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Abstract 

More and more fishery researchers begin to acknowledge that one-dimensional biomass models 

may omit key information when generating management guidelines. For the more complicated 

age-structured models, numerous parameters require a proper estimation or a reasonable 

assumption.  

In this paper, the effects of recruitment patterns and environmental impacts on the optimal 

exploitation of a fish population are investigated. Based on a discrete-time age-structured 

bioeconomic model of Northeast Atlantic mackerel, we introduce the mechanisms that generate 

6 scenarios of the problem. Using the simplest scenario, optimizations are conducted under 8 

different parameter combinations. Then, the problem is solved for each scenario and 

simulations are conducted with constant fishing mortalities.  

It is found that a higher environmental volatility leads to more net profits but with a lower 

probability of achieving the mean values. Any parameter combination that favours the older 

fish tends to lend itself to pulse fishing pattern. The simulations indicate that a constant fishing 

mortality around 0.06 performs the best. A comparison between the optimal and the historical 

harvest shows that for more than 70% of the time, the optimal exploitation precedes the 

historical one, leading to 43% higher net profit and 34% lower fishing cost.  
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1.1 Introduction   

Many economic fishery studies have described the state of a population using biomass as the 

only variable (Schaefer, 1954). Such surplus production models use lumped parameters to 

describe the stock dynamics. In recent years, fishery biologists and economists widely begin to 

recognize that such one-dimensional models are too simple for developing realistic 

management guidelines (Tahvonen, 2008). One concern is about the dangerous tendency to 

catch small and immature fish (Pauly, Christensen, Dalsgaard, Froese, & Torres, 1998). 

Another is that ever increasing fishing pressure may cause various systematic changes in the 

internal structure and evolution of fish populations (Anderson et al., 2008), which may have 

crucial economic consequences that may not be captured by the biomass approach.  

The age-structured framework is pioneered by Baranov (1945), Beverton & Holt (1957), and 

Leslie (1945) among others. Many extensions have been explored since and have dominated 

fishery management (Hilborn & Walters, 1991). However, analysing the problem technically 

is still challenging. Clark (2010) has pointed out that an analytical solution for the general age-

structured problem is unattainable. Many models lend themselves to Mathematical 

Programming (Operational Research) and simulations, but not much to analytical studies. Still, 

it is possible to formulate a proper model and simulate how different factors influence the 

optimal fishing mortalities numerically. Our model is inspired by, among others, Walters (1969), 

Hannesson (1975), Getz & Haight (1989), Horwood (1987) and Tahvonen (2009).  

NEA (Northeast Atlantic) Mackerel (Scomber scombrus) is a fish species with high commercial 

values. In the 1960s and 1970s, the annual catches of mackerel in the Northeast Atlantic, mainly 

North Sea, rose steeply, resulting in an extreme drop in the 1980s. Consequently, the mackerel 

stock has been at low level for many years with poor recruitment. ICES (International Council 

for the Exploration of the Sea) advices have been proposing limits on the fishing mortality or 

the size of the catch to improve the situation of the unsustainable harvest. But still in 2014, as 

in all years since 2008, unilateral quotas have been set higher than the TAC indicated by the 

ICES Management Plan (ICES, 2014). It is thus of high interest to investigate the management 

of NEA mackerel. 

Among many environmental factors, food availability can be crucial and representative for all 

species. As typical plankton feeders, mackerel is affected by the abundance, distribution and 

composition of zooplankton to a large extent (Reid, Walsh, & Turrell, 2001). Most zooplankton 



species have a life span shorter than one year, therefore no age structure is applied for the 

zooplankton population. The characteristics such as density, average size and distribution of 

zooplankton that interact with the mackerel stock are many. To simplify the problem reasonably, 

a single zooplankton index is used to describe prey density or the food availability for mackerel. 

Note that due to the position of zooplankton as a primary producer in the low trophic level, 

several assumptions are implied, which may or may not fall into the category of standard 

predator-prey models (Yodzis, 1994). First, the consumption of zooplankton by mackerel this 

year will not influence the prey density next year. Due to the many predators that zooplankton 

has simultaneously, the sole impact from mackerel is difficult to quantify. Second, the food 

supply of mackerel depends entirely on zooplankton abundance. Other prey species are not 

included.  

Random variations in the environment affect the dynamics of populations through changes in 

individual life histories (Benton, Lapsley, & Beckerman, 2002). In this paper, two interactions 

between the environmental factor (zooplankton index) and the fish population (mackerel) are 

considered. The first interaction is the influence by the zooplankton abundance on the mackerel 

recruitment. Mackerel spawns between May and July, which coincides with the zooplankton 

boom (Lockwood, 1988). It is known that higher food availability can bring down the natural 

mortality especially of the small fish larva by allowing them to spend more time in the deeper, 

darker and safer area of the sea. Since this interaction mainly applies for the first-year juveniles, 

it can be translated to a constant natural mortality plus a varying recruitment influenced by the 

zooplankton abundance. The argument for the second interaction is the strong and positive 

connection between weight and price. On the final product market, a mackerel can be called 

'large size' if the average weight is 400 to 600 grams (4-6 category); 'small size' if the average 

weight is 200 to 400 grams (2-4 category). The price differences between categories can be 

significant. Assuming one price for all age classes is not realistic.  

