
Essays on Optionality and Risk
Norwegian School of Economics

Giovanni Bruno

April 16, 2019



To those who made my life richer, despite all my efforts...



’Nessuno ci impone di sapere, Adso. Si deve, ecco tutto, anche a costo di
capire male’.

Umberto Eco, The Name of the Rose.

’Even as a youngster, though, I could not bring my self to believe that if
knowledge presented danger, the solution was ignorance. To me, it always
seemed that the solution had to be wisdom. You did not refuse to look at
danger, rather you learned how to handle it safely’.

Isaac Asimov, The Caves of Steel.
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Introduction

Optionality may be described as the existence of the right to do something without the

obligation. It introduces asymmetries that have the capacity to distort the risk-return

relationship of financial assets as well as the incentives of economic agents managing

risk.

Therefore, the study of optionality has been of paramount importance for both the

asset pricing and the corporate finance literature for many years.

In the following papers I study the relationship between optionality and risk from

different perspectives.

In the first paper, we apply a two factor model to study the idiosyncratic-volatility

puzzle, using the assumption that the levered equity of a firm is a call option on the

underlying assets because of limited liability. We show, analytically and empirically,

that the optionality introduced by leverage creates a negative cross-sectional relation

between idiosyncratic volatility (at equity and asset level) and equitys expected returns.

Furthermore, As known form previous literature, when systematic risk is time-varying,

the parameters of the CAPM regression are biased. We show numerically and empirically

that time variation of asset idiosyncratic volatility (ivol) translates into time variation of

equity systematic risk and using a conditional CAPM model we attribute part of the risk

adjusted performance of high minus low ivol portfolios to this variation in conditional

CAPM equity betas.

In the second chapter I exploit a parsimonious model to describe how call options

respond differently to changes in idiosyncratic versus systematic risk. The nonlinear

payoff of call options creates a channel for the idiosyncratic risk of the underlying to

affect not only the options idiosyncratic but also its systematic risk and as a consequence

also its price and expected return. Using a simple two factor model we describe the price-

risk-return relationship for call options, separating between the effects of systematic and
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idiosyncratic risk. We show, analytically and numerically, that variations in the risk

of the underlying may affect the call option quantities (price, expected return, risk

and optimal exercise) through two main channels, the price-channel and the volatility-

channel, and that these two channels have different, and sometimes opposite, effects.

Finally in the third chapter I study, how the relationship between exposure to a

counterparty in a derivative contract, that can be seen as the payoff of an option, and

counterparty risk is affected by different types of netting agreements, that offer the pos-

sibility to mitigate counterparty risk by netting the positions across different contracts.

With bilateral netting, financial institutions can net the value of their positions with the

same counterparty across several asset classes, but not across different counterparties.

Instead, by accessing to central clearing counterparties (CCPs), financial institutions can

benefit from multilateral netting that allows also netting across different counterparties.

I show analytically how correlation across contracts exposures affects the incentive (eval-

uated as benefits from netting) of the financial institutions to resort to CCPs. Analyzing

the incentive to use CCPs should help to identify a proper design of these institutions

that are fundamental in the current financial regulation of several countries.
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Expected Equity Returns Should Correlate
with Idiosyncratic Risk∗

Giovanni Bruno Jørgen Haug

Abstract

Because levered equity is an option on the firm, variations in asset idiosyncratic

risk (ivol) induces a negative relationship between equity ivol and expected returns.

We show that the effect is caused by the nonlinear payoff of equity and the law of one

price, and is present in all but risk-neutral economies. We test the cross-sectional

predictions of our theory by contrasting the ivol-return relationship at the equity and

asset levels. The ivol-return relationship is stronger for equity than for assets, and

stronger for more levered firms—consistent with the theory. We test also the time-

series implications of the theory. Time variation in asset ivol causes time variation

in the option value of equity that translates into time varying risk factor loadings.

Unconditional alpha subsequently becomes biased when asset ivol correlates with the

market price of risk. We show empirically that a conditional CAPM that accounts for

time variation in equity nonlinearity helps explain earlier findings that high-minus-

low ivol-portfolios generate negative unconditional alpha.
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1 Introduction

There is a growing literature that tries to explain the finding of Ang et al. (2006) that

expected equity returns seem to be negatively related to equity idiosyncratic risk (ivol)—

the “idiosyncratic volatility puzzle,” recently summarized by Hou and Loh (2016). We

argue that the observed negative relation is consistent with rational pricing of levered

equity under the law of one price.

Figure 1: Expected equity returns and volatility

The figure graphs expected equity returns µE against the left axis and volatility σE against the right axis,
as functions of asset volatility σA for a fixed level of systematic asset risk: Variations in asset and equity
volatility away from their base values represent variations in idiosyncratic risk. The quantities are derived
from a Black-Scholes-Merton model of the firm. Current value of assets is kept fixed at 10 with expected
rate of return 10%, face value of debt is 5 with 3 years to expiry. The riskless rate is 2%.

The expected return on equity is determined by the covariance of its return with the

stochastic discount factor (SDF). An increase in asset ivol increases the default risk of the

firm—the likelihood of ending up in states in which the equity return has zero covariance

with the SDF. Conditional on no default the covariance of equity returns with the SDF

lines up with that of the underlying asset. The magnitude of the unconditional covariance
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consequently falls as asset ivol increases, causing expected equity returns to fall. While the

intuition behind the relationship between expected equity returns and asset ivol is simple,

the response of equity ivol to asset ivol is more complex. To establish that equity expected

returns and ivol have opposite responses to asset ivol we therefore consider a simple Black-

Scholes-Merton (BSM) model of the firm (Black and Scholes, 1973; Merton, 1974), and

prove the result through simple comparative statics. The formal analysis is summarized

in Figure 1, which shows how expected equity returns and ivol respond to asset ivol for a

firm with 50% leverage in terms of its face value of debt.

A key observation for our analysis is that the law of one price causes excess equity

returns to be proportional to excess asset returns, RE = εRA. The ratio of the two returns

equals the elasticity of equity value with respect to asset value (Black and Scholes, 1973).

Elasticity has a negative and nonlinear response to volatility, and thus to ivol, and the

strength of the response is increasing in leverage. The return restriction clearly extends to

ratios of equity to asset total, systematic, and idiosyncratic risk. We use the BSM model

to establish that while elasticity is decreasing in asset ivol, equity ivol—the product of

elasticity and asset ivol—is increasing in asset ivol, as in Figure 1.

We investigate the implications of our theory in a sample of publicly traded firms for

which we can use the model-free approach of Choi and Richardson (2016) to estimate firms’

asset returns. By comparing the cross-sectional equity ivol-return relationship to that of

assets we are able to control for all firm characteristics beyond the mechanism of interest.1

We utilize the law-of-one-price-restriction on equity and asset volatility to get a model-

free estimate of elasticity as the ratio of equity to asset volatility. A sort on elasticity

shows that the equity-asset return spread is significantly higher for the high than for the

low elasticity portfolio. When we sort firms on asset ivol we find a positive relationship

1Under the law of one price, economic effects that pertain to equity but not to debt must necessarily
affect asset values.
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with equity ivol and a negative relationship with equity expected returns. While the ivol-

return relationship is thus negative at the equity level we find it to be weaker and positive

at the asset level. This pattern is fully consistent with the implications of rational pricing

of levered equity. Alternative explanations for the ivol-return relationship, like preferences

for lottery-like payoffs, or market frictions that correlate with ivol, cannot easily explain

the reversal between equity and assets. As elasticity is a function also of leverage, the

preceding findings could be due to cross-sectional variations in leverage. To control for the

effect of leverage we conduct a conditional double sort on leverage and asset ivol. We find

that equity returns are still decreasing in the level of asset ivol, as predicted.

The idiosyncratic volatility puzzle pertains not only to the cross-section but also to the

time-series of stock returns. Ang et al. (2006) document that a portfolio long in high-ivol

stocks and short in low-ivol stocks generates negative unconditional alpha. As elasticity

also scales equity beta a sufficient condition for unconditional alpha in our framework is that

elasticity is time-varying and correlated with the market price of risk (Jagannathan and

Wang, 1996). We address the time-series implications in two steps. We first establish that

unconditional alpha is biased in a simple reduced-form extension of the BSM model, that

allows for stochastic asset volatility. When asset beta is allowed to vary, it is sufficient that

elasticity is a decreasing function of asset ivol in the cross section to generate biased alpha.

Differences in levels of asset ivol causes differences in elasticity, which causes differences

in the scaling of variations in asset systematic risk. We use simulations to verify that

variations in asset ivol can generate sufficient variation in expected equity returns to match

the observed unconditional alpha.

As a second step we investigate empirically to what extent asset ivol is an efficient

instrument in estimating the conditional CAPM. In line with the predictions of the theory

we find that the equity betas of portfolios with more equity nonlinearities respond more
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strongly to time variation in asset ivol than those with less nonlinearity. The estimated

conditional betas help reduce unconditional CAPM-alpha of the long-short ivol-portfolio

by almost 37%.

The explanation for the observed equity ivol-return pattern most closely related to ours

is due to Schneider et al. (2017), who also attribute the pattern to levered equity. They

observe that leverage causes skewness in equity returns, and assume that coskewness is

priced. By simulating BSM-style firms, using a suitably parametrized stochastic volatility

model for firms’ assets, they are able to reproduce the empirical pattern. We demonstrate

through simulations of a mean-variance economy that the negative equity ivol-return re-

lationship is present even when skewness is not priced. To provide additional support for

the view that the pattern mainly is a mechanical result due to variations in elasticity we

extend the higher moments decomposition of expected returns of Kraus and Litzenberger

(1976) and Harvey and Siddique (2000). They essentially consider the SDF a nonlinear

function of some risk factor, and approximate it through a low order series expansion. We

observe that also equity returns may be nonlinear in the basic risk factor, and approximate

also this quantity via a low order series expansion. This exercise allows us to explicitly

study how the covariance and coskewness risk factor loadings respond to variations in ivol.

A numerical investigation demonstrates that covariance contributes about two orders of

magnitude more to expected equity returns than coskewness. The observed pattern is thus

more likely due to the effect of ivol on elasticity, than the effect of ivol on priced skewness.

Our analysis has two key insights in common with Choi and Richardson (2016), and

some of our results are better understood in light of their findings. We use their approach

to estimate returns on assets. We also rely on the same basic insight that equity beta

equals asset beta scaled by elasticity. Their analysis is concerned with the relationship

between leverage, total and priced risk, and return. They argue that time variation in
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leverage causes time variation in equity beta. We look at how unpriced risk at the asset

level affects priced and unpriced risk at the equity level.

The remainder of the paper starts out in Section 2 with a formal analysis of the re-

lationship between asset ivol and the equity ivol-return trade-off, in a setting of rational

pricing of levered equity. Formal proofs are placed in Appendix A. Our main data set and

the construction of firms’ asset returns is presented in Section 3. We investigate our cross-

sectional prediction, that ivol should be negatively related to returns at the equity level

but not at the asset level, in Section 4. In Section 5 we discuss to what extent time varying

risk factor loadings due to variations in elasticity can explain the negative unconditional

alpha of high minus low ivol portfolios. Section 6 concludes.

2 Theory

To better understand the equity ivol-return relationship it is useful to express the equity

price via its replicating, self-financing portfolio. To this end denote market prices of assets

by A and assume the value of equity, E, is a function of the assets and time. It then

generally holds that

drE =
dE

E
= ε drA + (1− ε)r dt,

where ε is the elasticity of equity with regard to assets, rA is the return on assets, and r is

the riskless rate. Taking the conditional expectation and variance yields

µE = εµA + (1− ε)r, (1)

σE = εσA. (2)
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The replicating portfolio view offers an alternative insight into the mechanical response

of expected equity returns (1) to asset ivol. Changes in ivol causes changes in the elas-

ticity, which simply corresponds to a change in the leverage of the replicating portfolio.

Restrictions (1) and (2) imply the following immediate, model-free, testable predictions.

Proposition 1. Assume that µA > r. For a given level of asset idiosyncratic volatility,

the expected return and idiosyncratic volatility of equity are increasing in elasticity.

Proposition 1 is immediate because it considers changes only in the elasticity in (1)

and (2)—which occur naturally in both the cross section and time series due to variations

in leverage, volatility, interest rates, and time. To explain the negative relation between

expected returns and ivol it becomes necessary to impose more structure. The observed

relation can be explained only if an increase in asset ivol is not offset by the decrease in

elasticity in (2). To this end consider the economy of Black and Scholes (1973) and Merton

(1974), in which assets dA
A

= µA dt + σA dW are financed by debt with face value K that

expires at a fixed time in the future, with constant µA and σA.2 The next result establishes

that the expected equity rate of return is negatively related to equity ivol, even when there

is no association at the asset level.

Theorem 1. Assume that µA > r and that the firm is solvent in the sense that A ≥ Ke−rT .

For a given level of leverage A/K, ∂µE
∂σA

< 0 and ∂σE
∂σA

> 0 for all σA > 0.

While the assumption that the firm is solvent is realistic, it is also nontrivial. It is

easy to prove by example that the volatility of a call option is generally not increasing in

the volatility of the underlying asset. The assumption of leverage being fixed amounts to

2Equity of real firms clearly correspond to more intricate American derivatives, with potentially complex
dynamics for the strike price, as the value of equity and the cost and structure of debt are endogenous
quantities in general equilibrium. Extensions to dynamic capital structure models (as pioneered by Leland,
1994) are unlikely to affect the results much, however, at the relatively short time horizons relevant to the
present study.
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assuming that variations in asset volatility are caused by shifts in asset ivol only, which

are mean preserving spreads of future asset values as in Merton (1973).3

Figure 1 illustrates Theorem 1 for a firm with face value of debt equal to 50% of

its assets, when the debt matures in three years. Equity returns decrease uniformly while

equity ivol increases uniformly as asset ivol increases. To better evaluate the likely strength

of the relationship in a large cross section of firms Figure 2 recasts Figure 1 at more

extreme levels of leverage—with 20% face value in Figure 2a and 80% face value in Figure

2b. In terms of market values A/E the leverage ratios are 1.23 and 3.55, and implied

physical default risks are approximately 0% and 9% respectively. The market leverage

ratios are consistent with our sample firms (as reported in Table 1 below), while the default

probabilities are in line with the estimates of Huang and Huang (2012). Thus, while the

graphs are produced by a highly stylized model of the firm, the chosen parameter values

and implied quantities are in line with those of actual firms.

Figures 1 and 2 confirm that the relationship is robust to variations in leverage. They

also demonstrate that empirical analyses should control for the varying strength across

leverage, as the relationship becomes weaker as leverage decreases and equity becomes

more asset-like. Figure 2a indicates the expected limiting relationship as the firm becomes

fully equity financed: the graph for µE becomes horizontal at low levels of σA and converges

to µA at high levels of σA, while σE approaches σA at high levels of σA. Notice also that

the equity volatility graph lies above the 45◦ line, consistent with elasticity being bounded

below by unity (Bergman et al., 1996). The distance to the 45◦ line decreases as asset ivol

increases, which reflects that elasticity is a decreasing function of asset volatility.

3Rasmusen (2007) considers the effects of more general changes in risk on option values.
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Figure 2: Equity return and volatility for low and high leverage

(a) Low leverage (b) High leverage

Expected equity returns, µE , given by the decreasing graph, and equity volatility, σE , given by the
increasing graph, are graphed against the volatility of the underlying assets, σA, for a fixed level of
systematic asset risk. Variations in asset and equity volatility away from their base values thus represent
variations in idiosyncratic risk. Both figures represent firms with current asset values of 10 with expected
rates of return of 10%, debt that expires in three years, and a riskless rate of 2%. Figures 2a and 2b
represent face values of debt of 2 and 8 respectively. In terms of market values A/E the corresponding
leverage ratios are approximately 1.23 and 3.55, and implied physical default risks are about 0% and 9%.

Priced skewness

Schneider et al. (2017) argue that the relationship between equity returns and ivol is

caused by how skewness in equity returns varies with equity ivol. An important step in

their argument is to assume that skewness is priced—which is naturally the case in any but

the simplest, linear asset pricing models. Priced skewness plays no role in the arguments

leading up to Theorem 1 however. Our result relies only on the law of one price and the

portfolio view of equity, as a linear combination of the underlying assets and a riskless

asset. The portfolio weights respond to variations in ivol, essentially to reflect changes in

default risk as elaborated on in the Introduction. To formally demonstrate that variations

in elasticity in isolation is sufficient to generate the negative equity ivol-return relationship
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we prove by example that the relationships established in Theorem 1 are not materially

different in an economy where skewness is not priced. By considering returns over a non-

trivial discrete time period this exercise has the added benefit of demonstrating that the

relationship is invariant to the time scale.

Consider the SDF m0,t = e−rt + b(X0,t − E {X0,t}), which prices only the covariance of

returns with the fundamental risk factor X, at a fixed time horizon t. If X is the return on

the market portfolio and b < 0 then the traditional CAPM obtains. The value of equity,

E0, must satisfy the Euler equation defined by the SDF. To make as few changes to the

economy as possible we maintain the structure of the equity payoff as ET = max(AT−K, 0)

and let the asset payoff be lognormally distributed. Given E0, discrete equity returns are

simulated simply as RE
0,T = ET/E0. We simulate one million scenarios for the system

XT = e

(
µX−

σ2X
2

)
T+σXxT

,

AT = e

(
µA−

σ2A
2

)
T+vsxT+viyT

,

where σA =
√
v2
s + v2

i , and x and y are independent N(0, T ) random variables. Expected

returns and volatilities are estimated as sample moments of the resultant return scenarios,

using the parameter values r = 0.02, µX = 0.054, σX = vs = 0.1275, b = −4.5, and T = 1.

The parameter values are chosen to ensure that the probability of m ≤ 0 is negligible.

The value of µX ensures that the Euler equation for X holds given σX , b, and r. Because

the systematic risk factor loading of the asset equals that of X we get that µA = µX—

the important aspect being that it is invariant to the ivol risk factor loading, vi. The

parameter space for (vi, K) is set to match that of Figure 2, which gives rise to Figure 3.

There are no qualitative differences in the ivol-return relationships across Figures 2 and 3.

The mean-variance economy produces the expected limiting properties, but only for more
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extreme values of asset ivol than those shown in Figure 3.

Figure 3: Equity return and volatility in a mean-variance economy

(a) Low leverage (b) High leverage

Expected equity returns, µE , given by the decreasing graph, and equity volatility, σE , given by the
increasing graph, are graphed against the volatility of the underlying assets, σA. Both figures represent
firms with current asset values of 10 with expected rates of return of 5.4%, debt that expires in one year,
and a riskless rate of 2%. Figures 2a and 2b represent face values of debt of 2 and 8 respectively. Variations
in asset volatility and the response of equity volatility represent variations in idiosyncratic risk.

While the simulated mean-variance economy demonstrates that variations in elasticity

is sufficient to generate the negative ivol-return relationship it is difficult to judge the

relative contributions of priced skewness and elasticity: The affine specification of the SDF

may easily misrepresent the strength of the relationship. To address this issue we next

decompose expected equity returns into covariance and coskewness risk premia, relying on

only very weak restrictions on the economy. The decomposition utilizes a simple second

order approximation of the stochastic discount factor—common in the literature on priced

skewness (going back to Kraus and Litzenberger, 1976)—in combination with a similar

approximation of the value of equity.4

4Our decomposition is most closely related to the conditional skewness model of Harvey and Siddique
(2000). They assume equity returns exhibit stochastic volatility to generate skewness. In our setup skewed
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Proposition 2. Assume a stochastic discount factor mt+1 = e−rt−
1
2
λ2t−λtxt+1, RA

t+1 =

µt + σAtzt+1, zt+1 = ρtxt+1 +
√

1− ρ2
tyt+1, where x and y are independent, and x is

symmetrically distributed around zero, for rt, µA(t), σA(t) in investors’ date t information

set, and λ = µA−r
σA

.5 If the firm’s equity value is a smooth function of the underlying asset

value then

µE(t)− rt ≈ e−
1
2
λ2t

[
λtεtCovt

(
xt+1, R

A
t+1

)
+ λ2

t

γtAt
∆t

εtCovt
(
x2
t+1, (R

A
t+1)2

)]
= e−

1
2
λ2t
[
f vt Et

{
x2
t+1

}
+ f st Et

{
x4
t+1

}]
,

f vt = ρtµ
e
Atεt,

f st = −1

4
(ρtµ

e
At)

2γtAt
∆t

εt,

where µeA = µA− r, ∆, γ, and ε are the delta, gamma, and elasticity of equity with respect

to the value of assets.

While asset returns do not exhibit skewness in Proposition 2, equity returns do so as

a result of leverage. A quick inspection of the covariance and coskewness components, f v

and f s, suggests that coskewness risk is at least an order of magnitude less important than

covariance risk: − fs

fv
= 1

4
µeAρ

γA
∆

. The magnitudes of asset risk premia, µeA, and correlation,

ρ, are both well below unity for stocks. Coskewness moreover depends on the elasticity of

delta, γA
∆

. This delta-elasticity is strictly positive and typically smaller than four, even for

firms with significant leverage.

To quantify the relative importance of the two components Figure 4 shows how f v

and f s vary with ivol when the equity sensitivities ∆, γ, and ε are computed using the

returns are caused by equity as a call on the firm’s assets, which causes stochastic volatility. To our
knowledge, earlier studies do not utilize the call option view of equity when decomposing expected returns
into covariance and coskewness risk.

