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Abstract

This thesis addresses rich routing problems within a logistics context. The first and major
part of the thesis introduces a new location-routing problem, and discusses both modeling
and solution approaches. The second part addresses the use of a vehicle routing problem in
evaluating different supporting policies for electric vehicles.

Location-routing problems have become one of the most studied logistics problems during
the past decade. Recent surveys on location-routing problems have addressed modeling and
algorithmic issues as well as real-life applications, which include for example city logistics,
postal and parcel delivery, and grocery distribution. In the first part of the thesis, motivated
by an actual problem of a national postal service company, we introduce and define a
new two-echelon location-routing problem (2E-LRP). The activities in the two echelons are
organized into two waves: a delivery wave where products are sent from a single primary
facility to customers through intermediate facilities, and a pickup wave where the flow
of products is reversed. FEach echelon has its own type of vehicles, and we model the
synchronization of transshipments at the intermediate facilities. The model only considers
temporal constraints, assuming that capacities are never binding; the vehicles are always
large enough given the constraints on time. The resulting problem is a time-driven 2E-
LRP with synchronization and sequential delivery and pickup waves. To the best of our
knowledge, the problem being considered is original because it addresses a new variant of
2E-LRP that considers synchronization of transshipments and the sequence of delivery and

pickup activities.



Because of the complexity of the problem, only small instances can be solved optimally,
and large instances cannot even be solved with a feasible solution. Therefore, a heuristic
approach is needed to tackle large-size real instances. We propose a decomposition-based
heuristic for the problem and provide computational results for different sets of instances. In
addition to the solution approach, we propose data-driven schemes for use in combination
with the mathematical model. The aim of the schemes is to reduce the set of feasible
solutions. The computational results of these schemes are provided for different sets of
instances.

The scope of the second part of the thesis is to illustrate how a simple vehicle routing
problem could be used to enhance economic evaluation procedures of supporting policies
for electric vehicles. In some countries, governments have implemented supporting policies
for the use of electric vehicles in urban freight transport. Few studies have addressed the
impacts of policies supporting electric vehicles on logistics and society. To cast light on this
topic, we establish a framework combining an optimization model (i.e., a vehicle routing
problem) and economic analysis in order to determine the optimal decisions (i.e., purchase
and routing of vehicles) of an individual logistics company, and the resulting changes in
externalities and welfare in response to policies designed to support electric vehicles.

Keywords: two-echelon location-routing, synchronization, pickup and delivery waves,
mixed-integer linear programming, electric vehicle, social welfare, urban freight policies,

heterogeneous vehicle routing problem



Acknowledgements

I would like to express my heartfelt acknowledgment to my supervisor Professor Stein W.
Wallace at the Department of Business and Management Science, NHH, and my mentor
Dr. Mario Guajardo, also at the Department of Business and Management Science, NHH,
for their continuous support of my Ph.D, their infinite patience and motivation. Their
guidance helped me throughout my research and while writing the thesis. I could not have
imagined having a better supervisor and mentor for my Ph.D study. Special thanks also go to
Professor Teodor Gabriel Crainic at at CIRRELT - the Interuniversity Centre on Enterprise
Networks, Logistics and Transportation - and the School of Management, University of
Quebec in Montreal, Canada, for his precious guidance and support. I also express my
deepest thanks to Posten Norge, the national postal service company in Norway, and its
staff for providing valuable inputs for the thesis. Finally, I would like to express my gratitude

to my wife, Nahid, and to my parents for their boundless support and encouragement.



Contents

1 Introduction
1.1 Motivation . . . . . . . . . L
1.2 Literature review . . . . . . . . . ..o
1.3 Contributions . . . . . . . ... e
1.4 Outline. . . . . . . . e e e
2 The model
2.1 Problem description. . . . . . . .. .. e
2.2 Model formulation . . .. ... ... ..

3 The solution approach

3.1

Decomposition-based heuristic . . . . . . . .. ... ... o000
3.1.1 Phase 1: Choosing RP configuration . ... .. ... ... ......
3.1.2 Phase 2: Customer assignment tothe RPs . . . .. .. ... .....
3.1.3 Phase 3: Solving routing sub-problem . . . . . . .. .. ... .. ...

4 Numerical experiments

4.1
4.2
4.3
4.4

Setsof instances . . . . . . . . . . . . e
Parameter setting . . . . . . . . .. . e
Computational results . . . . . . . .. ..

Appendix: characteristics of sets of instances and details of results . . . . . .

10
15
18
22
22

24
25
28

37
40
40
42
43



CONTENTS

5 Schemes for the model 7
5.1 Reducing the set of feasible solutions . . . . . . ... .. ... ... 77
5.2 Numerical experiments . . . . . . . . ... L 81

5.2.1 Computational results . . . . . . . .. .. ... ... ... . ... 81
5.2.2 Appendix: details of results without and with schemes . . . . . ... 85

6 Extension 90
6.1 Problem description . . . . . . ... L 91
6.2 Model formulation . . . . ... oo 92

7 A framework to evaluate policy options for electric vehicles 101
7.1 Literature review . . . . . . . . ... e e 105
7.2 A framework for policy evaluation . . . . .. .. ... ... L. 107

T7.2.1  Scenarios . . ... ... e 108
7.2.2 Optimization model . . . . . . .. ... Lo 109
7.2.3 Economic analysis . . . .. ... L Lo 114
7.3 Numerical experiments . . . . . . . . . .. L 118
7.3.1 Problem instances. . . . . . . ... 119
7.3.2 Computational results . . . . .. . .. ... ... ... .. ... 121
7.3.3  Sensitivity analysis . . . . ..o 124
7.4 Conclusions . . . . . . . . e 125
7.5 Appendix: details of results obtained from tax changes and sensitivity anal-
VSIS o e e e e e 127
8 Conclusions and future work 132
References 136



List of Tables

2.1 Sets, parameters, and variables used in the MILP model . . . ... ... .. 30
3.1 Sets, parameters, and decision variables used in the assignment model . . . . 42
3.2 Sets, parameters, and variables used in the set-partitioning model . . . . . . 49
3.3 Sets and parameters used in the decomposition-based heuristic . . . . . . . . 55
4.1 Aggregated results obtained by different approaches . . . . . . .. ... ... 61
4.2 Aggregated results for different numbers of local search sub-iterations . . . . 65
4.3 Characteristics of instances in SI1 . . . . . . ... .. ... ... ... .. .. 70
4.4 Characteristics of instancesin SI2 . . . . . .. ... ... oL 0oL 70
4.5 Characteristics of instancesin SI3 . . . . . .. ... L L0000 70
4.6 Characteristics of instancesin SI4 . . . . . .. ... ... L0 71
4.7 Detailed results for SI1T . . . . . .. .. ... L oL 72
4.8 Detailed results for SI2 . . . . . .. ..o oL L 73
4.9 Detailed results for SI3 . . . . . .. .o oL L 74
4.10 Detailed results for SI4 . . . . . .. ... [6)
4.11 Detailed results for different numbers of local search sub-iterations . . . . . . 76
5.1 Aggregated results for SI1 without and with the schemes . . . .. ... ... 82
5.2 Aggregated results for SI2 without and with the schemes . . . .. ... ... 83
5.3 Aggregated results for SI3 without and with the schemes . . . .. ... ... 83



LIST OF TABLES

5.4
3.5
2.6
5.7
2.8

6.1

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

Aggregated results for SI4 without and with the schemes . . . . . . .. ... 84
Detailed results for SI1 without and with the schemes . . . . . . . .. .. .. 86
Detailed results for SI2 without and with the schemes . . . . . . . . . .. .. 87
Detailed results for SI3 without and with the schemes . . . . . . . .. .. .. 88
Detailed results for Si4 without and with the schemes . . . . . . . . . .. .. 89
Sets, parameters, and variables used in the MILP model (multi-terminal) . . 94
Sets, parameters, and variables used in the MILP model for the zone-dependent

vehicle routing problem with a mixed fleet . . . . . . .. ... 000 112
Vehicle characteristics . . . . . . . . .. 120
Data for variables . . . . . . . . . . 121

Impacts of different EV-supporting policy options on company’s decisions
and social welfare . . . . . ... Lo 123
Impacts of different EV-supporting policy options with different purchase
subsidy . . . . L e e 127
Impacts of different EV-supporting policy options with different zone fees . . 128
Impacts of different EV-supporting policy options with different vehicle taxes 129
Impacts of different EV-supporting policy options for EVs with an extended
driving range . . . ... . 130
Impacts of different EV-supporting policy options for EVs with a larger car-

TVIng capacity . . . . . . . e e e 130

7.10 Impacts of different EV-supporting policy options with a smaller diesel vehicle131

7.11 Impacts of different EV-supporting policy options for a smaller city . . . . . 131

7.12 TImpacts of different EV-supporting policy options for a city with larger demands131



List of Figures

1.1
1.2

2.1

3.1

3.2

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

6.1

Geographical distribution of terminals within Norway . . . . ... ... ... 17
Geographical distribution of customers and potential sites of RPs for the

Drammen terminal . . . . . . . . . . e e e e e e e e e e e e 17
Ilustration of the first and second echelons . . . . . . . . . . . .. .. .... 27

Steps of neighborhood search on the pool of feasible routes in the second

echelon . . . . . . e e e e 51
Steps of the decomposition-based heuristic . . . . ... ... ... ... ... 54
Feasible solution for SI2 . . . . . . . . . . .. 57
Feasible solution for SI3 . . . . . . . . . . .. 58
Feasible solution for SI4 . . . . . . . . . . .. 58

Average G BK obtained by different approaches to the four sets of instances 63
Average CPUs obtained by different approaches to the four sets of instances 64
CPU comparison for the different numbers of neighborhood search sub-iterations 66
Steps of the modified decomposition-based heuristic . . . . . . ... .. ... 67
Comparison between solution qualities of original and modified decomposition-

based heuristics . . . . . . . . e e e e 69

Mlustration of a feasible solution for a 2E-LRP with multiple terminals . . . 92



LIST OF FIGURES

7.1

7.2
7.3
7.4

Framework for evaluating the impacts of policies on the logistic costs of a

company and social welfare . . . . . ... ... . oL 108
[lustration of the first and second levels . . . . . .. ... ... ... ... 110
Feasible solution for the transport network . . . . . ... ... ... ..... 119
Welfare changes corresponding to changes in the daily tax rate . . . . . . .. 124



Chapter 1

Introduction

Logistics problems deal with strategic, tactical and operational decisions within distribution
systems. Strategic decisions concern long-term issues such as decisions on type, number and
location of facilities, as well as decisions on type and size of vehicle fleet. At the tactical
level, typical decisions are on customer-visit frequencies and order type in a given time
horizon. The operational level deals with distribution planning activities including vehicles
and the drivers’ schedules. At this level, short-term and daily decisions such as routing of
vehicles are made.

Vehicle routing problems (VRPs) have been one of the most cited logistic problems in
the literature during the five past decades. The original VRP was introduced in a paper by
Dantzig and Ramser (1959) and it tackles tactical and operational level decisions. The VRP
is defined in a distribution system where a given set of customers with delivery demands
is served from a single facility using a given set of vehicles. The aim of the VRP is often
to minimize total distance. In its standard form, each customer must be visited by exactly
one vehicle and each vehicle performs a single trip starting and ending at a facility. The
decisions in the VRP are to assign customers to each vehicle and to determine the order of

customer visits by each vehicle.
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CHAPTER 1. INTRODUCTION

In distribution systems design, decisions on facility locations (e.g., plants, depots, ware-
houses and hubs) are relevant due to their impact on total distribution costs and service
measures. Despite the fact that such location decisions are often strategic, it is crucial to
capture their interactions with the operation of the network. This has motivated a growing
body of literature on location-routing problems (LRPs), which combine location and rout-
ing decisions. In the standard LRP, a given set of customers with known delivery demands
is served from a set of potential facilities using a given set of vehicles. An opening cost is
assigned to each facility. The aim is to minimize overall costs consisting of both routing
and facility opening costs. The decisions in the LRP are to determine the locations of the
facilities, to assign customers to each facility and to determine the vehicles’ routes.

The combination of different features, such as vehicles capacities, routes lengths and time
windows, has resulted in a variety of LRPs, as recently reviewed in survey papers by Nagy
and Salhi (2007), Prodhon and Prins (2014) and Drexl and Schneider (2015). Among these,
the literature on two-echelon location-routing problems (2E-LRPs) and its variants is scarce.
The 2E-LRP is defined in a two-echelon distribution system. In two-echelon distribution
systems, products are transported from origins (e.g., suppliers or production plants) to
destinations (e.g., customers or retailers), through intermediate facilities (e.g., depots, cross-
docks or distribution centers) where different operations such as storage, consolidation or
transshipment occur. In 2E-LRPs, two echelons interact through intermediate facilities,
where the first echelon consists of primary and intermediate facilities, and the second echelon
consists of the intermediate facilities and customers. Each echelon has its own type of
vehicles. The aim is to decide on location of central or intermediate facilities (or both), in
addition to routing within each echelon. The main question that arises in a two-echelon
distribution system is how to synchronize the flows of two echelons at intermediate facilities.
The synchronization is important due to storage limitation at the intermediate facilities and
time windows for visiting the customers. In its standard form, the 2E-LRP assumes that

customers only require deliveries. However, in practice, customers often need both pickup
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CHAPTER 1. INTRODUCTION

and delivery. This may be the case in many real-life applications such as city logistics and
postal and parcel delivery.

This thesis addresses rich vehicle routing problems within a logistics context. The term
rich vehicle routing is associated with problems that incorporate some or all complex at-
tributes of real-life applications. Some examples for such attributes are temporal constraints,
sequence of distribution activities, fleet heterogeneity, diversity of policies, and environmen-
tal issues (Caceres-Cruz et al., 2015). Survey papers on rich vehicle routing problems are
provided by Drexl (2012); Lahyani et al. (2015); Caceres-Cruz et al. (2015), and interested
readers may refer to these papers

The first and bulk part of the thesis introduces a new location-routing problem and
discusses both modeling and solution approaches. Motivated by an actual problem of the
postal service company in Norway, we introduce a new 2E-LRP. The activities are organized
in two waves: a delivery wave, where products are transported from a single primary facility
to intermediate facilities and from intermediate facilities to customers, and a pickup wave,
where the flow of products is reverse. The customers in each wave are served within individ-
ual time windows and the synchronization of transshipments at the intermediate facilities
is respected. The decisions in the problem is to determine the locations of intermediate
facilities and the vehicle routes at each echelon. We consider only time-related questions.
This is typical for some postal and parcel delivery systems where the delivery and pickup
of products outside densely populated areas are uniquely governed by time: when products
are available at the primary facility, driving times to intermediate facilities, synchroniza-
tion of vehicles at these facilities, and the delivery time to customers. And then the same
sequence in the afternoon, ending with the latest arrival time of products at the primary
facility. Within this framework, all vehicles are assumed to be large enough. Although
this is not always true, it is most of the time. The resulting problem is a time-driven 2E-
LRP with synchronization and sequential delivery and pickup waves. Most papers studying

2E-LRPs ignore the synchronization of transshipments at the intermediate facilities (Drexl
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CHAPTER 1. INTRODUCTION

and Schneider, 2015). To the best of our knowledge, time windows and synchronization
have not been studied together in the literature on 2E-LRP and, in fact, a survey paper on
two-echelon routing problems by Cuda et al. (2015) highlights these aspects as worthwhile
to investigate. We provide a mixed-integer linear programming (MILP) formulation for the
problem that we introduce.

Nagy and Salhi (2007) classified LRPs in terms of four key aspects; structure (i.e., stan-
dard hierarchical or non-standard hierarchical), type of input data (i.e., deterministic or
stochastic), planning period (i.e., single- or multi-period), and solution methods (i.e., exact
or heuristic). In standard hierarchical LRPs, facilities serve customers that are connected to
the facilities by means of vehicle tours and no tour connects facilities. The main difference
between standard and non-standard hierarchical LRPs is the incorporation of tour planning
in different layers (i.e., echelons). Some example of non-standard LRPs are transportation-
location problem (e.g., Cooper (1972); Klibi et al. (2010)) where the tour planning is not
involved, many-to-many location-routing problem (e.g., Nagy and Salhi (1998); Wasner and
Zapfel (2004)) where tour planning is involved in both inter-facilities routing and between
customers and facilities routing, vehicle routing-allocation problem (e.g., Beasley and Nasci-
mento (1996)) where inter-facilities tour planning is involved but tour planning between
customers and facilities is excluded, and multi-level location-routing problem that may in-
clude tour-planning within each layer. Based on the classification of LRPs provided by Nagy
and Salhi (2007), the problem that we introduce in the thesis is categorized as deterministic
single-period non-standard hierarchical LRP.

The 2E-LRP and its variants are very hard optimization problems and seldom investi-
gated (Prodhon and Prins, 2014). Due to the complexity of the problem, only very small
2E-LRP instances can be solved using exact approaches. Therefore, heuristics are required
to obtain appropriate solutions in acceptable running times on the large instances that can
be found in practical applications. In this thesis, we propose a decomposition-based heuristic

for the time-driven 2E-LRP with synchronization and sequential delivery and pickup waves.
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The decomposition-based heuristic decomposes the problem into three phases: 1) choosing
the facility configuration, 2) assigning the customers to the chosen facilities and 3) solving
the routing sub-problem. We perform numerical experiments to check the performance of
the decomposition-based heuristic in terms of the solution quality and computational time
for different sets of instances. We compare the effect of the first phase of the proposed
approach on the solution quality to the common approach used in the literature for facility
configuration.

Besides the solution approach, we propose different schemes that work in combination
with the MILP formulation. The aim of the schemes is to reduce the feasible solution space
by removing routes that are unlikely to be part of high quality solutions. Through numerical
experiments, we check the effect of schemes on reducing the set of feasible solutions for
different sets of instances.

Logistics problems (e.g., vehicle routing problems, location-routing problems) usually
focus on distribution cost minimization (e.g., facility opening costs, routing costs). In-
corporating sustainability issues in logistics problems poses the challenging field of green
logistics, which has received considerable attention from researchers in recent decades (Lin
et al., 2014). Green logistics concern environmental, ecological and social issues as well as
other conventional economic costs within distribution systems. The aim of green logistics is
to obtain a sustainable distribution system by considering environmentally sensitive trans-
portation policies. Such policies encourage companies to use green vehicles (i.e., vehicles
with less negative environmental effects) such as electric vehicles (EV) for transportation
needs.

Contrary to the first part of the thesis where we address different aspects of an actual
problem through an optimization model, in the second part of the thesis, we do not aim to
introduce a new routing problem but the scope is to illustrate how a simple vehicle routing
problem could be used to enhance economic evaluation procedures of supporting policies for

electric vehicles. Despite growing research interest in urban freight transport, there have
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been few studies addressing the impacts of EV-supporting policies on logistics and society.
As a contribution to cover the gap, we establish a framework that combines an optimization
model (i.e., a vehicle routing problem) and economic analysis to evaluate the impacts of
EV-supporting policies on an individual company’s logistics decisions (i.e., vehicle routing
and purchase) and corresponding changes in externality and welfare.

In the reminder of this chapter, we explain the actual problem that motivated us to
introduce the new 2E-LRP, we review the literature related to the new problem and outline

the contributions of the thesis before presenting an overview of the dissertation.

1.1 Motivation

Our main motivation comes from an actual problem arising in Posten Norge, the national
postal service company in Norway. This company provides mail and package delivery ser-
vices via two main brands: Posten and Bring. Posten focuses on serving post offices and
small post centers located in selected local supermarkets, while Bring focuses on business
customers such as private companies and organizations in the Nordic area. A major concern
for all postal service companies is to provide customers with on-time services while using
resources efficiently. The most notable obstacle in Norway is the geographical location
of customers. Norway is a relatively long country, with an intricate geography including
more than 25,000 km of coastline and a number of small towns in urban and rural regions.
Providing coverage across the whole country poses a challenge to postal service companies.

The main facilities for a postal service company are terminals. Posten Norge has nineteen
terminals spread around Norway, as shown in Figure 1.1. Each customer is assigned to a
unique terminal. A terminal is a place where goods, previously picked up from customers,
are sorted before being delivered to the final customers. All goods must pass through a
terminal for data capturing purposes.

Customers located close to a terminal are served directly from the terminal. For cus-
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tomers farther away (i.e., typically located in rural areas), it is inefficient to serve them
directly from the terminal. It would be too expensive to use small vehicles as the number of
necessary vehicles would be very large due to time windows of visiting customers and limited
speed of vehicles. Large vehicles, on the other hand, would have limitations in rural areas
due to features such as narrowness or steepness of roads, as well as the distances between
customers; a full large vehicle would take far too long to deliver all its goods within the time
windows. One reasonable solution to this problem is to establish reloading points between
the terminal and customers. These points serve as locations where goods are unloaded
from large vehicles, coming from the terminal and reloaded onto small vehicles, departing
to customers. Posten Norge is currently looking for the optimal location of reloading points
(RPs) associated to each of its terminals. Figure 1.2 illustrates the geographical distribution
of customers and potential sites of RPs for a specific terminal. The square represents the
terminal, the triangles are the potential sites for reloading points, and the grey dots are

customers.
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1.2 Literature review

The literature on two-echelon routing problems can be split in two classes: the 2E-LRP and
two-echelon vehicle routing problems (2E-VRP). Interested readers are referred to recent
surveys (Drexl and Schneider, 2015; Prodhon and Prins, 2014; Cuda et al., 2015). In a
2E-VRP, the set of primary and intermediate facilities is given (i.e., there is no decision on
the location of facilities) and the aim is to decide on vehicles routes in both echelons.