There have been different approaches addressing the two interactions: recruitment and weight. 

To deal with recruitment, some chose an exogenous and constant recruitment such as (Beverton 

& Holt, 1957) and (Clark, 2010). While some assumed that recruitment can be endogenous and 

stock-dependent, such as (Walters, 1969) and (Getz & Haight, 1989). In this paper, both 

approaches will be applied. To deal with weight, some studies such as (Walters, 1969) referred 

to the von Bertalanffy function as the rule that determines the individual fish weight. This study 

links mackerel's annual weight gain to the exogenous zooplankton index, which can be either 

deterministic or stochastic under different scenarios.  



Due to its complexity, the age-structured model can be sensitive to many parameters (Horwood, 

1987). It is thus necessary to be cautious when it comes to combinations of parameters. In the 

literature, one issue has been connected to the parameter sensitivity: the choice between smooth, 

stable harvesting over time and periodic (oscillatory or pulse) fishing (Tahvonen, 2010). Clark 

(2010) argued that when there exists perfect selectivity, it is optimal to harvest each cohort at 

its maximum biomass, creating a stable harvest strategy. Hannesson (1975) pointed out that 

non-selective gear leads to pulse fishing. He also showed that discounting shortens the intervals 

between fishing periods. Tahvonen (2009) proves that when there are 2 age classes with 

endogenous recruitment, optimal harvest is pulse fishing under specific conditions such as non-

selective gear. Steinshamn (2011) showed that pulse fishing becomes less attractive as the 

distribution of the species moves from uniform to schooling. Rocha, Gutiérrez, & Antelo (2012) 

concluded that imperfect selectivity increases the optimal lifespan and the optimal pulse length.  

The approaches employed in this paper are innovative in several aspects. First, while many 

predator-prey models have been focusing on higher trophic levels (Major, 1978; Von 

Westernhagen, Westernhagen, & Rosenthal, 1976), this paper investigates the lower trophic 

level including the primary production. Second, a series of 8 parameter combinations has been 

examined before introducing the random environmental interactions, which offers some 

thought-provoking results. Third, based on a common framework of the model, 6 different 

scenarios have been applied in order to fully investigate the problem. Last but not least, based 

on the same population dynamics, both simulation and optimization are conducted, offering 

deeper understanding of the model.  

1.2 Model   

1.2.1 Model formulation 

The population dynamics is: 

𝑥௜ାଵ,௧ାଵ ൌ 𝑥௜,௧𝑒ିሺ௠೔ା௦೔௙೟ሻ  ሺ𝑖 ൌ 0,1, … , 𝑛 െ 1; 𝑡 ൌ 1,2, … , 𝑇 െ 1ሻ                (1.1) 

where 𝑥௜,௧ is the number of fish individuals of age 𝑖 at time 𝑡 measured in millions; 𝑥௜,ଵ is given 

by historical data as the initial status of the stock; 𝑚௜ is the natural mortality of age 𝑖; 𝑠௜ is the 

selectivity parameter of age 𝑖 and 𝑓௧  indicates the fishing mortality at time 𝑡 and is also the 

decision variable of the model. The dynamics indicates that every year part of the cohort dies 

out of natural causes and another part is being harvested. Both events are assumed to happen 

instantaneously. The rest of the cohort survives the year and continue to grow and reproduce. 



The maximum age of the fish in the model is denoted by 𝑛 and 𝑇 indicates the end period. It is 

assumed that all fish with age above 𝑛 will naturally die.  

In order to describe the recruitment, the Spawning Stock Biomass (SSB) is calculated as 

following: 

𝑆௧ ൌ ∑ 𝑢௜𝑥௜,௧𝑤௜,௧௜                                                                        (1.2) 

where 𝑆௧ is the SSB at time 𝑡 measured in million tonnes; 𝑢௜ is the maturity ogive (proportion 

of sexually matured individuals in that age class) and 𝑤௜,௧ is the individual weight of the average 

fish of age 𝑖 at time 𝑡.  

The endogenous recruitment can be generalized as a recruitment function: 𝑥଴,௧ାଵ ൌ 𝜑ሺ𝑆௧ሻ. 

Harvest can be obtained from the well-known Beverton-Holt model:  

𝐻௧ ൌ ∑ ℎ௜,௧ ൌ௜ ∑ ௦೔௙೟

௦೔௙೟ା௠೔
ሾ1 െ 𝑒ିሺ௠೔ା௦೔௙೟ሻሿ𝑤௜,௧𝑥௜,௧௜                          (1.3) 

where 𝐻௧ is the harvest biomass measured in million tonnes at time 𝑡 and ℎ௜,௧ is the harvest 

biomass measured in million tonnes of age 𝑖 at time 𝑡. 

The problem's objective is to maximize the following: 

𝑍 ൌ 𝑚𝑎𝑥
௙೟

∑ ∑ ሺ1 ൅ 𝑟ሻି௧ሺ𝑝௜,௧ℎ௜,௧ െ 𝑐𝑓௧ሻ௡
௜ୀ଴

்
௧ୀଵ                             (1.4) 

where 𝑍 is the present value of the total net profit, 𝑟 is the discrete discount rate, 𝑝௜,௧ indicates 

the unit weight price for age 𝑖 at time 𝑡 and 𝑐 is the calibrated cost parameter.  