5The SDF can be viewed as the Radon-Nikodym derivative of the equivalent martingale measure with
respect to the physical measure for equity. Hence the expression for λ.
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Figure 4: Impact of covariance and coskewness risk on expected equity returns

(a) Relative magnitude of coskewness to co-
variance risk components, −fs/fv

(b) Covariance and coskewness risk compo-
nents, fv > 0 (blue) and fs < 0 (red)

The figures graph the covariance and coskewness components fv and fs in Proposition 2, utilizing the
BSM model for the equity sensitivities ∆, γ, and ε. Common parameter values are A = 10, µA = 0.10,
r = 0.02, ρ = 0.5, and three years to expiration of the firms’ debt. The dashed, solid, and dash-dotted
graphs correspond to K/A = 0.2, 0.5, and 0.8 respectively.

BSM formula. Figure 4a shows the graphs of − fs

fv
as functions of ivol, for three different

levels of leverage, K/A = 0.2, 0.5, 0.8. Variations in the ratio is fully determined by the

elasticity of equity delta, γA
∆

. Delta is typically of an order of magnitude larger than

gamma, which in isolation causes the loading on covariance to be an order of magnitude

larger than the loading on coskewness. As the ratio of the loadings moreover is proportional

to the asset risk premium the loading on covariance ends up being more than two orders of

magnitude larger than that of coskewness, even for the most levered firm, as confirmed by

the Figure. These magnitudes materialize under a correlation with the ‘basic risk factor’ of

ρ = 0.5, which must be considered an upper bound for all but perhaps very well diversified

portfolios. Lower values of ρ has the knock-on effect of also lowering the asset expected

return µA. Our parameter choice thus represent a best-case scenario for coskewness to
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contribute to expected equity returns.

Figure 4b graphs the individual components, f v and f s. The graphs of covariance

risk embodies Theorem 1, in that the covariance component falls uniformly with asset

ivol, consistent with probability mass being shifted into default states for equity—states

in which equity has zero covariance with the stochastic discount factor. The component

is increasing in leverage, as expected. The graphs of the coskewness component verifies,

not surprisingly, that coskewness is indeed priced—but at an economically insignificant

level relative to covariance risk. The coskewness component increases in magnitude as

moneyness decreases, as the nonlinear payoff of equity translates into a more heavily skewed

equity return distribution. Coskewness is however not monotonic in ivol on the empirically

relevant domain for test assets considered in the ivol literature (the portfolio of firms with

low leverage exhibit an average σA of about 30% annualized, as reported in Table 1). In

sum, Figure 4 demonstrates that the negative association between expected returns and ivol

is due for the most part to the negative response of covariance risk to ivol (the mechanical

“elasticity channel”), and to a much lesser degree by the response of coskewness risk (a

“preference channel”).

It is worth noting that the preceding analysis assumes returns on assets do not exhibit

skewness, and thus biases the magnitude of skewness downwards in light of the results in

Table 1 and the earlier findings of Choi and Richardson (2016). This does not invalidate

our argument, however, as it is the relative responses of the risk factor loadings f v and f s

that are relevant. It is unlikely that the conclusions drawn from Figure 4 will change if

one allows for skewed asset returns—i.e., that the magnitude and response of equity delta,

gamma, and elasticity to ivol is sensitive to asset skewness.
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3 Data

To investigate to what extent the implications of the preceding theory bears out in the

data we need observations of firms’ asset returns. We follow Choi (2013) and Choi and

Richardson (2016), and combine data from (i) CRSP for stock prices, (ii) Thomson Reuters

Datastream for bond prices, (iii) the Fixed Income Security Database (FISD) from Mergent

for information on corporate bonds, and (iv) Compustat for balance sheet data. Due to data

availability our sample covers the period December 1997 to December 2016. We include

only firms with at least $100 million in market assets (similarly to Choi and Richardson,

2016). There are on average 396 firms in our sample each month. Returns in the remainder

of the paper are in excess of the riskless rate R. The riskless rate is from Kenneth French’s

database. For the remainder of the paper we moreover denote idiosyncratic volatility (ivol)

of assets and equity by σA and σE. Unless otherwise noted asset (equity) portfolio statistics

are computed using asset (equity) weights.

To construct the asset return time series we utilize that asset returns can be decomposed

in the usual manner as

RA
t+1 =

Et
Et +Dt

RE
t+1 +

Dt

Et +Dt

RD
t+1,

where E and D are the market value of the firm’s equity and debt, and RE and RD are the

corresponding returns. For each firm we obtain daily data on equity values, E, from CRSP,

by multiplying the share price with the amount of outstanding common shares, as well as

returns, RE. We approximate the market value of debt, D, by the market value of the

firm’s bonds.6 We use FISD to obtain the identification number (ISIN) of the bond issued

by each firm. The ISIN is next used to obtain the quoted clean price, P , their coupons,

6Choi (2013) and Choi and Richardson (2016) use also Dealscan’s data on firms’ loans. We find only
negligible differences in key statistics of the debt returns time series.
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C, and their accrued interest, AI . Bond returns are then computed as

RB
t+1 =

Pt+1 + AIt+1 + Ct+1 − (Pt + AIt)

Pt + AIt
.

A firm’s debt return, RD, is next computed as a value weighted average of the return of each

bond issue alive at that time. An attractive consequence of the weighting scheme is that

a firm’s less liquid bond issues—typically those of smaller magnitudes—have less impact

on the debt returns. Finally, each day the market value of debt is obtained by multiplying

recursively the debt returns with the latest observed book value of debt available from

Compustat.7

Table 1 presents key statistics for our sample conditional on quintile leverage buckets.

The buckets are constructed at the beginning of each month by sorting on contemporane-

ous financial leverage, A/E. Each entry represents the time series average for a quantile

portfolio. Columns A/E, β̄E, and β̄A demonstrate that leverage seems unrelated to equity

beta, and negatively related to asset beta, consistent with Choi (2013). Columns σ̄E and

σ̄A show that leverage seems unrelated to equity ivol, but is monotonically decreasing in

asset ivol, consistent with Choi and Richardson (2016). Overall, Table 1 shows that our

sample captures significant cross-sectional variation in firms’ leverage, risk, and return,

and that it exhibits the same properties as that of Choi and Richardson.

4 Cross-sectional Implications

We begin this Section by developing hypotheses to capture the testable implications of

Proposition 1 and Theorem 1, all of which are cross-sectional. We develop and test related

time series implications in Section 5. Proposition 1 implies that expected equity returns

7As in Choi (2013), we use book value of long term debt and debt in current liabilities.
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should be increasing in elasticity, whereas expected asset returns should be unaffected by

changes in elasticity. Cross-sectional variation in the equity returns should consequently

be stronger than the variation in asset returns, as in Hypothesis 1a:

µHεE − µ
Lε
E > µHεA − µ

Lε
A , (H–1a)

where Hε and Lε denotes the highest and lowest quintile portfolios sorted on elasticity.

Similarly, equity ivol should be increasing in elasticity, as in Hypothesis 1b:

σHεE > σLεE . (H–1b)

Theorem 1 implies that average equity returns should be cross-sectionally negatively

correlated with equity ivol, but unrelated to asset ivol. Correlation is caused by the

response of elasticity at the equity level due to leverage. While Theorem 1 assumes unit

elasticity at the asset level, the relevant empirical test is that the correlation is negative

and stronger for equity than for assets.8 To this end we sort stocks into quintiles based on

asset ivol, and compute the difference between the highest and lowest ivol quantiles. The

difference should be higher for equity than for assets, as in Hypothesis 2a:

µHσE − µ
Lσ
E < µHσA − µ

Lσ
A . (H–2a)

Theorem 1 also implies a positive relation between equity and asset ivol. Average equity

ivol should thus increase with average asset ivol, leading to Hypothesis 2b:

σHσE > σLσE . (H–2b)

8The cash flow at the asset level may also be nonlinear in the basic risk factors, due for instance to real
options (Brennan and Schwartz, 1985; McDonald and Siegel, 1985, 1986) or nonlinear tax schemes.
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Furthermore, in order to relate cross-sectional variation in average equity returns to varia-

tions in elasticity we should find that the average elasticity of the high asset-ivol portfolios

is lower than the elasticity of low asset-ivol portfolios, as in Hypothesis 2c:

εHσ < εLσ . (H–2c)

Hypothesis (H–2c) provides an important implication for attributing the observed equity

ivol-return pattern to the response of elasticity to asset ivol, which we can test by virtue

of access to both asset and equity returns data. We investigate Hypotheses (H–2a)–(H–2c)

via single sorts, as later reported on in Table 3.

Another implication of Theorem 1 is that the strength of the negative relation between

equity returns and ivol is increasing in the sensitivity of elasticity. Because the slope of

elasticity is steeper for options that are less in-the-money—the more levered firms—we

investigate Hypothesis 3:

(µHσE − µ
Lσ
E )|high leverage < (µHσE − µ

Hσ
E )|low leverage. (H–3)

We investigate (H–3) via a conditional double sort, as later reported on in Table 4.

For (H–1a) and (H–1b) we use a 1/0/19 strategy (as in Ang et al., 2006) to sort equity

and asset returns into quintile portfolios based on their previous month elasticity, and

then compute the next month’s excess returns for the portfolios. It follows from (2) that

individual stock elasticities can be estimated as

εi =
σiE
σiA
, (3)

9Let t be the date at which the strategy is initiated. A strategy N/W/M, is a strategy that uses
information in N months (from date t −W −N to t −W ) to create the sorting, it has a waiting period
of W months (from date t−W to t) and it holds the portfolios for M months (from date t to t+M).
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where σiE and σiA are the previous month’s volatilities of equity and assets of firm i.10

Table 2 reports the results for the portfolios sorted on elasticity. Rows µ̄E and µ̄A

report the average next period returns of the portfolios. The high minus low portfolio for

equity yields a positive excess return of 0.648% per month, although the t-stat is below 2

(1.848). The high minus low asset portfolio offers instead a weakly negative excess return

of 0.109%, which is statistically insignificant. As elasticity is increasing in leverage, the

negative association between asset returns and elasticity can be understood by the finding

of Choi and Richardson (2016) that firms’ leverage is decreasing in asset volatility, coupled

with the positive association between asset returns and volatility in Table 1. The lack of

significance at the equity level is then not surprising in light of the equity-asset return

restriction (1): Equity returns increase with elasticity, but as elasticity increases asset

returns decrease—the latter effect partially offsetting the former. The difference return

reported in row µ̄E − µ̄A allows us to gauge the pure effect of elasticity on equity returns,

controlling for the influence of other characteristics that may correlated with elasticity.

The return spread is substantial (0.758% per month) and statistically significant (t-stat

is 2.809), with sign in accordance with (H–1a). This spread uses different weights for

the equity and asset legs. To verify that the effect remains for a more traditional long-

short portfolio we use equity weights for both legs in row µ̄E − µ̄eA. The spread remains

substantial (0.543% per month) and statistically significant (2.432). Row σ̄E confirms

that equity ivol is significantly increasing in elasticity, in line with (H–1b). Finally, σ̄A is

decreasing in elasticity, which is again consistent with Choi and Richardson (2016) and

elasticity increasing with leverage.

To address the remaining hypotheses we again follow Ang et al. (2006) and use a 1/0/1

10We use previous month standard deviations of daily returns of equity and assets to compute monthly
total volatilities. It is worth noting that Choi and Richardson (2016) estimate ε via the BSM formula,
rather than utilizing the no-arbitrage restriction (2) to arrive at (3). Using the latter approach avoids a
source of model error.
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strategy to sort equity and asset returns into quintile portfolios based on their previous

month’s asset ivol. Ivol is estimated from previous-month daily returns, and we hold

the quintile portfolios for one month. Asset and equity ivol are proxied by the standard

deviation of the residuals from the three-factor model of Fama and French (1993).11

Before considering the remaining hypotheses we investigate to what extent our sample

exhibits the negative equity ivol-return relationship. Panel A of Table 3 shows how equity

and asset returns, and elasticity vary with equity ivol. The association between equity

returns and ivol is weakly positive, unlike what Ang et al. (2006) report. This is not

surprising, however, in light of recent findings by Linnainmaa and Roberts (2018) that show

that also other “anomalies” are weaker in the time period of our sample. Notice, however,

that sorting on equity ivol is equivalent to sorting on asset ivol and elasticity. There is thus

a confounding effect due to elasticity, which indeed we find to be monotonically increasing

in equity ivol. Theorem 1 is about the joint effect of asset ivol on equity ivol and expected

returns, however, and we consider sorts on asset ivol in the following.

Panel B of Table 3 reports results for (H–2a)–(H–2c). Before considering the hypotheses

observe that we find that the relation between average asset ivol σ̄A and equity returns µ̄E

is negative, consistent with Ang et al. (2006), but not significant. Again we attribute the

lack of significance to using a smaller sample than theirs, for a different time period. On

the other hand, we find that the relation between asset ivol, σ̄A, and average excess asset

returns µ̄A is positive—consistent with some degree of nonlinearities at the asset level.

Row µ̄aE − µ̄aA reports the test for (H–2a) when using asset weights in forming the portfolio

returns. As for the test reported in the previous Table, the double difference allows us

to control for other characteristics that may be correlated with elasticity. Indeed, as the

equity and asset high-minus-low portfolios are composed of the same firms the only source

11Using the CAPM or the five factor model of Fama and French (2015) does not materially affect our
results.
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of difference in returns is elasticity. As predicted the average double difference is negative

at −0.345% per month (−4.1% annually) and statistically significant, with a t-statistic of

−2.568. To remove any possible contribution from differences in weights we test the double

difference (H–2a) using equity weights for both equity and assets in the next row. Identical

weights admits an interpretation of the double difference as the equity-asset spread on

long-short asset-ivol portfolios. The resulting average double difference is monotonically

decreasing in asset ivol, σ̄A. The difference between the quintiles with highest and lowest

pre-formation σ̄A is negative at −0.271% (−3.3% annually) and statistically significant

with a t-stat of −3.783.

Table 3 also reports the weighted pre-formation ivol of equity, σ̄E, and the average

elasticity, ε̄, computed as described in (3). Consistent with (H–2b) and (H–2c) we find

that σ̄E is uniformly increasing in σ̄A, while the elasticity is uniformly decreasing in σ̄A.

The fact that elasticity is decreasing lends empirical support to the main mechanism at

work in Theorem 1—that the negative relation between µE and σA is caused by the response

of elasticity to asset ivol.

To test (H–3) we use a conditional double sort on leverage and asset ivol, σ̄A. We

first sort firms into two leverage buckets. We then sort each leverage bucket into five

quantiles according to the firms’ asset ivol. Table 4 reports the outcome of the double sort.

For each leverage bucket we report the average spread in average equity return between

high and low asset ivol portfolios, as in (H–3); µ̄H−LE = µ̄HE − µ̄LE. Column three reports

the double difference, between the high and the low leverage bucket. Consistent with

the prediction of Theorem 1 we find that the difference is negative at −0.013% monthly

(−15.6% annually) and statistically significant with a t-stat of −2.181. We also report

elasticity spreads between high and low asset ivol, within each of the leverage buckets.

The difference in elasticity spreads is negative and significant, consistent with ivol having
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an important effect on elasticity when controlling for leverage.

5 Time-series Implications

The previous Section addresses how leverage creates a channel for ivol to cause cross-

sectional variation in the covariance between equity returns and the SDF. Since the source

of the negative equity ivol-return relationship is the mechanical response of equity elasticity

to asset ivol one should expect to find a similar relationship also in the time series of firms’

returns. We now turn to investigate to what extent the elasticity of levered equity can help

explain that high ivol minus low ivol portfolios generate negative alpha, as first observed

by Ang et al. (2006). For variations in elasticity to explain part of the observed alpha it is

sufficient that elasticity is correlated with the SDF—the “market price of risk”—as equity

beta can be expressed as the product of asset beta and elasticity. Unconditional estimates

of alpha are then biased (Jagannathan and Wang, 1996). We proceed by first investigating

the role of ivol and elasticity in a simple reduced form extension of the BSM model from

Section 2, and use simulations to quantify the contribution of variations in elasticity. The

simulation is based on an empirical parametrization of elasticity, which accounts for both

time varying asset beta and ivol. As a second step we estimate the empirical contribution

of time variation in asset beta and ivol in reducing unconditional alpha in our sample.

5.1 A Model with Stochastic Asset Volatility

Consider an SDF which is affine in the return on the market portfolio. If anything, this

stacks the cards against being able to rationally explain alpha, as it rules out any contri-

bution from priced skewness—however small. The realized excess return on the market
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portfolio is given by

RM
t+1 = λMt σM + σMx

M
t+1,

where λMt is the market price of risk, σM is the volatility of RM , and xMt+1 is a mean zero

random variable. The conditional market risk premium is Et

{
RM
t+1

}
= λMt σM . We assume

that the market price of risk λMt has dynamics

λMt = λM + σλx
λ
t ,

where λM is the average market price of risk, σλ is its volatility, and xλt is mean zero and

independent of xMt+1. The excess return of the underlying assets is

RA
t+1 = vsR

M
t+1 + vity

A
t+1

where yAt+1 is mean zero and independent of xMt+1. Due to the affine specification of the

SDF we have that vs = βAσM where βA is the traditional CAPM-beta. We keep the

systematic risk factor loading vs constant for now, while we allow the idiosyncratic risk

factor loading vit to be stochastic. It follows that the conditional risk premium of the asset

is Et

{
RA
t+1

}
= λMt vs. We specify the dynamics of vit as

vit = vi + σiy
i
t,

where vi is the average exposure, σi the volatility and yit is mean zero and correlated with

xλt with coefficient ρλ,i. From restriction (1) we know that equity returns are given by

RE
t+1 = εtR

A
t+1.
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To facilitate a formal analysis of the role of stochastic asset ivol we first consider the

following simple reduced form elasticity

εt = ε0(vi) + ε2(vit − vi).

With ε′0(vi) < 0 and ε2 < 0 this specification captures that elasticity is a decreasing function

of asset ivol, in line with the BSM model. We use a more complex functional form that

better captures the empirically observed characteristics of elasticity when we later simulate

the model.

Bias in unconditional alpha

It follows from the above setup that the conditional and unconditional expected excess

equity returns are Et

{
RE
t+1

}
= εtvsλ

M
t , and

E
{
RE
t+1

}
= vsCov

(
εt, λ

M
t

)
+ vsε0(vi)λM . (4)

It is worth noting that while the cross-sectional analysis pertains to variations in the

second term in (4), the time series effects materialize through variations in the first term:

Unconditional expected equity returns are increasing in the covariance between elasticity

and the market price of risk. We can express the first part of (4) as

vsCov
(
εt, λ

M
t

)
= vsε2viσλρλ,i. (5)

Equation (4) shows that allowing for time varying asset ivol, the difference in uncon-

ditional expected equity returns between high and low ivol portfolios will be amplified by

their difference in the covariance term in (5). Particularly important is the difference in
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the sensitivity of elasticity to vit. We show later, using simulations that match empirically

observed quantities, that the magnitude of the sensitivity of elasticity to risk is significantly

different for high and low ivol portfolios. We first demonstrate that our setup is consistent

with the core assumptions of Jagannathan and Wang (1996).

The conditional equity CAPM beta is

βEt = εtβA = εt
vs
σM

,

and the conditional equity excess return is

Et

{
RE
t+1

}
= βEt Et

{
RM
t+1

}
.

Define Et

{
RM
t+1

}
= µMt and E

{
RM
t+1

}
= µ̄M , and similarly for RE and βE. The uncondi-

tional expected return is

µ̄E = Cov
(
βEt , µ

M
t

)
+ β̄Eµ̄M . (6)

Using the CAPM regression to describe E
{
RE
t+1

}
we have

µ̄E = αUE + βUE µ̄M . (7)

Combining (6) and (7) with the previous definitions of βEt and µMt we arrive at the following

expression for the unconditional equity alpha

αUE = vsCov
(
εt, λ

M
t

)
+ µ̄M

(
β̄E − βUE

)
.

Unconditional equity alpha is consequently increasing in the covariance between elasticity

and the market price of risk. The covariance is increasing in ε2, as evident from equation
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(5). We show below that the estimated ε2 is significantly different between high and low

ivol portfolios, which contributes to partially explain the spread in CAPM-alpha between

high and low ivol portfolios.

Simulation: Time varying elasticity versus time varying asset beta

While the preceding analysis establishes that leverage opens a channel for asset ivol to affect

unconditional alpha, through its effect on elasticity, it remains to determine the economic

impact. A simple simulation exercise allows us to quantify the relative contribution of

variations in elasticity and asset beta in generating unconditional alpha of long-short asset-

ivol portfolios. To this end, systematic risk of assets is allowed to develop according to

vst = vs + σsx
s
t ,

where xst is correlated with xλt , with correlation coefficient ρλ,s. We generalize the functional

form for elasticity

εt = ε0(σ̄A) exp
[
ε1(vst − vs) + ε2(vit − vi) + σεy

ε
t

]
,

where σ̄A is the average total asset volatility. This specification captures that elasticity

varies with the level of priced risk, vs, in addition to idiosyncratic risk. We also allow for a

number of unspecified quantities that may affect elasticity through their effect on leverage.

In addition to systematic and idiosyncratic risk, leverage may vary with the excess return

and volatility of the market portfolio, the shape of the yield curve, default risk, etc. The

effects of the latter variables are captured by the error term yε.

We estimate the parameter values for the simulation, for our high and low asset-ivol

portfolios. Table 5 reports estimates of the unconditional CAPM regression for equity,
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in Panel A, and regressions of portfolio elasticities on estimates of vst and vit, in Panel B.

