
BY

ISSN:

DISCUSSION PAPER

Markets With Memory: Dynamic 
Channel Optimization Models With 
Price-Dependent Stochastic Demand

Reza Azad Gholami, Leif K. Sandal and Jan 
Ubøe

Institutt for foretaksøkonomi
Department of Business and Management Science

FOR 08/2019

1500-4066
September 2019



Markets With Memory: Dynamic Channel Optimization Models

With Price-Dependent Stochastic Demand

Reza Azad Gholami∗ Leif Kristoffer Sandal† Jan Ubøe†

Department of Business and Management Science, NHH Norwegian School of Economics

January 2019

Abstract

Almost every vendor faces uncertain and time-varying demand. Inventory level and

price optimization while catering to stochastic demand are conventionally formu-

lated as variants of newsvendor problem. Despite its ubiquity in potential appli-

cations, the time-dependent (multi-period) newsvendor problem in its general form

has received limited attention in the literature due to its complexity and the highly

nested structure of its ensuing optimization problems. The complexity level rises

even more when there are more than one decision maker in a supply channel, trying

to reach an equilibrium. The purpose of this paper is to construct an explicit and

efficient solution procedure for multi-period price-setting newsvendor problems in a

Stackelberg framework. In particular, we show that our recursive solution algorithm

can be applied to standard contracts such as buy back contracts, revenue sharing

contracts, and their generalizations.
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1 Introduction

Almost every vendor faces uncertain demand. The uncertainty of demand may be of

different natures and varying levels of tractability for statistical modeling. The demand

uncertainty for a specific commodity may stem from consumer behavior or the economic

development condition for that commodity. For instance, the stochasticity of demand for

commodities such as sports apparel may arise from changing trends of fashion; while for

electronic devices or computer software, it may be caused by better products being rolled

out.

Anticipating future trends of market and satisfying stochastic demand remains a chal-

lenge for manufacturers and vendors. In general, the uncertain demand for a specific

product is price-dependent, and dynamic in the sense that it evolves through time.

The main goal of this paper is to demonstrate that a general structure for stochastic

dynamic demand can be utilized for decision-making purposes. This general structure,

as we will see, is such that many other demand models turn into sub-classes of our

formulation.

The single-period newsvendor problem in the face of price-dependent uncertain de-

mand has long been studied in the literature (see, for example, Whitin 1955, and Salinger

and Ampodia 2011).

However, there are a variety of situations in which decision makers need a multi-period

perspective and analysis of stochastic demand for a commodity as its price (and price-

elasticity of demand) changes. For example, in market penetration scenarios where the

optimal strategy of an entrant supplier in the beginning may be very different from what

is optimal later, a multi-period analysis of demand is necessary.

The current work should be considered as a generalization and systematization of

such models of demand, as it analyses the stochastic price-dependent demand of arbitrary

distribution in a multi-period structure. This comprehensive model of demand can then

be implemented in different economic and management contexts to cover and analyse

multi-period changes of demand as the price elasticity of demand evolves through time.

Another feature of our model of dynamic price-dependent demand is that it can be

embedded in a game theoretic setting where two vendors cater to the demand within
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a vertical supply channel. The general solution algorithm presented in the constructive

Theorem 5.1 thus provides the optimal level of inventory and optimal prices for both of

the channel members at each period.

This paper circles around the classical balance between price and demand. In a dy-

namic setting, where we consider demand within a time frame, the current price is obvi-

ously still important, but the general level of demand may depend on previous prices in

a critical way.

Moreover, we take this point of view from marketing and behavioral economics that

previous prices scale demand, for example by affecting the number of customers taking

interest in the product. This is particularly important when a company wants to sell

high-tech products with a possibly short lifespan. An optimal pricing scheme is critical.

At the end of the timespan, the product will be outdated and replaced by more advanced

products.

Trade-ins and introductory offers are more common than ever before, in particular

due to web-based shopping. Market penetration strategies such as providing the potential

customers with free trial versions of a software (freemium) or free distribution of a small

number of a newly introduced cell-phone model are frequently employed.

For example, as reported by Forbes on August 2015, in an attempt to gain a greater

share of the market, Samsung announced its promotion called “Ultimate Test Drive,”

which allowed Apple iPhone users an opportunity to test out the Galaxy Note 5, Galaxy

S6 edge+ or Galaxy S6 edge cellphone and tablet models for a price of just $1 for 30 days.

According to an article published in Harvard Business Review on May 2014, similar

marketing strategies have become the dominant business model employed by internet

start-ups trying to secure a niche in the market by gradually converting the freemium

users into paying customers.

In general, according to an analysis published on March 2013 in The Wall Street

Journal, the freemium business model has proven to be the fastest way for a company to

grow and create massive value.

Such marketing approaches, however, may incur huge initial losses, and succeed only

if demand is enhanced to a level that outweighs the initial costs. The main issue for
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such schemes is to obtain a proper balance between present revenue and revenue in the

remaining lifespan of the product. The length of the introductory free distribution period

is, for obvious reasons, a crucial factor for success.

Our analysis of the long-term revenue optimization problem addresses this issue by

providing the optimal length of the free distribution time interval.

The main challenge in a multi-period discrete-time model of demand in which demand

at the present may be affected by that of previous periods is the implicit interdependence of

values of all periods. In order to emphasise the nestedness caused by this interdependence,

we introduce the notion of memory functions. These memory functions carry effects of

present demand onto the future. They are generally price and time dependent and can

be adjusted to model markets with stronger or weaker memories.

By embedding memory effects in the model, not only do we emphasize the nestedness

mentioned above, but also cover the downstream (customer-side) effects of pricing. Thus,

our model will be able to systematically cover price elasticity of demand as it changes

through periods. Otherwise, by solving the same problem for demand distribution at

every period, we cannot see the after effects of the pricing scheme on demand.

The paper is organized as follows. In section 2, we outline our uncertain demand

structure and how it is affected by market memory. Next, in section 3, we embed this

memory-based demand structure in a general time-dependent profit and inventory opti-

mization problem. In this section, we briefly discuss how this (single-vendor) optimization

problem can be solved using backward induction method.

In section 5, we extend the solution procedure to a supply channel composed of two

vendors competing in a Stackelberg framework. The direction of generalization in this

section is based on the number of periods: first, in section 5.1, the static single-period

equilibrium problem is solved, and, finally, in section 5.3, the general solution procedure

for the dynamic game is presented.

The final theoretical results for equilibria problems are stated in Theorem 5.1 and

its Corollary 5.2. The final solution procedure yields the numerical values for optimal

decision variables at different times while considering all the model parameters to be also

time-dependent, thereby ensuring full non-autonomy of the model.
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While this article should be regarded as a methodology paper, in section 6 we provide

examples of decision-making problems using our model. It should be noted that these

examples are provided to familiarize the reader (user of the algorithm) with the solution

procedure as well as its diverse scope of applicability. Thus, it is imperative to emphasize

that the representative functionals offered in this section are merely speculative and not,

for instance, the results of an empirical study.

Through these examples, we will see how the model can be implemented in strategic

games where the parties must balance immediate profits with future earnings. Among

the scenarios in this section, we analyze a case wherein the two vendors coordinate in an

integrated (centralized) channel.

In the appendices, we first demonstrate that in order for our proposed memory-based

demand structure to decouple the nested multi-period optimization or equilibrium prob-

lem, the expected profit expression is required to be of a specific mathematical structure.

Then we prove that such a specific structure indeed appears in many conventional supply

chain optimization and inventory management problems, thus making our memory based

solution procedure applicable to a wide variety of contracts.

1.1 Literature Review

In this section, we survey different models of stochastic demand employed by researchers

in various disciplines, including microeconomics, inventory management, and stochastic

programming. The papers mentioned in this section address various issues when facing

stochastic demand. These issues include maximizing objective functions, minimizing cost

functions, obtaining equilibria, or analysis of the very nature of uncertain demand. It

should be noted that we are primarily interested in the model of stochastic demand in

each paper, not the specific objective functions within which these demand expressions

are embedded.

The body of research on stochastic demand can be categorized into two main sub-

groups. The first class of papers deem the distribution of stochastic demand to be un-

certain. The second group of researchers consider certain characteristics of the demand

distribution to be part of the a priori knowledge of the decision makers about the market.
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In the first group, Azoury (1985) formulates the problem of stochastic demand in a

Bayesian setting. Assuming a known prior distribution for the uncertain demand, the

newly gained information is incorporated into the posterior distribution with unknown

parameters. These unknown parameters constitute a multi dimensional state space. The

dimensionality of the resulting problem is then reduced such that the solution of the

Bayesian model can be obtained by solving another dynamic program with a one dimen-

sional state space. She also assumes the unmet demand to be backlogged and observable.