The objective function is subject to the following constraints: 

1. Population dynamics: Eq. (1.1) 

2. Sustainability constraint: SSB does not fall below a proposed biomass reference point in the 

end:  𝑆் ൒ 𝐵௟௜௠  

3. Non-negativity for variables 𝑥௜,௧, 𝑤௜,௧ and 𝑓௧ 

4. Effort restriction (admissible controls defined by harvest capacity): 𝑓௧ ∈ 𝐹 

The problem is solved in GAMS as a nonlinear programming problem using solver NLP.  



According to Steinshamn (2011), the stock elasticity parameters for different fish species vary, 

resulting in various population dynamics and production functions. The model is concise and 

easy to analyse in the extreme cases where stock elasticity equals either zero or one. Zero stock 

elasticity lend itself to pure schooling fishery where production function is independent of the 

stock. Mackerel, which has a certain schooling behaviour, has a stock elasticity between zero 

and one. A larger stock level, even for schooling species, naturally leads to higher probability 

of finding the fish schools given the same level of searching effort. Thus, we believe the 

production function is not completely stock independent. In addition, another study of a 

schooling species Norwegian Spring-Spawning Herring uses a similar model (Bjørndal, Gordon, 

Lindroos, & Kaitala, 2000). Therefore, a stock elasticity of one is applied in the model.  

Optimizing with respect to fishing mortality is equivalent to finding the optimal effort if we 

follow 𝑓௧ ൌ 𝑞𝐸௧, where 𝑞 is the catchability parameter. The cost parameter 𝑐 in the model can 

be reckoned as the unit cost of effort multiplied by the catchability parameter. Both paradigms 

are interchangeable common practices. This paper focuses on optimizing the fishing 

mortality.  

1.2.2 Two interactions 

We introduce the zooplankton index 𝜌௧  which is assumed to take the form of a Bounded 

Random Walk (BRW) (Nicolau, 2002; Vandromme et al., 2011). This specified process1 has a 

mean reverting property around 1 but behaves like a random walk in the range of [0.6,1.4]. 

Another constraint of 𝜌௧ ∈ ሾ0.5,1.5ሿ is forced in order to avoid extreme outliers. 

The first interaction of the zooplankton influencing mackerel's average weight gain goes as 

follows: 

𝑤௜ାଵ,௧ାଵ ൌ 𝑤௜,௧ ൅ ሾ0.036ሺ𝜌௧ െ 1ሻ ൅ 0.055ሿ            𝑤଴,௧ ൎ 0                  (1.5) 

Usually growth rates are difficult to determine from catches because schools are sorted by size 

and their mobility prevents representative sampling (Skagen, 1989). A small difference between 

weight of catch and weight of stock exists in the data. It is ignored in the model for simplicity. 

It is assumed that the weight for the first age class is virtually zero. As the same cohort 

                                                            
1 𝜌௧ାଵ ൌ 0.01ሾ100𝜌௧ ൅ 𝑒ିଵଶ଴൫𝑒ିଷሺଵ଴଴ఘ೟ିଵ଴଴ሻ െ 𝑒ଷሺଵ଴଴ఘ೟ିଵ଴଴ሻ൯ ൅ 𝜎ఘ𝜀௧ሿ where 𝜀௧ is a sequence of 
independent and identically distributed random variables with 𝐸ሾ𝜀௧ሿ ൌ 0 and 𝑉𝑎𝑟ሾ𝜀௧ሿ ൌ 1 and the 
volatility 𝜎ఘ ൌ 2. 



accumulates its weight over time, the zooplankton index 𝜌௧ decides how much weight is gained 

each year for all cohorts. 

Fig. 1.1 displays the historical average individual weight of the fish. When it is assumed that  

𝜌௧ ൌ 1 for all t, the weight gain is constant every year, creating a linear weight development 

pattern that can be written as: 

 𝑤௜ାଵ,௧ାଵ ൌ 𝑤௜,௧ ൅ 0.055                                                   (1.6) 

                           (a) Stock                                                       (b) Catch 

 

Fig. 1.1 Minimum and maximum weight of mackerel by age class from year 1980 to 2014 

The possible maximum and minimum individual weights respectively are 0.83 kg and 0.49 kg 

at the age of 12 in the model. There exist cases where maximum weight is reported to be 3.5 

kg2. Such extreme values will not be considered in the model. 

The second interaction is about zooplankton affecting mackerel's recruitment. Under different 

scenarios, recruitment can be: first, exogenously given and fixed as 4500 million, which is the 

historical mean recruitment from 1980 to 2014; second, governed by a recruitment function; 

third, exogenous and random from a normal distribution N(4500,2000) based on historical data 

(ICES, 2014). For the first and third case, the behaviour of zooplankton index does not alter the 

recruitment. For the second case, we choose the Ricker formula (Ricker, 1954) as an estimation 

of the recruitment function and include the zooplankton index in a multiplicative form: 

𝜑ሺ𝑆௧, 𝜌௧ሻ ൌ 𝜌௧𝛼𝑆௧𝑒ିఉௌ೟                                                (1.7) 

where 𝛼 ൌ 6.37 and 𝛽 ൌ 0.52 for NEA mackerel (Simmonds, Campbell, Skagen, Roel, & 

Kelly, 2011).  