We use the estimates of elasticity and asset ivol at portfolio level that we report in Table

3. To determine vst we multiply estimated portfolio asset betas with the monthly market

volatility, estimated using daily data on a monthly basis. In the regression for elasticities we

control for additional factors that may help capture ρλ,ε, the residual correlation between

yεt and xλt .
12 Observe from Panel A that we find that unconditional CAPM-alpha for

the high ivol portfolio is negative while it is positive for the low ivol portfolio, consistent

with Ang et al. (2006). It is apparent from the elasticity regression in Panel B that the

high and low ivol portfolios have different exposure to the systematic and idiosyncratic risks

factors. While the elasticity of the low ivol portfolio has both economically and statistically

significant responses to vst and vit, the response of the high ivol portfolio is negligible. These

findings are consistent not only with the theoretical prediction that elasticity is decreasing

in volatility, but also with the empirical finding of Choi and Richardson (2016) that leverage

is decreasing in asset volatility.

To assess the contribution of asset ivol in generating unconditional alpha, compared

to time varying asset systematic risk, we try to replicate the alpha of the low ivol portfo-

lio. To reduce the influence from extreme values of leverage we restrict ε to the interval

[1, 10]. We draw all random variates from standard normal distributions, and run two sets

of simulations, each consisting of 100 paths that cover 10,000 months. The two sets of

simulations correspond to ρλ,ε = 0.5, 1.0. In both sets we impose ρλ,s = ρλ,i = −0.85.

Remaining parameters match empirically observed quantities: The parameters chosen for

λMt ensure that the average Sharpe ratio is 0.11 monthly, consistent with that observed for

a broad market index during our sample period. We set the volatility of the market price

12The factors used are the market volatility, market excess returns, the default spread, the difference
of the yield of the AAA-corporate bonds and BAA-corporate bonds, as well as the term-spread—the
difference between the ten and one year yields on treasury bonds, both obtained from the FRED database.
The return on the market portfolio is from Kenneth French’s database.
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of risk equal to 0.1 which combined with σM = 0.045 implies a variation in the market

risk premium equal to 0.0045 in line with previous studies (e.g. Lewellen and Nagel, 2006).

The parameters governing systematic risk, idiosyncratic risk, and elasticity are set to be

consistent with the ones observed for the low ivol portfolio.

Table 6 reports the results of the simulations. Table entries are averages across paths.

As evident from column three in Panel A the model reproduces between 30% and 40% of

the observed unconditional CAPM-alpha for the low ivol portfolio. From Tables 5 and 6

we can surmise that the unconditional alpha of low ivol portfolios is partially explained by

the covariance of elasticity with the market price of risk. Elasticity of low ivol firms has

higher sensitivities to time variation in risk, both systematic and idiosyncratic, which are

correlated with λMt , as reported in Panel B. Although comovement between the systematic

risk loading and market price of risk affects also the underlying assets, the variation in

systematic risk is not sufficient to generate significant alpha at asset level. The effect

is amplified at the equity level through elasticity. Finally, residuals of elasticity may also

correlate with the market price of risk, which increases further the fraction of unconditional

alpha being explained.

5.2 Empirical Analysis

In this section we investigate to what extent elasticity affects time variation in risk exposure

that is correlated with the market price of risk, and thus helps explain unconditional

CAPM-alpha. We follow the two-stage approach of Boguth et al. (2011) to estimate the

conditional CAPM, which ameliorates potential under- and over-conditioning biases in the

conditional-beta estimates.

The first stage consists of regressions of estimated contemporaneous equity betas of
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each test asset on a k-dimensional instrument, Zt−1,

β̂Et = δ0 + δ1 · Zt−1 + ut. (8)

The dependent variables β̂Et are obtained as value weighted averages of contemporaneous

equity betas of each firm, estimated monthly using one month of daily observations. First-

stage beta estimates βE
t

= β̂Et − ut are then used in the second stage, where we regress

portfolio returns on the return of the market portfolio,

RE
t = αC + (φ0 + φ1β

E

t
)RM

t + et. (9)

The intersect αC is the alpha of the conditional CAPM. The parameters φ0 and φ1 allow

a rescaling of conditional beta, to help increase its predictive power. To stay as close as

possible to the theory and to better judge the improvement in alpha from our instrumental

approach we restrict φ0 = 0 and φ1 = 1. These restrictions correspond to assuming that

the conditional beta estimates are unbiased and efficient (Boguth et al., 2011).

We use four sets of instruments in (8) that may capture important variation in elasticity

and asset systematic risk. Because expected returns are affected by the volatility of the

SDF we include in all sets the previous-month market volatility σM,t−1, obtained as the

standard deviation of the daily excess returns on the market portfolio, multiplied by
√

22

to effectuate a monthly basis. In the first set of instruments we add firm characteristics

that should affect asset beta and elasticity. Although theory predicts that elasticity should

be a powerful predictor of equity beta we do not include it explicitly, as it does not allow us

to distinguish between the effects of leverage and volatility on equity beta. Using elasticity

directly also precludes identification of the interaction of systematic and idiosyncratic risk

in scaling equity beta, as identified and discussed in Section 5.1: The theory predicts that
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differences in the level of asset ivol across test assets cause differences in the sensitivity

of elasticity to variations in systematic risk. To capture variations in elasticity we instead

include asset ivol, computed as vit multiplied by
√

22, and leverage LEV t = At/Et. To

ease comparisons across risk factors we add asset systematic volatility vst , given by the

product between previous-month value-weighted asset beta and σMt . Systematic volatility

vst should capture variations in both asset beta and elasticity. To better judge the role of

asset ivol the second set of instruments omits vit from the first set. Set three of instruments

adds macroeconomic variables to σMt , similar to those used in other papers (like Fama

and French, 1989). We add the previous-month market return RM
t−1, the default spread

DEF t−1 computed as the difference in yields between BAA- and AAA-rated corporate

bonds (obtained from the website of the FRED), and the term spread TS t−1 computed

as the difference in yields between ten years and one year treasury bills (from the FRED

website). Finally, the fourth set adds leverage to the first set.

Table 7 reports the results from the predictive regressions using instrument sets 1–3.

The regression on Set 1 demonstrates that vit is far more significant for the low ivol portfolio,

which is the portfolio with higher elasticity. The signs of the coefficients are also different.

For the low ivol portfolio the coefficient is -9.480 while it is positive and insignificant for

the high ivol portfolio. Dropping vit, in Set 2, reduces R2 from 25.5% to 13.9% for the

low ivol portfolio. Consistent with the theory that ivol is an important instrument for

portfolios where elasticity is larger, there is only a minor reduction in R2 for the high ivol

portfolio, from 23.8% to 22.9%. We moreover find that the coefficient on vst is positive for

both portfolios, but lower for the low ivol portfolio.

When we use only macroeconomic variables, in Set 3, there is a sharp decline in R2

for both portfolios. Market volatility, σMt , appears with opposite signs across the two

portfolios, and is significant for low ivol but insignificant for high ivol. While we have not

33



directly analyzed the role of how σMt affects elasticity, it seems reasonable that it should

have a negative sign and play a more prominent role in portfolios with higher elasticity. It

is a source of uncertainty about the future value of equity, and is in this regard similar to

volatility.

The Equity and Asset columns of Table 8 report results for unconditional CAPM re-

gressions, for the high-minus-low ivol portfolio. Intercepts are negative for both equity

and assets at −0.687% and −0.350% respectively. Eliminating the effect of leverage thus

reduces alpha by almost 50%, in line with the findings of Choi and Richardson (2016), who

sort portfolios on equity and asset betas, book-to-market value, and size.

Columns (1), (2), and (3) of Table 8 report estimates of the conditional model (9) for

the three sets of instruments. Including vit increases the ability of the conditional model

to explain unconditional equity alpha. The reduction in alpha is strongest for instrument

Set 1, at −36.8%. Removing vit, in Set 2, leads to a smaller reduction in alpha, at −32.7%.

Note also that the R2 of the regression decreases along with the t-stat of the slopes. Part

of the importance of vst as an instrument is due to its effect on elasticity. When we remove

also vst in Set 3, and use only macroeconomic instruments typically used for estimation of

conditional models, the reduction in alpha is −15.6%. This reduction is materially weaker

than that obtained by the alternative sets of instruments. The R2 decreases as well, along

with the t-stats of the slope coefficients.

Leverage versus volatility in elasticity variation

Table 8 demonstrates that time variation in equity beta explains a significant part of

the spread in conditional alpha between high and low asset ivol portfolios. The Table

also demonstrates that asset ivol is a significant instrument, especially so for the low ivol

portfolio. The theory ascribe these findings to the effect of time variation in asset ivol
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on elasticity. Elasticity is however also a function of leverage, which is stochastic. To

investigate the relative contribution of these two sources of variation in elasticity, and

thus to evaluate the strength of the link between asset ivol and elasticity, we regress our

measure of elasticity (3) for the high and low ivol portfolios on the first and fourth sets of

instruments. Both sets includes systematic and idiosyncratic volatility, while the second

set adds leverage.

Panel A of Table 9 reports the results for the high ivol portfolio. As reported in

Table 3 the average elasticity of this portfolio is 1.147, which is the lowest among all the

quintile portfolios. Given the low elasticity of the portfolio, one should expect relatively

low sensitivity to volatility. As predicted we indeed find that the coefficients on both risk

factors are small in magnitude and the risk factors do not explain much of the variation in

elasticity. R2 increases drastically, from 13.2% to 67.6%, when we employ the alternative

instruments that add leverage to the set of the covariates. Time variation in leverage is

thus sufficient to explain a large part of the time variation in elasticity. Notice also from

the Table that the standard deviation of elasticity σ(εt) is quite low at 0.074 monthly. Such

low time variation implies that elasticity should not be able to contribute significantly to

explain unconditional alpha for the high ivol portfolio, in line with the predictions of the

theory.

The results for the low ivol portfolio in Panel B are orthogonal to that of the high

ivol portfolio. The average elasticity, as reported in Table 3, is 1.731 and is thus the

highest among the quintile portfolios. Adding leverage to the covariates of the elasticity

regression does not contribute to explain variations in elasticity, however. Indeed, the R2 is

almost the same in the two regressions, at 25.7% without leverage and 27% with leverage.

The coefficients on the risk factors are both large in magnitude and statistically strongly

significant irrespective of the presence of leverage. We attribute this evidence to the cross

35



sectional sensitivity to volatility due to leverage. As documented by Choi and Richardson

(2016) low asset ivol firms tend to have persistently high leverage, and as a consequence

even small variations in asset risks generate strong responses in elasticity. Thus, while

leverage does not exhibit sufficient variation in the time series to materially move elasticity,

leverage is crucial in determining elasticity’s response to variations in volatility.

The last four rows of Table 7 report the predictive regressions for equity betas using

the fourth set of instruments. Adding leverage does not significantly change the results of

the predictive regressions for either portfolio. Indeed, the R2 improves only marginally and

the coefficient estimates for the risk factors are largely unaffected. Adding leverage to the

set of instruments thus does not improve the predictive power. For the high ivol portfolio

this is as expected since variations in elasticity is not sufficiently strong to materially affect

time-variation in equity beta. Equity beta is for this portfolio rather driven by variations in

systematic volatility/asset beta. The finding that leverage does not improve the predictive

power for the low ivol portfolio suggests that elasticity is the important source of variation

in predicting equity beta, with some contribution from time varying asset beta (which also

affects elasticity).

Table 10 reports results for the conditional CAPM for the high and low ivol portfolios

with predicted equity betas obtained using the first and fourth sets of instruments, as

reported in Table 7. We denote the associated predicted equity betas by β
E

and βLEV

E

respectively. We constrain φ0 and φ1 in (9) as before. The estimation exercise confirms

that adding leverage to the set of instruments does not materially improve the ability of

the conditional model to explain the unconditional CAPM alphas of the ivol portfolios.

For the high asset-ivol portfolio the percentage of explained alpha (αE/α
U
E − 1) changes

from −77.6% to −82.3%. For the low asset ivol portfolio αE/α
U
E − 1 changes from −18.0%

to −18.5%. Overall, the percentage of unconditional spread in CAPM alpha changes from
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−36.8% to −38.6%. The performance of the model in terms of R2 does not improve, and

actually decreases for the high ivol portfolio. The results suggests that variations in elastic-

ity is predominantly due to variations in volatility rather than variations in leverage. This

finding is consistent with the behavior of elasticity in the BSM model and our extension

of it to stochastic volatility.

6 Conclusion

The law of one price forces equity excess returns to be proportional to asset excess returns,

with the constant of proportionality equal to the elasticity of equity with respect to as-

sets. The elasticity is a function of several firm characteristics, including asset volatility.

Because equity elasticity is uniformly decreasing in volatility, expected equity returns are

decreasing in asset ivol—both in the cross section and in the time series. Equity ivol is on

the other hand increasing in asset ivol. An observed negative equity ivol-return relation-

ship is consequently fully consistent with rationally priced corporate liabilities that reflect

variations in asset ivol. We formally prove the presence of this mechanism, and verify that

its empirical implications bear out in a sample of returns on publicly traded firms’ equity

and assets.

While our analysis is based on a view of equity as a call option on assets, the basic

premise of the analysis is that the cash-flow that supports the price of study is nonlinear

in some basic, priced risk factors. The implications of the analysis thus go beyond equity:

One should expect to find correlation between ivol and expected returns for any derivative

with non-trivial nonlinearities, be it real or financial. Ivol is thus truly a “characteristic” in

asset pricing models that do not explicitly take nonlinearities into account, and is neither an

“anomaly factor” nor a “priced risk factor.” Indeed, the absence of ivol-return correlation

may indicate deviations from the law of one price.
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A Proofs

Proof of Proposition 1. The first part of the result is immediate from (1). To show that

the total risk restriction (2) also applies to idiosyncratic risk, decompose σ2
A = v2

s + v2
i ,

where vs and vi are systematic and idiosyncratic risk factor loadings. The idiosyncratic

risk factor loading of equity is εvi = ε
√
σ2
A − v2

s ∝ ε.

Proof of Theorem 1. The value of equity is E = AN(d) − Ke−rTN(d′), with the usual

definition of d and d′ = d− σA
√
T . Solvency of the firm implies that d ≥ 0.

Using that µA > r it is sufficient for the first claim to show that ∂ε
∂σA

< 0. We have that

∂ε

∂σA
=

∂

∂σA

AEA
E

=
A

E
n(d)
√
T

(
1− d

σA
√
T
− ε
)
,

where EA is the partial derivative of equity with respect to assets. Proposition 2 of Bergman

et al. (1996) establishes that generally ε ≥ 1, which in our special case takes the form

ε = AN(d)
AN(d)−Ke−rTN(d′)

> 1.

Define R(d) = N(d)
n(d)

> 0, and f(d) = R(d) − d. To show the second claim we need to

show that

∂σE
∂σA

=
∂ε

∂σA
σA + ε =

A

E2

{
n(d)

∂d

∂σA
E − N(d)

∂E

∂σA

}
σA +

AN(d)

E

=
ε

R(d)

{
R(d)− d− N(d− σA

√
T )σA

√
T

eσA
√
Td− 1

2
σ2
ATN(d)− N(d− σA

√
T )

}

,
ε

R(d)
{f(d)− g(d)}

is strictly positive for all d ≥ 0 (and thus for all σA > 0).

It is easy to verify that f(0)− g(0) > 0. Consider therefore the change in f and g as d
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increases beyond 0. First,

f ′(d) =

√
π

2
e

1
2
d2N(d)d

confirms that f is uniformly strictly increasing on R++. Second, let γ(d) , eσA
√
Td− 1

2
σ2
AT

and observe that n(d′) = γ(d)n(d) iff γ(d) = n(d′)/n(d). Hence, with h = σA
√
T

g(d) = h
N(d− h)

γ(d)N(d)− N(d− h)
=

R(d− h)
1
h

[R(d)−R(d− h)]
> 0,

which equals the ratio of R to the average slope of R over [d − h, d]. To establish that g

is decreasing it is thus sufficient to demonstrate that R increases at a lower rate than R′.

We have that

R′(x) =
n2(x) + xN(x)n(x)

n2(x)
= 1 + xR(x),

R′′(x) = R(x) + xR′(x),

which establishes thatR′(x) < R′′(x) on [1,∞). For later use, observe also thatR′(x), R′′(x) >

0 on R+.

It remains to demonstrate that ∀ x ∈ (0, 1)

R′′(x) = R(x) + xR′(x) > R′(x) ⇐⇒ R(x) > (1− x)R′(x),

or equivalently, by Taylor’s Theorem, that

R(0) +R′(0)x+
1

2
R′′(0)x2 + o(x3) > (1− x)R′(x).

The remainder term o(x3) > 0 because o(x3) = 1
6
R′′′(z)z3 for some z ∈ [0, x] and R′′′(z) =

2R′(z) + zR′′(z) > 0 ∀ z ∈ [0, x]. Using that R′(0) = 1 and R′′(0) = R(0) it is therefore
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sufficient to establish the inequality

R(0) + x+
1

2
R(0)x2 > (1− x)R′(x) = 1− x+ x(1− x)R(x),

or equivalently

[R(0)− 1] + 2x+
1

2
R(0)x2 > x(1− x)R(x). (10)

Because R(0) =
√

π
2
> 1 inequality (10) holds if

2 +
1

2
R(0)x > (1− x)R(x). (11)

Observe now that (11) holds at 0: 2 > R(0). Because the left hand side of (11) is increasing

in x it is sufficient to establish that the right hand side is decreasing in x. For this to be

true we need

∂

∂x
(1− x)R(x) = (1− x)R′(x)−R(x) < 0

iff

[R(x)− 1](1− x) + x2R(x) > 0,

which is true for all x ∈ (0, 1).

Proof of Proposition 2. Using second order Taylor expansions of mt+1 = m(xt+1) around

E {xt+1}, and of Et+1 = C(At+1) around At, where C is a sufficiently smooth function,
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yields

µE(t)− rt ≈ −
Covt

(
m′txt+1 + 1

2
m′′t x

2
t+1,∆t(At+1 − At) + 1

2
γt(At+1 − At)2

)
Et {mt+1}C(At)

,

= − m′t
Et {mt+1}

εtCovt
(
xt+1, R

A
t+1

)
− 1

2

m′t
Et {mt+1}

γtAt
∆t

εtCovt
(
xt+1, (R

A
t+1)2

)
− 1

2

m′′t
Et {mt+1}

εtCovt
(
x2
t+1, R

A
t+1

)
− 1

4

m′′t
Et {mt+1}

γtAt
∆t

εtCovt
(
x2
t+1, (R

A
t+1)2

)
,

where m′t = −λtmt|xt=0 and m′′t = λ2
tmt|xt=0. Using the structure of RA and the symmetry

of x the second and third covariance terms are proportional to Et

{
x3
t+1

}
= Et {(−xt+1)3} =

−Et {(xt+1)3} iff Et

{
x3
t+1

}
= 0.
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Table 2: Portfolios sorted on elasticity

Each month we sort firms’ equity and asset returns into five quintiles based on their previous month elas-
ticity, computed for each firm using (3) and daily equity and asset returns. We next determine beginning-
of-the-month equity and asset market weights to compute the following portfolio statistics. The first row
reports average equity elasticity (3), using equity weights. Row σiE reports average equity ivol for each
bucket, and the difference between high and low elasticity portfolios. Rows σ̄E and σ̄A report average
equity and asset ivol for each bucket. Rows µ̄E and µ̄A report average monthly excess returns for equity
and assets, and test the difference of high minus low elasticity portfolios. Row µ̄E − µ̄A reports the double
difference in average equity and asset returns across high minus low ε̄ portfolios. This exercise is repeated
in the next row, using equity weights in average asset portfolio returns, µ̄eA.

L 2 3 4 H H − L
ε̄ 1.052 1.173 1.354 1.709 3.129

µ̄E 0.566% 0.463% 0.483% 0.418% 1.21% 0.648%

(1.848)

µ̄A 0.557% 0.411% 0.419% 0.382% 0.448% −0.109%

(−0.425)

µ̄E − µ̄A 0.758%

(2.809)

µ̄E − µ̄eA 0.013% 0.021% 0.058% 0.082% 0.556% 0.543%

(2.432)

σ̄E 6.769% 6.386% 6.660% 7.050% 9.018% 2.248%

(10.912)

σ̄A 6.445% 5.423% 4.893% 4.139% 3.336% −3.081%

(−23.150)
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Table 3: Portfolios sorted on ivol

Each month we sort firms’ equity and asset returns into five quintiles based on their previous month
ivol, computed for each firm using the Fama-French three-factor model and daily asset returns. We next
determine beginning-of-the-month equity and asset market weights to compute the following portfolio
statistics. Panel A sorts firms on their equity ivol σE , while Panel B sorts on asset ivol, σA. Rows σ̄E
and σ̄A report the average equity and asset ivol of each bucket. Rows µ̄E and µ̄A report average monthly
excess returns for equity and asset portfolios, and test the difference of high minus low ivol portfolios.
Row µ̄E − µ̄A reports the double difference in average equity and asset returns across high minus low
σ̄A portfolios. This exercise is repeated in the next row, using equity weights in average asset portfolio
returns, µ̄eA. The last row reports average equity elasticity (3), using equity weights.

