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Introduction

For several decades after World War II there were hopes that technology development and in

particular nuclear technology evolution would bring a tremendous potential for an abundant,

clean, and inexpensive new form of energy, thus rendering economic growth as the major

goal of economic policy. And while the so-called ‘developed economies’ were in a state of

full employment, most countries were endeavouring to raise their gross domestic product

to the highest possible level. Even the less developed economies set economic growth as

their primary economic policy in order to “catch up with the developed countries.” Thereby,

national programmes that had, as one of their main goals, to increase food production,

ended up violating ecological laws, diminishing soil fertility, harming, and finally, reducing

biodiversity, through the need for large-scale investments and high energy consumption.

Therefore, the concept that technology cannot rush ahead of human needs unless it first

identifies them, started being established. Alongside this ascertainment came no indications

to convince us that one day this will happen (Ehrlich et al., 1973).

Following these developments, a thirty-member group of scientists, economists, and in-

dustrialists, the so-called ‘Club of Rome,’ was founded in 1968 with the view to a better

understanding of the “problematique,” as the Club called the interconnected challenges for

mankind, which were associated with the predicted economic growth and the depletion of

non-renewable natural resources, environmental degradation, industrialisation, population

growth, and malnutrition. A group of researchers at the Massachusetts Institute of Tech-

nology was thus commissioned by the Club of Rome to investigate these issues. Using a

methodology developed by pioneering systems-scientist, Jay Forrester, and under the super-

vision of Dennis and Donella Meadows, they produced the first study to the Club of Rome,

entitled “The Limits to Growth.”

Despite the justified limitations of the study, its findings questioned the viability of

continued growth in the human ecological footprint and argued that the future quality of

life will continue deteriorating as a result of the depletion of natural resources. This broke

new ground since at that time it was difficult for the vast majority of people to accept

that the consequences of human activities could be sufficiently serious so as to modify the

fundamental physical processes on the planet. It focused, therefore, on “how to slow growth”

thus raising the rate of economic growth as a major challenge (Meadows et al., 1972).

1



Introduction

Almost thirty years later, in 2004, the same research group published a revision of their

research, entitled “Limits to Growth: The 30-year Update,” concluding that the message

for humanity has been changed, and that now it is about bringing the human ecological

footprint back down below the earth’s limits, with elegance and minimal sacrifice. In fact,

they highlighted, through their research findings, that in 1972 the population and economy

of humanity may have been below the carrying capacity of the planet, however now this

may not be true (Meadows et al., 2004). Consequently, within almost thirty years, not only

has the magnitude of scientists’ concerns been changing, but the view that the trajectory

of humanity is not sustainable, is being established, linking closely the depletion of natural

resources to environmental degradation.

Since the 1960’s and 1970’s, evidence that the concentration of carbon dioxide in the

atmosphere has been increasing exponentially, convinced climate scientists in the beginning,

and later on, scientists of different disciplines to call for action. In fact it took a remarkably

long time until December 1997, when the international community agreed to respond to this

call for the first time and take collective action, by signing the Kyoto Protocol and setting

internationally binding emission reduction targets. This agreement constituted a ‘road map’

illustrating the essential actions to avoid major long-term climate change, which had already

started taking place due to increased greenhouse-gas emissions caused by human activities.

Therefore, during the first commitment period (2008-2012), all the participating countries

committed to reduce their greenhouse-gas emissions by an average of 5% compared to the

emission levels of the 1990s. From then on several global climate change conferences have

taken place under the auspices of the United Nations, with the Paris Agreement in 2016

marking a turning point in the battle against climate change, since for the first time in the

history all nations united to legally ratify measures against pollution.

The depletion of natural resources, such as crude oil and natural gas, and environmental

concerns, for instance, about the unprecedented increase of carbon dioxide in the atmosphere,

together with globalization, growing energy demand, and the deregulation of electricity mar-

kets are some of the ‘Grand Challenges’ that we have been facing within the field of energy

markets during the last decades. Alongside these challenges are the issues of energy mix

diversification, for instance through the large-scale integration of intermittent renewables,

financialization of energy markets, geopolitical change and instability, security of energy

supply, and various types of uncertainty from oil prices to energy demand, among other

developments which are reshaping the energy markets and rendering their role in the global

economy increasingly preeminent, albeit their operations even more challenging. The world

is therefore witnessing undeniable evidence that energy markets are going through an era of

global transition with new challenges and opportunities.
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The transition of electricity markets and in particular the German electricity market,

towards a more sustainable energy mix and particularly renewable energy, is one of the main

challenges that I have attempted to address in Chapter 1 of this dissertation. Electricity

markets play a central role in the global energy scene, but an even more crucial role in

the evolving energy market transition. The primary reason for this is that by integrating

renewable energy sources into the power generation mix, we manage to adapt, or even

respond, to some of the afore-mentioned challenges. That is, the employment of renewables

contributes to climate change mitigation, diversification of the energy mix, increase of energy

security supply and lastly decoupling economic growth from increasing energy demand. As

previously discussed, however, in the case of inexpensive energy or even economic growth,

more is not always better, or if it is so, this is true only under specific conditions. Thus, the

use of renewables has profound effects on the power systems with which they are integrated,

and they challenge the economics and operation of the electricity markets through their

intermittent nature. Therefore, the effects of renewables on electricity prices are of great

concern, not only to energy market participants such as, for example, risk managers who

must have a clear understanding of price dynamics, but also to policymakers who need to

adjust the market design based on new challenges in order to improve market efficiency and

thus social welfare.

The crude oil market has also been in transition through the process of financialization,

thereby establishing a new strand of research attempting to explain the determinants of

the oil price by the financialization of the crude oil market. This is in contrast to a large

body of literature that traditionally considered that oil prices being determined only by

oil-market distinct demand and supply forces. Dramatic oil price fluctuations, for instance

from $140/barrel in the summer of 2008 to $60/barrel by the end of 2008, support the view

that the supply and demand mechanism may not be the only determinants of the oil price,

and instead raise the question of whether oil has itself become a financial asset with its price

reacting to and influencing other assets in financial markets. The financialization of the crude

oil market and interaction with other financial markets is therefore another main topic that

I am investigating in Chapter 2 of this dissertation. Motivated by the recent constraints

imposed by the zero lower bound on the conventional monetary policy of several central

banks, such as the Bank of Canada and the Bank of Japan, I am performring this analysis

for the G7 countries and Norway while considering the possible effects of the prolonged

episode of zero lower bound.

And while crude oil still is the dominant energy source in the world accounting for 36.9%

of the global primary energy consumption in 2016 (EIA, 2017), the renewable energy sector

has been experiencing remarkable growth over the past decade, driven by numerous factors,

such as reliability and security of energy supply, depletion of natural resources, environmental
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degradation, and need for decoupling economic growth from energy consumption. Future

development, however, of the renewable energy sector depends heavily upon the financial

performance of renewable energy companies, since the latter contributes to the success in

acquiring private capital for infrastructure investments. Therefore, with the price of other

energy products being likely to substitute for renewable energy through positive cross-price

elasticities and crude oil being the dominant energy source, Chapter 3 of this dissertation is

attempting to investigate the relationship between oil price development and the financial

performance of the renewable energy sector, with the aim of shedding some light on the

future development of this sector.

Relationships between energy markets, and in particular crude oil, natural gas, and ex-

tensively petroleum product prices have been widely investigated in both theoretical and

empirical studies. A large number of them explore the relationships among these markets in

terms of predictability, through the employment of Granger-causality or other econometric

techniques, in order to gain a better understanding of their interactions and improve forecast

ability. While Granger non-causality is defined in terms of conditional distribution, most

previous studies test non-causality in conditional expectations. Note, however, that a failure

to reject the null hypothesis of non-causality in mean does not necessarily preclude the pres-

ence of causality at other moments of the distribution. Motivated by these considerations, in

Chapter 4 of this dissertation I focus on different ranges of the entire conditional distribution

and investigate the dynamic causal relationships between crude oil price and a set of energy

prices, namely diesel, gasoline, heating, and natural gas prices within the framework of a

dynamic quantile regression model. This reveals a richer set of findings than what is possible

by only considering non-causality in a certain moment of the conditional distribution.

This dissertation investigates some of the ‘Grand Challenges’ that global energy markets

are facing during their rapid transition. In doing so, it focuses on some specific energy indus-

tries, namely the electricity, renewable energy, and crude oil industries, and it attempts to

provide answers to market-oriented questions, for instance, how do intermittent renewable

energy sources affect the electricity price formation? What are the corresponding implica-

tions for the power system? Does the current energy policy provide the right signals for the

envisaged electricity market development? How do financial markets interact with the crude

oil market? How does the financial performance of the renewable energy sector respond to

oil price shocks? Does their size matter? Does crude oil price Granger-cause the entire con-

ditional distribution of natural gas price or only the tails? Answers to the above questions

contribute to a more holistic investigation of these challenges, and therefore facilitate the

transition towards a low-carbon and climate-friendly economy.

My thesis is organized into four chapters, each of which is structured as a self contained

article. A brief description of the chapters follows.
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Chapter 1: Electricity prices, large-scale renewable
integration, and policy implications

Co-authored with Jonas Andersson and Apostolos Serletis.
Published in Energy Policy 101, (2017): 550-560.

This chapter investigates the effects of intermittent solar and wind power generation on elec-

tricity price formation in Germany. We use daily data from 2010 to 2015, a period with

profound modifications in the German electricity market, the most notable being the rapid

integration of photovoltaic and wind power sources, as well as the phasing out of nuclear

energy. In the context of a GARCH-in-Mean model, we show that both solar and wind power

Granger cause electricity prices, that solar power generation reduces the volatility of electri-

city prices by scaling down the use of peak-load power plants, and that wind power generation

increases the volatility of electricity prices by challenging electricity market flexibility.

Chapter 2: The zero lower bound and market spillovers:
Evidence from the G7 and Norway

Co-authored with Apostolos Serletis.
Published in Research in International Business and Finance (2017).

In this chapter we investigate mean and volatility spillovers between the crude oil market

and three financial markets, namely the debt, stock, and foreign exchange markets, while

providing international evidence from each of the seven major advanced economies (G7),

and the small open oil-exporting economy of Norway. Using monthly data for the period

from May 1987 to March 2016, and a four-variable VARMA-GARCH model with a BEKK

variance specification, we find significant spillovers and interactions among the markets, but

also absence of a hierarchy of influence from one specific market to the others. We further

incorporate a structural break to examine the possible effects of the prolonged episode of

zero lower bound in the aftermath of the global financial crisis, and provide evidence of

strengthened linkages from all the eight international economies.
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Chapter 3: Oil prices and the renewable energy sector

Co-authored with Apostolos Serletis.
Revised and Resubmitted.

Motivated by the fact that energy security, climate change, and growing energy demand

issues are moving up on the global political agenda, and contribute to the rapid growth of

the renewable energy sector, in this chapter we investigate the effects of oil price shocks,

and also of uncertainty about oil prices, on the stock returns of clean energy and technology

companies. In doing so, we use monthly data that span the period from May 1983 to

December 2016, and a bivariate structural VAR model that is modified to accommodate

GARCH-in-mean errors, and it is used to generate impulse response functions. Moreover, we

examine the asymmetry of stock responses to oil price shocks and compare them accounting

for oil price uncertainty, while effects of oil price shocks of different magnitude are also

investigated. Our evidence indicates that oil price uncertainty has no statistically significant

effect on stock returns, and that the relationship between oil prices and stock returns is

symmetric. Our results are robust to alternative model specifications and stock prices of

clean energy companies.

Chapter 4: Dynamic quantile relations in energy markets

Co-authored with Jonas Andersson.
Under Review.

In this chapter we investigate the dynamic relationships between crude oil price and and

a set of energy prices, namely diesel, gasoline, heating, and natural gas prices. This is

performed by means of Granger causality tests for monthly US data over the period from

January 1997 to December 2017. In most previous studies this has been done by testing for

the added predictive value of including lagged values of one energy price in predicting the

conditional expectation of another. In this study, we instead focus on different ranges of

the full conditional distribution. This is done within the framework of a dynamic quantile

regression model. The results constitute a richer set of findings than what is possible by

just considering a single moment of the conditional distribution. We find several interesting

one-directional dynamic relationships between the employed energy prices, especially in the

tail quantiles, but also a bi-directional causal relationship between energy prices for which

the classical Granger non-causality test suggests otherwise.
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Chapter 1

Electricity Prices, Large-scale
Renewable Integration, and Policy
Implications

Coauthored with Jonas Andersson and Apostolos Serletis.
Published in Energy Policy 101, (2017): 550-560.

ABSTRACT

This paper investigates the effects of intermittent solar and wind power generation on

electricity price formation in Germany. We use daily data from 2010 to 2015, a period with

profound modifications in the German electricity market, the most notable being the rapid

integration of photovoltaic and wind power sources, as well as the phasing out of nuclear

energy. In the context of a GARCH-in-Mean model, we show that both solar and wind

power Granger cause electricity prices, that solar power generation reduces the volatility of

electricity prices by scaling down the use of peak-load power plants, and that wind power

generation increases the volatility of electricity prices by challenging electricity market flex-

ibility.

JEL classification: C22; Q41; Q42.

Keywords : Intermittency, Large-scale integration, Merit-order effect, Volatility, GARCH-

in-Mean model.
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1. Electricity Prices, Large-scale Renewable Integration, and Policy Implications

1.1 Introduction

Electricity markets are gaining increasing importance on the global energy scene. Through

adjustments in their market design, electricity markets endeavour to adapt to new challenges

and integrate renewable energy sources into the power generation mix. Renewables pledge

to mitigate climate change and diversify the energy mix, increase the security of energy

supply, and decouple economic growth from increasing energy demand. However, the use of

renewables has profound effects on the power systems with which they are integrated, and

challenge the economics and operation of the electricity markets through their intermittent

nature. See, for example, Pérez-Arriaga and Battle (2012). It is subject to market design

whether intermittent power volatility, caused by nature, will penetrate into the power system

and pass-through to electricity prices.

Electricity prices reflect the physical peculiarities and economics of the power system as

these are captured by supply and demand forces. On the one hand, there is the instantan-

eous nature of electricity and transmission constraints, and on the other the highly inelastic

short-term demand (Sensfuss et al., 2008) and limited economic possibilities of large-scale

storage rendering the behavior of electricity prices special and dynamic. Pricing methods

that work in the case of financial assets often break down when applied to electricity markets,

because the latter are driven by multiple factors and exhibit different underlying data gen-

erating processes. Deregulation of electricity markets, which already counts for more than

two decades, has provoked fundamental reforms within electricity industries, by introducing

increased competition and driving electricity prices to phases of relative tranquility followed

by periods of high volatility. In this already challenging power system, intermittent renew-

ables influence electricity prices according to the so-called ‘merit-order principle,’ which has

its origins in the standard microeconomic concept of perfect competition. In line with this,

the price of electricity should be equal to the marginal cost of the last needed electricity

generation technology, otherwise called marginal plant, to meet electricity demand. Renew-

ables penetrate into the supply curve of the day-ahead market with nearly zero marginal

cost and thus get priority dispatch compared to other electricity generation technologies.

Accordingly, they shift the supply curve to the right, resulting in a lower electricity price

and complex electricity market dynamics.

The effects of renewables on electricity prices are of great concern, not only to energy

market participants such as, for example, risk managers who must have a clear understanding

of price dynamics, but also to policymakers who need to adjust the market design based on

new challenges in order to improve market efficiency and thus social welfare. As Huisman et

al. (2015, p. 151) recently put it, “an incomplete understanding of these relations could lead

to an unintended outcome of the implied policy.” Hence, as the role of intermittent renewables
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increases, it is expected to have remarkable and unprecedented effects on electricity price

dynamics, while testing the adequacy and flexibility of electricity market design.

Germany is a pioneer country for renewables integration, and 2015 has been a landmark

year, with the growth of renewables in the power generation mix at its highest ever recorded.

Agora (2016), a leading energy policy instrument in Germany, points out that “2015 goes

down on record as the year in which renewables dominated the power system for the first

time ever, becoming by far the most important energy source.” The large-scale integration

of intermittent renewables has been a natural development in the German electricity in-

dustry, especially after its decision in March 2011 to scale down nuclear power plants. This

transition of Germany’s energy system, known as ‘Energiewende,’ has been assisted by the

German renewable support scheme, which promotes investments in renewable energy gener-

ation through the implementation of policy instruments. Accordingly, we can safely argue

that the German electricity market has experienced such drastic reforms during the energy

transition, that nowadays it constitutes a different electricity market.

This paper contributes to the literature on the effects of renewable power on electricity

prices in several ways. First, it fills the gap by disentangling the differential effects of solar

and wind power on German day-ahead electricity prices, using daily data, which is as recent

as June 2015. Apart from a few studies such as, for example, Clò et al. (2015), the majority of

the literature focuses on the effects of wind power on electricity prices (because in past years

solar power penetration was limited), or treats both solar and wind power as a combination

under the name of intermittent renewables. Hence, they ignore the unique features of solar

power as well as the corresponding implications for the power system; see Gull̀ı and Balbo

(2015). Secondly, since electricity supply nowadays consists largely of stochastic solar and

wind power, while electricity demand is captured by electricity load, we are interested in

exploring the dynamic relationship between day-ahead electricity prices and supply and

demand forces in a multivariate context.

We estimate a univariate GARCH-in-Mean model in order to investigate the effects of

solar and wind power on electricity price formation, and therefore explore their different

implications in relation to market design. Only a few studies, with the most notable being

Ketterer (2014), investigate the effects of renewables on day-ahead electricity price volatility,

and most of them do not consider the recent period of high renewable penetration in the

German electricity market. Finally, in line with Jónsson et al. (2010), we explore the impact

of solar and wind power on the distributional properties of German day-ahead electricity

prices, under different scenarios of solar and wind power penetration. By doing so, we

understand better the effects of solar and wind power on the complex behavior of electricity

prices, for instance negative or extreme prices, and consider it in relation to the market

design and economics of the German power market.
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The paper is structured as follows. In Section 1.2, we give an overview of the deregulation

of electricity markets, the subsequent transition towards renewables, as well as the merit-

order effect. We also discuss the new challenges of the German electricity market derived

from the combination of large-scale integration of intermittent renewables and the limited

flexibility of the electricity market. An analysis of negative electricity prices concludes this

section. In Section 1.3, we describe the data and investigate their time series properties,

while in Section 1.4 the effects of solar and wind power on the distributional properties of

electricity prices are investigated. In Section 1.5, we present the GARCH-in-Mean model

and discuss the empirical evidence, while in Section 1.6 we conduct a multivariate Granger

causality investigation. The last section concludes the paper.

1.2 Challenges in Electricity Markets

Although electricity markets were traditionally designed merely for delivering electricity,

nowadays they play numerous important roles in society. For example, sustainable develop-

ment of energy supply, energy security, environmental protection, climate change mitigation,

employment opportunities, and economic efficiency are some of their policy targets. In order

to achieve these goals, electricity markets experience profound restructuring, with the most

notable being their deregulation and the integration of renewable energy sources into their

electricity production mix.

1.2.1 Deregulation and Stylized Facts

The deregulation of electricity markets has provoked fundamental reforms within their in-

dustries. Before deregulation, the electricity sector used to be vertically integrated and the

public utility commissions set the prices in such a way as to ensure the solvency of the firm.

Hence, price variation was minimal and under the rigorous control of regulators (Knittel

and Roberts, 2005). After deregulation, however, competition was introduced and price

variation rose significantly. Deregulation, in combination with the physical peculiarities and

economics of the power system, introduced distinct dynamic properties in electricity prices,

which are considerably different from those of financial assets (see Keles et al., 2013). These

properties, or stylized facts, have been investigated by a substantial body of literature, in-

cluding studies by Knittel and Roberts (2005), Higgs and Worthington (2008), Karakatsani

and Bunn (2008), Escribano et al. (2011), and Fanone et al. (2013).

Seasonality is one of the most interesting characteristics of electricity prices, which is

predominantly attributed to the highly inelastic short-term electricity demand (see Sensfuss

et al., 2008). This can be viewed as a result of the limited efficient storage capabilities

that preclude any kind of inventory strategy to be implemented in both the residential and
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commercial sectors. In combination with the transmission constraints and the instantaneous

nature of electricity, any supply and demand shocks will be transmitted immediately to

electricity prices, resulting in price spikes and high volatility. Ullrich (2012) investigates the

realized volatility and the frequency of price spikes in eight wholesale electricity markets

and underlies the need for better understanding of price spikes and volatility. Some other

interesting studies on these stylized facts are Huisman and Mahieu (2003), Worthington et

al. (2005), Karakatsani and Bunn (2010), and Efimova and Serletis (2014). Finally, mean

reversion is another specific characteristic of electricity prices, mainly driven by weather

conditions (Koopman et al., 2007); it refers to the tendency of electricity prices to revert to

a long-run level reflecting the long-run cost of electricity generation.

1.2.2 Transition towards Renewables

Although Germany had not been a pioneer country in the deregulation of electricity markets,

as for instance the United Kingdom and Norway, nowadays it attracts special attention as a

prominent example of a country integrating renewable energy sources. In fact, 30.1 per cent

of its electricity in 2015 came from renewables such as wind and solar, up from 16.6 per cent in

2010 (see Table 1.1). This energy transition, known as Energiewende, is characterized by high

growth in renewable energy, and is a natural development in the German electricity industry

after the German government’s decision in 2011 to phase out nuclear power. Therefore,

significant changes have occurred in the German energy mix over the following years with

the nuclear power generation falling by 21 per cent during the first year.

Germany achieved this rapid transition through a generous renewable support scheme

that relies on three policy instruments: a) fixed-feed in tariffs for renewables accompanied

by a take-off obligation, b) a priority dispatch for renewables, and c) very restrictive rules

for renewables curtailment that takes place only for security reasons — see Brandstätt et al.

(2011) and Henriot (2015). Although this support scheme inspired confidence for investors,

thus boosting renewable energy investments (Klessmann et al., 2008), it raised a broad

discussion related to its high cost that consumers are eventually required to finance (Tveten

et al., 2013). Some notable studies that discuss the renewable electricity support instruments

are Falconett and Nagasak (2010), Frondel et al. (2010), and Verbruggen and Lauber (2012).

1.2.3 Price Formation and the Merit-Order Effect

Similar to every other economic system, the setting of electricity prices is based on the law

of supply and demand. Renewables constitute a large part of the current electricity supply

in the German electricity market and therefore their influence on electricity prices, through

the supply and demand mechanism, should not be disregarded. Economic aspects and pecu-
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Table 1.1: Electricity production in Germany by source (%)

Source 2010 2011 2012 2013 2014 2015

Hard coal 18.5 18.3 18.5 19.9 18.9 18.1
Lignite 23.0 24.5 25.5 25.2 24.8 23.8
Nuclear 22.2 17.6 15.8 15.2 15.5 14.1
Natural Gas 14.1 14.0 12.1 10.6 9.7 9.1
Oil 1.4 1.2 1.2 1.1 0.9 0.8
Others 4.2 4.2 4.1 4.1 4.3 4.1
Renewable energies from which 16.6 20.2 22.8 23.9 25.9 30.1

Biomass 4.7 5.3 6.3 6.5 6.9 6.8
Hydro power 3.3 2.9 3.5 3.6 3.1 3.0
Photovoltaic 1.8 3.2 4.2 4.9 5.7 5.9
Waste-to-energy 0.7 0.8 0.8 0.8 1.0 0.9
Wind 6.0 8.0 8.0 8.1 9.1 13.5

Source: AG Energiebilanzen, 2016.

liarities of electricity markets are actually reflected in the pricing mechanism. That is to

say, electricity demand is highly inelastic, capturing the limited ability of consumers to alter

their consumption patterns in the short-run, while electricity supply or merit-order curve is

discontinuous, convex, and sharply increasing at the high demand level (Karakatsani and

Bunn, 2008), indicating the special characteristics of the electricity power generation mix.

The electricity supply curve is constructed based on the aforementioned merit-order prin-

ciple, according to which supply offers are ranked dependent on their short-run marginal costs

(Morales et al., 2014). Therefore, the left part of the curve traditionally consists of supply

offers from power plants with low marginal cost such as lignite and hard coal, while the

right part of the curve represents the supply offers from electricity generating units with

high marginal cost, for instance gas and oil fired power plants. Renewable energy generation

faces very low, or even negative marginal cost if renewable support schemes are taken into

account, and therefore is usually prioritized in comparison to other electricity generation

technologies. Consequently, offers from renewables are located on the left part of the supply

curve, thereby replacing more expensive supply offers and shifting the entire curve to the

right as illustrated in Figure 1.1. Subject to a specific inelastic demand curve, this results

in a lower electricity price and the so-called merit-order effect. The latter simply describes

the price diminishing mechanism that is attributed to the renewable electricity generation,

which penetrates into the power system.

The magnitude of the merit-order effect depends, predominantly, on three factors: a) the

level of electricity demand, b) the slope of the supply curve, which in this context will also

be referred to as the merit-order curve, and c) the renewable electricity generation (Sensfus
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Figure 1.1: Merit-order effect during peak and off-peak hours
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et al., and Keles et al., 2013). Electricity demand and more particularly residual demand,

which must be served by conventional power plants, determines the marginal technology

that sets the electricity price based on its production cost. The slope of the merit-order

curve plays the most important role in the size of the merit-order effect, and depends on

numerous factors. Thus, fuel prices influence the value of the merit-order effect, but not all

of them have the same impact. Therefore, the prices of the underlying fuels for the base-load

power plants are not expected to have a significant impact on the volume of the merit-order

effect, since these power plants are rarely substituted by renewables. On the contrary, the

prices of fuels that support the mid-load and especially the peak-load power plants, have a

greater effect on the size of the price reduction. In fact, Sensfus et al. (2008) investigate

the merit-order effect on the German electricity market, and conclude through simulation

runs with different fuel prices that although a 20 percent price change of the fuels for lignite

and nuclear power plants affects the merit-order effect by only 2 percent, a 20 percent price

reduction in the price of natural gas reduces the size of the merit-order effect by around 30

percent. Moreover, they underline the significant effect of the ratio of fuel prices, for instance

of gas and coal prices on the final result.

Some additional driving factors on the slope of the supply curve are the price of the

emission allowances, the capacity of the renewable electricity generation, and the various

efficiencies of the power plant portfolio. See Sensfus et al. (2008) and Keles et al. (2013).

Huisman et al. (2015) investigate the impact of fuel and emission cost on Nordpool day-ahead

electricity prices, and provide empirical evidence of nonlinear dependence. Market power is

also an important driving factor for the slope of the merit-order curve, which has seldom been

studied in the literature. Gull̀ı and Balbo (2015) investigate the impact of solar production
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on the Italian electricity prices and analyze the role of the market power in the final outcome.

They conclude that solar production can lower the electricity price but only below a specific

threshold. The reason is that operators of thermal power plant units may adapt their price

strategy based on the expected availability of the renewable power generation in order to

offset their reduced revenues which occur during times of renewable penetration. The latter

refers primarily for the case of solar power, since it exhibits less intermittent power generation

patterns compared to wind. Therefore, renewable power generation does not affect electricity

price formation only in a direct way, but also by challenging the economics of the electricity

markets with their intermittent nature. Clò et al. (2015) provide an interesting literature

review of empirical studies regarding the merit-order effect in several countries, including

Denmark, Germany, and Spain.

1.2.4 Renewable Energy Intermittency

Although renewable energy sources provide essential benefits for our environment, health,

and economy, their intermittent nature challenges the design and operation of electricity

markets. As Pérez-Arriaga and Battle (2012, p. 2) put it, “intermittency comprises two sep-

arate elements: non-controllable variability and partial unpredictability.” Non-controllable

variability refers to those situations in which renewable power plants are either unavailable

when increased energy requirements occur in the system, or inject substantial amount of

energy into the grid irrespective of the electricity demand level. The main reason for this

is that renewable energy is determined by weather conditions such as solar radiation or

wind speed, contrary to dispatchable generators that adapt their output as a reaction to

economic incentives, and therefore the current energy requirements (Hirth, 2013). On the

other hand, partial unpredictability describes the limited knowledge about future renewable

power generation, due to the stochastic nature of weather conditions.

It is worth noting that similar to other applications, the forecasting horizon is an im-

portant factor of precision, and therefore the shorter the time horizon, the more accurate

the weather predictions become. Accordingly, electricity markets should be designed in such

a way that power systems are getting updated frequently with more accurate forecasts. Al-

though a detailed description of each individual type of electricity market is not within the

scope of this paper, it is important to underline that uncontrollable variability effects of

renewables impact the day-ahead electricity markets primarily, while unpredictability issues

influence the intraday and balancing markets through forecast errors (Morales et al., 2014).

This work focuses on the non-controllable variable nature of renewables and its effects on

the German day-ahead electricity price, which constitutes a European reference due to its

underlying liquidity.

