) 

0.1084 

(0.42) 

0.0342 

(0.13) 

-0.5509* 

(-1.70) 

-0.5182 

(-1.63) 

       

Constant 

 

 

Turning point 

 

p 

AR(1) 

 

Breusch-Pagan 

test 

 

Wald test 

 

 

Chow F-test 

 

 

Hausman test 

 

2.6861 

(0.18) 

 

4,246 

 

0.705*** 

(35.92) 

 

3.42** 

(0.0330) 

 

0.11’’*** 

(0.0000) 

 

0.68 

(0.5065) 

 

 

3.2915 

(0.22) 

 

2,674 

 

0.606*** 

(30.30) 

 

25.95*** 

(0.0000) 

 

 

 

 

2.38 

(0.3040) 

 

20.90*** 

(0.0000) 

30.5702 

(1.30) 

 

60,569(-) 

 

0.658*** 

(23.76) 

 

3.43** 

(0.0326) 

 

1.2’’*** 

(0.000) 

 

 

 

 

 

 

-1.1372 

(-0.05) 

 

124.9’’(-) 

 

0.658*** 

(22.13) 

 

3.58** 

(0.0283) 

 

 

 

 

 

 

 

19.80*** 

(0.0001) 

2.3104 

(4.83) 

 

4,056 

 

0.612*** 

(21.75) 

 

1.26 

(0.2848) 

 

81873*** 

(0.0000) 

 

 

 

 

 

 

1.5779 

(0.07) 

 

3,830 

 

0.612*** 

(21.74) 

 

1.23 

(0.2938) 

 

 

 

 

 

 

 

2.19 

(0.3343) 

Observations 

Adjusted. R2 

1884 

0.1082 

1884 924 

0.5113 

924 936 

0.0695 

936 

Table A-I presents the equivalent to Table IV in lin-log form. The dependent variable is population weighted PM2.5 exposure 

in country i in year t in absolute levels. Figures in parentheses are t statistics for regression coefficients and significance levels 

for the test statistics. t statistics are calculated based on clustered standard errors. Signs of income terms are in line with results 

in Table IV and turning points are reasonable. Thus, these results indicate robustness to the EKC relationship found with the 

log-log model and elaborated in this thesis. Significance levels: * p < 0.1, ** p < 0.05, *** p < 0.01. 
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Table A-II 

Regression results 

1990-2017 

(lin-lin) 

 

Region 

 

 

World 

N = 157 

 

Higher SDI 

N = 77 

 

Lower SDI 

N = 78 

 

Model 

Fixed effects Random 

effects 

Fixed effects Random 

effects 

Fixed effects Random 

effects 

GDP/P 

(000s) 

-0.0956** 

(-1.99) 

-0.1400*** 

(-3.46) 

-0.0028 

(-0.06) 

-0.0414 

(-0.92) 

0.3374* 

(1.81) 

0.3117* 

(1.66) 

       

(GDP/P)2 

(000s) 

0.0006* 

(1.69) 

0.0009*** 

(2.83) 

0.0000 

(0.07) 

0.0003 

(0.79) 

-0.0139*** 

(-2.81) 

-0.0131*** 

(-2.62) 

       

Constant 

 

 

Turning point 

 

p 

AR(1) 

 

Breusch-Pagan 

test 

 

Wald test 

 

 

Chow F-test 

 

 

Hausman test 

30.43*** 

(72.82) 

 

(-) 

 

0.608*** 

(30.39) 

 

19.95** 

(0.0000) 

 

0.12’’*** 

(0.0000) 

 

0.21 

(0.8108) 

30.84*** 

(22.01) 

 

(-) 

 

0.606*** 

(30.30) 

 

18.10*** 

(0.0000) 

 

 

 

 

1.71 

(0.4245) 

 

16.13*** 

(0.0003) 

 

21.56*** 

(29.31) 

 

(-) 

 

0.673*** 

(24.39) 

 

3.68** 

(0.0256) 

 

0.97’’*** 

(0.000) 

 

 

22.14*** 

(18.08) 

 

(-) 

 

0.667*** 

(24.19) 

 

3.75** 

(0.0238) 

 

 

 

 

 

 

 

25.09*** 

(0.0001) 

35.62*** 

(56.11) 

 

186,594 

 

0.614*** 

(21.74) 

 

0.87 

(0.4180) 

 

81101*** 

(0.0000) 

 

 

 

 

 

 

35.69*** 

(17.35) 

 

184,601 

 

0.614*** 

(21.72) 