L 2 3 4 H H − L
Panel A: Sorting on σ̄E

σ̄E 3.925% 5.771% 7.656% 10.350% 17.604% 13.678%

µ̄E 0.442% 0.634% 0.714% 0.250% 0.808% 0.366%

(0.654)

µ̄A 0.395% 0.547% 0.583% 0.256% 0.560% 0.164%

(0.404)

ε̄ 1.258 1.297 1.330 1.405 1.643 0.384

(3.619)

Panel B: Sorting on σ̄A

σ̄A 2.478% 3.768% 5.106% 6.986% 12.211%

σ̄E 3.962% 4.892% 6.227% 8.326% 13.959% 9.996%

(45.946)

µ̄E 0.771% 0.342% 0.576% 0.257% 0.543% −0.227%

(−0.448)

µ̄A 0.474% 0.322% 0.538% 0.303% 0.591% 0.117%

(0.261)

µ̄E − µ̄A −0.345%

(−2.586)

µ̄E − µ̄eA 0.215% 0.023% 0.022% −0.007% −0.049% −0.271%

(−3.783)

ε̄ 1.731 1.297 1.215 1.19 1.147 −0.583

(−11.350)
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Table 4: Double sorting on leverage and asset ivol

The table reports the result of a conditional double sort. At the beginning of each month we first sort
firms according to their market leverage A/E. Within each leverage bucket we then sort firms according
to their asset ivol, σA, computed from daily observations over the previous month. For each quintile we
compute the equity weighted excess returns. Row µ̄H−L

E reports the difference in average excess returns
between the highest and lowest asset ivol quintile, conditional on either the high leverage bucket (column
H) or the low leverage bucket (column L). We also compute the equity weighted elasticities for each σ̄A
quintile. The second row reports the values of the difference in elasticities between the highest and the
lowest asset ivol quintile. Column H−L reports the difference between the high and low leverage columns.

Leverage

H L H − L
µ̄H−LE −0.744% 0.558% −1.302%

(−1.288) (1.084) (−2.181)

ε̄H − ε̄L −0.976 −0.117 −0.860

(−6.622) (−6.896) (−5.949)

Table 5: Variations in equity alpha and elasticities across asset ivol buckets

Panel A reports unconditional CAPM regressions for the high and low asset ivol portfolios, using monthly
excess returns. Panel B reports regressions of average portfolio elasticities on risk factor loadings vst , v

i
t,

and a set of controls: the market return, the volatility of the market, the term and default spreads, for
which we do not report coefficient estimates. Risk factor loadings vst are computed by multiplying the
estimated portfolio beta, obtained from monthly CAPM regressions on daily data, with the volatility of
the market; also estimated on a monthly base using daily data. Risk factor loadings vit and εt are obtained
from monthly estimates, reported in Table 3. t-statistics are reported in parentheses.

Panel A: Unconditional CAPM regression

α̂UE β̂UE

RE,H
t+1 −0.216% 1.537

(−0.665) (21.615)

RE,L
t+1 0.470% 0.606

(2.159) (12.801)

Panel B: Elasticity regression

ε̂0 ε̂1 ε̂2

log(εHt ) 0.042 −0.327 −0.170

(2.931) (−1.531) (−1.015)

log(εLt ) 0.035 −13.355 −10.988

(0.686) (−7.963) (−4.449)
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Table 6: Alpha bias with time varying elasticity and asset beta

The table reports the results from two sets of simulations, each based on 100 paths and 10,000 months.
Panel A reports average monthly unconditional alpha and beta of CAPM regressions for equity and asset
returns. The last column reports the ratio of the simulated to the empirically estimated unconditional
alphas. Panel B reports the average coefficients from regressions of simulated elasticities on simulated risk
factor loadings vst and vit. Parameters used are λM = 0.11, σM = 0.045, σλ = 0.1, vs = 0.025, σs = 0.0129,
vi = 0.025, σi = 0.0125, ε(σ̄A) = 1.4, ε1 = ε2 = −12.5, ηε = 0.3, ρλ,s = ρλ,i = −0.85.

Panel A: Unconditional CAPM simulation

ρλ,ε α̂SIM β̂SIM α̂SIM

α̂UE

1.0 0.194% 0.951 0.411
RE
t+1

0.5 0.137% 0.905 0.292

1.0 0.000% 0.547 0.000
RA
t+1

0.5 0.000% 0.547 0.000

Panel B: Elasticity simulation

ε̂0 ε̂1 ε̂2

1.0 0.441 -17.179 -17.557
log(εt)

0.5 0.416 -13.543 -13.763
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Table 8: The performance of unconditional and conditional models

This table reports estimates of the unconditional and conditional CAPM, for high-minus-low asset ivol
portfolios for both equity and asset returns. The second and third columns report estimates for the
unconditional CAPM. For the conditional model we consider only equity returns. We estimate the intercept
with the constraint that the slope equals 1 for the return of the market multiplied by the conditional beta
of the high ivol portfolio, and -1 for the low ivol portfolio. Predicted betas are obtained using the three sets
of instruments considered in Table 7. For each regression we report coefficients and t-stat (in parenthesis).
Row α/αUE − 1 reports the reduction in unconditional α attained by the conditional model. The last row
reports R2.

Unconditional Conditional, equity

Test assets: Equity Asset Set: (1) (2) (3)

α −0.687% −0.350% −0.434% −0.461% −0.579%

(−1.610) (−1.010) (−1.036) (−1.088) (−1.362)

RM 0.928 0.946

(9.977) (12.490)

βH
E
RM 1 1 1

(3.973) (3.266) (1.835)

βL
E
RM −1 −1 −1

(−1.997) (−1.649) (−0.943)

αA/αE − 1 −48.9%

αE/α
U
E − 1 −36.8% −32.7% −15.6%

R2 0.305 0.408 0.335 0.316 0.307
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Table 9: Leverage versus volatility in elasticity

The table reports time-series regressions of equity value weighted elasticity εt on the instrumental variables
in Set 1 and 4 in Table 7. Panel A and B report results for the high and low ivol portfolios respectively. The
first set consists of vst , v

i
t, and σMt . The second set adds portfolio leverage, LEVt. We report coefficients

and t-stats (in parenthesis) of the estimates. We also report the R2 and monthly standard deviations of
each portfolio elasticity, σ(εt).

Set Intercept vst vit σMt LEVt R2 σ(εt)

Panel A: High asset ivol

(1) 1.127 −0.453 −0.237 1.520 13.2%

(65.691) (−1.759) (−1.191) (4.984)

(4) 0.611 −0.055 −0.279 0.447 0.460 67.6%
0.074

(21.323) (−0.351) (−2.288) (2.298) (19.335)

Panel B: Low asset ivol

(1) 2.154 −34.907 −35.248 23.881 25.7%

(14.060) (−6.567) (−5.019) (8.792)

(4) 1.703 −31.741 −34.225 22.241 0.262 27.0%
0.785

(6.148) (−5.742) (−4.890) (7.865) (1.946)
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Table 10: Leverage versus volatility in the conditional CAPM

The table reports results for the conditional model (9) for equity returns on the high and low asset-ivol
portfolios. We denote predicted equity betas obtained using the first set of instruments described in Table
7 by β

E
, and those obtained using the fourth set by βLEV

E
. The fourth set of instruments adds leverage

to the first. We constrain the slope of the regressions to unity. For each regression we report estimated
coefficients and t-stats (in parenthesis), conditional alphas, improvement relative to unconditional CAPM
alpha αE/α

U
E − 1, and R2.

αE β
E

βLEV
E

αE/α
U
E − 1 R2

H −0.048% 1 −77.6% 68.0%

(−0.150) (19.849)

L 0.385% 1 −18.0% 45.7%

(1.830) (15.278)

H − L −0.434% −36.8% 33.5%

(−1.036)

H −0.038% 1 −82.3% 67.7%

(−0.110) (19.823)

L 0.383% 1 −18.5% 45.7%

(1.820) (15.277)

H − L −0.421% −38.6% 32.7%

(−0.999)
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Options and Risk∗

Giovanni Bruno Jørgen Haug

Abstract

We propose a parsimonious general equilibrium extension of the Black-Scholes

economy that helps clarify how options’ prices, expected returns, risk exposure,

and optimal exercise policies respond to variations in the risk exposure of the

underlying asset. The model allows one to separate the effects from changes in

idiosyncratic versus systematic risk. Among the new insights we establish are that

i) call option prices typically respond negatively to increases in systematic risk, ii)

call options’ expected returns are monotonically decreasing in idiosyncratic risk,

and iii) the optimal exercise date of an American call can be pushed backwards in

time in response to an increase in systematic risk—decreasing the value of waiting

to invest. The effects of a change in risk on options is generally ambiguous be-

cause it affects their prices through two key channels—the volatility channel and

the price channel—and a change in systematic risk causes a repricing of the under-

lying asset that may dominate the volatility channel. The comparative statics are

robust to the presence of stochastic volatility, and thus yield internally consistent

implications not only for the cross-section of options but also for the time-series

of a particular option.

JEL codes: G12, G13, G31

Keywords: Option pricing, general equilibrium, idiosyncratic risk, systematic risk.

∗Both authors are at the Department of Finance, NHH Norwegian School of Economics, and can be
contacted by email at giovanni.bruno@nhh.no or jorgen.haug@nhh.no.
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1 Introduction

It is well known that call and put option prices are increasing in volatility (Merton, 1973,

Theorem 8). A basic premise of this analysis is that the value of the underlying asset

(hereafter simply “asset”) does not respond to variations in volatility. We know from

the basic present value restriction that this premise amounts to implicitly assuming that

variations in volatility of the asset are altogether due to variations in idiosyncratic risk

(ivol)—or a knife-edge case where variations in the required rate of return is exactly

offset by variations in the asset’s expected future value. This leaves open the question

of how option prices respond to non-trivial variations in systematic risk, both in the

cross-section of options and in the time-series of a particular option. Earlier studies

moreover leave open the question of how the option risk-return relationship responds to

variations in the risk exposure of the asset—be it idiosyncratic or systematic.

We address the preceding questions by introducing a minimal general equilibrium

extension to the economy of Black and Scholes (1973). Rather than exogenously speci-

fying the price of the asset, we specify the asset’s cash flow together with a state price

density (SPD, a.k.a. stochastic discount factor in discrete time). This allows us to jointly

price the asset and its derivatives. While our main focus is European call options, we

also discuss important deviating properties of European puts, and the optimal exercise

policy of American calls. To stay as close as possible to the analysis of Black and Scholes

(1973) and Merton (1973) we let uncertainty in the SPD be generated by a Brownian

motion. A novel and crucial aspect of our specification is that the cash flow process is

exposed to an additional Brownian motion, which is independent of that of the SPD.

This two-factor structure of the cash flow allows us to independently consider the effects

of variations in exposure to systematic and idiosyncratic risk.

The thrust of our analysis derives from a simple generalization of the Black-Scholes-

Merton (BSM) formula (Lemma 1). In the BSM economy an increase in risk increases call
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and put option prices via a widening of the distribution of the asset, which increases the

probability of in-the-money (ITM) states—the volatility channel. Our economy allows

additionally for a repricing of the asset. An increase in systematic risk consequently shifts

the distribution to the left, which in isolation reduces call values—the price channel.

Variations in systematic risk clearly also causes variations in volatility (total risk). A

shift in systematic risk consequently activates both channels while a shift in ivol involves

only the volatility channel. We establish sufficient conditions for which the price channel

dominates the volatility channel for ITM calls (Theorem 2).

The option risk-return relationship responds to variations in the risk exposure of

the asset in ways that are surprising relative to conventional wisdom. We establish in a

complementary paper that increases in ivol of the asset causes expected ITM call returns

to decrease and call ivol to increase (Bruno and Haug, 2018, whose model is a reduced

form version of the present setup). In the present paper we demonstrate that this result

does not extend to out-of-the-money (OTM) calls, for which also the call ivol falls with

that of the asset (Figures 1 and 2). While call systematic risk typically is increasing in

the systematic risk of the asset, call ivol is decreasing (Figure 8).

Our main results derive from a model with constant parameters, and are therefore

internally consistent in the cross section. We establish that the qualitative properties

hold also for a particular option by studying the more general case with stochastic risk

exposure—stochastic volatility. Variations in the initial conditions of the risk factor

loadings provide results that are consistent with the comparative statics with constant

parameters.

Finally, we study the effect of variations in risk exposure on the optimal exercise

policy of American calls on the dividend paying asset. We demonstrate that increases

in systematic risk or economy-wide risk shrinks the distance between the asset price and

the exercise boundary. Contrary to conventional wisdom (McDonald and Siegel, 1986)
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an increase in volatility may thus cause firms to invest earlier rather than later, and

thereby reduces the value of waiting to invest (Figure 10).

The observation that Merton’s result—that call prices increase with volatility—is not

general is not new. Indeed, Merton (1974) observes that variations in risk may coincide

with variations in correlation with the “market portfolio” (i.e., the SPD), without pur-

suing it further. Jagannathan (1984) makes the related observation that variations in

risk may shift payoffs into states that are more or less valuable to investors, even when

the shifts are mean preserving spreads. He considers a simple one-period, four-state

example with two distinct calls that do not pay off in the same states of nature. The

less risky option is dearer even when the assets have identical prices. The difference in

the options’ prices are due to an assumption that the state prices are higher in states

where the less risky option pays off. As Jagannathan’s intention is to stay as close to

Merton’s analysis as possible he considers only cases where the price of the asset does

not respond to variations in risk. The formal analysis therefore does not consider gen-

eral equilibrium effects on call option prices (despite Jagannathan making several apt

remarks in that direction). Our analysis adds to his in that we explicitly distinguish

between systematic and idiosyncratic risk, in that we provide sufficient conditions for

a call to be a decreasing function of systematic risk, and in addressing the time series

effects for a particular option.

Rasmusen (2007) considers more general definitions of “riskier distribution” than

mean preserving spreads and derives sufficient conditions under which call prices increase

with risk. His results assume risk neutral agents, and that the expected value of the

asset is unaffected by variations in risk. Rasmusen thus shares with Jagannathan the

implicit assumption that variations in risk do not affect the value of the asset.

Kim (1992) considers how call option prices respond to risk in general equilibrium.

He assumes in the thrust of his analysis that the asset and the SPD depend on one
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common risk factor. An increase in the volatility of the risk factor thus affects not only

the volatility of the asset but also the volatility of the SPD. His main conclusion is that

call option prices generally respond ambiguously to increases in risk.

Unlike Jagannathan and Rasmusen, but like Kim, we allow risk to affect call option

prices also through its repricing effect on the asset—the price channel. Unlike Kim,

however, our setup allows us to decompose risk into systematic and idiosyncratic risk.

The decomposition allows us to arrive at sharper results than the aforementioned studies,

and to clarify the economic role of systematic versus idiosyncratic risk in option pricing.

By being clear about the role of systematic versus idiosyncratic risk we arrive at clearer

implications for applications in asset pricing and corporate finance that rely on the

response of call prices to changes in risk. Finally, none of the aforementioned papers

discuss the response of option expected returns, systematic, idiosyncratic, and total risk

(volatility).

Bailey and Stulz (1989) consider the effect of risk on call prices through the riskless

rate channel, by considering the valuation of index options with stochastic short rates

that are negatively correlated with index volatility.1 They provide a numerical example

of how an increase in volatility of the index causes a fall in the price of the call option.

When risk goes up, the riskless rate goes down, thus increasing the present value of the

strike price. They demonstrate that the net effect on call option value can be negative.

Because the valuation effects are minor even for carefully chosen parameter values, we

choose to shut down this channel in our study, so as not to confound simple discounting

effects with the more fundamental repricing problem. As in Jagannathan (1984) and

Rasmusen (2007), Bailey and Stulz’ analysis does not take the price channel into account.

The major difference in the analyses can be understood by considering what types of

1One can view Kim’s analysis as a generalization of Bailey and Stulz (1989). Variations in risk
in Kim’s model also works through the riskless rate channel, as variations in asset risk coincide with
variations in SPD risk in his framework. The volatility of the SPD feeds into the riskless rate via
precautionary savings motives.
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questions they can answer. All of the aforementioned studies can answer which of two

options will be dearer, when they are written on two different assets, with the same price

but different risk exposure. Only by taking the more robust general equilibrium view of

the problem can we answer the additional question of how the value of a particular call

option responds to a change in risk of its asset—as a change in risk of an asset necessarily

requires a reassessment of its value. Kim’s analysis allows for the latter channel, but

does not allow the riskiness of the asset to change while keeping the riskiness of the

economy unchanged. Thus, his framework does not allow for comparative statics without

also changing the entire economy. As he works with a constant coefficients setup, the

comparative statics are internally consistent only in a cross section of economies.

We proceed by presenting our economy in Section 2, in which we derive the general

equilibrium expression for a European call when the SPD and cash flow generating pro-

cesses are lognormal. In Section 3 we use comparative statics to study how the option

price and risk-return respond to variations in risk. Section 4 extends the analysis to a

setting with stochastic volatility. This extension allows us to revisit the comparative

statics results of the previous section in an internally consistent framework for a partic-

ular option. In Section 5 we discuss how optimal exercise of an American call responds

to variations in risk. Section 6 concludes.

2 The Economy

We represent the sources of risk in the economy by a pair of uncorrelated standard

Brownian motions, W 1 and W 2. The Brownian motions are defined relative to a filtered

probability space (Ω,F ,F, P ) that satisfies the usual conditions, where F is the collection

of information sets generated by the Brownian motions, Ft = σ({W 1
u ,W

2
u}tu=0), t ∈ R+.

We use the short-hand notation Et {·} = E {· |Ft} throughout, and assume frictionless

markets and the absence of arbitrage opportunities.
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There is a risky asset, and a riskless asset that offers a rate of return r. There are also

derivatives whose payoffs depend on the price of the risky asset (hereafter, simply “the

asset”). While our main focus is European call options, we also consider European put

options and American call options when they offer relevant distinct insights.2 To allow

repricing of the asset to affect option prices we specify the dynamics of the cash flow

accruing to the owners of the asset, and let its price be determined endogenously with

those of its derivatives. Prices are determined by the absence of arbitrage opportunities

that implies the existence of a state price density π. We assume that the joint dynamics of

the SPD and the cash flow generating process are governed by the stochastic differential

equations (SDEs)

dπt = atπt dt+ btπt dW
1
t , (1)

dXt = gtXt dt+ v1,tXt dW
1
t + v2,tXt dW

2
t . (2)

The parameter b < 0 determines the riskiness of the economy, g is the growth rate

of the cash flow, v1 and v2 determine the exposure of the cash flow to systematic and

idiosyncratic risk, and the riskless rate is r = −aπ
π

= −a. This framework allows for

separate choices of the overall riskiness of the economy, through b, and the riskiness of

the asset, through the risk factor loadings v = (v1, v2).
3 The two-factor structure allows

us to separately study the effects of systematic risk, through v1, and idiosyncratic risk,

through v2. Because the systematic risk of the asset is determined not only by v1 but also

by b we refer to v1 as the ‘systematic risk factor loading.’ The risk factor loadings can

take values in R, provided asset volatility is non-degenerate in that σ =
√
v21 + v22 > 0.

The sign of v1 determines the sign of the asset’s “beta”, relative to the systematic risk

2The framework we suggest makes it simple to extend the analysis to most types of derivatives,
although the comparative statics we derive do not necessarily extend to a particular claim.

3The analysis of Kim (1992) is nested in the above framework, by letting v1 = k1b and v2 = k2b for
suitable constants k1 and k2.
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factor W 1. The sign of v2 has no bearing on its economic interpretation in our limited

setting. In a more elaborate economy the sign of v2 across firms would indicate for

instance how the firms are related in the supply chain: good news for a firm may well

be bad news for one of its suppliers.

The equilibrium prices of the asset and its European call are now immediate, as both

must satisfy Euler equations determined by the SPD. To arrive at concrete results we

consider the case of constant coefficients, until we generalize to stochastic volatility in

Section 4. It moreover simplifies the analysis to assume the asset pays out the cash flow

rate Xt during [0,∞).4

Lemma 1. Assume constant parameters a, b, g, v1, v2, and that g < µ , r− bv1.5 The

date 0 price of the asset is

S0 =
X0

µ− g
, (3)

and µ is its required rate of return. The price of a European call with strike price K and

expiration date τ > 0 can be expressed as

C0 =
X0

δ
e−δτN(d)−Ke−rτN(d′) (4)

where

d =
ln
(
X0

K

)
− ln(δ) +

(
r − δ + σ2

2

)
τ

σ
√
τ

, (5)

δ = µ− g, d′ = d− σ
√
τ , and σ =

√
v21 + v22.

Proof. Consider first an asset with a payout rate of X during [0, T ] ⊂ R+. Because state

4It is easy to check that all of the results hold also for an asset that pays out XT at a future date T ,
no sooner than the expiration date of the option. The case where the asset pays out a rate on [0, T ],
T < ∞, is analytically difficult, as a finite sum (integral) of lognormals is not lognormal. While our
results surely hold for a rich class of stochastic processes, it is useful to consider the geometric Brownian
motion because of its analytic tractability, and not the least because of its close relation to the analyses
of Black and Scholes (1973) and Merton (1973).

5We use , to highlight equality by definition.
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price deflated gains are P -martingales the price of the asset is given by

S0 = E0

{∫ T

0

πt
π0
Xt dt

}
=

∫ T

0

E0

{
πt
π0
Xt

}
dt =

X0

g − µ
[
e(g−µ)T − 1

]
,

where the second equality follows from Fubini’s Theorem. The third equality is im-

mediate from the independence of W 1 and W 2. The Williams-Gordon-Shapiro growth

model (3) obtains by letting T →∞. The state price density restriction on equilibrium

returns imply that µ = r − bv1 is the required rate of return of S (Duffie and Zame,

1989). To price the call option observe that the call’s payoff is in the span of the riskless

and underlying assets. The continuous cash flow payout corresponds to a constant div-

idend yield of δ = µ− g. Because the riskless rate is constant and the underlying asset

is a geometric Brownian motion the formula of Black and Scholes (1973) and Merton

(1973) thus obtains. Because W 1 and W 2 are independent, the volatility of the asset is

σ =
√
v21 + v22.