The replacement of dispatchable, conventional power plants with non-controllable vari-
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able renewables is a complex procedure, which introduces uncertainty with respect to the

market design and particularly for the renewable support mechanism. The main reason is

that electricity demand is time-varying and the upstream electricity market should have

short-term flexibility to serve the required load. Nicolosi (2010, p. 7257) defines the flex-

ibility of the electricity markets as “their ability to efficiently cover fluctuating electricity

demand,” and he adds “this flexibility is influenced by the installed power plant mix and the

interaction with other markets.” Traditionally, the German power generation mix consisted

of thermal power plants that were designed and scheduled to cover dispatch requirements,

which were merely subject to the varying demand forces. However, the integration of re-

newables increased the variability of residual demand and therefore the operating modes of

thermal power plants. Hence, the number of start-ups and shutdowns in thermal production

increased significantly in order to balance electrical load and avoid power blackouts. There-

fore it can be seen that the role of the conventional power plants is currently twofold; firstly,

to adjust to the intermittent renewable power generation, and secondly, to cover the time-

varying electricity demand. This significantly increases the call for power system flexibility,

as well as the need for the necessary regulatory and operational adjustments. Pérez-Arriaga

and Battle (2012) underline the importance of flexibility for the cost of economic dispatch,

and comment on their inversely proportional relation. Shutting down and starting up thermal

power plants implies increased operation costs due to lower power efficiencies. So the higher

the flexibility of the power generation fleet is, the lower the overall cost that is incurred and

vice versa.

1.2.5 Negative Prices and their Implications

In the same way that natural resource prices reflect the underlying market scarcities, negative

electricity prices represent the limited system’s flexibility. The first negative electricity prices

in the European Energy Exchange were observed in October 2008, after the European Energy

Exchange (EEX) decided to correct inefficient incidents and more particularly situations

when energy oversupply needed to be cut (Nicolosi, 2010). Since then, they have become

increasingly common events attracting considerable attention in the literature. Fanone et al.

(2013) study the case of negative day-ahead electricity prices in the German day-ahead spot

market and underline their considerable challenge in energy risk management activities. In

a similar study, Genoese et al. (2010) show that a sufficient condition for the appearance of

negative prices is either a low system load, combined with a moderate wind generation or a

moderate system load combined with high wind generation. Besides the other factors, they

find wind generation to be the most important influential factor, while they comment on the

occurrence of all negative prices during the off-peak period.

Negative electricity prices are not problematic per se, since they are basically efficient
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for non-storable goods (Nicolosi, 2010). They arise mainly as a result of the large-scale

renewable power generation, and the priority dispatch that the renewable support scheme

provides them (Brandstätt et al., 2011). Hence in some hours, when the aforementioned

sufficient conditions are satisfied, inflexible conventional power plants are forced to ramp-

down and give priority to renewables. However, renewables may stop generating electricity

only few hours later, and thereby base-load plants need to ramp-up quickly in order to serve

the electricity demand. High opportunity costs may occur in these following hours, when

prices are above variable costs for conventional power plants, due to their limited flexibility

and expensive ramp-ups. This results in the fact that conventional plant operators are willing

to bid negative prices into the market in order to avoid these ramp-downs and continue to

produce, increasing their revenues. They can follow this pricing strategy as long as the

opportunity costs and start-up costs are higher than the negative prices that they need to

bid. It is worth mentioning that apart from these costs, long minimum standstill periods

and accordingly revenue losses arise for the conventional power plants, before they can start

producing again (Genoese et al., 2010). In fact, these long inactive periods threaten the

sustainability of the conventional power plants that need high utilization in order to cover

their high investment costs (Nicolosi, 2010). Furthermore, they create higher system costs,

since a part of demand needs to be produced by other power plants that exhibit lower

response time, but more expensive generation.

Another implication of negative electricity prices is the creation of investment incentives

for flexible power generation. However, these incentives can be very inefficient and costly to

society (Brandstätt et al., 2011). That is to say, although during some hours conventional

power plants exhibit negative marginal costs and bid negative electricity prices to avoid their

ramp-down, renewables penetrate into the system with zero marginal costs, owing to their

priority dispatch. Brandstätt et al. (2011) discuss how the operation of renewable energy

sources constraints the two leverages of the electricity market, namely prices and quantities;

prices are established through fixed-feed in tariffs, while quantities are fixed through priority

dispatch and restrictive curtailment. In fact, Brandstätt et al. (2011, p. 3736) underline the

fact that “market loses degrees of freedom to perform its market-clearing function, at the

expense of system-wide economic efficiency.” Therefore they suggest voluntary curtailment

agreements, as well as maintenance of the priority rule for renewables. Henriot (2015)

comments on the limited literature on the economic curtailment, and argues that negative

prices are the first market signals for economic curtailment of renewables. Finally, motivated

by the aforementioned discussions, we proceed to the next section with the data description.
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1.3 The Data

We use daily German electricity spot prices, solar (st) and wind (wt) power generation, and

total electricity load (lt) over the period from January 1, 2010 to June 30, 2015 — a total

of 2007 observations. Specifically, we use the day-ahead spot electricity price, Phelix Day

Base, which is calculated as the average price of the 24 hours of one day; the Phelix Day

Peak, which is the average electricity price of the peak hours; and the average electricity

price of the off-peak hours. It is worth mentioning that peak hours cover hours 9 to 20, while

off-peak hours cover hours 1 to 8 and hours 21 to 24.1 The main reason for distinguishing

between peak and off-peak hours is the fact that during these hours electricity markets

exhibit different characteristics, for instance, flexibility, and economic efficiency, which are

accordingly reflected in the electricity price dynamics. In fact, as Ballester and Furió (2015,

p. 1606) put it, “the picture has become more informative when peak and off-peak hours are

analyzed separately, confirming the fact that these price series should be viewed as different

commodities, with different features.” All electricity prices and renewable power generation

are from the European Energy Exchange, while total electricity load is from the European

Network of Transmission System Operators for Electricity (ENTSO-E).

It is worth mentioning that since we investigate the effects of variable solar and wind

power generation on day-ahead electricity prices, the predicted, rather than the actual power

generation should be employed in the analysis. The main argument behind this is that

the actual power generation does not affect the day-ahead electricity volumes and prices

directly, but through their predictions that are placed in the market to be cleared (Morales

et al., 2014). However, in this analysis we employ the actual renewable power generation

and total load for two reasons. First, the data availability for predicted solar and wind

power generation is limited, and second, since the predicted total load data is not available

we would have to construct our own prediction model. However, this would render our

estimation results subject to the generated regressor problem studied in detail by Pagan

(1984), since the estimated predictions of total load would only be a proxy for the market

expectations. Hence, we follow Nicolosi (2010) and accordingly use the actual solar and wind

power generation, as well as the actual total electricity load. Nicolosi (2010, p. 7261) argues

that “since, in this article, the actual market situation is analyzed, the realised values are

used.” From a similar point of view, Mauritzen (2013), who investigates the effect of wind

power production on Danish and Norwegian day-ahead prices, uses the actual wind power

generation data, as an approximation of the forecasted wind.

Table 1.2 presents summary statistics for the electricity prices, solar and wind power

generation, and total electricity load. Figures 1.2-1.7 depict the development of the series

1The definition of peak and off-peak hours remains the same during all the months of the year.
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Table 1.2: Summary statistics

Standard Excess J-B
Variable Mean deviation Skewness kurtosis normality

pt 40.710 12.144 -0.637 6.558 1194.673
ppeak,t 46.018 14.516 -0.113 4.155 115.817
poff−peak,t 35.403 11.130 -2.878 37.184 100490.115
st 67090.677 52857.637 0.673 2.433 178.431
wt 131069.269 110880.605 1.652 6.169 1752.855
lt 1326660.182 164759.086 -0.390 2.399 81.027

from January 2010 to June 2015. This is the period after the latest profound modification

which occurred in Germany’s renewable energy policy in 2010. Significant changes followed

in the electricity production mix [see Table 1.1], with the most important being the nuclear

phase-out, and the rapid integration of photovoltaic and wind power systems. Despite the

aggressive renewable energy transition, Germany currently produces more electricity from

coal (hard coal and lignite) than renewables, with coal being at a slightly higher level than

in 2010. This comes about as a result of the fact that energy transition towards renewables

is a long-term and complex process, and therefore the major part of a nuclear power pro-

duction has to be replaced by other energy sources, such as coal. Natural gas also remains a

considerable source of the electricity production mix, despite its decline in recent years, since

it supports the flexible peak-load power generation that complements the variable nature of

renewables. So in fact, Germany is still strongly dependent on heavily polluting fossil-fuels,

and therefore far from meeting the emission reduction target of 40 percent by 2020, compared

to 1990 levels.

Figure 1.2: All hours electricity prices
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Some stylized facts of electricity prices are discernible from Figure 1.2. A yearly season

is present with the price showing a tendency to decrease during the first half of the year and

recover gradually by the end of it. The pattern becomes more obvious during the last years

of our sample period, possibly due to implications of the energy transition. In addition, we

identify a mean reverting behaviour, and a slight tendency for the price to decrease over the

last six years, signifying the success of the regulatory changes. Some periods of high volatility

followed by periods of relative tranquility can also be identified. Another interesting stylized

fact of electricity prices is sudden price spikes. Ullrich (2012) defines price spikes as the

combination of an upward jump and a reversal, while he underlines their risky nature for

wholesale electricity markets. Electricity price spikes can be attributed to limited economic

possibilities of large-scale electricity storage, but should also be investigated in relation to

renewable energy sources. Due to these price spikes, the electricity price distributions exhibit

high kurtosis and fat tails (see Figures A1.1-A1.3), thus leading to substantial challenges for

the operations of energy risk management.

Figures 1.3 and 1.4 show the actual solar and wind power generation during the sample

period. We find out that each energy source has its own advantages and areas where com-

promise is necessary. Wind power production provides the power market with high amounts

of energy most of the year, but its output is highly volatile due to its intermittent nature.

In contrast, solar power production is more stable than wind power production, and there-

fore easier to incorporate into medium-term planning (Kovacevic et al., 2013). However, a

consistent pattern related to the seasons of the year becomes obvious in the solar produc-

tion that reaches its maximum during the summer and decreases again gradually during the

winter. The inverse seasonal pattern is partly identified in wind power production, thus

Figure 1.3: Solar power production
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Figure 1.4: Wind power production
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indicating the extent to which the complementary nature of the solar and wind power gen-

eration can be exploited in the future for a hybrid power generation system. The high

penetration rate of solar power into the electricity generation mix is also discernible from

Figure 1.3, as a result of generous policy incentives and sharp decline in installation costs.

Electricity demand is an equally important factor in price formation as the electricity

supply. In the power systems, it is captured by the total electricity load which is illustrated

in Figure 1.5. We can see clearly that electricity demand is well aligned to wind power

production, reaching its maximum during the winter, and falling off gradually during the

summer. In fact, as Agora (2015, p. 15) puts it, “Germany continues to be a winter peaking

country primarily due to the demands of lighting and water and space heating; 6.1 percent

of space heating is fueled electrically, including night storage systems and heat pumps.”

Figure 1.5: Electricity load
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Figure 1.6: Peak electricity prices
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In fact, electricity demand follows an inverse seasonal pattern than solar power production,

which pushes down the peak electricity price. By looking at Figure 1.3, and Figures 1.6 and

1.7, we notice that peak electricity prices get lower values than off-peak electricity prices

during the spring and summer seasons. So, we may conclude that the spread between peak

and off-peak electricity prices decreases when solar power generation reaches its maximum

and vice versa. However, this conclusion might rely only on some coincidental facts, and

therefore additional empirical investigation is necessary.

Before we continue with the empirical analysis, we conduct some necessary unit root and

stationary tests in each of the employed series in Table 1.3, in order to test for the presence

of a stochastic trend in the autoregressive part of the series. The Augmented Dickey Fuller

(ADF) test [see Dickey and Fuller, 1981] and the Dickey-Fuller GLS test [see Elliot, Rothen-

Figure 1.7: Off-peak electricity prices
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Table 1.3: Unit root and stationarity tests

ADF DF-GLS KPSS KPSS
Variable τµ µ η̂µ η̂τ

pt -4.458* -1.894 3.699* 0.408*

ppeak,t -3.969* -1.656 3.455* 0.332*

poff−peak,t -4.845* -2.340* 3.455* 0.396*

st -2.613 -1.098 1.597* 0.107
wt -11.805* -8.286* 1.107* 0.101
lt -4.838* -1.647 0.399 0.307*

Note: An asterisk indicates significance at the 5% level.

berg, and Stock (1996)] evaluate the null hypothesis of a unit root against an alternative of

stationarity. We assume a constant, and select the optimal lag length based on the Bayesian

information criterion (BIC). In addition, Kwiatkowski et al. (1992) tests are used in order to

test the null hypothesis of stationarity (around a constant, for test statistic η̂µ, and around

a trend, for η̂τ ). We note that electricity prices during all hours and peak hours are not

very informative regarding their unit root properties, although they should be stationary

based on their mean reverting behavior [see Schwartz (1997), Simonsen et al. (2004), Weron

et al. (2004), and Cartea and Figueroa (2005)], which is also verified by their historical

development. Since overdifferencing may be more harmful than including a unit root series

in levels, we use the levels of these series alongside the careful checking of the stationarity

of the residuals in the model. An examination of the unit root and stationarity tests for the

rest of the series, in combination with their historical development in Figures 1.3-1.5, and

Figure 1.7, suggest that their levels are stationary, or integrated of order zero, I(0). Last,

we check for multicollinearity by using auxiliary regressions, as well as by examining the

correlation matrix of the independent variables. Both of them suggest that there is no sign

of severe multicollinearity.

1.4 The Effects of Solar and Wind

Having analyzed the descriptive statistics and characteristics of the employed series, the

question remains how solar and wind power generation affects day-ahead electricity prices.

Therefore, in this section we analyze the way that the main properties of the electricity price

distribution react to different amounts of solar and wind power generation, while taking into

account total electricity load. We follow Jónsson et al. (2010) and divide our data into

intervals, according to solar and wind power penetration; penetration here is defined as the

ratio of each electric power source to the total electricity load. Tables 1.4 and 1.5 summarize
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Table 1.4: Price distribution properties for different solar power penetration levels

0-7% 7-14% 14-21%

Mean 43.307 36.023 28.031
Standard deviation 12.128 9.725 9.676
Skewness -1.026 -0.180 -0.757
Kurtosis 5.837 0.472 0.955
Observations 1378 550 79

Table 1.5: Price distribution properties for different wind power penetration levels

0-5% 5-10% 10-15% 15-20% 20-25% 25-55%

Mean 46.066 42.258 39.312 36.026 32.371 22.866
Standard deviation 10.218 10.578 9.498 9.533 10.938 14.337
Skewness -0.164 0.264 -0.278 -0.151 0.182 -2.165
Kurtosis 0.350 1.021 0.507 -0.458 -0.414 9.029
Observations 684 562 353 174 100 134

the properties of price distribution for different scenarios of solar and wind power penetration

respectively, while Figures 1.8 and 1.9 illustrate the corresponding histograms of electricity

prices.

In the case of solar, the first two lines of the table show that both the mean and standard

deviation of the electricity price decrease as solar power penetration increases. Moreover,

the third and fourth central moments are calculated for each interval. Skewness, which is a

measure of the degree of asymmetry of a distribution, takes always negative values indicating

the left long tail, while kurtosis is high in the beginning, thus capturing the heavy tails of the

distribution, and decreases significantly for solar power penetration higher than 7 percent.

Hence, there is statistical evidence that the probability of extremely low electricity prices

decreases when solar power penetration gets larger. Figure 1.8 verifies this change in the

distributional properties of electricity prices.

The mean of the electricity price also decreases for higher levels of wind power penetra-

tion. It is important to state that for wind power penetration higher than 25 percent, the

mean of electricity price declines by around 50 percent. However, the standard deviation of

the electricity price distribution increases as wind power penetration gets larger, providing

some evidence of augmented volatility — see Jónsson et al. (2010). Skewness and kurtosis

do not provide any obvious pattern, apart from the last interval where electricity price
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Figure 1.8: Distribution of prices for different intervals of solar power penetration

Figure 1.9: Distribution of prices for different intervals of wind power penetration
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distribution exhibits negative skewness and high kurtosis. That is to say, the probability

of very low electricity prices increases when wind power serves more than 25 percent of the

electricity demand. This rapid change of distributional properties during the large interval

might be an indication of non-linear effects of wind power generation on electricity prices.

1.5 GARCH Modelling

This section presents three univariate GARCH-in-Mean models for three different electricity

prices. In particular, we estimate three GARCH(1,1) models that apply to German day-

ahead electricity prices during all hours, peak hours, and off-peak hours. In each case, we

specify the mean equation based on the Schwarz Information Criterion (SIC), the Akaike

Information Criterion (AIC), and the Hannan-Quin Information Criterion (HQC) (see panels

A, B, and C of Table 1.6), which all suggest the AR(7) as the optimal model specification.

Accordingly, the three mean equations are represented as

pt = α + β1
√
ht +

7∑
i=1

β1+ipt−i + β9st + β10wt + β11lt + εt (1.1)

ppeak,t = α + β1
√
ht +

7∑
i=1

β1+ipt−i + β9st + β10wt + β11lt + εt (1.2)

poff−peak,t = α + β1
√
ht +

7∑
i=1

β1+ipt−i + β9st + β10wt + β11lt + εt (1.3)

where
√
ht is the conditional standard deviation, st the solar power generation, wt the wind

power generation, and lt is the total electricity load.

The variance equation of the model is a classic GARCH(1,1) equation augmented with

additional regressors — the solar power generation, wind power generation, and the total

electricity load. The resulting variance equation is

ht = c0 + a1ε
2
t−1 + b1ht−1 + b2st + b3wt + b4lt (1.4)

where ht is the conditional variance and ε2t−1 are the squared residuals.

It is noteworthy that in contrast to a large part of the literature, we actually include

the negative electricity prices in our analysis, since we consider them useful for a better

understanding of the market functioning, and also because there is some evidence for a

direct relation between them and renewable power generation. The empirical consideration

of negative electricity prices for the case of the German/Austrian electricity market is rarely

found in the literature since they were not present until 2009 (Zielet al., 2015). However, Keles
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Table 1.6: Optimal AR lag in the mean equation

A. All prices B. Peak prices C. Off-peak prices

Lag AIC SIC HQ AIC SIC HQ AIC SIC HQ

1 5.558 5.591 5.570 6.095 6.128 6.107 5.464 5.497 5.476
2 6.097 6.134 6.111 6.354 6.390 6.367 5.684 5.720 5.697
3 5.859 5.898 5.873 6.405 6.444 6.419 5.787 5.826 5.802
4 5.753 5.794 5.768 6.164 6.206 6.179 5.643 5.685 5.658
5 5.411 5.456 5.428 5.918 5.963 5.934 5.303 5.348 5.320
6 5.389 5.437 5.407 5.891 5.939 5.909 5.275 5.323 5.293
7 5.363 5.413 5.382 5.848 5.898 5.867 5.259 5.309 5.277
8 5.548 5.601 5.567 5.849 5.903 5.869 5.260 5.313 5.279

et al. (2012) include them in their simulation study and get better results, while Fanone et

al. (2013) also argue in favor of their inclusion. Therefore, we include the negative prices in

our analysis without cutting off or shifting the series. Moreover, we do not apply any extreme

value theory, and we merely filter values that exceed, by ten times, the standard deviation

of the original price series2. We replace the outliers, which arise from the combination of

exceptional high wind penetration and low demand, with the median of the respective series,

which is a robust statistic.3

The empirical estimates for the three models, equations (1.1) and (1.4), equations (1.2)

and (1.4), and equations (1.3) and (1.4), are presented in panels A and B of Tables 1.7, 1.8,

and 1.9. All autoregressive coefficients, with the exception of the fifth during all hours and

off-peak hours, as well as the fourth and fifth during peak hours, are found positive and stat-

istically significant at the 1% level, while GARCH-in-Mean effects are found significant at the

5% level, but only for the case of electricity prices during peak hours. Hence, risk captured by

electricity price volatility seems to propagate towards electricity prices during peak hours and

affect them in a positive way. The most striking feature in the mean equation is the negative

effect of solar and wind power generation on electricity prices, which is in line with the liter-

ature. In fact, wind exhibits a more severe effect than solar during all hours of the day, while

the solar effect is significant during peak hours, but not during off-peak hours. In contrast,

the total electricity load has, as expected, a positive impact on electricity prices throughout

all hours of the day, while its effect becomes more prominent during peak hours when the

electricity system is tight. Consequently, electricity prices increase with higher demand

2It is a common practice in the literature, for outlier detection purposes to filter values that exceed three
times the standard deviation of the original series. However, we use the threshold of ten times, so that we
solve some potential numerical problems and at the same time include as many observations as possible.

3Only 2 observations out of 2007 for the electricity price during off-peak hours are replaced with the
median of the series.
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Table 1.7: Univariate GARCH base model

A. Conditional mean equation

Constant 10.850 (0.3252)√
ht 0.086 (0.0867)

pt−1 0.463 (0.0000)
pt−2 0.097 (0.0005)
pt−3 0.075 (0.0060)
pt−4 0.068 (0.0081)
pt−5 0.042 (0.0755)
pt−6 0.069 (0.0026)
pt−7 0.162 (0.0000)
st -3.465E-05 (0.0000)
wt -4.481E-05 (0.0000)
lt 4.037E-05 (0.0000)

B. Conditional variance equation

Constant 23.159 (0.0000)
ε2t−1 0.226 (0.0000)
ht 0.447 (0.0000)
st -1.483E-05 (0.0000)
wt 1.385E-05 (0.0000)
lt -1.436E-05 (0.0000)

C. Standardized residual diagnostics

Q(30) p-value 0.0001
Q2(30) p-value 0.9958

and this rise is even greater when demand is high, relative to the other hours of the day and

the power system capacity.

In the variance equation, the GARCH coefficient on ht−1, which reflects the persistence of

past shocks on the variance, is moderately high (0.552) during peak hours, and low (0.278)

during off-peak hours. The ARCH coefficient on ε2t−1, which captures the impact of new

shocks, is always found very low, while total electricity load which reflects the electricity

demand profile, surprisingly, decreases electricity price volatility during all hours of the day.

Finally, the most interesting feature in the variance equation is the significant effect of solar

and wind power generation on electricity price volatility. Specifically, solar power production

reduces electricity price volatility in contrast to wind power production that augments it.

This finding is in accordance with the previous results from the analysis of distributional

properties of electricity prices under different renewable power penetration, where the stand-
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Table 1.8: Univariate GARCH peak model

A. Conditional mean equation

Constant -7.033 (0.3232)√
ht 0.121 (0.0233)

pt−1 0.390 (0.0000)
pt−2 0.124 (0.0000)
pt−3 0.062 (0.0096)
pt−4 0.043 (0.0719)
pt−5 0.057 (0.0116)
pt−6 0.082 (0.0001)
pt−7 0.207 (0.0000)
st -6.838E-05 (0.0000)
wt -5.035E-05 (0.0000)
lt 5.557E-05 (0.0000)

B. Conditional variance equation

Constant 26.318 (0.0000)
ε2t−1 0.198 (0.0000)
ht 0.552 (0.0000)
st -1.476E-05 (0.0018)
wt 1.953E-05 (0.0000)
lt -1.656E-05 (0.0000)

C. Standardized residual diagnostics

Q(30) p-value 0.0000
Q2(30) p-value 0.9011

dard deviation of electricity prices was found to decrease with higher solar power penetration,

but to increase with higher wind power penetration.

The effects of solar and wind power generation on electricity price characteristics can be

understood better through the analysis of the merit-order effect (see Figure 1.1). First of

all, every type of renewable power generation technology induces a merit-order effect, since

they can always replace expensive fossil-fuel power generation due to their low, short-run

marginal cost and priority dispatch. What really differentiates the effect of each renewable

power source on electricity prices, is the relation of its power generation pattern with the

special power system characteristics. In the case of solar, it is common knowledge that its

greatest amount of production occurs during the same hours of peak electricity demand and

therefore expensive peak-load power generation. Hence, solar power generation is expected

to exhibit the strongest merit-order effect, compared to different renewable power sources,
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Table 1.9: Univariate GARCH off-peak model

A. Conditional mean equation

Constant 3.834 (0.2747)√
ht -0.054 (0.1417)

pt−1 0.476 (0.0000)
pt−2 0.092 (0.0002)
pt−3 0.070 (0.0024)
pt−4 0.060 (0.0049)
pt−5 0.039 (0.0766)
pt−6 0.099 (0.0000)
pt−7 0.120 (0.0000)
st -1.503E-06 (0.6436)
wt -3.861E-05 (0.0000)
lt 2.552E-05 (0.0000)

B. Conditional variance equation

Constant 22.663 (0.0000)
ε2t−1 0.143 (0.0000)
ht 0.278 (0.0000)
st -1.723E-05 (0.0000)
wt 3.313E-05 (0.0000)
lt -1.394E-05 (0.0000)

C. Standardized residual diagnostics

Q(30) p-value 0.0000
Q2(30) p-value 0.0001

during peak hours. Accordingly, by looking at Figure 1.1, we notice that the new electricity

price, after solar power penetration, is set by the intersection of the demand curve D2 and

the new supply curve S2. What is really noteworthy in this case, is not only the signific-

antly lower system price but also the lower gradient of the new merit-order curve, where

the demand curve crosses it. Thus, a new electricity price is set by ‘cheaper’ power genera-

tion, and demand variation can be handled adequately without high cost peak power plants

penetrating into the system.

Moreover, solar power generation exhibits low variability, and therefore mid-load power

plants can adjust their power production to residual demand efficiently, through their flexib-

ility. In this way, solar power generation manages to reduce electricity price volatility which

is characterized by large and frequent price spikes. On the other hand, wind power capacity

is more than double that of solar and so, it is expected to induce a larger merit-order effect
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in total during the day. Combined with high variable power production, wind challenges

the operation of power system, and more particularly its flexibility. That is to say, large

amounts of wind power penetrate the system with high variability, and alternate the level of

residual demand that conventional power plants need to serve. Thus, increased cycle effects

and technology switching occur, causing frequent price spikes and increased price volatility.

This effect becomes more prominent during off-peak hours, when system flexibility is even

lower; base-load power plants, such as lignite or hard coal, bid negative prices in order to

avoid ramp-downs, and thereby introduce negative price spikes and increase electricity price

volatility.

Finally, Panel C of Tables 1.7, 1.8, and 1.9 reports the Ljung-Box test statistics for the

residuals. The Ljung-Box Q test for residual autocorrelation does not pass at conventional

significance levels for all the lags; however, autocorrelation plots for residuals show very

little autocorrelation and certainly no particular pattern that can be due to non-stationarity

or seasonality. Overall, the diagnostic tests suggest that all GARCH models are correctly

specified.

1.6 Granger Causality

In this section, we test for Granger causality from solar power generation, wind power gen-

eration, and total electricity load to day-ahead electricity prices, within the already specified

GARCH framework given by the equations (1.1) and (1.4), equations (1.2) and (1.4), and

equations (1.3) and (1.4). In fact, we investigate in the spirit of Granger (1969) whether

past information about solar power generation, wind power generation, or total electricity

load improves the prediction of electricity prices, beyond predictions that are based merely

on past electricity prices.4 We do that in a multivariate context, and use the Wald (1943)

test in order to investigate whether the coefficients of solar, wind, or load, respectively, are

zero, thus not Granger-causing electricity prices.

First, we test for Granger causality between electricity prices and solar power genera-

tion. Hence, we test the null hypothesis that the set of coefficients of solar, in the mean and

variance equations, are jointly zero. If the null hypothesis is rejected, then we can safely con-

clude that solar Granger-causes the corresponding electricity price distribution. In addition,

we explore the same causal relations for the case of wind power generation as well as total

electricity load. Table 1.10 reports the results of these tests for electricity prices during all

hours, peak hours, and off-peak hours; p-values lower than 0.01 indicate rejection of the null

hypothesis of no Granger causality at the 1% significance level. The results clearly indicate

4Market forecasts about solar power generation, wind power generation, and total electricity load are
provided before daily auction takes place at 12.00 pm.
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Table 1.10: p-values for Granger causality

Electricity price

Causal variable All hours Peak hours Off-peak hours

Solar 0.0000 0.0000 0.0000
Wind 0.0000 0.0000 0.0000
Load 0.0000 0.0000 0.0000
Solar & wind 0.0000 0.0000 0.0000

that solar power generation, wind power generation, and total electricity load Granger-cause

electricity prices at the 1% significance level.

Moreover, we investigate the combined impact of the two most important, intermittent,

renewable energy sources in the German electricity market, solar and wind on electricity

prices. Hence, we test the null hypothesis that the four coefficients of solar and wind power

generation in the mean and variance equations are jointly zero. By looking at Table 1.10,

we conclude that their combined impact Granger-causes electricity prices and modifies their

distributions. Hence, we arrive at the conclusion that with our data, there is statistically sig-

nificant evidence for Granger causality from solar power generation, wind power generation,

and total electricity load to electricity prices. An interesting direction for future research

would be to investigate the same causal relations in the context of non-linear models, while

exploring the complex intraday dependence of hourly prices.