 

0.86 

(0.4221) 

 

 

 

 

 

 

 

1.25 

(0.5353) 

Observations 

Adjusted. R2 

1884 

0.1064 

1884 924 

0.5098 

924 926 

0.0757 

936 

Table A-II presents the equivalent to Table IV in lin-lin form. The dependent variable is population weighted PM2.5 exposure 

in country i in year t in absolute levels. Income terms are in 000s. Figures in parentheses are t statistics for regression 

coefficients and significance levels for the test statistics. t statistics are calculated based on clustered standard errors. Signs of 

income terms are not line with results in Tables IV and A-I, and turning points are not relevant. Thus, these results indicate 

that EKC relationships are somewhat sensitive to functional form and decision of it should be carefully evaluated.  

Significance levels: * p < 0.1, ** p < 0.05, *** p < 0.01. 
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Table A-III 

Regression results 

Higher SDI countries 

(log-log)  

  

Higher SDI countries 

N = 77 

 

T 

 

 

1990 - 2017 

n = 924 

 

1990-2010 

n = 385 

 

2011 - 2017 

n = 539 

 

Model 

Fixed effects Random 

effects 

Fixed effects Random 

effects 

Fixed effects Random 

effects 

ln GDP/P 0.2674 

(1.19) 

0.3252 

(1.43) 

0.2380 

(1.38) 

0.3085 

(1.66) 

-2.1571 

(-1.43) 

-1.6688 

(-1.20) 

       

(ln GDP/P)2 -0.0140 

(-1.18) 

-0.0179 

(-1.50) 

-0.0106 

(-1.10) 

-0.0154 

(-1.49) 

0.1062 

(1.43) 

0.0745 

(1.09) 

Constant 

 

 

Turning point 

 

p 

AR(1) 

 

Breusch-Pagan 

test 

 

Wald test 

 

 

Chow F-test 

 

 

Hausman test 

 

 

Time effects 

1.7041 

(1.60) 

 

14,045 

 

0.661*** 

(22.24) 

 

0.66 

(0.5160) 

 

25,265*** 

(0.0000) 

 

0.22 

(0.7994) 

 

 

 

 

Yes 

1.5013 

(1.39) 

 

8,811 

 

0.658*** 

(22.13) 

 

0.68 

(0.5072) 

 

 

 

 

0.85 

(0.6528) 

 

27.98*** 

(0.0000) 

 

Yes 

1.6629* 

(2.15) 

 

75,088 

 

0.300*** 

(6.17) 

 

0.17 

(0.8406) 

 

25,920*** 

(0.0000) 

 

 

 

 

 

 

 

Yes 

1.4389 

(1.73) 

 

22,460 

 

0.297*** 

(6.15) 

 

0.18 

(0.8355) 

 

 

 

 

 

 

 

32.91*** 

(0.0000) 

 

Yes 

13.869 

(1.81) 

 

73,130(-) 

 

0.567*** 

(12.45) 

 

1.43 

(0.2413) 

 

12,499*** 

(0.0000) 

 

 

 

 

 

 

 

Yes 

11.987 

(1.71) 

 

25,740(-) 

 

0.569*** 

(12.48) 

 

1.41 

(0.2455) 

 

 

 

 

 

 

 

- 

 

 

Yes 

Observations 

Adjusted. R2 

924 

0.6306 

924 385 

0.0672 

385 539 

0.6246 

539 

Table A-III is equivalent to Table V for the sub sample of Higher SDI countries. Columns 1 and 2 are the same as in column 

3 and 4 in Table IV. There is no evidence of an EKC for Higher SDI countries in none of the sup periods, and the results in 

column 3 and 4 of Table IV is thus not sensitive to the of estimation period.  
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Table A-IV 

Regression results 

Lower SDI countries 

(log-log) 

  

Lower SDI countries 

N = 78 

 

T 

 

 

1990 - 2017 

n = 936 

 

1990-2010 

n = 390 

 

2011 - 2017 

n = 546 

 

Model 

Fixed effects Random 

effects 

Fixed effects Random 

effects 

Fixed effects Random 

effects 

ln GDP/P 0.2782*** 

(2.47) 

0.2630** 

(2.36) 

0.0508 

(0.27) 

0.0258 

(0.14) 

1.6980*** 

(2.95) 

1.3650*** 

(2.70) 

       

(ln GDP/P)2 -0.0164** 

(-2.49) 

-0.0156** 

(-2.39) 

-0.0017 

(-0.14) 