Both 2E-LRP and 2E-VRP can be applied to many real-life problems such as city logistics
and postal and parcel delivery. In the literature, city logistics is probably the most cited
application. Here we examine the relevant literature on two-echelon routing problems, in
the context of postal service design and city logistics and we focus on papers that specifically
consider what is important to us; temporal considerations, such as synchronization, time
windows, and sequencing of deliveries and pickups.

A small body of literature addresses the application of LRPs on parcel delivery. Among
these, the papers by Bruns et al. (2000); Wasner and Zipfel (2004); Winkenbach et al.
(2015, 2016) are worth mentioning. Bruns et al. (2000) investigated the problem of postal
service networks. In their problem, the distribution network consists of three echelons and
four levels. The first level consists of post offices. The second and the third levels consist
of parcel processing centers and delivery bases, respectively. The fourth level consists of
customers with delivery demands. The parcels are delivered from post offices to parcel
processing centers and then to delivery bases, and from the delivery bases to customers.
Although the original problem is a multi-echelon LRP, it is converted to an LRP by fixing the
locations of the parcel processing centers and allocating delivery bases to parcel processing
centers. The customers are partitioned into different zones, and the routing costs for each
zone are approximated. In this manner, the LRP is reduced to a facility location problem,
where the aim is to decide on the location of the delivery bases and allocation of customer
zones to delivery bases. Wasner and Zépfel (2004) studied a problem posed by a parcel

delivery service provider in Austria. In their problem, the customers have both delivery
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and pickup demands. The pickup and delivery flows of products between customers must
pass through hubs. A central hub with known location is given, and all other hubs are
connected to each other through the central hub. The problem is considered as a hub-
location vehicle routing problem, where the aim is to decide on the location of the hubs
excluding the central hub as well as the inter-hub and hub-to-customer routing. The main
difference between hub-location routing problems and LRPs is that in the former, besides
the interactions between hub facilities and customers, the interactions (i.e., flow) between
the hubs themselves is considered (Aykin, 1995), while this is not the case for the latter. In
a recent paper, Winkenbach et al. (2015) developed an optimization model for the national
postal operator in France. The optimization model enables decision makers to establish
single-echelon or two-echelon (or both) systems in order to serve customers demanding
different types of products. The aim of the optimization model is to identify the optimal
number and locations of facilities at each echelon, the optimal sizes and shapes of areas
assigned to each facility, and the optimal fleet size. The minimal routing costs of the
vehicles are approximated with regards to different constraints involving the vehicle capacity
and maximum route length. The approximation formula is used in the proposed MILP
formulation for the 2E-LRP. They tested the validity of the approximation formula and
observed high-quality solutions within a reasonable time for large-scale instances.

Regarding the temporal aspects in 2E-LRP, there are few papers in the literature.
Nikbakhsh and Zegordi (2010) considered a 2E-LRP where soft time windows are applied
to serving customers with a penalty for violation. The aim of the problem is to decide the
location of intermediate facilities as well as routing of vehicles in both echelons. The syn-
chronization of transshipments at intermediate facilities is not considered. They proposed a
three-index MILP formulation while showing how to compute a lower bound for the problem
and provided a two-stage heuristic.

A few papers in the literature address the application of two-echelon routing (e.g., 2E-

VRP, 2E-LRP) in city logistics (e.g., Crainic et al. (2011) and Perboli et al. (2011)). In
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two-echelon (also known as two-tiered) city logistic problems, the first echelon involves pri-
mary vehicles with larger capacities delivering products from primary facilities located on
the outskirts of the city to intermediate facilities where products are transferred to sec-
ondary vehicles with smaller capacities performing the intermediate facilities-to-customers
delivery routes. In the context of city logistics, different variants such as synchronization
of transshipment at intermediate facilities, and time windows, can be adapted. Crainic
et al. (2009) introduced a new problem class within two-echelon city logistics problems that
consider vehicle departure scheduling, strict time synchronization of transshipment at inter-
mediate facilities, and the time windows of customers. The problem concerns the selection of
routes and scheduling of departures for the vehicles in each echelon, as well as the selection
of delivery routes for the customer demands from the primary facilities through interme-
diate facilities to the final customer. They provided a general mathematical formulation
for the problem. Crainic et al. (2012) discussed methodological and managerial challenges
related to the integration of different types of traffic strategies within the two-echelon city
logistics problem. They considered three types of traffic strategies: customer-to-customer
(c2¢), customer-to-external zone (c2¢), and external zone-to-customer (e2¢). The c2¢ strat-
egy concerns the traffic of vehicles between customers inside city limit. The c2e strategy
incorporates traffic of vehicles from customers inside the city limit to zones outside the city
limit. The e2c strategy deals with traffic of vehicles from zones outside the city limit to
customers inside. Customers can have both delivery and pickup demands, and this makes
the integration of different strategies complex. In order to avoid interlacing the pickup
and delivery operations, they introduced a simple strategy, called pseudo-backhaul, where
a route must be completed before the next route starts. Following the concepts related
to integration of three types of traffic strategies (Crainic et al., 2012), Crainic et al. (2016)
formally introduced and defined the new variant of 2E-VRP, where they considered different
variants such as multiple routes of vehicles, synchronization of transshipment at facilities,

sequences of delivery and pickup operations, and time dependency of travel. Vehicles per-
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form multiple routes; each route consists of a sequence of visits at facilities and customers
at given time moments. The multiple routes of each vehicle follow the pseudo-backhaul
strategy. The routes serving the c2c¢ requests follow the last-in-first-out rule, and the strict
time synchronization at facilities is considered.

Regarding the sequence of delivery and pickup activities, Parragh et al. (2008) classified
the vehicle routing problems into two main classes. The first class is denoted as vehicle
routing problems with backhauls, where delivery customers are served in the linehaul and
pickup customers are served in the backhaul. The significance of this problem comes from
using the free capacity in vehicles when returning (backhaul) to the facilities. Two main
variants of vehicle routing with backhauls are vehicle routing with clustered backhaul, where
all linehauls are before backhauls, and vehicle routing with mized linehauls and backhauls,
where any sequence of linehauls and backhauls is permitted. The second class deals with
transportation of products between delivery and pickup locations and is denoted as pickup
and delivery vehicle routing problems. The pseudo-backhaul strategy considered by Crainic
et al. (2016) is different from the problem considered in this thesis with respect to the
sequence of delivery and pickup activities. In the former, although the multiple routes of
the vehicles follow the pseudo-backhaul strategy, the last-in-first-out rule applied to visiting
c2c¢ requests may cause a route performing such requests consist of a sequence of visits at
delivery and pickup customers that does not follow the rules in the vehicle routing problem
with backhaul. The pickup and delivery waves in the problem considered in this thesis
are similar to linehauls and backhauls in vehicle routing problems with clustered backhauls
(Goetschalckx and Jacobs-Blecha, 1989), where all deliveries must be made before the pick-
ups as dictated by our motivation example.

Regarding the related literature, the problem that we consider is original since it ad-
dresses a new variant of 2E-LRP that incorporates synchronization of transshipment and

sequence of delivery and pickup activities.
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1.3 Contributions
The contributions of the thesis are listed as follows:

o We define a new problem called time-driven 2E-LRP with synchronization and sequen-

tial delivery and pickup and provide a MILP formulation for this problem.

e We propose a decomposition-based heuristic for the time-driven 2E-LRP with syn-
chronization and delivery and pickup wave. Through the numerical experiments we
provide computational results for instances using actual data from a national postal
service company, as well as some experimental instances. The provided sets of in-

stances can also be adapted to be used in other similar problems.

e We propose three schemes in order to reduce the set of feasible solutions and provide
the computational results in order to check the effect of the schemes on different sets

of instances.

o We establish a framework combining an optimization model and an economic anal-
vsis to evaluate potential operational, financial, and environmental effects of EV-
supporting policies in urban freight transport. Through the framework, we determine
the optimal behaviour of an individual logistics company (i.e., vehicle purchase choice
and vehicles’ routing plan) in response to policies, and corresponding changes in ex-

ternality and welfare.

1.4 OQOutline

The remainder of the dissertation is organized as follows. Chapter 2 describes the new 2E-
LRP and provides the mathematical formulation. Chapter 3 proposes the decomposition-
based heuristic for the described problem in Chapter 2. Chapter 4 provides the four sets

of instances and analyzes the computational results obtained from the decomposition-based
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heuristic. Chapter 5 proposes three schemes in order to reduce the set of feasible solutions,
and checks to what extent the schemes help with finding better solutions in less time for
the sets of instances provided in Chapter 4. Chapter 6 extends the problem discussed in
Chapter 2 to incorporate the vehicles capacity, multiple trips for vehicles, and location
decisions on terminals. Chapter 7 provides a framework combining an optimization model
and economic analysis for evaluating the effect of EV-supporting policy changes on resulted

welfare. Chapter 8 concludes the thesis, and discusses possible future research directions.
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Chapter 2

The model

Motivated by the actual problem discussed in Chapter 1, here we introduce and define
a new two-echelon location-routing problem (2E-LRP). The problem is defined within a
two-echelon distribution system, where the first echelon comprises a single terminal as the
primary facility and reloading points (RPs) as intermediate facilities, and the second ech-
elon consists of RPs and customers. There are two waves: delivery, where products are
transported from the terminal to RPs and from RPs to customers; and pickup, where the
flow of products is reversed. The customers in each wave are served within individual time
windows, and the synchronization of transshipments at the RPs is respected.
Location-routing problems are normally constrained by time and capacity. We consider
only time-related questions. This is typical for some postal and parcel delivery systems where
the delivery and pickup of products outside densely populated areas are uniquely governed
by time: when products are available at the terminal, driving times to intermediate facilities,
synchronization of vehicles at these facilities, and the delivery time to customers. And then
the same sequence in the afternoon, ending with the latest arrival time of products at the
terminal. Within this framework, all vehicles are assumed to be large enough. Although
this is not always true, it is most of the time. This means that one (large) vehicle is enough

to deliver products to the intermediate facilities. However, because of the driving time, the

24



CHAPTER 2. THE MODEL

arrival at RPs leaves very little time for deliveries in the second echelon. Thus, there is
a tradeoff between time spent in this echelon and the number of vehicles. For delivery to
customers, the available time is limited, and the number of deliveries (and later pickups)
that can be made imply that vehicles are never full. This also means that each vehicle
in this second echelon makes only one tour because there is no reason to go back to the
intermediate facilities. This could be a pure delivery tour, pure pickup tour, or as is the case
most of the time, a combined tour where pickups follow deliveries. This is what time-driven
means: the problem is only governed by time, not volume and capacity.

The rest of this chapter is organized as follows. Section 2.1 describes the time-driven 2E-
LRP with synchronization and sequential delivery and pickup waves. Section 2.2 presents

a mixed-integer linear programming (MILP) formulation for the problem.

2.1 Problem description

We consider a two-echelon distribution system consisting of three levels. The first level
contains a single terminal. The second level consists of RPs as intermediate facilities, while
the third level consists of customers. The first echelon comprises the terminal and RPs, and
the second echelon comprises the RPs and customers. The following notation is used.

We assume a single product; this is typically postal packages. The terminal is the primary
facility; it is generally located in an urban area and is a place where products previously
picked up from customers are sorted before being delivered to customers. The products must
pass through the terminal for data capturing purposes. Primary vehicles are large vehicles
that transport products within the first echelon. Secondary vehicles are smaller vehicles
that transport products within the second echelon. RPs are intermediate facilities that are
meeting points for primary and secondary vehicles so that they can transfer products. The
products can be stored in RPs for short periods to be transferred between primary and

secondary vehicles. No other operations, such as long-term storage or any other processes

25



CHAPTER 2. THE MODEL

that may change the shape and form of products, take place at the RPs. Customers are
the final destinations within the distribution system. For postal systems, these are typically
post offices, post in stores, companies, or individuals.

Here, we only consider customers located far away from the terminal; this is typical in
rural areas. Customers that live close to the terminal, which is typical for more densely
populated areas, are served directly from the terminal and are therefore not covered by the
two-echelon model.

It is inefficient to serve these rural customers directly from the terminal. It is too
expensive to use secondary vehicles because the necessary number of vehicles is very large;
a large number of small vehicles will need to travel a long way, and they will not be full even
though they are small because they would have very limited time for the actual delivery.
On the other hand, primary vehicles would encounter limitations in rural areas such as
narrow or steep roads as well as the distances between customers. A full primary vehicle
will take far too long to deliver all of its products. Hence, it is beneficial to establish RPs as
locations where products are unloaded from primary vehicles coming from the terminal and
reloaded onto secondary vehicles departing to customers. In this manner, primary vehicles
can efficiently transport large volumes from the terminal to the RPs, and secondary vehicles
can efficiently handle smaller volumes of products in rural areas, which generally include
narrow or steep roads. Organizing these different vehicles in two echelons may also be an
environmentally friendly solution, as pointed out by Mancini (2013).

The customers are served in two waves: delivery and pickup. In the delivery wave,
products are sent from the terminal to RPs by primary vehicles and from RPs to customers
by secondary vehicles. In the pickup wave, products collected from customers are sent to
RPs by secondary vehicles and then from RPs to the terminal by primary vehicles. We
model the switch from delivery to pickup by letting a secondary vehicle pass from a delivery
customer to a pickup customer once at most; the reverse is never allowed. Time windows for

visiting the customers in each wave are also given. These can be used in two different ways.
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First, they can be used to ensure that not only does each vehicle perform deliveries before
pickups but also that all deliveries take place before any pickup. Second, time windows
can naturally also be used to express that certain customers must be served within specific

customer-defined time windows.

@ Customer in delivery wave . Terminal

O Customer in pickup wave A Reloading point

2 ‘8 Primary vehicle
— Route in delivery wave w‘u Y

----»  Route in pickup wave % Secondary vehicle

Figure 2.1: Illustration of the first and second echelons

Figure 2.1 illustrates an example of the two echelons. The square represents the terminal,
and the triangles are the RPs. The routes in the delivery wave are illustrated with solid
lines, while the routes in the pickup wave are illustrated with dashed lines. The black circles
represent customers in the delivery wave, and the white circles are customers in the pickup
wave. Primary and secondary vehicles make tours within their echelons. Each secondary

vehicle is associated with a single RP. As illustrated in Figure 2.1, a secondary vehicle may
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perform only deliveries, only pickups, or both. In the latter situation, all deliveries must be
made before the pickups. Synchronization between primary and secondary vehicles must
be respected. That is, a secondary vehicle cannot depart from an RP in the delivery wave
before a primary vehicle with its products has arrived. Likewise, in the pickup wave, a
primary vehicle cannot depart from an RP until all of its pickup products have arrived.
Travel times are assumed to be deterministic and known. Splitting orders is not allowed
but would not be optimal in any case given the assumptions because the problem is only
governed by time, not volume and capacity. Even though, physically, a delivery and pickup
customer may be the same entity, they are viewed as different here; there is no use in this
model knowing whether or not customers in the two waves are the same or different. It is
assumed that the fleet of vehicles for each type is homogeneous. There is a given earliest
departure time for primary vehicles from the terminal. There is also a given latest return
time to the terminal; all primary vehicles must return to the terminal before this time.
The goal is to find the optimal locations of RPs among a given set of potential sites while
minimizing costs for opening RPs and paying the fleet and actual transportation costs. Note
that the focus is on the problem of a single terminal whose location is given; the decisions

on locations are for RPs only.

2.2 Model formulation

In this section, we present an arc-based MILP formulation for the time-driven 2E-LRP with
synchronization and sequential delivery and pickup waves. The problem is formulated in a
continuous time framework, and the time-frame of the model is set to one day.

We define the problem on a directed graph G(V, A), where the set V' contains the nodes
and the set A contains the arcs. V = V! U V?, where V! = O U R is the set of nodes in the

first echelon; O is the singleton set containing the terminal, and R is the set of potential sites
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for RPs. The set V2 = RU J” U JT is the set of nodes in the second echelon, where J? is
the set of customers in the delivery wave and J* is the set of customers in the pickup wave.
A= A'U A? where A' = {(i,j)]i € OUR,j € OUR,i # j} is the set of arcs in the first
echelon and A% = {(i,j)|i € V2, j € VA\{{(g,h)|lg € J* h € J”}U{(m,n)lm € R,n € R}}}
is the set of arcs in the second echelon. A? is defined so that no arc exists from a node g € J*
to anode h € JP because no customer in the pickup wave is visited before a customer in the
delivery wave. No arcs exist between two different RPs in the second echelon. T represents
the travel time between node ¢ and node j in echelon e, V(i,j) € A% e € . £ = {1,2}
is the set of echelons and A® is the set of arcs in echelon e € F. ¢f; is the travel cost of
traversing arc (i,j) € A°.

Each RP r € R has a fixed cost of opening f,. J = JPUJ? is the set of customers. Each
customer j € .J is visited only once, and it must be visited within its time window |[a;, b,],
where a; and b; are the earliest and latest times, respectively, for visiting node 7 € J. L
is the set of primary vehicles, and K is the set of secondary vehicles. 77 is the earliest
time that a primary vehicle can depart from the terminal. 77* is the latest time that a
primary vehicle can come back to the terminal. f° is the fixed usage cost of a vehicle in
echelon e € F.

The following decision variables are used. The location decision variable z, € {0,1},Vr €
R is equal to 1 if RP r is open and 0 otherwise.

The routing decision variables x}jl and x?jk are for the first and second echelons, respec-

1

tively. x;; € {0,1},V(i,j) € AY 1l € L is equal to 1 if arc (i, ) is traversed by primary

vehicle [ and 0 otherwise. z7;,, € {0,1},V(i,j) € A* k € K is equal to 1 if arc (z,7) is
traversed by secondary vehicle £ and 0 otherwise.

The time decision variables are defined as follows. tj; > 0,¥i € V' [ € L is the time at
which a primary vehicle visits node i. £ > 0,Vl € L is the time at which primary vehicle

| returns to the terminal. ¢? > 0,Vi € J is the time at which node 7 is visited. t%, > 0,Vr €

R,k € K is the departure time of a secondary vehicle from RP r. 7, > 0,Vr € R,k € K is
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the arrival time of secondary vehicle k& to RP r.

The distribution variable w.. € {0,1},Vr € R,k € K,l € L is defined as equal to 1 if
secondary vehicle & meets the primary vehicle [ at RP r and 0 otherwise.

Table 2.1 summarizes the sets, parameters, and decision variables used in the MILP
formulation.

Table 2.1: Sets, parameters, and variables used in the MILP model

Sets and parameters Description

O singleton set containing the terminal, O = {o}
TEere earliest time a primary vehicle can depart from the terminal
Tin latest time a primary vehicle can come back to the terminal
R set of potential RPs
fr fixed cost of opening RP r, Vr € R
E set of echelons, E = {1,2}
A€ set of arcs in echelon e, Ve € E
T travel time between node 7 and node j in echelon e, V(4,7) € A%, e €
% travel cost of traversing arc (¢,7) in echelon e, V(i,j) € A% e € E
JP set of customers in the delivery wave
JP set of customers in the pickup wave
J set of all customers (J = JP U JP)
a;j earliest arrival time at node j, Vj € J
b; latest arrival time at node j, Vj € J
L set of primary vehicles
K set of secondary vehicles
fe fixed usage cost of a vehicle in echelon e, Ve €
M a sufficiently large number
Variables Description
zr € {0,1} binary variable equal to 1 if RP r is open and 0 otherwise, Vr € R
lejl € {0,1} binary variable equal to 1 if arc (4, 7)
is traversed by primary vehicle [ and 0 otherwise, ¥l € L, (i,7) € A
t}l >0 time at which primary vehicle { visits node ¢, vl € L,i € V!
tf”d >0 time at which primary vehicle { returns to the terminal, vl € L
xfjk € {0,1} binary variable equal to 1 if arc (¢, 5)
is traversed by secondary vehicle k and 0 otherwise, Vk € K, (4, 5) € A?
t2>0 time at which node ¢ is visited, Vi ¢ J
% >0 departure time of secondary vehicle k from RP r, Vr € R,k € K
x>0 arrival time of secondary vehicle k to RPr ,Vre Rk e K
g € {0,1} binary variable equal to 1 if secondary vehicle & meets with primary vehicle [

for reloading at RP r and 0 otherwise, Vr € Rk € K,l € L
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The model is formulated as follows.

Zfrz?+ Z Zcz] z]l+ Z Zcz]‘xz]k

reR (i,7)€AL leL (4,7)EA2 k€K (2 1)
+ Z PEEDID P DY
(0,7)EA IEL r€R jeV2 kEK

The objective function (2.1) consists of five components. The first component is the
opening costs of the RPs. The second and third components are the routing costs in the
first and second echelons, respectively. The fourth and fifth components are the fixed costs
of the primary and secondary vehicles, respectively. We assume that the sets of vehicles
are given, but, since we use fixed cost (f¢,Ve € F), the mathematical formulation actually
allows us to determine the optimal fleet size. Because the time-frame of the model is set to
one day, all costs in the objective function are projected on a daily basis.

The constraints can be classified as follows: routing in the first and second echelons,
time calculation and route continuity of the first and second echelons, time windows, and
synchronization.

Constraints

v, <z YieVireRlcl (2.2)
Y al, <1 Vel (2.3)
reR
Ti; < Z xt, VieVilel (2.4)

(o,r)€AL:TER

jevt jevt

Constraints (2.2), (2.3), (2.4), and (2.5) are routing constraints imposed at the first
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echelon. Constraints (2.2) ensure that a primary vehicle can visit an RP only if the RP
is open. Constraints (2.3) dictate that a primary vehicle cannot depart from the terminal
to more than one RP. Constraints (2.4) state that a primary vehicle can visit an RP only
if it has departed from the terminal. Constraints (2.5) make sure that the number of arcs
entering a node in the first echelon must be the same as the number of arcs exiting the same

node.