1.7 Conclusion

Climate change, environmental degradation, growing energy demand, depletion of natural

resources, and limited energy security, all render the deployment of renewable energy sources

in the electricity industry of high importance for decades to come. However, despite their

many advantages, renewables challenge the operation of electricity markets with their inter-

mittent nature. This paper discusses the ongoing transition of the German electricity market

towards renewables, as well as the effects of intermittent solar and wind power generation

on electricity price formation through the supply and demand mechanism. More import-

antly, it provides a study of the relationship between day-ahead electricity prices and solar

and wind power generation and total electricity load for all hours, peak hours, and off-peak

hours, using data over the period from 2010 to 2015. It also investigates the distributional

properties of electricity prices under different scenarios of solar and wind power penetration.

We find that there are causal relationships from solar power generation, wind power

generation, and total electricity load to electricity prices during all hours, peak hours, and
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off-peak hours. We provide evidence that although both solar and wind power generation

induce a merit order effect, they have different effects on the volatility of electricity prices and

their higher order moments. In particular, solar power generation reduces the volatility of

electricity prices while it reduces the probability of electricity price spikes. On the other hand,

wind power volatility passes through to electricity prices volatility, and introduces electricity

price spikes. While the volatility of renewable power is driven by the stochastic nature of

weather conditions, the volatility of electricity prices is also subject to market design.

The findings of this paper underline that effective and sustainable integration of large-

scale renewable energy begins with a clear understanding of the distinct properties of each

renewable energy source, as well as of its interaction with different parts of the power sys-

tem. Increased flexibility seems to be the crucial element for addressing different aspects of

renewable energy intermittency, such as variability or uncertainty, and rendering renewable

energy sources viable and reliable. Hence, flexible conventional power generation, adequate

transmission grid, and contribution of renewable energy to system stability are some of the

potential ways to increase system flexibility. However, reducing the flexibility requirements

through policy measures, such as economic curtailment of renewable generation, energy

storage, demand response, and market interconnection can achieve similar results. Lastly,

optimal management of renewable resources, for example, through geographic decorrelation,

or resource complementarity is another key consideration for future deployment of large-scale

renewables.
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1.8 Appendix

Figure A1.1: Histogram of all hours electricity prices
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Figure A1.2: Histogram of peak electricity prices
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Figure A1.3: Histogram of off-peak electricity prices

0

100

200

300

400

500

-140 -120 -100 -80 -60 -40 -20 0 20 40 60 80

Fr
eq

ue
nc

y

39



Chapter 2

The Zero Lower Bound and Market
Spillovers: Evidence from the G7 and
Norway

Coauthored with Apostolos Serletis.
Published in Research in International Business and Finance (2017).

ABSTRACT

This paper investigates mean and volatility spillovers between the crude oil market and

three financial markets, namely the debt, stock, and foreign exchange markets, while provid-

ing international evidence from each of the seven major advanced economies (G7), and the

small open oil-exporting economy of Norway. Using monthly data for the period from May

1987 to March 2016, and a four-variable VARMA-GARCH model with a BEKK variance spe-

cification, we find significant spillovers and interactions among the markets, but also absence

of a hierarchy of influence from one specific market to the others. We further incorporate a

structural break to examine the possible effects of the prolonged episode of zero lower bound

in the aftermath of the global financial crisis, and provide evidence of strengthened linkages

from all the eight international economies.

JEL classification: C32, E32, E52, G15.

Keywords : Crude oil, Financial markets, Mean and volatility spillovers, Structural breaks,

VARMA-BEKK model.
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2.1 Introduction

Crude oil constitutes one of the world’s most important primary energy commodities, and

arguably affects the global economy through several different channels or transmission mech-

anisms. Some notable studies that investigate the effects of crude oil prices on different

aspects of the economy are Hamilton (1983), Mork (1989), Lee et al. (1995), Elder and

Serletis (2010), and Jo (2014). Oil prices were traditionally determined by oil-market dis-

tinct demand and supply forces whereas Kilian (2009), in an impressive study, disentangles

the determinants of oil price fluctuations, and underlines the importance of global economic

activity triggered by the state of the global business cycle. Another strand of the literat-

ure, however, attributes the recent dramatic oil price fluctuations to the financialization of

commodity markets and speculative activities, which induce oil prices to depart from their

fundamental values. See, for example, Singleton (2014) and Juvenal and Petrela (2015).

Motivated by these developments and the recent increase of oil price volatility, the aim of

this paper is to explore for spillovers and interactions among the crude oil market and the

three most important financial markets, namely the bond, stock, and foreign exchange mar-

kets. Moreover, in the aftermath of the global financial crisis, we examine the effects of

unconventional monetary policy, when the Federal Reserve and other central banks of the

G7 countries as well as Norges Bank (the Norwegian Central Bank), cut their policy rates

to their effective zero lower bound.

There is a substantial body of literature investigating crude oil price fluctuations, as well

as the transmission channels through which they affect different macroeconomic measures,

as for instance the GDP — see Hamilton (2003). In recent years, however, a new strand

of research has emerged studying and trying to explain the determinants of the price of oil

by the financialization of the crude oil market, rather than solely by changes in economic

fundamentals. Dramatic oil price fluctuations, for instance from $140/barrel in the summer

of 2008 to $60/barrel by the end of 2008, support the view that the oil price might not be

only determined though its primary supply and demand mechanism, and raise the question of

whether oil has itself become a financial asset with its price reacting to and influencing other

assets in financial markets. Indeed, since the early 2000s the financialization of commodity

markets, and more particularly the oil market, started taking place with financial investors

and portfolio managers using energy assets as a means to diversify their portfolios and

hedge their exposure against uncertainty risk — see, for example, Ta and Xiong (2012) and

Hamilton and Wu (2014). In fact, Alquist and Kilian (2010) comment on the financialization

of the oil market, and based on data from the Commodity Futures Trading Commission

argue for an unprecedented increase in speculative activities after 2003. Specifically, it is

estimated that the total value of assets allocated to commodity index trading strategies
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increased from $15 billion at the end of 2003 to $260 in mid-2008 [see Creti and Nguyen

(2015)], while Daskalaki and Skiadopoulos (2011) attribute the financialization of energy

markets to different return behavior and low correlation with stock and bond returns.

In this regard, Fattouh et al. (2013) examine whether the drastic changes in oil prices

during the period from 2003 to 2008 can be viewed as a result of the increased financialization

of the oil market, but find evidence that supports the view of economic fundamentals as the

main determinant of the oil price. However, this view has been challenged by Juvenal

and Petrela (2015), who argue that speculation constituted a major factor in the oil price

increase between 2004 and 2008, as well as its subsequent collapse. It is worth noting

that several studies investigate the role of speculation in the oil market through different

channels. Hamilton (2009) suggests that speculation may occur through the supply side

of the market, by speculators purchasing a high number of futures contracts and thereby

signalling higher expected prices. In contrast, Kilian and Murphy (2014) look at speculation

from the demand side, and more particularly through the demand for oil inventories that

are driven by shifts in expectations, not captured by demand and supply factors. Although

there is no consensus among academic researchers about how much crude oil financialization

and speculative activities are responsible for oil price fluctuations during the past decade,

they all agree that participation of financial investors in the oil market has rendered crude

oil a financial asset with new stylized facts, as for instance increased price volatility.

The effects of oil price changes on stock prices have been investigated extensively by

numerous research papers. Kilian and Park (2009), in an interesting and influential study,

treat the price of oil as endogenous, and examine the impact of oil price changes on stock

market returns in the United States, by disentangling the supply and demand factors of

the oil market. Their empirical results suggest that stock markets react more strongly to

changes in global aggregate demand. Recently, and from a similar point of view, Ahmadi et

al. (2016) investigate the impact of the global oil market on the U.S. stock market taking

into account determinant factors from both the crude oil and stock markets. Their findings

corroborate the view that a positive global demand shock increases the market return, while

a shock to speculative demand for crude oil depreciates the stock market. They also argue

that omission of the stock market determinants overestimates the contribution of the oil price

shocks in stock market variation. Some more interesting studies on the relationship between

oil prices and stock prices using different types of econometric tools are Kling (1985), Jones

and Kaul (1996), Sadorsky (1999, 2001, 2012), Cong et al. (2008), Park and Ratti (2008),

Lee et al. (2012), Li et al. (2012), Ding et al. (2016), and Joo and Park (2017).

Another very interesting relationship with a less extensive yet still growing literature is

between oil prices and exchange rates. Oil price changes affect a country’s exchange rate

primarily through two separate transmission channels, while the impact differs between oil-
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importing and oil-exporting countries. The first one was initially introduced by Golub (1983)

and Krugman (1983), and refers to the wealth effect channel, according to which an oil price

increase is related to a wealth transfer from an oil-importing to an oil exporting country,

which in turn induces a real depreciation of the exchange rate of the former country, and

vice versa. For an empirical application, see Kilian et al. (2009). The second transmission

mechanism is within the context of the trade balance, based on which higher oil prices

result in an improved trade balance of the oil-exporting country, and thereby to a local

currency appreciation (vice versa for an oil-importing country). Related empirical evidence

is provided by Amano and van Norden (1998), while Buetzer et al. (2012) underline the

danger of oil price increases to eventually steer the economies of oil-exporting countries

towards the Dutch disease. This view, however, has recently been challenged by Bjørland

and Thorsrud (2016), who use Australia and Norway as representative cases studies, and

argue that booming resource sectors may have significant productivity spillovers to non-

resource sectors, while commodity price growth related to global demand is also favourable.

In the same study, it is noted that commodity price growth which is unrelated to global

activity is less favourable, due to the significant real exchange rate appreciation and reduced

competitiveness. In this regard, Basher et al. (2016) build upon their previous work and

find evidence of nonlinear interaction between oil prices and exchange rates in both oil

exporting and importing economies, after they first separate the underlying sources of the

oil price movements, according to Kilian’s (2009) approach, to an oil supply shock, an oil-

market specific demand shock, and a global economic demand shock. Specifically, they find

evidence for substantial currency appreciation in oil exporting countries after oil demand

shocks whereas global economic demand shocks are found to influence both oil exporting and

importing countries, though there is no systematic pattern of appreciating and depreciating

exchange rates. Some other interesting studies on this link are Sadorsky (2000), Chen and

Chen (2007), and Chen et al. (2010).

Moreover, there is an extended literature analyzing the relationship between oil prices

and interest rates; a relationship in which the conducted monetary policy, through changes

in interest rates and monetary aggregates, plays an important role. In this regard, Krichene

(2006) analyzes the link between monetary policy and oil prices, and finds evidence of a

two-way relationship contingent on the type of oil shock. Specifically, he finds that during

a supply shock, oil price increases cause interest rates to rise whereas falling interest rates

cause oil prices to increase during a demand shock. Moreover, the fact that both oil prices

and interest rates have increased prior to the majority of postwar U.S. recessions, triggered

the intensive interest of literature to explore this relationship in regard to economic activity.

Bernanke et al. (1997, 2004) try to answer the question of whether those recessions were

caused by oil price increases, or by contractionary monetary policy. Using Hamilton’s (1996)

43



2. The Zero Lower Bound and Market Spillovers: Evidence from the G7 and Norway

measure of oil price shocks, they argue that oil price and interest rate increases contribute

to the recessions to the same extent, while Hamilton and Herrera (2004) find that oil price

shocks have a greater impact on the economy, and that tightening monetary policy does

not have such a great effect as implied by Bernanke et al. (1997). Hammoudeh and Choi

(2006), in contrast, study the impact of oil price and interest rate on the Gulf Cooperation

Council’s (GCC) stock markets, and provide evidence that only the short-term interest rate

has an important, but mixed, effect on the GCC markets. More recently, and within the

framework of a dynamic stochastic general equilibrium model, Kormilitsina (2011) shows

that tightening monetary policy amplifies the negative effects of the oil price shock.

In the aftermath of the global financial crisis and Great Recession, many central banks,

such as the Federal Reserve, the Bank of Japan, the European Central Bank, the Bank of

England, the Bank of Canada, and the Norges Bank lowered their policy rates towards, or

slightly above, the zero lower bound in order to provide additional monetary stimulus to

their economies. Since the monetary policy rate has been used as the primary operating

instrument during the last decades and zero was by that time considered the lowest bound,

central banks lost their usual ability to signal policy changes via changes in interest rate

policy instruments, and attempted further monetary easing by resorting to unconventional

measures, such as forward guidance, asset purchase programs, and credit easing. Filardo

and Hofmann (2014) investigate the effectiveness of forward guidance by four major central

banks, namely, the Federal Reserve, the Bank of Japan, the European Central Bank, and

the Bank of England, and conclude that although it has reduced the volatility of near-

term expectations about the future path of policy interest rates, the evidence for its impact

on expected interest rates has varied significantly, thus making it difficult to draw firm

conclusions about their overall effectiveness in reliably stimulating further actual economies.

Some more interesting studies on the effectiveness of unconventional monetary policies are

Hamilton (2012) and Gambacorta et al. (2014). Furthermore, Serletis and Istiak (2016)

investigate the relationship between economic activity and Divisia money supply shocks and

argue, based on evidence of a symmetric relationship, in favor of monetary aggregates as

appropriate policy instruments, since they are measurable, controllable, and have predictable

effects on goal variables.

Motivated by the aforementioned discussions, we investigate mean and volatility spillovers

between the crude oil market and the three most important financial markets, the bond,

stock, and foreign exchange markets, using a multivariate volatility model. This model was

first proposed by Bollerslev et al. (1998) and has become much more widely used in economics

and finance, since it allows for shocks to the variance of one of the variables to ‘spill-over’ to

the others. A recent example is the work by Gilenko and Fedorova (2014) who use a four-

dimensional BEKK-GARCH-in-mean model to investigate the spillover effects between the
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stock markets of BRIC countries (Brazil, Russia, India, and China). In fact, as Bauwens et

al. (2006, p. 79) put it, “is the volatility of a market leading the volatility of other markets?

Is the volatility of an asset transmitted to another asset directly (through its conditional

variance) or indirectly (through its conditional covariances)? Does a shock on a market

increase the volatility on another market, and by how much? Is the impact the same for

negative and positive shocks on the same amplitude?” It is worth mentioning that although

there is a substantial body of literature exploring the interactions among the four markets,

most of them study each relationship separately rather than in a systems context. Some

related studies that investigate up to three markets together are Nadha and Hammoudeh

(2007), Akram (2009), Basher et al. (2012), and Diaz et al. (2016). Here, we follow Serletis

and Xu (2018) and examine the possible effects of monetary policy at the zero lower bound

in the aftermath of the global financial crisis, while providing international evidence from

each of the seven major advanced economies (G7) and the small open oil-exporting economy

of Norway. The main argument behind this is that spillovers and interactions among the four

markets might vary across different international economies, since the latter exhibit different

characteristics, such as oil dependency or conducted monetary policy.

The rest of the paper is structured as follows. In Section 2.2, we describe the data and

investigate their time series properties. In Section 2.3, we present the VARMA-GARCH

model with a BEKK representation and structural break, while in Sections 2.4 and 2.5 the

empirical evidence is presented, discussed, and summarized. Some concluding remarks are

given in Section 2.6.

2.2 Data and Basic Properties

We use monthly data for each of the G7 countries, namely Canada, France, Germany, Italy,

Japan, the U.K., and the U.S., as well as for the significantly smaller and oil-exporting

country of Norway, for the period from May 1987 to March 2016. Other papers also use

monthly data to study the interaction between the crude oil and stock market [see Park

and Ratti (2008), Miller and Ratti (2009), and Ahmadi et al. (2016)], and the relationship

between oil prices and exchange rates [see Chen and Chen (2007), and Atems et al. (2015)].

For the oil price series (ot), we use the world’s most commonly referenced crude oil price

benchmark, the spot British price of oil (Brent) published by the U.S. Energy Information

Administration. The main argument behind this is the fact that around two-thirds of the

global physical oil-trading uses the Brent as a reference price, primarily due to the “light” and

“sweet” properties of Brent oil which render it ideal for transportation to distant locations.1

In order to take fluctuations of exchange rates and inflation into account, we follow Güntner

1These properties refer to the low sulfur concentration of crude oil (less than 0.5%).
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(2014) and accordingly construct the national real oil price of each country. In doing so, we

convert the Brent oil price from U.S dollars to national currency using the corresponding

bilateral exchange rate as reported by the St. Louis Federal Reserve Economic Database

(FRED), and then deflate it using the domestic consumer price index (CPI), available from

OECD. In the case of the euro area countries, namely France, Germany, and Italy, we also

use the irreversible parity rates with the euro, obtained from the exchanging national cash

archives of the European Central Bank, in order to convert to national currency for the

period after the introduction of the euro in January 2002.

For the interest rate series, it, we use the short-term interest rate from IMF International

Financial Statistics and OECD.2 Moreover, we employ the monthly average share price

indices from OECD for the stock price series, st, after deflating them using the corresponding

CPI. Last, the bilateral exchange rates between the U.S dollar and the different national

currencies are used for the exchange rate series, et, while for the case of the U.S. we use the

nominal effective exchange rate, available from the IMF International Financial Statistics.

Tables A2.1-A2.8 present summary statistics of each individual series of each of the eight

countries, namely the log levels, ln ot, ln it, ln st, and ln et, and logarithmic first differences,

∆ ln ot, ∆ ln it, ∆ ln st, and ∆ ln et. It is worth noting that in the cases of negative short-term

interest rate such as in France and Italy, the levels, rather than the logarithms of the short-

term interest rate are examined, while from a similar point of view in the case of Germany and

Japan we employ the levels, and not the logarithms, of all the series. In general, the p-values

for skewness and kurtosis underline significant deviations from symmetry and normality with

both the logged series and the first differences of the logs. Moreover, the Jarque-Bera (1980)

test statistic, distributed as x2(2) under the null hypothesis of normality, rejects the null

hypothesis with nearly all the series. It is to be noted that all series are scaled up by a factor

of 100, except for the case of Japan where the stock price series and exchange rate are scaled

down by a factor of 0.01, and the oil price by a factor of 0.001; the main reason for doing so

is to make all four series be in the same range.

In the first step of volatility modeling, we test for the presence of a unit root (a stochastic

trend) in the autoregressive representation of each individual series of each of the eight

countries. Panel A of Tables 2.1-2.3 reports the results of unit root and stationary tests in

log levels, ln ot, ln it, ln st, and ln et, and logarithmic first differences, ∆ ln ot, ∆ ln it, ∆ ln st,

and ∆ ln et. Specifically, we use the Augmented Dickey-Fuller (ADF) test [see Dickey and

Fuller (1981)] and the Dickey-Fuller GLS (DF-GLS) test [see Elliot et al. (1996)] which

evaluate the null hypothesis of a unit root against an alternative of stationarity, assuming

both a constant and trend. We select the optimal lag length based on the parsimonious

2These refer either to three month interbank offer rate or the rate associated with Treasury Bills, Certi-
ficates of Deposit or comparable instruments, each with a three month maturity.
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Table 2.1: Unit Root and Stationary Tests

Canada France Germany

Series ADF DF-GLS KPSS ADF DF-GLS KPSS ADF DF-GLS KPSS

A. Levels

lnot -3.477 -2.157 0.521 -3.021 -2.035 0.627 -2.803 -2.077 0.627
lnit -3.768 -3.065 0.179 -2.695 -2.218 0.519 -2.680 -1.630 0.228
lnst -3.032 -2.333 0.433 -2.167 -2.332 0.796 -2.676 -2.661 0.339
lnet -1.494 -1.738 1.047 -2.509 -2.340 0.492 -2.637 -2.478 0.478

B. First differences

∆lnot -14.590 -8.687 0.071 -14.712 -8.130 0.076 -13.971 -8.306 0.085
∆lnit -7.553 -6.086 0.036 -13.869 -6.878 0.052 -11.801 -5.626 0.133
∆lnst -14.843 -7.580 0.056 -15.216 -4.742 0.049 -13.451 -6.951 0.042
∆lnet -13.329 -6.215 0.158 -13.497 -6.920 0.060 -13.441 -7.232 0.055

Note: Sample period, monthly observations, 1987:5-2016:3. The 1% (and 5%) critical values for the
ADF, DF-GLS, and KPSS tests are -3.989, -3.484, and 0.216 (-3.425, -2.891, and 0.146), respectively.
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Table 2.2: Unit Root and Stationary Tests

Italy Japan Norway

Series ADF DF-GLS KPSS ADF DF-GLS KPSS ADF DF-GLS KPSS

A. Levels

lnot -3.342 -2.163 0.520 -3.318 -2.378 0.664 -3.262 -2.028 0.624
it -2.827 -2.467 0.687 -1.643 -1.639 0.911 -3.171 -2.900 0.190
lnst -1.901 -1.907 0.894 -2.413 -2.035 0.658 -3.118 -3.041 0.142
lnet -1.904 -1.880 1.050 -2.820 -2.346 0.244 -2.300 -2.114 0.622

B. First differences

∆lnot -14.548 -8.119 0.070 -12.847 -8.158 0.065 -14.816 -8.394 0.073
∆it -10.317 -5.230 0.055 -5.251 -5.252 0.155 -12.015 -6.259 0.053
∆lnst -14.792 -6.443 0.090 -13.959 -6.331 0.033 -14.818 -7.618 0.031
∆lnet -12.293 -6.956 0.073 -13.666 -5.987 0.040 -12.572 -7.808 0.087

Note: Sample period, monthly observations, 1987:5-2016:3. The 1% (and 5%) critical values for the
ADF, DF-GLS, and KPSS tests are -3.989, -3.484, and 0.216 (-3.425, -2.891, and 0.146), respectively.
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Table 2.3: Unit Root and Stationary Tests

United Kingdom United States

Series ADF DF-GLS KPSS ADF DF-GLS KPSS

A. Levels

lnot -2.726 -1.817 0.737 -2.688 -1.951 0.745
lnit -2.363 -2.286 0.835 -2.039 -1.960 0.790
lnst -2.042 -1.914 0.988 -2.104 -2.089 1.037
lnet -3.285 -3.311 0.354 -2.187 -0.801 1.463

B. First differences

∆lnot -15.090 -7.631 0.092 -14.081 -8.142 0.090
∆lnit -8.727 -5.069 0.062 -11.691 -5.923 0.098
∆lnst -13.708 -5.014 0.056 -14.000 -5.812 0.052
∆lnet -13.592 -6.350 0.034 -11.638 -5.616 0.169

Note: Sample period, monthly observations, 1987:5-2016:3. The 1%
(and 5%) critical values for the ADF, DF-GLS, and KPSS tests are
-3.989, -3.484, and 0.216 (-3.425, -2.891, and 0.146), respectively.
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2. The Zero Lower Bound and Market Spillovers: Evidence from the G7 and Norway

Bayesian information criterion (BIC) assuming a maximum lag length of four for each series.

In addition, the KPSS test [see Kwiatkowski et al. (1992)] is used in order to test the null

hypothesis of stationarity around a trend. As shown in Panel A of Tables 2.1-2.3, the null

hypothesis of a unit root cannot in general be rejected for most of the series at conventional

significance levels by both the ADF and DF-GLS test statistics. Furthermore, the null

hypothesis of trend stationarity can be rejected at conventional significance levels by the

KPSS test. Accordingly, we conclude that each of the four series in all countries is non-

stationary, or integrated of order one, I (1). We repeat the unit root and stationary tests in

Panel B of Tables 2.1-2.3 using the first differences of the series. The null hypotheses of the

ADF and DF-GLS tests are in general rejected at conventional significance levels, while the

null hypothesis of the KPSS test cannot be rejected. Hence, we can safely argue that the

first differences of the series are integrated of order zero, I (0).

Most of the literature perceives this property of ‘difference stationary’ [see Nelson and

Plosser (1982)] as a suggestion for using first differences as the appropriate representation

of the data in the model. However, in the case of Canada and Japan, evidence of coin-

tegration among the four series is found based on Johansen’s (1988) maximum likelihood

method. Such a cointegrated system with I (1) variables normally encourages the use of

vector error correction (VEC) models, since the latter allow for the explicit investigation

of the cointegrating relations. However a VAR in levels is also adequate provided that the

cointegrating relations are not the primary goal of study, as in our case. In fact, Lütkepohl

(2004) demonstrates that VAR and VEC models are equivalent. Therefore, in the case of

Canada and Japan we estimate the model using the series in levels. Finally, motivated by all

previous discussions, we proceed to the next section which describes our econometric model.

2.3 The Econometric Model

In this section, we estimate a four-variable VARMA-GARCH model with a Baba, Engle,

Kraft, and Kroner (BEKK) representation [see Baba et al. (1991) and Engle and Kroner

(1995) for more details], which models in a systems context the levels and volatilities of the

crude oil price, interest rate, stock price, and exchange rate in each of the G7 countries and

Norway. The main reason for selecting a VARMA framework is the fact that it allows us to

capture the features of the data generating process in a parsimonious way, without the need

for additional number of parameters. In fact, Inoue and Kilian (2002, p.322) argue that

“the existence of finite-lag order VAR models is highly implausible in practice and often

inconsistent with the assumptions of the macroeconomic model underlying the empirical

analysis.”

It is also noteworthy that in contrast to a large part of the literature, we abandon the
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2. The Zero Lower Bound and Market Spillovers: Evidence from the G7 and Norway

assumption of normally distributed errors, and instead assume a student-t distribution with

the shape parameter being estimated together with the other parameters. The main argu-

ment behind this is the fact that financial series have empirical distributions that exhibit

fatter tails than the normal distribution. See Jansen and de Vries (1991), Koedijk et al.

(1992), Koedijk and Kool (1994), Loretan and Phillips (1994), Kearns and Pagan (1997),

Corsi (2009), and Huisman et al. (1998). The latter is of high importance since underes-

timation of fat tails could lead to an erroneous assessment of the extreme events. Moreover,

Aghababa and Barnett (2016) assess the dynamic structure of the spot price of crude oil and

find evidence of nonlinear dependence, which is however moderated by time aggregation, as

for instance in monthly observations that we actually use here.

We follow Serletis and Xu (2018) and for the mean equation, we use a VARMA(1,1)

model specification with a break to capture the possible effects of monetary policy at the

zero lower bound

zt = Φ + (Γ + Γ̃×D)zt−1 + (Ψ + Ψ̃×D)εt−1 + εt (2.1)

where

εt|Ωt−1 ∼ tv(0, Ht); Ht =


hoo,t hoi,t hos,t hoe,t
hio,t hii,t his,t hie,t
hso,t hsi,t hss,t hse,t
heo,t hei,t hes,t hee,t


and

zt =


ln : ot
ln : it
ln : st
ln : et

 ; εt =


εo,t
εi,t
εs,t
εe,t

 ; Γ =


γ11 γ12 γ13 γ14
γ21 γ22 γ23 γ24
γ31 γ32 γ33 γ34
γ41 γ42 γ43 γ44

 ; Γ̃ =


γ̃11 γ̃12 γ̃13 γ̃14
γ̃21 γ̃22 γ̃23 γ̃24
γ̃31 γ̃32 γ̃33 γ̃34
γ̃41 γ̃42 γ̃43 γ̃44

 ;

Ψ =


ψ11 ψ12 ψ13 ψ14

ψ21 ψ22 ψ23 ψ24

ψ31 ψ32 ψ33 ψ34

ψ41 ψ42 ψ43 ψ44

 ; Ψ̃ =


ψ̃11 ψ̃12 ψ̃13 ψ̃14

ψ̃21 ψ̃22 ψ̃23 ψ̃24

ψ̃31 ψ̃32 ψ̃33 ψ̃34

ψ̃41 ψ̃42 ψ̃43 ψ̃44

 ,
where D is a dummy variable being always equal to zero, except for the time that the policy

rate in the United States hits the zero lower bound and takes the value of one; Ωt−1 is the

information set available in period t− 1, and v a parameter that characterizes the shape of

the student-t distribution. The last parameter, also called shape parameter, describes the

level of the tail fatness in the error distribution and equals the number of existing moments.

Actually, the lower the value of the shape parameter is, the fatter the tails of the error

distribution become.
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2. The Zero Lower Bound and Market Spillovers: Evidence from the G7 and Norway

For the variance equation, the BEKK model specification is preferred for a number of

reasons over other models, such as the dynamic conditional correlation (DCC) model or the

asymmetric dynamic conditional correlation (ADCC) model, developed by Engle (2002) and

Cappiello et al. (2004), respectively. First, the BEKK model forces all the parameters to

enter the model via quadratic forms, ensuring that all the conditional variances are positive,

while the positive definiteness of the conditional variance-covariance matrix Ht is guaran-

teed, by construction, without imposing any restrictions on the parameters. Secondly, the

parameter estimation of the BEKK model is more accurate than that provided by the DCC

model [see Huang et al. (2010)], whereas it allows for more rich dynamics in the variance-

covariance structure of time series. For instance, a shortcoming of the DCC model is that

imposes a common dynamic structure (persistence) on all conditional correlations. Finally,

grounded on the fact that the crucial decision in MGARCH modelling is between flexibility

and parsimony, we prefer the BEKK model specification that is flexible enough to provide

a realistic representation, while also being parsimonious for such a system of four elements

(Bauwens et al. 2006).