-0.0004 

(-0.03) 

-0.1161*** 

(-3.40) 

-0.0915*** 

(-3.06) 

Constant 

 

 

Turning point 

 

p 

AR(1) 

 

Breusch-Pagan 

test 

 

Wald test 

 

 

Chow F-test 

 

 

Hausman test 

 

 

Time effects 

2.3104*** 

(4.83) 

 

4,826 

 

0.667*** 

(24.25) 

 

4.13** 

(0.0164) 

 

2,775*** 

(0.0000) 

 

0.28 

(0.7539) 

 

 

 

 

Yes 

2.3790*** 

(4.98) 

 

4,580 

 

0.678*** 

(24.25) 

 

4.19** 

(0.0155) 

 

 

 

 

0.54 

(0.7633) 

 

3.56 

(0.1688) 

 

Yes 

3.1822*** 

(4.35) 

 

3,082,269 

 

0.518*** 

(8.79) 

 

1.43 

(0.2413) 

 

12,334*** 

(0.0000) 

 

 

 

 

 

 

 

Yes 

2.2969*** 

(4.59) 

 

1.014x1014 

 

0.517*** 

(8.80) 

 

1.55 

(0.2140) 

 

 

 

 

 

 

 

4.40 

(0.1105) 

 

Yes 

-2.5905 

(-1.05) 

 

1,499 

 

0.545*** 

(14.19) 

 

43.10** 

(0.0457) 

 

3,528*** 

(0.0000) 

 

 

 

 

 

 

 

Yes 

-1.5526 

(-0.72) 

 

1,735 

 

0.551*** 

(14.36) 

 

4.00** 

(0.0189) 

 

 

 

 

 

 

 

 

- 

 

Yes 

Observations 

Adjusted. R2 

936 

0.1334 

936 390 

0.0786 

390 546 

0.1385 

546 

Table A-IV is the equivalent to Table V for the sub sample of Lower SDI countries. Columns 1 and 2 are the same as 

column 5 and 6 in Table IV. The results are in line with results found in Table IV, and indicates that the EKC relationship is 

significant for estimations based both on the full period and the sub period 2011-2017. There are not significant results for 

the sub period 1990-2010 which is line with the World results in Table V.  
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Figure A-I 

Figure A-I illustrates the estimated EKCs from the fixed effects model based on different time periods for the sub 

sample of Higher SDI countries. The figure is equivalent to figure VI for the sub sample of Higher SDI countries.  

Figure A-II 

Figure A-II illustrates the estimated EKCs from the fixed effects model based on different time periods for the sub 

sample of Lower SDI countries. The figure is equivalent to figure VI for the sub sample of Lower SDI countries.  

 