2. <z VreRkeKjecld (2.6)

rik —

Y Y <1 VheK (2.7)

reR jeJ
YD al =1 VjeJ (2.8)
ieV2keK
fojk = fo,k Vre Rke K (2.9)
jE€J jE€J
doal = a%, Vjelkek (2.10)
ieV?2 i€V 2

Constraints (2.6), (2.7), (2.8), (2.9), and (2.10) are routing constraints imposed at the
second echelon. Constraints (2.6) make sure that a secondary vehicle can depart from an
RP only if the RP is open. Constraints (2.7) state that a secondary vehicle cannot depart
from more than one RP. Constraints (2.8) ensure that each customer j € .J is served by
exactly one secondary vehicle. Constraints (2.9) and (2.10) dictate that the number of arcs
entering a node in the second echelon must be the same as the number of arcs exiting the

same node.
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Ly > T =M1 =) xl,) Vel (2.11)

reR
th >ty + T — M1 —x;,) VYleLicVireR (2.12)
>l Tt — M1 —2!) VYieLreR (2.13)
ST ML= a)y) Ve L (2.14)

reER
Ly <MY a, VreRlel (2.15)

1€V
<MY ay, VlEL (2.16)
reR

Constraints (2.11), (2.12), (2.13), (2.14), (2.15), and (2.16) are time calculation con-
straints in the first echelon. These constraints impose route continuity in the first echelon.
Constraints (2.11) state that the departure time of vehicle | € L from the terminal must
respect the earliest departure time from the terminal, 77°. Constraints (2.12) calculate
the time that a primary vehicle arrives at the RP. Constraints (2.13) calculate the time
that a primary vehicle comes back to the terminal. Constraints (2.14) make sure that the
arrival time of vehicle [ € L to the terminal respects the latest return time to the terminal,
T/, Constraints (2.15) make sure that the arrival time of a primary vehicle at the RP
can be positive only if the primary vehicle visits the RP. Constraints (2.16) ensure that
the returning time of a primary vehicle to the terminal can be positive only if the primary

vehicle visits some RPs.
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Gt + T —M(1—aly) VkeK,reR jelJ

rik

B>+ T,— M1 —ai,) VijelkekK

>+ T, — M(1—xyk) YkeK,r e RicV?

4, < Mfozk Vre Roke K

ieJ

WS MY al, VreRkek

ieJ

t?Zaj VjGJ

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

Constraints (2.17), (2.18), (2.19), (2.20), and (2.21) are time calculation constraints in

the second echelon and impose route continuity. Constraints (2.17) calculate the arrival time

of a secondary vehicle to the first node after it visits RP r. Constraints (2.18) calculate the

arrival time of secondary vehicle k at customer j. Constraints (2.19) calculate the time that

secondary vehicle k comes back to RP r. Constraints (2.20) ensure that the departure time

of a secondary vehicle from an RP can be positive only if the secondary vehicle departs from

the RP to some nodes. Constraints (2.21) ensure that the returning time of a secondary

vehicle to an RP can be positive only if the secondary vehicle departs from the RP. Time

calculation constraints (2.17), (2.18), and (2.19) implicitly avoid sub-tours (Desrosiers et al.,

1984). Constraints (2.22) and (2.23) define the time windows.
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the >ty — M1 —uy) Vre RkeKlel (2.24)

th >t — M —uw) VreRkeK,lel (2.25)

DD @ <MY D uw Vhe K (2.26)

jeJF ieV2 reR I€L
Upy < inlrl Vre R ke K,le L (2.27)
ievt
w <Y wly VreRkeKlel (2.28)
jeJb
U < Y ahy, VreRkeKlel (2.29)
jeJP
DD @ <MYDY g VkeK; (2.30)
jeJD iev? reR I€L

2z €40,1} VreR; uw€{0,1} Vre Rke K/lel;

xi € 10,1} V(i,j) € ALle L; x}, €{0,1} V(i,j) € A%k € K;

th>0 VieVileL, >0 VielL, >0 VYieJ, t4,t% >0 VYreRkekK.
(2.31)

Constraints (2.24), (2.25), (2.26), (2.27), (2.28), (2.29), and (2.30) impose synchroniza-
tion of primary and secondary vehicles. Constraints (2.24) state that a secondary vehicle
cannot depart from an RP with delivery demands before a primary vehicle loads it. Con-
straints (2.25) make sure that a primary vehicle cannot depart from an RP with pickup
demands before a secondary vehicle loads it. Constraints (2.26) state that, if secondary

vehicle k& picks up from at least one customer, it must load at least one primary vehicle.
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Constraints (2.27), (2.28), and (2.29) imply that the reloading between primary vehicle [
and secondary vehicle k£ at RP r cannot happen unless both visit RP r in either the delivery
or pickup wave.! Constraints (2.30) state that, if a secondary vehicle k delivers to at least
one customer, it must be loaded from at least one primary vehicle. Finally, constraints

(2.31) define the domain of the variables.

!Note that, in the implementation of the model, we defined and used a dummy set for the set of RPs in
the pickup wave which duplicates the set R in order to distinguish between the delivery and pickup waves.
For the sake of ease in readability, we do not present this dummy set in the formulation.
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The solution approach

The two-echelon location-routing problem (2E-LRP) is a difficult optimization problem
because it combines two non-deterministic polynomial-time (NP) hard problems: facility
location and vehicle routing. Attacking such a hard problem head on is not feasible when
the instances reach a certain size. In fact, the results obtained with commercial solvers
show that only small instances are solved optimally, and large instances are not even solved
with a feasible solution. Therefore, a heuristic approach is required to tackle large-size
real instances. In this chapter, we propose a decomposition-based heuristic for the time-
driven 2E-LRP with synchronization and sequential delivery and pickup waves. The solution
approach decomposes the original problem into three main phases: choosing the intermediate
facility configuration, assigning customers to the intermediate facilities, and solving the
routing sub-problem.

In solution approaches for LRPs, the choice of facility configuration has a considerable
effect on the solution quality because it changes the vehicle routes and distribution costs.
Choosing the facility configuration becomes more technically challenging when there are a
large number of potential sites for facilities and the facility opening costs are considerably
lower than the routing costs. In heuristics for LRPs, a common approach is to start with

an initial facility configuration that is chosen either randomly or based on a criterion (e.g.,
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opening cost, closeness to customers) and to change the facility configuration during the
diversification phase of the search procedure. The operators in the diversification phase
close or open facilities in order to explore different facility configurations. Such operators
have been used in different heuristics for LRPs (e.g., the tabu search by Albareda-Sambola
et al. (2005)) and for the 2E-LRP (e.g., the adaptive large neighborhood search by Contardo
et al. (2012) and variable neighborhood search by Schwengerer et al. (2012)).

In the first phase of the decomposition-based heuristic, we generate an RP plan that
provides RP configurations in each main iteration of the algorithm. The RP plan consists
of all RP configurations with single RP, the RP configuration containing all RPs, and a
subset of RP configurations containing ¢ RPs, 2 < ¢ < |R| with lower values of a pre-
defined score, where |R| is the cardinality of the set of potential sites for RPs. For each RP
configuration containing ¢ RPs, 2 <14 < |R|, the score is calculated based on three terms: 1)
the sum of the RP opening costs, 2) the average traveling time between RPs and customers,
and 3) the sum of the traveling time between any two RPs. Whenever the cardinality of
RP configurations increases by one, we examine additional RP configurations that are not
included in the RP plan if we obtain a lower value for the objective function (i.e., sum of RP
opening costs, routing costs, and fixed vehicle costs). The additional RP configurations are
chosen randomly. For example, if we obtain a solution with a lower value for the objective
function with RP configurations containing three RPs compared to the ones with two RPs,
we examine additional RP configurations containing three RPs that are not included in the
RP plan.

In the second phase, for a given RP configuration, the customers are assigned to the RPs
by an assignment model. In the third phase, for a given RP configuration and customer
assignment, we solve the routing sub-problem as follows. We generate a feasible solution for
the first echelon. We consider two types of feasible solutions for the first echelon: i) a solution
containing back and forth routes between the terminal and RPs, and ii) a solution obtained

by using the nearest neighbor heuristic. Given the feasible solution for the first echelon, we
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generate a pool of feasible routes for the second echelon and solve the routing sub-problem
at the second echelon using a set-partitioning model. The aim of the set-partitioning model
is to minimize the routing and fixed usage costs of vehicles at the second echelon. The
set-partitioning model provides the best routes from the pool of feasible routes and the
corresponding routing and vehicle fixed costs. We define sub-iteration in the algorithm as
the number of iterations that the pool of feasible routes for the second echelon is updated.
In each sub-iteration, the pool of feasible routes is updated by the generation of new routes
using neighborhood search and the set-partitioning model is solved. This is iterated for a
given number of sub-iterations and we save the solution with the lowest value for routing
and fixed usage costs at the second echelon. In the next main iteration, we choose another
RP configuration in the RP plan and follow the second and third phases of the algorithm.
The algorithm stops after all RP configurations in the RP plan are examined and the best
found solution (i.e., the one that provides the lowest value for sum of RP opening costs,
routing costs, and fixed vehicle costs) is saved.

The third phase of the decomposition-based heuristic is similar to a column generation
approach. In the standard column generation approach (Desaulniers et al., 2006; Liibbecke
and Desrosiers, 2005), the routes (i.e., columns) are generated via a sub-problem (e.g.,
shortest path problem, knapsack problem). Then, the generated routes are given to the
master problem (i.e., set-partitioning formulation) in order to find the best routes. This
procedure is iterated until a stop criterion is met. Column generation approaches for the
LRP have been used in previous literature. Among them, the papers by Akca et al. (2009)
and Contardo et al. (2013) are worth mentioning. Contardo et al. (2013) formulated the
LRP as a set-partitioning problem and introduced inequalities in order to strengthen the
relaxed linear program. The problem is solved by column generation, where the master
problem is a set-partitioning formulation and the sub-problem is a capacitated shortest
path problem. However, both approaches proposed by Akca et al. (2009) and Contardo

et al. (2013) cannot solve large instances in a reasonable amount of computational time.
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The main difference between our approach and standard column generation is the gen-
eration of columns (routes). In the latter, the routes are generated via the sub-problem,
while in the former the routes are generated heuristically via a neighborhood search. In
this manner, we hope to get fairly good solutions with less computational time than the

standard column generation technique.

3.1 Decomposition-based heuristic

This section explains the three phases of the algorithm. The problem is decomposed into
three main phases. In the first phase, the RP configuration is determined with the RP plan.
In the second phase, for a given RP configuration, the customers are assigned to the RPs

by an assignment model. In the third phase, the routing sub-problem is solved.

3.1.1 Phase 1: Choosing RP configuration

The RP plan P = U P; is generated to provide the RP configuration in each main iteration
i€R

of the decomposition-based heuristic. F; is the subset of RP configurations containing ¢+ RPs

with lower values for S,. S, is the score of RP configuration p € F; and is calculated as

follows:

S S AT, 20T

Sy = My, WL Vpe P (3.1)
D 3) TS 3 ST 3 5) W
pEP; re€p pEP; rép PER; rEp 4 gp

AT, is the average traveling time between RP r and customers and is calculated as
follows:
2
> T
jeJfPugpb

AT, = ——— VreR 3.2
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where Tfj is the traveling time between RP r € R and customer j € J.

In equation (3.1), A1, A2, and A3 are given parameters between zero and 1. In order
to acquire a unit-invariant score, each term in equation (3.1) is divided by the sum of the
same values for all RP configurations. The first term is the sum of the opening costs of
RP configuration p € P, compared to the sum of the same costs for all RP configurations
in F,. The second term is the average traveling time between RPs and customers in RP
configuration p € P, compared to the sum of the same values for all RP configurations in
P;. The third term is the sum of traveling times between any two RPs for RP configuration
p € P; compared to the sum of the same values for all RP configurations in F;. The lower
values for the first two terms provide a lower score for the RP configuration. The third term
provides a higher score for an RP configuration containing two or more close RPs to each
other. RP configuration p € P; with a lower value for S, is assigned a higher rank (i.e., the
RP configuration with the lowest score is the best).

The cardinality of set F; is assumed to be proportional to the occurrence probability of
choosing ¢ RPs and is calculated with equation (3.3). P; contains |F;| RP configurations

with higher ranks (i.e., with lower values for S,).

Bl
| = [R<1>N1 1 <i<|R| (3.3)

> (%)

=1
All RP configurations containing a single RP and configurations containing all RPs are
explored (i.e.,|P1| = |R| and |Ppg| =1).
N is a given parameter for calculating |F|, and N < 218l is assumed. [.] is the ceiling
sign.
|P#| additional RP configurations p ¢ P; are examined only if a better solution is
obtained for RP configurations containing ¢ RPs compared to RP configurations containing
i — 1 RPs; in other words, iréi]% F, < min F, 2 < i < |R|, where I}, is the total cost

pEP1
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consisting of the sum of RP opening costs, routing costs, and fixed vehicle costs for RP
configuration p. Subset P includes the RP configurations containing i RPs, 2 < i < |R]

K2

not belonging to P,. In order to diversify the search space, RP configurations in P/ are

randomly chosen. The cardinality of subset P/ is calculated as |P| = [n|B[],2 <i < |R|,

where 0 < n <1 is a given parameter.

3.1.2 Phase 2: Customer assignment to the RPs

In the second phase, for a given RP configuration, the customers are assigned to RPs with
the assignment model. We define the sets, parameters, and decision variables used in the

assignment model as follows. .J is the set of customers. ORP is the set of RPs in a given

RP configuration. cfj is the traveling cost from RP r € ORP to customer 5 € J. The
binary decision variable x,; € {0,1} is defined as equal to 1 if customer j € .J is assigned to
RP r € ORP, and zero otherwise. Table 3.1 summarizes the sets, parameters, and decision

variables used in the assignment model.

Table 3.1: Sets, parameters, and decision variables used in the assignment model

Sets, parameters Description

J set of all customers
ORP set of RPs in a given RP configuration

02

- traveling cost from RP r to customer j

Variables Description

xrj € {0,1} binary variable, equal to 1 if customer 7 is assigned to RP r, zero otherwise

The assignment model is formulated as follows:
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min Z ZC?«]'XM (3.4)

rCORP j€J
Constraints
Z Xrj =1 Vjed (3.5)
rEORP
> Xej 21 VreORP (3.6)
jeJ
xr; € {0,1} VreR,jeJ (3.7)

The objective function (3.4) minimizes the sum of traveling costs between RPs and
customers. Constraints (3.5) dictate that each customer is visited exactly once. Constraints
(3.6) dictate that each RP r € ORP serves at least one customer. Constraints (3.7) define

the domain of variables.

3.1.3 Phase 3: Solving routing sub-problem

In the third phase of the decomposition-based heuristic, the routing sub-problem is solved
given the RP configuration and customer assignment for the RPs. A feasible solution S is
generated for the first echelon. Each route s € S starts from the terminal and ends at the
terminal.

Each route in the first echelon is represented below.

0,80y vy lny Jls- s jms 0 Yii,...,0 € ORPD, j1,...,jm € ORPP (3.8)

where o represents the terminal and ORPD is the set of RPs in the delivery wave, where
its elements are the same as the elements in ORP. ORPP is the set of RPs in the pickup

wave, where each element in set O RPP has a corresponding element in set ORPD. The
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feasible solution S consists of routes where any node + € ORPD U ORPP is visited once
at most. No node ¢+ € ORPP is visited before node ; € ORPD on route s € S. Two
types of feasible solutions are considered for the first echelon: i) a solution containing back
and forth routes between the terminal and RPs, and i) a solution obtained by using the
nearest neighbor heuristic that is generated by adding the nearest node to the last visited
node j € ORPD U ORPP on the route until all nodes are visited.

The starting time (i.e., departure time from terminal) of each route s € S is set as 7%,
The length of each route s € S must respect the maximum length of the route in the first

echelon (i.e., T7" — %),

I} <1lin e s e S (3.9)

1! is the length of route s € S and is calculated as follows:

L= T} Vse&§ (3.10)

1,J€S8
where Tilj is the traveling time between node ¢ and node j.

cl is the cost of route s € S and is calculated as follows:

cl = Z ¢; VseS (3.11)
i,JES
Fpl(S) is the fixed costs of vehicles and routing costs for the feasible solution S for a

given RP configuration p. It is calculated as follows:

F(S) = f'ne+> ¢t VperP (3.12)

s€S
where n, is the number of routes in feasible solution S and f' is the fixed cost of the
primary vehicle.

Each route s € S gives the maximum length of routes in the second echelon that origi-
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nates from RP r € ORP, L,. L, is calculated as follows:

L, = rréig{ﬁr(s)} Vr € ORP (3.13)

L,(s) is the maximum length of routes in the second echelon that originates from RP

r € ORP on route s € S and is calculated as follows:

%

L,(s) = (Tfi”—¢f\4<r>T (M(r),0))—(T*"°+ 3T (0,1)) Vs e S,r e ORPD,M(r) € ORPP

(3.14)

T'(i,7) is the sum of traveling times for the arcs between node ¢ and node j in a route,

Vi,j € OUORPD UORPP. M(r) is the corresponding element of element r € ORPD in

the set ORPP. ®; is a binary parameter equal to 1 if node ¢ is included on route s and
zero otherwise, Vs € S,9 € ORPD UORPP.

Given the feasible solution S for the first echelon, a pool of feasible routes I = U K,

r€ORP
is generated for the second echelon. IC, is the set of routes that originates from RP r € ORP.

Each route k£ € K, in the second echelon starts from RP r € ORP and ends at the same
RP.

Each route k € IC is illustrated as follows:

S N RO &

Each node j € J” U J¥ is visited once at most on route k € K. No node j € J? is
visited after node i € J” on route k € K. [2 is the length of route k € K and is calculated

as follows:

=) T Vkek (3.15)

1,j€k

Tz%. is the traveling time between node i and node j, Vi, j € JPUJYUORP. The starting
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time (i.e., departure time from the terminal) of route k € K, ,Vr € ORP is set equal to
zero. The length of route k € K., Vr € ORP must respect the maximum length of routes
originating from RP r, L,.

Each route k£ € K must be feasible regarding the time windows of visiting customers.
Note that, when time windows are rather tight (i.e., without intersections) for customers,
this may lead to an infeasible solution. In order to avoid such a situation, the time windows
for visiting the customers in each wave are assumed to be the same for all customers. TWp =
[e?,17] is the time window for visiting customers in the delivery wave, and TWp = [e*, 7]
is the time window for visiting customers in the pickup wave. e” and [” are the earliest
and latest times, respectively, that customers can be visited in the delivery wave. e’ and [
are the earliest and latest times, respectively, that customers can be visited in the pickup
wave. Following the sequence of deliveries and pickups described in Section 2.1, e© > (¥ is
obtained. This means that no pickup takes place before the latest time of the deliveries.

There are two cases for checking the time windows regarding the type of route.

Case 1: Route k£ € K contains only the delivery customers

Consider route k € K, which contains only the delivery customers, as illustrated below.

P ity in, T Vit ..., i€ JP,r € ORP

where i; and ¢,, represent the first and last customers, respectively, on route k € K. In
this case, the difference between the time that the last customer on the route is visited and

the departure time from RP r € ORP must not be greater than 17 — e”.

T, <17 —e” (3.16)

where 7; is the time that the last delivery customer ¢, on the route is visited.

n

Case 2: Route k € K contains both delivery and pickup customers
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Consider a mixed route k € K that contains both delivery and pickup customers, as

tllustrated below.

Tyllye e sy J1s- -y Jms? Vityeoosln €7, J1yee oy jm € J,r € ORP

where 7y, ...,1, are delivery customers and ji,...,j, are pickup customers. The time
window for delivery customers is checked as in case 1. In order to check the time windows

constraints for pickup customer, one of the cases given below may hold:

e If 7;, > I”, the route is infeasible.
o Ife” <7T;, <I”, check if T5,,...,T;, <I”.

o If 7;, < e, set T;, = e’ and check if T;,,...,T;, <I”.

If a route contains only pickup customers, it can be viewed as a special case of case 2
where the set of delivery customers is empty.

The number of iterations should be reduced if the initial iteration starts from a good
pool of feasible routes rather than the construction of an arbitrary one. However, there is a
tradeoff between the effort (i.e., time) required to generate a good pool of feasible routes and
the resulting reduction in the overall running time. We chose the nearest neighbor heuristic
in order to generate the initial pool of feasible routes. Rosenkrantz et al. (1977) compared
the performance of three construction heuristics for the traveling salesman problem: farthest
insertion, nearest insertion, and nearest neighbor. They showed that the nearest neighbor
consumes less computational effort in order to create good routes than the other two.

The initial pool of feasible routes for the second echelon, Kjuiiq, 15 generated as fol-
lows. First, routes containing a single customer are generated. Then, routes containing two
customers are generated by inserting the nearest customer to the last customer in routes
containing a single customer. Then, the nearest customer is inserted to the last customer

in the routes containing two customers. Customers continue to be inserted into the routes
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until all of them are inserted or the route is no longer feasible regarding the time windows
and maximum length of the route L,.

Given Kjnitiar, the set-partitioning model is solved. The set-partitioning model provides
the best routes from the pool of feasible routes and the corresponding routing and vehicle
fixed costs. In the next sub-iteration, the initial pool of feasible routes is updated by the
generation of new routes using neighborhood search. This is iterated for I, times, where
I,,s 18 the number of neighborhood search sub-iterations. The best found solution and the
corresponding routing and vehicle fixed costs are saved for a given RP configuration p.

In order to speed up the solving of the routing sub-problem, we place an upper limit on
the number of customers |.J7"| for route k € K. |J™*] is equal to the number of customers
on route k,, € Kinitia» Where k,, is the route containing the maximum number of customers.

The number of customers on route k € K is limited to not exceed upper bound |J™|.