More precisely, we use the BEKK (1,1,1) specification which can be regarded a multivari-

ate generalization of GARCH(1,1) model. The resulting variance equation with a dummy

variable is

Ht = C ′C + (B + B̃ ×D)′Ht−1(B + B̃ ×D)

+ (A+ Ã×D)′εt−1ε
′
t−1(A+ Ã×D)

(2.2)

where

A =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 ; Ã =


ã11 ã12 ã13 ã14
ã21 ã22 ã23 ã24
ã31 ã32 ã33 ã34
ã41 ã42 ã43 ã44

 ;

B =


β11 β12 β13 β14
β21 β22 β23 β24
β31 β32 β33 β34
β41 β42 β43 β44

 ; B̃ =


β̃11 β̃12 β̃13 β̃14
β̃21 β̃22 β̃23 β̃24
β̃31 β̃32 β̃33 β̃34
β̃41 β̃42 β̃43 β̃44


where C ′C, B, B̃, A and Ã are 4 × 4 matrices with C being a triangular matrix to ensure

positive definiteness of Ht. The variance equation allows every conditional variance and

covariance to be a function of all lagged conditional variances and covariances, as well as of

all lagged squared residuals and cross-products of residuals. Assuming that the H matrix

is symmetric, the model produces ten unique equations modeling the dynamic variances of

oil, interest rate, stock price, and exchange rate, as well as the covariances between them.
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We forgo employing additional explanatory variables, since our model already contains 68

mean equation parameters, 74 variance equation parameters, and the distribution shape

parameter v, for a total 143 parameters. Last, the following restriction is imposed on our

model γ̃11 = ψ̃11 = α̃11 = β̃11 = 0, thus not allowing the crude oil price to be affected by the

zero lower bound constraint.

2.4 Individual country estimates

The four-variable VARMA(1,1)-BEKK(1,1,1) model with a structural break described above

is estimated individually for each country in Estima RATS 9.0 using the Maximum Likelihood

method. In doing so, we use the BFGS (Broyden, Fletcher, Goldfarb, & Shanno) estimation

algorithm, which is recommended for GARCH models, along with the derivative-free Simplex

pre-estimation method. Tables 2.4-2.11 report the estimated coefficients (with significance

levels in parentheses), as well as the student-t distribution shape parameter estimate, v, and

the key diagnostics for the standardized residuals

ẑjt =
êjt√
ĥjt

(2.3)

for j = ln ot, ln it, ln st, and ln et. In fact, Panel B of Tables 2.4-2.11 reports some descript-

ive statistics for the standardized residuals, as well as the p-values of the Ljung-Box Q test

for residual autocorrelation, and the McLeod-Li Q2 test for squared residual autocorrela-

tion. Both tests evaluate the null hypothesis of independently distributed data against an

alternative of autocorrelation.

In order to answer our research question, we need to capture and discuss the dynamics

of the system, given by the Γ, Ψ, A, and B coefficient matrices for the period before the

zero lower bound was reached, and by Γ + Γ̃, Ψ + Ψ̃, A + Ã, and B + B̃ for the time

that the zero lower bound constraint is binding. It is to be noted that we focus only on

the estimation results that are statistically significant at the 95% level, as well as that

our discussion takes place in terms of predictability and not as implying an underlying

structural economic relationship. Moreover, we do not identify the source of shocks since

this is not within the scope of this paper, and present the estimation results for each country

individually. Finally, the conditional correlation coefficients can be easily computed from

the BEKK model, as follows:

ρ12,t =
h12,t√
h11,t h22,t

(2.4)

Figures 2.1 and 2.2 depict the development of the conditional correlation coefficients between

the crude oil market and each of the three financial markets, in each of the G7 countries and
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Figure 2.1: Cross-market conditional correlations in Canada, France, Germany, and Italy
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Figure 2.2: Cross-market conditional correlations in Japan, Norway, United Kingdom, and United States
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2. The Zero Lower Bound and Market Spillovers: Evidence from the G7 and Norway

Norway. The evolution of the market interactions is illustrated, for the period before and

after the zero lower bound was reached, while differences across countries are detected and

discussed in the following sections.

2.4.1 Canada

As can be seen in Table 2.4, in the oil-dependent Canadian economy, we find that the

autoregressive coefficients along the main diagonal in the Γ matrix are all significant and close

to one. That is to say, for each of the four markets, today’s performance is a good predictor

of tomorrow’s performance. Moreover, the off-diagonal elements of the Γ matrix suggest

significant spillover effects affecting the crude oil, bond, and foreign exchange markets, but

not the stock market. Specifically, the current price of crude oil is affected by last period’s

interest rate, stock price, and exchange rate; a higher interest rate leads to a decrease in

the price of oil (γ12 = −0.046 with a p-value of 0.000), whereas a higher stock market

index leads to an increase in the price of oil (γ13 = 0.102 with a p-value of 0.000), and

an appreciation of the U.S. dollar relative to the Canadian dollar leads to a decline in the

price of oil (γ14 = −0.248 with a p-value of 0.000). Last, we find evidence of spillovers from

the crude oil market to the debt and foreign exchange markets, since γ21 = −0.018 (with a

p-value of 0.014) and γ41 = −0.011 (with a p-value of 0.008).

However, some spillover effects change or new ones occur when the zero bound is reached

in the U.S. policy rate, as is indicated by the Γ̃ matrix. In particular, we find that an increase

in the price of oil today will lead to a higher stock price tomorrow, since γ̃31 = 0.056 (with a p-

value of 0.000). Moreover, the intertemporal correlation between the oil price and the interest

rate changes when the zero lower bound constraint is binding, since in that case an increase

in the interest rate leads to a higher oil price (as γ12+γ̃12 = −0.046+0.080 = 0.034). Overall,

we find that some new spillovers are created across the markets, while some intertemporal

relationships change after the zero lower bound occurs.

On the other hand, the moving average coefficients along the diagonal of the Ψ matrix

are moderate and significant, except for the case of the stock price, implying that each of

the crude oil price, interest rate, and exchange rate series is consistent with a typical ARMA

process. In addition, a single spillover effect in the moving average terms, otherwise called

shock spillover, is found propagating from the stock market towards the debt market, while

affecting it in a negative way (γ23 = −0.137 with a p-value of 0.008). Furthermore, new

shock spillovers are found for the case of the crude oil market when the zero lower bound

occurs. In particular, negative shock spillovers occur from the debt and foreign exchange

markets towards the crude oil market, since γ̃12 = −0.379 (with a p-value of 0.000), and

γ̃14 = −1.342 (with a p-value of 0.009).

Regarding volatility spillovers, all the ‘own-market’ coefficients in the A and B matrices
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Table 2.4: The four-variable VARMA(1,1)-BEKK(1,1,1) model for Canada

A. Conditional mean equation

Γ =


0.857(0.000) −0.046(0.000) 0.102(0.000) −0.248(0.000)
−0.018(0.014) 0.991(0.000) 0.025(0.000) −0.031(0.331)
−0.005(0.261) −0.005(0.282) 0.994(0.000) −0.020(0.317)
−0.011(0.008) −0.006(0.003) 0.007(0.113) 0.971(0.000)

 ; Γ̃ =


0.000 0.080(0.000) −0.015(0.005) 0.048(0.599)

0.045(0.000) −0.116(0.000) −0.047(0.000) 0.054(0.118)
0.056(0.000) −0.002(0.849) −0.059(0.000) 0.231(0.000)
0.016(0.097) 0.008(0.286) −0.017(0.094) −0.038(0.273)

 ;

Ψ =


0.279(0.000) 0.103(0.170) −0.136(0.352) 0.079(0.829)
−0.001(0.980) 0.422(0.000) −0.137(0.008) 0.196(0.254)
−0.006(0.797) −0.039(0.296) 0.050(0.402) 0.049(0.747)

0.000(0.981) −0.012(0.380) −0.041(0.061) 0.213(0.001)

 ; Ψ̃ =


0.000 −0.379(0.000) −0.233(0.403) −1.342(0.009)

0.002(0.938) −0.148(0.064) 0.164(0.019) −0.022(0.911)
0.001(0.983) 0.067(0.124) −0.036(0.723) −0.835(0.000)
−0.013(0.585) 0.020(0.349) 0.045(0.407) 0.288(0.014)

 .
B. Residual diagnostics

Mean Variance Q(4) Q2(4)

zot -0.047 0.879 0.070 0.483
zit -0.158 1.088 0.000 0.962
zst -0.052 0.976 0.028 0.548
zet 0.083 0.856 0.103 0.530

C. Student’s t distribution shape

v = 6.812(0.000)

D. Conditional variance-covariance structure

A =


0.177(0.019) −0.008(0.825) 0.055(0.454) −0.002(0.890)
0.134(0.090) 0.491(0.000) −0.043(0.233) −0.013(0.361)
0.634(0.001) 0.074(0.174) 0.191(0.006) −0.009(0.587)
0.199(0.642) −0.865(0.000) 0.125(0.478) −0.153(0.000)

 ; Ã =


0.000 0.151(0.001) −0.078(0.480) −0.048(0.261)

−0.071(0.552) 0.247(0.085) −0.105(0.114) 0.161(0.000)
1.405(0.000) −0.412(0.000) −0.066(0.673) −0.133(0.135)
1.668(0.021) 0.644(0.005) 0.153(0.701) 0.334(0.102)

 ;

B =


0.637(0.000) −0.094(0.083) 0.254(0.000) 0.000(0.998)
−0.384(0.035) −0.824(0.000) 0.089(0.327) 0.054(0.191)
−1.435(0.000) 0.166(0.200) 0.653(0.000) 0.008(0.759)
−1.118(0.057) 0.484(0.325) −0.288(0.226) 0.985(0.000)

 ; B̃ =


0.000 0.110(0.095) −0.269(0.000) −0.015(0.566)

0.234(0.258) 0.155(0.028) −0.032(0.763) −0.064(0.277)
0.631(0.069) −0.140(0.340) −0.988(0.000) 0.430(0.000)
0.113(0.866) −0.665(0.210) −1.111(0.000) 0.037(0.708)

 .
Note: Sample period, monthly observations, 1987:5-2016:3. Numbers in parentheses are p-values.
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are found statistically significant whereas the estimates suggest a high degree of persistence.

There is no evidence for spillover ARCH effects from the oil market to any of the three

financial markets, but we find statistically significant spillover ARCH effects when the zero

lower bound is reached. In particular, an unexpected shock in the crude oil market increases

the volatility of the debt market when the zero lower bound occurs, since ã12 = 0.151 with

a p-value of 0.001. On the other hand, an unexpected shock in the stock market increases

the volatility in the crude oil market (as a31 = 0.634 with a p-value of 0.001), and this

spillover ARCH effect is strengthened further when the zero lower bound constraint on the

policy rate is binding, since ã31 = 1.405 (with a p-value of 0.000), implying an ARCH effect

of (0.634 + 1.405)2. Moreover, a new significant spillover ARCH effect propagates from

the foreign exchange market to the crude oil market when the zero lower bound occurs (as

ã41 = 1.668 with a p-value of 0.021).

Furthermore, statistically significant spillover GARCH effects occur between the four

markets. In particular, we find volatility spillovers running from the crude oil market to

the stock market (as β13 = 0.254 with a p-value of 0.000), as well as from the debt and

stock markets to the crude oil market, since β21 = −0.384 (with a p-value of 0.035) and

β31 = −1.435 (with a p-value of 0.000). Moreover, we find that the spillover GARCH effect

from the oil market on the stock market increases when the zero lower bound is reached, since

β̃13 = −0.269 (with a p-value of 0.000), implying a GARCH effect of (0.254+0.269)2. Overall,

we find that monetary policy at the zero lower bound strengthens already existing volatility

spillovers, or even creates some new ones between the crude oil and financial markets.

2.4.2 France

In the case of France (see Table 2.5), which is the 6th largest export economy in the world

and the 9th largest oil-importing economy (IEA, 2016), we find that the autoregressive

coefficients of debt and stock markets along the main diagonal in the Γ matrix are moderate

and statistically significant, suggesting that for both of them, today’s performance could be

a useful predictor of tomorrow’s performance. Regarding spillover effects between the oil

and financial markets, there is empirical evidence only for the case of crude oil and stock

markets. In particular, we find that the current price of oil is affected by last period’s stock

price in a positive way (γ13 = 1.083 with a p-value of 0.000) whereas a higher oil price leads

to an increase in the stock price (γ31 = 0.356 with a p-value of 0.000). Moreover, we do

not find significant interactions between the three financial markets, except for the spillover

effect propagating from the debt and foreign exchange markets to the stock market. Hence,

we find that a higher interest rate leads to a lower stock price, since γ32 = −0.035 (with a

p-value of 0.044), while a stronger U.S. dollar relative to the French franc leads also to a

decline in stock prices, since γ34 = −0.265 (with a p-value of 0.032).
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Table 2.5: The four-variable VARMA(1,1)-BEKK(1,1,1) model for France

A. Conditional mean equation

Γ =


−0.212(0.074) 0.024(0.532) 1.083(0.000) 0.118(0.743)

0.236(0.311) 0.762(0.000) −0.082(0.764) −0.726(0.197)
0.356(0.000) −0.035(0.044) 0.412(0.000) −0.265(0.032)
−0.073(0.160) −0.021(0.081) 0.014(0.886) −0.113(0.284)

 ; Γ̃ =


0.000 0.790(0.096) −91.567(0.000) −4.080(0.310)

−0.848(0.043) 0.331(0.061) −38.899(0.000) −2.297(0.172)
−0.373(0.000) 0.047(0.008) −1.020(0.000) 0.234(0.038)

0.462(0.000) 0.057(0.001) 0.171(0.515) 0.261(0.058)

 ;

Ψ =


0.318(0.012) −0.014(0.699) −1.150(0.000) 0.124(0.642)
−0.128(0.606) −0.460(0.000) 0.507(0.126) 1.340(0.047)
−0.445(0.000) 0.047(0.007) −0.206(0.059) 0.389(0.000)

0.080(0.113) 0.016(0.145) 0.017(0.861) 0.568(0.000)

 ; Ψ̃ =


0.000 −0.893(0.069) 91.548(0.000) 4.034(0.309)

0.834(0.050) −0.034(0.877) 38.132(0.000) 1.797(0.306)
0.466(0.000) −0.053(0.002) 0.814(0.000) −0.361(0.000)
−0.519(0.000) −0.052(0.028) −0.271(0.313) −0.674(0.000)

 .
B. Residual diagnostics

Mean Variance Q(4) Q2(4)

zot -0.078 0.752 0.317 0.639
zit 0.008 1.550 0.195 0.987
zst -0.054 0.843 0.317 0.001
zet -0.018 0.777 0.735 0.722

C. Student’s t distribution shape

v = 3.983(0.000)

D. Conditional variance-covariance structure

A =


−0.426(0.000) −0.305(0.002) 0.030(0.554) −0.090(0.004)
−0.015(0.370) 0.612(0.000) −0.002(0.823) −0.006(0.223)

0.377(0.004) −0.732(0.000) 0.051(0.456) 0.115(0.001)
0.753(0.008) 0.162(0.690) 0.580(0.000) −0.099(0.180)

 ; Ã =


0.000 0.278(0.013) 0.204(0.009) 0.275(0.000)

0.356(0.014) −0.638(0.000) 0.546(0.000) −0.101(0.026)
−0.286(0.121) 0.535(0.019) −0.678(0.000) 0.026(0.659)

1.837(0.001) 0.267(0.607) 0.538(0.158) −0.289(0.069)

 ;

B =


0.656(0.000) −0.055(0.297) 0.073(0.104) −0.113(0.000)
0.001(0.941) 0.813(0.000) −0.002(0.686) 0.003(0.336)
−0.923(0.000) 0.166(0.057) 0.701(0.000) −0.015(0.809)

1.377(0.000) −0.261(0.132) 0.459(0.020) 0.932(0.000)

 ; B̃ =


0.000 0.045(0.454) −0.113(0.061) 0.090(0.000)

0.273(0.000) 0.017(0.737) −0.003(0.961) −0.011(0.427)
0.766(0.000) 0.010(0.939) −0.282(0.042) 0.014(0.835)
−0.146(0.671) 0.219(0.303) −0.165(0.485) −0.180(0.037)

 .
Note: Sample period, monthly observations, 1987:5-2016:3. Numbers in parentheses are p-values.
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However, the spillover effects change after the zero lower bound constraint is binding, as

indicated by the Γ̃ matrix. Specifically, we find that an increase in the price of oil could affect

negatively the interest rate, since γ̃21 = −0.848 (with a p-value of 0.043), and ambiguously

the stock market, since γ31 = 0.356 (with a p-value of 0.000) and γ̃31 = −0.373 (with a

p-value of 0.000). Moreover, a new spillover effect is found from the crude oil market to the

foreign exchange market, since γ̃41 = 0.462 (with a p-value of 0.000). On the other hand, the

intertemporal correlation between the stock price and the oil price changes when the zero

lower bound is reached, since an increase in stock market price could lead to a decline in the

price of oil (as γ13 + γ̃13 = 1.083− 91.567 = −90.484). Last, the debt and foreign exchange

markets are found to affect the stock price in an uncertain way when the zero lower bound

occurs, since γ32 = −0.035 and γ̃32 = 0.047 (with a p-value of 0.044 and 0.008, respectively),

whereas γ34 = −0.265 and γ̃34 = 0.234 (with a p-value of 0.032 and 0.038, respectively).

Overall, we find that spillover effects between the crude oil market and the financial markets

are mainly strengthened when the zero lower bound constraint is binding, while the financial

markets interact with each other in an ambiguous way.

Regarding volatility linkages, we find significant spillover ARCH effects from the oil

market to the debt and foreign exchange market (as α12 = −0.305 with a p-value of 0.002

and α14 = −0.090 with a p-value of 0.004) whereas these are further strengthened after

the zero lower bound occurs, since α̃12 = 0.278 (with a p-value of 0.013) and α̃14 = 0.275

(with a p-value of 0.000), implying ARCH effects of (0.305 + 0.278)2 and (0.090 + 0.275)2,

respectively. Moreover, a new spillover ARCH effect is found from the crude oil market to

the stock market when the zero lower bound is reached. In particular, an unexpected shock

in the crude oil price increases the volatility of the stock price when the zero lower bound

constraint is binding, since α̃13 = 0.204 (with a p-value of 0.009).

In addition, we find that all the ‘own-market’ coefficients in the B matrix are statistically

significant and the estimates suggest a high degree of persistence. There are also volatility

spillovers from the crude oil market to the foreign exchange market, with β14 = −0.113 (with

a p-value of 0.000), as well as from the stock and foreign exchange markets to the crude oil

market, since β31 = −0.923 (with a p-value of 0.000) and β41 = 1.377 (with a p-value of

0.000). We also find a new volatility spillover propagating from the debt market to the

crude oil market, as β̃21 = 0.273 (with a p-value of 0.000).

2.4.3 Germany

In the case of Germany, as can be seen in Table 2.6, we find that all the autoregressive

coefficients in the Γ matrix, except that for the foreign exchange market, are moderate

and significant along the main diagonal. Hence, for each of the three markets, today’s

performance is a good predictor of tomorrow’s performance. Moreover, we find significant
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Table 2.6: The four-variable VARMA(1,1)-BEKK(1,1,1) model for Germany

A. Conditional mean equation

Γ =


−0.177(0.000) −0.281(0.921) 0.131(0.009) 43.545(0.048)

0.009(0.000) 0.725(0.000) 0.015(0.000) 2.851(0.000)
0.035(0.082) 4.077(0.016) 0.471(0.000) 16.796(0.477)
0.002(0.000) 0.005(0.670) 0.001(0.018) 0.023(0.821)

 ; Γ̃ =


0.000 −8.635(0.136) 1.756(0.000) −92.506(0.000)

0.011(0.000) 0.124(0.000) −0.036(0.000) −10.643(0.000)
−0.270(0.000) 2.831(0.246) 0.147(0.000) −6.779(0.828)

0.000(0.455) −0.002(0.888) −0.001(0.000) −0.520(0.001)

 ;

Ψ =


0.456(0.000) 0.621(0.817) −0.299(0.000) −28.656(0.152)
−0.009(0.000) −0.468(0.000) −0.015(0.000) −4.012(0.000)
−0.133(0.000) −6.357(0.001) −0.235(0.000) −62.564(0.025)
−0.002(0.000) −0.006(0.570) −0.001(0.023) 0.391(0.000)

 ; Ψ̃ =


0.000 40.184(0.000) −1.514(0.000) 150.582(0.000)

−0.011(0.000) 0.442(0.000) 0.035(0.000) 11.902(0.000)
0.512(0.000) 20.976(0.000) −0.362(0.000) 77.346(0.023)
0.000(0.000) 0.029(0.095) 0.001(0.000) 0.319(0.024)

 .
B. Residual diagnostics

Mean Variance Q(4) Q2(4)

zot -0.005 0.926 0.282 0.693
zit -0.004 0.981 0.349 0.240
zst -0.036 0.929 0.235 0.032
zet 0.060 0.886 0.793 0.144

C. Student’s t distribution shape

v = 6.490(0.000)

D. Conditional variance-covariance structure

A =


0.416(0.000) −0.003(0.002) −0.131(0.030) 0.000(0.750)
2.061(0.100) 0.406(0.000) 2.569(0.047) −0.030(0.000)
−0.043(0.556) −0.003(0.040) −0.411(0.000) 0.001(0.001)
39.401(0.024) 0.243(0.621) −33.554(0.040) 0.087(0.366)

 ; Ã =


0.000 0.000(0.887) −0.130(0.117) 0.001(0.013)

−146.568(0.000) −0.494(0.001) −136.227(0.000) −0.091(0.034)
0.277(0.103) −0.002(0.383) 0.648(0.000) 0.000(0.451)

373.555(0.000) 0.199(0.746) 323.245(0.000) −0.300(0.061)

 ;

B =


−0.091(0.071) −0.003(0.063) 0.734(0.000) 0.000(0.099)
−3.110(0.071) −0.900(0.000) 1.123(0.407) −0.004(0.361)
−1.084(0.000) 0.001(0.443) −0.204(0.000) −0.000(0.863)

−116.547(0.000) 1.053(0.015) 22.984(0.443) −0.455(0.000)

 ; B̃ =


0.000 0.005(0.001) −0.709(0.000) 0.000(0.352)

73.597(0.000) 1.426(0.000) 1.575(0.793) 0.044(0.053)
0.573(0.000) 0.000(0.808) 0.562(0.000) 0.000(0.302)

−25.313(0.657) −0.479(0.459) −156.196(0.000) 0.444(0.004)

 .
Note: Sample period, monthly observations, 1987:5-2016:3. Numbers in parentheses are p-values.
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spillover effects propagating from the stock and foreign exchange markets to the crude oil

market since γ13 = 0.131 (with a p-value of 0.009) and γ14 = 43.545 (with a p-value of 0.048).

On the other hand, there is also evidence of spillovers from the crude oil market to the debt

and foreign exchange markets, since γ21 = 0.009 (with a p-value of 0.000) and γ41 = 0.002

(with a p-value of 0.000).

In addition, we find that spillover effects change after the policy rate hits the zero lower

bound, as indicated in the Γ̃ matrix. In particular, we find that a higher stock price today

leads to an even larger increase in the price of oil tomorrow (as γ̃13 = 1.756 with a p-value

of 0.000), while the intertemporal correlation between the foreign exchange market and the

crude oil market changes when the zero lower bound constraint is binding (as γ14 + γ̃14 =

43.545 − 92.506 = −48.961). Moreover, there is evidence of a strengthened spillover effect

from the crude oil market to the debt market (as γ̃21 = 0.011 with a p-value of 0.000), as

well as of a new spillover effect running from the crude oil market to the stock market, since

γ̃31 = −0.270 (with a p-value of 0.000).

The moving average coefficients along the diagonal of the Ψ matrix are moderate and

significant, implying that each of the four markets are consistent with a typical ARMA

process, while the off-diagonal elements indicate the spillover effects across the four markets.

Regarding the oil price equation, we find that stock market shocks affect the crude oil market

negatively at normal times (as ψ13 = −0.299 with a p-value of 0.000), and even stronger

when the zero lower bound is reached (as ψ̃13 = −1.514 with a p-value of 0.000). Moreover,

we find evidence of shock spillovers running from the crude oil market to all the financial

markets, and influencing them in a negative way, since ψ21 = −0.009 (with a p-value of

0.000), ψ31 = −0.133 (with a p-value of 0.000), and ψ41 = −0.002 (with a p-value of 0.000).

In addition, we find a new shock spillover propagating from the debt market towards the

crude oil market, and affecting it in a positive way when the zero lower bound occurs (as

ψ̃12 = 40.184 with a p-value of 0.000).

Furthermore, we find statistically significant spillover ARCH effects from the crude oil

market to the debt and stock markets, implying that an unexpected shock in the crude oil

market increases the volatility of the bond and stock markets, since α12 = −0.003 (with a

p-value of 0.002) and α13 = −0.131 (with a p-value of 0.030). In addition, there is evidence of

a new spillover ARCH effect propagating from the debt market to the crude oil market when

the zero lower bound is reached. In particular, an unexpected shock in the debt market

increases the volatility of the crude oil market when the zero lower bound occurs, since

α̃21 = −146.568 (with a p-value of 0.000). Moreover, the spillover ARCH effect from the

foreign exchange market to the crude oil market increases when the zero lower constraint

is binding, since α̃41 = 373.555 (with a p-value of 0.000), implying an ARCH effect of

(39.401 + 373.555)2.
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Regarding volatility linkages, all the ‘own-market’ coefficients in the B and B̃ matrices

are statistically significant, except that for the crude oil market, while the estimates imply

a high degree of persistence. Moreover, we find statistically significant spillover GARCH

effects running from the crude oil market to the stock market (β13 = 0.734 with a p-value

of 0.000), as well as a new one from the crude oil market to the bond market after the

zero lower bound is reached, since β̃12 = 0.005 (with a p-value of 0.001). Overall, we find

that unconventional monetary policy at the zero lower bound establishes stronger first- and

second- moment linkages between the markets.

2.4.4 Italy

In the case of Italy (see Table 2.7), we find that all the autoregressive coefficients in the

Γ matrix, except that for the foreign exchange market, are moderate and significant along

the main diagonal. This indicates that, for each of the three markets, today’s performance

provides high predictive power for tomorrow’s performance. Furthermore, we find significant

spillover effects from the crude oil market to the bond and stock markets, and vice versa,

while there is no evidence of interaction between the crude oil and the foreign exchange

markets. In particular, a higher interest rate leads to an increase in the price of oil (as

α12 = 0.066 with a p-value of 0.029) whereas a higher stock price leads also to an increase of

the crude oil price (as α13 = 1.137 with a p-value of 0.005). On the other hand, a higher oil

price leads to an increase of the interest rate (α21 = 0.908 with a p-value of 0.004) and the

stock price (α31 = 0.221 with a p-value of 0.008). However, the intertemporal correlation

between the crude oil market and the debt market changes after the zero lower bound occurs.

In particular, a higher oil price leads to a decrease of the interest rate when the zero lower

bound is reached, since α̃21 = −1.106 (with a p-value of 0.002).

On the other hand, the moving-average coefficients along the diagonal of the Ψ matrix

are moderate and significant, suggesting that the dynamics of all markets are consistent with

a typical ARMA process. Another interesting result is that there are also shock spillovers

across the markets. In particular, there is a significant impact of a surprise change in the oil

price on the interest rate, stock price, and foreign exchange market in the next period. For

instance, an unexpected increase in the oil price will affect the interest rate and the stock

market in a negative way (ψ21 = −0.930 with a p-value of 0.003 and ψ31 = −0.921 with

a p-value of 0.008), while it will increase the foreign exchange of the U.S. dollar to Italian

lira (as ψ41 = 0.103 with a p-value of 0.020). Moreover, we find shock spillovers running

from the bond market towards the crude oil market, since ψ12 = −0.056 (with a p-value of

0.023), whereas this is further strengthened when the zero lower bound constraint is binding

as ψ̃12 = −0.302 (with a p-value of 0.005).