 77 

Table A-V 

 Estimated country fixed effects, ai 

Country World 

1990 - 2017 

World 

1990 - 2010 

World 

2011 - 2017 

Higher SDI 

1990 - 2017 

Lower SDI 

1990 - 2017 

Albania -0,184 -0,122 -0,260 0,128 
 

Algeria 0,378 0,357 0,394 
 

0,150 

Angola 0,308 0,362 0,151 
 

0,078 

Antigua and Barbuda -0,141 -0,149 -0,060 0,142 
 

Argentina -0,444 -0,432 -0,374 -0,157 
 

Armenia 0,359 0,405 0,237 0,679 
 

Australia -0,827 -0,913 -0,465 -0,583 
 

Austria -0,455 -0,516 -0,107 -0,213 
 

Azerbaijan -0,105 -0,074 -0,070 0,195 
 

Bahrain 1,087 0,925 1,481 
  

Bangladesh 0,990 0,999 0,785 
 

0,747 

Barbados 0,078 0,090 0,106 0,369 
 

Belarus -0,124 -0,074 -0,090 0,172 
 

Belgium -0,437 -0,491 -0,120 -0,193 
 

Belize 0,051 0,102 -0,081 
 

-0,177 

Benin 0,383 0,423 0,148 
 

0,134 

Bhutan 0,496 0,523 0,381 
 

0,265 

Bolivia 0,009 0,081 -0,165 
 

-0,221 

Botswana 0,001 -0,002 0,031 
 

-0,228 

Brazil -0,509 -0,487 -0,504 
 

-0,737 

Brunei -1,151 -1,363 -0,542 -0,954 
 

Bulgaria -0,089 -0,030 -0,075 0,206 
 

Burkina Faso 0,534 0,574 0,289 
 

0,276 

Burundi 0,562 0,525 0,432 
 

0,285 

Cameroon 0,987 1,027 0,771 
 

0,749 

Canada -1,085 -1,158 -0,742 -0,841 
 

Cape Verde 0,297 0,305 0,160 
 

0,064 

Central African Republic 0,859 0,798 0,759 
 

0,582 

Chad 0,932 0,969 0,691 
 

0,680 

Chile 0,001 0,003 0,122 0,285 
 

China 0,910 0,934 0,898 
 

0,678 

Colombia -0,252 -0,209 -0,292 0,054 
 

Comoros -0,147 -0,125 -0,360 
 

-0,389 

Congo 0,579 0,573 0,438 
 

0,348 

Costa Rica -0,304 -0,284 -0,296 -0,004 
 

Cote d'Ivoire -0,033 -0,017 -0,233 
 

-0,271 

Cyprus -0,201 -0,251 0,025 0,058 
 

Czech Republic -0,220 -0,195 -0,043 0,046 
 

Democratic Republic of the Congo 0,654 0,593 0,529 
 

0,377 
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Country World 

1990 - 2017 

World 

1990 - 2010 

World 

2011 - 2017 

Higher SDI 

1990 - 2017 

Lower SDI 

1990 - 2017 

Denmark -0,681 -0,761 -0,320 -0,442 
 

Dominica -0,118 -0,069 -0,210 0,192 
 

Dominican Republic -0,471 -0,437 -0,497 -0,166 
 

Ecuador -0,338 -0,278 -0,425 -0,028 
 

Egypt 1,134 1,088 1,116 
 

0,906 

El Salvador 0,166 0,236 0,005 
 

-0,063 

Equatorial Guinea 0,727 0,675 0,971 
 

0,487 

Ethiopia 0,454 0,410 0,253 
 

0,188 

Federated States of Micronesia -0,648 -0,555 -0,899 
 

-0,885 

Fiji -0,688 -0,636 -0,814 -0,371 
 

Finland -1,238 -1,297 -0,928 -0,990 
 

France -0,508 -0,550 -0,230 -0,258 
 

Gabon 0,546 0,485 0,616 
 

0,316 

Georgia -0,011 0,045 -0,126 0,307 
 

Germany -0,487 -0,528 -0,159 -0,244 
 

Ghana 0,233 0,270 0,027 
 

-0,005 

Greece -0,257 -0,275 -0,124 0,013 
 

Grenada 0,046 0,092 -0,005 0,351 
 

Guatemala 0,133 0,202 -0,024 
 

-0,096 

Guinea -0,023 -0,024 -0,230 
 

-0,275 

Guinea-Bissau 0,187 0,190 -0,015 
 

-0,068 

Guyana 0,009 0,061 -0,139 
 

-0,221 

Haiti -0,352 -0,312 -0,582 
 

-0,604 

Honduras 0,028 0,120 -0,204 
 

-0,206 

India 1,281 1,271 1,144 
 

1,046 

Indonesia -0,354 -0,313 -0,431 
 

-0,582 

Iran 0,455 0,403 0,547 0,745 
 

Iraq 0,953 0,931 0,994 
 

0,725 

Ireland -0,884 -0,971 -0,437 -0,647 
 

Israel -0,019 -0,075 0,228 0,243 
 

Italy -0,217 -0,277 0,042 0,035 
 

Jamaica -0,507 -0,449 -0,642 -0,192 
 

Japan -0,554 -0,632 -0,254 -0,304 
 

Jordan 0,295 0,306 0,207 0,609 
 

Kazakhstan -0,482 -0,452 -0,364 -0,198 
 

Kenya 0,155 0,152 -0,039 
 

-0,086 

Kiribati -0,670 -0,602 -0,920 
 

-0,918 

Kyrgyzstan 0,023 0,085 -0,212 
 

-0,216 

Laos 0,129 0,168 -0,044 
 

-0,106 

Lebanon 0,211 0,182 0,240 0,510 
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Country World 