                                                            
2 http://www.imr.no/temasider/fisk/makrell/makrell/en 



 

Fig. 1.2 Ricker recruitment function and the historical recruitment data 

We see from Fig. 1.2 that the historical recruitment data (square dots) exhibits rather high 

volatility and spreads widely around the estimated curve. The recruitment curve seems to have 

limited explanatory power about the relationship between the SSB and the recruitment next 

year. 

1.2.3 Scenarios illustration 

The zooplankton index can either be deterministic and fixed as 1 (denoted as D) or stochastic 

as a BRW process (denoted as S). Recruitment can be fixed as 4500 million (denoted as F) or 

governed by recruitment curve as in Eq. (1.7) (denoted as C) or random from a normal 

distribution N (4500,2000) (denoted as R). All scenario combinations are listed in Table 1.1. In 

scenarios DF, DC and DR, weight gain is governed by Eq. (1.6) while in scenarios SF, SC and 

SR by Eq. (1.5). 

Table 1.1. Scenario illustrations 

Zooplankton index

Recruitment  

 
Deterministic

 
Stochastic 

Fixed  DF SF 

Curve  DC SC 

Random DR SR 

 

 1.3 Parameters   

This section applies the simplest scenario DF where the zooplankton index is deterministic as 

1 throughout the entire period. Recruitment is fixed as the historical mean. Individual weight is 

assumed to have a constant yearly gain as in Eq. (1.6). 



1.3.1 Parameter specifications 

It is a common practice to set the age classes of mackerel from 0 to 12, where the 0 age class is 

the recruitment of that year. So 𝑖 ∈ ሾ0,1,2, … 12ሿ and 𝑛 ൌ 12. The whole modelling period is 

set to be 100 years in order to gain long term insights of the problem. Thus 𝑡 ∈ ሾ1,2, … 𝑇ሿ and 

𝑇 ൌ 100. The original status of the stock for each age class in the model comes from the 

historical data in year 1980. Discount rate r is set to 5%. The effort constraint can be chosen as 

𝑓௧ ∈ ሾ0,10ሿ, which has a high enough upper bound for fishing mortality (Horwood, 1987). 

Fishing costs c is calibrated to 23000 in order to obtain a cost-revenue ratio around 70%: a 

number that has been observed for pelagic fisheries such as mackerel, herring, blue whiting and 

capelin (Fiskeridirektoratet). Minimum SSB 𝐵௟௜௠ is 1.84 million tonnes (ICES, 2014). Maturity 

ogives of mackerel 𝑢௜ are presented in Table. 1.2.  

The three varying parameters are price, natural mortality and selectivity. For such parameters, 

we either apply a constant number, which is what usually has been done, or utilize the age 

structure of the model by assigning age-specific or weight-dependent parameter values.  

Price of mackerel in Norwegian kroner per kilogram (NOK/kg) is either constant as the mean 

price 𝑝 ൌ 8.46 NOK/kg  or linear as a function of weight: 𝑝௜,௧ ൌ 19.87𝑤௜,௧ (Zimmermann & 

Heino, 2013). Natural mortality of mackerel is assumed to be a constant 𝑚 ൌ 0.15 for all age 

classes (ICES, 2014) or age-specific: 𝑚௜ ൌ 0.32 െ 0.02𝑖. 

Selectivity 𝑠௜ is assumed to be either knife-edge selective (denoted 𝑠௜
ᇱ) where only classes above 

a certain age are harvest or non-selective (denoted 𝑠௜
∗) where every age class lend itself to some 

fishing mortality. Both cases are shown in Table. 1.2. Note that age-class zero is of no interest 

for harvesting. The non-selective case can be calculated as the age-specific fishing mortality 

divided by maximum fishing mortality in the same year. According to ICES (2014), there has 

been a slow shift from selecting older classes to younger classes over time. To embody this 

shift, we apply the average historical values on the first 35 years and use the values in year 35 

for the remaining periods. 

 

 

 

 



Table 1.2 Parameter values for maturity ogive and selectivity 

 
𝑖 

 
𝑢௜ 

𝑠௜
ᇱ 𝑠௜

∗ 

𝑡 ∈ ሾ1, 𝑇ሿ 𝑡 ∈ ሾ1,35ሿ 𝑡 ∈ ሾ36, 𝑇ሿ

0 0 0 0.03 0.01 

1 0.106 1 0.1 0.04 

2 0.539 1 0.18 0.18 

3 0.913 1 0.37 0.43 

4 0.998 1 0.64 0.72 

5 0.999 1 0.73 0.82 

6 0.999 1 0.9 0.83 

7 1 1 1 1 

8 1 1 1 1 

9 1 1 1 1 

10 1 1 1 1 

11 1 1 1 1 

12 1 1 1 1 

1.3.2 Parameter combinations 

The three varying parameters are combined and explored: constant vs. weight-dependent price; 

knife-edge selective vs. non-selective; constant vs. age-specific natural mortality. This gives a 

total of 8 different combinations. It is found that the optimization results are highly sensitive to 

parameter assumptions. In other words, a small change in parameter combination may lead to 

rather distinct results. 