The estimates for the variance equation show moderate and significant ARCH coefficients
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Table 2.7: The four-variable VARMA(1,1)-BEKK(1,1,1) model for Italy

A. Conditional mean equation

Γ =


−0.264(0.018) 0.066(0.029) 1.137(0.005) 0.250(0.541)

0.908(0.004) 0.322(0.000) 2.299(0.001) −0.741(0.331)
0.221(0.008) 0.011(0.424) 0.408(0.002) −0.137(0.481)
−0.082(0.065) −0.019(0.019) −0.172(0.124) 0.063(0.564)

 ; Γ̃ =


0.000 −0.007(0.921) −0.835(0.060) 1.088(0.402)

−1.106(0.002) 0.560(0.000) −2.452(0.001) −0.783(0.382)
0.151(0.540) −0.043(0.540) −0.148(0.534) 4.106(0.000)
−0.055(0.335) 0.036(0.017) 0.183(0.117) 0.026(0.903)

 ;

Ψ =


0.494(0.000) −0.056(0.023) −1.174(0.002) −0.197(0.595)
−0.930(0.003) 0.282(0.001) −2.183(0.002) 1.407(0.071)
−0.291(0.002) −0.029(0.039) −0.292(0.028) 0.408(0.103)

0.103(0.020) 0.007(0.291) 0.131(0.234) 0.388(0.000)

 ; Ψ̃ =


0.000 −0.302(0.005) 0.779(0.072) −1.791(0.160)

1.149(0.001) −0.596(0.000) 2.322(0.001) 0.131(0.886)
0.113(0.638) −0.034(0.705) 0.334(0.155) −4.957(0.000)
0.016(0.788) 0.018(0.371) −0.251(0.035) −0.424(0.050)

 .
B. Residual diagnostics

Mean Variance Q(4) Q2(4)

zot -0.049 0.772 0.494 0.671
zit 0.035 1.216 0.215 0.956
zst -0.125 0.872 0.343 0.649
zet -0.056 0.853 0.630 0.489

C. Student’s t distribution shape

v = 5.034(0.000)

D. Conditional variance-covariance structure

A =


−0.315(0.000) −0.237(0.005) 0.060(0.093) −0.016(0.463)
−0.029(0.026) 0.789(0.000) −0.028(0.001) −0.019(0.000)
−0.502(0.000) −1.276(0.000) −0.062(0.360) −0.085(0.017)

0.656(0.028) −1.004(0.009) −0.137(0.382) −0.070(0.333)

 ; Ã =


0.000 0.235(0.007) −0.040(0.622) 0.094(0.006)

0.020(0.901) −2.079(0.000) −0.720(0.000) 0.107(0.017)
0.648(0.000) 1.163(0.000) 0.713(0.000) 0.302(0.000)
2.142(0.000) 0.732(0.064) 0.577(0.067) 0.500(0.003)

 ;

B =


0.555(0.000) −0.055(0.434) 0.051(0.430) 0.198(0.000)
−0.035(0.008) 0.706(0.000) 0.001(0.896) 0.004(0.470)
−1.256(0.000) 0.164(0.217) 0.284(0.077) 0.241(0.000)

0.977(0.042) −0.248(0.562) 1.467(0.000) −0.106(0.610)

 ; B̃ =


0.000 0.000(0.999) 0.244(0.004) −0.244(0.000)

−0.089(0.203) −0.159(0.008) −0.173(0.010) −0.047(0.137)
0.767(0.000) −0.047(0.726) −0.229(0.288) −0.441(0.000)
−2.715(0.000) 0.191(0.660) −1.752(0.000) 0.407(0.089)

 .
Note: Sample period, monthly observations, 1987:5-2016:3. Numbers in parentheses are p-values.
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along the main diagonal of the A matrix, for the case of the crude oil and bond market (since

α11 = −0.315 and α22 = 0.789, both with a p-value of 0.000), suggesting that volatility is

persistent in both these markets. Moreover, we find statistically significant spillover ARCH

effects from the crude oil market to the bond market (as α12 = −0.237 with a p-value of

0.005), which is further strengthened when the zero lower bound occurs (since α̃12 = 0.235

with a p-value of 0.007). Moreover, there is evidence of new spillover ARCH effects, for

instance propagating from the crude oil market towards the foreign exchange market. Hence,

an unexpected shock in the price of oil will increase the volatility of the foreign exchange

rate of U.S. dollar to Italian lira, since α̃14 = 0.094 with a p-value of 0.006.

Finally, the main diagonal coefficients of the B matrix indicate that there are statistically

significant GARCH effects for the crude oil and debt markets, since β11 = 0.555 (with a p-

value of 0.000) and β22 = 0.706 (with a p-value of 0.000). Moreover, there are significant

spillover GARCH effects across the four markets. For instance, there is evidence for volatility

spillovers from all three financial markets towards the crude oil market, since β21 = −0.035

(with a p-value of 0.008), β31 = −1.256 (with a p-value of 0.000), and β41 = 0.977 (with a

p-value of 0.042), while the latter two spillover GARCH effects are further strengthened after

the zero lower bound is reached, since β̃31 = 0.767 (with a p-value of 0.000) and β̃41 = −2.715

(with a p-value of 0.000). Hence, we find evidence of strengthened volatility spillovers across

markets when the zero lower bound occurs.

2.4.5 Japan

In the case of Japan (see Table 2.8), we find all the autoregressive coefficients in the Γ

matrix to be statistically significant and close to one along the main diagonal, suggesting

that today’s performance is a useful predictor of tomorrow’s performance. In addition, we

find evidence of significant spillover effects to the crude oil and stock markets, but not to the

debt and foreign exchange markets. For instance, the current price of crude oil is affected

by last period’s interest rate and stock price; a higher interest rate leads to a decline in

the price of oil (γ12 = −0.029 with a p-value of 0.023) whereas a higher stock price leads

to an increase in the price of oil (γ13 = 0.076 with a p-value of 0.049). In addition, an

appreciation of the U.S. dollar relative to the Japanese yen leads to an increase in the price

of the stock market, since γ34 = 0.163 (with a p-value of 0.000). Last, we find that although

the interactions between the crude oil and the three financial markets do not change when

the zero lower bound occurs, spillovers across the financial markets become stronger. In

fact, there is evidence of an increased spillover effect propagating from the foreign exchange

market towards the stock market, since γ̃34 = 0.540 (with a p-value of 0.000), as well as from

the stock market to the bond market as γ̃23 = −0.093 (with a p-value of 0.000).

The moving average coefficients along the diagonal of the Ψ matrix are moderate and
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Table 2.8: The four-variable VARMA(1,1)-BEKK(1,1,1) model for Japan

A. Conditional mean equation

Γ =


0.957(0.000) −0.029(0.023) 0.076(0.049) −0.014(0.907)
0.001(0.059) 1.000(0.000) 0.000(0.858) −0.010(0.057)
0.002(0.436) −0.006(0.288) 1.014(0.000) 0.163(0.000)
0.000(0.876) −0.001(0.431) 0.007(0.090) 0.944(0.000)

 ; Γ̃ =


0.000 −1.374(0.391) −0.888(0.227) 1.406(0.169)

−0.001(0.077) −0.229(0.000) −0.093(0.000) 0.133(0.000)
0.001(0.843) −0.434(0.002) −0.385(0.000) 0.540(0.000)
−0.001(0.678) 0.006(0.920) 0.107(0.000) −0.140(0.000)

 ;

Ψ =


0.379(0.000) −0.015(0.776) −0.164(0.187) 0.039(0.918)
0.002(0.560) 0.055(0.220) −0.003(0.641) 0.021(0.366)
−0.004(0.720) −0.069(0.029) 0.298(0.000) 0.038(0.803)

0.001(0.883) −0.010(0.367) −0.006(0.777) 0.233(0.000)

 ; Ψ̃ =


0.000 13.127(0.000) −1.582(0.157) 4.219(0.108)

−0.003(0.356) −0.548(0.000) 0.193(0.000) −0.390(0.000)
0.028(0.012) 1.445(0.000) −0.298(0.010) 0.830(0.002)
0.006(0.202) 0.358(0.000) −0.216(0.000) 0.642(0.000)

 .
B. Residual diagnostics

Mean Variance Q(4) Q2(4)

zot 0.033 0.096 0.074 0.811
zit -0.144 4.680 0.811 0.996
zst -0.016 0.114 0.201 0.424
zet 0.000 0.112 0.239 0.002

C. Student’s t distribution shape

v = 2.123(0.000)

D. Conditional variance-covariance structure

A =


−0.853(0.020) 0.087(0.033) −0.104(0.048) −0.026(0.139)
−0.131(0.753) 1.149(0.015) −0.348(0.112) −0.040(0.485)
−0.927(0.101) 0.070(0.189) 0.467(0.094) −0.058(0.413)
−1.310(0.225) −0.554(0.045) −0.928(0.079) 0.036(0.849)

 ; Ã =


0.000 −0.041(0.100) 0.227(0.042) 0.057(0.085)

43.201(0.041) −1.705(0.022) 7.157(0.029) 2.584(0.033)
−20.498(0.051) −0.428(0.050) −1.439(0.146) −0.248(0.340)

67.791(0.039) −1.419(0.053) 4.946(0.063) 1.142(0.159)

 ;

B =


0.963(0.000) −0.001(0.797) −0.004(0.093) −0.001(0.357)
0.172(0.755) −0.615(0.000) 0.379(0.082) −0.006(0.938)
0.026(0.554) 0.019(0.180) 0.967(0.000) −0.022(0.016)
0.103(0.587) 0.005(0.879) 0.035(0.446) 0.914(0.000)

 ; B̃ =


0.000 0.000(0.951) 0.038(0.000) 0.015(0.000)

7.764(0.006) 1.103(0.000) 1.117(0.002) 0.239(0.068)
−1.249(0.225) −0.045(0.037) −0.480(0.000) −0.033(0.566)
−2.027(0.528) 0.024(0.659) −0.179(0.589) −0.451(0.015)

 .
Note: Sample period, monthly observations, 1987:5-2016:3. Numbers in parentheses are p-values.

66



2. The Zero Lower Bound and Market Spillovers: Evidence from the G7 and Norway

statistically significant, except for the case of the debt market, implying that each of the

crude oil price, stock price, and exchange rate series is consistent with a typical ARMA

process. The off-diagonal elements of the Ψ matrix indicate the spillover effects across the

four markets. There is no evidence of shock spillovers from each of the financial markets

towards the crude oil market, except for the case of the debt market and when the zero

lower bound is reached, since ψ̃12 = 13.127 (with a p-value of 0.000). On the other hand,

oil price shocks affect the stock market positively when the zero lower bound occurs, since

ψ̃31 = 0.028 (with a p-value of 0.012).

Moreover, we find statistically significant spillover ARCH effects running from the crude

oil market to the debt and stock markets, since α12 = 0.087 (with a p-value of 0.033) and

α13 = −0.104 (with a p-value of 0.048). In fact, the latter spillover ARCH effect is found

to be strengthened after the zero lower bound is reached, since α̃13 = 0.227 (with a p-value

of 0.042), implying an ARCH effect of (0.104 + 0.227)2. Although we do not find significant

spillover ARCH effects propagating from the financial markets towards the crude oil market

at normal times, there is evidence for new spillover ARCH effects running separately from

the debt and foreign exchange markets to the crude oil market, when the zero lower bound

occurs (α̃21 = 43.201 with a p-value of 0.041 and α̃41 = 67.791 with a p-value of 0.039).

Regarding volatility linkages, all the ‘own-market’ coefficients in the B and B̃ matrices

are statistically significant and the estimate coefficients suggest a high degree of persistence.

Moreover, we find significant spillover GARCH effects across the markets when the zero

lower bound occurs. In particular, there is evidence for volatility spillovers from the crude

oil market to the stock and foreign exchange markets, with β̃13 = 0.038 (with a p-value of

0.000) and β̃14 = 0.015 (with a p-value of 0.000). Last, the past volatility of the interest rate

has a positive effect on the volatility of the crude oil price, since β̃21 = 7.764 (with a p-value

of 0.006).

2.4.6 Norway

The Norwegian economy is a small and open economy highly dependent on oil-exports, and

thereby on the price of oil. In Table 2.9, we find that all the autoregressive coefficients in

the Γ matrix, except those for the crude oil and foreign exchange markets, are moderate and

significant along the main diagonal. This indicates that, for both the debt and stock markets,

today’s performance provides high predictive power for tomorrow’s performance. Moreover,

we find significant spillover effects to the crude oil, debt, and stock markets, but there is no

evidence of spillovers from the crude oil, debt, and stock markets to the foreign exchange

market. In fact, the current price of crude oil is affected by last period’s interest rate and

stock price. Specifically, a higher value of each of the interest rate and stock price leads to

an increase in the price of oil, since γ12 = 0.662 (with a p-value of 0.000) and γ13 = 1.206
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(with a p-value of 0.000), respectively.

However, the spillover effects across the markets are found to change after the zero

lower bound occurs. Hence, we find that the intertemporal correlation between the crude

oil market and each of the debt and stock markets change after the zero lower bound is

reached, since in those cases a higher interest rate leads to a decline in the price of oil

(γ12 + γ̃12 = 0.662 − 1.572 = −0.910), while a higher stock price also leads to a decline in

the price of oil (γ13 + γ̃13 = 1.206− 2.094 = −0.888).

On the other hand, the moving-average coefficients along the diagonal of the Ψ matrix are

all moderate and significant, except for the case of the bond market, suggesting that each of

the crude oil price, stock price, and exchange rate series is consistent with a typical ARMA

process. The off-diagonal elements of the Ψ matrix capture the shock spillovers across the

four markets, and suggest negative and significant shock spillovers from the debt and stock

markets to the crude oil market (ψ12 = −0.785 with a p-value of 0.000 and ψ13 = −1.269 with

a p-value of 0.000), and vice versa (ψ21 = −0.669 with a p-value of 0.000 and ψ31 = −0.085

with a p-value of 0.029). Furthermore, we find evidence of new shock spillovers, such as from

the stock market to the foreign exchange market (as ψ̃43 = −0.262 with a p-vale of 0.011),

as well as strengthened spillover effects, for instance from the crude oil market to the stock

market (as ψ31 + ψ̃31 = −0.085− 0.250 = −0.335) when the zero lower bound is reached.

Furthermore, we find significant spillover ARCH effects propagating from the crude oil

market to the stock market at normal times (α13 = 0.288 with a p-value of 0.000), and even

further increased when the zero lower bound occurs (α̃13 = −0.853 with a p-value of 0.000),

implying an ARCH effect of (0.288 + 0.853)2. Moreover, the spillover ARCH effect from

the stock market on the crude oil market is statistically significant, and increases further

when the zero lower bound is reached, since α̃31 = 1.020 (with a p-value of 0.000), implying

ARCH effects of (0.488 + 1.020)2. In addition, there is evidence for a new spillover ARCH

effect running from the foreign exchange market to the crude oil market. In particular, an

unexpected change in the bilateral exchange rate between the U.S. dollar and the Norwegian

krone will increase the volatility of the crude oil price, since α̃41 = −2.866 (with a p-value of

0.000).

Finally, all the main diagonal coefficients of the B matrix, except that for the foreign

exchange market, are statistically significant suggesting GARCH effects in all three markets.

Furthermore, there are significant spillover GARCH effects from the crude oil market to

all the financial markets, implying that past oil price volatility has a positive effect on the

volatility of the interest rate (as β12 = 0.127 with a p-value of 0.002), the stock price (as

β13 = 0.484 with a p-value of 0.000), and the bilateral exchange rate between the U.S. dollar

and the Norwegian krone (as β14 = 0.084 with a p-value of 0.026), respectively. Last, there

is evidence for increased spillover GARCH effects from the crude oil market on the stock and
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Table 2.9: The four-variable VARMA(1,1)-BEKK(1,1,1) model for Norway

A. Conditional mean equation

Γ =


−0.089(0.219) 0.662(0.000) 1.206(0.000) 0.207(0.520)

0.668(0.000) 0.589(0.000) 0.581(0.000) −0.459(0.109)
0.022(0.609) −0.172(0.033) −0.183(0.013) −0.242(0.075)
−0.035(0.334) −0.064(0.199) 0.116(0.070) −0.178(0.129)

 ; Γ̃ =


0.000 −1.572(0.000) −2.094(0.000) −0.402(0.398)

−0.310(0.067) −0.305(0.061) −1.810(0.000) −1.241(0.010)
0.188(0.000) −0.196(0.139) −0.433(0.000) 0.849(0.002)
−0.179(0.001) 0.049(0.389) 0.231(0.046) 0.491(0.003)

 ;

Ψ =


0.190(0.005) −0.785(0.000) −1.269(0.000) −0.108(0.737)
−0.669(0.000) −0.159(0.155) −0.547(0.000) 0.485(0.085)
−0.085(0.029) −0.024(0.730) 0.364(0.000) 0.290(0.016)

0.046(0.219) 0.020(0.680) −0.094(0.118) 0.529(0.000)

 ; Ψ̃ =


0.000 1.330(0.000) 2.230(0.000) −0.447(0.316)

0.433(0.011) 0.236(0.185) 1.548(0.000) 1.638(0.001)
−0.250(0.000) 0.218(0.067) 0.545(0.000) −1.467(0.000)

0.128(0.034) 0.124(0.044) −0.262(0.011) −0.522(0.001)

 .
B. Residual diagnostics

Mean Variance Q(4) Q2(4)

zot -0.011 0.973 0.081 0.469
zit -0.049 1.043 0.281 0.938
zst 0.009 0.965 0.558 0.350
zet 0.088 0.913 0.661 0.021

C. Student’s t distribution shape

v = 10.497(0.000)

D. Conditional variance-covariance structure

A =


0.055(0.406) 0.029(0.505) 0.288(0.000) −0.052(0.027)
−0.299(0.009) 0.657(0.000) −0.395(0.000) −0.073(0.024)
−0.488(0.000) −0.024(0.684) −0.466(0.000) 0.134(0.000)

0.083(0.692) 0.110(0.401) −0.248(0.157) −0.105(0.128)

 ; Ã =


0.000 0.309(0.000) −0.853(0.000) −0.041(0.519)

0.095(0.545) −0.599(0.000) 0.328(0.016) −0.093(0.272)
1.020(0.000) −0.925(0.000) 0.731(0.000) −0.277(0.003)
−2.866(0.000) −0.839(0.000) −1.089(0.001) 0.345(0.049)

 ;

B =


0.443(0.000) 0.127(0.002) 0.484(0.000) 0.084(0.026)
−0.524(0.000) 0.601(0.000) 0.093(0.441) 0.055(0.077)
−0.334(0.039) −0.299(0.000) 0.435(0.000) 0.016(0.697)
−2.987(0.000) 0.133(0.432) −0.128(0.582) 0.128(0.226)

 ; B̃ =


0.000 0.015(0.821) −0.191(0.017) −0.155(0.000)

0.308(0.070) −1.191(0.000) −0.019(0.908) 0.015(0.819)
0.225(0.160) 0.235(0.031) −0.248(0.086) 0.006(0.921)
2.647(0.000) 0.190(0.378) 0.522(0.094) 0.021(0.910)

 .
Note: Sample period, monthly observations, 1987:5-2016:3. Numbers in parentheses are p-values.

69



2. The Zero Lower Bound and Market Spillovers: Evidence from the G7 and Norway

foreign exchange markets, since β̃13 = −0.191 (with a p-value of 0.017) and β̃14 = −0.155

(with a p-value of 0.000), implying spillover GARCH effects of (0.484 + 0.191)2 and (0.084 +

0.155)2, respectively.

2.4.7 United Kingdom

In the case of the U.K. (see Table 2.10), we find the autoregressive coefficients of the stock

and foreign exchange markets in the Γ matrix significant and close to one along the main

diagonal, suggesting that for both of them, today’s performance is a useful predictor of

tomorrow’s performance. In addition, all four markets experience significant spillover effects

from each other. In fact, the current price of crude oil is affected by last period’s stock price

and exchange rate; a higher stock price leads to an increase in the price of oil (γ13 = 1.226

with a p-value of 0.000) whereas a stronger U.S. dollar relative to the British pound leads to

a decline in the price of oil (γ14 = −1.395 with a p-value of 0.007). Moreover, we find that

at normal times the performance of all the financial markets is influenced by last period’s

oil price, suggesting that a higher oil price could lead to an increase in the interest rate and

stock price, respectively, since γ21 = 0.681 (with a p-value of 0.002) and γ31 = 0.998 (with

a p-value of 0.000), as well as to an appreciation of the U.S. dollar compared to the British

pound, since γ41 = 0.421 (with a p-value of 0.000).

However, the spillover effects change after the zero lower bound is reached. For instance,

we find that the intertemporal correlation between the crude oil market and the three finan-

cial markets changes when the zero lower bound constraint on the policy rate is binding; an

increase in the crude oil price could lead to a decrease of the interest rate and stock price,

respectively, since γ̃21 = −0.975 (with a p-value of 0.002) and γ̃31 = −1.501 (with a p-value

of 0.000), as well as to a depreciation of the U.S. dollar compared to the British pound

(γ̃31 = −0.993 with a p-value of 0.000).

Furthermore, the moving average coefficients along the main diagonal of the Ψ matrix are

all singificant, except for the case of the oil market, implying that each of the interest rate,

stock price, and exchange rate series is consistent with a typical ARMA process. Another

interesting result is that there are shock spillovers from both the stock and foreign exchange

markets towards the crude oil market, since ψ13 = −1.378 (with a p-value of 0.000) and

ψ14 = 1.384 (with a p-value of 0.006), and vice versa (as ψ31 = −1.062 with a p-value of

0.000 and ψ41 = −0.421 with a p-value of 0.000). We also find evidence of a new shock

spillover propagating from the debt market towards the crude oil market when the zero

lower bound occurs, since ψ̃12 = −0.464 (with a p-value of 0.023).

Moreover, the estimates for the variance equation show significant ARCH coefficients

along the main diagonal of the A matrix, except that for the crude oil market, suggesting

that volatility is persistent in all three markets. The off-diagonal elements of the A matrix
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Table 2.10: The four-variable VARMA(1,1)-BEKK(1,1,1) model for United Kingdom

A. Conditional mean equation

Γ =


0.177(0.192) 0.127(0.426) 1.226(0.000) −1.395(0.007)
0.681(0.002) −0.091(0.601) 1.413(0.000) −1.188(0.020)
0.998(0.000) −0.618(0.000) 0.772(0.000) −1.547(0.000)
0.421(0.000) −0.324(0.000) 0.508(0.000) −1.099(0.000)

 ; Γ̃ =


0.000 0.130(0.442) 1.141(0.000) 1.067(0.131)

−0.975(0.002) 1.039(0.000) −0.214(0.654) −0.182(0.728)
−1.501(0.000) 0.710(0.000) 1.252(0.000) 0.599(0.000)
−0.993(0.000) 0.422(0.000) 0.939(0.000) 0.326(0.064)

 ;

Ψ =


−0.086(0.525) −0.005(0.977) −1.378(0.000) 1.384(0.006)
−0.636(0.003) 0.662(0.000) −1.334(0.000) 0.976(0.053)
−1.062(0.000) 0.635(0.000) −0.583(0.000) 1.719(0.000)
−0.421(0.000) 0.227(0.001) −0.498(0.000) 1.324(0.000)

 ; Ψ̃ =


0.000 −0.464(0.023) −0.502(0.087) −1.152(0.059)

0.862(0.008) −1.005(0.000) 0.006(0.990) 0.069(0.896)
1.556(0.000) −0.793(0.000) −1.343(0.000) −0.568(0.000)
0.951(0.000) −0.261(0.001) −1.090(0.000) −0.408(0.011)

 .
B. Residual diagnostics

Mean Variance Q(4) Q2(4)

zot -0.031 0.921 0.227 0.047
zit 0.004 1.025 0.956 0.974
zst -0.153 0.970 0.982 0.255
zet 0.019 0.929 0.461 0.511

C. Student’s t distribution shape

v = 7.442(0.000)

D. Conditional variance-covariance structure

A =


0.048(0.563) 0.086(0.006) −0.020(0.587) −0.049(0.016)
−0.347(0.077) 0.650(0.000) −0.121(0.162) −0.181(0.000)

0.093(0.562) 0.042(0.432) 0.363(0.000) 0.010(0.774)
−0.292(0.315) −0.395(0.000) −0.283(0.017) 0.390(0.000)

 ; Ã =


0.000 0.025(0.671) 0.229(0.000) 0.085(0.003)

−0.560(0.028) −0.035(0.778) −0.100(0.422) 0.166(0.003)
−1.681(0.000) −0.355(0.014) −0.547(0.000) −0.229(0.001)

1.377(0.011) 0.431(0.060) 1.510(0.000) −1.097(0.000)

 ;

B =


0.721(0.000) −0.168(0.000) 0.039(0.344) 0.080(0.000)
0.086(0.732) 0.377(0.001) −0.041(0.609) 0.302(0.000)
−1.179(0.000) −0.202(0.005) 0.732(0.000) 0.073(0.102)
−0.033(0.910) 0.481(0.000) −0.045(0.577) 0.713(0.000)

 ; B̃ =


0.000 0.095(0.009) 0.069(0.288) −0.133(0.000)

−0.499(0.100) 0.192(0.157) −0.510(0.000) −0.262(0.000)
−0.366(0.365) 0.109(0.512) −1.270(0.000) −0.132(0.076)
−0.357(0.458) −1.263(0.000) 0.143(0.565) −0.112(0.223)

 .
Note: Sample period, monthly observations, 1987:5-2016:3. Numbers in parentheses are p-values.
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also indicate significant spillover ARCH effects across the four markets. For example, an

unexpected shock in the crude oil market increases the volatility of the exchange rate between

the U.S. dollar and the British pound at normal times (as α14 = −0.049 with a p-value of

0.016), while this effect becomes stronger when the zero lower bound occurs, since α̃14 = 0.085

(with a p-value of 0.003), implying an ARCH effect of (0.049 + 0.085)2.

Finally, all the ‘own-market’ coefficients in the B matrix are statistically significant and

the estimates suggest a high degree of persistence. There is also evidence for volatility

spillovers from the crude oil market to the debt and foreign exchange markets, with β12 =

−0.168 (with a p-value of 0.000) and β14 = 0.080 (with a p-value of 0.000). In addition, we

find that some spillover GARCH effects become stronger when the zero lower bound occurs;

past volatility of the crude oil price has a bigger effect on the volatility of the interest rate

and exchange rate series when the zero lower bound occurs, since β̃12 = 0.095 (with a p-value

of 0.009) and β̃14 = −0.133 (with a p-value of 0.000).

2.4.8 United States

As can be seen in Table 2.11, the autoregressive coefficients in the Γ matrix suggest spillover

effects from the stock and foreign exchange markets to the crude oil market. In particular,

the current price of crude oil is affected by last period’s stock price and exchange rate; a

higher stock price leads to an increase in the price of oil (γ13 = 2.357 with a p-value of 0.000),

while a stronger U.S. dollar leads to a decline in the price of oil (γ14 = −1.912 with a p-

value of 0.033). Moreover, there is no evidence of significant spillovers to the three financial

markets at normal times; however, new spillover effects run across the financial markets

when the zero lower bound is reached. Hence, we find that a higher stock price could lead

to an increase in the interest rate, since γ̃23 = 11.241 (with a p-value of 0.000), whereas a

stronger U.S. dollar could affect the interest rate in a negative way, since γ̃24 = −15.660

(with a p-value of 0.000).

On the other hand, the moving average coefficients along the main diagonal of the Ψ

matrix are all significant, except that for the crude oil market, suggesting that each of

the interest rate, stock price, and exchange rate series is consistent with a typical ARMA

process. The off-diagonal elements of the Ψ matrix indicate the spillover effects across the

four markets. For instance, there is evidence of shock spillovers propagating from the stock

market towards the crude oil market, since ψ13 = −2.483 (with a p-value of 0.000), as well as

from the debt market towards the stock market, since ψ32 = 0.086 (with a p-value of 0.049).

However, all financial markets shocks affect the crude oil market significantly after the zero

lower bound constraint is binding. Hence, an unexpected shock in each of the bond and

stock markets is associated with an increase in the price of oil (as ψ̃12 = 0.589 with a p-value
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Table 2.11: The four-variable VARMA(1,1)-BEKK(1,1,1) model for United States

A. Conditional mean equation

Γ =


0.066(0.637) 0.245(0.136) 2.357(0.000) −1.912(0.033)
0.178(0.069) 0.777(0.000) 0.034(0.892) −0.062(0.871)
−0.011(0.802) −0.082(0.088) −0.111(0.469) 0.009(0.968)

0.046(0.154) −0.049(0.065) 0.171(0.070) 0.117(0.315)

 ; Γ̃ =


0.000 −0.918(0.000) −6.673(0.000) 6.325(0.000)

−0.238(0.643) 1.019(0.003) 11.241(0.000) −15.660(0.000)
0.043(0.490) −0.084(0.232) −1.708(0.001) 0.497(0.000)
−0.095(0.055) 0.232(0.000) 1.712(0.000) −0.826(0.020)

 ;

Ψ =


0.016(0.905) −0.050(0.763) −2.483(0.000) 0.974(0.289)
−0.148(0.118) −0.340(0.002) 0.098(0.717) 0.125(0.792)
−0.056(0.214) 0.086(0.049) 0.325(0.025) 0.069(0.708)
−0.042(0.205) 0.051(0.041) −0.142(0.111) 0.325(0.002)

 ; Ψ̃ =


0.000 0.589(0.007) 6.561(0.000) −5.711(0.001)

0.345(0.507) −0.922(0.011) −11.544(0.000) 18.986(0.000)
0.011(0.864) 0.043(0.469) 1.521(0.004) −0.868(0.000)
0.112(0.026) −0.203(0.000) −1.778(0.000) 0.591(0.085)

 .
B. Residual diagnostics

Mean Variance Q(4) Q2(4)

zot -0.015 0.809 0.191 0.726
zit 0.020 1.087 0.024 0.782
zst -0.088 0.876 0.996 0.751
zet -0.016 0.835 0.909 0.978

C. Student’s t distribution shape

v = 5.535(0.000)

D. Conditional variance-covariance structure

A =


0.341(0.000) −0.009(0.779) 0.119(0.000) −0.036(0.005)
−0.159(0.055) 0.304(0.000) −0.169(0.000) −0.003(0.878)

0.036(0.851) −0.055(0.561) 0.497(0.000) 0.026(0.432)
0.191(0.720) −0.020(0.921) 0.437(0.095) 0.061(0.550)

 ; Ã =


0.000 2.304(0.000) −0.430(0.000) −0.023(0.397)

0.055(0.625) 1.108(0.000) 0.089(0.071) −0.020(0.408)
−0.465(0.132) 1.785(0.000) −0.330(0.015) −0.157(0.006)
−4.639(0.000) 15.714(0.000) −1.120(0.034) −0.035(0.867)

 ;

B =


0.639(0.000) 0.148(0.014) −0.222(0.000) 0.050(0.003)
−0.546(0.026) −0.531(0.001) 0.312(0.000) 0.189(0.000)
−1.100(0.000) 0.649(0.000) 0.120(0.425) 0.184(0.000)

2.855(0.001) 2.315(0.000) −0.001(0.997) 0.397(0.040)

 ; B̃ =


0.000 −0.738(0.000) 0.470(0.000) −0.130(0.000)

0.538(0.029) 0.187(0.284) −0.355(0.000) −0.216(0.000)
0.849(0.024) −1.434(0.000) −0.259(0.154) −0.335(0.000)
−0.796(0.526) −5.726(0.000) 2.212(0.000) −1.225(0.000)

 .
Note: Sample period, monthly observations, 1987:5-2016:3. Numbers in parentheses are p-values.
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of 0.007 and ψ13 + ψ̃13 = −2.483 + 6.561 = 4.078), while an unexpected appreciation of the

U.S. dollar influences the crude oil market negatively, since ψ̃14 = −5.711 (with a p-value of

0.001).