Lariviere and Porteus (1999) provide a similar Bayesian inventory management analysis

in which demand distribution belongs to a parametric family of distributions. However,

they assume that the unmet demand is lost and unobserved. Bensoussan et al. (2007) in

their analysis of the multi-period newsvendor model, also consider demand distribution

to be the state of their stochastic programming problem. In their model, demand is a

stationary Markov process with a known transition probability. Using the unnormalized

probabilities, they convert the state transition equation to a linear one. Levi et al. (2007)

use a non-parametric Monte Carlo sampling algorithm to garner information about the

underlying distribution of demand. Assuming that that the demands in all periods are

independent and identically distributed (i.i.d) random variables, they do not consider the

inter-dependence of demand level in the current period to the future ones. All of these

papers, addressing only the inventory management problem, consider the demand to be

independent of the price. Therefore, they do not address the optimal pricing strategy

problem.

Kim et al. (2015) in their analysis of a multi-period newvendor model, discretize the

problem as a multi-stage stochastic programming problem. The stochasticity of demand

in their model is formulated as a set of a finite number of scenarios and the occurrence of

each scenario is associated with a probability. Moreover, they use a discrete probability

distribution (Poisson) to represent the demand. The ensuing scenario-based stochastic

problems can then be treated as discrete deterministic optimization problems. In their

model, the demand is not price dependent.

Pasternack (1985, 2008) in his analysis of the single-period newsvendor problem, con-

siders uncertain price-dependent demand for a perishable good to be of a general prob-
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ability density function. The decision variables are the order quantity and the pricing

policy which are obtained by solving the maximization problem for the expected profit.

Gümüş et al. (2013) study a dyadic channel coordination problem in which two chan-

nel partners supply used goods to a peer-to-peer Web-based market. They construct a

Stackelberg structure between the manufacture (leader) and the retailer (follower), and

analyse the necessary conditions for return policies to constitute the equilibrium strategy.

In their model, the time frame is comprised of two periods. In the first period, the degree

of uncertainty in customer valuation for a specific product is assumed to be heterogenous

and follow a uniform distribution. Trying to formulate the inter-dependence of demands

at the two periods, they assume the demand potentials for the second period to be pos-

itively correlated to the realization of demand in the first period, which becomes known

history when the second period starts.

In our research, we also consider the mean and variance of demand to be arbitrary

functions of time and price history. The dependence of demand mean and variance to the

current price can be obtained from microeconomics theory or empirical data, while the

inter-dependence of current demand to the prices of the past periods are represented by

memory functions. The solution scheme that we propose is, however, independent of the

functions representing the demand distribution. We consider the current demand to be

a function of current price, pricing strategy in the past, and, demand history. Thereby,

we avoid neglecting the downstream effect of pricing strategies. That is, our model also

considers the fact that the pricing scheme set by the decision maker(s) will affect the

availability of the commodity to the costumers, which in turn, will affect their purchase

decision, future demand, and, the expected profit for the vendor(s). As a result of such

a nested, price-dependent demand structure the decision makers will be able to engineer

the demand through devising the optimal pricing strategy.

7



2 Demand Model Framework

2.1 Problem Description

A commodity is to be supplied to a specific market with uncertain demand. The vendor(s)

are risk-neutral as they seek to maximize their expected discounted total profit within a

timespan. We consider a discrete time structure for our model, in which the timespan is

divided into intervals called periods, which may be of different lengths and hence differently

value-discounted. We assume all model parameters and variables to be constant within

each period. First, we introduce the demand model, and then substituting it in a generic

inventory model, solve the profit optimization problem. It should be noted that, for

the sake of generality, we consider an inventory model applicable to commodities facing

uncertain demand.

In addition, we assume that when decisions are being made for the kth period, the

prices of the past denoted as {Ri | 1 ≤ i < k} are common knowledge. Another important

assumption is that demand at the k−1th period, Dk−1, becomes known, i.e. observable at

the beginning of period k. This is especially true when analysing internet-based demand,

where online shopping enables potential customers to report their “wishlists.”

2.2 Demand Structure

We assume the uncertainty of demand at each period to be of a general i.e. additive-

multiplicative form. Such a demand structure is comprised of two deterministic and

uncertain parts each a function of time and price history.

We consider demand at period k, Dk to be of the following general form.

D1 = µ̃1(R1) + σ̃1(R1)ε1 (1)

Dk = µ̃k(R1, . . . , Rk) + σ̃k(R1, . . . , Rk)εk (2)
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where

Rk = price per unit at period k

µ̃k(R1, . . . , Rk) = given function, representing mean of demand at period k

σ̃k(R1, . . . , Rk) = given function, representing the standard deviation of

demand at period k

εk = stochastic variable of arbitrary distribution, continuously distributed,

normalized such that:

E[εk] = 0 and Var[εk] = 1 for all k, and supported on intervals with

density function, fεk > 0, a.e. on its support.

2.3 Normalization of The Stochastic Variables

It is obvious that with the normalization described earlier, we have:

µ̃k = E[Dk] σ̃k = Var[Dk]

Also, note that this normalization enables our demand model to cover both the additive

case (Within (1955)) and the multiplicative case (Karlin and Carr (1962)). Without loss of

generality, we can summarize all single-period multiplicative models of stochastic demand

as below.

D(R) = σ̃(R)ξ E[ξ] = 1 where ξ is a stochastic variable. (3)

Such a demand expression is equivalent to a special case in our model in which µ̃ and σ̃

are equal: D(R) = σ̃(R)(1 + ε). It is readily observable that in the multiplicative model

the coefficient of variation of demand is equal to 1 and, a fortiori, independent of price.

3 The Single-vendor Profit and Inventory Optimiza-

tion Problem

In this section, we use our proposed demand structure in a quite general inventory man-

agement problem. Substituting the demand structure in the expected profit expression,
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we illustrate how our model of demand can be solved to obtain vectors of optimal decision

variables at any specific period.

For simplicity, we analyse the case with only one vendor here, and in section 5.1, we

delineate how the same structure can solve cases where two vendors try to maximize their

respected profits.

We denote the net running value of the profit obtained at period k, by Πk, and its

expected value with respect to fεk by Πk. For the sake of generality, we assume the

expected profit at period k to be of the following form.

E[Πk] = Πk (Dk, Rk, qk,Mk, sk, gk, crk) (4)

where

Dk = actual uncertain demand at period k

Rk = price per unit at period k, (decision variable)

qk = inventory level: quantity of items to be supplied at period k, (decision variable)

Mk = manufacturing cost per unit at period k, given parameter

sk = salvage price per unit at period k, given parameter

gk = goodwill cost per unit incurred due to stockout at period k, given parameter

crk = marginal cost incurred upon procuring a unit at period k, given parameter.

It should be noted that in addition to the decision variables in this single-vendor model,

i.e. Rk and qk, all of the other parameters are considered as time-dependent entities.

This full-blown non-autonomy with respect to both the variables and the parameters is

kept throughout the entire analysis and is present in the expression of the final results in

Theorem 5.1 and its Corollary 5.2 for general double-vendor models.

The supply quantity qk is to address the stochastic demand Dk. Thus, without loss of

generality, we can consider qk to follow a structure similar to that of Dk as described in

(1) and (2), i.e. a function of mean and standard deviation of demand at k (µ̃k and σ̃k).

qk = qk

(
µ̃k(Rk), σ̃k(Rk)

)
(5)

10



Assuming the total number of periods to be n, we have the expected discounted total

profit of the whole n periods as below.

J = E[Π1] + α2E[Π2 | D1] + · · ·+ αnE[Πn | D1, · · · , Dn−1] (6)

where 0 < αk ≤ 1 are given discount factors.

Now we have to solve the following nested n-variable optimization problem.

max
Rn

J =
n∑
k=1

αk Πk(Rk) The barred symbol indicate expected value. (7)

Solving (7), we want to obtain the vector of optimal prices R̂k.

3.1 A General Solution Scheme Based on Backward Induction

In the final period, there is no need to worry about future demand. Moreover, by the

time the decisions are being made for the last period, all the previous decision variables

and the demands themselves are common knowledge. In addition, because no term other

than Πn in J as expressed in (7) depends on Rn, the problem of finding the nth argmax

of J boils down to the single-variable problem of finding the Rn which maximizes Πn.

max
Rn

J ≡ max
Rn

Πn (8)

Hence, given Rn−1 and Dn−1, and assuming that the mapping Rn 7→ E[Πn | Dn−1] has a

global maximum, we can construct a function R̂n = R̂n(Rn−1,Dn−1) that maximizes this

conditional expected value. Inserting this function in (7) and iterating the same procedure

for max
Rn−1

J, · · · ,max
R1

J , we obtain the vector R̂n with each R̂k being the global argmax to

the corresponding Πk.