It seems that weight-dependent price 𝑝௜,௧ , knife-edge selectivity 𝑠௜
ᇱ  and constant natural 

mortality 𝑚 lend themselves to pulse fishing. A possible explanation is that the weight-specific 

price structure puts higher value on older classes, justifying the waiting period before harvesting. 

With selectivity 𝑠௜
ᇱ, younger age classes are more vulnerable towards harvesting and this creates 

a relatively lower fishing pressure for the older age classes. Selectivity parameters applied have 

in fact very limited difference: both 𝑠௜
ᇱ and 𝑠௜

∗ are the same above age 7. However, it induces 

obvious changes of the results. This paper numerically illustrates the scale of the issue, which 

should never be underestimated. In many studies, natural mortality is assumed to be constant 

for all. When the bigger fish has a higher probability to survive, this also gives incentive to wait 

for the stock to accumulate. 



                            (a) 𝑝௜,௧, 𝑠௜
∗, 𝑚௜                                                (b) 𝑝௜,௧, 𝑠௜

∗, 𝑚 

 
                             (c) 𝑝௜,௧, 𝑠௜

ᇱ, 𝑚௜                                                (d) 𝑝௜,௧, 𝑠௜
ᇱ, 𝑚 

 
                              (e) 𝑝, 𝑠௜

∗, 𝑚௜                                                   (f) 𝑝, 𝑠௜
∗, 𝑚 

 
                               (g) 𝑝, 𝑠௜

ᇱ, 𝑚௜                                                   (h) 𝑝, 𝑠௜
ᇱ, 𝑚 

 

Fig. 1.3 Optimal fishing mortalities for 8 parameter combinations 

To sum up, any parameter choice that favours the older age classes, for example by assigning 

higher value or decreasing the chance of death of older classes, tends to lend itself to pulse 

fishing pattern. 

 

 



1.4 Optimization 

In this section, we choose the parameter combination: price 𝑝௜,௧is weight-dependent, selectivity 

is 𝑠௜
∗ and natural mortality is a constant 𝑚. This combination has a modest tendency towards 

favouring the pulse fishing pattern. All other parameter values are specified as in Section 1.3.1. 

All scenarios in Table. 1.1 will be explored and summarized in this section.    

1.4.1 Mean results 

For each scenario of SF, SC and SR, 1000 realizations of the zooplankton index are drawn 

randomly. Each represents a possible outcome of the environmental development path during 

the 100 years. The model is treated as a deterministic nonlinear programming problem under 

each path. Optimization is conducted for each realization and mean results are obtained by 

taking the average.  

Several indicators of the results are used for interpretation. Net profits Z and fishing costs C are 

measured in million dollars and calculated as the mean from the 1000 scenarios. The fishing 

cost C for the whole period is calculated as: 𝐶 ൌ ∑ ሺ1 ൅ 𝑟ሻି௧𝑐𝑓௧௧ .  

The average time series of harvest 𝐻ഥ௧ and stock biomass 𝐵ത௧ are measured in million tonnes and 

are obtained as the average from the 1000 scenarios. 𝐻ഥ, 𝐵ത  and 𝑥̅଴,௧  are the average harvest, 

stock biomass and recruitment respectively. Only periods from t18 to t90 are used to calculate 

the mean results in order to avoid the adjusting phases in the beginning and at the end of the 

model, which have extremely high volatility. 𝜎௓
∗ denotes the standard deviation of the sample 

for net profits and 𝜎஼
∗ denotes the standard deviation of the sample for fishing costs. 

As illustrated in Table. 1.3 the only modelling difference between scenario DF and DR is the 

randomness of recruitment. Scenario DR has a higher profit margin on average but with a lower 

probability of actually reaching the mean. Note that random recruitment in scenario DR is from 

a symmetric probability distribution around the same mean as DF. The model seems to be able 

to efficiently capture and utilize the extremely high recruitment to reach higher average profits. 

It is also noticeable that 𝜎஼
∗ is generally larger than 𝜎௓

∗. This may be explained by the way 

fishing costs and sales revenues are calculated. On one hand, many elements are involved in 

determining the sales revenue such as individual weight and stock size, thus smoothing out 

potential variances. On the other hand, the calculation of total fishing cost is purely linked to 

fishing mortality, which may have high volatility.  



Scenario DC results in the lowest net profit, lowest cost and poorest harvest and stock biomass. 

This is mainly due to the poor recruitments. If the recruitments generated by the model strictly 

follow the estimated Ricker curve, it ends up with only 74% of what has been the historical 

average. With the fact that recruitment data usually is rather volatile, letting a single recruitment 

function to take over seems an unreliable approach leading to a pessimistic scenario. 

Table 1.3 Mean results  

(Z and C are net profit and fishing cost for the whole period. 𝜎∗  represents the standard deviation of the 

sample. 𝐻ഥ is the average harvest in million tonnes. 𝐵ത  is the average stock biomass in million tonnes. 

𝑥̅଴,௧ is the average recruitment in millions. Mean values are obtained from t18 to t90.) 