The estimates for the variance equation show significant ARCH coefficients along the

main diagonal of the A matrix, except that for the foreign exchange market, suggesting that

volatility is persistent in all three markets. Moreover, we find significant spillover ARCH

effects running from the crude oil market towards the stock and foreign exchange markets,

since α13 = 0.119 (with a p-value of 0.000) and α14 = −0.036 (with a p-value of 0.005). In

particular, the spillover ARCH effect from the oil market on the stock market increases when

the zero lower bound is reached, since α̃13 = −0.430 (with a p-value of 0.000), implying an

ARCH effect of (0.119 + 0.430)2. Furthermore, a new spillover ARCH effect is found from

the foreign exchange market to the oil market when the zero lower bound is reached, since

α̃41 = −4.639 (with a p-value of 0.000). Hence, an unexpected appreciation of the U.S. dollar

will increase the volatility of the crude oil market.

Finally, the main diagonal coefficients of the B matrix, except that for the stock market,

indicate that there are statistically significant GARCH effects in all three markets. Moreover,

there are significant spillover GARCH effects from the crude oil market towards all the

financial markets, since β12 = 0.148 (with a p-value of 0.014), β13 = −0.222 (with a p-value

of 0.000), and β14 = 0.050 (with a p-value of 0.003). Moreover, all these spillovers are

further strengthened when the zero lower bound constraint on the policy rate is binding,

since β̃12 = −0.738 (with a p-value of 0.000), β̃13 = 0.470 (with a p-value of 0.000), and

β̃14 = −0.130 (with a p-value of 0.000). Overall, we find that the volatility spillovers across

the markets increase when the zero lower bound is reached.

2.5 Summary of Key Results

In this section we summarize the results paying special attention to systematic patterns of

market spillovers across countries. In this regard, for each of the eight countries, we find a

significant spillover effect propagating from the stock market towards the crude oil market;

a higher stock price leads to an increase in the price of oil during normal times. On the

contrary, when the zero lower bound constraint on the U.S. policy rate is binding, we find

that the same spillover effect is strengthened further in Germany and the United Kingdom,

whereas it becomes negative in France, Norway, and the United States, and weakens slightly

in the case of Canada. With respect to spillovers between the financial markets, we find

evidence that in Canada, Germany, Italy, and Norway, a higher stock price leads to an

increase of the interest rate at normal times, and a decline of the interest rate when the zero

lower bound is reached.
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However, a surprise change in the stock market affects the debt market in the opposite

way. We find that in Canada, Germany, Italy, and Norway, an unexpected increase in the

stock market is associated with a decline of the interest rate at normal times, and an increase

of it when the zero lower bound occurs. Moreover, we notice that an unexpected increase

in the price of oil affects the stock price in a negative way during normal times, in France,

Germany, Italy, Norway, and United Kingdom, and in a positive way in France, Germany,

and the United Kingdom when the zero lower bound is reached. It is worth noting that,

when the zero lower bound occurs, a new positive shock spillover is running from the crude

oil market to the stock market in Japan, while in Norway the previously negative shock

spillover between the two markets is further increased.

Finally, with respect to second-moment linkages, we find that in France, Germany, and

Italy, there is a significant spillover ARCH effect running from the foreign exchange market

to the crude oil market, suggesting that an unexpected shock in the foreign exchange market

increases the volatility of the crude oil price, while this effect increases further in these

countries and starts running in the rest of them when the zero lower bound is reached. In

addition, we find at normal times a significant spillover ARCH effect propagating from the

crude oil market towards the debt market in all three eurozone countries, namely, France,

Germany, and Italy, as well as in Japan and the United Kingdom. Furthermore, there is

evidence that this spillover ARCH effect increases further in France and Italy, and start

occurring in Canada, the United States, and Norway, when the zero lower bound is reached.

Finally, we find a statistically significant spillover GARCH effect running at normal times

from the crude oil market towards the stock market in Canada, Germany, Norway, and the

United States, while increasing further in all these countries and starts running in Italy and

Japan, when the zero lower bound is reached. Last, based on the estimated cross-market

conditional correlations, we do not find any evidence to support the view of a different

underlying structure in the spillover mechanism, in each of the studied Eurozone countries,

France, Germany, and Italy, in the two periods, before and after the introduction of the Euro.

The employment of a more parsimonious model, however, would provide the opportunity to

investigate the two periods, separately, and extract more information about any possible

change in the interaction mechanism.

2.6 Concluding Remarks

Motivated by the financialization of the crude oil market over the past decade, and the

speculative activities that induce oil prices to depart from their fundamental values due to

several financial factors, in this paper we explore for mean and volatility spillovers among the

crude oil market and the three most important financial markets, namely, the debt, stock,
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and foreign exchange markets, in each of the seven major advanced economies (G7), and

the small open oil-exporting economy of Norway. Using monthly data that span from the

first Brent oil price in May 1987 up to March 2016, and a four-variable VARMA-GARCH

model with a BEKK variance specification, we find that in all the G7 countries, as well as

in Norway, significant spillovers occur among the four markets, both in terms of volatility

and mean estimates. Moreover, we find evidence for strengthened market relationships

after the zero lower bound is reached and unconventional monetary measures are employed.

Yet, a few individual country results are worth highlighting; with respect to the spillovers

between the crude oil market and each of the financial markets, we can notice that these

are more tightened in the oil-dependent economies of Norway and Germany, while they are

significantly weaker in the case of Japan.
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2.7 Appendix

Table A2.1: Summary Statistics for Canada

p-values

Series Mean Variance Skewness Kurtosis Normality

A. Levels

lnot 3.918 0.235 0.044 0.000 0.000
lnit 1.201 0.758 0.000 0.076 0.000
lnst 4.271 0.131 0.043 0.000 0.000
lnet 0.217 0.019 0.707 0.000 0.000

B. First differences

∆lnot 0.000 0.007 0.876 0.000 0.000
∆lnit -0.007 0.006 0.003 0.000 0.000
∆lnst 0.002 0.002 0.000 0.000 0.000
∆lnet 0.000 0.000 0.000 0.000 0.000

Note: Sample Period, monthly observations, 1987:05-2016:03.
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Table A2.2: Summary Statistics for France

p-values

Series Mean Variance Skewness Kurtosis Normality

A. Levels

lnot 5.382 0.296 0.106 0.000 0.000
it 4.255 10.559 0.000 0.009 0.000

lnst 4.504 0.130 0.322 0.001 0.002
lnet 1.708 0.017 0.000 0.729 0.001

B. First differences

∆lnot 0.001 0.008 0.315 0.000 0.000
∆it -0.024 0.101 0.313 0.000 0.000

∆lnst 0.002 0.003 0.000 0.000 0.000
∆lnet 0.000 0.001 0.464 0.567 0.645

Note: Sample Period, monthly observations, 1987:05-2016:03.

Table A2.3: Summary Statistics for Germany

p-values

Series Mean Variance Skewness Kurtosis Normality

A. Levels

ot 75.093 1753.321 0.000 0.026 0.000
it 3.688 7.001 0.000 0.400 0.000
st 97.314 926.107 0.001 0.004 0.000
et 0.616 0.006 0.083 0.233 0.107

B. First differences

∆ot 0.029 43.007 0.000 0.000 0.000
∆it -0.012 0.040 0.122 0.000 0.000
∆st 0.193 25.126 0.000 0.000 0.000
∆et 0.000 0.000 0.305 0.018 0.033

Note: Sample Period, monthly observations, 1987:05-2016:03.
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Table A2.4: Summary Statistics for Italy

p-values

Series Mean Variance Skewness Kurtosis Normality

A. Levels

lnot 11.091 0.271 0.050 0.000 0.000
it 5.433 19.853 0.000 0.000 0.000

lnst 4.748 0.117 0.005 0.001 0.000
lnet 7.340 0.025 0.002 0.731 0.009

B. First differences

∆lnot 0.001 0.008 0.352 0.000 0.000
∆it -0.031 0.152 0.000 0.000 0.000

∆lnst -0.001 0.003 0.001 0.000 0.000
∆lnet 0.001 0.001 0.013 0.007 0.001

Note: Sample Period, monthly observations, 1987:05-2016:03.

Table A2.5: Summary Statistics for Japan

p-values

Series Mean Variance Skewness Kurtosis Normality

A. Levels

ot 4677.788 9269802.685 0.000 0.090 0.000
it 1.008 2.339 0.000 0.000 0.000
st 160.058 3189.314 0.000 0.000 0.000
et 113.050 298.191 0.624 0.269 0.475

B. First differences

∆ot 3.644 241490.380 0.000 0.000 0.000
∆it -0.007 0.018 0.013 0.000 0.000
∆st -0.351 66.214 0.000 0.000 0.000
∆et -0.080 9.243 0.000 0.000 0.000

Note: Sample Period, monthly observations, 1987:05-2016:03.
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Table A2.6: Summary Statistics for Norway

p-values

Series Mean Variance Skewness Kurtosis Normality

A. Levels

lnot 5.627 0.266 0.083 0.000 0.000
lnit 1.528 0.480 0.284 0.000 0.000
lnst 3.974 0.470 0.786 0.000 0.000
lnet 1.906 0.018 0.000 0.714 0.000

B. First differences

∆lnot 0.001 0.007 0.903 0.000 0.000
∆lnit -0.008 0.004 0.000 0.000 0.000
∆lnst 0.006 0.004 0.000 0.000 0.000
∆lnet 0.001 0.001 0.000 0.000 0.000

Note: Sample Period, monthly observations, 1987:05-2016:03.

Table A2.7: Summary Statistics for UK

p-values

Series Mean Variance Skewness Kurtosis Normality

A. Levels

lnot 3.223 0.316 0.006 0.000 0.000
lnit 1.317 1.103 0.000 0.023 0.000
lnst 4.553 0.061 0.091 0.002 0.002
lnet -0.498 0.008 0.000 0.171 0.000

B. First differences

∆lnot 0.000 0.008 0.731 0.000 0.000
∆lnit -0.008 0.003 0.000 0.000 0.000
∆lnst 0.001 0.002 0.000 0.000 0.000
∆lnet 0.000 0.001 0.000 0.000 0.000

Note: Sample Period, monthly observations, 1987:05-2016:03.
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Table A2.8: Summary Statistics for US

p-values

Series Mean Variance Skewness Kurtosis Normality

A. Levels

lnot 3.747 0.308 0.003 0.000 0.000
lnit 0.746 1.848 0.000 0.014 0.000
lnst 4.448 0.156 0.000 0.000 0.000
lnet 4.595 0.032 0.000 0.001 0.000

B. First differences

∆lnot 0.000 0.008 0.380 0.000 0.000
∆lnit -0.007 0.011 0.000 0.000 0.000
∆lnst 0.003 0.001 0.000 0.000 0.000
∆lnet 0.002 0.000 0.008 0.000 0.000

Note: Sample Period, monthly observations, 1987:05-2016:03.
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Oil Prices and the Renewable Energy
Sector

Coauthored with Apostolos Serletis.
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ABSTRACT

Energy security, climate change, and growing energy demand issues are moving up on the

global political agenda, and contribute to the rapid growth of the renewable energy sector.

In this paper we investigate the effects of oil price shocks, and also of uncertainty about

oil prices, on the stock returns of clean energy and technology companies. In doing so, we

use monthly data that span the period from May 1983 to December 2016, and a bivariate

structural VAR model that is modified to accommodate GARCH-in-mean errors, and it is

used to generate impulse response functions. Moreover, we examine the asymmetry of stock

responses to oil price shocks and compare them accounting for oil price uncertainty, while

effects of oil price shocks of different magnitude are also investigated. Our evidence indicates

that oil price uncertainty has no statistically significant effect on stock returns, and that the

relationship between oil prices and stock returns is symmetric. Our results are robust to

alternative model specifications and stock prices of clean energy companies.

JEL classification: C32, G15, Q42.

Keywords : Renewable energy, Transition, Oil prices, Uncertainty, GARCH-in-Mean model,

Asymmetric responses.
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3.1 Introduction

The renewable energy sector has been experiencing remarkable growth over the past decade.

Worldwide installations of renewable power capacity reached a new high record of 138.5 GW1

in 2016 (New Energy Finance, 2017), and expectations for large-scale deployment of renew-

ables have also been raised for years to come. This development, however, is not a result of a

single factor or event, but rather a combination of economic and societal concerns associated

with the reliability and security of energy supply, the depletion of natural resources, extreme

weather events triggered by environmental degradation, and decoupling of economic growth

from energy consumption. Alongside these the financial performance of renewable energy

companies also has a critical influence on the future development of the renewable energy

sector, since companies’ profitability is positively related to their success in acquiring private

capital for infrastructure investments. Therefore, a better understanding of the underlying

driving forces is of high interest, not only to investors who need to assess the risk exposure

assumed by their firms, and construct hedge ratios and portfolio weights accordingly, but

also to policymakers who must evaluate and adjust the renewable energy policy landscape,

in order to facilitate the transition towards a sustainable energy system.

Financial performance of renewable energy companies is contingent upon numerous fac-

tors, and in fact prices of other energy products that are likely to substitute for renewable

energy, for instance, through their positive cross-price elasticities, are considered to be among

the most important determinants. Hence, with crude oil being the dominant energy source

in the world, accounting for 36.9% of the global primary energy consumption in 2016 (EIA,

2017),2 it is essential to investigate the relationship between the oil price development and

the financial performance of the renewable energy sector. Apart from the vast majority of

the literature that investigates the effects of oil prices on the economy, the aggregate stock

market activity, or even other energy prices such as, for example, the natural gas price, only

a few studies pay particular attention to the impact of oil prices on the financial performance

of the renewable energy sector; the most noticeable being Henriques and Sadorsky (2008),

Kumar et al. (2012), Broadstock et al. (2012), Sadorsky (2012a), Managi and Okimoto

(2013), Wen et al. (2014), Inchauspe et al. (2015), and more recently Reboredo (2017).

All of these studies, however, ignore the potentially important effect of oil price uncer-

tainty on renewable energy companies, and more particularly on their financial performance.

Since the outset of the global financial crisis in 2008-2009, the crude oil market has ex-

perienced dramatic oil price fluctuations, for instance from $140/barrel in the summer of

2008 to $60/barrel by the end of 2008, which were followed, after the sharp downturn in

1This includes global new investments in wind, solar, biomass and waste-to-energy, geothermal, small
hydro and marine sources.

2Oil supply of 35.942 quadrillion Btu satisfied 97.394 quadrillion Btu of demand (EIA, 2017).
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the mid-2014, by low and remarkably volatile oil prices (see Figure 3.1). Increased oil price

volatility translates into significant uncertainty in the crude oil market, and its overall impact

should accelerate future transition towards renewable energy. The main argument behind

this statement is that with renewable energy considered as a substitute for crude oil, in-

creases in oil price uncertainty should encourage a substitution effect away from crude oil

towards renewable energy sources, thus improving the financial performance of renewable en-

ergy companies. However, despite some anecdotal evidence that rising oil price uncertainty

strengthens the dominance of the renewable energy industry in the global energy scene, and

therefore its financial performance, an up-to-date empirical evidence is imperative to confirm

or invalidate the hypothesis.

This paper contributes to the literature on the relationship between the price of oil and

the stock returns of clean energy and technology companies in several ways. First, we use

monthly data over the period from May 1983 to December 2016, and estimate a bivari-

ate GARCH-in-Mean structural VAR model by full information maximum likelihood, thus

avoiding Pagan’s (1984) generated regressor problems. By doing so, we directly investigate

the effect of oil price uncertainty on the response of the renewable energy and technology

stock returns. Second, we generate the impulse response functions to assess whether the re-

sponse of stock returns is symmetric or asymmetric to positive and negative oil price shocks,

after accounting for the effect of oil price uncertainty. As an additional contribution to the

literature, the use of a test, recently introduced by Kilian and Vigfusson (2011), over the

same data set allows us to investigate whether the renewable energy and technology stock

returns respond symmetrically or asymmetrically to positive and negative oil price shocks of

different magnitude.

The rest of the paper is structured as follows. In Section 3.2, we review and discuss

the empirical literature related to the effects of oil price on the aggregate and industry-

specific stock returns, while paying special attention to the relationship between oil prices and

stock returns of clean energy and technology companies. Section 3.3 presents the bivariate

GARCH-in-Mean structural VAR model, which is employed to investigate the direct effects

of oil price uncertainty on the employed stock returns. In Section 3.4 we present the data

and discuss the empirical findings, while in Section 3.5 we investigate the robustness of our

results to the use of a formal symmetry test based on a nonlinear structural VAR model,

recently proposed by Kilian and Vigfusson (2011). The last section discusses the findings

and concludes the paper.
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3.2 Review of the literature

3.2.1 Oil prices and stock market activity

Given the indispensable role of crude oil as an energy commodity in the world economy, but

also as a financial asset since the early 2000s, there is a substantial and growing body of

literature investigating the relationship between oil price shocks and stock market returns.

On theoretical grounds, stock prices reflect the value of expected future earnings of companies

that contingent on several factors, such as relative sensitivity to changes in oil prices or

dissimilar dependence on the oil industry, might be driven by oil price shocks. In regard to

this, Chen et al. (1986) and Hamao (1988) study the effects of oil price changes on the U.S.

and Japanese stock markets, respectively, and find no compelling evidence that supports such

a relationship. Kling (1985) and Jones and Kaul (1996), in contrast, argue that changes in oil

prices have a detrimental effect on stock market returns, while Sadorsky (1999) confirms that

oil price fluctuations are imperative for understanding stock market development. Huang et

al. (1996), however, find no negative relationship between changes in the price of oil futures

and the returns of various stock indices; while Wei (2003) reports that the decline in the

U.S. stock market in 1974 cannot be attributed to the 1973-1974 oil price increase. In fact,

he suggests other possible factors, including the tightening of monetary policy. This view

also receives strong support from Bjørnland (2009), who examines the small and open oil-

exporting country of Norway, and argues that oil prices affect stock market returns indirectly,

through monetary policy.

A possible explanation for all the aforementioned studies not reaching a general con-

sensus is that none of them, apart from Bjørnland (2009), differentiates oil-exporting from

oil-importing countries. Wang et al. (2013) compare the relationship of oil price shocks

and stock returns in several countries with different oil-dependence, and find that the ex-

planatory power of oil prices shocks to stock return variations is stronger in oil-exporting

than oil-importing countries, as well as the evidence of different magnitudes, durations, and

directions of stock response. Arouri and Rault (2012) support this view through their study,

with particular reference in the Gulf Corporation Countries, finding a positive relationship

between oil price shocks and stock prices. From a similar point of view, Park and Ratti

(2008) examine this relationship in the United States and 13 European countries, and re-

port that a positive oil price shock has a statistically significant and negative effect on stock

prices of all the oil-importing countries, but positive in the case of the oil-exporting country

of Norway.

Another strand of literature focuses on the effects of oil price shocks on the stock markets

of emerging economies, since the latter are less energy efficient, and therefore more exposed

to oil price changes. Papapetrou (2001) uses a multivariate vector autoregression model to
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investigate the dynamic relationship between oil prices, real stock prices, interest rates, and

real economic activity, and underlines the important role of oil price movements in the Greek

stock price development. From a similar point of view, Basher and Sadorsky (2006) employ

a multifactor model and find strong evidence that oil price risk drives stock price returns in

emerging markets, while Cong et al. (2008) find evidence against such a positive relationship

for most Chinese stock returns, except for those of the manufacturing and oil sectors.

In a different study, Kilian and Park (2009) follow Kilian’s (2009) approach and decom-

pose oil price fluctuations into structural shocks, in order to study their effects on the U.S.

stock market returns. In doing so, they treat the price of crude oil as endogenous, and

report that the response of stock prices to oil price shocks depends on the nature of oil

price shocks. Some notable studies that build upon this framework are Apergis and Miller

(2009), Güntner (2014), and Ahmadi et al. (2016). Nor do all the industry sectors respond

in a similar way to oil price shocks [see Lee et al. (1995), Davis and Haltiwanger (2001),

and Lee and Ni (2002)], and therefore sectoral-based investigation is imperative for a better

understanding of this relationship. The oil and gas sectors, as well as the technology sector,

are investigated by Sadorsky (2001, 2003), while a large number of industries in the U.S. and

China are explored by Elyasiani et al. (2011) and Caporale (2015), respectively. All their

findings underline the necessity of studying the various industries separately, mainly due to

their different dependence on the oil industry.

A less extensive yet substantial body of literature investigates the impact of oil price

volatility, which is also a measure of uncertainty, on economic activity and stock market

returns. Elder and Serletis (2010) were the first to examine the direct effects of oil price

uncertainty on real economic activity, and provide evidence of a negative and significant

relationship. In addition, they find that increased oil price volatility amplifies the negative

response of real economic activity to an unexpected increase in the real price of oil, while

diminishing the positive response to an unexpected drop in the real price of oil. Lee et al.

(1995) and Ferderer (1996) also underline the important role of oil price volatility in eco-

nomic activity, while Sadorsky (1999) first explores its impact on the U.S. stock returns, and

reports a statistically significant negative association. From a similar point of view, Park

and Ratti (2008) show that increased oil price volatility depresses real stock returns in the

oil-importing European countries, while they document little evidence of asymmetric effects.

Masih et al. (2011) also indicate the dominance of oil price volatility on real stock returns

in South Korea, and comment on the need of firms for adjusting their risk management

procedures accordingly. Diaz et al. (2016), from an international point of view, examine the

relationship between oil price volatility and stock returns in the G7 economies, and provide

evidence in favor of a negative association. This negative relationship, however, does not

receive support by Alsalman (2016), who reports that uncertainty about the real price of
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oil has no statistically significant effect on U.S. real stock returns across all the investig-

ated industries, except in the case of the coal sector. Moreover, she finds that aggregate

stock returns respond symmetrically to positive and negative oil price shocks, but this sym-

metry does not hold across all sectors, thus highlighting the importance of studying each

sector separately. Alsalman and Herrera (2015) provide further evidence in favor of sym-

metric response for aggregate stock returns, while Herrera et al. (2015) explain symmetric

(asymmetric) responses through the statistically insignificant (significant) effect of oil price

uncertainty on investments.

3.2.2 Oil prices and the renewable energy sector

Despite the rapid growth of the renewable energy sector over the past decade in the face

of rising oil prices and environmental concerns, little attention has been devoted to the re-

lationship between oil prices and stock prices of renewable (or alternative) energy sector.3

To the best of our knowledge, Henriques and Sadorsky (2008) first discuss this gap in the

literature, and investigate the dynamic relationships between alternative energy stock prices,

technology stock prices, oil prices, and interest rates, through a four variable vector autore-

gression model. They find causality effects, in the spirit of Granger, propagating from both

technology stock prices and oil prices towards stock prices of alternative energy companies,

listed on major U.S. stock exchanges, while the latter stock prices are found to be more

strongly correlated with stock prices of technology companies, rather than with oil prices. In

fact, they find that oil prices have only a limited impact on renewable energy stock returns.

However, Kumar et al. (2012) investigate this relationship, considering also the prices for

carbon allowances, and provide evidence that rising oil prices have a significant positive im-

pact on clean energy stock prices, contrary to carbon market prices. Similar to Henriques

and Sadorsky (2008), they also support the view that clean energy and technology com-

panies are considered by investors as similar asset classes. Broadstock et al. (2012) adopt

time-varying conditional correlation and asset pricing models to explore how the dynamics

of international oil prices affect Chinese energy-related stock price returns. Specifically, they

study the response of a composite energy index, as well as three sub-indices for oil and nat-

ural gas, coal and electricity, and new energy sector, to international oil price shocks, and

report that oil price changes are a significant factor in energy-related stock price movements,

especially after the 2008 financial crisis, whereas the new energy stocks are found to be the

most resilient to oil price shocks.

Building upon the vector autoregressive analysis of Henriques and Sadorsky (2008), Man-

agi and Okimoto (2013) consider a Markov-switching model in order to explore possible struc-

3The terms alternative energy, clean energy, renewable energy, and sustainable energy are used inter-
changeably when the discussion comes around to tracking stock indices or investment assets.
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tural changes and asymmetric effects among oil prices, technology stock prices, and clean

energy stock prices. They provide evidence in favor of a structural change in the market

in late 2007, and a positive relationship between oil prices and clean energy prices there-

after. Furthermore, they support the view of Henriques and Sadorsky (2008) and Kumar et

al. (2012) for similarity between clean energy stock prices and technology stock prices, by

arguing that technologies related to storage and other forms of clean energy benefit from a

number of government policies. More recently, Reboredo (2015) investigates the dependence

structure and conditional value-at-risk (CoVaR) measure of systemic risk between oil prices

and a set of global and sectoral renewable energy indices, through the employment of copulas

for the period from December 2005 to December 2013. His empirical findings display that a

time-varying average and symmetric tail dependence exists between oil returns and several

global and sectoral renewable energy indices, while oil price dynamics contribute around 30%

to downsize and upside risk of renewable energy companies.

From a different point of view, Inchaupse et al. (2015) examine the dynamics of excess

returns for the WilderHill New Energy Global Innovation Index (NEX), which constitutes a

major international benchmark index for renewable energy, through the use of a multi-factor

asset pricing model with time-varying coefficients. They report a weak influence of oil price,

relatively to the MSCI World Index and technology stocks, on NEX returns, altough this

effect becomes more influential after 2007. In fact, they find that NEX Index yields negative

active returns after the financial crisis in 2009, and attribute this poor performance to the

increased market uncertainty triggered by low oil price and government subsidy cuts. Bürer

and Wüstenhagen (2009) also underline the important contribution of supportive policy

environments to renewable energy investments, while Hofman and Huisman (2012) show

that, after the financial crisis, 11 out of 12 renewable energy policies decreased significantly

in popularity by venture capital and private equity investors. Decreased risk tolerance, higher

capital demand and increased borrowing costs are mentioned as some of the contributing

factors.

In recent years, a new strand of literature has emerged studying volatility spillovers

between oil prices and renewable energy stock prices. Specifically, Sadorsky (2012a) employs

different multivariate GARCH models (BEKK, Diagonal, CCC, and DCC) to examine con-

ditional correlations and volatility spillovers between oil prices and the stock prices of clean

energy and technology companies. He finds that stock prices of clean energy companies

correlate more strongly with technology stock prices than with oil prices, that significant

volatility spillovers exist among them, and that oil is a useful hedge for clean energy stocks.

Extending this framework to include asymmetric effects, Wen et al. (2014) use a bivari-

ate asymmetric BEKK model to investigate mean and volatility spillover effects between

renewable energy and fossil fuel stock prices in China. They provide evidence that negative
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news about new energy and fossil fuel stock returns lead to larger return changes in their

counter assets than positive news, that significant mean and volatility spillovers occur among

them, and that new energy stocks are more speculative and riskier than fossil fuel stocks.

Sadorsky (2012b) provides a comprehensive study on different factors of renewable energy

company risk and highlights that renewable energy companies can be among the riskiest

types of companies to invest in. In fact, he shows that oil price increases have a positive

effect on company risk, whereas increases in company sales growth reduce systematic risk.

Very recently, Reboredo et al. (2017) investigate dependence and causal effects between oil

price dynamics and renewable energy returns for the period 2006-2015. Through the use

of continuous and discrete wavelets and linear and non-linear Granger causality tests, they

find evidence of non-linear causality running from renewable energy indices to oil prices, and

mixed evidence of causality propagating from oil prices to renewable energy prices.

Yet, no study has investigated the relationship between oil price uncertainty and the

stock prices of renewable energy companies, to the best of our knowledge. The purpose

of the paper is to fill this void. A better understanding of the relationship between oil

price uncertainty and financial performance of the renewable energy sector is imperative for

understanding and foreseeing the evolution of the renewable energy sector in the years to come.