Later, in section 5, we extend the procedure to solve the equilibrium problem when

there are two suppliers (a leader and a follower) in the supply channel. The ensuing bilevel

optimization will be of the following general form.

max
{li}

(
J Leader | f ∗j

)
s.t. {f ∗j } =

{
Argmax

(
J Follower | l∗i

)} (9)

Where li and fj denote the decision variables for the leader and the follower, respectively.

Moreover, throughout this paper, an asterisk superscript denotes an optimal decision

variable.
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4 Market Memory

It is classical to assume that the demand at present depends on the current price: Dk =

ψ(Rk). However, not all markets behave as simply as this. Many markets have some

kind of memory, in the sense that pricing in the past may affect demand at present. In

a dynamic market, the customers may become anchored to past prices, and this may

affect their purchasing behavior. Besides, the functional form ψ may vary with time; thus

making Dk = ψk(Rk).

Consider a market in which a commodity with a limited lifespan is supplied to a base

of potential customers. It is natural to assume that strategic customers are sensitive to

previous prices when comparing them to the current price. Thus, one can conclude that,

in general, in addition to the current price, previous prices may have a bearing on the

current customer base by scaling the demand. For example, in a specific scenario, a price

increase by 20% may reduce the customer base by, for example, 10%. We argue that a

general time-dependent model of supply and price optimization should also consider the

effect of anchoring to the past prices on current demand.

We build our time-dependent model of uncertain demand on the simple premise that

the probability of an item being sold at time k for the price ofRk depends on the customers’

interest, which in its own right, in general, may depend on the past prices.

Dk ∝ P(purchasek) = P(purchasek | interestedk) · P(interestedk) (10)

Dk = ψk(Rk) · Hk(Rk−1, · · · , R1) (11)

The dependence of the current demand on current price, ψk(Rk), has been a subject

of classical microeconomic study. Whereas, obtaining a functional format for Hk(Rk−1)

may fall into the domain of behavioral economics.1

4.1 Direction of Generalization: TENTATIVE TITILE

When embedding Dk into the optimization procedure outlined in (9), depending on the

demand structure, we will encounter different game theoretic scenarios.

1Should I remove this (minimal) reference to Behavioral Economics?
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In the memory-less market, where Hk = 1, the demand at the current period is

assumed not to be affected by past prices. If the demand functional format remains

identical (as is the case in some microeconomic analyses), i.e. ψk(Rk) = ψ(Rk), the

procedure outlined in (9) turns into a repeated game.

In contrast, a fully dynamic game emerges where the functional formats for ψk(Rk)s

vary with time.

In addition, assuming demand’s dependence on past prices, i.e. havingHk(Rk−1, · · · , R1)

covers the effects of price anchoring on demand and adds up to the level of non-autonomy

in the ensuing equilibrium problem.

In Theorem 5.1, we propose a solution algorithm for the general non-autonomous

dynamic game. Obviously, the proposed solution algorithm can be applied to the repeated

game and the memory-less cases.

4.2 Memory-based Uncertain Demand

We formulate the demand scaling factors described in the previous section within mem-

ory functions. These memory functions carry the effects of the past prices onto current

demand. They are generally price and time dependent and can be adjusted to model

markets with stronger or weaker memories. In our expression for memory-based demand,

we devise memory functions such that the demand at each period be not only a function

of price at that period, but also carry the effects of pricing policies and the demand in

the previous periods.

To define the memory functions for the demand, we assume the demand structure to

have the following two features.

Feature 1. At any period, the coefficient of variation of the demand, CVDk , may depend

on the current retail price. In other words, we allow

CVDk =
σ̃k(Rk)

µ̃k(Rk)
= CVDk(Rk) (12)

where the price sequence at period i, Ri = {Rj, j = 1, · · · , i}.2

2Throughout this paper and for the sake of brevity, we have used boldface letters to denote sequences of variables like

demand, retail and wholesale prices. Thus, for a variable Z, Zi = {Zj , j = 1, · · · , i}, where j is the number of the period.
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Note that assuming this feature is a step towards generalization as, in the existing

literature, in multiplicative demand models, where D = σ ξ, the coefficient of variations

is assumed to be constant (CVD = 1). This highly restrictive assumption is relaxed by

assuming Feature 1, instead.

Now we recast the general expression for demand in (2), as below.

Dk(Rk) = Φk(Rk−1)dk(Rk)

where dk(Rk) = µk(Rk) + σk(Rk)εk.
(13)

and

µ̃k(Rk) = Φk(Rk−1)µk(Rk)

σ̃k(Rk) = Φk(Rk−1)σk(Rk).
(14)

We call Φks the memory functions as they bring the effects of pricing history into the

current demand structure.

Moreover, we assume that the the memory function for the k + 1st period, Φk+1(Rk),

retains the information from the previous period’s memory, Φk(Rk−1), while being affected

by the last piece of information that has become available, i.e. Rk.

The level of retainment of the information about the past prices (determining the

potential buyers’ anchoring to the past prices) may vary depending on the market and

the behavior of strategic buyers. Feature 2 expresses this feature in a multiplicative

format.

Feature 2.
Φk+1

Φk

= φk(Rk) (15)

We call these φk(Rk)s the memory elements. Notice that the possibility of having different

functional forms for φks in different periods enables our demand structure to cover more

non-autonomy. With the general memory structure in (15), we will have:

Φk(Rk−1) =
k∏
i=2

φi(Ri−1) (16)

The memory structure satisfying assumptions 1 and 2 enables us to explicitly solve

nested multi-period optimization/equilibria problems in a large variety of inventory man-

agement and game theoretic contexts.
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As it can be seen in (13), the memory functions make Dk an implicit function of all

the previous pricing schemes. Note that given Ri, the value of εi is known if and only if

the value of di is known. The idea is that the level of demand in each period can (to some

extent) carry over to the next period. This dependence is usually such that a high price

in one period can lead to reduced demand in the next period, whereas a low initial price

can have the opposite effect by stimulating demand. This nested demand expression for

all periods can then be substituted in total profit maximization problem by the decision

maker, enabling her to obtain the optimal set of decision variables.

These memory functions, as we will see later on, are adjustable such that they can

enable the model to represent different levels of influence from the past. For example

Φi = 1,∀i ∈ {2, · · · , n} represent a memory-less market in which Dis are decoupled from

each other.

4.3 Embedding the Memory-based Demand in the Expected

Profit Expression

The general construction outlined in (7) and (8) is sufficiently explicit to enable solutions

of the problem for most choices of functions µ̃k, and σ̃k. However, the problem is so

deeply nested that one cannot expect to find an analytical solution. The importance of

our memory-based structure of demand as described in section 4.2 is that in many classical

supply chain optimization problems, as it has been shown in the Appendix 1, the running

expected profit at each period, as outlined in (4), has the following form.

Πk(Rk) = Ψk(Rk)µ̃
p
k(Rk) + Θk(Rk)σ̃

p
k(Rk) (17)

The power p in most classical contracts is equal to 1. With the memory structure intro-

duced in (13), we will have:

µ̃pk(Rk) = µpk(Rk) Φp
k(Rk−1) and (18)

σ̃pk(Rk) = σpk(Rk) Φp
k(Rk−1) (19)
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and can recast (17) as below.

Πk =

:=Π̃k(Rk)︷ ︸︸ ︷(
Ψk(Rk)µ

p
k(Rk) + Θk(Rk)σ

p
k(Rk)

)
Φp
k(Rk−1) = Π̃k(Rk) Φp

k(Rk−1) (20)

Now the profit optimization problem in (7) can be simplified as follows.

J =
n∑
k=1

αkΦ
p
k(Rk−1) Π̃k(Rk) (21)

The multiplier effect in (21) is the crucial observation in this paper; as it reduces the

nested n-variable optimization problem to n single-variable optimization problems.

This decoupling effect is shown (22). Again, starting from the final period, we observe

that the only term in J containing Rn is Π̃n. Thus, we have:

max
Rn

J ≡ max
Rn

Π̃n (22)

This is much more straightforward to solve compared to the general case in (8), as here

we can immediately obtain the numerical value for R̂n. Substituting this value in (21),

we solve the next single-variable maximization problem with respect to Rn−1. Continuing

the same procedure backward in time, we can obtain all the optimal values of R̂ks.