Set-partitioning model

We define the sets, parameters, and decision variables used in the set-partitioning model as
follows. ORP is the set of RPs in a given RP configuration. J% is the set of customers in
the delivery wave. J7 is the set of customers in the pickup wave. K, is the set of feasible

routes originating from RP r € ORP. K = U IC, represents the pool of feasible routes.
r€ORP
F is the cost of route k € IC. f? is the fixed cost of using a secondary vehicle. The binary

parameter g;; € {0,1} is defined as equal to 1 if customer j € J” U J” is on route k € K,
and zero otherwise. The binary decision variable ), € {0,1} is defined as equal to 1 if
route k € K is chosen, and zero otherwise. Table 3.2 summarizes the sets, parameters, and

decision variables used in the set-partitioning model.
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Table 3.2: Sets, parameters, and variables used in the set-partitioning model

Sets and parameters Description

ORP set of RPs in the given RP configuration
JP set of customers in the delivery wave
J¥ set of customers in the pickup wave
Ky set of feasible routes originating from RP r € ORP
K pool of feasible routes, K = U K,
reORP
F cost of route k € K
f? fixed cost of using a secondary vehicle
g5k €{0,1} binary parameter; equal to 1 if customer j, j € JP U J? is on route k € K, zero otherwise
Variables Description
Y € {0,1} binary variable; equal to 1 if route k € K is chosen, zero otherwise

The set-partitioning model is formulated as follows.

min > Fithe + Yt f? (3.17)
kex kex
Constraints
Y gmth =1 VjeJPuJ” (3.18)
ke

» 4 >1 Vie ORP (3.19)

ICEKT
Yr € {0,1} Vkek (3.20)

The objective function (3.17) consists of two components. The first component is the
sum of the routing costs in the second echelon. The second component is the fixed costs
of the secondary vehicles. Constraints (3.18) dictate that each customer j € J” U J¥ is
visited exactly once. Constraints (3.19) dictate that at least one route is chosen from RP

i € ORP. Constraints (3.20) define the domain of variables.
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FPQ(IC) = Z Frthr+ Z 1y f? is the routing and fixed vehicle costs of the pool of feasible

kEK keX
routes K for RP configuration p € P.

Neighborhood search is used on the pool of feasible routes. In each sub-iteration, the
neighborhoods generate feasible routes, and this procedure is repeated for I, sub-iterations.
After each sub-iteration, the set-partitioning model is solved, and the corresponding value
for I7(K) is saved. Whenever a better solution is obtained (i.e., a lower value for F2(K)
using the neighborhoods), the pool of feasible routes is replaced with the one that gives the
better solution.

Figure 3.1 illustrates the steps of neighborhood search on the pool of feasible routes in

the second echelon.
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Generate the initial pool of
feasible routes for the second
echelon and set 'K = Kiria

Solve the set-partitioning model and obtain sz (K)

Stop! : ¢
Is I, sub-iterations

checked?

£ 2 *
Save 'K* and E; ('K*)

Generate routes using neighborhood search, add
the routes to 'K
and solve the set partitioning model

F;)Z (’Kcurrent ) = P;az (rK)

Set K = Keprrent

Figure 3.1: Steps of neighborhood search on the pool of feasible routes in the second echelon

Neighborhood search on pool of routes in the second echelon

We consider four neighborhoods: inter-route interchange, inter-route shuffle, nearest inser-
tion and two-point crossover. The inter-route interchange and inter-route shuffle neighbor-
hoods are used for intensification of the search space. The nearest insertion and two-point

crossover neighborhoods are used for diversification of the search space.
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The proportions of neighborhoods are given parameters. 0 < %iri < 1 is the propor-
tion of the inter-route interchange neighborhood. 0 < %irs < 1 is the proportion of the
inter-route shuffle neighborhood. 0 < %mni < 1 is the proportion of the nearest insertion
neighborhood. 0 < %tpc < 1 is the proportion of the two-point crossover neighborhood. It
is assumed that %ir: + %irs + %ni + %tpc = 1. The neighborhoods are explained below.

inter-route interchange The inter-route interchange neighborhood is an adaptation
of the two-interchange neighborhood by Savelsbergh (1985) for use in the decomposition-
based heuristic. The inter-route interchange neighborhood randomly chooses %iri|K| routes
from the pool of feasible routes K, where || is the cardinality of set K. In each route, two
customers are chosen randomly, and their positions are interchanged. The chosen customers
are either delivery or pickup customers.

inter-route shuffle The inter-route shuffle neighborhood is similar to the edge-exchange
neighborhood (Briysy and Gendreau, 2005) and arc interchange neighborhood (Albareda-
Sambola et al., 2007), where one or more edges on a route are replaced. The inter-route
shuffle neighborhood randomly chooses %irs|K| routes containing two or more customers.
For each chosen route, two points are chosen randomly, and the order of customers located
between the two points is shuffled. The two points are chosen within either delivery or
pickup customers.

nearest insertion The nearest insertion neighborhood randomly chooses %ni|KC| routes
containing two or more customers. For each chosen route, a point is chosen randomly, and a
number of non-visited customers (i.e., customers that are not included in the chosen route)
are inserted into the route. The route ends at the same RP where it starts from. The
insertion of non-visited customers follows the nearest neighbor heuristic.

two-point crossover The two-point crossover operator used in the genetic algorithm is
adapted for use in the decomposition-based heuristic. The two-point crossover neighborhood
randomly chooses %tpc|KC| pairs of routes (i.e., parent routes). Each pair of routes starts

from an RP and ends at the same RP. For each parent route, two points are randomly
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chosen, where the points are located either between delivery or pickup customers. The new
route (i.e., offspring route) is generated by merging two strings, where each string consists
of customers located between the two points on each parent route.

In the first half of the neighborhood search sub-iterations I,,¢, the aim is to diversify the
search space. Thus, higher proportions are assigned to the nearest insertion and two-point
crossover neighborhoods compared to the inter-route interchange and inter-route shuffle
neighborhoods. In the second half of the neighborhood search sub-iterations, the aim is
to intensify the search space. Thus, higher proportions are assigned to the inter-route
interchange and inter-route shuffle neighborhoods compared to the nearest insertion and
two-point crossover neighborhoods.

After I,,, sub-iterations, the best found solution s* € S* k* € K* and the corresponding

total cost I}, = I (S*) + F2(K*) + Z f, are saved for a given RP configuration p € P.

rep
In the next main iteration, the other RP configuration p € P is chosen, and the second

and third phases of the decomposition-based heuristic are followed. Whenever the number
of RPs increases by one, the increase is checked to see if it leads to better solution. In
other words, if condition (3.21) is satistied, |P/}| additional RP configurations p ¢ P, are

examined.

min fy, < min Fy,2 <i<|[R| (3.21)
peb; P EPi

The overall best found solution and its corresponding total cost F,e = F. (S*)+F2% (K*)+

Z fr are saved at the end of the algorithm. The stop criterion for the algorithm is the

rep*
|R| |R|

number of main iterations (i.e. Z | Pi| + Z |PA)).

The steps of the decomp031t10n based heurlstlc are illustrated in Figure 3.2. The sets

and parameters used in the decomposition-based heuristic are explained in Table 3.3.
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Phase 1: Choosing RP configuration from RP plan P

y

Phase 2: Customers’ assignment for the given RP configuration

Phase 3: Solving routing sub-problem

Generating the feasible solution S for the first echelon:
Back and forth, nearest neighbor solution

v

Generating pool of feasible routes 'K for the second echelon

Solve set-partitioning model and obtain P},z (K)

J

Save the best routes k € 'K* from model and F,,2 (K*)

v

After LS, sub iterations save the best solutions k € 'K*,
s €S*,E, = B(S) + EE(KY) +Zﬁ

rEp

Areallp € P;

checked?

Save §*, K*, RP*

Fpe = Fpe(S™) + FA(K*) + z f

rep*

Stop!

min k, < min F '
pePy P T plepy P

2<i<IR|

Seti =i+ 1 and go to phase 1

Check |Pl-‘4| RP
configurations and save the
corresponding F,

Figure 3.2: Steps of the decomposition-based heuristic
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Table 3.3: Sets and parameters used in the decomposition-based heuristic

Sets and parameters

Description

P, subset of RP configurations containing ¢ RPs, Vi € R
PA subset of RP configurations containing ¢ RPs not belonging to P;, 2 < <|R|
n coefficient used to calculate the cardinality of set Pyt
A, A9, Ag coefficients used to calculate S,
N minimum number of main iterations
S feasible solution for the first echelon
K pool of feasible routes for the second echelon
TWp = (eD P ) time window for visiting customers in the delivery wave
TWp = (eP AP ) time window for visiting customers in the pickup wave
T; time of visiting node i, Vi € JP U J¥
Ls number of neighborhood search sub-iterations
for the pool of routes in the second echelon K
|7 upper bound for the number of customers on route k € K
0 < %iri <1 proportion of the inter-route interchange neighborhood
0 < %irs <1 proportion of the inter-route shuffle neighborhood
0<%ni <1 proportion of the nearest insertion neighborhood
0 < %tpe<1 proportion of the two-point crossover neighborhood

In this chapter we have proposed a three-phase decomposition-based heuristic for the
2E-LRP with synchronization and sequential delivery and pickup. In the following chapter,
we provide computational results for different sets of instances using actual data, as well as

some experimental instances.
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Numerical experiments

In this chapter, we provide the computational results for different sets of instances generated
from actual data as well as some experimental instances. In order to check the quality of the
solutions and computational effort, we compared the results obtained by the decomposition-
based heuristic with the results obtained from solving the mixed-integer linear programming
(MILP) formulation provided in Chapter 2. In order to check the effect of diversification in
the first phase of the heuristic on solution quality, we provided the solutions considering only
the RP configuration with the lowest value for S, within the RP plan. We checked the effect
of the change in number of neighborhood search I,,; on the solution quality for different sets
of instances. In order to compare the effect of RP configuration choices on solution quality,
we modified the first phase of the proposed method by following the common approach used
in the literature for choosing RP configurations and we compared the results. The MILP
formulation was coded in AMPL using the solver CPLEX 12.6. For each instance, a time
limit of 12 hours was considered. The decomposition-based heuristic was coded in Python
3.5 using the solver CPLEX 12.6. Both the MILP formulation and decomposition-based
heuristic were coded on a computer with 4 CPU cores and 8 GB of RAM.
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4.1 Sets of instances

We consider four different sets of instances: SI1, SI2, SI3, and SI4. The first set of instances
(SI1) is generated based on the actual data of Posten Norge. The difference between SI1
and the other three sets of instances is in the traveling time. For SI1, the traveling times
are obtained from real data; for SI2, SI3, and SI4, the traveling times are proportional to
the corresponding Euclidean distances.

In addition, the four sets of instances differ regarding the customer location distribution.
For SI1, there is no specific pattern for the customer location distribution because the
instances are randomly chosen among a large set of customers in a real dataset. In each set
of instances SI2, SI3, and SI4, the customer location distribution has a specific pattern.

For SI1, seven different sizes are considered from 15 to 50. For SI2, SI3, and SI4, seven
different sizes are considered from 15 to 70. For each size, four instances are considered: a,
b, ¢, and d. The characteristics of the four sets of instances are provided in the appendix
at the end of this chapter.

In the second set of instances (SI2), the terminal is located at the center of the plane,
and the customers are located in different clusters far from the terminal. Figure 4.1 shows

an example of a feasible solution for SI2.

[ Terminal
A Potential RP
O Customers in pickup wave

@ Customers in delivery wave

Figure 4.1: Feasible solution for SI2
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In the third set of instances (SI3), the terminal is located at the center of the plane, and
the customers are located uniformly around the terminal. Figure 4.2 shows an example of
a feasible solution for SI3. Note that there are no customers in a circle around the depot.
This is because the customers in this area are served directly from the depot and not via

an RP.

. Terminal
A Potential RP
O Customers in pickup wave

@ Customers in delivery wave

Figure 4.2: Feasible solution for SI3

In the fourth set of instances (SI4), the terminal is located in the corner of the plane,
and the customers are located uniformly around the terminal. Again, however, a quarter of

a circle close to the depot is excluded. Figure 4.3 shows an example of a feasible solution

for SI4.

[ Terinal
A Potential RP
( Customers in pickup wave

@ Customers in delivery wave

Figure 4.3: Feasible solution for SI4
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4.2 Parameter setting

We set the parameters used in the decomposition-based heuristic according to the experi-
mental tests. In the experimental tests, 28 instances were generated that are not included in
the sets of instances explained above. We checked the improvement in the solution quality
with changes in the parameters provided in Table 3.3 for the instances, and we determined
the values that vielded the best performance. In order to diversify the search space, we
assigned higher proportions to the nearest insertion and two-point crossover neighborhoods
in the first half of the neighborhood search sub-iterations. The proportion values of the
neighborhoods were set to %iri = 0.2, %irs = 0.1, %ni = 0.6, %tpc = 0.1 in the first half of
the neighborhood search sub-iterations. In order to intensify the search space, we assigned
higher proportions to the inter-route interchange and inter-route shuffle neighborhoods in
the second half of the neighborhood search sub-iterations. The proportion values of the
neighborhoods were set to %iri = 0.4, %irs = 0.3, %ni = 0.2, %tpc = 0.1 in the second half
of the neighborhood search sub-iterations. The coefficients used to calculate the RP config-
urations scores S, were set to Ay = 1, 2 = 1, and A3 = 0.4. The number of neighborhood
search sub-iterations for the pool of routes was set to I,,, = 30. We set the values of N = 10
and n = 0.3 because they resulted in a good tradeoff between the running time and solution

quality.

4.3 Computational results

Given the above parameters, the computational results for the four sets of instances SI1,
SI2, SI3, and SI4 are provided here. Each instance was run once with the CPLEX solver.
Because of the randomness incorporated in the decomposition-based heuristic, we performed
five runs with the proposed method for each instance and determined the average and min-
imum objective function values. The results obtained by the lower bound for the presented

problem are given here. We obtained the lower bound by relaxing the integrality in the
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MILP formulation. In order to check the effect of diversification in the first phase of the
decomposition-based heuristic, we only considered the RP configuration with the lowest
value for S, Vp € P and followed the second and third phases of the decomposition-based
heuristic. We performed five runs on each instance and determined the average values.
We used the gap to the best-known solution (GBK) in order to compare the values of
the objective function generated by different approaches.
OF; — min OF;

BK; — 1 4.1
G min OF; * 100 (1)

where OF; is the objective function value generated by approach 1.
Table 4.1 reports the aggregated results obtained by different approaches. The details
of the results are provided in Tables 4.7-4.10 in the appendix at the end of this chapter.

Columns GBK yrpp and C'PU 71 p represent the average G BK and time spent (in seconds),

respectively, for instances obtained by solving the MILP. Headers GBK ., GBK 1, and
C'PU i, correspond to the average G BK, minimum G'BK, and average time spent, respec-
tively, for instances obtained from the decomposition-based heuristic. Header # of BKS
represents the number of best-known solutions (BKSs) found by the decomposition-based
heuristic. Column GBK yyg corresponds to the average GBK for instances solved by the
decomposition-based heuristic without the use of neighborhood search (i.e., I,; = 0). Col-
umn G BK jp represents the average GBK for instances obtained by the proposed lower
bound. Header GBK perg corresponds to the average GBK for instances obtained by con-
sidering the RP configuration with the lowest score of S,,Vp € P. In the column Set, the
superscripts S, M refer to small- and medium-size instances containing 40 nodes or less,
and the superscript L refers to large-size instances containing more than 40 nodes.

The decomposition-based heuristic was able to find the best-known solutions in 26 of 112
instances, including 11 small- and medium-size and 15 large-size instances. For the small-
and medium-size instances, the average G BK with the decomposition-based heuristic was

4.23, and the average GBK obtained with CPLEX was 0.34. The average time spent on
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Table 4.1: Aggregated results obtained by different approaches

Set ‘ CPLEX ‘ Decomposition-based heuristics

| GBKuyier CPUwyirp | GBKawy GBEpin CPUay #0f BKS GBEyys GBKrers GBK g
S[19M 0.00 7592 6.63 4.69 205 0 21.1 22.0 -33.6
SI25M 0.12 15385 2.06 1.22 206 2 26.1 4.9 -70.6
S[33M 0.63 10625 3.11 1.61 10625 4 12.5 9.6 -37.8
SI45M 0.62 7308 5.08 3.53 333 5 12.5 13.7 -26.8
Average 0.34 10228 4.23 2.76 2887 18.1 12.6 -42.2
SIt” 1.58 34634 2.73 0.28 1455 3 30.5 21.8 -36.3
SI2F - 43200 1.12 0.00 3665 4 90.9 3.5 =724
SI3” - 43200 1.92 0.00 3108 4 18.7 9.4 -44.5
SI4” - 43200 2.22 0.00 3743 4 24.0 134 -37.2
Average 1.58 41058 2.00 0.07 2993 41.0 12.0 -47.6
S, M

restricted to instances containing 40 nodes or less
restricted to instances containing more than 40 nodes
total # of BKS by decomposition-based heuristic = 26/112

L

instances by the decomposition-based heuristic was 2887 s, which is almost one-fourth the
time spent by the CPLEX solver. For the small- and medium-size instances, the lowest
and highest gaps between the average GBK of the decomposition-based heuristic and the
CPLEX solver were obtained with SI2 and SI1, respectively. The high gap in the average
G BK for the two sets of instances was due to the difference in customer location distribu-
tions for the two sets. The customers in SI2 were located in clusters, while the customer
location distribution in SI1 did not follow any specific pattern, and the randomness incorpo-
rated in the neighborhood search had less effect on the solution of the routing sub-problem
for SI2 compared to SI1. For the large-size instances, the CPLEX solver was not able to
find feasible solutions for SI2, SI3, and SI4. The average time spent on instances by the
decomposition-based heuristic was 2993 s.

Based on the results provided in column GBK yyg, the quality of solutions obtained
by the decomposition-based heuristic without neighborhood search was poor. The average

G BK was 18.1 for the small- and medium-size instances and 41.0 for the large-size instances.
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The average GBK with the decomposition-based heuristic considering the RP configuration
with the lowest score was 12.6 for the small- and medium-size instances. However, the
quality of the solutions was still lower than the best-known solution. This may be because
only the RP configuration with the lowest value of S,,Vp € P was considered; this does not
necessarily provide the optimal RP configuration. The search space needed to be diversified
by the consideration of more RP configurations in order to improve the solution quality.

The results with the proposed lower bound showed that the gap between the relaxed
solutions and BKS was too high. The average GBK for the large-size instances was -47.6.

Figures 4.4a—4.4d compare the average GBK (i.e., average values out of four instances
for each size) obtained by different approaches to the four sets of instances. The solid black
line represents the average GBK for each size of instances obtained by solving the MILP.
The gray and dashed black lines illustrate the average and minimum G BK for each size of
instances obtained by the decomposition-based heuristic. As shown in these figures, the gap
between the average GB K with the decomposition-based heuristic and by solving the MILP
increased with the size of the instances until a size was reached where CPLEX was either
unable to find a solution or provided solutions with lower quality compared to the proposed
method (e.g., for instances in SI1, the size was 50). The gap was due to the random nature
of neighborhoods used to solve the routing sub-problem.

Figures 4.5a—4.5d illustrate the average times spent by different approaches on each size
of the four sets of instances. As the size of the instances increased, the computational time
of the decomposition-based heuristic was much less than that of the MILP. The time spent
on instances by CPLEX did not always increase (e.g., the time spent on instances with a
size of 35 was less than the time spent on a size of 30 for SI2). This is because CPLEX
stopped solving some instances owing to the limited memory.

We checked the effect of the number of neighborhood search sub-iterations I,s on the
solution quality and computational time. We chose 28 instances of sizes between 15 and 70

nodes. For each size, we chose four instances, including one from each set of instances. We
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Figure 4.4: Average G BK obtained by different approaches to the four sets of instances
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considered three levels: [,s = 10, 1,; = 30, and [,s = 50. We set the other parameters of
the decomposition-based heuristic as described in Section 4.2.

G BK was calculated by using equation (4.1) for the three levels of I,,. Table 4.2 lists
the aggregated results obtained for different levels of 1,,;. The detailed results are provided
in Table 4.11 of the appendix. Columns GBK and C'PU in Table 4.2 correspond to the

average GBK and time spent on each set of instances, respectively.

The improvement in solution quality was marginal when the number of local search
sub-iterations was increased from 30 to 50 (i.e., average GBK changed from 0.74 to 0.00),
while there was a notable gap between the obtained solution quality with I,; = 10 and
I,s = 50. The average times spent at I, = 10 and [,,; = 30 were almost one-fifth and
half, respectively, the time spent at [, = 50. This confirms that a reasonable value was
chosen for I,,s (i.e., 30 sub-iterations) when the parameters were set in order to obtain good-
quality solutions within a reasonable amount of computational time. Figure 4.6 compares
the average time spent on each size of instances for the three levels of 1,,,. The dashed black
line represents the results with I, = 10. The gray and solid black lines represent the results

with I,,s = 30 and I, = 50, respectively.

Table 4.2: Aggregated results for different numbers of local search sub-iterations

| GBK | CPU
Set | [,,=10 I,=30 I,,=50|1,,=10 1,,=30 I,,=50
SI1 3.96 0.64 0.00 234 562 1029
SI2 2.29 0.36 0.00 385 906 1873
SI3 4.36 1.01 0.00 344 715 1830
SI4 3.63 0.94 0.00 416 837 2159
Average | 3.56 0.74 0.00 345 755 1723
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Figure 4.6: CPU comparison for the different numbers of neighborhood search sub-iterations

Finally, we modified the first phase of the decomposition-based heuristic by following the
common approach used in the solution methods in the literature for location-routing prob-
lems (LRPs), and we compared the results obtained by the original method and modified
method.

The common approach in the literature is to start with an initial facility configuration
(chosen either randomly or the one with the lowest opening costs) and to explore different
facility configurations by using different neighborhoods. Such neighborhoods open, close,
and switch facilities during the search procedure (e.g., open plant, close plant, and switch
plant neighborhoods in Albareda-Sambola et al. (2005) and satellite removal, satellite swap,
or satellite opening operators in Contardo et al. (2012)).