Not surprisingly, (3) verifies that the price of the asset is independent of idiosyncratic

risk,6 v2, and decreasing in systematic risk, v1, as b < 0. Thus only the economy-wide

risk, b, and the asset’s systematic risk factor loading, v1, can affect the call price through

the price channel. The appearance of the formula of Black and Scholes (1973) and

Merton (1973) in (4) is not at all surprising or new, in light of the consumption-based

argument of Rubinstein (1976). What the Lemma does, however, is to make precise the

joint determination of the two prices in equilibrium within the two-factor specification

(1)–(2).

To better understand the risk-return relationship between a derivative and its un-

derlying we use Itô’s lemma to express the option’s risk factor loadings and volatility

6This is of course generally not true, as a change in ivol risk may affect the value of E0 {Xt}, as
discussed by Rasmusen (2007). In the parametric case we consider, changes in risk are in the Rothschild
and Stiglitz (1970) sense of mean preserving spreads (at the cash flow growth rate level), as in Merton
(1973) (at the asset rate of return level).

62



as

vc1 = εv1, (6)

vc2 = εv2, (7)

σc = ε
√
v21 + v22 = εσ, (8)

where ε is the elasticity of the derivative value with respect to the value of the asset (Black

and Scholes, 1973)—for our European call S0e
−δτN(d)/C0. The state price restriction on

expected rates of return (as in Duffie and Zame, 1989) implies that the expected return

on the derivative equals

µc = r − σπ
π
· σc
c

= r − bv1ε, (9)

where σπ and σc are the dispersion terms of the SDEs for the state price density and

option price respectively.

3 The Effects of Changes in Risk

We proceed to analyze the effects of changes in risk via simple comparative statics that

apply formally to the cross section of assets and their derivatives. While this type of

analysis is not internally consistent in the time series of a given asset, it yields valuable

insights also in this case, that we verify in an internally consistent but less transparent

setup in Section 4.

We first consider the effects of a change in idiosyncratic risk, and then the effects of

changes in systematic and economy-wide risk. Several insights are based on proof by

example rather than formally stated proofs. Table 1 summarizes the base-case parameter

values that we use for the former.
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Table 1: Base-case Parameter Values

The asset is parametrized by its initial value S0, its growth rate g, volatility σ, systematic risk factor
loading v1, and idiosyncratic risk factor loading v2, where σ =

√
v21 + v22 . The call is parametrized by

its strike price K and time to expiration τ . The economy-wide parameters are the riskless rate r and
the volatility of the stochastic discount factor |b|. The parameters imply that the asset has an expected
rate of return of µ = 0.10. The initial condition for the cash flow (2) is X0 = S0(µ− g).

Asset parameters Call parameters Economy-wide parameters
S0 g σ v1 v2 K τ r b
10 0.05 0.40 0.16 0.367 10 0.25 0.02 -0.50

3.1 Variations in asset idiosyncratic risk

A change in idiosyncratic risk (ivol) does not affect the price of the asset. Because the

price channel does not come into play the effect on the call price is that of Merton (1973):

∂C0

∂v2
= S0e

−δτn(d)
v2
σ

√
τ . (10)

While the derivative is negative when the risk factor loading is negative, the call price

is of course uniformly increasing in volatility, |v2|, as expected.

While the call price response to asset ivol is as expected, the response of the risk-

return trade-off is less obvious. Figure 1 demonstrates how the call’s risk-return tradeoff

(6)–(9) responds to variations in asset ivol, v2, for at- and out-of-the-money calls (ATM,

OTM). In-the-money (ITM) calls have the same response as ATM calls, and are not

reported. The Figure demonstrates that the expected rate of return, and thus also the

systematic risk of the call are uniformly decreasing in the ivol of the asset, independent

of moneyness. The intuition is simple: An increase in asset ivol causes an increase in

the probability of ending up OTM. The covariance between the call payoff and the SPD

is zero conditional on OTM states. Increasing asset ivol thus reduces the magnitude

of the unconditional covariance with the SPD, and consequently the amount of call

systematic risk. Figure 1a confirms that call ivol, vc2, is in contrast uniformly increasing

in v2 for ATM and ITM calls (as formally proven in Bruno and Haug, 2018). Figure 1b
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demonstrates that OTM call ivol has a more complex non-uniform response, increasing

at low levels of v2 while decreasing at higher levels.

Figure 1: The effect of ivol on the call risk-reward trade-off

(a) At-the-money (b) Out-of-the-money

The figures are generated using b = −0.5, g = 0.05, X = 0.5, r = 0.02, τ = 0.25, σ = 0.4. The OTM
option has strike K = 1.5S.

Theorem 1 formalizes some of the discussed features. To reduce the parameter space

we base the result on the concept of forward moneyness (as in e.g. Hull and White,

1987).

Theorem 1. Let F0,τ be the forward price of the asset and m = F0,τ/K.

1. If µ > r then ∀ m > 0 ∂µc

∂v2
< 0.

2. ∀ m ≥ 1,
∂vc2
∂v2

> 0 and ∂σc

∂v2
> 0.

3. ∀ m > 0,
∂vc2
∂v2

> 0 on [0, v2) ∪ (v2,∞).

Proof. Consider first the claim that ∂µc

∂v2
< 0. From (9) and µ > r it is sufficient to show

that ∂ε
∂v2

< 0. The derivative

∂ε

∂v2
=
Se−δτ

c2

[
n(d)

∂d

∂v2
c− N(d)

∂c

∂v2

]
=
Se−δτ

c
n(d)

v2
σ

√
τ

(
1− d

σ
√
τ
− ε
)
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is strictly negative iff 1− d
σ
√
τ
− ε < 0, which can be rearranged as

Se−δτ

Ke−rτ
>

N(d′)

N(d)

d′

d
.

Now use that Se−δτn(d) = Ke−rτn(d′) to get the restriction N(d)d
n(d)

> N(d′)d′

n(d′)
. Because

R(d) , N(d)
n(d)

is increasing in d the inequality holds for every d > d′ = d −
√

(v21 + v22)τ ,

and thus ∀ v2 ∈ R.7

The second claim that ∂σc/∂v2 > 0 when m ≥ 1 follows from Theorem 1 in Bruno

and Haug (2018), by a suitable change of variables. Their Theorem also establishes that

systematic risk, vc1, is decreasing in v2. Using that (vc2)
2 = (σc)2 − (vc1)

2 thus establishes

that ∂vc2/∂v2 > 0.

For the third claim, observe first that σ > 0 ensures that ε > 1 at v2 = 0. From (7)

we thus have that vc2|v2=0= 0 and vc2|v2>0> 0. Continuity of vc2(v2) ensures the existence

of v2 > 0.

With the change of variables h = σ
√
τ =

√
h21 + h22 > 0 we have that

d =
ln(m)

h
+

1

2
h =⇒ lim

h2→∞
d =∞,

d′ =
ln(m)

h
− 1

2
h =⇒ lim

h2→∞
d′ = −∞.

Next, define f(h2) = R(d) −
(
h2
h

)2
d and g(h2) =

(
h2
h

)2
h R(d′)
R(d)−R(d′)

. The effect on call

7The function R(d) is related to the Mills ratio (a.k.a. inverse hazard function) m by R(d) = m(−d)
(see for instance Greene, 1993).
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ivol is:

∂vc2
∂v2

= ε+ v2
Se−δτ

c
n(d)

v2
σ

√
τ

(
1− d

σ
√
τ
− ε
)

= ε

{
1− n(d)

N(d)

v22
σ

√
τ

[
Se−δτN(d)

c
− 1 +

d

σ
√
τ

]}
= ε

{
1− n(d)

N(d)

v22
σ

√
τ

[
e−rτKN(d′)

c
+

d

σ
√
τ

]}
=

ε

R(d)

{
R(d)−

(
h2
h

)2

d− h22
h

N(d′)
n(d′)
n(d)

N(d)− N(d′)

}

=
ε

R(d)

{
R(d)−

(
h2
h

)2

d−
(
h2
h

)2
R(d′)

1
h

[R(d)−R(d′)]

}

,
ε

R(d)
{f(h2)− g(h2)} .

Because limd→−∞R(d) = 0 it follows that limh2→∞ g(h2) = 0 and consequently

lim
h2→∞

∂vc2
∂v2

= lim
h2→∞

ε

R(d)
[f(h2)− g(h2)] = lim

h2→∞
ε lim
h2→∞

R(d)− d
R(d)

= 1,

which establishes v2 > v2.

Corollary 1. For m as in Theorem 1,
∂vc1
∂v2

< 0 for all m > 0.

Bruno and Haug (2018) prove that ATM and ITM call ivol is uniformly increasing

in asset ivol. Figure 1 proves by example that said result does not extend to OTM calls,

for common maturities. Figure 1b shows that there exists an open interval for which

call ivol is decreasing in asset ivol. While we are not able to analytically characterize the

open interval, becuase ∂vc2/∂v2 is highly nonlinear in v2, Figure 2 illustrates it for short-

and long-lived calls. Regions D represent combinations of ivol and moneyness for which

call ivol has a negative response to asset ivol. As the equations that characterize the

boundaries becomes highly sensitive to rounding error when the probability of ending

up ITM becomes sufficiently low (determined by the ratio of moneyness to uncertainty
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σ
√
τ), we consider moneyness S/K above 0.45.

Figure 2: OTM call ivol decreasing in asset ivol

(a) Short-lived call; τ = 0.25 (b) Long-lived call; τ = 1.00

Regions D are combinations of asset ivol v2 and moneyness S/K for which call ivol vc2 = εv2 is decreasing
in v2. Remaining parameters are as in Table 1.

While Figure 2 reports the sign of the response of call ivol to asset ivol, Figure 3

reports the sign of the response of call volatility to asset ivol. Region D in Figure 3a

represent combinations of moneyness and asset ivol for which call volatility has a negative

response to asset ivol. The call has three months to expiration. While the response is

positive for very high levels of asset ivol, the graph suggests that short-lived call options’

response is negative in the economically relevant part of the parameter space. Figure 3b

repeats the exercise for a longer lived option—with one year to expiration in this case.

A longer time to expiration makes the call more asset like. Consequently the region in

which call volatility decreases in asset ivol shrinks.

3.2 Variations in asset systematic risk

We first consider simple comparative statics for variations in the systematic risk factor

loading v1, for which the ensuing repricing of the asset causes variations in moneyness.
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Figure 3: OTM call volatility decreasing in asset ivol

(a) Short-lived call; τ = 0.25 (b) Long-lived call; τ = 1.00

Regions D are combinations of asset ivol v2 and moneyness S/K for which call volatility σc = ε
√
v21 + v22

is decreasing in v2. Remaining parameters are as in Table 1.

The observed effects are thus due to the joint effect of variations in systematic risk and

moneyness. We subsequently consider comparative statics that control for moneyness,

while still allowing for general equilibrium responses to v1, and thus ensure the price

channel is active.

Figure 4 shows how call total, idiosyncratic, and systematic risk and expected return

varies with the systematic risk of the asset. The graphs are generated for a call that is

ATM for v1 = 0.16. While all quantities have a positive response to increases in v1 at

realistic levels, ivol has a pronounced drop at relatively lower levels of v1. Large values

of v1 corresponds to low levels of moneyness and thus causes a response in ivol similar

to that observed in Figure 1b: Ivol of OTM calls has a negative response to increases

in the total risk of the asset beyond a threshold risk level. Figure 4b shows that the

other quantities have uniformly positive responses to v1 when the maturity of the call is

extended to five years.

Figure 4 suggests that the expected return and risk factor loadings are increasing
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Figure 4: The effect of systematic risk on call option expected returns and risk

(a) Short-lived call; τ = 0.25 (b) Long-lived call; τ = 5.00

The Figures reports graphs for a European call’s expected return, µc, volatility σc, and systematic and
idiosyncratic risk factor loadings vc1 and vc2, against the systematic risk factor loading of the asset v1.
The spot price of the asset S0, and thus also moneyness, varies with v1. The calls are ATM at v1 = 0.16.
Remaining parameter values are as in Table 1.

on some domain [0, v1), and that v1 is increasing in maturity, as calls become more

asset-like as the time to expiration increases. The Figure moreover suggests the general

property that the domains on which µc and vc1 are increasing contain the corresponding

domains for σc and vc2. Moreover, the domains for µc and vc1 coincide as µc is a strictly

positive transformation of v1. We formally verify that this is a general property in the

present economy in the next result.

Proposition 1. Let v1 = g−r
−b , and consider the connected sets A =

{
v1 > v1 :

∂vc2
∂v1

> 0
}
,

B =
{
v1 > v1 : ∂σc

∂v1
> 0
}
, and C =

{
v1 > v1 : ∂q

∂v1
> 0, q = µc, vc1

}
that contains the

smallest possible v1. We have that A ⊂ B ⊂ C, and inf A = inf B = inf C = v1.

It is worth noting that the role of the lower limit v1 in Proposition 1 is asset specific:

The asset price (3) clearly relies crucially on assumptions about the cash flow process.

The qualifier “contains the smallest possible v1” ensures that we do not consider ex-

tremely high values of v1, as all quantities except vc2 are increasing for sufficiently high,
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but economically irrelevant v1.

Proof. ε has an inverted U-shape as a function of v1: For low levels of v1 the call becomes

deep ITM. Moneyness decreases as v1 increases, which increases ε, but as v1 increases

further ε decreases as the likelihood of ending up ITM increases due to the magnitude

of volatility. Recall that vc2 = εv2 while vc1 = εv1 and σc = ε
√
v21 + v22. On the set

D = {v1 : ∂ε
∂v1

< 0} we have that vc2 is strictly decreasing in v1. By continuity vc1 and σc

are strictly increasing on a non-empty subset of D.

It remains to show that inf A = inf B = inf C = v1. We have that limv1→v1 S0 = ∞

and thus that limv1→v1 N(d) = limv1→v1 N(d′) = 1. Consequently limv1→v1 ε = 1, the

lower bound of ε (Bergman et al., 1996). Because ε(v1) 6= ε(v1 +x) for x > 0 the desired

property follows. Continuity of ε implies the sets are connected.

Table 2 confirms that the non-monotonic responses to v1 are caused by large changes

in v1 causing shifts in moneyness that fundamentally changes the properties of the call—

making it more or less asset-like. ITM and OTM calls are defined relative to v1 = 0.1,

so that increases in v1 beyond 0.1 moves the call OTM. The first column reports the

values we use for economy-wide risk, b, and maturity, τ . The range of values of v1

for which both µc and σc are increasing in v1 is larger than the range for which vc2 is

increasing, across all parametrizations, consistent with Proposition 1. Indeed, µc and σc

have negative responses to v1 only for values of v1 that causes the call to be deep OTM.

The table demonstrates that the non-monotonic responses for short-lived calls are due

to ε having an inverted U-shaped response to v1.

While the value of b is not important for σc, it is important for µc. Indeed, for high

values of −b, we observe that the expected returns increase for almost all levels of v1 and

the spread in expected returns is higher. On the other hand the level of τ is important

for both µc and σc. Indeed, the effect of changes in v1 on σc and µc is more prominent

for shorter maturities—calls that are less asset-like.

71



Table 2 confirms that the increase in expected return and volatility due to an increase

in v1 is enhanced by ε’s response to v1, except for deep OTM options. For the deep OTM

calls the elasticity exhibits a negative response. The negative response of ε is however

compensated for in µc and σc because µc = εµ = ε(r − bv1) and σc = εσ = ε
√
v21 + v22.

Thus, even when ε falls, µc and σc may still still exhibit a positive response to increases in

v1. The idiosyncratic risk factor loading vc2 = εv2, on the other hand, has an unambiguous

negative response to v1 whenever ∂ε/∂v1 < 0.

Consider next the effect of variations in systematic risk on the call price. A call price

behaves increasingly like the asset price as moneyness or time to expiration increases.

Trivially, only the price channel is at work for the asset. For deep ITM calls, or calls

with long time to expiration, the price channel thus dominates the volatility channel.

OTM calls derive their value largely from the possibility that they end up ITM. This

possibility has a non-negligible probability precisely because of the volatility of the asset.

The volatility channel consequently becomes more important as moneyness decreases.

The next result formalizes this simple intuition.

Theorem 2. If −b > (µ− g)
√
τ then ∂C0

∂v1
< 0 ∀ F0,τ > K.

Proof. We have that

∂c0
∂v1

=
b

µ− g
S0e

−δτN(d) + bτS0e
−δτN(d) + S0e

−δτn(d)
v1
σ

√
τ ,

which is strictly negative iff

− b
δ

N(d)− bτN(d) > n(d)
v1
σ

√
τ ,

iff

− b

δ
√
τ

N(d)σ

v1
− bτ N(d)σ

n(d)v1
> 1.
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Consider the first term on the left hand side of this inequality. For K < F0,τ we have

that N(d)
n(d)

> 1. Because σ
v1
≥ 1 the term is strictly larger than unity. The second term is

strictly positive.

Theorem 2 identifies ITM forward as a sufficient condition in terms of the moneyness

of the call. The restriction −b > (µ − g)
√
τ implies that a negative price response is

more common the higher the economy-wide risk, b, the smaller the asset systematic risk

is relative to the economy-wide risk, and the lower the dividend payout rate δ = µ− g.

Corollary 2. Let p0 be the price of a European put. It is always the case that ∂p0
∂v1

> 0.

Proof. p0 = C0 +Ke−rτ − S0 and ∆ = ∂C0

∂σ
∈ (0, 1).

A shift from idiosyncratic to systematic risk that does not affect overall riskiness

has a negative impact through the price channel, while no impact through the volatility

channel. The next result formalizes this rather obvious result.

Proposition 2. For a given level of volatility σ,

∂C0

∂v1

∣∣∣∣
σ

= S0e
−δτN(d)

b

µ− g
< 0.

Proof. The result is immediate from v22 = σ2 − v21, S0e
−δτn(d) = Ke−rτn(d′), and that

∂d
∂b

= ∂d′

∂b
.

A reasonable concern is that the above results apply only in very special circum-

stances, or that the effects are economically small. Figure 5 graphs call prices as func-

tions of systematic risk, for three levels of moneyness, using the base-case parameter

values of Table 1. The Figure shows that all option prices uniformly decline in value

as systematic risk increases from zero, for all degrees of moneyness, and for reasonable
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levels of systematic risk.8 Figure 5a shows the relationship for the economically rele-

vant domain of systematic risk, for which monotonicity holds. Figure 5b includes also

unrealistically high levels of systematic risk, and demonstrates that the relationship is

not uniformly monotone on R+. For sufficiently high values of v1 the sufficient condition

in Theorem 2 does not hold, and indeed even the call labled ITM exhibit a positive

response. The reason is simply that ITM is defined relative to v1 = 0.16, and values

significantly higher than this causes a sufficiently strong repricing of the asset to shift the

call out of the money. Figure 5b thus highlights the necessity to control for moneyness

to better understand the price impact from smaller magnitude shocks to systematic risk.

Figure 5: Call option prices and systematic risk

(a) Economically relevant domain (b) Extended domain

The graphs report option values relative to the base case option value, C(v1)
C0

, for different levels of
the systematic risk factor loading v1. The current price of the asset is S0 = 10 at the base-case value
v1 = 0.16, and the graphs represent three degrees of base-case moneyness; K = 1.5S (OTM), K = S
(ATM), and K = 0.5S (ITM).

While we do not report the formal results in the paper, Figure 6 shows the same

relationship as in Figure 5 for an asset that offers a one-time payout of XT (with XT ∼
8For an asset that pays out XT in the near future, for instance at T = 1, ATM and OTM options

start to increase in value in response to increases in v1, at ‘medium’ levels of systematic risk. For these
types of short-lived assets there is thus a U-shaped relationship even at economically meaningful levels
of systematic risk. Monotone decline in value sets in at about T = 2 for the base-case parameters.

74



log N) at dates T = 1 or T = 10, in Figures 6a and 6b respectively. The call has time to

expiration τ = 0.25 in either case. The different responses to increases in systematic risk

in the Figures is caused by the relative importance of the price and volatility channels

in the two assets. Systematic risk affects long-lived assets more than short-lived assets

when risk is assumed to increase with time—as in our setup. In Figure 6a systematic

risk has a limited impact on the price of the asset, causing the price channel to be

dominated by the volatility channel. In the more realistic case of Figure 6b the repricing

becomes sufficiently strong for the price channel to dominate the volatility channel. The

relationship converges to that of Figure 5a as the life span of the asset is extended.

Figure 6: Call option prices and systematic risk for short-lived assets

(a) T = 1 (b) T = 10

The graphs report call option values c for different levels of the systematic risk factor loading v1, when
the asset pays out XT at date T = 1 or T = 10. The current price of the underlying is set equal to
S0 = X0 exp{−(µ − g)T} = 10 for the base-case value v1 = 0.16. The graphs represent three degrees
of moneyness; K = 15 (OTM), K = 10 (ATM), and K = 5 (OTM). Time to expiration of the call is
τ = 0.25.

It is evident from Lemma 1 that the economy-wide risk parameter b—the ‘volatility’

of the state price deflator—interacts in a crucial way with the systematic risk factor

loading v1. It is thus pertinent to ask if the impression conveyed by Figure 5, that

the price channel generally dominates the volatility channel, relies crucially on the level
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of economy-wide risk. Table 3 reports ratios of call option prices C(X0, K, b, v1) for

different levels of economy-wide risk, systematic risk factor loadings, and moneyness.