5 Equilibria In Cases With Two Vendors

Having outlined our general model of memory-based stochastic demand, and embedding

it in a single-vendor profit optimization problem, we now extend the scope of the analy-

sis to problems where two vendors facing stochastic demand, try to maximize their own

respective profits. For the analysis of our proposed demand structure, we begin by the

newsvendor model as it epitomizes the problem of inventory management when the de-

mand for a commodity with short lifespan is stochastic.

We assume that a good is produced by a manufacturer and sold to a retailer. We also

assume that the manufacturer and the retailer are risk neutral in the sense that they try to

maximize expected discounted total profit. We consider a multi-period Stackelberg game

between the manufacturer and the retailer where the actions of the two parties affect the
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actions of a third party, the customers. In this Stackelberg structure, the upstream vendor

(the manufacturer), as the leader, has to find a sequence of optimal wholesale prices at

different periods (Wks) to ensure her maximum profit.3 The downstream vendor (the

retailer), who is the follower, then faces the wholesale price and accordingly decides on

the number of products to be ordered to the manufacturer (and supplied to the market)

and the sequence of optimal retail prices (Rks).

The dynamics of prices in game theoretical settings have been discussed in several

publications by K. Bagwell, we mention Bagwell (1987, 2007). Petruzzi and Dada (1999)

consider multi-period cases with price-dependent demand, and show how to adapt such

models to include backorders. However, they do not discuss Stackelberg competition.

Pricing strategies for retailers have been discussed intensively in the marketing literature,

and we mention Rao (1984) and Fassnacht and Husseini (2013).

The discussion in Øksendal et al. (2013) partly explains why general multi-period

problems are difficult to solve. Some types may admit numerical solutions, but the general

problem is difficult to compute or analyze even in the two-period case. By comparison, the

discrete version we consider in this paper is transparent. Our memory scheme decouples a

multi-period problem into a sequence of one-period problems, each of which is fairly easy

to solve. Our model retains the main essence of the problem itself, while simultaneously

providing a solution that can be analyzed without the need for advanced optimizing

techniques.

5.1 The basic model: the game in single-period

The solution to the single-period newsvendor problem epitomizes a supply chain coor-

dination scenario while facing stochastic demand. Therefore, in this section, we review

some properties of the single-period model and in the next sections, we propose our multi-

period model based on it.

3In this paper, following the convention adopted by Cachon (2003), we assume the upstream agent (i.e. the manufacturer)

to be female and the downstream agent (i.e. the retailer) to be male.
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Main symbols:

W = wholesale price per unit (chosen by the manufacturer)

R = retail price per unit (chosen by the retailer)

q = order quantity (chosen by the retailer)

D = demand (random)

M = production cost per unit (fixed)

s = salvage price per unit (fixed)

Πr = profit for the retailer

Πm = profit for the manufacturer

In the classical newsvendor model, the manufacturer sets the wholesale price W for

one unit of a certain commodity that needs to be sold within a short timespan. The

retailer orders a quantity q units of the commodity to the manufacturer and plans to sell

them for the price R (per unit) in a market with stochastic demand D. Any unsold item

can be salvaged at the price s < R. The retailer’s profit Πr is calculated as below.

Πr = Rmin(D, q) + s(q −D)+ −Wq

= Rmin(D, q) + s(q −min(D, q))−Wq

= (R− s) min(D, q)− (W − s)q.

(23)

From this expression, we obtain the expected profit for the retailer:

E[Πr] = (R− s)E[min(D, q)]− (W − s)q. (24)

In our model, we consider the additive-multiplicative model for the demand as given

in (1). For a given R, it is well known that the maximum expected profit is obtained

when:

P (D ≤ q) =
R−W
R− s

(25)

Inserting the general expression for the demand in (1) into (24) and using (25), we can

prove the following proposition where Fε denotes the cumulative distribution of ε.
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Proposition 5.1.

Assume that ε is a continuous distribution, supported on an interval, with density fε > 0

a.e. on its support. Given R and W, R ≥ W > s, the retailer will make an order

q = µ(R) + σ(R)F−1
ε

(
R−W
R− s

)
. (26)

in which case, he obtains the expected profit

Π
r

= E[Πr] = (R−W )µ(R, k) + Lε(R,W )σ(R, k) (27)

where Lε is defined by

Lε(R,W ) = (R− s)
∫ z

−∞
ζfε(ζ)dζ z = F−1

ε

(
R−W
R− s

)
(28)

Proof

See the Appendix 3.

Our setup is slightly non-standard since we use a different normalization than that

of Young (1978). Nonetheless, the result in Proposition 5.1 is more or less well known

within the literature. In our normalization, we assume that E[ε] =
∫∞
−∞ ζfε(ζ)dζ = 0, and

hence, Lε(R,W ) ≤ 0. In the literature, the term Lε . σ is often referred to as loss due to

randomness.

It should be noted that the channel under study is considered to be a segment of a

more complete market, such that a segmentation of the pool of customers are addressed by

it. The market demand structure, in general, is an aggregation of the individual demands

from possibly heterogenous consumers who may be affected by the supply of competing

products from other vendors. This feature is embedded in D through the choice of µ[R, k]

and σ[R, k]. Therefore, although the manufacturer and the retailer in our model are

basically monopolistic suppliers, the model considers competition via demand structure.

In the one-period newsvendor model, to formulate a Stackelberg game, we assume

that both parties are risk neutral. The manufacturer (leader) offers a wholesale price

W . We ignore the possibility that the retailer can negotiate this wholesale price. Given

W, the retailer (follower) then solves (27) to find the R̂ which maximizes Π
r
, and then,
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substituting this R̂ into (26) to find out the optimum order quantity q̂. The manufac-

turer also knows that the retailer is going to choose q̂ to maximize the expected profit.

Therefore, given each possible value of W , the manufacturer can anticipate the resulting

order quantity q̂ = q̂(W ), and so chooses W to maximize expected profit (which happens

be to be deterministic in this case). The manufacturer’s profit is given by:

Πm = (W −M)q (29)

5.2 Multi-period vertical contracting

Having discussed the solution to the single-period problem, we are now ready to provide

a theoretical analysis of the multi-period Stackelberg game. In particular, we focus on

the case in which demand in the next period is scaled by a factor that depend on price

and demand in the current period. This is a type of Markovian assumption in that it only

requires knowledge of the current state, not of how prices and demand arrived at that

state.

In the multi-period game, we assume that the parties are risk neutral and try to

maximize their discounted expected profits:

Jr = Π
r

1 + α2Π
r

2 + · · ·+ αnΠ
r

n (30)

Jm = Π
m

1 + α2Π
m

2 + · · ·+ αnΠ
m

n (31)

where n is the number of periods.

5.3 Multi-period games with memory functions

Whereas it is straightforward to formulate an n-period game in the general case, numerical

solutions are difficult to obtain even if n is moderately large. The nonlinear structure of

the problem branching into separate cases for each particular choice made on every level

quickly renders the problem computationally intractable.

In this section, we show how to generalize the memory-based approach described in

the previous section to multi-period problems. First, we discuss an important technical
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issue. Consider a general three-period problem. Substituting the memories from (16), we

will have the following structure.

D1 = µ1(R1) + σ1(R1) ε1 (32)

D2 = φ2(R1)
(
µ2(R2) + σ2(R2) ε2

)
(33)

D3 = φ2(R1)φ3(R2)
(
µ3(R3) + σ3(R3) ε3

)
(34)

In the following analysis, we consider only the retailer’s profit optimization procedure.

The same arguments also hold true for the manufacturer’s. In the presence of the memory

functions, the maximization problem expressed in (30), turns into the following.

max
R1,R2,R3

Jr = Π1(R1) + α2 φ2(R1) Π2(R2) + α3 φ2(R1)φ3(R2) Π3(R3) (35)

Starting the backward induction process from the final period, we define Jrk as the ex-

pected discounted profit earned within the interval between period k and n = 3, inclusive.

Jr3 = α3 φ2(R1)φ3(R2) Π3(R3) (36)

Jr2 = α2 φ2(R1) Π2(R2) + Jr3 (37)

Jr1 = Jr = Π1(R1) + Jr2 (38)

where according to (27), the running expected profit obtained at each period is

Πk(Rk) = (Rk −Wk)µk(Rk) + Lεk(Rk,Wk)σk(Rk).