Figure 4.7 illustrates the steps of the modified decomposition-based heuristic. This
starts with the RP configuration having the lowest score S, (i.e., with the highest rank).
The second and third phases are the same as those for the original decomposition-based
heuristic. We explored different RP configurations using the three neighborhoods: open,
close and switch plant (i.e., RP in the presented problem) proposed by Albareda-Sambola
et al. (2005). During the search procedure, the close plant neighborhood is explored first.
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If no admissible move using close plant is found or the RP configuration consists of one RP,
switch plant is explored. The open plant neighborhood is only explored when no admissible
move is found with the other two neighborhoods. The maximum number of main iterations

of the algorithm was set as the stopping condition.

Phase 1: Start with RP configuration with the lowest S,

v

Phase 2: Customers’ assignment for the given RP configuration

Phase 3: Solving routing sub-problem

Generating the feasible solution S for the first echelon:
Back and forth, nearest neighbor solution

|

Generating pool of feasible routes K for the second echelon |

|

Solve set-partitioning model and obtain sz (K)

l

Save the best routes k € 'K* from model and F;,Z (K*)

|

After LS, sub iterations save the best solutions k € K*,

SESTE = @1(5*)+F;,2(1<*)+Z];
TEP

Change RP configuration using
close, switch and open facility
neighborhoods and go to phase 2

Is stopping
condition met?

NO\L

Save S*, K*, RP*

Fyr = Fpu(S™) + F-(K*) + Z fr

rE€p*

Figure 4.7: Steps of the modified decomposition-based heuristic

We considered thirty instances from SI1, SI2, SI3, and SI4. The instances were chosen
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randomly. The maximum number of main iterations was set to 10 for both the original and
modified decomposition-based heuristics. For the original decomposition-based heuristic,
we set N = 10— |R|—1 and n = 0. The values of the other parameters were set as provided
in Section 4.2. We performed five runs of both the original and modified methods on each

. OF . . . .
instance. We define ¢ = ——22% in order to compare the solution qualities obtained

OFypBH
by the two methods, where OFppy and OFyppr correspond to the objective function
values obtained by the original and modified decomposition-based heuristics, respectively.
A value of unity for ¢ implies that the obtained solution is the same for both methods. A
value less than unity for ¢ indicates that better solutions were obtained with the original
decomposition-based heuristic than with the modified decomposition approach. Figure 4.8
compares the solution qualities obtained from the original and modified decomposition-
based heuristics. The solid line represents ¢ = 1. Because the second and third phases were
the same in both the original and modified decomposition-based heuristics, differences in
the obtained solutions were only due to the RP configurations explored by each method.
We obtained solutions with lower or equal values of the objective function for 20 out of 30
instances with the original decomposition-based heuristic. This implies that, for a given

number of iterations, the original decomposition-based heuristic explores RP configurations

that provide better-quality solutions.
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Figure 4.8: Comparison between solution qualities of original and modified decomposition-
based heuristics

In Chapter 5, we introduce different schemes that are used in combination with the
MILP formulation in order to reduce the set of feasible solutions and check to what extent

the schemes help to find better solutions in less time.

4.4 Appendix: characteristics of sets of instances and
details of results

This appendix provides the characteristics of the four sets of instances and details for some
of results that are summarized in Section 4.3.

Tables 4.3-4.6 provide the characteristics of the instances in SI1, SI2, SI3, and SI4. In
these tables, |R| is the number of potential sites for RPs, |J”| is the number of customers
in the pickup wave, and [J”| is the number of customers in the delivery wave. |O| is the

cardinality of singleton set O. The size of the instances refers to the total number of nodes.
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Each row of Tables 4.3—4.6 represents four different instances with the same size: a, b, ¢,

and d. Set R was the same for all instances.

Table 4.3: Characteristics of instances in SI1

Instance R| |J7] |JP”| |O| Number of nodes
S11-15 (a,b,e,d) 5 7 2 1 15
S11-20 (a,b,e,d) 5 10 4 1 20
SI1-25 (abed) 5 13 6 1 %
SI1-30 (abed) 5 17 7 1 30
SI-35 (abed) 5 20 9 1 35
S11-40 (a,b,e,d) 5 23 11 1 40
SI-50 (abed) 5 29 15 1 50

Table 4.4: Characteristics of instances in SI2

Instance R| |J7] |JP”| |O| Number of nodes
S12-15 (a,b,e,d) 5 7 2 1 15
S12-20 (a,b,e,d) 5 10 4 1 20
SI2-25 (abed) 5 13 6 1 %
SI2-30 (abed) 5 17 T 1 30
SI2-35 (abed) 5 20 9 1 35
S12-40 (a,b,e,d) 5 23 11 1 40
SI2-70 (abed) 5 39 25 1 70

Table 4.5: Characteristics of instances in SI3

Instance Rl |JP| |JP| |O] Number of nodes
SI3-15 (a,b,e,d) 5 7 2 1 15
SI13-20 (a,b,e,d) 5 10 4 1 20
SI3-25 (abed) 5 13 6 1 %
SI3-30 (abed) 5 17 T 1 30
SI3-35 (abed) 5 20 9 1 35
SI13-40 (a,b,e,d) 5 23 11 1 40
SI3-70 (abed) 5 39 25 1 70
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Table 4.6: Characteristics of instances in SI4

Instance Rl |JP| |JP| |O] Number of nodes
Sl4-15 (a,b,e,d) 5 7 2 1 15
S14-20 (a,b,e,d) 5 10 4 1 20
SI4-25 (abed) 5 13 6 1 %
S14-30 (a,b,e,d) 5 17 7 1 30
SI4-35 (abed) 5 20 9 1 35
S14-40 (a,b,e,d) 5 23 11 1 40
SI4-70 (abed) 5 39 25 1 70

Table 4.7-4.10 report the detailed results obtained by the decomposition-based heuristic
for the four sets of instances. In these tables, column (BKS) corresponds to the best-
known solution. Column RP corresponds to the location decision obtained in the best-
known solution. Header gap to optimality represents the gap to optimality as reported by
the CPLEX solver. The * symbol in the column out of memory indicates that the memory
limit was exceeded. Column GBKrp represents G BK obtained by solving MILP for
each instance. Columns GBK,,, and GBK,,, correspond to the average and minimum
G BK, respectively, obtained from five runs with the decomposition-based heuristic for each
instance. Column GBKyys corresponds to GBK obtained by the decomposition-based
approach without neighborhood search for each instance. Header CPUyp stands for
the time spent (in seconds) on each instance by the CPLEX solver. Headers CPU,,, and
C PU,pn stand for the average and minimum times spent, respectively, for the five runs on
each instance with the decomposition-based heuristic.

Table 4.11 reports the details of results obtained at three levels for I,,,. Headers GBK
and CPU represent the gap to the best-known solution and time spent at each level of I,

respectively, for each instance.
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Table 4.7: Detailed results for SI1

| | MILP | |

Instance | BKS RP | GTO Outof | GBKyp GBKay GBKpyw GBEKnys GBKpers GBKpp | CPUyip CPUgy CPUnyy,
memory

SI1-15a 3 0.0 0.0 2.4 1.1 6.9 8.2 -32.7 18 21 20
SI1-15b 1 0.0 0.0 1.9 0.6 33.5 534 -21.2 4 23 21
SI1-15¢ 4 0.0 0.0 3.0 1.4 7.9 32.8 -37.3 10 23 19
SI1-15d 2 0.0 0.0 3.3 2.1 15.5 18.5 -34.0 6 25 21
Average 0.0 0.0 2.7 1.3 16.0 28.2 -31.3 9.6 23.1 20.3
SI1-20a | 120278 2,3 0.0 0.0 1.8 0.5 2.6 11.3 -30.9 11 63 60
SI1-20b | 104624 4.5 0.0 0.0 4.9 3.7 10.3 10.3 -36.7 26 71 65
SI1-20c | 93331 1 0.0 0.0 5.1 2.1 13.3 35.3 -29.7 30 5 K
SI1-20d | 105976 3 0.0 0.0 5.1 3.1 20.6 16.4 -33.4 56 63 61
Average 0.0 0.0 4.2 2.4 11.7 18.3 -32.7 311 67.9 64.0
SI1-25a | 111483 4 0.0 0.0 5.6 5.4 15.9 15.8 -36.6 2578 152 141
SI1-25b | 9067.7 1,3 0.0 0.0 7.4 5.7 19.3 25.3 -40.9 56 158 143
SI1-25¢ | 10033.1 4 0.0 0.0 5.7 3.7 34.6 36.2 -37.3 3587 155 150
SI1-25d | 14904.8 4 0.0 0.0 6.6 5.0 8.8 13.8 -27.4 4116 137 129
Average 0.0 0.0 6.3 5.0 19.7 22.8 -35.6 2584.2 150.4 140.8
SI1-30a | 138265 1,3 8.8 * 0.0 6.7 4.5 3.1 24.2 -39.0 7464 269 259
SI1-30b | 120076 3 15.9 * 0.0 7.5 5.9 27.5 16.6 -39.2 6269 312 275
SI1-30c | 136282 1,5 19.2 * 0.0 4.4 2.6 23.5 17.9 -42.0 3530 305 297
SI1-30d | 127705 4 0.0 0.0 11.6 7.9 26.9 31.7 -27.7 20284 268 254
Average 11.0 0.0 7.5 5.2 22.7 22.6 -37.0 9386.7 288.4 2713
SI1-35a 3,4 6.0 * 0.0 8.4 6.4 115 18.2 -30.9 5240 459 297
S11-35b 3,4 5.4 * 0.0 9.3 7.3 24.4 10.4 -27.2 11260 478 413
SI1-35¢ 4 2.8 0.0 9.5 6.9 24.4 12.0 -27.5 43200 450 413
S11-35d 4 18.6 * 0.0 9.4 6.3 30.8 21.6 -35.3 3599 461 401
Average 8.2 0.0 9.2 6.7 22.8 15.6 -30.2 15824.8 462.1 381.0
SI1-40a | 15246.3 3,5 | 214 * 0.0 12.3 9.2 33.4 25.3 -38.7 5821 T8 754
SI1-40b | 163625 2 8.0 * 0.0 3.3 3.0 15.8 19.8 -37.4 15955 751 14
SI1-40c | 116694 4 13.9 * 0.0 11.9 8.4 45.8 28.7 -36.6 5887 790 751
SI1-40d | 149872 4 7.3 0.0 13.3 9.7 40.9 24.1 -25.8 43200 784 761
Average 12.7 0.0 10.2 7.6 34.0 24.5 -34.6 17715.6 7.7 745.0
SI1-50a | 21782.0 4,5 - - 3.2 0.0 317 35.2 -32.4 43200 1409 1154
SI1-50b | 204180 3,5 - - 3.5 0.0 27.3 18.8 -41.1 43200 1515 1470
SI1-50c | 22083.0 3,5 | 28.2 * 3.2 1.0 0.0 27.8 6.2 -37.8 32193 1452 1416
SI1-50d | 219400 3,4 | 213 * 0.0 3.3 1.1 35.1 26.8 -34.1 19942 1444 1421
Average 24.8 1.6 2.7 0.3 30.5 21.8 -36.3 34633.8 14548 1365.3
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Table 4.8: Detailed results for SI2

| | MILP | |
Instance | BKS RP| GTO Outof | GBKynp GBKa.y GBKny GBKyys GBKperns GBKpp | OPUypp CPUsg CPUgiy
mermory

SI2-15a | 6068.9 1,3 0.0 0.0 0.0 0.0 3.6 1.9 -66.3 22.7 21.8 20.0
SI2-15b | 6020.3 2,3 0.0 0.0 1.8 1.8 1.9 1.8 -65.2 15.9 21.4 20.0
SI2-15¢ | 6305.7 2,3 0.0 0.0 0.0 0.0 2.1 4.5 -64.6 12.3 21.6 21.0
SI2-15d | 6353.3 1,3 0.0 0.0 1.7 1.7 1.7 2.1 -65.8 17.8 19.5 17.0
Average 0.0 0.0 0.9 0.9 2.3 2.6 -65.5 17.2 21.1 19.5
S12-20a | 6493.0 1,3 0.0 0.0 0.1 0.0 74 0.2 -58.3 49.0 68.5 65.0
S12-20b | 6210.0 2,3 0.0 0.0 0.0 0.0 10.5 0.0 -61.9 27.1 70.3 68.0
S12-20c | 6493.0 2,3 0.0 0.0 0.2 0.0 71 1.1 -56.7 37.3 69.5 65.0
S12-20d | 6398.0 1,3 0.0 0.0 0.0 0.0 1.8 1.2 -62.3 1568.0 70.5 68.0
Average 0.0 0.0 0.1 0.0 6.7 0.6 -59.8 420.4 69.7 66.5
SI2-25a | 67305 1,3 | 233 * 0.0 1.5 0.8 13.8 2.5 -79.1 19629.8 144.8 142.0
S12-25b | 6963.4 2,3 0.0 0.0 1.4 1.0 29.8 3.5 -74.0 20735.6 147.0 141.0
SI2-25¢ | 6857.6 1,3 | 27.9 * 0.0 0.8 0.2 20.1 2.8 -78.0 4438.2 147.8 140.0
S12-25d | 6660.9 2,3 | 35.6 * 0.0 1.1 0.3 18.9 1.6 -77.0 5797.7 165.8 161.0
Average 21.7 0.0 1.2 0.6 20.7 2.6 -77.0 12650.3 151.3 146.0
S12-30a | 6983.5 1,3 9.5 0.0 1.4 0.7 22.1 1.7 -74.9 43200.0 242.5 236.0
SI2-30b | 6836.7 2,3 | 44.6 * 0.0 2.3 1.5 18.3 2.5 -79.1 10869.5 308.4 300.0
SI2-30c | 6982.6 1.3 | 24.4 * 0.0 2.8 1.0 41.8 4.1 -75.0 9599.6 306.3 299.0
S12-30d | 6863.5 2,3 0.0 0.0 3.5 2.5 37.3 6.7 -75.2 37399.2 309.0 300.0
Average 19.6 0.0 2.5 1.4 29.9 3.7 -76.0 25267.1 291.5 283.8
S12-35a | 7136.4 1,3 | 387 * 0.0 6.5 5.5 56.6 9.7 -67.4 10181.7 492.8 475.0
S12-35b | 6933.2 2,3 | 48.0 * 0.0 3.3 2.1 37.9 6.3 -75.9 7822.8 522.0 464.0
SI2-35¢ | 7290.1 2,3 | 47.9 * 0.0 3.2 2.8 37.8 5.0 -72.8 4833.7 470.0 456.0
S12-35d | 7207.9 1,3 | 438 * 0.0 2.4 1.8 41.0 14.9 -70.6 20170.2 447.5 412.0
Average 44.6 0.0 3.9 3.1 43.3 9.0 =717 10752.1 483.1 451.8
SI2-40a | 7092.2 2,5 | 447 0.0 3.7 2.7 49.2 3.9 -76.7 43200.0 805.5 765.0
SI2-40b | 6997.2 1,3 | 50.6 0.0 3.1 2.7 45.1 16.8 -76.8 43200.0 861.3 815.0
SI2-40c | 7312.0 1.5 | 43.0 2.1 6.9 0.0 59.3 12.1 -68.3 43200.0 701.8 679.0
SI2-40d | 7641.0 2,5 - - 1.6 0.0 62.4 11.4 -716 43200.0 677.3 651.0
Average 46.1 0.7 3.8 1.4 54.0 11.1 -73.4 43200.0 761.4 7275
SI2-70a | 8875.0 2,3 - - 3.4 0.0 95.1 3.3 -72.4 43200.0 3509.0  3261.0
SI2-70b | 8617.0 1,3 - - 0.3 0.0 78.9 0.5 -76.4 43200.0 4087.0  3927.0
SI2-70c | 9092.0 2,3 - - 0.3 0.0 93.1 7.6 -71.0 43200.0 3401.8  3198.0
SI2-70d | 8791.0 2,3 - - 0.5 0.0 96.2 2.6 -69.8 43200.0 3662.0  3552.0
Average - - 1.1 0.0 90.9 3.5 -72.4 43200.0 3664.9 34845
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Table 4.9: Detailed results for SI3

| | MILP | |

Instance | BKS RFP | GTO Outof | GBKyip GBKay GBKpniw GBKnns GBKpers GBKpp | CPUyrp CPUgy CPUpin
memory

SI3-15a | 8826.0 1 0.0 0.0 0.0 0.0 8.0 7.2 -39.9 56 20 18
SI3-15b | 6836.0 3 0.0 0.0 0.0 0.0 1.3 17.9 -40.1 15 21 19
SI3-15¢ | 8099.1 3 0.0 0.0 0.0 0.0 2.3 3.6 -42.8 35 21 19
SI3-15d | 7984.5 1 0.0 0.0 1.1 1.1 7.4 14.3 -40.5 32 20 19
Average 0.0 0.0 0.3 0.3 4.8 10.8 -40.8 34.6 20.3 18.8
S13-20a | 9933.2 1 0.0 0.0 4.2 2.9 17.8 18.2 -34.2 7066 57 55
S13-20b | 9128.0 3 10.8 * 0.0 1.8 0.0 7.6 8.5 -40.1 5666 57 52
S13-20c | 99315 14 125 * 0.0 0.4 0.3 3.1 0.1 -42.8 4759 58 53
S13-20d | 8568.6 1.4 8.7 * 0.0 2.9 0.4 11.6 8.5 -43.0 5145 62 61
Average 8.0 0.0 2.3 0.9 10.0 8.8 -40.0 5659.0 58.5 55.3
S13-25a | 10971.0 2,5 9.8 * 0.0 6.1 3.2 12.1 15.0 -34.9 5094 129 121
S13-25b | 9566.1 2,3 14.6 * 0.0 4.8 2.5 8.6 8.7 -40.7 5818 143 135
S13-25¢ | 10323.8 1,5 20.6 * 0.0 5.1 2.9 10.8 2.1 -42.9 3802 137 130
S13-25d | 114720 24 0.0 0.0 4.5 3.9 8.6 11.9 -29.2 8935 129 120
Average 11.2 0.0 5.1 3.1 10.0 9.4 -36.9 5912.5 134.2 126.5
S13-30a | 10816.1 1, 13.4 * 0.0 3.3 1.8 15.7 19.2 -37.1 6826 237 220
SI3-30b | 125406 1, 5.9 * 0.0 4.5 2.4 13.8 9.2 -33.2 37849 236 225
S13-30c | 122096 1,5 14.6 * 0.0 2.2 1.0 13.5 5.1 -35.1 6378 250 241
SI13-30d | 133946 1.4 8.5 * 0.0 4.2 2.3 11.3 14.0 -33.4 7369 241 220
Average 10.6 0.0 3.6 1.9 13.6 11.9 -34.7 14605.5 240.9 226.5
SI13-35a | 120180 2,5 26.4 * 2.4 1.4 0.0 11.4 1.6 -43.3 8630 420 412
SI13-35b | 135255 2.4 14.2 * 0.0 5.8 2.8 22.9 14.3 -34.4 8966 419 411
SI13-35¢ | 148912 2.3 26.1 * 0.0 1.7 0.2 16.7 3.0 -40.9 5598 400 393
SI13-35d | 14559.0 1.4 28.1 * 0.8 1.7 0.0 9.4 14.7 -37.9 6958 396 380
Average 23.7 0.8 2.7 0.7 15.1 8.4 -39.1 T537.8 408.5 399.0
SI3-40a | 15280 24 - - 1.6 0.0 17.0 5.2 -40.0 43200 616 606
SI3-40b | 14536 2,5 22.8 * 0.0 2.2 0.4 20.2 8.0 -37.2 26091 576 545
S13-40¢ 14575 2,5 15.1 0.0 11.3 10.5 26.0 16.3 -27.5 43200 551 535
SI3-40d | 14623 24 26.6 * 8.9 3.7 0.0 2.7 4.6 -36.7 7521 599 584
Average 215 3.0 4.7 2.7 215 8.5 -35.3 30002.9 585.6 567.5
SI3-70a | 210410 14 - - 1.0 0.0 22.3 19.5 -42.8 43200 3041 2566
SI3-70b | 22099.0 2,34 - - 2.2 0.0 115 5.1 -45.9 43200 3241 3101
SI3-70c | 21639.0 12,5 - - 1.5 0.0 14.7 5.2 A7.: 43200 3025 2741
SI3-70d | 232310 2.3 - - 3.0 0.0 26.2 7.9 -42.: 43200 3124 3050
Average - - 1.9 0.0 18.7 9.4 -44.5 43200.0 3107.8  2864.5
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Table 4.10: Detailed results for SI4

| | MILP | |

Instance | BKS RP | GIO Outof | GBKyip GBKay GBKpw GBKnns GBKrors GBKpp | CPUyp CPUgg CPUpn
memory