  Scenario  

DF 
 

DC 
 

DR 
 

SF 
 

SC 
 

SR 
Indicators  

𝑍 12504 8761 14222 12955 9491 14596 

𝐶 29817 23733 30843 29954 24442 30821 

𝜎௓
∗ / / 1497 2228 1851 2811 

𝜎஼
∗ / / 1884 2860 4199 3164 

𝐻ഥ 0.2 0.1 0.22 0.19 0.13 0.23 

𝐵ത  5.17 4.15 5.16 5.19 4.14 5.16 

𝑥̅଴,௧ 4500 3308 4509 4500 3290 4498 

Compared to DF, scenario SF lends itself to slightly higher values of average net profit and 

fishing cost. The improvements are rather trivial. It seems that a nonlinear individual weight 

development path may not create huge differences in the results. However, note that the 

increases in 𝜎௓
∗ and 𝜎஼

∗ are much higher between scenario SF and DF than between DR and DF, 

which is mainly caused by varying annual weight gains. This implies that when recruitment is 

fixed, the randomness of weight gain, which may be presumably small, is transferred to the 

volatility of the value as well as cost of harvesting.  

Similar to DC, scenario SC has a poor performance: in more than 70% of the time, scenario SC 

leads to lower profits than SR. However, scenario SC has a higher net profit than DC on average 

due to the introduction of the random environmental factor. Scenario SR, similar to DR, has the 

highest profit and cost on average all the scenarios. The varying annual weight gain almost 

doubles 𝜎௓
∗ and 𝜎஼

∗ by switching from DR to SR, which is not a surprise given two sources of 

randomness in the model. 



To sum up, higher volatility of the zooplankton index, implying either varying recruitment or 

volatile weight gains, leads to higher net profits on average but together with a lower probability 

of actually hitting the mean values. It can be interpreted as the risk upon the fishing industry 

brought by nature. When recruitment is fixed, volatile weight gains cause considerable increase 

of 𝜎௓
∗ and 𝜎஼

∗. When weight gain is constant, random recruitment also lends itself to larger 

volatility of profits and costs. Strong and extremely good recruitment can be utilized by the 

model to reach better profits. Net profits usually have smaller variances than fishing costs 

mainly due to the structure of the model. Recruitment governed by a recruitment function tends 

to lead to the weakest zero age-class, thus the poorest overall performance. 

1.4.2 Time series results 

Fig. 1.4 displays the mean estimated optimal fishing mortality time series of 1000 realizations 

under each scenario. Scenarios DF, DC, SC and SF exhibit various scales of pulse fishing 

pattern while DR and SR have a more stable harvest. For DR and SR, the normally distributed 

recruitments are generated with a rather large standard deviation, leading to widely distinctive 

optimization results. With all the realizations, they simply cancel out and smoothed out when 

the mean time series are presented.  

The volatility of simulated recruitments in scenario SC is roughly 600 while this number is 

about 2000 in DR and SR. When the volatility of recruitment is zero (scenario SF) or relatively 

small (scenario SC), the pulse fishing patter clearly remains even after taking the average. With 

a fixed recruitment as in SF, the suggested fishing activity is periodic and reaches a peak about 

every 9 years. Yet the fishing mortality peaks are of moderate levels. For scenario SC, the 

recruitment is comparatively weaker, so the waiting time or moratorium period is longer. About 

every 14 years, the time series of scenario SC suggest quite a strong harvesting action.   

A similar conclusion could be drawn when comparing scenario DF and DC. A guaranteed 

recruitment offers the possibility for more frequent fishing activities and lower fishing mortality 

in general.  

While the time series results for scenario DC and SC are extremely alike, more distinctions can 

be found between DF and SF. When the weight gain is stochastic, the ‘waiting period’ is not 

strictly moratorium and the strong harvest years becomes more conservative.  

 



                            (a) Scenario DF                                            (b) Scenario DC 

 
(c) Scenario DR                                             (d) Scenario SF 

 
(e) Scenario SC                                             (f) Scenario SR 

 

Fig. 1.4 Mean estimated optimal fishing mortalities 

1.5 Simulation 

A straightforward policy that is easy to implement in reality is a constant fishing mortality. In 

this section, fishing mortalities from 0.02 to 0.1 are assessed through simulations of the stock 

in a period of 100 years under the 6 scenarios. All parameters are the same as in Section 1.4. 

Simulating with a constant fishing mortality has been a tool for analysing such bioeconomic 

problems. Bjørndal, Ussif, & Sumaila (2003) investigated the Norwegian spring spawning 

herring (NSSH) and found that with a time horizon of 20 years, a constant fishing mortality of 

0.15 is economically optimal. They assumed that the price of the fish is a constant and applied 

20 years as the simulation period, which is much shorter compared with this study.  

As shown in Fig. 1.5, regardless of the choice of scenarios, net profit is maximized when fishing 

mortality is around 0.06. In the management plan simulations of ICES advice 2015, the NEA 



mackerel stock is simulated with different target fishing mortalities from 0.2 to 0.35. No 

economic elements are accounted for in these simulations. This paper promotes a much lower 

fishing mortality than what is being evaluated in the ICES advice. One aspect that potentially 

contributes to this difference is the weight-specific price structure. This assumption includes 

crucial economic aspects that could be neglected in pure biological studies. When the fishing 

mortality is high and constant, the composition of the entire population may shift towards 

smaller individuals, leaving the cohorts limited time to accumulate body weight in time and 

therefore lose its value.  