Thus,

Jr3 = α3 φ2(R1)φ3(R2)

(
(R3 −W3)µ3(R3) + Lε3(R3,W3)σ3(R3)

)
(39)

Because period 3 is the final period, there is no need to worry about future demand,

and therefore, given W3, the retailer chooses the optimal R3 to maximize Jr3 . Note that

because R1 and R2 have happened in the past, they are not considered as decision variables

at period 3 and the optimal values of R3 and W3 are independent of them. Thus, the

optimization problem reduces to the single-variable problem of maximizing Π3(R3).

Assuming that R̂3 is the (global) argmax value of Π3(R3), we set Π̂3 = Π3(R̂3). Then

the backward induction proceeds to the next subproblem, i.e., the problem of maximizing
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the expected profit in the second period. From (37):

max
R2

Jr2 = φ2(R1)

(
α2 Π2(R2) + α3φ3(R2)Π̂3

)
= α2 φ2(R1)

([
(R2 −W2)µ2(R2) + Lε2(R2,W2)σ2(R2)

]
+
α3

α2

φ3(R2)Π̂3

) (40)

Notice that in (40) similar to the case in (39) the only decision variable for the retailer

is R2, as R1 has happened in the past. Therefore the retailer faces another single-variable

optimization problem.

The same procedure is applied backward until all the three optimal decision variables

are found. Assuming that R̂2 is the global argmax of Jr2 as optimized with respect to R2,

from (40), we set

Π̂2 = Π2(R̂2) +
α3

α2

φ3(R̂2)Π̂3 =
Jr2 (R̂2)

α2φ2(R1)
(41)

Now the remaining single-variable optimization problem, is derived from (38) as below.

max
R1

Jr1 = Π1(R1) + α2 φ2(R1)Π̂2 (42)

Generalizing the same procedure for an n-period game (n > 3), we start by solving

for the final period to obtain expected profits Π̂r
n and Π̂m

n . Once these values are known,

the profit values in the previous period can be computed through backward induction

process. That produces numerical values of Π̂r
n−1 and Π̂m

n−1. To determine the strategy

for (n− 2)nd period, we consider the problem:

max
Rn−2

Jrn−2 =

(
(Rn−2 −Wn−2)µn−2(Rn−2) + Lεn−2(Rn−2,Wn−2)σn−2(Wn−2)

+
αn−1

αn−2

φn−1(Rn−2) Π̂r
n−1

)
αn−2

n−2∏
i=2

φi(Ri−1)

(43)

max
Wn−2

Jmn−2 =

(
(Wn−2 −Mn−2)

[
µn−2(Rn−2) + σn−2(Rn−2)F−1

εn−2

(Rn−2 −Wn−2

Rn−2 − s

)]
+
αn−1

αn−2

φn−1(Rn−2) Π̂m
n−1 )

)
αn−2

n−2∏
i=2

φi(Ri−1)

(44)

We also set α1 and φ1 equal to 1. Note that in (43) and (44) the term
∏n−2

i=2 φi(Ri−1) =

Φn(Rn-1) represents the previous prices and has no bearing on the optimization problem.

Thus the equilibrium problem for period n− 2 is reduced to a single-period problem that
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only involves Rn−2 and Wn−2. The only difference from the problem for period n − 1, is

that the values of (Π̂r
n−1, Π̂

m
n−1) are different from the values (Π̂r

n, Π̂
m
n ). Hence all we have

to do to solve this problem is repeat the previous step with updated values for (Π̂r, Π̂m).

To simplify notation, we have suppressed dependence on arguments that are not yet

active; µn−2 and σn−2 are in general functions of (Rn−3) but according to our assumptions,

this dependence enters as an independent multiplicative factor and can hence be factored

out of the optimization problem. (See equations 39 and 40 for example.)

By using the argument above repeatedly, it is clear that we can solve this problem

for any value of n. Starting with the values (Π̂r
n+1, Π̂

m
n+1) = 0 in the final period, we

solve essentially the same problem in all periods. The values of (Π̂r, Π̂m) are updated as

the construction progresses backwards, but those updated values come for free from the

solution of the previous step. We state the generalized result as follows.

Theorem 5.1.

Let n be the number of periods and assume that demand in period k is given by:

Dk = (µk(Rk) + σk(Rk)εk) Φk

(
Rk−1

)
(45)

where

Φ1 = 1,Φk

(
Rk−1

)
=

k∏
i=2

φi(Ri−1) k > 1

and ε1, · · · , εn are continuously distributed with E[εk] = 0 and Var[εk] = 1 for all k, with

fεk > 0 a.e. on their supports. If for each k, the one-period Stackelberg problem below has

a unique equilibrium at Rk = R̂k,Wk = Ŵk.

Jrk(Rk) =
(

(Rk −Wk)µk(Rk) + Lεk(Rk,Wk)σk(Rk) +
αk+1

αk
φk+1(Rk) Π̂r

k+1

)
αkΦk(Rk−1)

Jmk (Wk) =

(
(Wk −Mk)

(
µk(Rk) + σk(Rk)F

−1
εk

[Rk −Wk

Rk − sk

])
+
αk+1

αk
φk+1(Rk) Π̂m

k+1

)
αk Φk(Rk−1)

(46)
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where Π
r

k and Π
m

k are found recursively from:

Π̂r
n+1 = 0 Π̂m

n+1 = 0 (47)

Π̂r
k =

Jrk(R̂k)

αk Φk(Rk−1)
Π̂m
k =

Jmk (Ŵk)

αk Φk(Rk−1)
, k = 1, 2, · · · , n, α1 = Φ1 = 1 (48)

then the problem of maximizing

Jr = Π
r

1 + α2 Φ2(R1) Π
r

2 + · · ·+ αn Φn(Rn−1) Π
r

n (49)

Jm = Π
m

1 + α2 Φ2(R1) Π
m

2 + · · ·+ αn Φn(Rn−1) Π
m

n (50)

has a unique equilibrium at R̂ = (R̂1, R̂2, · · · , R̂n),Ŵ = (Ŵ1, Ŵ2, · · · , Ŵn).

Theorem 5.1 delineates how the memory structure can decouple nested equilibria prob-

lems. The result of the theorem can be generalized to all optimization or equilibrium

problems in which the running (single period) profit expression is of the structure stated

in (17). In the appendix B, we show that the expected profit expressions in all the classical

coordination contracts (and their combinations), including the wholesale price contracts,

the buy back contracts, and, the revenue sharing contracts are indeed of this structure.

Corollary 5.2.

Let n be the number of periods and assume that demand in period k is given by:

Dk = (µk(Rk) + σk(Rk)εk) Φk

(
Rk−1

)
(51)

where

Φ1 = 1, Φk

(
Rk−1

)
=

k∏
i=2

φi(Ri−1) k > 1

and ε1, · · · , εn are continuously distributed with E[εk] = 0 and Var[εk] = 1 for all k with

fεk > 0 a.e. on their supports. Assuming that the running expected profit for the retailer

and the manufacturer at period k can be written in the following formats,4

Π
r

k(Rk) = Ψr
k(Rk)µ

p
k(Rk) + Θr

k(Rk)σ
p
k(Rk)

Π
m

k (Rk) = Ψm
k (Rk)µ

p
k(Rk) + Θm

k (Rk)σ
p
k(Rk)

4In classical supply-chain optimization contracts the power p is equal to 1.
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if for each k, the one-period Stackelberg problem below has a unique equilibrium at Rk =

R̂k,Wk = Ŵk.

Jrk(Rk) =
(

Ψr
k(Rk)µ

p
k(Rk) + Θr

k(Rk)σ
p
k(Rk) +

αk+1

αk
φpk+1(Rk) Π̂r

k+1

)
αk Φk(Rk−1)

Jmk (Wk) =
(

Ψm
k (Rk)µ

p
k(Rk) + Θm

k (Rk)σ
p
k(Rk) +

αk+1

αk
φpk+1(Rk) Π̂m

k+1

)
αk Φk(Rk−1)

(52)

where Π̂r
k and Π̂m

k are found recursively from:

Π̂r
n+1 = 0 Π̂m

n+1 = 0 (53)

(54)

Π̂r
k =

Jrk(R̂k)

αk Φk(Rk−1)
Π̂m
k =

Jmk (Ŵk)

αk Φk(Rk−1)
, k = 1, 2, · · · , n, α1 = Φ1 = 1 (55)

then the problem of maximizing

Jr = Π
r

1 + α2 Φ2(R1) Π
r

2 + · · ·+ αn Φn(Rn−1) Π
r

n (56)

Jm = Π
m

1 + α2 Φ2(R1) Π
m

2 + · · ·+ αn Φn(Rn−1) Π
m

n (57)

has a unique equilibrium at R̂ = (R̂1, R̂2, · · · , R̂n),Ŵ = (Ŵ1, Ŵ2, · · · , Ŵn).