1990 - 2017 

World 

1990 - 2010 

World 

2011 - 2017 

Higher SDI 

1990 - 2017 

Lower SDI 

1990 - 2017 

Lesotho 0,234 0,259 0,013 
 

-0,011 

Luxembourg -0,571 -0,740 0,111 -0,379 
 

Macedonia 0,333 0,398 0,273 0,638 
 

Madagascar -0,036 -0,067 -0,211 
 

-0,292 

Malawi 0,090 0,093 -0,113 
 

-0,178 

Malaysia -0,308 -0,343 -0,137 -0,028 
 

Mali 0,445 0,495 0,201 
 

0,194 

Malta -0,419 -0,447 -0,179 -0,155 
 

Marshall Islands -0,731 -0,630 -0,981 
 

-0,967 

Mauritania 0,588 0,627 0,379 
 

0,352 

Mauritius -0,485 -0,484 -0,405 -0,192 
 

Mexico -0,002 0,000 0,037 0,289 
 

Mongolia 0,488 0,463 0,475 0,801 
 

Morocco 0,197 0,208 0,082 
 

-0,033 

Mozambique 0,002 -0,013 -0,214 
 

-0,274 

Myanmar 0,509 0,545 0,307 
 

0,266 

Namibia 0,080 0,109 -0,003 
 

-0,148 

Nepal 1,374 1,348 1,183 
 

1,125 

Netherlands -0,486 -0,543 -0,129 -0,247 
 

New Zealand -1,241 -1,298 -0,970 -0,984 
 

Nicaragua -0,170 -0,079 -0,390 
 

-0,403 

Niger 1,234 1,237 1,050 
 

0,961 

Nigeria 0,902 0,960 0,720 
 

0,670 

Norway -1,012 -1,135 -0,507 -0,794 
 

Oman 0,563 0,400 0,940 0,805 
 

Pakistan 0,908 0,937 0,729 
 

0,675 

Panama -0,634 -0,621 -0,537 -0,343 
 

Papua New Guinea -0,555 -0,484 -0,787 
 

-0,792 

Paraguay -0,601 -0,557 -0,671 
 

-0,828 

Peru 0,157 0,203 0,103 0,467 
 

Philippines -0,161 -0,087 -0,330 
 

-0,391 

Poland 0,020 0,068 0,142 0,300 
 

Portugal -0,931 -0,956 -0,764 -0,663 
 

Puerto Rico -0,924 -1,043 -0,608 -0,669 
 

Romania -0,384 -0,337 -0,317 -0,096 
 

Russian Federation -0,278 -0,273 -0,134 
 

-0,510 

Rwanda 0,610 0,603 0,390 
 

0,350 

Saint Lucia 0,030 0,073 -0,024 0,333 
 

Saint Vincent and the Grenadines 0,012 0,068 -0,076 0,322 
 

Samoa -0,631 -0,565 -0,814 
 

-0,861 
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Country World 

1990 - 2017 

World 

1990 - 2010 

World 

2011 - 2017 

Higher SDI 

1990 - 2017 

Lower SDI 

1990 - 2017 

Saudi Arabia 1,280 1,050 1,777 
  

Senegal 0,445 0,472 0,232 
 

0,205 

Seychelles -0,129 -0,165 0,039 0,149 
 

Sierra Leone -0,162 -0,175 -0,363 
 

-0,421 

Singapore -0,111 -0,304 0,559 0,099 
 

Solomon Islands -0,614 -0,558 -0,858 
 

-0,860 

South Africa 0,061 0,044 0,055 0,365 
 

South Korea 0,182 0,142 0,452 0,447 
 

Spain -0,758 -0,798 -0,528 -0,499 
 

Sri Lanka 0,025 0,211 -0,142 0,338 
 

Sudan 0,726 0,720 0,559 
 

0,489 

Suriname 0,137 0,163 0,140 0,436 
 

Swaziland -0,328 -0,301 -0,442 
 

-0,556 

Sweden -1,194 -1,260 -0,838 -0,952 
 

Switzerland -0,617 -0,708 -0,175 -0,393 
 

Tajikistan 0,700 0,742 0,465 
 

0,455 

Tanzania 0,181 0,202 -0,041 
 

-0,066 

Thailand 0,194 0,219 0,206 0,493 
 

The Bahamas -0,170 -0,223 0,022 0,091 
 

The Gambia 0,302 0,317 0,091 
 

0,049 

Togo 0,358 0,384 0,136 
 

0,100 

Tonga -0,702 -0,624 -0,905 
 

-0,933 

Trinidad and Tobago 0,140 0,124 0,365 0,409 
 

Tunisia 0,360 0,353 0,324 
 

0,132 

Turkey 0,569 0,512 0,737 0,853 
 

Turkmenistan -0,038 -0,005 -0,037 0,267 
 

Uganda 0,706 0,672 0,513 
 

0,449 

Ukraine -0,086 0,008 -0,246 0,230 
 

United Arab Emirates 0,616 0,367 1,154 0,819 
 

United Kingdom -0,656 -0,706 -0,364 -0,405 
 

United States -0,938 -1,024 -0,524 -0,707 
 

Uruguay -0,852 -0,838 -0,771 -0,563 
 

Uzbekistan 0,237 0,314 0,039 0,565 
 

Vanuatu -0,629 -0,552 -0,876 
 

-0,868 

Vietnam 0,352 0,421 0,156 
 

0,117 

Yemen 0,697 0,674 0,530 
 

0,461 

Zambia 0,168 0,232 -0,060 
 

-0,070 

Zimbabwe -0,070 -0,052 -0,283 
 

-0,314 

Table A-V presents the estimated country fixed effects from the different sub sample and –time EKC estimations. 