                           (a) Net profits                                           (b) Harvest biomass 

 

Fig. 1.5 Simulated net profits and harvest biomass under different fishing mortalities for each 

scenario 

The level of net profits is largely influenced by the overall recruitment and the random 

environmental factor. In scenario DC and SC where recruitment is determined by the Ricker 

function, the recruitments are systematically lower, leading to smaller profits and smaller 

optimal fishing mortality. In the other scenarios, DF has the lowest profits, which goes in line 

with the findings from Section 1.4.1. Compared to Table. 1.3, simulations with a fixed fishing 

mortality lead to average net profits that are at least 1 𝜎௓
∗ lower than the optimization results. 

The curve of total harvest biomass against fishing mortality in Fig. 1.5(b) is slightly concave. 

Since the fishing mortality is kept constant for years in the simulation, a heavier harvesting 

gives rise to a smaller stock biomass and smaller individuals. When the stock is harvested to a 

poor level, even large fishing effort will still have little return. This may explain what can be 

observed in Fig. 1.5(a) and (b): the more we manage to harvest, the worse it becomes regarding 

net profits once the fishing mortality goes beyond the optimal level.  

 

 



1.6 Historical vs. optimal harvest 

It is of interest to apply some real data to the model and make comparison between historical 

harvest and optimal harvest offered by the optimization model. Similar to scenario SC, this 

section assumes that the zooplankton index is stochastic and recruitment is governed by a 

recruitment curve as in Eq. (1.7), in order to fully capture the two interactions of recruitment 

and weight gain. Parameter T is changed to 40 years in order to cover the available data from 

1980 to 2014. Fishing cost c is adjusted to 11000. 

                     (a) Fishing mortality in HT                         (b) Fishing mortality in OP 

 
  (c) Harvest biomass in HT                          (d) Harvest biomass in OP 

 
(e) Stock biomass in HT                              (f) Stock biomass in OP 

 

Fig. 1.6 Results for scenarios HT and OP 

We use 'HT' to indicate the results of historically applied harvest and 'OP' for the optimal 

harvest. Both have the same random number generator seed. Since the stock has never been 

managed under a pulse fishing regime with consecutive years of strict moratorium, the optimal 

exploitation requires certain constraint in order to remain practical and comparable. To offer 

relevant proposals, an extra constraint of 𝑘ଵ ൑
𝑓𝑡൅1

𝑓𝑡
൑ 𝑘ଶ is added in the optimization, where 



𝑘ଵ ൌ 0.75 and 𝑘ଶ ൌ 1.25 are the minimum and maximum annual change rate respectively 

from historical data. 

As shown in Table. 1.4, HT leads to 43% lower profit, 34% higher cost and a larger cost-revenue 

ratio on average. In addition, with more than twice the fishing mortality and 1.6 times the 

harvest biomass of OP, HT maintains 32% lower stock biomass level. The historical 

exploitation is economically inefficient and biologically unsustainable.  

As presented in Fig. 1.6, it is no surprise that the results of HT show that NEA mackerel stock 

had been harvested unsustainably. The stock biomass kept decreasing to a minimum level 

around 2.4 million tonnes in year 2005. In year 1994 and 2003, fishing mortality peaked to 0.37 

and 0.46 respectively. After the second peak, fishing mortality came down to around 0.22, 

leading to a slight recover in stock biomass.  

The fishing mortalities in Fig. 1.6(b) can be the proposal for management plan of the NEA 

mackerel from our model. It not only leads to a higher net profit but also a higher and more 

stable stock biomass, which is crucial for a healthy stock structure and sustainable fishery 

resource management. The proposed harvest policy secures both biological and economical 

potential of the stock, diminishing the possibility of potential population collapse.  

Table 1.4 Results for scenarios HT and OP  

(Z and C are net profit and fishing cost for the whole period. 𝜎∗  represents the standard deviation of the 

sample. 𝐻ഥ is the average harvest in million tonnes. 𝐵ത  is the average stock biomass in million tonnes. 

𝑥̅଴,௧  is the average recruitment in millions. 𝑓̅ is the average fishing mortality. Mean values are 

obtained from t15 to t35.) 

  Scenario  

HT 
 

OP 
Indicators  

𝑍 15944 28216 

𝐶 47309 31067 

𝜎௓
∗ 4080 2769 

𝜎஼
∗ 396 388 

𝐻ഥ 0.44 0.28 

𝐵ത  2.76 3.63 

𝑥̅଴,௧ 4369 3778 

𝑓 ̅ 0.312 0.118 



As Hannesson (2011) pointed out: 'What pulse fishing means is that a stock of fish is fished 

down heavily for a short period of time and then left to replenish itself for a longer period. But 

what does the industry do in the meantime?' The added constraint in this section successfully 

limits the variations of fishing mortality over time.  

It is shown in Table. 1.5 that as the constraint gets tighter, both profit and cost tend to decrease; 

the shadow cost for having the constraint rises. Still, the scale of the constraint shadow cost is 

low: within 10%. At a relatively low cost, the constraint has made the proposal more realistic 

since stable quotas are favoured by fishers as they enable the decision making to be more 

predictable and correct. When the annual change rate of fishing mortality is within 2% (𝑘ଵ ൌ

0.98 and 𝑘ଶ ൌ 1.02), it is still valid that in more than 70% of the time, OP results in higher 

average net profits than HT. It seems possible to obtain better results than HT if the harvest 

strategy is to apply a constant fishing mortality level. Such a simple strategy can have limited 

risk, higher mean profits and more straightforward implications for the sector. 