Remarks

The Corollary 5.2 is a generalization of Theorem 5.1 based on general functional

structures introduced in Section 4.3. In appendices B.1, B.2, and B.3 we calculate the

structures Ψr,m
k s and Θr,m

k s for some of the conventional supply chain contracts. These

functional structures substituted in the procedure outlined in Corollary 5.2 yield the

optimal results for a supply channel bound to the associated contract.

In multi-variable problem such as the ones discussed here, multiple local maxima are

detrimental to computational performance. The strength of Theorem 5.1, however, is

that it reduces the dimension of the search space to one, and maxima for functions of one

variable can always be handled by an exhaustive search.

Theorem 5.1 and its corollary, state that the uniqueness of the multi-period equilibria

is contingent upon the uniqueness of the associated single-period equilibrium results. The

unimodality of the multi-period equilibria solutions is determined by the unimodality of

each of the decoupled single-period (i.e. single-variable) optimization problems. Find-

ing necessary conditions to guarantee the unimodality of the single-period price-setting
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newsvendor problem has been exhaustively studied in the literature; see for example Xu

et al. (2011) and Rubio-Herrero and Baykal-Gürsoy (2018).

5.4 The infinite horizon case

According to Theorem 5.1, in the infinite horizon problem, for given values of Π̂r
k and Π̂m

k ,

the parties try to optimize:

Jrk(Rk) =
(

(Rk −Wk)µk(Rk) + Lεk(Rk,Wk)σk(Rk) + α Π̂r
k+1 φk+1(Rk)

)
αΦk(Rk−1)

(58)

Jmk (Wk) =

(
(Wk −Mk)

(
µk(Rk) + σk(Rk)F

−1
εk

[Rk −Wk

Rk − sk

])
+ α Π̂m

k+1 φk+1(Rk)

)
αΦk(Rk−1)

(59)

Here, α is the fixed discount factor and remains constants for the whole duration of the

problem from period 1 to n.5

The first-order conditions for this problem yield two equations for the two unknowns

Rk and Wk. In the multi-period case, we start by using Π̂r
n = 0 and Π̂m

n = 0 and iterate

backwards until we reach the starting period. However, if the horizon is infinite, this

approach fails because an infinite number of iterations is needed to reach the start.

If µ(R), σ(R), φ(R), and ε do not depend on k, or

lim
k→∞

(
µ(R, k), σ(R, k), φ(R, k), εk

)
=
(
µ(R), σ(R), φ(R), ε

)
,

i.e., the same functions are used for any k, then cases with an infinite horizon can be

solved. To do so, one needs a steady state for the system; i.e., one must find Π̂r and Π̂r
m

such that:

Π̂r = (R−W )µ(R) + Lε(R,W ) + α Π̂rφ(R) (60)

Π̂m = (W −M)
(
µ(R) + σ(R)F−1

ε

[R−W
R− s

])
+ α Π̂mφ(R). (61)

5The reason for this restrictions is that in the infinite-horizon case, a certain degree of autonomy is necessary for

convergence to happen.
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The first-order conditions from (58)-(59), together with (60)-(61), yield four equations in

the four unknowns, R,W, Π̂r, and Π̂m.

6 Numerical implementation of the model

In this section, we illustrate the theory in section 5.2 by explicit examples. In these

examples, we use a Cobb-Douglas demand function structure with a normally distributed

random term. The problem is as easily solved when using other functional forms. The

problem (given W ) is reduced to finding maxima for a function of one variable, which is

straightforward for almost any choice of µk, σk, and φk.

In section 6.1.1, we illustrate an important example in which the prescriptive analysis

is employed to maximize the expected profits of the two vendors when the demand is

boosted in between the n periods, e.g. through advertising campaigns. A numerical

example of the cooperative behavior of the suppliers in which the two vendors form a

centralized supply chain is illustrated in section 6.2.

We remark that the purpose of this entire section is to offer practical advice on how our

theory can be implemented in some special cases to prescribe optimal decision variables.

To take full advantage of the model, one should try to vary scaling factors and functional

forms in a systematic way. This makes it possible to model a wide range of economic

contexts. A full discussion of the model and all the variations it has to offer, is, however,

beyond the scope of this paper.

6.1 Multi-period Buy Back Contracts

As evidenced in Theorem 5.1, once we have an algorithm that solves the two-period case,

the same algorithm can be used repeatedly to solve n−period problems. We merely have

to update the remaining profits as the construction progresses backward. We consider the

case in which demand in period k is given by:

Dk = dk(Rk)
k∏
i=2

φi(Ri−1) (62)

dk(Rk) = µk(Rk) + σk(Rk)εk (63)
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where εk is N (0, 1). Because a normally distributed variable can take negative values, we

must impose restrictions to exclude artificial cases. If q, as given by (26), is negative, we

set q = 0. Moreover, if the expected profit in (27) is negative, we assume q = 0.

Setting the model parameters

We set the manufacturing cost at period k to be decreasing as time goes on, Mk =

2− 0.01k, the buy back price bk = 0.3×Mk, and the salvage price, Sk = 0.2, ∀k.

Note that in a buy back contract, as described by Cachon (2003), the remaining units

at the end of each period need not be physically returned to the manufacturer. Instead,

it may be such that the manufacturer credits the retailer with a price bk (here equal to

30% of the manufacturing cost) for each unsold unit at the end of period k.

In principle, the scaling factors φks can change with k. For illustration purposes, we

consider only cases in which the expected scaling factors satisfy the following:

φk(Rk) =
[
1 + γk(Kk −Rk)

]+ ≈ eγk(Kk−Rk) for small values of γk (64)

where γk > 0, the memory strength factor, and Kk > 0 are given parameters. The

parameter Kk can be interpreted as a price cap; i.e., any price above Kk reduces demand,

whereas demand is more likely to increase if Rk < Kk. More complicated expressions

can be computed without problems. In the following examples, we set γk, Kk and αk to

remain constant through periods.

• Case 1: In addition to the parameters determined earlier, we set α = 1 (no discounting),

γ = 0.01, K = 7, n = 25, µk(Rk) = 1000

R
(2−β n−kn )

k

, β = 0.8, and σk(Rk) = 1
Rk
µk so that the

coefficient of variation decreases as Rk increases.

The optimal pricing variables in each period (R∗k,W
∗
k ) as well as the values for Π

r

k and

Π
m

k are shown in Figure 1. Where Π
r

k and Π
m

k represent the expected present value of the

marginal profit obtained at each period by the retailer and the manufacturer, respectively.

The optimal strategy in this case is to increase demand by letting R1 = R2 = R3 =

R4 = 0, then start selling in period 5.

Defining the blow-up factor as η = α · φ, in this case, we have max(η) = α max(φ) =

α(1 + γK) = 1.07. To obtain increased profits from an initial strategy in which R1 = 0,

it is clearly necessary that max(η) = α max(φ) > 1. This requirement, however, is not
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Figure 1: Stackelberg equilibrium state in period k

sufficient as we will see in Case 2. It is observable that, in the sales periods, k ≥ 5, the

profit margin Rk −Wk remains fairly constant with time.

The total expected profits for the manufacturer and the retailer, Jm and Jr, respec-

tively, are found as below.

Jm = 1547.35, Jr = 1661.43

• Case 2: In this case, we analyze the previous example subject to discounting: α = 0.95.

The rest of the parameters and functional structures are the same as those of Case 1.

In this case, max(η) = α max(φ) = α(1 + γK) ≈ 1.02. Nonetheless, this blow-up factor

is not big enough to justify an initial retail price R1 = 0. Therefore, sales take place in all

periods. Figures 2 shows the equilibrium prices and corresponding total expected profits

for this case. For this case, we find Jm = 1041.24 and Jr = 909.75.
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Figure 2: Stackelberg equilibrium state in period k
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6.1.1 Boosting the demand

In general, we consider ∂D
∂k

< 0. However, there may be opportunities for the manufacturer

or the retailer to boost the demand, sometimes in the process. This, for example, can

be done through rolling out a new model of the product or implementing advertising

campaigns.

To cover such situations, we consider a case in which the demand, as represented by

µk, is amplified twice at k = 8 and k = 16 when n = 25.