SI4-15a | 5142.0 5 0.0 0.0 1.5 1.0 6.9 13.2 -41.5 12 24 22
SI4-15b | 5517.6 5 0.0 0.0 1.0 0.0 12.9 16.7 -37.5 8 21 19
SI4-15¢ | 5819.0 3 0.0 0.0 1.0 0.0 4.7 9.1 -35.0 22 20 19
SI4-15d | 4608.3 4 0.0 0.0 1.7 0.0 27 30.0 -36.7 9 1169 22
Avergae 0.0 0.0 1.3 0.3 6.8 17.2 -37.7 12.8 308.4 20.5
SI4-20a | 79417 145 0.0 0.0 4.0 2.2 16.9 4.8 -23.2 19 70 65
SI4-20b | 9623.7 4,5 0.0 0.0 3.7 2.0 11.5 12.9 -13.2 44 63 61
SI4-20c | 10062.8 2,4 0.0 0.0 3.2 0.7 58 9.2 -26.9 4380 64 62
SI4-20d | 8574.2 3 0.0 0.0 3.9 2.1 9.0 124 -15.4 20 70 67
Avergae 0.0 0.0 3.7 1.7 10.8 9.8 -19.7 1115.4 66.4 63.8
SI4-25a | 107517 1,5 0.0 0.0 7.1 6.2 13.3 11.3 -24.7 24437 149 141
SI4-25b | 101882 1,5 0.0 0.0 8.2 7. 9.8 15.4 -17.7 4825 154 148
SI4-25¢ | 113366 4,5 6.4 * 0.0 7. 6.3 9.3 13.1 -24.2 4875 159 152
SI4-25d | 10456.7 1,5 0.0 0.0 6.3 5.3 17.5 15.3 -19.9 5108 154 148
Avergae 1.6 0.0 7.2 6.2 12.5 13.8 21.6 9811.3 154.0 147.3
SI4-30a | 114858 234 | 7.1 * 0.0 9.5 7.3 23.8 21.9 -20.7 6903 261 245
SI4-30b | 121220 1.3 16.7 * 0.3 1.1 0.0 10.3 16.0 -26.9 6608 288 275
SI4-30c | 117921 4,5 19.6 * 0.0 17.0 12.3 29.0 34.9 -29.3 3243 252 242
SI4-30d | 119579 4,5 9.4 * 0.0 10.1 8.0 17.2 13.1 -22.1 17471 293 278
Avergae 13.2 0.1 9.4 6.9 20.1 21.5 -24.7 8556.1 273.0 260.0
SI4-35a | 132576 2,3 15.0 * 0.0 12.9 11.6 20.8 14.5 -26.4 4631 456 442
SI4-35b | 14182.0 2,34 | 208 * 0.5 0.9 0.0 3.5 7.0 -34.3 4987 475 425
SI4-35¢ | 146171 1,45 | 228 * 0.0 5.3 2.9 11.2 10.1 -31.9 3786 457 448
SI4-35d | 15190.0 1,2,3 | 19.0 * 2.5 0.7 0.0 6.8 5.8 -27.4 3980 : 440
Avergae 19.4 0.8 5.0 3.6 10.6 9.4 -30.0 4346.0 459.9 438.8
SI4-40a | 149900 2.4 - - 1.9 0.0 15.5 7.9 -30.1 - 705 681
SI4-40b | 14355.1 4.5 18.3 0.0 1.9 14 15.9 8.4 -27.4 43200 796 e
SI4-40c | 14308.3 4,5 11.4 * 0.0 10.9 8.1 17.7 16.7 -21.4 9708 724 699
SI4-40d | 15365 1,3 35.2 * 8.6 1.1 0.0 84 9.2 -30.7 7115 732 721
Avergae 21.6 2.9 1.0 2.4 14.4 10.5 -27.4 20007.8 739.2 719.0
SI4-70a | 23355.0 2,3 - - 2.5 0.0 26.0 17.8 -33.9 43200 3897 3750
SI4-70b | 23628.0 2,34 - - 0.5 0.0 21.4 9.9 -40.8 43200 3740 3266
SI4-70c | 20737.0 1,3 - - 4.3 0.0 24.9 14.2 -35.9 43200 3713 3389
SI4-70d | 227740 2,3 - - 1.7 0.0 23.7 11.5 -38.2 43200 3620 3415
Avergae - - 2.2 0.0 24.0 13.4 -37.2 43200.0 37427 3455.0
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Table 4.11: Detailed results for different numbers of local search sub-iterations

| GBK | CPU
Instance | I,,=10 1,,=30 1,,=50 | [,,=10 1,,=30 I,,=50
SIl-15¢ | 590 201  0.00 12 39 61
SI1-20c | 3.01 000 0.0 39 116 194
SI-25¢ | 954 085  0.00 79 239 421

S11-30a 1.16 0.00 0.00 150 434 752
S11-35b 2.36 0.93 0.00 259 755 1324
S11-40b 4.23 0.35 0.00 362 805 1572
SI11-50c¢ 1.52 0.34 0.00 741 1545 2878

Average 3.96 0.64 0.00 234 262 1029

S12-15a 0.00 0.00 0.00 12 36 63
S12-20d 1.81 0.00 0.00 34 81 178
S12-25¢ 3.59 0.00 0.00 T4 168 403

S12-30a 1.91 0.61 0.00 125 315 656
S12-35¢ 2.20 0.35 0.00 236 220 1269
S12-40d 3.62 0.35 0.00 338 870 1948
S12-70c 2.95 1.17 0.00 1878 4350 8594

Average 2.29 0.36 0.00 385 906 1873

S13-15b 0.00 0.00 0.00 10 20 ol
S13-20c 0.44 0.00 0.00 30 60 153
S13-25d 6.41 0.73 0.00 66 148 340

S13-30c 4.47 0.39 0.00 125 255 684
S13-35a 7.10 3.05 0.00 211 424 1089
S13-40d 3.31 0.00 0.00 296 650 1625
S13-70a 8.80 2.88 0.00 1671 3450 8869

Average 4.36 1.01 0.00 344 715 1830
S14-15a 217 1.92 0.00 12 25 66

S14-20b 4.70 0.61 0.00 34 72 178
S14-25¢ 3.48 0.46 0.00 76 168 426

S14-30a 2.23 0.00 0.00 141 305 735

S14-35d 0.00 0.00 0.00 234 481 1155
S14-40a 2.74 2.36 0.00 376 824 1965
SI14-70a 4.11 1.22 0.00 2041 3982 10591

Average 3.63 0.94 0.00 416 837 2159
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Chapter 5

Schemes for the model

In this chapter, we propose three data-driven schemes that we use in combination with the
mixed-integer linear programming (MILP) formulation provided in Chapter 2. The idea of
the schemes is to remove routes that are unlikely to be part of high-quality solutions. We
expect to get promising solutions in less time when the schemes are used. The first scheme
removes the set of long arcs connecting pairs of far apart nodes from the original set of
arcs. The idea is similar to the filtering rule used in granular tabu search (Toth and Vigo,
2003). The granularity threshold is defined in order to distinguish long arcs and calculated
based on the sparseness of the graph. In the first scheme, we use a simple criterion based
on the notion of farness to distinguish long arcs (i.e., the arcs that connect two far nodes
from each other) and we remove such long arcs from the original set of arcs in the second
echelon. The other two types of schemes are new and, to the best of our knowledge, have

not been addressed in the literature.

5.1 Reducing the set of feasible solutions

We define the three schemes below. In the first scheme, long arcs (i.e., arcs connecting pairs

of far apart nodes) are removed from arcs set of the second echelon, A. The second scheme
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implies that customers that are close to each other must be served from the same opened
RP, while the third scheme implies that any pair of customers that are close to each other,
but far from an opened RP, must be on the same tour. For the second and third schemes,
we define additional constraints, while for the first scheme we just modify the set of arcs in
the second echelon from A? to A2/, where in A% we exclude the long arcs in A?. In order to
analyze the three schemes, we define new terms as follows.

Farness: Two nodes ¢ and j are far apart if the direct travel time between them is
greater than o - max{T'}, where « is a given parameter, and max{7'} is the maximum travel
time between any two nodes among all pairs of nodes in set A2

Closeness: Two nodes ¢ and j are close to each other if the direct travel time between
them is less than 5 - max{7'}, where [ is a given parameter.

We define the following subsets of arcs.

LongArcs: All pairs of nodes that are far apart in the second echelon.
LongArcs = {(i,j) € A*|T > a - max{T'}}
CloseCustomers: All pairs of nodes that are close to each other in the second echelon.
CloseCustomers = {(i, j)|i,j € J,0 < T3 < 3 - max{T'}}

The different schemes are as follows.

(a) No secondary vehicle k traverses arc (i, j) € A if nodes i and j are far from

each other.

Here, we define set A% and we use it instead of set A2 in the MILP formulation (ie.,

(2.1)~(2.31));

A2 = {(i,j) € A%|(4,7) ¢ LongArcs}
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(b)

Customers close to each other must be served from the same RP.
We define the binary variables y,; below.
1 if customer j is served from RP r, Vr € R,j € J

Yrj —
0 otherwise

foikJer?jkglerrj Vre RkeK,jel (5.1)
iev? iev?
oalp+ D al A M= al) =2, VreRkeK jeld (5.2)
i€V? i€V? i€V?

Constraints (5.1) and (5.2) ensure that customer j is served from RP r (i.e., y.; = 1)

if it is visited by a vehicle that departs from RP r (i.e., Z x2, = 1 and Z x?jk =1).
iev? iev?
With y,; from (5.1) and (5.2), if two customers ¢ and j are close to each other, they

must be served from the same RP:

Yrj = Yri V1 € R, (i,7) € CloseCustomers (5.3)

Any pair of customers close to each other, while far from an opened RP,
must be served on the same tour. Note that this does not apply if the pair
of customers is close to an opened RP; in that case, they may or may not

be on the same tour.

1
2 2 . .
Z i > 5( Z Yrj + Z Ypi) — M (1 — Z Thie) Yk € K, (i,j) € CloseCustomers
hev? reRFy rE€RF; hev?
(5.4)
Here, RI; is the set of RPs far from node ¢ € J.
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It is worth reflecting on what we are doing. Assume for argument’s sake that the problem
is solved with a Benders-like algorithm and consider the use of optimality cuts. Such cuts
remove feasible points that cannot be optimal. This is contrary to feasibility cuts (as well
as faces, facets, and valid inequalities in discrete optimization), which only cut away points
that are not feasible. In this chapter, we generate (explicitly or implicitly) inequalities that
behave like optimality cuts; they distinctly cut away feasible points, but contrary to proper
optimality cuts, they may also cut away the optimal solution. Hence, they can be seen as
approximate (or heuristic) optimality cuts.

In addition, note that the schemes can be seen as a way to approximate the routing cost.
The difference between the proposed schemes and most routing approximation formulas in
the literature is that, in the latter, the routing costs are approximated based on Euclidean
distances, while this is not true for the former. In the next section, we show the extent to
which the schemes help with finding better solutions in a given amount of time or reducing
the time to obtain a certain quality compared to not using the schemes. Because of the
data-driven nature of schemes, infeasible solutions for the instances may be found. We
perform numerical experiments to check the validity of the schemes in terms of finding
feasible solutions given the best-known solutions for different sets of instances.

Note that even if the optimal solution is cut away, this is of minor importance if we
can get better solutions than without the schemes, since optimal solutions are generally
not available for larger instances. So apart from very small instances, we cannot check if
the optimal solution is actually cut away. We can only check if the schemes lead to better
solutions.

Finally, note that, although the presented model determines both RP locations and
vehicle routes, only the first is of real interest. Hence, we shall not be too worried if the

schemes change the optimal routing if they do not change the optimal RPs.
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5.2 Numerical experiments

In the previous section, we defined different schemes to reduce the set of feasible solutions
and hopefully reduce the solution time. In this section, we provide computational results
for different sets of instances (SI). For each set of instances, we tested the schemes to see
if they led to better solutions in less time. All computations were coded in AMPL using
the solver CPLEX 12.6 on a computer with 24 CPU cores and 35 GB of RAM. For each

instance, we considered a time limit of one hour.

5.2.1 Computational results

In this section, we provide the computational results for the four sets of instances provided
in Section 4.1. In total, there are seven possible scheme combinations to examine: (a), (b),
(¢), (a, b), (a, ¢), (b, ¢), and (a, b, ¢). First, the three single schemes were implemented:
(a), (b), and (¢). The results for schemes (b) and (¢) alone were of lower quality than those
of scheme (a). Hence, for the sake of brevity, we only present the results for scheme (a) and
the full set (a, b, ¢) here. Five different combinations were considered for each instance. The
first combination was without the schemes (i.e., using the MILP formulation of Section 2.2).
The second and third combinations were only with scheme (a), using two different levels
for a. The fourth and fifth combinations used all three schemes (a, b, ¢) with two different
choices for (o, ).

We checked the chosen values of o with scheme (a) and (o, §) with schemes (a, b, ¢)
to see if they cut the feasible set of the solution space. The solutions were fixed as the
best-known solutions (i.e., the values for BKSs in Tables 4.7-4.10), and we implemented
MILP with the schemes for the four sets of instances. Feasible solutions were obtained for
all instances using the schemes, which showed that the chosen values for « in scheme (a)
and (o, §) for all three schemes did not cut the set of feasible solutions.

In order to compare the values of the objective function for the different combinations,
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we calculated the gap to the best-known solution (GBK) with equation (4.1).

In the appendix at the end of this chapter, we show all of the details of the results,
particularly how the different combinations worked for each instance. We also discuss the
results in some detail. In this section, we present the highlights of the results. An upper
bound on the computational time of one hour was placed on all of the instances. For all
but the smallest cases, this CPU time was spent. Hence, what is in fact being reported in
most cases is the solution quality that could be obtained in one hour.

Tables 5.1-5.4 report the aggregated results for the five combinations of schemes on the
four sets of instances. In these tables, header GBK represents the average GBK for each
size of instances obtained with different combinations. The bold numbers correspond to the
lowest value of GBK obtained out of the five combinations on each size of instances.

The average GBK for SI1 is reported in Table 5.1. Compared to the solutions without the
schemes, the objective function values either got better or remained the same, on average,
when scheme (a) or all of the schemes were used.

Note that a GBK of zero occurred only if that combination was best for all four instances
for that size. The appendix details which combination produced the best result for each

instance.

Table 5.1: Aggregated results for SI1 without and with the schemes

Instance without Scheme: a Schemes: a, b, and ¢
schemes
aor (a, ) 0.8 0.7 (0.8,0.15) (0.7,0.2)
GBK GBK GBK GBK GBK
SI1-15 0.00 0.00  0.00 0.00 0.00
SI1-20 0.00 0.00  0.00 0.00 0.00
SI1-25 0.00 0.00  0.00 0.00 0.00
SI1-30 0.04 0.03 0.01 0.03 0.04
SI1-35 3.23 0.58 0.91 0.78 2.26
SI1-40 13.75 574  4.30 4.90 4.57
SI1-50 - - - - -
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Table 5.2: Aggregated results for SI2 without and with the schemes

Instance without Scheme: a Schemes: a, b, and ¢
schemes
aor (a, ) 0.7 0.6 (0.7,0.1) (0.6,0.15)
GBK GBK GBK GBK GBK
SI2-15 0.00 0.00  0.00 0.00 0.00
SI2-20 0.00 0.00  0.00 0.00 0.00
SI2-25 0.00 0.00  0.00 0.00 0.00
SI2-30 0.49 0.35  0.45 0.13 0.21
SI2-35 0.54 0.42  0.49 0.10 0.35
SI2-40 0.91 0.15  0.09 6.81 0.00
SI2-70 - - - - -

The average GBK for the instances in SI2, SI3, and SI4 are reported in Tables 5.2-5.4,
respectively. For these sets of instances, with only scheme (a), the average GBK stayed the
same or improved compared to the combination without the schemes. Note that, for both
SI3 and SI4, the combined scheme was necessary in order to obtain feasible solutions to the

larger instances.

Table 5.3: Aggregated results for SI3 without and with the schemes

Instance without Scheme: a Schemes: a, b, and ¢
schemes
aor (a, ) 0.8 0.7 (0.8,0.15) (0.7,0.2)
GBK GBK GBK GBK GBK
SI3-15 0.00 0.00  0.00 0.00 0.00
SI3-20 0.00 0.00  0.00 0.00 0.00
SI3-25 0.00 0.00  0.00 1.11 0.55
SI3-30 1.40 1.40 0.45 0.60 0.46
SI3-35 13.63 1115  12.97 2.15 2.22
SI3-40 - - - 0.00 -
SI3-70 - - - - -
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Table 5.4: Aggregated results for SI4 without and with the schemes

Instance without Scheme: a Schemes: a, b, and ¢
schemes
aor (a, ) 0.8 0.7 (0.8,0.15) (0.7,0.2)
GBK GBK GBK GBK GBK
SI4-15 0.00 0.00  0.00 0.00 0.00
SI4-20 0.00 0.00  0.00 0.00 0.00
SI4-25 0.00 0.00  0.00 0.47 2.18
SI4-30 0.49 0.03  0.00 2.51 2.70
SI4-35 10.04 3.0 9.71 0.89 7.76
SI4-40 - - - 0.00 -
SI4-70 - - - - -

Generally speaking, with scheme (a), we obtained either lower or the same values for the
objective function, on average, compared to the solutions without any scheme. When we
used the combined scheme, feasible solutions could be found to some of the larger instances
that were unsolvable without the schemes or with only scheme (a). This shows that schemes
(b) and (c) work well together with scheme (a).

These results show that the gap between GBK of the best found solutions obtained by
the schemes and the solutions without the schemes increased with the size of the instances.

The other notable finding is that the performance of the schemes depended on the
customer distribution in the instance. For instances in SI1, SI3, and SI4, the gap between
the best solution (i.e., with the lowest value of GBK) with all schemes and the solution
without schemes was higher compared to the results obtained for SI2. This implies that the
schemes provided higher-quality solutions for the instances where customers were uniformly
distributed on the plane (e.g., SI3 and SI4) compared to instances where the customers were

located rather densely on specific parts of the plane (e.g., SI2).
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5.2.2 Appendix: details of results without and with schemes

In this appendix, we present and discuss the details of the results that are summarized in
Section 5.2.1. Tables 5.5-5.8 detail the results obtained from different combinations for four
sets of instances. In these tables, column CPU represents the time spent (in seconds) on
each instance in each combination. Column Gap% corresponds to the gap to optimality
reported by the CPLEX solver. Column GBK corresponds to the GBK obtained by each
combination for each instance. Finally, header RP represents the location decisions obtained
by each combination for each instance. For scheme (a), two levels of a and two levels of
(ar, B) were used; see the table for actual values.

We start with SI1. The results are listed in Table 5.5. All small instances of sizes 15
and 20 were solved optimally in a shorter amount of time either with scheme (a) or the
combined schemes, and the location decisions for all instances were the same as for the
solutions without the schemes. For instances of size 25, the lowest average CPU time of 976
s was observed when only scheme (a) was used with o = 0.7. For larger instances of sizes
35 and 40, the lowest average GBK was observed with either scheme (a) or the combined
schemes.

For SI2, the results are listed in Table 5.6. The instances of sizes 20 and 25 were solved
in a shorter amount of time with a GBK of zero when the combined schemes were used.
With the combined schemes, a lower average GBK was also observed for larger instances of
sizes 30 and 35. For instances of size 40, two more instances were solved with the lowest
average GBK when a combined scheme with (o, 5) = (0.6,0.15) was used.

For SI3, see Table 5.7. For the instances of sizes 30 and 35, the average GBK decreased
with either scheme (a) or the combined scheme.

Finally, consider SI4. As indicated by the results in Table 5.8, with (a, 8) = (0.7,0.2) for
the combined schemes, the average CPU time for instances of 20 decreased from 920 to 54
s. The lowest average GBK of 0.89 was observed for instances of size 35 when a combined

scheme with (o, §) = (0.8,0.15) was used.
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For both SI3 and SI4, one of the large instances of size 40 was solved with the combined

scheme using (a, 5) = (0.8,0.15).