Columns 1-3 list the country fixed effects from models in col 1, 3 and 5 in Table V, while columns 4 and 5 lists the 

country specific effects from models in column 3 and 5 in Table IV.  
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Appendix B 

Table B-I 

Preference 

 

Definition 

 

Weight 

Patience Intertemporal choice sequence using staircase method 

Self-assessment: Willingness to wait 

0.71 

0.29 

Risk taking Lottery choice sequence using staircase method 

Self-assessment: Willingness to take risks in general 

0.47 

0.53 

Positive 

reciprocity 

Self-assessment: Willingness to return a favour 

Gift in exchange for help   

0.48 

0.52 

Negative 

reciprocity 

Self-assessment: Willingness to take revenge 

Self-assessment: Willingness to punish unfair behaviour towards self 

Self-assessment: Willingness to punish unfair behaviour towards others 

0.37 

0.265 

0.265 

Altruism Donation decision 

Self-assessment: Willingness to give to good causes 

0.54 

0.46 

Trust Self-assessment: People have only the best intentions 1 

Table B-I reports the weights and wording of preferences as in Falk et.al. (2018). For further 

details and wording of survey items see appendix in Falk et al. (2018). 
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Figure B-I shows correlation plots of estimated country fixed effects of pollution and preference parameters. 

Country fixed effects are the individual fixed effects retrieved from the FE-estimation of the World sample using 

all observations 1990-2017 (col 1, table IV). Country effects on vertical axis and preference parameter on horizontal 

axis. 

 

Figure B-I 
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TABLE B-II 
Regression results 

Tanzania and negative reciprocity 
 (log-log) 

 

Sample 

 

 (original sub sample) 

 

Negative reciprocity > 0 

N = 33 

 (original sub sample) 

 

Negative reciprocity < 0 

N = 33 

 (modified to include 

Tanzania) 

Negative reciprocity < 0 

N = 34 

 

Model 

Fixed effects  Fixed effects  Fixed effects 

ln GDP/P 0.7652*** 
(4.17) 

 0.7375*** 
(5.05) 

 0.7617*** 
(5.26) 

      

(ln GDP/P)2 0.7652*** 
(4.17) 

 -0.0437*** 
(-4.18) 

 -0.0451*** 
(-4.34) 

Constant 

 

 

Turning point 

 

p 

AR(1) 

 

Breusch-Pagan 

test 

 

Wald test 

 

 

Chow F-test 

 

Time effects 

-0.2037 
(-0.24) 

 

12,094 

 

0.684*** 

(16.73) 

 

2.33* 

(0.0990) 

 

48,177*** 

(0.0000) 

 

 

 

Yes 

 0.0782 
(0.15) 

 

4,620 

 

0.684*** 

(16.71) 

 

1.89 

(0.1528) 

 

21,844*** 

(0.0000) 

 

 

 

Yes 

 -0.0222 
(-0.04) 

 

4,650 

 

0.782*** 

(17.28) 

 

1.91 

(0.1487) 

 

3,980*** 

(0.0000) 

 

4.32** 

(0.0216) 

Yes 

Observations 

Adjusted. R2 

936 

0. 3472 

 936 

0. 4014 

 408 

0. 3984 

Table B-II presents the FE estimation behind figure XI in subsection 6.2.3.2 Figure XI illustrates the models in column 

1 and 3. The Chow-test rejects equal slope coefficients for the original and the modified sub samples of countries with 

lower levels of negative reciprocity in columns 2 and 3. This is thus the reason why the estimation results for the 

modified group is chosen to be the base of the back-of-the calculation and illustration in section 6.2.3.2. The modified 

sub sample includes Tanzania which is hypothesized to score below zero on negative reciprocity in the example. 

Significance levels: * p < 0.1, ** p < 0.05, *** p < 0.01 
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