Table 1.5 Results for OP under various sets of 𝑘ଵ and 𝑘ଶ 

(Z and C are net profit and fishing cost for the whole period. Shadow cost is calculated as the percentage 

difference of the objective value Z with (set 1-4) and without (set 5) the underlying constraint. 𝜎∗  

represents the standard deviation of the sample.) 

Parameter sets 1 2 3 4 5 

𝑘ଵ 0.75 0.9 0.95 0.98 ൅∞ 

𝑘ଶ 1.25 1.1 1.05 1.02 െ∞ 

𝑍 28216 27934 27512 26894 29332 

𝐶 31067 30451 30547 30209 31770 

Shadow cost 3.8% 4.8% 6.2% 8.3% / 

𝜎௓
∗ 2769 2748 2825 2942 2903 

1.7 Conclusion  

This paper sets up an age-structured bioeconomic model of NEA mackerel and introduces an 

environmental factor that affects the weight gain process and the yearly recruitment of the 

population. To deal with such a complex model, certain assumptions are required. All the 

simplifications are not inventions but based on existing studies. Several methods have been 

implemented to analyse the problem: simple optimization of nonlinear programming problem; 



extracting average results from multiple optimizations; simulations and comparison between 

historical and optimal policy.  

It is found that weight-dependent price, knife-edge selectivity and constant natural mortality 

promote pulse fishing as the optimal exploitation pattern. Any parameter combination that 

advocates the older age classes encourages the policy to give time for the population to 

accumulate biomass before removing a large quantity in a short period. The behaviour of the 

optimal policy is quite sensitive to the combination of parameters. The challenge for such age-

structured models lies not only in estimating the numerous age-dependent parameters, but also 

in choosing the assumptions that sway the results to the minimum extent.  

The mean results from multiple optimizations suggest that a higher volatility of the 

environmental factor leads to higher net profits on average but with a smaller likelihood of 

achieving the mean values. When recruitment is constant, the seemingly small stochasticity in 

the weight gaining process causes huge volatility in net profits and fishing costs. Although the 

Ricker recruitment function is estimated from the historical data in a mathematically sound 

manner, still it seems oversimplified for generating reasonable recruitments. In our numerical 

example, even with a certain amount of randomness involved, the recruitment curve constantly 

produces the most pessimistic scenarios of all.  

When a constant policy is applied for simulations, it is found that a fishing mortality around 

0.06 produces the highest net profits. This result promotes a much more conservative policy for 

NEA mackerel than what ICES reports have examined. The simulations yield at least one 𝜎௓
∗ 

lower net profits than optimizations regardless of the scenario, which is an expected situation. 

In reality, a stable and predictable fishing pattern without intense harvesting peaks is practical 

and valuable to the industry and management of the resource.   

Comparisons between the historical and the optimal harvest prove that the past exploitation has 

been economically inefficient and biologically unsustainable. A proper and constant fishing 

mortality policy has the possibility to exceed the performance of the historical harvest. When 

conducting the optimization in this section of the paper, an extra constraint on the annual change 

rate of the decision variable is attached in order to smooth out the policy. The cost of having 

such a constraint is inexpensive: within 10% of the total profit. The comparison manifests that 

in more than 70% of the time, the optimal harvest offered by the model leads to 43% higher net 

profit and 34% lower fishing cost.   



Appendix 

Table A. Notations and parameter values 

Subscripts       Definitions  

𝑖  Age 

𝑡  Time/Period 

Variables   

𝑥௜,௧  Number of individuals of age 𝑖 at time 𝑡 (millions) 

𝑓௧  Fishing mortality at time 𝑡 (decision variable) 

𝑠௜  Selectivity at age 𝑖 

𝑤௜,௧  Average individual weight of age 𝑖 at time 𝑡 (tons)  

ℎ௜,௧  Harvest biomass at time 𝑡 of age 𝑖 (million tons) 

𝐻௧  Harvest biomass at time 𝑡 (million tons) 

𝑆௧  Spawning Stock Biomass (SSB) at time 𝑡 (million tons) 

𝑝௜,௧  Unit price of age 𝑖 at time 𝑡 (1000NOK/ton) 

𝜌௧  Zooplankton index 

Parameters Values  

𝑚 0.15 Natural mortality (same for all age classes) 

𝑚௜ 0.32 െ 0.02𝑖 Natural mortality at age 𝑖 

𝑛 12 Maximum age class 

𝑇 100 End period 

𝑢௜ Table 1.2 Proportion of sexually matured individuals at age 𝑖  

𝑠௜
ᇱ  Table 1.2 Knife-edge selectivity   

𝑠௜
∗  Table 1.2 Non-selective selectivity 

𝛼, 𝛽  6.37; 0.52 Parameters for the Ricker’s recruitment function 

𝑝 8.46 Constant unit price (NOK/kilo) 

𝑟 0.05 Discount rate 

𝑐 23000 Calibrated cost parameter for pure schooling fisheries 

𝐵௟௜௠ 1.84 Biomass reference limit (million tons) 

𝐹  [0,10] Fishing mortality range 
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