Table 5.5: Detailed results for SI1 without and with the schemes

‘ ‘Without schemes Scheme: a schemes: (a, b, ¢}

aor (a,f) | | 0.8 0.7 (0.8,0.15) (0.7,0.2)
Instance | CPU Gap% GBK RP |CPU Gap% GBK RP |CPU Gap% GBK RP |CPU Gap% GBK RP |CPU Gap% GBK RP
SI1-15a 19 0.0 0.00 r3 17 0.0 0.00 3 13 0.0 0.00 3 22 0.0 0.00 3 14 0.0 0.00 3
SI1-15D 5 0.0 0.00 rl 3 0.0 0.00 rl 4 0.0 0.00 rl 0.0 0.00 rl 7 0.0 0.00 rl
SI1-15¢ 32 0.0 0.00 rd 10 0.0 0.00 4 9 0.0 0.00 4 0.0 0.00 4 17 0.0 0.00 4
SI1-15d 10 0.0 0.00 r2 12 0.0 0.00 2 8 0.0 0.00 2 0.0 0.00 2 9 0.0 0.00 2
Average 17 0.0 0.00 11 0.0 0.00 8 0.0 0.00 17 0.0 0.00 12 0.0 0.00
SI1-20a 22 0.0 0.00 18 0.0 0.00 17 0.0 0.00 23 0.0 0.00 22 0.0 0.00
SI1-200 24 0.0 0.00 20 0.0 0.00 22 0.0 0.00 30 0.0 0.00 24 0.0 0.00
SI1-20¢ 25 0.0 0.00 34 0.0 0.00 33 0.0 0.00 136 0.0 0.00 21 0.0 0.00
SI1-20d 176 0.0 0.00 23 0.0 0.00 71 0.0 0.00 35 0.0 0.00 24 0.0 0.00
Average 62 0.0 0.00 24 0.0 0.00 36 0.0 0.00 56 0.0 0.00 22 0.0 0.00

2961 0.0 0.00 4 | 3600 1.8 0.00 4 177 0.0 0.00 4 291 0.0 0.00 4 326 0.0 0.00 4

64 0.0 0.00 rlx3| 67 0.0 0.00 rlx§| 272 0.0 0.00 rlr3| 144 0.0 0.00 rlx3| 178 0.0 0.00 r1,r3

3600 31 0.00 4 | 3600 3.7 0.00 4 | 3161 0.0 0.00 4 | 3600 3.7 0.00 4 | 3600 27 0.00 4

406 0.0 0.00 rd 84 0.0 0.00 4 293 0.0 0.00 d | 3256 0.0 0.00 4 122 .0 0.00 4
Average 1758 0.8 0.00 1838 1.36 0.00 976 0.0 0.00 1823 0.9 0.00 1056 0.7 0.00
SI1-30a 3600 74 0.00  rlx3 | 3600 4.6 0.00  rlx3 | 3600 4.3 0.00  rlr3 | 3600 3.7 0.00 11,3 | 3600 9.9 0.00 r1,r3
SI1-300 3600 11.0 0.16 3 3600 10.8 0.13 3 | 3600 7.1 0.00 3 | 3600 4.2 0.11 4 | 3600  10.2 0.18 4
SI1-30¢ 3600 7. 0.00 4 | 3600 15.6 0.00 4 | 3600 8.4 0.00 4 | 3600 1.2 0.00 rd | 3600  15.6 0.00 4
S11-30d 3600 3 0.00 4 | 3600 3.5 0.00 4 | 3600 4.5 0.03 4 | 3600 3.5 0.00 4 | 3600 4.3 0.00 4
Average 3600 74 0.04 3600 8.62 0.03 3600 6.1 0.01 3600 3.2 0.03 3600 10.0 0.04

3600 10.7 1.64  r3,rd | 3600 11.1 2,32 rlr3 | 3600 77 0.00 3600 10.9 1.66 13.9 5.22 1355

3600 14.1 3.04 4 | 3600 10.4 0.00  r3x4 | 3600 12.3 0.00 3600 11.7 0.00 11.5 0.00 134

3600 8.6 2.07 4 | 3600 4.8 0.00 134 | 3600 12.0 2.86 3600 5.7 0.00 - - -

3600 20.7 6.17  r2x5 | 3600 11.7 0.00 4 | 3600 15.5 0.79 3600 17.2 1.45 17.9 1.56  rird
Average 3600 10.1 3.23 3600 9.01 0.58 3600 11.9 0.91 3600 11.4 0.78 3600 14.5 2.26
SI11-40a 3600 40.3  30.01 r3.u5 | 3600 18.8 0.00  r3x5 | 3600  20.1 4.81  r3x5 | 3600 16.0 167 r3rb | 3600 217 238 13,15
SI1-400 3600 14.5 272 r3x4 | 3600 15.4 0.00  r2r3 | 3600 16.3 3.67  rlr3 | 3600 13.5 1.13 4 | 3600 221 1550 4
SI1-40¢ 3600 9.2 0.4 4 | 3600 9.0 1.16 4 | 3600 11.6 0.14 4 | 3600 12.6 0.00 4 | 3600 7.2 0.40 4
S11-40d 3600 263 21.85 r3ub | 3600 253 21.81 r3xd | 3600 14.5 856 r3rd | 3600 248  16.80 3 | 3600 9.2 0.00 4
Average 3600 226 1375 3600  17.10 574 3600 156  4.30 3600 16.7 4.90 3600 15.0 4.57
S11-50a - - - - - - - - - - - - - - - - - - - -
SI1-50b - - - - - - - - - - - - - - - - - - -
S11-50¢ - - - - - - - - - - - - - - - - - - - -
S11-50d - - - - - - - - - - - - - - - - - - - -
Average - - - - - - - - - - - - - - -
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Table 5.6:

Detailed results for SI2 without and with the schemes

|  Without the schemes Scheme: a Schemes: (a, b, ¢)

aor (a,f) | | 0.7 0.6 (0.7,0.1) (0.6,0.15)
Instance | CPU Gap% GBK RP |CPU Gap% GBK RP |CPU Gap% GBK RP |CPU Gap% GBK RP |CPU Gap% GBK RP
SI2-15a 15 0.0 0.00 133 16 0.0 0.00 1123 18 0.0 0.00 1123 20 0.0 0.00 113 20 0.0 0.00 r1.x3

17 0.0 0.00 1213 17 0.0 0.00 1233 12 0.0 0.00 1233 23 0.0 0.00 12,13 32 0.0 0.00 12,13

27 0.0 0.00 1213 27 0.0 0.00 1233 12 0.0 0.00 1233 32 0.0 0.00 12,13 54 0.0 0.00 12,13

47 0.0 0.00 133 38 0.0 0.00 1123 22 0.0 0.00 r1x3| 43 0.0 0.00 113 52 0.0 0.00 r1.x3
Average 27 0.0 0.00 25 0.0 0.00 16 0.0 0.00 29 0.0 0.00 39 0 0.00
SI2-20a 51 0.0 0.00 =»1x3| 49 0.0 0.00 44 0.0 0.00 38 0.0 0.00 113 35 0.0 0.00
SI2-20b 100 0.0 0.00 1233 95 0.0 0.00 52 0.0 0.00 107 0.0 0.00 12,13 43 0.0 0.00
SI2-20¢ 90 0.0 0.00 1213 83 0.0 0.00 39 0.0 0.00 64 0.0 0.00 12,13 48 0.0 0.00
SI2-20d 3542 0.0 0.00 1123 | 3457 0.0 0.00 1865 0.0 0.00 109 0.0 0.00 113 62 0.0 0.00
Average 946 0.0 0.00 921 0.0 0.00 500 0.0 0.00 80 0.0 0.00 47 0.00 0.00
SI2-25a 3600 19.7 0.00 1123 | 3600 17.8 0.00 1123 | 3600 20.7 0.00 rlx3| 3505 0.0 0.00 113 3600 20.4 0.00
SI2-25b 3600 21.6 0.00 233 | 3600 23.2 0.00 233 | 3600 274 0.00  r2x3 | 3600 224 0.00 12,13 352 0.0 0.00
SI2-25¢ 3600 22.5 0.00 1123 | 3600 21.9 0.00 1123 | 3600 24.4 0.00 rlx3 | 3600 20.9 0.00 113 3600 21.5 0.00
SI2-25d 3600 22.2 0.00 233 | 3600 21.0 0.00 233 | 3600 224 0.00 223 | 207 0.0 0.00 12,13 3600 25.5 0.00
Average 3600 21.5 0.00 3600 21.0 0.00 3600 23.7 0.00 2728  10.8 0.00 2788 19.1 0.00
SI2-30a 3600 35.5 1.18  r1x3 | 3600 37.7 1.18  r1x3 | 3600 34.6 1.18  r1x3 | 3600 27.3 0.14 113 3600 23.2 0.00
SI2-30b 3600 37.0 0.03 233 | 3600 37.1 0.00 233 | 3600 33.0 0.00 2 3600 32.1 0.39 12,13 3600 39.2 0.03
SI2-30¢ 3600 29.5 0.00 1123 | 3600 31.8 0.00 1123 | 3600 28.4 0.00 3600 33.5 0.00 113 3600 40.6 0.05
SI2-30d 3600 41.0 0.77 1233 | 3600 38.2 0.21 233 | 3600 39.6 0.62  r2x3 | 3600 31.2 0.00 12,13 3600 37.5 0.77
Average 3600 35.8 0.49 3600 36.225 035 3600 33.9 0.45 3600 31.0 0.13 3600 35.1 0.21

3600 41.7 0.20 123 | 3600 41.7 0.20 123 | 3600 37.2 0.00 rlx3 | 3600 44.0 0.34 113 3600 41.7 0.20

3600 474 0.00 233 | 3600 474 0.00 233 | 3600 47.7 0.00  r2x3 | 3600 44.1 0.06 12,13 3600 48.1 0.00

3600 45.5 0.93 233 | 3600 45.6 0.93 233 | 3600 45.9 0.93  r2x3 | 3600 33.1 0.00 12,13 3600 45.8 0.93

3600 43.2 1.04  r1x3 | 3600 41.2 0.53  rlx3 | 3600 43.2 1.04  r1x3 | 3600 31.6 0.00 113 3600 36.2 0.28
Average 3600 44.5 0.54 3600 44.0 0.42 3600 43.5 0.49 3600 38.2 0.10 3600 42.9 0.35
SI2-40a - - - - - - - - - - - - 3600 59.4 6.57  12x325 | 3600 46.4 0.00 1203
S12-40b - - - - - - - - - - - - - - - - - - - -
SI2-40¢ 3600 42.3 0.91 1133 | 3600 36.3 0.15 133 | 3600 34.2 0.09  rlx3 - - - - 3600 31.3 0.00 113
SI2-40d - - - - - - - - - - - 3600 59.9 7.06  rlx4x5 | 3600 54.3 0.00  r1x3a25
Average 3600 42.3 0.91 3600 36.3 0.15 3600 34.2 0.09 3600 44.3 6.81 3600 44.0 0.00
SI2-70a - - - - - - - - - - - - - - - - - - - -
SI2-70b - - - - - - - - - - - - - - - - - - - -
S12-70¢ - - - - - - - - - - - - - - - - - - - -
S12-70d - - - - - - - - - - - - - - - - - - - -
Average - - - - - - - - - - - - - - -
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Table 5.7: Detailed results for SI3 without and with the schemes

\ Without schemes Scheme: a Schemes: (a, b, ¢)

aor (a,f) | | 0.8 0.7 (0.8,0.15) (0.7,0.2)
Instance | CPU Gap% GBK RP |CPU Gap% GBK RP |CPU Gap% GBK RP |CPU Gap% GBK RP |CPU Gap% GBK RP
SI3-15a 32 0.0 0.00 1l 34 0.0 0.00 1l 33 0.0 0.00 1l 24 0.0 0.00 1l 36 0.0 0.00 1l
SI3-15b 14 0.0 0.00 3 15 0.0 0.00 3 15 0.0 0.00 3 16 0.0 0.00 3 17 0.0 0.00 3
SI3-15¢ 22 0.0 0.00 3 21 0.0 0.00 3 22 0.0 0.00 3 31 0.0 0.00 3 33 0.0 0.00 3
SI3-15d 25 0.0 0.00 1l 24 0.0 0.00 1l 25 0.0 0.00 1l 25 0.0 0.00 1l 23 0.0 0.00 1l
Average 23 0.0 0.00 24 0.0 0.00 24 0.0 0.00 24 0.0 0.00 27 0.0 0.00
SI3-20a 79 0.0 0.00 1l 79 0.0 0.00 1l 78 0.0 0.00 1l 231 0.0 0.00 1l 2204 0.0 0.00 1l
SI3-20b 3600 9.1 0.00 3 3600 8.9 0.00 3 3600 8.9 0.00 r3 3600 9.9 0.00 3 3600 10.4 0.00 3
SI3-20c¢ 3600 13.6 0.00 rlx4 | 3600 13.6 0.00 rlx4 | 3600 13.7 0.00 rlx4 | 3600 16.9 0.00 rlrd 3600 12.3 0.00 rlrd
SI3-20d 3600 2.2 0.00 rlx4 | 3600 2.2 0.00 rlx4 | 3600 2.0 0.00 rlx4 | 3600 16.9 0.00 rlrd 3600 8.9 0.00 rlrd
Average 2720 6.2 0.00 2720 6.2 0.00 2720 6.1 0.00 2758 10.9 0.00 3251 7.9 0.00
SI3-25a 3600 9.8 0.00 225 | 3600 9.7 0.00 225 | 3600 9.6 0.00 225 | 3600 15.1 0.00 1205 3600 9.0 0.00 1205
SI3-25b 3600 14.6 0.00  r2x3 | 3600 14.6 0.00  r2x3 | 3600 144 0.00  r2x3 | 3600 20.9 2.80 12,04 3600 12.2 0.41 12,13
SI3-25¢ 3600 13.2 0.00  r1x5 | 3600 13.3 0.00  r1x5 | 3600 13.4 0.00  r1x5 | 3600 18.3 0.00 rlad 3600 16.4 0.14 rlrd
SI3-25d 3600 8.1 0.00 224 | 3600 8.0 0.00 224 | 3600 8.7 0.00 224 | 3600 13.9 1.64 rlrd 3600 114 1.64 rl.rd
Average 3600 11.4 0.00 3600 11.4 0.00 3600 11.5 0.00 3600 17.1 111 3600 12.2 0.55
SI3-30a 3600 15.8 204 | 3600 15.8 204 | 3600 15.3 0.00 224 | 3600 17.8 2.41 rlrd 3600 18.1 0.00
SI3-30b 3600 10.0 rla4 | 3600 10.0 rla4 | 3600 10.6 0.43  rlx4 | 3600 8.4 0.00 rlad 3600 12.3 0.62
SI3-30¢ 3600 22.6 rla4 | 3600 22.6 rlx4 | 3600 18.7 1.35  rlx4 | 3600 18.9 0.00 rlrd 3600 184 1.22
SI3-30d 3600 13.1 rla4 | 3600 13.0 rla4 | 3600 12.4 0.00 rlx4 | 3600 13.3 0.00 rlrd 3600 13.1 0.00
Average 3600 15.4 1.40 3600 15.3 1.40 3600 14.3 0.45 3600 14.6 0.60 3600 15.5 0.46

3600 324 1071 rla3 | 3600 324 1071 rla3 | 3600 36.3 16.06 rl1x3 | 3600 325 6.90 12,04 3600 27.3 0.00

3600 22.8 6.85 1r2x4 | 3600 27.2 13.33 224 | 3600 28.3 1512 r2x4 | 3600 17.2 0.00 12,15 3600 20.6 4.44

3600 474 20.10 r1x2 | 3600 43.7 20.56  rlx2 | 3600 43.7 19.96  rlx2 | 3600 31.9 0.00 12,13 - - - -

3600 30.9 7.86  rlax3 | 3600 25.7 0.00  r1x5 | 3600 284 0.76  r1x5 | 3600 25.2 171 1205 - - - -
Average 3600 334 13.63 3600 32.3 11.15 3600 34.2 12.97 3600 26.7 2.15 3600 23.9 2.22
SI3-40a - - - - - - - - - - - - - - - - - - - -
SI3-40D - - - - - - - - - - - - - - - - - - - -
SI3-40¢ - - - - - - - - - - - - 3600 51.2 0.00 11323 - - - -
SI3-40d - - - - - - - - - - - - - - - - - - - -
Average - - - - - - - - - 3600 51.2 0.00 - - -
SI3-70a - - - - - - - - - - - - - - - - - - - -
SI3-70b - - - - - - - - - - - - - - - - - - - -
SI3-70c¢ - - - - - - - - - - - - - - - - - - - -
SI3-70d - - - - - - - - - - - - - - - - - - - -
Average - - - - - - - - - - - - - - -
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Table 5.8: Detailed results for SI4 without and with the schemes

\ ‘Without the schemes Scheme: a Schemes: (a, b, ¢)
aor (a,f) | | 0.8 0.7 (0.8,0.15) (0.7,0.2)
Instance | CPU Gap% GBK RP |CPU Gap% GBK RP |CPU Gap% GBK RP CPU Gap% GBK RP |CPU Gap% GBK RP
SI4-15a 14 0.0 0.00 15 14 0.0 0.00 5 13 0.0 0.00 15 21 0.0 0.00 5 12 0.0 0.00 15
SI4-15b 12 0.0 0.00 15 13 0.0 0.00 5 13 0.0 0.00 15 17 0.0 0.00 5 17 0.0 0.00 5
SI4-15¢ 14 0.0 0.00 3 15 0.0 0.00 3 14 0.0 0.00 3 19 0.0 0.00 3 13 0.0 0.00 3
SI4-15d 10 0.0 0.00 4 11 0.0 0.00 r4 10 0.0 0.00 4 19 0.0 0.00 r4 14 0.0 0.00 4
Avergae 13 0.0 0.00 13 0.0 0.00 13 0.0 0.00 19 0.0 0.00 14 0.0 0.00
SI4-20a 21 0.0 0.00 21 0.0 0.00 1lr4ab 19 0.0 0.00 29 0.0 0.00 1lx4ab 22 0.0 0.00
SI4-20b 38 0.0 0.00 43 0.0 0.00 415 39 0.0 0.00 47 0.0 0.00 4,15 72 0.0 0.00
SI4-20¢ 3600 3.5 0.00 3600 5.2 0.00 204 3600 3.5 0.00 2,04 3600 2.7 0.00 204 85 0.0 0.00
SI4-20d 22 0.0 0.00 56 0.0 0.00 r1x3 22 0.0 0.00 113 38 0.0 0.00 113 38 0.0 0.00
Avergae 920 0.9 0.00 930 1.3 0.00 920 0.9 0.00 929 0.7 0.00 54 0.0 0.00
SI4-25a 3600 7.9 0.00 3600 74 0.00 r1x5 3600 6.8 0.00 r1.xb 3600 10.4 1.79 4.5 3600 13.8 3.87 15
SI4-25b 3600 5.7 0.00 3600 5.7 0.00 r1x5 3600 5.6 0.00 r1.xb 3600 2.7 0.07 r1x3 3600 4.3 0.07 113
SI4-25¢ 3600 2.2 0.00 3600 2.1 0.00 4.5 3600 2.1 0.00 415 3600 3.7 0.00 415 3600 7.3 3.31 4,15
SI4-25d 2104 0.0 0.00 2042 0.0 0.00 r1x5 1842 0.0 0.00 r1.xb 1342 0.0 0.00 rlxd 3079 0.0 1.46 113
Avergae 3226 4.0 0.00 3211 3.8 0.00 3160 3.6 0.00 3035 4.2 047 3470 6.3 2.18
SI4-30a 3600 7.2 0.00 21324 | 3600 7.0 0.00 21314 | 3600 7.3 0.00 213,04 3600 10.2 0.14 21334 | 3600 14.3 0.67
SI4-30b 3600 11.8 1.86  r1x2x3 | 3600 94 0.00 1l 3600 7.2 0.00 1. 3600 15.7 5.86 113 3600 17.5 4.52
SI4-30¢ 3600 13.5 0.12 3 3600 124 0.12 3600 13.1 0.00 3600 14.1 0.50 204 3600 18.6 2.36
SI4-30d 3600 12.7 0.00 415 3600 125 0.00 3600 12.7 0.00 3600 16.1 3.53 r4 3600 12.7 3.27
Avergae 3392 7.2 0.49 3600 10.3 0.03 3600 10.1 0.00 3600 14.0 251 3600 15.8 2.70
SI4-35a 3600 20.6 2.75 113 3600 184 0.00 113 3600 20.6 2.75 113 3600 17.2 2.66 113 - - - -
SI4-35b 3600 33.5 23.33 4 3600 24.7 8.82 r4 3600 27.3 12.07 4 3600 19.3 0.00 r4 - - - -
SI4-35¢ - - - - - - - - - - - - - - - - - - - -
SI4-35d 3600 18.1 4.04 415 3600 146 0.33 21325 | 3600 25.4 14.30  r2x3.04x5 | 3600 144 0.00 4.5 3600 20.9 7.76 4
Avergae 3600 24.1 10.04 3600 19.2 3.05 3600 24.4 9.71 3600 17.0 0.89 3600 20.9 7.8
SI4-40a - - - - - - - - - - - - - - - - - - - -
SI4-40b - - - - - - - - - - - - 3600 41.2 0.00 2,13 - - - -
SI4-40¢ - - - - - - - - - - - - - - - - - - - -
ST4-40d - - - - - - - - - - - - - - - - - - - -
Avergae - - - - - - - - - 3600 41.2 0.00 - - -
SI4-70a - - - - - - - - - - - - - - - - - - - -
SI4-70D _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
SI4-70c - - - - - - - - - - - - - - - - - - - -
SI4-70d - - - - - - - - - - - - - - - - - - - -
Average - - - - - - - - - - - - - - -
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Chapter 6

Extension

In this chapter, we generalize the problem described in Chapter 2 by considering the capacity
of vehicles, multiple trips for vehicles, and decision on terminal locations.

A large body of literature on location-routing problems (LRPs) has addressed the capac-
ity of vehicles (e.g., Barreto et al. (2007); Lopes et al. (2008); Gendron and Semet (2009)).
Note that, by incorporating the vehicle capacity and time considerations, allowing vehicles
to make multiple trips can be useful. For instance, consider the case where the vehicle ca-
pacity is small compared to customer demands and the time windows for visiting customers
are rather loose. In such a case, a vehicle can visit customers over multiple trips where it
pays a fixed cost for only the first trip, while the single-trip assumption for vehicles trivially
leads to extra fixed costs.

Few papers in the literature on two-echelon location-routing problems (2E-LRPs) have
addressed the subject of multiple primary facilities and decisions on their locations (e.g.,
Crainic et al. (2009) and Sterle (2009)). Decisions on the locations of primary facilities
(e.g., platforms, terminals) are relevant, as highlighted by Cuda et al. (2015). In this
chapter, we consider multiple terminals and decisions on their locations. In our motivation
problem, there are some areas where the distribution of customers between two terminals is

ambiguous, and the customer assignment to each terminal is not trivial. In such areas, the
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main decision is to assign customers to each terminal in order to reduce the total distribution
costs. Within the multi-terminal setting, terminals may interact as follows: deliveries are
transported from a terminal to a reloading point (RP), and the collected pickups from the
same RP are transported to another terminal. Such interaction may occur when the fixed
usage costs of the primary vehicles are high. This may increase the routing costs at both

echelons but provides an efficient use of primary vehicle capacity.

6.1 Problem description

In this section, we only describe the changes to the original problem settings provided
in Section 2.1 for the extended problem. The first level consists of terminals as primary
facilities. The second level consists of RPs as intermediate facilities. The third level consists
of customers. Figure 6.1 illustrates the two echelons, including multiple terminals. Both
terminals and RPs are assumed to be uncapacitated. An opening cost is associated with
each terminal and each RP. The capacity of primary vehicles is higher than that of secondary
vehicles.

Each type of vehicle can perform multiple trips at each echelon. Each primary vehicle
starts its first trip from a terminal and comes back to the same terminal after its last
trip because theyv should be available at each terminal for the next day’s activities. Each
secondary vehicle starts its trip from an RP and returns to the same RP.