For each level of economy-wide risk, moneyness is defined relative to the scenario with

a systematic risk factor loading v1 = 0.16. In the low risk case, with b = −0.30, all

calls change more in value as v1 changes, than in the cases of b = −0.50 and b = −0.70.

The reason is apparent from (3), which demonstrates that the effect of v1 is large when

µ = r − bv1 is close to the cash flow growth rate g. While the table verifies that the

effect of the systematic risk factor loading is weaker the higher the economy-wide risk,

it also demonstrates that the price channel does indeed dominate the volatility channel

even for what seems to be realistic levels of b.9 The effects are economically significant

not only for the relatively large four point shocks to the systematic risk factor loadings,

centered around 0.16, but also for the smaller one point changes.

In real settings changes in risk are typically more complex than what we account for in

the preceding analysis. It is therefore relevant to ask what joint changes to idiosyncratic

and systematic risk increases or decreases option value—a simple relationship would

serve as a useful empirical proxy. We can answer this question by characterizing the joint

changes that leave option value unchanged. Let C(θ) represent (4) evaluated at some

parameter θ. The relationship of interest is given by the equation C(v1, v2) = C0 ∈ R++.

The problem is thus equivalent to that of computing implied volatility. Because the

equation is highly transcendental we cannot express the exact relationship analytically.

Figure 7 shows level curves C(v1, v2) = C0 of options prices in (v1, v2)-space for three

levels of moneyness. Theorem 2 implies that combinations (v1, v2) above (below) the

level curves represent changes in risk that increase (decrease) option value. For deep ITM

options the volatility channel is largely ineffective, which causes ivol to have a negligible

9The case of b = −0.30 corresponds to a standard consumption-based model with a relative risk
aversion of 10, and per capita consumption volatility of 0.03: Let πt = e−βte−γt (as in Rubinstein, 1976;
Lucas, 1978; Breeden, 1979), where per capita consumption det = µeet dt + σeet dW

1
t . We then have

that a = −β − γµe + 1
2γ(1 + γ)σ2

e and b = −γσe.
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effects on the call price. For deep OTM options the volatility channel is dominant, which

causes systematic risk to have a much weaker effects on the call price, and consequently a

flatter level curve. The effects are consistent with the earlier intuition of how moneyness

determines how “asset-like” the call is.

Figure 7: Level curves in (v1, v2) space

The graphs report combinations of v1 and v2 that ensure C(v1, v2;K) = C0 for a suitable ‘observed’
price C0. The current price of the asset is S0 = 10 and the graphs represent three degrees of moneyness;
K = 1.5S (OTM), K = S (ATM), and K = 0.5S (ITM).

The pure risk response: Controlling for moneyness

It is evident from the preceding analysis that qualitative properties of comparative statics

depend crucially on moneyness. An important insight from Lemma 1 is that an increase

in systematic risk causes a repricing of the asset that may offset the benefits from the

associated increase in volatility. But the repricing of the asset also affects moneyness.

To better understand the pure risk-response we next formally control for moneyness

in the comparative statics. The previous comparative statics fit situations with very

large variations in systematic risk, while the present comparative statics correspond to

situations with only marginal variations.

Figure 8 shows graphs for the call expected rate of return µc, volatility σc, and
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systematic and idiosyncratic risk factor loadings vc1 and vc2 as functions of the systematic

risk factor loading of the asset v1. The graphs are generated for short and long maturity

OTM calls, at τ = 0.25, 1.0, with S/K = 0.8. It is clear from (7) that vc2 is simply a scaled

version of the call elasticity, and is decreasing in v1 in both cases. The call’s expected

return and systematic risk are uniformly increasing in that of the asset, consistent with

the situation when moneyness is allowed to vary with v1, in Figure 4. The response of

call ivol differs from the earlier situation though, in that it is now uniformly decreasing

in v1. Call volatility behaves differently across Figures 8a and 8b. While it is decreasing

at reasonable levels of v1 for the short-lived call, it becomes uniformly increasing for the

call with one year to maturity. The qualitative features of the long-lived call in Figure

8b hold when maturity is extended, and is also representative for ITM calls irrespective

of maturity.

Figure 8: The effect of systematic risk on call expected returns and risk, with fixed
moneyness

(a) Short-lived OTM call; τ = 0.25 (b) Long-lived OTM call; τ = 1.00

The Figures report graphs for a European call’s expected return, µc, volatility σc, and systematic and
idiosyncratic risk factor loadings vc1 and vc2, against the systematic risk factor loading of the asset v1.
Moneyness S/K is held fixed at 0.8. Remaining parameter values are as in Table 1.

Consider next the general equilibrium response of the call price when controlling for
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moneyness. We compute the partial derivative of the call price with respect to v1 using

that m = F0,τ

K
= X0

r−bv1−ge(bv1+g)τ , but hold forward moneyness m fixed when evaluating

the partial derivative. The first step ensures that the partial derivative captures the

price channel impact. The second step ensures that the reported effects are pure risk

responses, and not confounded by variations in moneyness.

Figure 9 traces the partial derivative ∂C0

∂v1

∣∣∣
m

for three levels of moneyness. Figure 9a

demonstrates that the call price has a uniformly negative response to increases in sys-

tematic risk on the economically relevant domain, and that the strength of the response

is monotonically decreasing. Small increases in systematic risk of the asset will thus al-

ways depress the call price. While it may be hard to visualize this for the OTM call, its

graph indeed stays negative, but close to zero. Figure 9b extends the graphs to a larger

domain to illustrate the general mathematical properties of the call price response. In

particular the graph for the OTM call warrants extra attention, as it gives the impres-

sion of being positive for relatively low values of v1. The root of the OTM graph has a

value of about 30% though—an unrealistically high level of systematic volatility for any

asset.10

To formally study the call price response, it is useful to control for moneyness by

letting the strike price adjust to keep moneyness constant. This again allows us to

look at the general equilibrium effects of a small change in systematic risk for a given

level of moneyness. A literal, internally consistent interpretation of this situation is a

cross section of calls on different underlying assets, identical levels of moneyness κ, and

identical parameter values except for v1. To this end define

c∗0 = S0

[
e−δτN(d)− κe−rτN(d′)

]
,

10The S&P 500 experienced volatility of above 30% in the run-up to the LTCM crisis. This index
is however far removed from the true ‘market portfolio,’ and necessarily includes a non-trivial level of
idiosyncratic risk, v2. Moreover, the OTM call in Figure 9 represents an extreme degree of moneyness
not on offer in actual markets. For a call 0.8 OTM forward, rather than 0.5 as in the graph, the root
is above 60%.
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Figure 9: Call option price sensitivity to systematic risk, with fixed moneyness

(a) Economically relevant domain (b) Extended domain

The graphs represent systematic Vega for fixed forward moneyness, ∂C0

∂v1

∣∣∣
m

. The graphs are generated

using the base-case parameter values in Table 1, for three degrees of moneyness; m = 0.5 (OTM),
m = 1.0 (ATM), and m = 1.5 (ITM).

where κ is a constant, and S0 = X0/δ and δ = r − bv1 − g as in Lemma 1. An increase

in v1 causes a positive contribution from the volatility channel as it widens the asset

price distribution, which increases the likelihood of ending up ITM. The increase in v1

has an offsetting effect through the price channel as it increases the P -discount rates of

the asset and the call payoff—reflected in a reduction in S0. The strength of the price

channel depends on how asset-like the call is, formalized in the following result.

Proposition 3. If S0 ≥ K and τ ≥ 1
b2

then c∗0 is decreasing in v1.

Proof. The partial derivative with respect to v1 is

∂c∗0
∂v1

=
b

µ− g
S0

[
e−δτN(d)− κe−rτN(d′)

]
+ bτS0e

−δτN(d)

+ S0e
−δτn(d)

∂d

∂v1
− S0κe−rτn(d′)

(
∂d

∂v1
− v1
σ

√
τ

)
.

Observe first that S0e
−δτn(d) = S0κe−rτn(d′), which implies that

∂c∗0
∂v1
|v1=0< 0. Consider
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hereafter v1 6= 0. Since we in addition can write S0

[
e−δτN(d)− κe−rτN(d′)

]
= c∗0 we can

rewrite the previous expression as

b

µ− g
c∗0 + bτS0e

−δτN(d) + S0e
−δτn(d)

v1
σ

√
τ ,

which is negative iff

−b
[

e−δτN(d)− κe−rτN(d′)

µ− g

]
− bτe−δτN(d) > e−δτn(d)

v1
σ

√
τ

iff

−b
[

e−δτN(d)− κe−rτN(d′)

µ− g

]
1

e−δτn(d)v1
σ

√
τ
− b
√
τ

N(d)σ

n(d)v1
> 1.

Observe first that the first term is strictly positive. Observe next that σ/v1 ≥ 1 (assum-

ing without loss of generality that v1 ≥ 0). If κ < 1 then N(d)
n(d)

> 1. Hence, for −b
√
τ ≥ 1

the result holds.

Proposition 3 shows call prices are decreasing in systematic risk given adequate time

to expiration and moneyness. The parameter restrictions represent sufficient conditions

for the call to be adequately asset-like for the price channel to dominate the volatility

channel. The Proposition implies a similar result for c0, complementing Theorem 2.

Corollary 3. If c∗0 is decreasing in v1 then c0 is also decreasing in v1

Proof. Consider the case in which the starting strike price of c∗0 is equal to the strike

price of c0. A positive change in v1 determines a negative variation in S0. The strike

price in c∗0 is an increasing function of S0, K
∗ = κS0, while in c0 the strike price is fixed

at K. Observe that c0 and c∗0 are both decreasing functions of their strike price, and

that K∗ is decreasing in v1. Consequently, if c∗0 is decreasing in v1, the negative response

of c0 will be at least as strong as that of c∗0.
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3.3 Variations in economy-wide risk

Consider first the effect of variations in economy-wide risk, −b, on the call’s expected

return and risk. Table 4 quantifies the relationships for two levels of moneyness that

we define relative to b = −0.5, with ITM at S/K = 1.25, OTM at S/K = 0.80, and

maturities of 0.25 and 1.00. There is a uniform positive response to an increase in

economy-wide risk, across all cases. Notice that an increase in |b| has a knock-on effect

on µc, which increases not only because the asset expected return increases, µ = r− bv1,

but also because of an increase in elasticity and µc = εµ. The positive response in call

total risk and idiosyncratic risk factor loadings is due to the increase in elasticity. The

option behaves more like the asset as maturity increases, evident in the weaker response

of elasticity for the longer maturity τ = 1.00.

The intuition for the effect of variations in economy-wide risk on price levels is

simple and well known. We verify the intuition in the present economy for completeness.

An increase in the magnitude of b causes a reduction in the state price density across

all states, which causes all prices to fall. For a given volatility of the asset there is

no offsetting increase in value from the volatility channel, and the value of the call

consequently decreases.11

Proposition 4. For given risk factor loadings (v1, v2),

∂C0

∂ − b

∣∣∣∣
v1,v2

= −S0e
−δτN(d)v1

(
1

µ− g
+ τ

)
< 0.

Proof. The result is immediate from S0e
−δτn(d) = Ke−rτn(d′), and that ∂d

∂b
= ∂d′

∂b
.

11Kim (1992) considers a situation of joint changes in v1 and b. We discuss how his setup is a special
case of the present economy, in Appendix A.
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4 Stochastic Volatility

The basis for the earlier analysis—Lemma 1—assumes constant risk factor loadings.

The preceding comparative statics are consequently internally consistent only in the

cross section. We next formally verify that the earlier comparative statics implications

apply also in the time series by extending (2) to incorporate stochastic volatility in the

cash flow process, while maintaining the assumption of constant parameters of the state

price density π in (1). To this end we assume the following dynamics for the squared

risk factor loadings:

dv21,t = κ1(v̄1
2 − v21,t) dt+ η1v1,t

(
ρ1 dW

1
t +

√
1− ρ21 dW

v,1
t

)
, (11)

dv22,t = κ2(v̄2
2 − v22,t) dt+ η2v2,t

(
ρ2 dW

2
t +

√
1− ρ22 dW

v,2
t

)
, (12)

where W 1
t ,W

2
t ,W

v,1
t and W v,2

t are independent Brownian motions. The dynamics as-

sumed for the risk factor loadings are identical to those of Heston (1993), where κj

governs the speed of adjustment, v̄j is the long-run mean, ηj is the volatility of the

squared risk factor, and the ρj’s are the correlation parameters. The earlier comparative

statics correspond to variations in the initial conditions of (11) and (12). Compared to

the analysis in Section 3 the stochastic volatility framework captures rational expecta-

tions about future reversals of shocks to risk exposure. This more general framework

thus allows us to assess to what extent the earlier comparative statics overstate the

pricing impact from shocks to the risk exposure of the asset.

Monte Carlo simulation

Because our objective is not to derive an option pricing formula, and the current setup

is even more complex than that of for instance Heston (1993), we use Monte Carlo

simulation to determine call prices. We first utilize the physical probability measure P
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to obtain the date 0 equilibrium price of the asset. We next work under the equivalent

martingale measure Q to obtain the call price. The first step, under P , allows us to

incorporate the price channel into the analysis.

To determine the equilibrium price of the asset we simulate (1), (2), (11), and (12)

under P . We use M = 10000 paths and TS = DY dates, with D = 250 and Y = 5.

Each period, of equal length ∆t, corresponds to a day. We use the Milstein discretization

scheme for the risk factor loadings, which is known to produce high quality approxima-

tions for mean reverting processes (Glasserman, 2004), and a simple first order Euler

scheme for the cash-flow and state price density processes.

The discounted cash-flows along path j is given by h(j, t) = πt(j)
π0
Xt(j). The date 0

price of the asset is consequently given by

S0 =
1

M

M∑
j=1

TS∑
t=1

h(j, t). (13)

Using S0 as the initial condition for the SDE of S we proceed in the usual manner to

simulate Sτ under Q, and discount corresponding call payoffs at the riskless rate. As in

Heston (1993) the relevant Q dynamics are given by

dSt = (r − δt)St dt+ v1,tSt dW
Q
1,t + v2,tSt dW

Q
2,t,

dv21,t = κQ1 (v̄1
Q2 − v21,t) dt+ η1v1,t

(
ρ1 dW

Q,1
t +

√
1− ρ21 dW

Q,v,1
t

)
,

dv22,t = κQ2 (v̄2
Q2 − v22,t) dt+ η2v2,t

(
ρ2 dW

Q,2
t +

√
1− ρ22 dW

Q,v,2
t

)
,

where δt = µt − g and µt = r − b v1,t. As in Heston (1993) the risk-adjusted parameters

for the risk factor loadings are given by κQj = κj + λj and v̄j
Q2 = κj v̄j

2/κQj , where

λj is the market prices of risks for risk factor j = 1, 2. To determine if the preceding

comparative statics are invariant to stochastic volatility it is sufficient to consider the
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simplest case, where λj = 0 and ρj = 0, which causes the dynamics of the risk factor

loadings to be identical under P and Q.

To obtain call returns we simulate the asset price under P , again using S0 from (13)

as the initial condition. The dynamics of the ex-dividend price is

dSt = gSt dt+ v1,tSt dW
1
t + v2,tSt dW

2
t , (14)

which we discretize with a first order Euler scheme.

We simulate M paths for St for τc < TS dates, with τc∆t = τ—the maturity date of

the option. The call return is simply Rc
0,τ = Cτ/C0 − 1, where C0 is approximated as

described above, and Cτ = (Sτ −K)+ with Sτ simulated under P . The M independent

return observations Rc
0,τ allow us to easily compute expected option returns and return

variances.

Comparative statics

We next investigate how the pricing of a particular option responds to shocks to the risk

exposure of the asset. Such shocks correspond to variations in the initial conditions of

the risk factor loadings (11) and (12), v0,1 and v0,2.

Table 5 reports results from the Monte Carlo simulation. For each combination

(v0,1 v0,2) the table reports moneyness, call price, excess expected return, volatility, and

idiosyncratic risk.12 We report the latter values for three cases: A benchmark case

with constant risk factor loadings (corresponding to the setup in Section 3), the case

12We compute the call option’s discrete returns from 0 to τ over each path j as Rc,jτ =
Cjτ
c0

,

the excess expected return as µcτ = 1
M

∑M
j=1R

c,j
τ − erτ , the standard deviations of returns as

σcτ =
√

1
M−1

∑M
j=1(Rc,jτ − µcτ )2. For the ivol of call returns we use the restriction on total volatil-

ity of the option σcτ =
√
β2
Rcτ ,πτ

σ(πτ )2 + (vc2,τ )2, where βRcτ ,πτ is the ratio between the covariance of the

call’s returns with the SPD and the variance of the SPD (σ(πτ )2). We estimate βRcτ ,πτ as
µcτ

σ(πτ )2
. We

also tried to estimate beta as the slope of the regression of the call’s returns on the SPD at time τ , and
we did not find significant differences between the two methods.
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with stochastic risk factor loadings and slow adjustment and the case with stochastic

risk factor loadings and fast adjustment. The overall impression is that the presence

of stochastic volatility does not materially affect the comparative statics in the simpler

model in Section 3.

In the upper half of Table 5 systematic risk varies between 10% and 30% while ivol

is fixed at 20%. An increase in systematic risk, v0,1, depreciates the call price through

its repricing effect on the asset. On the other hand, expected call returns and volatility

are increasing in v0,1 as expected in light of Figure 4. The responses are independent

of the speed of adjustment of volatility, κj. Even a temporary shock to systematic risk

may thus materially shift call prices in the opposite direction of what is usually assumed

in the option pricing literature. The presence of stochastic risk factor loadings does not

prevent the price channel to dominate the volatility channel, as is the case also in the

benchmark case with fixed risk exposure.

In the lower part of Table 5 ivol varies between 10% and 30% while systematic

risk is fixed at 15%. In line with Merton’s (1973) model free result (when applied to

ivol), positive shocks to ivol inflates call prices. The table again reproduces the perhaps

surprising negative response of call expected returns and volatility.13 We also observe

that the call’s ivol has a positive response, which is consistent with what we observe in

Figures 1a and 1b, where vc2 is always increasing in v2 when the interval of variation for

v2 does not contain unrealistically high values. As in the static volatility framework, the

volatility channel dominates the price channel. While ivol may in general trigger the price

channel—expected future cash flows generally depend on the level of total/idiosyncratic

risk—the cash flow process (2) is sufficiently linear in idiosyncratic risk for this not to

be the case. The irrelevance of ivol for the value of the asset in the present economy is

evident in the moneyness column, which equals unity across all values of v0,2.

13The negative response of volatility (total risk) of the call occurs because the calls under consideration
are ATM spot/OTM forward. This is consistent with the response in the fixed risk exposure model, as
demonstrated in Section 3.1. For calls that are ITM forward the call volatility is increasing in v0,2.
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We also observe that the effects are more pronounced for low speed of adjustment

κj, as the effect of changes in the initial conditions are more persistent for low κj. For

high speed of adjustment the impact of the initial condition is absorbed earlier, and

prices of European options with the same levels of long-run risk will converge as the

time to expiration, τ , is extended. For our particular analysis, the change in speed of

adjustment has a similar effect to changing the maturity of the option. Indeed, there is

more time to absorb the effect of a shock to initial risks exposure with longer times to

expiration. For κj = 0.1 there is for instance a −73% (91%) variation in c0 and a 36%

(−14%) difference in µcτ when v0,1(v0,2) varies from its lowest to its highest value. When

κj = 1.5 there is a −49% (74%) variation in c0 and a 26% (−12%) difference in µcτ as

v0,1(v0,2) changes from the lowest to the highest value.

5 On The Value of Waiting to Invest

A pertinent question is how changes in systematic risk affect the “value of waiting to

invest” (McDonald and Siegel, 1986). We address this question through simple compar-

ative statics of American call options when the asset has fixed risk exposures. Because

the asset pays out a continuous cash flow stream there is a non-trivial parameter space

for which early exercise is optimal. The question can thus be rephrased as asking if the

optimal exercise boundary is materially affected by changes in systematic risk versus

changes in idiosyncratic risk.

We use a simple implicit finite difference scheme to illustrate the relationship between

the American (Bermudan) call option price, its optimal exercise boundary, and the

systematic risk parameters.14 The scheme is based on (2) and (3) from Lemma 1 as

the model for the asset, which yields the following version of Black and Scholes’ (1973)

14There are well known weaknesses of the implicit finite difference scheme. These deficiencies do not
affect our conclusions in any way, however, and we choose simplicity and transparency over numerical
accuracy and convergence properties.
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partial differential equation (PDE)

rc = ct + cS(rS −X) +
1

2
cSSσ

2S2,

where subscripts denote partial derivatives of Ct = c(t, S). The PDE is solved subject to

the usual condition that c(t, S) = (S −K)+ on the free boundary and at the expiration

date t = τ (McKean, 1965).