3.3 The structural GARCH-in-Mean VAR

In this paper we employ a bivariate monthly structural VAR model, modified to accommod-

ate GARCH-in-Mean errors as in Elder (2004) and Elder and Serletis (2010), in logarithmic

oil price changes and stock returns. The structural system is represented as follows

Byt = α+

p∑
i=1

Γiyt−i + ΛH
1/2
∆lnot

+ εt (3.1)

εt|Ωt−1 ∼ iidN(0,H t) (3.2)

where the vector yt includes the change in the price of oil (∆lnot) and the stock returns

(∆lnzt), α is a parameter vector, B and Γi are 2 × 2 matrices representing the contem-

poraneous and lagged effects, and εt denotes a vector of serially and mutually uncorrelated

structural shocks. Moreover, Λ is a vector of coefficients that measures the effect of oil price

volatility on the conditional mean of the employed series, H
1/2
∆lnot

is the conditional standard

deviation of oil, Ωt−1 denotes the information set at time t − 1, and H t is the covariance

matrix. The system is identified by assuming that the diagonal elements of B are equal

to unity, that B is a lower triangular matrix, and that the structural disturbances, εt, are

contemporaneously uncorrelated. Therefore, we allow the stock returns to respond to con-

temporaneous innovations in the change in the price of oil, as in Edelstein and Kilian (2007).
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The conditional variance is modeled as bivariate GARCH

diag(H t) = A+
s∑
j=1

F jdiag(εt−jε
′
t−j) +

r∑
i=1

Gidiag(H t−i) (3.3)

where diag is the operator that extracts the diagonal from a square matrix. In fact, we

assume that the conditional variance of yi,t depends only on its own past squared errors and

its own past conditional variances, so that parameter matrices F j and Gi are also diagonal.

Moreover, we estimate the variance equation (3.3) with s = r = 1, since the parsimonious

GARCH(1,1) model has been found to outperform other GARCH configurations, under the

most general conditions [see Hansen and Lunde (2005)]. Low-order GARCH models, and

particularly GARCH (1,1), receive also support by Bollerslev et al. (1992).

We estimate the model by full information maximum likelihood, thus avoiding Pa-

gan’s (1984) generated regressor problems associated with estimating the variance function

parameters separately from the conditional mean parameters. Consistent with Elder (2004)

and Elder and Serletis (2010), we estimate the bivariate GARCH-in-Mean VAR model de-

scribed by equations (1)-(3), by full information maximum likelihood, and by numerically

maximizing the log likelihood function

lt = −n
2
ln(2π) +

1

2
ln|B|2 − 1

2
ln|Ht| −

1

2
(ε′tH

−1
t εt) (3.4)

with respect to the structural parameters B, α,Γ,Λ,A,F , and G.

In doing so, we set the pre-sample values of the conditional variance matrix H0 to their

unconditional expectation and condition on the pre-sample values of yt. To ensure that H t

is positive definite, we restrict A > 0, F ≥ 0, and G ≥ 0, as in Engle and Kroner (1995). By

satisfying the standard regularity conditions, full information maximum likelihood estimates

are asymptotically normal and efficient, with the asymptotic covariance matrix given by

the inverse of Fisher’s information matrix. For mode details, see Elder (2004) or Elder and

Serletis (2010).

To evaluate the effect of oil price uncertainty on the response of stock returns to an

oil price shock, we generate impulse response functions. These are based on an oil price

shock equal to the unconditional standard deviation of the change in the price of oil and are

calculated for the GARCH-in-Mean VAR as in Elder (2003)

∂E(yj,t+k |εi,t ,Ωt−1)

∂εi,t
=

k−1∑
τ=0

[
ΘτB

−1Λ (F +G)k−τ−1F
]
ι1 +

(
ΘkB

−1)ι0. (3.5)

where ι1 denotes ∂E
[
vec (ε′tεt) |εi,t ,Ωt−1]/∂εi,t, which is an N2 × 1 vector with 2εi,t in the

N(i − 1) + i spot and 0s elsewhere. Moreover, ι0 denotes ∂εt/∂εi,t, which is an N × 1
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vector with εi,t in the ith spot and 0s elsewhere. In fact, Elder (2003) notes that equation

(5) is analogous to the impulse response function of an orthogonalized VAR. The second

term on the right side of the equation captures the usual direct effect of a shock εi,t on

the conditional forecast of yj,t+k while the first term captures the effect on the conditional

forecast of yj,t+k through the forecasted effect on the conditional variance. It is noteworthy

that as the horizon increases the first term shrinks to the zero matrix since the eigenvalues

of F +G are constrained to be lower than one. See Elder (2003) for more details.

In particular, the impulse responses are calculated from the maximum likelihood estim-

ates of the model’s parameters, while the one-standard error bands are generated by the

Monte Carlo method described in Hamilton (1994, p. 337). The responses are constructed

based on parameter values drawn randomly from the sampling distribution of the maximum

likelihood parameter estimates, where the covariance matrix of the maximum likelihood es-

timates is derived from an estimate of Fisher’s information matrix. Finally, we plot the

impulse responses of stock returns to positive and negative oil price shocks, after accounting

for oil price uncertainty, thus gaining a better insight into whether responses are symmetric

or asymmetric.

3.4 The data and empirical evidence

This study uses monthly closing prices of three clean energy indices, namely, WilderHill

Clean Energy Index (ECO), WilderHill New Energy Global Innovation Index (NEX), and

S&P Global Clean Energy Index (SPGCE), as well as the technology index, NYSE Arca

Technology Index (PSE). Specifically, ECO is a modified equal dollar-weighted index com-

prised of 52 companies which are active in the renewable energy sector, and whose activities

stand to benefit substantially from a societal transition toward the use of cleaner energy and

conservation. This index is the oldest index devoted merely to tracking clean (renewable)

energy companies, and it is disseminated by the American Stock Exchange (AMEX). NEX

is a modified dollar-weighted index comprised of publicly traded companies whose businesses

focus on renewable energy and climate change mitigation technologies. Most of the stocks

are listed on exchanges outside the United States, and therefore the index is weakly correlated

with ECO. NEX constitutes the first and leading global index for clean, alternative, and re-

newable energy. SPGCE is a weighted index of 30 companies from around the world that are

engaged in clean energy production, and clean energy equipment and technology business.

Investments in renewable energy companies, however, may be considered to be similar

to those of other high technology companies (Henriques and Sadorsky, 2008), an argument

actually supported by the stock market behavior in the late 1990s. Therefore, we also employ

in our analysis the NYSE Arca Technology Index which is a price weighted index devoted
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solely to technology. In particular, it is composed of 100 leading technology companies that

are active in 15 different industries, including computer hardware, software, data storage and

processing, electronics, semiconductors, telecommunications, and biotechnology. Figures 3.1-

3.5 illustrate the development of each of the indices alongside with its squared returns. Unlike

the PSE index that fully recovers from the losses associated with the global financial crisis

in 2008-2009, while exhibiting a clear upward trend for the rest of the investigated period,

all three clean energy indices remain at historically low levels. In particular their significant

drop in value during the financial crisis is partly reversed in the next year, before another,

but smaller, plunge occurs between 2011 and 2012. Since this last decline, only the NEX

index rebounds completely and continues fluctuating at the post-financial crisis levels. All

stock indices exhibit low price volatility, at least compared to the oil futures price.

Figure 3.1: WTI crude oil price and its squared returns
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Figure 3.2: ECO index and its squared returns
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Figure 3.3: NEX index and its squared returns
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Figure 3.4: PSE index and its squared returns
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Figure 3.5: SPGCE index and its squared returns
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In addition, the excess return on the market, which is defined as the value-weighted return

on all NYSE, AMEX, and NASDAQ stocks from the Center for Research in Security Prices

(CSRP) minus the 1-month Treasury bill rate, is employed as a proxy for the aggregate

U.S. stock return. For the price of oil, we use the nearest futures contract to maturity on

the West Texas Intermediate crude oil futures contract, for a number of reasons. Firstly,

due to temporary shortages or surpluses, spot prices are more affected by short-run price

fluctuations than futures prices (Sadorsky, 2001). Secondly, the effectiveness of firms’ hedging

activities is evaluated by the variability of futures oil prices (Elyasiani et al., 2011). Lastly,

it is the most extensively traded oil futures contract in the world, and therefore constitutes a

benchmark for the oil market and commodity portfolio diversification (Sadorsky, 2012). Our

data sample covers the period from May 1983, which coincides with the availability of our

proxy for the oil price, to December 2016. For each data series, we calculate the continuously

compounded monthly returns as 100 × ln(pt/pt−1) as in Sadorsky (2012), and we plot the

returns of each of the stock indices alongside with the price of oil futures in Figure 3.6.

It is worth mentioning here an interesting feature of the data related to the contempor-

aneous correlation between the different price series. We present these correlations in Table

3.1 for log levels (in panel A) and for first differences of log levels (in panel B). In order to

determine whether these correlations are statistically significant, we follow Pindyck and Ro-

temberg (1990) and we perform a likelihood ratio test of the hypotheses that the correlation

matrices are equal to the identity matrix. The test statistic is

−2ln(|R|N/2)

where |R| is the determinant of the correlation matrix and N is the number of observations.

The test statistic is distributed as χ2 with q(q − 1)/2 degrees of freedom, where q is the

number of series. Although the test statistic is 0.000 for the logged prices, it is equal to

939.001 with a p-value of 0.000 for the first differences of the logs, and therefore we can

clearly reject the hypothesis that these series are uncorrelated. In addition, we notice that

some of the correlation patterns documented in Table 3.1 also manifest in the graphical

presentation of the employed series in Figure 3.6.

Before we continue to the next step of modeling, we conduct some unit root and stationary

tests in each of the employed series in Table 3.2, in order to test for the presence of a

stochastic trend in the autoregressive representation of the series. All three tests, namely,

the Augmented Dickey-Fuller (ADF) test [see Dickey and Fuller, 1981], the Dickey-Fuller

GLS (DF-GLS) test [see Elliot et al., 1996] and the KPSS test [see Kwiatkowski et al., 1992]

provide evidence that all series are stationary, or integrated of order zero, I (0). It should be

noted that the Schwarz information criterion (SIC) is used to select the lag length in both

the ADF and DF-GLS regressions, assuming a maximum lag length of 4 months for each
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Figure 3.6: WTI crude oil price returns and returns of sub-indices
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(b) WTI and NEX Index
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(c) WTI and PSE Index
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(d) WTI and SPGCE Index
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(e) WTI and Aggregate Index
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Table 3.1: Contemporaneous correlations

A. Log levels B. First differences of log levels

Series ECO NEX PSE SPGCE WTI ECO NEX PSE SPGCE WTI

ECO 1 0.996 0.985 0.998 0.989 1 0.931 0.767 0.907 0.434
NEX 0.996 1 0.996 0.999 0.996 0.931 1 0.798 0.959 0.490
PSE 0.985 0.996 1 0.992 0.996 0.767 0.798 1 0.721 0.328
SPGCE 0.998 0.999 0.992 1 0.994 0.907 0.959 0.721 1 0.440
WTI 0.989 0.996 0.996 0.994 1 0.434 0.490 0.328 0.440 1

x2(10) = 0.000 x2(10) = 939.001

Note: Monthly data from 2003:12 to 2016:12.

series, while the Bartlett kernel for the KPSS regressions is determined using the Newey-

West bandwidth (NWBW). Moreover, in Table 3.3 we conduct a series of Ljung-Box (1979)

tests for serial correlation, in which the Q-statistics are asymptotically distributed as χ2(4)

on the null hypothesis of no autocorrelation. Certainly, there is significant serial dependence

in the data. In addition, a Ljung-Box test for serial correlation in the squared data provides

evidence in favor of conditional heteroscedasticity, which is also confirmed by an ARCH test,

distributed as a χ2(4) on the null hypothesis of no ARCH effects.

Motivated by the aforementioned discussions and the dynamic properties of the employed

data, we estimate the bivariate GARCH-in-Mean structural VAR model given by equations

(3.1)-(3.3), with one lag as suggested by the Schwarz information criterion (SIC), and using

monthly observations on the log change in the price of oil and the log change in the price

of each of the indices examined in this paper. To evaluate the efficiency of the model

specification in terms of predictability, and its consistency with the data, we calculate and

compare the SIC for the GARCH-in-Mean VAR model and the conventional homoskedastic

VAR model. Based on the values of the Schwarz information criterion in Table 3.4, the

bivariate GARCH-in-Mean VAR model is preferred over the homoskedastic VAR model in

most of the cases.

The parameter estimates of the mean and variance functions, for the different sectors,

are reported in Tables A3.1-A3.5, with t-statistics in parentheses. We find statistically

significant evidence of ARCH effects in the price of oil and GARCH effects in the stock

returns, which provide further support for our proposed model. Specifically, in the case of

the aggregate stock returns (see Table A3.5), the coefficients on the lagged squared errors and

lagged conditional variance for both the price of oil and stock returns are highly significant,

while their sum is equal to (0.268+0.603)=0.871 and (0.118+0.852)=0.970, respectively.

These results provide evidence that the volatility process for the crude oil price, and also
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Table 3.2: Unit roots and stationary tests

Test

Series ADF DF-GLS KPSS Decision

AGG -18.717* -5.676* 0.057 I (0)
ECO -10.154* -10.107* 0.063 I (0)
NEX -9.351* -9.070* 0.080 I (0)
PSE -14.638* -13.708* 0.077 I (0)
SPGCE -8.264* -3.282* 0.182 I (0)
WTI -14.600* -13.821* 0.075 I (0)

Note: An asterisk indicates significance at the 5% level.

Table 3.3: Tests for serial correlation and conditional heteroskedasticity

Series Q(4) Q2(4) ARCH(4)

AGG 2.777 (0.596) 13.527 (0.009) 10.762 (0.029)
ECO 17.059 (0.002) 8.926 (0.063) 10.445 (0.034)
NEX 27.908 (0.000) 9.577 (0.048) 10.718 (0.030)
PSE 37.651 (0.000) 17.017 (0.002) 13.515 (0.009)
SPGCE 25.909 (0.000) 14.220 (0.007) 15.616 (0.004)
WTI 42.656 (0.000) 69.517 (0.000) 52.134 (0.000)

Note: Numbers in parentheses are marginal significance levels.

that for the aggregate stock returns, is very persistent. The primary coefficient of interest,

however, from the bivariate GARCH-in-Mean VAR relates to the effect of uncertainty about

the change in the price of oil on stock returns. This is the coefficient on the conditional

standard deviation of the log change in the price of oil in the stock return equation, λ21,

and the null hypothesis is that the value of it is equal to zero. The point estimates for the

coefficient on oil price uncertainty are reported in Tables A3.1-A3.5, and show that there is

not enough statistical evidence to reject the null hypothesis that the value of λ21 is zero. This

finding holds across all industry sectors, with the coefficient on oil price uncertainty having

a positive but statistically insignificant effect on the renewable and technology industries,

and insignificant negative effect on the aggregate stock market.

In order to investigate the effect of incorporating oil price uncertainty on the dynamic

response of stock returns to an oil price shock, we plot the impulse responses for positive and

negative oil price shocks in Figures A3.1-A3.5, over a horizon of twelve months. These are

generated from the maximum likelihood estimates of the model’s parameters. Accounting for

the effect of oil price uncertainty, we find that a positive shock in oil prices tends to increase

the stock returns of the three renewable energy indices, namely ECO, NEX, and SPGCE,
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Table 3.4: Model specification tests with WTI crude oil price

Model Homoskedastic VAR Bivariate GARCH-M VAR

AGG - WTI 5203.715 5143.391
ECO - WTI 2696.742 2704.585
NEX - WTI 2614.204 2615.708
PSE - WTI 5265.364 5208.170
SPGCE - WTI 2191.582 2194.203

Note: This table computes the Schwartz Information Criterion for the con-

ventional homoskedastic VAR and the bivariate GARCH-in-Mean VAR.

immediately, while this positive effect decreases sharply within the first two months (see the

first panel of Figures A3.1, A3.2, and A3.4). Specifically, the SPGCE index experiences an

increase in its monthly rate of change of about 130 basis points after one month, followed

by a decline in the second month by about 70 basis points. It is worth mentioning that

the positive effect is quite similar but less prominent for both the NEX and ECO indices.

The dynamic effects of the positive oil price shock on the SPGCE and NEX indices are

statistically significant for the first two and a half and one and a half months, respectively,

while for the ECO index it is statistically significant only for the first month.

In the second panel of Figures A3.1, A3.2, and A3.4 we report the impulse responses of

the same three indices to a negative oil price shock, again accounting for the effects of oil

price uncertainty. As can be seen, the dynamic effect of the negative oil price shock on the

ECO index is not statistically significantly different from zero after one month. However, a

negative oil price shock induces a positive effect on the NEX index of about 20 basis points

the first month, followed by a slight increase the second month. After that, it gradually fades

out approaching zero. In a similar way, the SPGCE index undergoes a jump in its monthly

rate of change of about 50 basis points after two months, and decreases slowly towards zero

in the following months. Both NEX and SPGCE indices are not statistically significantly

different from zero after two and four months, respectively.

The impulse responses of technology stock returns (PSE), however, are more similar to

those of the aggregate stock returns. As can be seen in the first panel of Figures A3.3 and

A3.5, a positive oil price shock leads to a decline in both stock returns after one month,

followed by an increase in the second month. Impulse responses of aggregate stock returns

are found to have a more rapid recovery rate than technology stock returns. However, the

dynamic effects of the positive oil price shock on both technology and aggregate stock returns

are not statistically significantly different from zero at all horizons. In contrast, a negative

oil price shock tends to induce a jump in both technology and aggregate stock returns after

one month, which is followed by a slow decline (see the second panel of Figures A3.3 and
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A3.5). The dynamic effects of the negative oil price shock on both returns are however not

statistically significantly different from zero. Finally, a visual comparison of the impulse

responses in Figures A3.1-A3.5 does not provide us clear evidence on whether the responses

of the three renewable energy stock market returns to positive and negative oil price shocks

are symmetric or asymmetric, while those of the technology and aggregate returns are more

likely to be symmetric.

Next, we compare the impulse responses of the different stock returns to a positive oil

price shock as estimated by our model with that from a model in which oil price uncertainty

is restricted from entering the stock return equation (that is, λ21=0). We compare these

responses in the third panel of Figures A3.1-A3.5, with the error bands being suppressed for

clarity, and conclude that accounting for oil price uncertainty tends to enhance the positive

dynamic responses of the three renewable energy indices to a positive oil price shock, while

it amplifies the negative dynamic response of the aggregate returns to a positive oil price

shock. Finally, the response of technology index returns from the two models are found

identical, thus providing evidence that uncertainty about the price of oil does not disturb

the dynamic response of technology returns to a positive oil price shock.

3.5 Robustness

We have performed an impulse response analysis to assess whether the relationship between

crude oil prices and stock returns of clean energy and technology companies is symmetric

or asymmetric, and we have provided evidence in favor of symmetric impulse responses of

stock returns to oil price shocks. To investigate the robustness of these results, we employ

an impulse response based test, recently introduced by Kilian and Vigfusson (2011). One

of the main arguments for doing so is the fact that Kilian and Vigfusson (2011) question,

through their investigation of the effects of oil price shocks, the use of slope-based tests to

test for asymmetries and nonlinearities, and therefore propose a test of symmetric impulse

responses to shocks of different signs and magnitudes, based on impulse response functions.

In fact, they demonstrate that slope-based tests are not informative with regards to whether

the asymmetry in the impulse responses is economically or statistically significant, as well

as that slope based tests cannot allow for the possibility that the degree of asymmetry of

the response functions by construction depends on the magnitude of the shock.

The Kilian and Vigfusson (2011) symmetry test, based on impulse response functions,

involves estimating the following nonlinear structural VAR model
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Table 3.5: p-values for H0 : Ig(h, δ) = −Ig(h,−δ), h = 0, 1, ..., 12

ECO NEX PSE SPGCE AGG

h σ̂ 2σ̂ σ̂ 2σ̂ σ̂ 2σ̂ σ̂ 2σ̂ σ̂ 2σ̂

0 0.306 0.299 0.460 0.465 0.221 0.224 0.253 0.250 0.714 0.719
1 0.325 0.310 0.222 0.202 0.089 0.088 0.173 0.155 0.781 0.779
2 0.522 0.505 0.352 0.341 0.183 0.179 0.255 0.240 0.919 0.917
3 0.675 0.656 0.508 0.493 0.205 0.222 0.255 0.249 0.932 0.926
4 0.791 0.781 0.636 0.630 0.314 0.332 0.355 0.345 0.974 0.971
5 0.819 0.827 0.683 0.670 0.368 0.390 0.457 0.444 0.988 0.985
6 0.872 0.880 0.785 0.773 0.433 0.418 0.567 0.556 0.995 0.993
7 0.904 0.907 0.861 0.852 0.541 0.525 0.654 0.645 0.998 0.997
8 0.944 0.946 0.886 0.866 0.632 0.604 0.739 0.736 0.999 0.999
9 0.916 0.949 0.901 0.889 0.721 0.695 0.800 0.804 1.000 1.000
10 0.921 0.971 0.917 0.918 0.772 0.714 0.829 0.841 1.000 1.000
11 0.853 0.885 0.938 0.947 0.835 0.786 0.849 0.876 1.000 1.000
12 0.898 0.923 0.961 0.954 0.884 0.844 0.874 0.866 1.000 1.000

Note: p-values are based on the χ2
h+1 distribution.

∆lnot = α10 +

p∑
j=1

β11(j)∆lnot−j +

p∑
j=1

β12(j)∆lnzt−j + u1t (3.6)

∆lnzt = α20 +

p∑
j=0

β21(j)∆lnot−j +

p∑
j=1

β22(j)∆lnzt−j +

p∑
j=0

δ21(j)õt−j + u2t (3.7)

where õt is Hamilton’s (2003) net oil price increase over the previous twelve months, defined

as

õt = max
[
0, lnot −max

{
lnot−1, lnot−2, ..., lnot−12

}]
where ot denotes the price of oil.

The null hypothesis of symmetric impulse responses of ∆lnzt to positive and negative oil

price shocks of the same size is

H0 : Ig(h, δ) = −Ig(h,−δ) for h = 0, 1, ..., H. (3.8)

It tests whether the responses of ∆lnzt to a positive shock in the oil price growth rate of size

δ is equal to the negative of the response of ∆lnzt to a negative shock in the oil price growth

rate of the same size, −δ, for horizons h = 0, 1, ..., H. See Kilian and Vigfusson (2011) for a

more detailed discussion of the methodology.

Since the Kilian and Vigfusson (2011) test depends on the size of the shock, δ, we illustrate

in Figure A3.6 the empirical responses of the different logarithmic stock returns to one- and
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two-standard-deviation oil price shocks of positive and negative signs, in a model with one

lag and considering the twelve-month net oil price increase. Hence, the figure depicts the

response of the logarithmic stock returns to a positive shock Ig(h, δ), and the negative of

the response to a negative shock, −Ig(h,−δ). The impulse responses are derived for twelve

months based on 10, 000 simulations and 50 histories.

As can been seen from the different plots in Figure A3.6, the responses of the different

logarithmic stock returns to positive shocks are not significantly different than those to

negative shocks, for both small (one-standard-deviation) and big (two-standard-deviation)

oil price shocks. In addition, we report the p-values of the null hypothesis (3.8) in Table

3.5, for both small shocks (δ = σ̂) and large shocks (δ = 2σ̂). By looking at the results,

we conclude that the null hypothesis of a symmetric relationship between the oil prices and

each of the examined stock returns cannot be rejected at the 5% significance level.

3.6 Conclusion

In the context of a bivariate structural VAR model, which is modified to accommodate

GARCH-in-Mean errors, we investigate the relationship between oil prices and stock returns

of clean energy and technology companies. Specifically, we employ monthly data over the

period from May 1983 to December 2016, and estimate the model taking a full information

maximum likelihood approach, thus avoiding Pagan’s (1984) generated regressor problems.

Furthermore, we conduct an impulse response analysis to assess whether the relationship

between crude oil prices and stock returns of clean energy and technology companies is

symmetric or asymmetric, and provide evidence of symmetric stock responses to oil price

shocks. More importantly, we investigate the effects of uncertainty about the change in

the price of oil on the employed stock returns, and we find that oil price uncertainty has a

positive but statistically insignificant effect on the renewable energy and technology stock

returns, and an insignificant negative effect on the aggregate stock returns. Our results are

robust to alternative model specifications and stock prices of clean energy companies.

The resilience of renewable energy stock returns to oil price uncertainty effects may

stem from the fact that the economics of the renewable energy sector have become very

competitive in recent years, and therefore renewables can compete successfully with oil, even

when the price of oil fluctuates around the recent low levels. Another possible explanation

might be the fact that oil is not predominantly used in electricity generation, while any

possible spillover effect from oil to other primary sources of electricity generation such as,

for example, coal and gas, seem not to be prominent enough in order to affect renewables

indirectly. Furthermore, resilience of renewable energy sector can be explained by the fact

that developing countries such as, for instance, China, India, and Middle East countries,
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experience rapid economic growth that is accompanied by growing energy demand, and

finally, severe environmental externalities. Hence, under different pressures of environmental

pollution, such as, air pollution and water contamination, they endeavor to reduce fossil fuel

consumption and expand their renewable energy industry. Finally, the insignificant effect of

oil price uncertainty on the employed stock returns might be a possible explanation for the

symmetric stock responses.
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3.7 Appendix

Table A3.1: Parameter estimates of the ECO and WTI structural VAR

A. Conditional mean equation

B =

 1 0

−0.291 (−5.047) 1

; C =

 0.182 (2.113)

0.002 (0.027)

; Λ =

 0

0.154 (0.459)

;

Γ1 =

 0.109 (1.502)

0.200 (2.673)

;

Γ2 =

 0.782 (1.336)

−1.696 (−0.612)

.

B. Conditional variance equation

Cv =

 11.842 (1.545)

5.295 (1.396)

; diagF =

 0.176 (1.907)

0.116 (1.817)

; diagG =

 0.652 (3.917)

0.798 (8.561)

.

Note: Monthly data from 2001:01 to 2016:12. Numbers in parentheses are t-statistics.
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Table A3.2: Parameter estimates of the NEX and WTI structural VAR

A. Conditional mean equation

B =

 1 0

−0.253 (−5.185) 1

; C =

 0.169 (1.983)

−0.029 (−0.530)

; Λ =

 0

0.341 (1.010)

;

Γ1 =

 0.135 (1.451)

0.283 (3.637)

;

Γ2 =

 0.761 (1.328)

−2.486 (−0.922)

.

B. Conditional variance equation

Cv =

 14.668 (1.832)

5.349 (0.914)

; diagF =

 0.193 (2.292)

0.177 (1.577)

; diagG =

 0.593 (4.058)

0.694 (2.954)

.

Note: Monthly data from 2001:01 to 2016:12. Numbers in parentheses are t-statistics.
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Table A3.3: Parameter estimates of the PSE and WTI structural VAR

A. Conditional mean equation

B =

 1 0

−0.024 (−0.750) 1

; C =

 0.216 (3.983)

−0.019 (−0.580)

; Λ =

 0

0.002 (0.016)

;

Γ1 =

 0.048 (0.755)

0.268 (5.058)

;

Γ2 =

 0.265 (0.757)

0.828 (0.971)

.

B. Conditional variance equation

Cv =

 11.191 (2.938)

1.483 (1.586)

; diagF =

 0.264 (4.276)

0.156 (2.940)

; diagG =

 0.578 (7.102)

0.808 (12.720)

.

Note: Monthly data from 1984:02 to 2016:12. Numbers in parentheses are t-statistics.
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Table A3.4: Parameter estimates of the SPGCE and WTI structural VAR

A. Conditional mean equation

B =

 1 0

−0.309 (−4.865) 1

; C =

 0.119 (1.224)

0.011 (0.154)

; Λ =

 0

0.287 (0.940)

;

Γ1 =

 0.106 (1.200)

0.325 (3.850)

;

Γ2 =

 1.021 (1.617)

−2.570 (−1.009)

.

B. Conditional variance equation

Cv =

 14.415 (1.861)

4.323 (1.183)

; diagF =

 0.242 (2.561)

0.086 (1.566)

; diagG =

 0.560 (3.731)

0.824 (8.172)

.

Note: Monthly data from 2003:12 to 2016:12. Numbers in parentheses are t-statistics.
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Table A3.5: Parameter estimates of the Aggregate and WTI structural VAR

A. Conditional mean equation

B =

 1 0

0.010 (0.388) 1

; C =

 0.219 (3.920)

−0.013 (−0.506)

; Λ =

 0

−0.040 (−0.483)

;

Γ1 =

 0.067 (0.933)

0.018 (0.314)

;

Γ2 =

 0.203 (0.615)

1.009 (1.567)

.

B. Conditional variance equation

Cv =

 9.119 (2.768)

0.675 (1.865)

; diagF =

 0.268 (4.509)

0.118 (3.587)

; diagG =

 0.603 (7.662)

0.852 (23.804)

.