µk(R) =
1000

R(2−β 7−k
25

)
, k < 8

µk(R) =
1000

R(2−β 15−k
25

)
, 8 ≤ k < 16

µk(R) =
1000

R(2−β 25−k
25

)
, 16 ≤ k ≤ 25

(65)

The rest of the parameters are: α = 1, γ = 0.01, K = 7, n = 25, Mk = 2 − 0.01k, bk =

0.3Mk, S = 0.2, β = 0.8, andσk(Rk) = 0.5µk(Rk). Here, we have suppressed the sub-

script k for parameters that are set to remain constant through periods.

Figure 3 shows that with such incremental increases in demand, the retailer’s optimal

strategy is to begin with R1 = R2 = · · · = R7 = 0 and continue with jumps in retail

prices after any time the demand is boosted. Such jumps in Rk will lead to higher profit

margins.
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Figure 3: Stackelberg equilibrium states at k, incremental demand boosts
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6.2 Cooperative Agents: Centralized Channel, No Double Marginal-

ization

So far, we have analyzed the equilibria in a Stackelberg framework. However, it is possible

for the two parties to cooperate. Note that, as outlined in (9), a Stackelberg equilibrium

problem is essentially a bilevel optimization problem wherein the leader optimizes her

objective function while being constrained by the optimality of the follower’s solution.
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Figure 4: Centralized Channel

Thus, from a computational point of view, the multi-period single-vendor price-setting

Newsvendor problem turns into an uncostrained special case of our general model. Such

a deviation from the Stackelberg game is implemented by considering the two agents as

a single decision-maker, substitution of Wk = Mk in Theorem 5.1, and then optimizing

only Jr with respect to Rks.

Here, we consider α = 1, γ = 0.01, K = 7, n = 25, Mk = 2 − 0.01k, Sk = 0.2 ∀k,

µk(R) = 1000

R(2−β n−kn )
, β = 0.8, and σk(R) = µk(R)

R
. Thus, the integrated channel in Case 4

faces the same market as the one in Case 1.

The results are illustrated in Figure 4. Comparing the results of the centralized chan-

nel with its decentralized counterpart, analyzed in Case (1), we observe that while the

centralized channel charges comparatively lower prices in all periods, its overall expected

profit is higher than the sum of expected profits for the two agents in a decentralized

channel facing the same market. Denoting the total expected profit for the centralized

channel by J c and the expected profits for the members of the corresponding decentralized
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channel by Jr and Jm (obtained in Case 1), we have:

J c = 6744.33 > Jm + Jr = 1547.35 + 1661.43 = 3208.78.

Due to vertical competition between its members, a decentralized channel suffers from

double marginalization leading to its lower performance compared to a centralized supply

channel.

Moreover, lower prices offered by the centralized channel leads to a lower level of

demand suppression. Thus, unlike the decentralized channel in Case (1), the integrated

channel does not need to resort to an early campaign of free distribution of products in

order to boost the demand. According to Figure 4, in Case (4) sale takes place in all

periods.

7 Concluding remarks

In this paper, within two constructive theorems, we present solution procedures for multi-

period price-setting newsvendor problems in a Stackelberg framework. An important

feature of the proposed recursive optimization algorithm is that it decouples the analysis

of three highly nested n−dimensional problems to three sequences of n single-variable

equations. In the appendices, the structural requirements for this memory-based scheme

to work are shown to be present in many conventional supply channel contracts.

The assumptions made for constructing the memory functions are based on the simple

fact that every market has some kind of a memory; that is, the potential buyers are an-

chored to past prices and their decision to purchase a product may to various degrees be

affected by the history of pricing. This feature is embedded in the model by the introduc-

tion of γk, the memory strength factor. It is through this memory effect that a change in

price may scale the pool of potential customers, thereby affecting the demand. Note that

these assumptions are not needed for the model to work, yet they are computationally

useful and not restrictive.

To demonstrate that such problems can be modeled and solved by the procedure

outlined in Theorem 5.1 and its corollary, we provided numerical solutions to a variety
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of special cases. Note, however, that our framework is not limited to such special cases.

The numerical illustrations raise questions of interest for future research.

In the numerical section, we have demonstrated an interesting link to marketing.

Under certain conditions, an optimal strategy is to give away products in a pre-sales

period. This stimulates demand, and the parties benefit from increased demand in the

remaining time periods. Many high-tech products like mobile phones and computers have

a very short lifespan. Our paper hence offers a new framework where the optimality of

sales strategies for such products can be discussed and analyzed.

The parameters and functional structures that we have used to illustrate the scope

of applicability of the solution procedures are merely speculative. To take full advantage

of the model, one should try to vary scaling factors and functional forms in a systematic

way, for example through the use of data obtained from empirical studies. Exploring the

potential of our modeling approach is a topic for future research.

A Appendix 1 - The profit structures compatible with

the use of multiplicative memory functions

In this section, we find the sufficient conditions for the profit structures enabling the

memory-based algorithm to decouple nested optimization/equilibrium problems. In Ap-

pendix B, we show that many conventional supply channel contracts indeed follow these

structures.

Let the following be the demand expression at period k ∈ {1, · · · , n}, where n is the

number of periods.

Dk(Rk) = µ̃k(Rk) + σ̃k(Rk)εk (66)

Now assume that the running profit expression for each period is as below.

Π
r

k(Rk) = Ψk(Rk) µ̃
p
k(Rk) + Θk(Rk) σ̃

p
k(Rk) (67)

Using the memory function structure in (13) and (14), the expression in (66) turns into

the following.

Dk(Rk) =
(
µk(Rk) + σk(Rk)εk

)
Φk(Rk) (68)
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Therefore, for (67), we will have:

Π
r

k(Rk-1) =

(
Ψk(Rk)µ

p
k(Rk) + Θk(Rk)σ

p
k(Rk)

)
Φp
k(Rk-1) (69)

= Π̃k(Rk) Φp
k(Rk-1) (70)

Thus, when solving the multi-variable optimization problem max
Rn

J =
∑n

k=1 αkΠ
r

k, finding

the kth armgax, R̂k, will be equivalent to finding the argmax of the single-variable function

Π̃k(Rk). Whence decoupling becomes possible.

The same argument applies to the expected profit for the manufacturer. In section B,

we will see that a special case of the structure in (67), where p = 1, indeed appears in

many supply chain optimization contracts.

B Appendix 2 - The expected profit structure in sup-

ply chain coordination problems

In the appendix A, we realized that in order for the decoupling scheme (using memory

functions) to work in multiple periods, the single-period profits (for either vendor) must be

of specific structures. In other words, in such cases the multiplicative memory functions

decouple the highly nested n−variable optimization (or equilibrium) problem, by turning

it into n single-variable problems.

In the following sections, we will prove that the desired general structures indeed

appear in many classical channel coordination contracts; hence making our theoretical

formwork applicable to a large variety of multi-period optimization/coordinatin problems

dealing with uncertain demand. This class of contracts include, e.g., The Wholesale Price

Contracts, The Buy Back Contracts, and, The Revenue Sharing Contracts.6

6We have borrowed the nomenclature from Cachon (2003). Other sources may use different names; for example, Paster-

nack (1985) refers to buy back contracts as return policies.
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Model Variables and Parameters

D = uncertain demand

µ = E[D] expected value of uncertain demand

R = retail price per unit

W = wholesale price per unit

q = order quantity

s = salvage price per unit

gr = retailer’s goodwill penalty per unit, incurred for each unmet demand unit

gw = manufacturer’s goodwill penalty per unit

cr = retailer’s marginal cost per unit

cw = manufacturer’s production cost per unit7

B.1 The wholesale price contract

We start with analysing the general newsvendor problem, also known as the wholesale

price contract. In this contract, the retailer profit is obtained as below.

Πr(R, q) = Rmin(D, q) + s(q −D)+ − crq − gr(D − q)+ −Wq

= Rmin(D, q) + s(q −min(D, q))− crq − gr(D −min(D, q))−Wq

= (R− s+ gr) min(D, q)− (cr +W − s)q − grD

(71)

In the analysis of this specific contract, and also in the subsequent sections for other

contracts, our strategy is as follows.

1. Obtain the expression for the expected value of retailer’s profit as a function of R

and q.

2. Apply the F.O.C with respect to q on Π
r
, i.e. ∂Π

r

∂q
= 0 to obtain q∗ as a function of

R.

7In order to adhere to the terminology suggested by Cachon (2003), here we have used cw to denote the production cost

incurred by the manufacturer. In the main body of the paper, however, we have denoted the manufacturer’s production

cost by M .
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3. Check the concavity of Π
r

with respect to q∗(R).