Figure 10 reports optimal exercise boundaries, S∗, for the base case parameters of

Table 1, as well as for levels of the systematic risk factor loading 20% below and above

the base case. Figure 10a may give the impression that there is nothing new in how

systematic risk affects the boundary: An increase in systematic risk from 0.128 through

0.160 to 0.192—corresponding to volatilities σ of about 0.388, 0.400, and 0.414—causes

the boundary to shift downwards, which in isolation pushes the optimal exercise of the

option forwards in time. The value of waiting thus seems to increase with risk. Notice,

however, that this picture represents only the effect of the volatility channel. To take

also the price channel into account, Figure 10b plots the exercise boundaries relative to

the current price of the asset, S∗

S0
. The ordering of the boundaries are inverted relative to

Figure 10a, because the price of the asset shifts closer to the optimal exercise boundary

as the systematic risk factor loading increases. In other words, the price channel—which

moves the price closer to the exercise boundary, ceteris paribus—dominates the volatility

channel—which moves the exercise boundary away from the current price of the asset,

ceteris paribus. Indeed, immediate exercise becomes optimal in the riskiest scenario. An

increase in risk, which is due to an increase only in systematic risk, thus causes a decrease

in the value of waiting.15 Figure 11 confirms that the economy-wide risk parameter b

15To the extent that government policy affects systematic risk, it is thus not true that politicians that
increase uncertainty by postponing important decisions as a rule cause firms to postpone investment.
Delaying economy-wide decisions may in fact bring investments forward—and destroy value in the
process.
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trivially plays the same role as v1, as it affects options prices only through the price

channel.

Figure 10: Optimal exercise boundaries and systematic risk factor loadings

(a) Exercise boundaries S∗ (b) Exercise boundaries S∗

S0

The plots correspond to systematic risk factors loadings of v1 = 0.128, 0.16, and 0.192, with total risk
of 0.4 when v1 = 0.16. All plots are computed using 50 periods and 500 price levels, equally spaced
from 0 to 20. The strike price is K = 5, and all options stay deeply in-the-money with initial prices of
14.71, 10.00, and 7.58 respectively.

Without providing any restrictions on the parameter space, we conjecture that the

value of waiting is decreasing in systematic risk for long-lived assets. The intuition

behind this should be clear from the analysis of European options, for which the price

channel dominates the volatility channel for all but the very short-lived assets (and for

economically irrelevant parameter values).

6 Conclusion

We study the response of call options’ prices and risk-return trade-off to variations in

the risk exposure of the underlying asset, which has distinct exposures to idiosyncratic

and systematic risk factors. The analysis is carried out in a simple general equilibrium

extension of the Black-Scholes economy, that allows the underlying asset to be priced
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Figure 11: Optimal exercise boundaries and economy-wide risk

(a) Exercise boundaries S∗ (b) Exercise boundaries S∗

S0

The plots correspond to economy-wide risks of −b = 0.4, 0.5, and 0.6. All plots are computed using 50
periods and 500 price levels, equally spaced from 0 to 20. The strike price is K = 5, and all options
stay deeply in-the-money with initial prices of 14.71, 10.00, and 7.58 respectively.

jointly with its derivatives. Variations in ivol of the underlying affects derivatives only

through the traditional volatility channel, while variations in systematic risk addition-

ally affect derivates through the price channel : A change in systematic risk necessarily

requires a repricing of the asset.

We establish several novel insights through a combination of formal (constructive)

proofs and proofs by example: Call prices may decline when volatility increases due

to an increase in systematic risk of the underlying; call expected returns are generally

decreasing in idiosyncratic risk of the underlying, but increasing in systematic risk; call

idiosyncratic risk is decreasing in the underlying’s systematic risk, but not necessarily

increasing in idiosyncratic risk when deep out-of-the-money; the value of waiting to

invest is typically decreasing in the systematic risk of the underlying.

The main thrust of the analysis is carried out as comparative statics for a model

with constant parameters, and is internally consistent in the cross section of options.

To address to what extent the main insights hold also in the time series of a particular
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option we extend the analysis to allow for stochastic risk factor loadings—stochastic

volatility. Changes in the initial conditions of the risk factor loadings generate responses

similar to those outlined in the constant parameter case.
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A Relation to Kim (1992)

The analysis of Kim (1992) can be cast within the current framework by allowing b =

f(v1), for instance b = B + Iv1 with B < 0 and I ∈ R. The interpretation of this factor

structure is that a change in systematic risk of a firm is caused by an industry-wide

change in risk, or for very small |I| that the asset’s cash flow uncertainty determines

part of the uncertainty of the state price deflator.16 In this economy a change in v1 causes

a change also in the volatility of the state price deflator, whose magnitude depends on

the ‘industry exposure’ I.

Proposition 5. If b = B + Iv1 then

∂C0

∂v1
= S0e

−δτ
[
N(d)

B + 2Iv1
µ− g

+
v1
σ

√
τn(d)

]
= S0e

−δτ
[
N(d)

b+ Iρσ

µ− g
+ ρ
√
τn(d)

]
.

If I = 0 then Proposition 5 is equivalent to Theorem 2. The role of I is to strengthen

the role of the price channel when I < 0 and weaken it when I > 0. These effects

are intuitive as a negative value of I causes an increase in the risk factor loading v1 to

coincide with an increase in economy-wide risk.

16This is the case in general equilibrium if the asset is in positive supply and its cash flow is not in
the span of the other assets.
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Table 2: European call option expected return and risk

The table reports expected returns, µc, volatility, σc, idiosyncratic risk factor loading vc2, and elasticity,
ε, for call options that are ITM or OTM at systematic risk factor loading v1 = 0.1. Column one reports
economy-wide risk—SPD volatility, −b, and the call maturity, τ . The remaining parameter values are
r = 0.02, g = 0.02, v2 = 0.2, X0 = 0.5, and K = 9.0 and K = 11.5 for ITM and OTM calls respectively.
We use (3) to compute S0.

ITM OTM
b, τ v1 µc σc vc2 ε µc σc vc2 ε

0.10 0.55 1.76 1.57 7.89 1.19 3.80 3.40 17.01
0.15 2.40 6.34 5.07 25.36 3.49 9.20 7.36 36.81
0.20 4.05 9.55 6.75 33.78 5.18 12.22 8.64 43.20
0.25 5.12 11.31 7.06 35.34 6.20 13.70 8.56 42.80

b = −0.5 0.30 5.75 12.20 6.77 33.86 6.76 14.34 7.95 39.77
τ = 0.25 0.35 6.09 12.60 6.25 31.26 7.01 14.51 7.19 35.99

0.40 6.25 12.70 5.68 28.41 7.09 14.43 6.45 32.26
0.45 6.29 12.65 5.13 25.69 7.07 14.21 5.77 28.86
0.50 6.27 12.50 4.64 23.22 6.98 13.93 5.17 25.87
0.55 6.20 12.30 4.20 21.03 6.86 13.61 4.65 23.27
0.10 0.37 1.18 1.06 5.30 0.53 1.71 1.53 7.66
0.15 0.89 2.34 1.87 9.37 1.13 2.99 2.39 11.96
0.20 1.32 3.12 2.20 11.03 1.58 3.73 2.64 13.21
0.25 1.61 3.57 2.23 11.15 1.86 4.12 2.57 12.89

b = −0.5 0.30 1.79 3.81 2.11 10.58 2.03 4.31 2.39 11.96
τ = 1 0.35 1.90 3.93 1.95 9.77 2.12 4.38 2.17 10.88

0.40 1.96 3.99 1.78 8.92 2.16 4.39 1.96 9.83
0.45 1.99 4.00 1.62 8.13 2.17 4.37 1.77 8.88
0.50 2.00 3.99 1.48 7.42 2.17 4.33 1.60 8.04
0.55 2.00 3.97 1.35 6.79 2.15 4.28 1.46 7.31
0.10 0.99 1.85 1.66 8.30 2.12 3.96 3.54 17.73
0.15 4.48 6.59 5.27 26.39 6.44 9.48 7.58 37.92
0.20 7.68 9.88 6.98 34.94 9.76 12.55 8.87 44.39
0.25 9.85 11.68 7.30 36.50 11.87 14.08 8.79 43.98

b = −1 0.30 11.18 12.60 6.99 34.96 13.08 14.74 8.17 40.88
τ = 0.25 0.35 11.94 13.01 6.45 32.28 13.70 14.93 7.40 37.03

0.40 12.33 13.13 5.87 29.37 13.95 14.86 6.64 33.23
0.45 12.49 13.09 5.31 26.58 13.98 14.65 5.95 29.76
0.50 12.50 12.94 4.80 24.04 13.88 14.37 5.34 26.70
0.55 12.42 12.75 4.35 21.79 13.70 14.07 4.80 24.04
0.10 0.69 1.30 1.16 5.83 1.00 1.86 1.66 8.33
0.15 1.75 2.57 2.06 10.31 2.20 3.24 2.59 12.97
0.20 2.66 3.42 2.42 12.10 3.15 4.05 2.86 14.32
0.25 3.30 3.91 2.44 12.23 3.77 4.48 2.79 13.99

b = −1 0.30 3.71 4.18 2.32 11.61 4.16 4.69 2.60 13.01
τ = 1 0.35 3.97 4.32 2.14 10.73 4.39 4.78 2.37 11.86

0.40 4.12 4.39 1.96 9.82 4.51 4.80 2.14 10.74
0.45 4.21 4.41 1.79 8.97 4.57 4.79 1.94 9.72
0.50 4.26 4.41 1.63 8.19 4.59 4.75 1.76 8.83
0.55 4.28 4.39 1.50 7.51 4.58 4.70 1.60 8.04
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Table 3: European call option prices and systematic risk

The table reports ratios of European call option values C(X0,K, b, v1)/C(X0,K, b, 0.16) based on
Lemma 1, for varying levels of systematic risk due to economy-wide risk b, in (1), and the systematic
risk factor loading v1, in (2). The last three columns report ratios for 20% out-, at-, and in-the-money
options defined relative to the cases v1 = 0.16.

b v1 µ− r S0 OTM ATM ITM

0.12 0.036 30.00 8.45 12.79 19.90
0.15 0.045 12.00 1.64 1.85 2.07

-0.30 0.16 0.048 10.00 1.00 1.00 1.00
0.17 0.051 8.57 0.61 0.55 0.49
0.20 0.060 6.00 0.15 0.10 0.07
0.12 0.060 16.67 3.54 4.74 6.36
0.15 0.075 11.11 1.37 1.47 1.58

-0.50 0.16 0.080 10.00 1.00 1.00 1.00
0.17 0.085 9.09 0.73 0.68 0.64
0.20 0.100 7.14 0.29 0.23 0.18
0.12 0.084 15.19 3.10 4.04 5.24
0.15 0.105 10.93 1.33 1.42 1.50

-0.70 0.16 0.112 10.00 1.00 1.00 1.00
0.17 0.119 9.21 0.75 0.71 0.67
0.20 0.140 7.45 0.33 0.26 0.22

In column three µ− r = −bv1. The remaining fixed parameter values are r = 0.02, g = 0.05, v2 ≈ 0.37,
and τ = 1. The cash flow initial value X0 is set using (3) to ensure that S0|v1=0.16= 10 across the three
levels of b. Strike prices are K = 12, 10, 8 for the OTM, ATM, and ITM columns.
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Table 4: European call option expected returns-risk and economy-wide risk

The table reports call expected returns and risk based on (6)–(9), for varying levels of economy-wide
risk b in (1). We report moneyness S/K, the call expected return µc, volatility σc, and systematic and
idiosyncratic risk factor loadings vc1 and vc2. We consider two base-case levels of moneyness, S/K = 1.25
(ITM) and S/K = 0.8 (OTM), defined relative to b = −0.5.

ITM OTM
τ b S0/K µc σc vc1 vc2 S0/K µc σc vc1 vc2

-0.30 1.93 0.12 0.53 0.33 0.41 1.24 0.26 1.28 0.80 1.00
-0.35 1.70 0.15 0.62 0.39 0.49 1.09 0.46 2.02 1.26 1.58
-0.40 1.52 0.21 0.76 0.47 0.59 0.97 0.77 3.01 1.88 2.35
-0.45 1.37 0.29 0.97 0.61 0.76 0.87 1.18 4.13 2.58 3.23
-0.50 1.25 0.42 1.29 0.80 1.01 0.80 1.67 5.29 3.30 4.13

0.25
-0.55 1.14 0.61 1.74 1.08 1.36 0.73 2.22 6.42 4.01 5.01
-0.60 1.06 0.88 2.31 1.44 1.80 0.67 2.84 7.52 4.70 5.87
-0.65 0.98 1.22 2.97 1.86 2.32 0.63 3.50 8.57 5.35 6.69
-0.70 0.92 1.63 3.69 2.31 2.88 0.59 4.20 9.57 5.98 7.47
-0.75 0.86 2.10 4.44 2.77 3.47 0.55 4.95 10.53 6.57 8.22
-0.30 1.93 0.12 0.54 0.34 0.42 1.24 0.21 1.03 0.64 0.80
-0.35 1.70 0.16 0.64 0.40 0.50 1.09 0.30 1.29 0.80 1.01
-0.40 1.52 0.21 0.76 0.48 0.60 0.97 0.41 1.57 0.98 1.22
-0.45 1.37 0.27 0.91 0.57 0.71 0.87 0.54 1.85 1.16 1.45
-0.50 1.25 0.35 1.07 0.67 0.84 0.80 0.68 2.13 1.33 1.67

1.00
-0.55 1.14 0.45 1.25 0.78 0.98 0.73 0.84 2.41 1.50 1.88
-0.60 1.06 0.56 1.44 0.90 1.12 0.67 1.02 2.68 1.67 2.09
-0.65 0.98 0.68 1.63 1.02 1.27 0.63 1.21 2.94 1.83 2.29
-0.70 0.92 0.82 1.83 1.14 1.43 0.59 1.41 3.19 1.99 2.49
-0.75 0.86 0.97 2.02 1.26 1.58 0.55 1.62 3.43 2.14 2.67

The remaining fixed parameter values are as in Table 1.
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CCP’s Multilateral Netting with Payoffs

Correlation across Members

Giovanni Bruno∗

Abstract

Central clearing of derivatives negotiated in over-the-counter (OTC) markets,

has been proposed as one of the main pillars of the financial regulation, developed

after the crisis of the 2007-2008, in order to improve financial stability. I study

the impact of the clearing of derivatives through a central counterparty on the

expected exposure generated by several derivative asset classes negotiated on the

OTC markets. As showed in previous literature, the effect in terms of exposure is

determined by the trade-off between bilateral and multilateral netting opportuni-

ties. I find that correlation across members decreases multilateral netting efficiency

and I provide a closed form solution to evaluate the relation between benefit of

multilateral netting and correlation of payoffs across members. I also find that

less diversified members have less incentive to clear and I show a rational way of

maximizing netting efficiency when there are multiple central counterpaties.
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1 Introduction

During the last two decades the derivatives markets have grown exponentially. As il-

lustrated in D.Duffie (2011), they have the potential of improving the overall efficiency

of the financial markets as well of creating important frictions. Financial derivatives

are traded on regulated exchanges or in Over-The-Counter (OTC) markets. Exchanges

offer higher liquidity and mitigation of credit risk, while OTC markets allow to trade

less standardized contracts and are usually traded bilaterally between counterparties. In

1986, the notional outstanding on the OTC markets and on the exchanges were almost

the same (about $500 billion)1. By 1995, the notional outstanding in the OTC markets

was 5 times higher than the exchanges and in 2005 this ratio was still the same (see

J.Gregory (2010)).

The systemic importance for the stability of the financial markets of the OTC trans-

actions has been a major concern for regulators in the last years, in particular for their

embedded counterparty risk, that is the risk that one party to a derivative contract is

not able to fulfill its obligations. The default of a major dealer bank2 threatens the

financial positions of its counterparties, whose creditworthiness is questioned by other

counterparties, generating a destabilized financial system that might lead to a default

cascade as described in D.Duffie (2011), K.R.French et al. (2010) and S.Battiston et al.

(2012). In order to deal with the risk produced by OTC transactions, regulators in US

and EU issued respectively the Dodd-Frank Act and the European Market Infrastruc-

ture Regulation (EMIR). One of the main objectives of this new regulatory framework

is to decrease systemic risk by shifting the OTC transactions to a market where trades

are executed throughout a Central Clearing Counterparty (CCP).

A CCP is a financial institution which stands between the two sides of a trade, in

1Source: J.Gregory (2010)
2A commercial bank authorized to buy and sell government securities including federal reserve and
municipal bonds.
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particular when a contract is cleared, it is replaced with two other contracts (of opposite

sides) where the CCP is the buyer for the original seller and the seller for the original

buyer3. The most relevant characteristic of this trading mechanism is that the CCP

guarantees the payoff of each part of the contract from the default of its counterparty.

However, as C.Pirrong (2009) points out, counterparty risk is not completely eliminated,

but it is shifted from each counterparty to the CCP

The quantification of the counterparty risk has three main components:

• the exposure, that is the max between the payoff of the contract and zero,

• the default probability of the counterparty,

• the wrong way risk, that is the correlation between the first two components.

The quantification of the counterparty risk is relevant for the pricing as well as for the

computation of the capital requirements, to which the banks are subject due to the

previous mentioned regulation. In this work I analyze the impact of the CCP on the

exposure.

The exposure on a derivative contract can be decreased using Netting agreements4.

As showed in D.Duffie and H.Zhu (2011) and R.Cont and T.Kokholm (2014), the impact

of the introduction of the central clearing in terms of exposure depends on a trade-off

between two types of netting opportunities: bilateral and multilateral netting. The

former is obtained through the original trading mechanism in the OTC markets between

each pairs of conterparties, which can net each other positions across several asset classes.

The latter, instead, is obtained through the CCP, which can net the positions across

entities on all the cleared asset classes (see Figure 1). D.Duffie and H.Zhu (2011) also

3See C.Pirrong (2009).
4A Netting agreement is a contract between two counterparties that allows the aggregation of all the
transactions between them. For instance, if two counterparties are linked by a CDS and a swap
contract, they can agree to settle on the base of the net value of the two positions in case of default of
one of the two counterparties, instead of considering the value of the contracts separately (see Bielecki
et al. (2011)).
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show the conditions under which clearing a certain asset class generates a positive effect

in terms of exposure5, quantified using the expected exposure (EE) as risk measure.

The present work contributes to the literature showing how correlation of payoffs across

members decreases the multilateral netting efficiency.

The main objective for the introduction of the central clearing on the OTC markets

is to enhance financial stability. However, the contribution of the CCP to systemic risk

is ambiguous. Indeed, the introduction of the CCP modifies the architecture of the fi-

nancial network (as shown in Figure 1). If we consider just the cleared contracts, the

CCP creates an highly dense interconnected network, also known as complete network,

since, through the CCP, the losses due to a negative liquidity shock are shared across

all the members, therefore, each member of the system is exposed to all the other mem-

bers’losses. In F.Allen and D.Gale (2000) the authors show that such kind of network

minimizes the risk of a financial contagion since the losses of a bank are mutualized

across more creditors, minimizing the negative impact of the liquidity shock. In a more

recent paper, D.Acemoglu et al. (2015) dispute the role of the interconnections. The

authors show that as long as the magnitude of the liquidity shock is below a certain limit

threshold, the complete network is less fragile, confirming what was found in F.Allen and

D.Gale (2000). However, if the liquidity shock is above the limit threshold, the complete

network is most dangerous since it allows for a fast propagation of the shock across all

the members of the system and it maximizes the number of default in the network.

In the present work I do not consider default probabilities and systemic risk. The

main contribution is to analyse how correlation of derivative payoffs across members

contributes to modify the overall exposure of each member given that the optimal in-

frastructure of the network in terms of systemic risk might be of several kinds. Using

the theoretical framework presented in D.Duffie and H.Zhu (2011), I show in section

5The new regulatory framework asks to limit the exposure of the banks, in order to prevent a large loss
as a result of a single institution. Therefore, the lower is the exposure the better it is.
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4 that if the exposures of member i to different members are correlated, the benefit

of multilateral netting is decreased in terms of expected exposure (EE) and expected

shortfall (ES). The payoffs of the contracts with different members can be correlated

because such members might be exposed to similar risks and therefore they need to use

similar hedging strategies to manage them, as showed in an empirical work Benoit et al.

(2015). For instance, member j and m may be both exposed to the credit risk of the

same bond and enter both in a CDS contract with member i. Therefore, in this case

the exposure of i to j and to m would be positively correlated. As showed in E.Farhi

and J.Tirole (2012), correlated risk exposures might be explained by the incentive of the

banks to maximize the likelihood of being bailed out.

The intuition is that a positive correlation between exposures across members de-

creases the positive effect of multilateral netting since the netting will be more difficult

because the payoffs will move in the same direction. This is relevant for the risk man-

agement of the banks because a different exposure may affect the cost of collateral and

have an impact on capital requirements.

In section 5 I investigate the different benefit from clearing for two counterparties en-

tering in a new derivative contract whose payoff has different correlations with the other

derivatives to which the the two counterparties are exposed. Under the assumption of

heterogenous correlations, the members that are less diversified have less incentive to

clear. The intuition is that the payoff of a new derivative contract that has different

correlations with the payoffs of the other derivatives in the portfolios of the two counter-

parties, gives a different contribution to the overall exposure of the two counterparties

and the one that will benefit the most will have an higher incentive to clear the new

contract. This is relevant for the fee policy of the CCP, which may have an incentive to

over charge the members that are doing the best job at diversifying because they have

an higher incentive to clear.
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Finally, in section 6, I show the most efficient way to clear when there are multiple

CCPs and there is correlation across members, since having a single CCP might endanger

the overall system because it would be completely dependent from a single too big and

too interconnected to fail financial institution.

CCP

Figure 1: Interbanking member networks: on the left without CCP and with CCP on
the right.

2 The Power of Netting

Netting is one of the typical clauses used in the derivative contracts to decrease coun-

terparty risk. In order to understand the power of bilateral netting ,which is attainable

in the OTC markets, let’s consider a toy example.

Let the member6 i be exposed to the member j on a CDS for 150$ (which means

that j owes 150$ to i) and that member j is exposed to i on a swap contract for 100$,

using the netting agreement the net position will be an exposition from i to j for 50$.