Note: Monthly data from 1983:05 to 2016:12. Numbers in parentheses are t-statistics.
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Figure A3.1: Impulse response functions of the WTI-ECO structural VAR

Response of ECO index returns to a positive oil price shock
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Figure A3.2: Impulse response functions of the WTI-NEX structural VAR

Response of NEX index returns to a positive oil price shock
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Figure A3.3: Impulse response functions of the WTI-PSE structural VAR

Response of PSE index returns to a positive oil price shock
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Figure A3.4: Impulse response functions of the WTI-SPGCE structural VAR
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Figure A3.5: Impulse response functions of the WTI-Aggregate structural VAR
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Figure A3.6: Indices responses to oil price shocks by shock size
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Chapter 4

Dynamic Quantile Relations in
Energy Markets

Coauthored with Jonas Andersson.

ABSTRACT

In this paper we investigate the dynamic relationships between crude oil price and and

a set of energy prices, namely diesel, gasoline, heating, and natural gas prices. This is

performed by means of Granger non-causality tests for monthly US data over the period

from January 1997 to December 2017. In most previous studies this has been done by testing

for the added predictive value of including lagged values of one energy price in predicting

the conditional expectation of another. In this study, we instead focus on different ranges of

the full conditional distribution. This is done within the framework of a dynamic quantile

regression model. The results constitute a richer set of findings than what is possible by

just considering a single moment of the conditional distribution. We find several interesting

one-directional dynamic relationships between the employed energy prices, especially in the

tail quantiles, but also a bi-directional causal relationship between energy prices for which

the classical Granger non-causality test suggests otherwise.

JEL classification: C22; Q41; Q42.

Keywords : Energy prices, Granger non-causality, Quantile regression.
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4.1 Introduction

In this paper we study the relationship between crude oil price and a set of energy prices,

namely diesel, gasoline, heating, and natural gas prices in the spirit of Granger causality.

As Bauwens et al. (2006, p. 306) put it, “the time-series notion of Granger (-Sims) caus-

ality is based on the idea that cause must precede effect, and that a factor cannot cause

another variable if it doesn’t contribute to the conditional distribution (or expectation) of

that variable given the past. This concept has become very influential in time series and

macroeconometric modelling.” In the present paper we analyze the causal relationships, not

only in the expectations, but also in the conditional quantiles of the employed energy price

series, by estimating quantile regressions [see Koenker and Bassett (1978) and Basset and

Koenker (1982)] and testing the null hypothesis of Granger non-causality in quantiles using

the sup-Wald test, as suggested by Koenker and Machado (1999).

Several advantages apply to the quantile Granger non-causality test compared to the

classical Granger non-causality test in mean. First, the quantile test considers different loc-

ations of the conditional distribution, and therefore it provides a more complete description

of the true dynamic relationship than the traditional Granger non-causality test which only

investigates average relationships (in the center of the conditional distribution). This ad-

vantage is important for our study, since we have reason to believe that one energy price will

affect different parts of the future distribution of another energy price to different degrees.

In economic terms, this is interpreted as a different dynamic relationship in different market

conditions. Thus, we avoid the need for sample splitting when we study various market

situations, and therefore we do not reduce the sample size nor loose the time dependence

structure in the original data.

The relationship between crude oil and energy prices has been investigated extensively

in numerous research papers. Serletis and Herbert (1999) explore the existence of common

trends in Henry Hub and Transco Zone 6 natural gas prices, the fuel oil price for New

York Harbor, and the PJM power market for electricity prices. They find shared trends

among the prices, and therefore evidence of effective arbitraging mechanisms for these prices

across these markets, as well as causality and a feedback relationship between any two price

pairs. Other empirical studies, such as for instance, Yücel and Guo (1994), employ rigorous

econometric techniques and find evidence of the existence of a long-run relationship between

coal, natural gas, and oil prices, while Villar and Joutz (2006) confirm the stable long-run

cointegrating relationship between crude oil and natural gas prices, also suggesting that

oil price is exogenous to natural gas price. Finally, Brown and Yücel (2009), similar to

Asche et al. (2006), find cointegration between natural gas and crude oil prices and discuss

substitutability and competition between the two fuels in electric power generation. In
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addition, they find oil price movements explaining natural gas price quite satisfactorily, as

well as evidence for natural gas price Granger causing crude oil price, but only to a marginal

extent.

Furthermore, there is an extended literature exploring the existence of asymmetry in the

relationship between oil and energy prices. Bacon (1991), in a seminal study for the crude

oil and gasoline markets in the United Kingdom, describes the asymmetric mechanism as

‘rockets and feathers,’ thus referring to the fact that gasoline prices rise rapidly like rockets

in response to crude oil price increases, but fall slowly like feathers in response to crude oil

price declines. Balke et al. (1998) investigate the asymmetric relationship between crude oil

and gasoline prices in the United States and provide mixed evidence of asymmetry. In doing

so, they consider two identical model specifications, which differ only in the specification of

asymmetry, and find evidence for rare and small, but also large and pervasive asymmetry.

More recently, Chang and Serletis (2016) investigate the relationship between crude oil and

gasoline prices for the United States and confirm the asymmetric effects, while providing

evidence in support of the ‘rockets and feathers’ behaviour.

Motivated by growing environmental concerns about climate change and costly fossil

fuels, Reboredo et al. (2017) use continuous and discrete wavelet methods, and linear and

non-linear Granger causality tests, to study co-movement and causality between oil price

variation and renewable energy stock returns. Their findings indicate weak, but in the long

run gradually strengthened, dependence between oil and renewable energy returns. They

also find evidence of non-linear causality running from renewable energy indices to oil prices

at different time horizons, as well as mixed evidence of Granger causality running from oil to

renewable energy prices. From a different point of view, Atil et al. (2014) use the nonlinear

autoregressive distributed lags model to examine the pass-though of crude oil prices into

gasoline and natural gas prices, and they conclude that oil prices affect gasoline prices and

natural gas prices in an asymmetric and non-linear transmission way. Lahiani et al. (2017)

extend the analysis of Atil et al. (2014), by considering additional fuel prices and using a more

advanced methodology, thereby providing evidence of a stationary equilibrium relationship

between these prices.

This research adds to the extant literature related to causal relationships between crude

oil price and a set of energy prices by providing empirical evidence regarding Granger caus-

ality between these prices. To the best of our knowledge, no such study has investigated

Granger causality in the entire conditional distribution between these energy prices. Our

study contributes to the existing literature by filling this void. The quantile approach en-

ables us to test for non-causality between the employed monthly energy prices in different

quantiles of each variable, and therefore to reveal possible non-linear causal effects between

them. The same methodological approach has previously been followed by Chuang et al.
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(2009) and Ding et al. (2014), who investigate causal relationships between stock returns

and volume and stock returns and real estate property, respectively. Our results indicate sig-

nificant dynamic effects between the employed price series, particularly in the tail quantiles.

We also see a bi-directional causal relationship between heating and crude oil prices, for

which the classical Granger non-causality test suggests otherwise.

This rest of the paper is structured as follows. In Section 4.2 we introduce the classical

Granger causality test and the sup-Wald test of causality in quantiles. In Section 4.3 we

describe the data we use and present the empirical evidence, while in Section 4.4 we conclude

with a brief discussion of our findings and their implications for an effective and sustainable

energy risk management.

4.2 Empirical analysis

4.2.1 Classical Granger causality test

When a variable x does not Granger-cause another variable y, it suggests that

Fyt(z|(y, x)t−1) = Fyt(z|yt−1), ∀z ∈ R, (4.1)

holds where Fyt(.|Ω) is the conditional distribution of yt with Ω denoting the information

set available at time t− 1, and (y, x)t−1 denotes the information set generated by yt and xt

up to time t − 1 (Granger, 1969). On the contrary, when Equation (4.1) fails to hold, the

variable x is said to Granger-cause y. A necessary condition for Equation (4.1) is that

E(yt|(y, x)t−1) = E(yt|yt−1) (4.2)

where E(yt|(y, x)t−1) is the conditional mean of the variable yt. Usually Equation (4.2) is

used as the starting point for tests of Granger causality. There could be, at least, two reasons

for this. Firstly, the test is sometimes used to investigate if a variable is worthwhile using

in forecasting another. Modelling the conditional mean rather than the entire conditional

distribution is then a natural starting point. Secondly, estimating the full conditional distri-

butions is more cumbersome than implementing the classical Granger causality test, which

can be done by means of a vector autoregressive (VAR) model. The estimation can even be

done by ordinary least squares. As an example, if crude oil is denoted yt and gasoline prices

xt, the classical test could be performed within the framework of the bivariate VAR-model

yt = α0 +

p∑
i=1

αiyt−i +

q∑
j=1

βjxt−j + εy,t (4.3)

xt = γ0 +

p∑
i=1

γixt−i +

q∑
j=1

δjyt−j + εx,t, (4.4)
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where εt = (εy,t, εx,t)
′ is a vector of i.i.d random disturbances. The null hypothesis of Granger

non-causality in mean from xt to yt is rejected if the coefficients of xt−1, xt−2, ..., xt−q in

Equation (4.3) are jointly significantly different from zero. In the same way, if the coefficients

of lagged yt, thus δ1, δ2, ..., δq, in Equation (4.4) are significantly different from zero, then we

conclude that yt Granger-causes xt in mean. Note, however, that this notion of non-causality

is not sufficient for Granger non-causality in distribution. Therefore, although a failure to

reject the null hypothesis means that x does not Granger-cause y in the mean, it does not

preclude causality in other moments or distribution characteristics.

4.2.2 Quantile causality test

As discussed earlier, for many cases the conditional mean approach may not describe the

complete causal relationship between two time series variables. Given the fact that a distribu-

tion is completely determined by its quantiles, Lee and Yang (2006) first considered Granger

non-causality in terms of the conditional quantiles of the distribution. Hence, Equation (4.1)

is equivalent to

Qyt(τ |(y, x)t−1) = Qyt(τ |yt−1), ∀τ ∈ (0, 1), (4.5)

where Qyt(τ |Ω) denotes the τ−th quantile of Fyt(·|Ω). Thus, we say that x does not Granger-

cause y in all quantiles if Equation (4.5) holds. Note, however, that in this case non-causality

is tested only in a particular quantile level, and not quantile intervals.

Rather than testing non-causality in a moment (mean or variance) or in a fixed quantile

level τ , in this study we are interested in investigating causal relations in different quantile

intervals by testing Equation (4.1). In doing so, we follow Chuang et al. (2009) who, in an

interesting and influential study, investigate the causal relations between stock return and

volume and define Granger non-causality in the quantile range [a, b] ⊂ (0,1) as

Qyt(τ |(y, x)t−1) = Qyt(τ |yt−1), ∀τ ∈ [a, b], (4.6)

where Qyt(τ |Ω) denotes the quantile of Fyt(·|Ω) for τ ∈ [a, b]. The quantile causality test is

performed considering several quantile ranges [a, b] ⊂ (0, 1) for τ ∈ [a, b], using the quantile

regression method proposed by Koenker and Bassett (1978) and Basset and Koenker (1982),

and the sup-Wald statistic test suggested by Koenker and Machado (1999); see also Koenker

(2005) for a more comprehensive study of quantile regression. To test for Granger-non

causality in quantiles, we consider the following conditional quantile versions of Equations

(4.3) and (4.4)
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Qyt(τ |Ωt−1) = φ0(τ) +

p∑
j=1

φj(τ)yt−j +

q∑
h=1

ψh(τ)xt−h (4.7)

Qxt(τ |Ωt−1) = ω0(τ) +

p∑
j=1

ωj(τ)xt−j +

q∑
h=1

ξh(τ)yt−h, (4.8)

where Ωt−1 denotes the information set generated by past values of yt and xt. The null

hypothesis of non-causality in quantiles is

H0 : ψ(τ) = 0, ∀τ ∈ [a, b], (4.9)

for Equation (4.7). Hence, if the parameter vector ψ(τ) = [ψ1(τ), ψ2(τ), ..., ψq(τ)]′ is equal

to zero, it implies that xt does not Granger-cause yt at the quantile interval τ ∈ [a, b]. In a

similar way, if ξ(τ) = [ξ1(τ), ξ2(τ), ..., ξq(τ)]′ is equal to zero, then we can say that yt does

not Granger-cause xt at the quantile interval τ ∈ [a, b].

In order to determine the significance level of the sup-Wald test, for each range and

each lag order, we generate 100,000 independent simulations approximating the standard

Brownian motion through the use of a Gaussian random walk with 3,000 i.i.d. N(0, 1)

innovations to identify the critical values at the 1%, 5%, and 10% significance levels.1 Fur-

thermore, since we need to select the optimal lag for each quantile range in order to conduct

the sup-Wald test, we use the sequential lag selection method to determine the optimal lag

truncation order [see Chuang et al. (2009) and Ding et al. (2014)]. For instance, if the

null hypothesis ψq(τ) = 0 for [0.05, 0.5] is not rejected for the lag-q model but the null

ψq−1(τ) = 0 for [0.05, 0.5] is rejected for the lag-(q − 1) model, then we set the desired

lag order as q∗ = q − 1 for the quantile interval [0.05, 0.5]. If no test statistic, however, is

significant over that interval, we select the lag length of order one. We calculate the sup-

Wald test statistics to check the joint significance of all coefficients of lagged past values

for each quantile interval. Hence, if the selected lag order is q∗, then the null hypothesis is

H0 : ψ1(τ) = ψ2(τ) = ψq(τ) = 0 for [0.05, 0.5].2 For simplicity, we do not assume different

lag orders, hence p = q. Therefore, by employing the methodology of quantile Granger non-

causality while considering various quantile ranges [a, b], we can capture the quantile range

from which the true causal relationships arise.

1The table of critical values is available on request. Some critical values of the sup-Wald test have also
been tabulated in De Long (1981) and Andrews (1993).

2The results for lag order selection of the quantile causality tests are not reported here in order to preserve
space, but they can be provided upon request.

130



4. Dynamic Quantiles Relations in Energy Markets

4.3 The data and empirical evidence

This study uses energy prices, namely crude oil, diesel, gasoline, heating, and natural gas

prices for the United States. We use the U.S. refiner’s acquisition cost (RAC)3 for a composite

of domestic and imported crude oil as a proxy for the price of crude oil, the Los Angeles

ultra-low sulfur No 2 diesel price for the diesel price, the New York Harbour conventional

gasoline price for the price of gasoline, the New York Harbour No 2 heating oil price for the

price of heating, and the Henry Hub natural gas price for the price of natural gas. All prices

are obtained from the U.S. Energy Information Administration (EIA) on a monthly basis,

over the period from January 1997 to December 2017.

Table A4.1 presents the summary statistics of the five price series. The average monthly

prices range from $1.591 per gallon for gasoline to $53.968 per barrel of crude oil. On a

monthly basis, the commodity prices reach their maximum values in June 2008 for diesel

($3.894), gasoline ($3.292), and heating ($3.801). The highest peak in natural gas price

($13.420) and crude oil price ($129.03) was observed in October 2005 and July 2008, respect-

ively. It is worth mentioning that during the first half of 2008 all energy prices increased

from 41.05% for the case of gasoline to 58.82% for natural gas, with crude oil increasing

by 47.22%, while during the second half of 2008 all of them experienced a remarkable drop

of more than 47%, thus providing evidence for a strong price relationship. Table A4.1 also

shows that all the series are positively skewed and deviate from normality, while natural gas

price exhibits excess kurtosis indicating fatter tails, and in particular longer right tail than

a normal distribution.

We present in Table A4.2 an interesting feature of the data related to the contempor-

aneous correlations across the logarithmic first differences4 of the energy price series. In

order to determine whether these correlations are statistically significant, we follow Pindyck

and Rotemberg (1990) and we perform a likelihood ratio test of the hypotheses that the

correlation matrices are equal to the identity matrix. The test statistic is

−2ln(|R|N/2)

where |R| is the determinant of the correlation matrix and N is the number of observations.

The test statistic is distributed as χ2 with q(q − 1)/2 degrees of freedom, where q is the

number of series. The test statistic is equal to 888.782 with a p-value of 0.000 for the first

differences of the logs, and therefore we can clearly reject the null hypothesis that these series

are uncorrelated. We also notice the relatively weak price correlation between the crude oil

3The U.S. refiner’s acquisition cost (RAC) for composite crude oil is a weighted average of domestic and
imported crude oil costs. It includes transportation and other fees paid by refiners, but does not include the
cost of crude oil purchased for the Strategic Petroleum Reserve.

4The terms logarithmic first differences and logarithmic returns are used interchangeably.
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and natural gas price series, a fact that has been expected since diesel, gasoline, and heating

are refined petroleum products, and therefore more dependent on oil price development.

Crude oil and natural gas prices, however, are also related to each other since they are both

substitutes in direct consumption, and competitors in production of other energy sources

such as cooking, heating, and electricity generation. The correlation patterns documented

in Table A4.2 also manifest in Figures A4.1 - A4.5, which depict the development of the

employed series over the investigated period.

Before we continue with our main analysis, we conduct some necessary unit root and

stationary tests in the logarithmic first differences of each of the employed series, in order to

test for the presence of a stochastic trend (a unit root) in the autoregressive representation

of each individual series. Our motivation stems from the fact that existence of a unit root in

a series invalidates the standard assumptions for an asymptotic analysis, as for instance the

usual asymptotic properties of estimators, based on which statistical inference is performed.

As shown in Table A4.3, all three tests, namely, the Augmented Dickey-Fuller (ADF) test [see

Dickey and Fuller, 1981], the Dickey-Fuller GLS (DF-GLS) test [see Elliot et al., 1996] and

the KPSS test [see Kwiatkowski et al., 1992] provide evidence that all series are stationary,

or integrated of order zero, I (0), and therefore we continue our analysis employing all price

series in first logarithmic differences. The Bayesian information criterion (BIC) is used for

the lag length selection in both the ADF and DF-GLS regressions, while the Bartlett kernel

for the KPSS regressions is determined using the Newey-West bandwidth (NWBW). The

stationarity of the logarithmic first differences of each of the price series is also verified by

their historical development, depicted in Figures A4.1 - A4.5.

In the next step we use the Wald test to conduct the Granger non-causality test in mean,

and in doing so, we test the null hypothesis that βj = 0 (or δj = 0) for j = 1, 2, ..., q,

in the two linear regression models described in Equations (4.3) and (4.4). Rejection of

the null hypothesis implies that knowledge of past values of xt improves the prediction of

future energy price of yt, beyond predictions that are based on past prices of the energy

product alone, yt−1, yt−2, ..., yt−q. We select the optimal lag truncation order by the Bayesian

Information Criterion (BIC) and report the estimation results in Table 4.1.

No linear causal relationship is found propagating from any employed energy price to

crude oil price, while the latter is found to Granger-cause the diesel, gasoline, and heating

prices. We also notice that the selected lag order varies from one to two months, contingent

on the particular investigated causal relationship between the employed fuel prices. After

performing this test to all the relationships between the crude oil price and each of the other

fuel prices, we conclude that the price of crude oil from the last two months improves the

prediction of each of the diesel and gasoline prices, beyond predictions that are based on

past prices of diesel or gasoline alone. Knowledge of the price of crude oil from only the
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Table 4.1: Tests for Granger causality in the mean

The null p-value Decision

Crude oil ; Diesel 0.000 (2) Causality
Diesel ; Crude oil 0.456 (2) No causality
Crude oil ; Gasoline 0.000 (2) Causality
Gasoline ; Crude oil 0.270 (2) No causality
Crude oil ; Heating 0.015 (1) Causality
Heating ; Crude oil 0.376 (1) No causality
Crude oil ; Natural gas 0.227 (1) No causality
Natural gas; Crude oil 0.963 (1) No causality

Notes: Sample Period, monthly observations, 1997:01-2017:12.
The symbol ; denotes the null hypothesis of Granger non-
causality. The entry “Causality” indicates that the null hypo-
thesis is rejected at the 5% significance level, while the entry
“No causality” indicates that the null hypothesis of Granger non-
causality could not be rejected at the 5% significance level. Num-
bers in parentheses indicate the selected lag order based on the
Bayesian information criterion.

last month improves the prediction of future heating price, compared to predictions that

are based only on past prices of heating price, but it does not improve the prediction of

natural gas price. In the opposite direction, past information of neither diesel, gasoline, or

natural gas prices improves the prediction of future crude oil price beyond predictions that

are based on past prices of crude oil alone. Although the afore-mentioned results, which

are based on the conditional mean represented by Equation (4.2), are useful to learn about

causal relationships, they may not reveal all the information that describe the complete

causal relationship between two time-series variables.

Motivated by these considerations, we explore the causal relationships between the em-

ployed energy price series, by considering the conditional quantile functions given by Equa-

tions (4.7) and (4.8) — using the longest available span of data.5 For our empirical analysis

we consider in total eight large quantile intervals for the above conditional quantile func-

tions, similar to Ding et al. (2014). More precisely, we examine three large quantile intervals,

namely [0.05, 0.95], [0.05, 0.5], and [0.5, 0.95], and five small quantile intervals, namely [0.05,

0.2], [0.2, 0.4], [0.4, 0.6], [0.6, 0.8], and [0.8, 0.95]. Table 4.2 reports the sup-Wald test stat-

istics and the selected lag truncation order.

Panel (a) of Table 4.2 reports the tests results for non-causality from crude oil price

to diesel, gasoline, heating, and natural gas prices. For the quantile interval [0.05, 0.95]

5This applies to the price series of diesel, gasoline, heating, and natural gas, which starting being available
in January 1997.
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Table 4.2: The sup-Wald tests of non-causality in different quantile ranges.

τ ∈ [0.05,0.95] [0.05,0.5] [0.5,0.95] [0.05,0.2] [0.2,0.4] [0.4,0.6] [0.6,0.8] [0.8,0.95]

(a). Crude oil price → energy prices

Diesel 73.78∗∗∗ 73.78∗∗∗ 5.56 73.78∗∗∗ 45.89∗∗∗ 11.32∗∗∗ 9.58∗∗∗ 2.77
(2) (2) (1) (2) (2) (1) (2) (1)

Gasoline 52.22∗∗∗ 52.22∗∗∗ 26.64∗∗∗ 52.65∗∗∗ 4.83 0.83 0.12 26.64∗∗∗

(4) (4) (4) (4) (1) (1) (1) (4)

Heating 68.52∗∗∗ 68.52∗∗∗ 5.61 68.52∗∗∗ 19.56∗∗∗ 2.19 0.53 20.37∗∗∗

(7) (7) (1) (7) (2) (1) (1) (4)

Natural gas 40.45∗∗∗ 17.94∗∗∗ 12.25∗∗ 18.16∗∗ 2.08 2.14 9.01∗ 24.74∗∗∗

(4) (4) (2) (4) (1) (1) (2) (6)

(b). Energy prices → crude oil price

Diesel 6.10 2.32 7.20∗ 2.32 1.10 1.03 1.24 7.20∗

(1) (1) (1) (1) (1) (1) (1) (1)

Gasoline 3.43 3.43 1.91 3.47 1.35 1.96 1.78 1.84
(1) (1) (1) (1) (1) (1) (1) (1)

Heating 5.13 5.13 16.67∗∗ 33.63∗∗∗ 19.53∗∗∗ 3.60 12.21∗ 16.67∗∗

(1) (1) (4) (6) (4) (1) (4) (4)

Natural gas 5.25 1.79 5.25 8.87 1.62 1.79 0.89 5.25
(1) (1) (1) (4) (1) (1) (1) (1)

Notes: Sample Period, monthly observations, 1997:01-2017:12. Each interval in the square brackets is the

quantile interval on which the null hypothesis of Granger non-causality, as per Equation (4.7) and (4.8),

holds. The sup-Wald test statistics and the selected lag orders (in parentheses) are reported.

*** Denotes significance at the 1% significance level.

** Denotes significance at the 5% significance level.

* Denotes significance at the 10% significance level.

crude oil price Granger-causes all the energy prices at the 1% significance level, while the

quantile sub-intervals indicate significant causality deriving from the lower and upper levels

of quantiles, for three out of the four relationships. For instance, there is no Granger causality

over the quantile levels, [0.2, 0.4], [0.4, 0.6], and [0.6, 0.8], for gasoline and natural gas prices.

Similarly, for the case of heating, the middle quantile intervals [0.4, 0.6] and [0.6, 0.8] do not

show any causality arising from the crude oil price changes. To put it differently, there is

causality from crude oil to gasoline, heating, and natural gas prices arising only over the low or

high quantile intervals. Hence, crude oil does not improve the predictions of these energy

products, beyond predictions that are based on their own past price development alone,

when the latter fluctuate around their median. For the case of diesel there is causality from

crude oil price changes over all the quantile intervals, except for the upper interval of [0.8, 0.95].
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Panel (b) of Table 4.2 reports the sup-Wald test statistics for non-causality from diesel,

gasoline, heating, and natural gas price to oil price. None of the test results for the quantile

interval [0.05, 0.95] are significant at our significance levels. This might be partly a result

of the fact that diesel, gasoline, and heating are refined petroleum products, and therefore

cannot improve the prediction of future oil price development. However, by considering

causal relationships in the context of quantiles, we find significant Granger causality from

heating price to crude oil price for the quantile intervals [0.05, 0.2], [0.2, 0.4], and [0.8, 0.95].

This implies that, similar to most of the results of the panel (a), no causality arises around

the conditional median, namely [0.4, 0.6], but only from the tail region of the conditional

distribution. It is only between crude oil and heating price changes that we find statistically

significant bi-directional causality. Combining the results from both panels of Table 4.2, we

conclude that the investigated energy markets depend more on each other under extreme

market conditions, and therefore consideration of these relationships during only normal

market situations may lead to an inefficient risk management strategy, or unintended energy

policy outcome.

4.4 Conclusion

The interaction between the crude oil price and other energy prices, also other than natural

gas price which is mostly studied in the literature, is an important research topic yet to

be fully addressed. This paper investigates the non-linear causal relationships between the

crude oil price and a set of other energy prices, namely diesel, gasoline, heating, and natural

gas prices for the United States. To the best of our knowledge, no study has used the

quantile Granger non-causality methodology to model the relationships of these energy price

series. Our results suggest significant causal relationships between the employed price series,

especially in the tail quantiles, but also a bi-directional causal relationship between heating

and crude oil prices, for which the classical Granger non-causality test suggests otherwise.

Interdependence between energy prices on different locations of the conditional distribution

renders risk hedging across fuels even more challenging when fuel prices are extreme volatile.

Policy makers should also be cautious and limit the risk exposure by constructing well-

diversified energy portfolios in different sectors, such as transportation, heating, agriculture,

and particularly electricity, where natural gas accounted for the first time in 2017 more than

27% of total gross electricity production in OECD countries, substituting largely crude oil

(IEA, 2017).
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4.5 Appendix

Table A4.1: Summary statistics

Series Mean Variance Minimum Maximum Skewness Kurtosis Normality

Crude oil 53.968 957.025 9.810 129.030 0.476*** -0.995*** 19.910***

Diesel 1.724 0.807 0.391 3.894 0.375** -0.991*** 16.218***

Gasoline 1.591 0.689 0.307 3.292 0.320** -1.098*** 16.955***

Heating 1.608 0.805 0.304 3.801 0.430*** -0.949** 17.212***

Natural gas 4.410 4.961 1.720 13.420 1.423*** 2.375*** 144.252***

Notes: Sample Period, monthly observations, 1997:01-2017:12. Asterisks indicate rejection of null

hypothesis of skewness, kurtosis, and normality. The skewness and kurtosis statistics include a

test of the null hypothesis that each is zero. The Jarque-Bera test is used to test for normality.

*** Denotes significance at the 1% significance level.

** Denotes significance at the 5% significance level.

* Denotes significance at the 10% significance level.

Table A4.2: Contemporaneous correlations

Series Crude oil Diesel Gasoline Heating Natural gas

Crude oil 1 0.762 0.808 0.816 0.235
Diesel 0.762 1 0.716 0.809 0.207
Gasoline 0.808 0.716 1 0.728 0.208
Heating 0.816 0.809 0.728 1 0.346
Natural gas 0.235 0.207 0.208 0.346 1

x2(10) = 888.782

Note: Monthly data from 1997:01 to 2017:12.
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Table A4.3: Unit roots and stationary tests

Test

Series ADF DF-GLS KPSS Decision

Crude oil -9.529*** -8.291*** 0.060 I (0)
Diesel -13.630*** -13.634*** 0.055 I (0)
Gasoline -11.616*** -11.902*** 0.045 I (0)
Heating -12.733*** -6.408*** 0.066 I (0)
Natural gas -15.438*** -2.381 0.033 I (0)

Note: Sample Period, monthly observations, 1997:01-2017:12.

*** Denotes significance at the 1% significance level.

** Denotes significance at the 5% significance level.

* Denotes significance at the 10% significance level.
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Figure A4.1: Crude oil price and its logarithmic returns
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Figure A4.2: Diesel price and its logarithmic returns
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Figure A4.3: Gasoline price and its logarithmic returns
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Figure A4.4: Heating price and its logarithmic returns
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Figure A4.5: Natural gas price and its logarithmic returns
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