4. Substitute the obtained q∗ as a function of R in the expression for Π
r

and see if it

is of the general structure in (67).

5. Substitute the obtained q∗ as a function of R in the expression for Π
m

and see if it

is of the general structure in (67).

In order to obtain the expected value of the retailer’s profit as stated in (71), we need

to obtain the expected sales, S(q), i.e. the expected value of min(D, q). For simplicity,

we start with a distribution function, fD, for D, instead of fε, bearing in mind that for

D = µ+ σ ε, we have: F−1
D (·) = µ+ σ F−1

ε (·).

S(q) = E[min(D, q)] =

∫ ∞
0

ζfD(ζ)dζ =

∫ q

0

ζfD(ζ)dζ +

∫ ∞
q

qfD(ζ)dζ

= q −
∫ q

0

FD(ζ)dζ

(72)

Alternatively, using our normalization based on fε instead of fD, we obtain the following

statement for the expected sales.

S(q) = E[min(D, q)] = µ+ σ

∫ ∞
−∞

ζfε(ζ)dζ = q − (q − µ)Fε

(
q − µ
σ

)
+ σ

∫ q−µ
σ

−∞
ζfε(ζ)dζ

(73)

We define I(q) = E[(q −D)+] = q − S(q) as the expected left over inventory. Similarly,

let L(q) = E[(D − q)+] = µ− S(q) be the expected lost sales function. Also observe that

dS(q)
dq

= 1−FD(q). Now we can calculate the expected value of retailer’s profit, expressed

in (71).

Π
r
(R, q) = (R− s+ gr)S(q)− (cr − s+W )q − grµ (74)

Strict concavity of Π
r
(q) with respect to q is obvious:

∂2Π
r
(q)

∂q2
= −(R− s+ gr)× fD(q) (75)

So we apply the F.O.C with respect to q and obtain q∗(R) as below.

q∗(R) = F−1
D

(
R−W + gr − cr

R− s+ gr

)
= µ(R) + σ(R)F−1

ε

(
R−W + gr − cr

R− s+ gr

)
(76)
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Substituting (76) in (74) and using (73) we have

Π
r
(R) = (R−W − cr)µ(R) + (R− s+ gr)

(∫ F−1
ε (R−W+gr−cr

R−s+gr )

−∞
ζfε(ζ)dζ

)
σ(R) (77)

In a single-vendor system, F.O.C applied to 77 yields the R∗. However, in our Stackelberg

framework, a numerical solution to ∂Π
r

∂R
= 0 provides us with R∗ as a function of W :

R∗(W ). The optimal order quantity, q∗ can then be obtained using R∗.

Let us now analyse the expected value of the manufacturer’s profit.

Π
m(
R∗(W ),W

)
= Wq∗(W )− cwq∗(W ) + gwS(q∗(W ))− gwµ

(
R∗(W )

)
= q∗

(
W − cw + gw

)
− gw

(
σF−1

ε (y)× y + µ+

∫ F−1
ε (y)

−∞
ζfε(ζ)dζ

)
= µ(W )(W − cw) + σ(W )

(
F−1
ε (y)

(
W − cw − gw(y − 1)

)
+ gw

∫ F−1
ε (y)

−∞
ζfε(ζ)dζ

)
where y =

R−W + gr − cr
R− s+ gr

(78)

The structure of Π
m

(W ) as stated in (78) is also of the desired type.

B.2 The buy back contract

In a buy back contract, the manufacturer pays the retailer b ≤ Wb per unit remaining at

the end of the selling season (period).

Π
r
(R, q) = (R− s+ gr − b)S(q)− (Wb − b+ cr − s)q − grµ (79)

Again, assuming that R− s+ gr − b > 0, concavity of Π
r
(q) with respect to q is obvious.

Applying the F.O.C with respect to q, we obtain the following for q∗(R).

q∗(R) = F−1
D

(
R−Wb + gr − cr
R− s+ gr − b

)
= µ(R) + σ(R)F−1

ε

(
R−Wb + gr − cr
R− s+ gr − b

)
(80)

Substituting (80) in (79), we obtain the following expression for the retailer’s expected

profit.

Π
r
(R) = (R−Wb − cr)µ(R) + (R− s+ gr − b)

(∫ F−1
ε

(
R−Wb+gr−cr
R−s+gr−b

)
−∞

ζfε(ζ)dζ

)
σ(R) (81)
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Notice that, due to our normalization in which we set E[ε] = 0, the integral term

Γ :=
∫ F−1

ε

(
R+gr−cr−Wb
R−s+gr−b

)
−∞ ζfε(ζ)dζ is always negative, making (R− s+ gr − b)× Γ× σ(R) in

(81) also negative. In the literature, the latter term is called the loss due to stochasticity.

Similarly, we obtain the expected value of the manufacturer’s profit as below.

Π
m

(W ) = µ(W )(Wb − cw) + σ(W )

(
F−1
ε (y)

(
W − cw + gw(1− y)− by

)
+ (gw + b)

∫ F−1
ε (y)

−∞
ζf(ζ)dζ

)
where y =

(
R−Wb + gr − cr
R− s+ gr − b

) (82)

B.3 The revenue sharing contract

With a revenue sharing contract the manufacturer charges Wr per unit purchased and the

retailer gives the manufacturer a percentage of his revenue. Let θ be the fraction of supply

chain revenue the retailer keeps, so (1− θ) is the fraction given to the manufacturer. The

retailer’s expected profit function is

Π
r
(R, q) = (θ(R− s) + gr)S(q)− (Wr + cr − θs)q − grµ. (83)

We observe that Π
r

is concave with respect to q because θ(R − s) + gr > 0. Applying

F.O.C. with respect to q yields:

q∗(R) = F−1
D

(
θR−Wr + gr − cr
θ(R− s) + gr

)
= µ(R) + σ(R)F−1

ε

(
θR−Wr + gr − cr
θ(R− s) + gr

)
(84)

Substituting (84) into (83), we have:

Π
r
(R) = (θR−Wr− cr)µ(R)+

(
(θ(R−s)+gr)

∫ F−1
ε

(
θR−Wr+gr−cr
θ(R−s)+gr

)
−∞

ζfε(ζ)dζ

)
σ(R). (85)

Also notice how θ = 1 turns (85) into (77).
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Next, we obtain the manufacturer’s expected profit as below.

Π
m

=
(
gw + (1− θ)(R− s)

)
S(q) +

(
Wr + (1− θ)s− cw

)
q − gwµ

= µ
(

(1− θ)R +Wr − cw
)

+ σ

(
F−1
ε (y)

(
gw + (1− θ)R +Wr − cw − y

(
gw + (R− s)(1− θ)

))
+ gw

∫ F−1
ε (y)

−∞
ζfε(ζ)dζ

)
where y =

θR−Wr + gr + cr
θ(R− s) + gr

.

(86)

Notice how θ = 1 turns (86) into (78).

C Appendix 3 - Proof of Proposition 5.1

Let Fε denote the cumulative distribution of ε. Since ε is continuous and supported on an

interval, with density fε > 0 a.e. on its support, the expected profit Π
r

is strictly concave

in q on the support of D, and the order quantity q from (25) is unique. It is clear that

q = µ(R, k) + σ(R, k)F−1
ε

(
R−W
R− s

)
. (87)

By using 1 and 25, we obtain:

E[Πr] = (R− s)E[min(D, q)]− (W − s)q

= (R− s)
(
µ(R, k) + E

[
min

(
σ(R, k)ε, σ(R, k)F−1

ε

(
R−W
R− s

))])
− (W − s)

(
µ(R, k) + σ(R, k)F−1

ε

(
R−W
R− s

))
.

(88)

Equations (1) and(87) indicate that

E

[
min

(
ε, F−1

ε

(
R−W
R− s

))]
(89)

=

∫ F−1
ε (R−WR−s )

−∞
ζfε(ζ)dζ + F−1

ε

(R−W
R− s

)
P
(
ε ≥ F−1

ε

(R−W
R− s

))
(90)

=

∫ F−1
ε (R−WR−s )

−∞
ζfε(ζ)dζ + F−1

ε

(R−W
R− s

)(
1− R−W

R− s

)
. (91)

Inserting (91) into (88) and simplifying the resulting expression yields:

Π
r

= E[Πr] = (R−W )µ(R, k) + Lε(R,W )σ(R, k) (92)
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where Lε is defined as:

Lε(R,W ) = (R− s)
∫ z

−∞
ζfε(ζ)dζ z = F−1

ε

(
R−W
R− s

)
. (93)
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