Therefore, in case j would default, i would lose 50$. Instead, if i was the one incurring

in bankruptcy, j would still owe 50$. Now let’s introduce the CCP, if the two members

decide to clear just the CDS contract, then the bilateral netting (through asset classes)

will not be possible anymore, therefore there will be an exposition of i to the CCP of 150$

and an exposition of j to i of 100$. On the other hand, there is the power of multilateral

netting. In order to understand the latter, let’s consider a different situation, a market

6The terms bank, member and sometimes entity will be used interchangeably.
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with three members (i,j and m) where i is exposed to j for 100$, j is exposed to m for

100$ and m is exposed to i for 100$ and that all the expositions are on CDS contracts;

in this case the bilateral netting is completely ineffective, but if all the CDS contract are

cleared throughout the same CCP then the net exposition of each member will be 0.

Netting is an important feature to take in consideration for the determination of both

EE and ES. I use EE for this analysis since is one of the main measures used by the Basel

regulation for the determination of the banking risk and in order to be consistent with

the analysis performed in D.Duffie and H.Zhu (2011). Furthermore, I use ES in order

to check the robustness of the results. We may define the EE as the amount expected

to be lost if the counterparty defaults under the physical probability measure P (see

J.Gregory (2010)), analytically

EE = E [max (X, 0)] , (1)

where X is the payoff of the derivative contract and E[.] denotes the expectation.

ES is the conditional expected exposure above the quantile q of the distribution under

the physical probability measure P , analytically

ES = E
[
max (X, 0) |X > qthquantile

]
. (2)

The exposure’s computation captures the fact that, in the case of default of the counter-

party, the bank will still owe the full value of the derivatives if the position has a positive

value for the counterparty. Instead, if the position has a positive value and there is a

default of the counterparty, the bank will not be able to recover the full amount.

Correlation between payoffs may significantly affect the power of netting. Let’s

consider for instance two random payoffs X1 and X2 jointly normally distributed with

means µ1 and µ2, standard deviations σ1 and σ2 and correlation ρ. Allowing for netting
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between the 2 positions gives the following EE

EENet =E [max(X1 +X2, 0)] (3)

=σφ(µ/σ) + µΦ(µ/σ). (4)

where Φ is the standard normal cumulative distribution, φ is its density and µ = µ1 +µ2

and σ2 = σ2
1 +σ2

2 +2ρσ1σ2 are the mean and variance of the sum of X1+X2 (See D.Brigo

et al. (2013) for a comprehensive explanation). If netting is not allowed the EE is

EENoNet =E [max(X1, 0) + max(X2, 0)] (5)

=σ1φ(µ1/σ1) + µ1Φ(µ1/σ1) + σ2φ(µ2/σ2) + µ2Φ(µ2/σ2). (6)

Assuming for simplicity that µ1 = µ2 = 0 and σ1 = σ2, the difference between the two

EE above is

EENoNet − EENet =
σ1√
π

(
√

2−
√

1 + ρ). (7)

The expression above shows the power of netting of decreasing EE and we can notice

that it depends on the correlation parameter ρ, indeed if ρ increases also EENet increases

until ρ = 1 where EENet = EENoNet and therefore the power of netting is neutralized.

3 Independent Exposures

In this section I obtain the change in terms of EE and ES due to the introduction of the

CCP, using the same setting presented in D.Duffie and H.Zhu (2011).

Firstly, I describe the setting. There is an OTC market with N dealer banks and K

asset classes (such as credit, interest rates, commodities, equities) in which the members

evaluate in 0 the expected value of a payoff due at the final date T . Xk
ij represents
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the amount that the entity j owes to i at the final date T for the asset class k and it

is uncertain. The uncertainty about this amount is generated by changes in the mark

to market of the derivatives as well in their notionals. The exposure is given by the

max(Xk
ij, 0). In this section, I assume that Xk

ij are independent across members of the

market (i.e. for all i and j) and asset classes k. Furthermore, they are identically

normally distributed with 0 expected value and standard deviation equals to σ7.

Bilateral netting allows for netting across asset classes with the same counterparty

but not across members. Therefore, before introducing a CCP the EE for each member

i is

φiN,K =
∑
j 6=i

E

[
max

(
K∑
k=1

Xk
ij, 0

)]
, (8)

where

z =
K∑
k=1

Xk
ij ∼ N (0, σ

√
K), (9)

Therefore, from expression (8) we may obtain

φiN,K =
∑
j 6=i

∫ +∞

0

zf(z)d(z) (10)

=
∑
j 6=i

1

σ
√

2πK

∫ +∞

0

ze−
z2

2σ2K d(z) (11)

= (N − 1)σ

√
K

2π
. (12)

Now let us introduce the CCP for clearing a single asset class, for instance l. With central

clearing, positions are netted across members for the cleared asset class, therefore the

7Some of these assumptions will be relaxed later.
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expected exposure of entity i to the CCP is

γiN,l = E

[
max

(∑
j 6=i

X l
ij, 0

)]
, (13)

where

w =
∑
j 6=i

X l
ij ∼ N (0, σ

√
N − 1). (14)

From expression (13) we may obtain

γiN,l =

∫ +∞

0

wf(w)d(w) (15)

=
1

σ
√

2π(N − 1)

∫ +∞

0

we
− w2

2σ2(N−1)d(w) (16)

= σ

√
N − 1

2π
. (17)

The total EE in this case for the member i is given by the sum of γiN,l plus the expected

exposure on the remaining K−1 asset classes that are not cleared. Therefore, there will

be a reduction in the total exposure if

∆i
EE = φiN,K − (γiN,l + φiN,K−1) > 0. (18)

Now, we can also compute the ES in the 2 cases indicated above.

In absence of clearing ES will be

φi,ESN,K =
∑
j 6=i

E

[
max

(
K∑
k=1

Xk
ij, 0

)
|
K∑
k=1

Xk
ij ≥ Z

]
(19)

=
∑
j 6=i

∫ +∞

−∞
zf(z|z ≥ Z)d(z). (20)
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Since

E(z|z ≥ Z) =
E [z1z≥Z ]

P (z ≥ Z)
, (21)

we can rewrite (20) as

=
∑
j 6=i

1

σ
√

2πK

∫ +∞

Z

ze−
z2

2σ2K d(z)
1

P (z ≥ Z)
(22)

= (N − 1)σ

√
K

2π
e−

Z2

2σ2K
1

P (z ≥ Z)
(23)

To simplify notation let us define

d1 =
Z

σ
√
K
, (24)

therefore (23) is

φi,ESN,K = (N − 1)σ

√
K

2π
e−

d21
2

1

P (z ≥ Z)
(25)

In the second case the ES respect to the CCP γi,ESN,l is

E

[
max

(∑
j 6=i

X l
ij, 0

)
|w ≥ W

]
=

∫ +∞

W

wf(w|w ≥ W )d(w) (26)

=
1

σ
√

2π(N − 1)

∫ +∞

W

we
− w2

2σ2(N−1)d(w)
1

P (w ≥ W )

(27)

= σ

√
N − 1

2π
e
− W2

2σ2(N−1)
1

P (w ≥ W )
(28)

= σ

√
N − 1

2π
e−

d22
2

1

P (w ≥ W )
(29)

where

d2 =
W

σ
√
N − 1

. (30)
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If

α = P (w ≥ W ) = P (z ≥ Z) (31)

Then

d1 = d2 = d. (32)

The clearing of the asset class l will reduce the ES if

∆i
ES = φi,ESN,K − (γi,ESN + φi,ESN,K−1) > 0 (33)

= (N − 1)σ

√
K

2π

e−
d2

2

α
−

(
σ

√
N − 1

2π

e−
d2

2

α
+ (N − 1)σ

√
K − 1

2π

e−
d2

2

α

)
(34)

=
e−

d2

2

α
∆i
EE (35)

As showed in D.Duffie and H.Zhu (2011) the reduction in EE, due to the clearing of an

asset class, is increasing in the number of members, since the possibilities of multilateral

netting across members increase. However, the reduction is decreasing in the number

of asset classes, because an high numbers of asset classes increases the bilateral netting

efficiency. From a comparison of ∆i
EE and ∆i

ES, we can see from Figure 2, that with

the expected shortfall the number of members of the market needed in order to obtain

a positive effect from the clearing of asset class l is the same that the one in terms of

EE. However, the ES is a more sensitive measure.
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Figure 2: Benefit from central clearing and number of members with Independent
exposures.

This figure represents the relationship between ∆i
EE and ∆i

ES ( in which ES is at 95%) and the number
of dealer banks for several numbers of asset classes K.

4 Correlation of exposures across members

In this section I relax the assumption of independence and analyse the effect of the

correlation between payoffs across members on the EE and the ES of each member. In

other words I study the case in which E
[
Xk
ijX

k
im

]
6= 0. Furthermore, I assume that

such correlation is constant. The latter assumption facilitates calculations and allows to

focus on the impact that correlation has on multilateral netting efficiency. I maintain the

assumptions of normal distribution, zero expected value and equal standard deviation for

the payoffs, but I relax the assumption of independence between members, in particular
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for the covariance we have the following

Cov
(
Xk
ij, X

k
im

)
=E

[
Xk
ijX

k
im

]
(36)

=ρi,kj,mσ
2 (37)

=ρσ2, (38)

assuming that

ρi,kj,m = ρ ∀ j,m, i, k. (39)

Proposition 1. The reduction in expected exposure and expected shortfall due to the

introduction of a CCP is decreasing in the correlation across members.

Proof. Let us consider now the case in which member i clears just the asset class l and

compares the EE with the ES in the case in which there is no clearing. The EE in the

case of no clearing is

φiN,K =
∑
j 6=i

E

[
max

(
K∑
k

Xk
ij, 0

)]
(40)

=(N − 1)σ

√
K

2π
. (41)

The EE in the case of clearing of the asset class l is

φiN,K−1 + γiN,l, (42)
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in which

γiN,l =E

[
max

(∑
j 6=i

X l
ij, 0

)]
(43)

=

√
S

2π
. (44)

Here S is the variance of
∑

j 6=iX
l
ij and is given by

S =Var

(∑
j 6=i

X l
ij

)
(45)

=E

(∑
j 6=i

X l
ij

)2
 (46)

=
∑
j 6=i

E
[(
X l
ij

)2]
+ 2

∑
j 6=i

∑
m 6=i,j

E
[
X l
ijX

l
im

]
(47)

=(N − 1)σ2 + 2
∑
j 6=i

∑
m6=i,j

Cov
(
X l
ij, X

l
im

)
. (48)

Using the assumptions stated above we have

S =(N − 1)σ2 + 2
∑
j 6=i

∑
m6=i,j

ρσ2 (49)

=σ2(N − 1) + 2
(N − 1)!

2!(N − 3)!
ρσ2 (50)

=σ2

(
(N − 1) +

(N − 1)!

(N − 3)!
ρ

)
. (51)

Therefore,

γiN,l =
σ√
2π

√
(N − 1) +

(N − 1)!

(N − 3)!
ρ (52)
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is an increasing function of ρ. Therefore, the benefit of the multilateral netting is

∆i
EE = φiN,K − (φiN,K−1 + γiN,l), (53)

which reduces when ρ increases.

The relation between the benefit of multilateral netting and ρ it is shown in Figure

3.

Figure 3: Benefit from central clearing and correlation of payoffs across members.

This figure represents the relationship between the variation in Expected Exposure (solid line) and
Expected Shortfall (stars) due to the central clearing of asset class k and the average correlation ρ for
different numbers of members N in the network.

Given the normality assumption for the payoffs, it can been shown that 35 holds also in

this case, therefore for the ES at 95% the benefit from the introduction of the CCP on
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the asset class k is

∆i
ES =

e−
d2

2

α
∆i
EE, (54)

where d = 1.644 and P = 0.05. As we can see from Figure 3, also the benefit in terms

of ES reduces but it is more sensitive. Indeed it can be shown that

| ∂∆ES

∂ρ
|≥| ∂∆EE

∂ρ
| (55)

5 Heterogenous correlations

In the previous section I assumed a constant correlation across members, however, it

might be that some derivatives’payoffs with some members are more correlated than

others. This might affect the incentive to clear a specific derivative for some members.

For instance, let’s consider the toy example in Figure 4. The members A and B have

a derivative on asset class l with payoff X l
AB

8. Both, A and B, have derivatives on the

same asset class l with other two members of the system j1 and j2, but the payoffs of the

derivative whose A is exposed (X l
Aj1

and X l
Aj2

) have a correlation of ρ with the payoff

of the new derivative X l
AB, whereas X l

Bj1
and X l

Bj2
are uncorrelated with X l

AB. As I

showed in the previous section, correlation decreases the benefit of multilateral netting

efficiency. Therefore, depending on the level of ρ, it may be more convenient for A not

to clear the derivative with B9. On the other hand, B has an higher incentive to clear

such a derivative in terms of EE. The result is that the member that is doing a better

job in terms of diversification (in this case B) has an higher incentive to clear, at least

in term of EE.

Proposition 2. Given two counterparties entering in a derivative contract, the benefit

8From the perspective of B would be X l
BA = −X l

AB .
9Because it might be the case that the benefit from bilateral netting efficiency is higher.
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Figure 4: Central clearing of payoffs with heterogeneous correlation.

A

j2

B

j1

X l
Aj2

X l
Aj1

X l
Bj1

X l
Bj2

X l
AB

0

0

ρ

ρ

This figure represents a network of counterparties, A,B, j1 and j2, having exposure to derivatives in the
asset class l, in which Xs

kz represents the exposure of the counterpary A to the counterparty z on the
asset class s. Furthermore, ρ represents the correlation between payoffs linked by the dashed line.

from clearing the contract will be higher for the most diversified counterparty.

Proof. Consider the case in which the payoff that the member c owes to i is corre-

lated with the payoffs that the other members owe to i and that the other payoffs are

uncorrelated between each other. The covariances between payoffs are

E[X l
icX

l
ij] =ρσ2, ∀ j (56)

E[X l
imX

l
ij] =0, ∀ m, j. (57)

Where c represents the member who generates the correlation between the payoffs of i

on the asset class l. In words, I assume that the correlation of a payoff of a derivative

signed between i and a generic member j on the asset class l (X l
ij) with the payoff signed

between i and c on the same asset class (X l
ic) is always equal to ρ, while all the other

payoffs are uncorrelated between each other. Furthermore, I keep the assumptions of

normally distributed payoffs and that all the payoffs have equal standard deviation.

The variance of the exposures of i with all the other members on the cleared asset
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class l is

E

(∑
j 6=i

X l
ij

)2
 = E

[∑
j 6=i

(
X l
ij

)2]
+ E

[∑
j 6=i,c

∑
m6=i,c

X l
ijX

l
im

]
+ E

[∑
j 6=i,c

X l
icX

l
ij

]
(58)

= (N − 1)σ2 + (N − 2)ρσ2 (59)

= σ2((N − 1) + (N − 2)ρ). (60)

Therefore if the member i clears all the positions on the asset class l the EE is the

following

EEa = E

[
max

(∑
j 6=i

X l
ij, 0

)]
+
∑
j 6=i

E

[
max

(∑
k 6=l

Xk
ij, 0

)]
(61)

=
σ√
2π

√
(N − 1) + (N − 2)ρ+ (N − 1)σ

√
K − 1

2π
(62)

Whereas the total EE if the member i clears all the position but those with the member

c is

EEb = E

[
max

(∑
j 6=i,c

X l
ij, 0

)]
+
∑
j 6=i,c

E

[
max

(∑
k 6=l

Xk
ij, 0

)]
+ E

[
max

(
K∑
k

Xk
ic, 0

)]
(63)

= σ

√
N − 2

2π
+ (N − 2)σ

√
K − 1

2π
+ σ

√
K

2π
. (64)

The difference between EEa and EEb represents the difference in total EE due to the

decision to clear the position with the member c and it is increasing in ρ.

As we can see from Figure 5, when correlation increases also expected exposures

increases. Therefore, the more a derivative contributes to the diversification of the

member the higher is the incentive of the member to clear that contract in terms of EE.

This is an aspect to take in consideration for the determination of the fees charged by the
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Figure 5: Benefit from central clearing of positions with member c and its correlation
with the exposures of other members.

This figure represents the benefit from the decision of clearing the exposures with the member c. On
the vertical axis there is the difference EEa − EEb and on the horizontal axis the correlation of the
exposures with c with the exposures with the other members.
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CCP. Indeed, the CCP might charge more to those members that are well−diversified

and have an higher incentive to clear, while it might apply a lower fee for those members

that are under − diversified and such a situation might have a negative effect on the

risk management of the members.

6 Multiple CCPs

It has been shown in D.Duffie and H.Zhu (2011) that it is always better to clear using one

CCP instead of multiple CCPs in terms of multilateral netting efficiency. The intuition

is that a single CCP can net across all the members of the system and this maximizes

the multilateral netting efficiency. However, using just one CCP to clear all the OTC

derivatives might risk to create a financial institution too big and too interconnected to

fail, putting too much systemic risk on a single institution. Furthermore, a member

of the system might be willing to diversify across multiple CCPs in order not to get

too much exposed to the default of a single CCP10. Let’s consider the examples in

Figures 6 and 7. With a single CCP, the generic member of the system i clears all his

derivatives using a single CCP (CCPa). If CCPa defaults, the member i loses all his

payoffs. On the contrary, with multiple CCPs, if CCPa defaults, i will lose just a part

of his payoffs. Therefore, it is interesting to study how a member should divide her

derivatives’ exposures across multiple CCPs in order to minimize the loss in terms of

multilateral netting efficiency.

Firstly, I show that a single CCP maximizes multilateral netting efficiency, as already

shown in D.Duffie and H.Zhu (2011). Consider that the member i clears the transactions

on the asset class l with all his counterparties on the same CCP. The EE is

10Although, a troubled CCP may enjoy a bailout from the government, since the its default would
represent a major danger for financial stability and therefore banks may consider the default of a CCP
as an highly remote event.
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Figure 6: Clearing with a single CCP.
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Figure 7: Clearing with 2 CCPs.
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Ui = E

[
max

(∑
j 6=i

X l
ij, 0

)]
+ φN,K−l. (65)

(66)

Instead, if i clears the transactions on the asset class l using two different CCPs dividing

his counterparties in two groups α and β, the EE is

Û i = E

[
max

(∑
j 6=i∈α

X l
ij, 0

)]
+ E

[
max

( ∑
m6=i∈β

X l
im, 0

)]
+ φN,K−l. (67)

(68)

Since E[max(.)] is a convex function, we have

Û i ≥ Ui (69)

because of Jensen’s inequality.

Let be j = 1, 2 ∈ α, m = 3, 4 ∈ β and ρa and ρb being respectively the correlation

between 1, 2 and 3, 4. I use the assumptions of normality, zero expected value and equal

standard deviation for the payoffs. Furthermore, I assume that the exposures between

members of different groups are uncorrelated (for instance Corr
(
X l
i1, X

l
i3

)
= 0). If i

clears all the transactions under the same CCP the EE is

Ui =

√
s

2π
+ φN,K−l, (70)

where

s =E
[(
X l
i1 +X l

i2 +X l
i3 +X l

i4

)2]
(71)

=σ2(4 + 2ρa + 2ρb). (72)
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Consider the case A, in which the member i clears the positions on the asset class l for

1 and 3 in the first CCP and the positions with 2 and 4 on the second CCP. The EE is

ÛA
i =

√
s1
2π

+

√
s2
2π

+ φN,K−l, (73)

in which

s1 = s2 = 2σ2. (74)

Instead, in the case B, in which the member i clears the positions on the asset class l

for 1 and 2 in the first CCP and the positions with 3 and 4 on the second CCP, the EE

is

ÛB
i =

√
s3
2π

+

√
s4
2π

+ φN,K−l, (75)

where

s3 = 2σ2 + 2ρaσ
2, (76)

and

s4 = 2σ2 + 2ρbσ
2, (77)

In Figure 8 we can notice that the difference ∆UA = ÛA
i − Ui is always positive and

it is equal to zero only for ρa = ρb = 0. Therefore, as stated in D.Duffie and H.Zhu

(2011) the EE with multiple CCPs is always higher than the EE with a single CCP.

However, in the second case the difference ∆UB = ÛB
i − Ui is always higher respect to

the first kind of division, as it is shown in Figure 9. Indeed, in the second case the lower
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Figure 8: Relationship between ∆UA and the correlations in the 2 groups of members.
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performance of the multiple CCPs respect to the single CCP in terms EE is exacerbated

from the correlation between the cleared members that generates a further loss in terms

of multilateral netting efficiency. Therefore, In case of multiple CCPs, it is better to

clear under different CCPs those counterparties that are less correlated between each

other.

Figure 9: Relationship between ∆UA, ∆UB and the correlations in the 2 groups of
members given that ρa = ρb.

7 Conclusion

I have shown that correlation of exposures across members affects the trade off between

bilateral and multilateral netting. In particular, a positive correlation across members

decreases the benefit from multilateral netting evaluated in terms of EE and ES, therefore

it reduces the incentive to clear. I have also shown that members that are less diversified
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have less incentive to clear. Future research might investigate if the latter point have

implications on the fee policy of the CCPs and the risk management of the members.

Finally, I consider a market with multiple CCPs. Although, a single CCP is always

better of multiple CCPs in terms of netting efficiency (as showed by D.Duffie and H.Zhu

(2011), a network depending on a single CCP might actually increase the overall sys-

temic risk. Therefore, I obtained an efficient method of using multiple CCPs, from the

perspective of a clearing member, when there is correlation across members. Future re-

search may investigate how competition across multiple CCPs may affect the incentive

of the members to clear their derivative positions.
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