The demand of customers and travel times are assumed to be deterministic and known.
The capacity of a secondary vehicle is assumed to be greater than the demand of each cus-
tomer. Splitting orders is not allowed. The goal is to find the optimal locations of terminals
and RPs among a given set of potential sites while minimizing costs for opening terminals,

costs for opening RPs, costs of paying for the fleet, and actual transportation costs.
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. Customer in delivery wave . Terminal

O Customer in pickup wave A Reloadinp point

; ; || [T Primary vehicle
—  Route in delivery wave W"n Y

----»  Route in pickup wave % Secondary vehicle

Figure 6.1: Illustration of a feasible solution for a 2E-LRP with multiple terminals

6.2 Model formulation

In this section, we use the arc-based mixed-integer linear programming (MILP) formulation
described in Chapter 2 in order to extend the time-driven 2E-LRP with synchronization
and sequential delivery and pickup waves by incorporating the vehicle capacities, multiple
trips for vehicles, and decisions on terminal locations.

The new sets and parameters are defined as follows.
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V1 = OUR is the set of nodes in the first echelon where O is the set of potential sites for
terminals. A' = {(i,7)|i,j € V',i # j} is the set of arcs in the first echelon. Each terminal
o € O has a fixed cost of opening F,. Each customer j € J has a known demand volume of
d; and is visited only once.

The set of primary vehicles L is defined as the union of subsets [;; L = U [;. We assume

that |l;] = M, where M is the maximum number of trips that primary vehicle | € [; can

perform. The set of secondary vehicles K is defined as the union of subsets k;; K = U k;.

We assume that |k;| = N, where N is the maximum number of trips that secondary Ve}zlicle
k € k; can perform. Each primary vehicle has a limited capacity of Q'. Q% is the capacity of
the secondary vehicle, and we assume that d; < Q% Vj € J. 77 is the earliest time that
a primary vehicle can depart from terminal o € O. T7™ is the latest time that a primary
vehicle can come back to terminal o € O.

The new decision variables are defined as follows. The location decision variable w, €

{0,1},Vo € O is equal to unity if terminal o is open and zero otherwise. Time decision

end
ol

variable 5 > 0,Vo € O,[ € L is the time at which primary vehicle [ returns to terminal o.
Itinerary variable vy € {0,1},Vi € J,l € L is equal to unity if the demand of node i € J is
transported at the first echelon by primary vehicle [ and zero otherwise.

Table 6.1 summarizes the sets, parameters, and decision variables used in the MILP

formulation.
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Table 6.1: Sets, parameters, and variables used in the MILP model (multi-terminal)

Sets and parameters Description

@] set of potential terminals
Fo fixed cost of opening terminal o, Yo € O
T earliest time a primary vehicle can depart from terminal o, Yo € O
7:,f n latest time a primary vehicle can come back to terminal o, Yo € O
R set of potential RPs
Ir fixed cost of opening RP r, Vr € R
) set of echelons, F = {1, 2}
A° set of arcs in echelon e, Ve € F
T travel time between node 4 and node j in echelon e, ¥(i,j) € A e € E
5 travel cost of traversing arc (i,j) in echelon e, ¥(i,j) € A% e € E
JP set of customers in the delivery wave
Jr set of customers in the pickup wave
J set of all customers (J = JP U JF)
aj earliest arrival time at node j, ¥j € J
b; latest arrival time at node j, Vj € J
d; demand of node 5, Vj € J
K set of secondary vehicles
L set of primary vehicles
M maximum number of trips that can be performed by primary vehicle
N maximum number of trips that can be performed by secondary vehicle
Q° capacity of vehicles in echelon e, Ve € F
fe fixed usage cost of a vehicle in echelon e, Ve € F
M a sufficiently large number
Variables Description
w, € {0,1} binary variable equal to 1 if terminal o is open, 0 otherwise, Yo € O
2. €{0,1} binary variable equal to 1 if RP r is open, 0 otherwise, ¥r € R
x}jl €{0,1} binary variable equal to 1 if arc (4, 7)

is traversed by primary vehicle I, 0 otherwise, VI € L, (i,§) € A?
t}l >0 time at which primary vehicle ! visits node ¢, vl € L,i € V!
tfﬁd >0 time at which primary vehicle [ returns to terminal o,Vo € Ol € L
x?jk €{0,1} binary variable equal to 1 if arc (4, 7)

is traversed by secondary vehicle k, 0 otherwise, Yk € K, (4, ) € A?
t2>0 time at which node 4 is visited, Vi € J
tfk >0 departure time of secondary vehicle k from RP r, Vre R ke K
>0 arrival time of secondary vehicle k to RP r,Vr ¢ Rk € K
uppg € {0, 1} binary variable equal to 1 if secondary vehicle k meets

with primary vehicle [ for reloading at RP r, 0 otherwise, Vr e R ke K|l L
vy € 40,1} binary variable equal to 1 if demand of node 4
is transported at the first echelon by primary vehicle I, 0 otherwise, Vi € J 1€ L
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The model is formulated as follows.

Z}" w, + Z frazr + Z Z ng%l + Z Z Czy%k

0€0 r€R (i,j)€AL l€L (i,§)EA2 k€K

B > Sty > > [l

0€0 jeV! leLi=1} r€R jEV? k€K k=k}

(6.1)

The objective function (6.1) consists of six components. The first component is the
opening costs of terminals. The second component is the opening costs of RPs. The third
and fourth components are routing costs in the first and second echelons, respectively.
The fifth and sixth components are the fixed costs of primary and secondary vehicles,
respectively. Because each vehicle can perform multiple trips, only the cost of the first trip
performed by each vehicle is considered, where [} is the first member in subset /; and k; is
the first member in subset ;.

The constraints can be classified as follows: routing for the first and second echelons,
vehicle capacity for the first and second echelons, time calculation and route continuity
for the first and second echelons, time windows, vehicle precedence, and synchronization
constraints.

Constraints

v, <w, VieVioecOlel (6.2)
v <Y Y al, VieVilel (6.3)
0o€0 reER
v, <2 YieVireRIlel (6.4)
d al,<1 YoeOlel (6.5)
reR
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daly= > aly VieVilel (6.6)

jevt jevi

dva=1 Viel (6.7)

leL

Constraints (6.2), (6.3), (6.4) , (6.5), (6.6), and (6.7) are routing constraints imposed at
the first echelon.

Constraints (6.2) ensure that a primary vehicle can visit a terminal only if the terminal is
open. Constraints (6.3) state that a primary vehicle can visit an RP only if it has departed
from the terminal. Constraints (6.4) ensure that a primary vehicle can visit an RP only
if the RP is open. Constraints (6.5) state that a primary vehicle cannot depart from the
terminal to more than one RP. Constraints (6.6) ensure that the number of arcs entering
node i € V! in the first echelon must be the same as the number of arcs exiting the same
node. Constraints (6.7) state that the demand of each customer is transported by exactly
one primary vehicle.

The routing constraints for the second echelon remain the same as the constraints (2.6),

(2.7), (2.8), (2.9), and (2.10).

Y dwy < Q' Vel (6.8)
ieJP
» dwy < Q' Vel (6.9)
ieJF
YN djaf < Q° Vhe K (6.10)
i€V? jeJpb
YN djl <Q YhkeK (6.11)
i€V? jeJ¥
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Constraints (6.8) and (6.9) are primary vehicle capacity constraints and ensure that the
volume transported by a primary vehicle must respect its capacity. Constraints (6.10) and
(6.11) are secondary vehicle capacity constraints and dictate that the volume transported

by a secondary vehicle has to be less than its capacity.

Ly > T = M(1=) xby)) YocO,lel (6.12)
reER
th>th Tt M —al) VieLieVireR (6.13)
e >y Tl - M(1—2!)) YoeO,lelL,reR (6.14)
< T+ M(1=) "xyy) Vo€ Olel (6.15)
reR
<MY aj, VreRlel (6.16)
1€V
<MY x), YoeO,lel (6.17)
reER

Constraints (6.12), (6.13), (6.14), (6.15), (6.16), and (6.17) are time calculation con-
straints for the first echelon. These constraints impose route continuity in the first echelon
and implicitly avoid sub-tours. Constraints (6.12) state that the departure time of vehi-
cle [ € L from terminal o € O must respect the earliest departure time from the terminal:
77, Constraints (6.13) calculate the arrival time of primary vehicle [ at RP r. Constraints
(6.14) calculate the time that primary vehicle [ comes back to terminal o € O. Constraints
(6.15) ensure that the arrival time of primary vehicle [ € L to terminal o € O respects the

latest return time to the terminal: 7/*. Constraints (6.16) ensure that the arrival time
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of a primary vehicle at the RP can turn positive only if the primary vehicle visits the RP.
Constraints (6.17) make sure that the returning time of a primary vehicle to terminal o € O
can turn positive only if the primary vehicle visits some RPs.

Time calculation constraints for the second echelon remain the same as constraints (2.17),
(2.18), (2.19), (2.20), and (2.21). The time window constraints are the same as constraints
(2.22) and (2.23).

M= ahy) ity >t9" YoeOleli:l<M (6.18)
reER
w £ wh, YoeOlelil<M (6.19)
reER rER
M= alp) Hthgy >t YreRkeki k<N (6.20)
ieJ
@y <D aly VreRkekitk<N (6.21)
jE€J jE€J

Constraints (6.18) and (6.19) dictate the trip precedence of primary vehicles. Constraints
(6.18) ensure that the departure time of a primary vehicle from a terminal for its [ + 1th
trip is greater than its arrival time to the same terminal for its [th trip. Constraints (6.19)
ensure that a primary vehicle does not perform its [ + 1th trip unless it has performed its

Ith trip. Constraints (6.20) and (6.21) dictate the trip precedence of secondary vehicles.

th >t — M —uw) VreRkeK,lel (6.22)

th >t — M —uw) YreRkeKlcl (6.23)
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DD @ <MY D uw Vhe K (6.24)

jeJF ieV2 reR I€L
vt > i <1+ Y u VieJkeKleL (6.25)
JeEV? reR
Upg < inlrl Vre Rke Kle L (6.26)
eV
Upg < fojk Vre Rke K, le L (6.27)
jeJb
Uppy < fork Vre Rke K,le L (6.28)
jeJP
jeJb iev? rE€R IEL

Constraints (6.22), (6.23), (6.24), (6.25), (6.26), (6.27), (6.28), and (6.29) impose the
synchronization of primary and secondary vehicles. Constraints (6.22) state that a secondary
vehicle cannot depart from an RP with delivery demands before a primary vehicle loads it.
Constraints (6.23) ensure that a primary vehicle cannot depart from an RP with pickup
demands before a secondary vehicle loads it. Constraints (6.24) state that, if secondary
vehicle k& picks up from at least one customer, it must load at least one primary vehicle.
Constraints (6.25) state that, if primary vehicle | and secondary vehicle k are used to serve

node i € J (i.e., vy = 1 and Z 23, = 1), then [ and k must meet at some RP (ie.,
jev?
Zu”d = 1). Constraints (6.26), (6.27), and (6.28) imply that the reloading between

réER
primary vehicle [ and secondary vehicle k£ at RP r cannot happen unless both visit RP r

99



CHAPTER 6. EXTENSION

in either the delivery or pickup wave. Constraints (6.29) state that, if a secondary vehicle
k delivers to at least one customer, it must be loaded from at least one primary vehicle.

Finally, constraints (6.30) define the domain of the variables.

w, € {0,1} Yoe O; z €{0,1} VreR;

U €40,1} Yre R ke K,le Lyvy; €{0,1} Vie Jlel;

xiy €{0,1} V(i,j) e A'le Ly a3, €{0,1} V(i,j) € Ak € K;

th>0 YieViiel t99>0 YoeO,lel; 2>0 Yiel, t4,t% >0 VreRkcK.
(6.30)

Having presented the new 2E-LRP in Chapter 2 and proposed the decomposition-based
heuristic as outlined in Chapter 3, Chapter 4 presented numerical experiments on the four
sets of instances while Chapter 5 proposed three schemes to reduce the set of feasible so-
lutions and Chapter 6 extended the new 2E-LRP incorporating vehicle capacity, multiple
trips for vehicles and location decisions on terminals. Contrary to the first part of the thesis
where we addressed different aspects of an actual problem through the optimization model,
in the second part of the thesis, we do not aim to introduce a new routing problem but
the scope is to illustrate how a simple vehicle routing problem could be used to enhance
economic evaluation procedures of supporting policies for electric vehicles. In the following
chapter, we provide a framework that combines an optimization model with economic anal-
vsis in order to evaluate the effect of different freight policies for supporting electric vehicles
on an individual company’s logistics decisions (i.e., vehicle purchase and routing plans) in

response to the policies and determine the changes in social welfare.
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Chapter 7

A framework to evaluate policy options
for supporting electric vehicles in urban

freight transport1

Urban freight transport that serves trading activity is fundamental to sustaining current
lifestyles. The logistic costs of freight transport have a direct bearing on economic efficiency
and social welfare. Heavy freight vehicles cause more severe environmental and health
problems than passenger vehicles. Russo and Comi (2012) noted that urban freight vehicles
account for about 6%-18% of total urban transport but for about 19% of energy use and
for about 21% of CO, emissions. Urban freight vehicles are also responsible for a large
part of local transport-based pollution (IEA, 2013) such as nitrogen oxides (NO,), sulfur
dioxide (SO3), and particulate matter (PM). Cities clearly need to reduce pollution-intensive
freight traffic by managing logistic processes more efficiently and switching to low emission
vehicles. Electric vehicles (EVs) are being considered to replace internal combustion engine

vehicles (ICEVs) in order to mitigate the pollution caused by urban freight transport owing

1This chapter is part of a paper in co-authorship with Shiyu Yan, at the Department of Business and
Management Science, NHH, that has been accepted for publication in Transportation Research Part D:
Transport and Environment.
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to the former’s zero tailpipe emissions, although introducing EVs to the market will increase
emissions at the site of the power plants. A long-term shift to an economy that is compatible
with climate stabilization will require a vehicle fleet that is predominantly powered by
electric drives in the 2040-2050 timeframe (Mock and Yang, 2014).

The main challenges facing use of EVs in real-life urban freight transport are their
high acquisition cost, long recharging time, low capacity, and limited driving range. These
influence the vehicle purchase and routing decisions of logistics companies. Various national
and local policies have been implemented to provide fiscal incentives for encouraging the
purchase and use of EVs in freight transport (Taefi et al., 2016). Several examples of the

measures® are given below.

e Purchase subsidy on EV: Direct subsidy is given to reduce the EV purchase price.

e Limited access (zone fee) to congestion /low-emission zone: For the purpose of general-
ity, we define the term limited zone as representing a low-emission zone or congestion
zone with restricted entry for high-emission or heavy vehicles (e.g., a fee charge or

other deterrent) in order to reduce emissions or congestion.

e Vehicle taxes with exemptions for EVs: There are two main types of vehicle taxes.
The vehicle registration tax is paid for the first registration. The annual circulation
tax is paid to use the vehicle on the road. With an appropriate discount rate, these
two taxes can be designed to work in the same way. EVs can be exempted from at

least one of the vehicle taxes.

We consider an individual logistics company that provides delivery services for its customers.

In response to these policies, the logistics company would adapt its vehicle fleet composition

2The measures are commonly used in European cities for promoting EVs. With a focus on vehicle
specific measures, we choose purchase subsidy for EVs, free access to the limited zone (congestion/low-
emission zone) for EVs and vehicle taxes with exemptions for EVs for evaluation purpose. In terms of
providing free access for EVs and imposing limitations for ICEVs, the concept of "limited zone" can be
further generalized as parking lots/bus lanes/low-noise zones /pedestrian zones/areas with toll.
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and vehicle routing plan in order to minimize the total logistic costs. This can have an
influence on changes in the external costs resulted from congestion, local air pollution and
CO, emission, and the overall social welfare.

Despite growing research interest in urban freight transport, few studies have addressed
the impacts of EV-supporting policies on logistics and society. Previous empirical eco-
nomic studies on relevant policy evaluation have usually focused on upfront purchase cost
and assumed fixed annual routing costs for vehicles. In this study, we illustrate how an
optimization model (i.e., a vehicle routing problem) could be used to enhance economic
evaluation procedure of EV-supporting policies. In contrast to the previous empirical eco-
nomic research, the optimization model provides an opportunity to study how the policies
can affect a logistics company’s decisions on both vehicle purchase and routing. As we dis-
cuss in the literature review in Section 7.1, research is needed to explore the relationships
between 1) policy measures, 2) individual company’s actions in response to the measures,
3) the effect on operational (routing) costs, and 4) the resulting changes to environmental
impacts and welfare. As a contribution to cover this gap, we establish a framework that
combines an optimization model with economic analysis to evaluate the potential opera-
tional, financial, and environmental effects of using EVs in urban freight operations. The
framework focuses on obtaining an individual company’s expected response to policies and
corresponding changes in externalities and welfare.

We develop different scenarios in which logistics companies are exposed to policy options
that support EVs: The purchase subsidy for EVs, vehicle taxes with exemptions for EVs,
and limited access (zone fee) to the limited zone with exemptions for EVs. We establish an
optimization model to determine the optimal fleet for the logistics company that transports
the given demands of a single product from multiple dispersed depots to a known set of
customers located in or outside a congestion /low-emission zone using two types of vehicles:
EVs and ICEVs. The two types of vehicles differ in driving range, capacity, acquisition cost,

energy cost, and entrance fee to congestion /low-emission zones. The aim of the company’s
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logistic problem is to decide the vehicle fleet composition and routing while minimizing the
fixed usage costs, routing costs, and entrance fees of vehicles to the congestion /low-emission
zone. We term the problem as the zone-dependent vehicle routing problem with a mized
fleet. Based on the results of solving the optimization model, changes in the externalities
produced by EVs and ICEVs and in the total welfare are calculated, and the influence of
EV-supporting policies is calculated.

We tested the proposed framework with numerical experiments. The data are generated
for a transport network under different scenarios. We also performed a sensitivity analysis
to determine the robustness of the results with different tvpes of vehicles and transport
networks. Based on the results from our numerical experiments, the purchase subsidy, zone
fee, and vehicle taxes were found to increase the EV share in the vehicle fleet composition
of the logistics company, decrease the distances traveled by ICEVs, and reduce externalities
(i.e., congestion, local air pollution and CO, emission) and improve social welfare. In the
numerical experiments, the zone fee had a larger impact on improving social welfare. This
is because the zone fee significantly reduces the external cost by preventing emissions and
congestion inside a zone with higher marginal external costs from a high population, dense
pollution, and heavy traffic. However, in some cases in the sensitivity analysis, the zone fee
may increase external costs by forcing ICEVs to travel around the zone to reach customers
on the other side of the zone, which may lead to more emissions from fuel combustion or
congestion. Finally, local factors at the company and city levels, such as the vehicle type
and transport network, were found to also be important for designing policies that efficiently
support EV for urban logistics.

The rest of this chapter is organized as follows. Section 7.1 reviews the related literature.
Section 7.2 proposes a framework for evaluating urban freight policies. Section 7.3 presents

the numerical experiments. Section 7.4 concludes the chapter.
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7.1 Literature review

In this section, we review relevant research on both economic and logistics research for the
use and evaluation of EV policies in the context of urban freight transport.

Traditionally, evaluation of transport policies in urban freight transport involves social
and economic issues (Lagorio et al., 2016). Hosoya et al. (2003), Anderson et al. (2005),
and Quak and De Koster (2006) performed general assessments of policies that affect urban
freight transport. Hosoya et al. (2003) studied Tokyo and used a survey to evaluate a number
of freight policies: bans on large trucks, road pricing, and the construction of logistic centers.
Anderson et al. (2005) provided an ex ante assessment of regulation measures in UK cities,
including time windows and charging. Quak and De Koster (2006) addressed regulations
based on time windows. They reviewed practices in Dutch cities and assessed possible
changes to current policy.

However, this is still an evolving field of research because of the greater sensitivity
to environmental issues, new policy measures, and introduction of new technologies. In
the case of promoting the purchase and use of EVs, several types of policies are involved
(e.g., access to low-emission zones, exemptions from vehicle taxes, and purchase subsidy).
Taefi et al. (2016) reviewed policy measures directed at emission-free urban road freight
transport. They assessed and compared policies against other prospective options by multi-
criteria analysis. In the previous economic research, evaluation of EV-supporting policies
mainly focused on ex post analysis based on empirical data and econometric approaches,
such as the consumer choice model (Lee et al., 2016; Greene et al., 2014), fixed effect model
(Chandra et al., 2010; Gallagher and Muehlegger, 2011), and other ordinary least squares
models (Sierzchula et al., 2014; Diamond, 2009; Jenn et al., 2013; Jiménez et al., 2016; Yan
and Eskeland, 2016).

From the perspective of logistics, the literature on urban freight transport does not yet
provide an ample discussion of specific policy measures to support EVs in urban freight

transport. The main focus is on the use of EV in the context of heterogeneous vehicle
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routing problem. Survey papers on heterogeneous vehicle routing problems are provided by
Hoff et al. (2010); Baldacci et al. (2008); Kog et al. (2016). The heterogeneous vehicle routing
problem generally considers a limited or unlimited fleet of vehicles with different attributes
(e.g., capacity, fixed cost, and driving range) in order to serve a set of customers with given
demand. The objective is to decide the vehicle fleet composition and routes while minimizing
the vehicle routing and usage costs. Juan et al. (2014) extended the heterogeneous vehicle
routing problem to consider multiple driving ranges for vehicles. The multiple driving range
variant implies that the total distance traveled by each type of vehicle is limited and is
not necessarily the same for all vehicles. This problem arises in routing of EVs (Schneider
et al., 2014; Goeke and Schneider, 2015) and hybrid electric vehicles for which the driving
range is limited due to limited capacity of batteries. Sassi et al. (2014) introduced a new
real-life heterogeneous vehicle routing problem where the mixed fleet consists of ICEVs and
heterogeneous EVs with different battery capacities (i.e., driving range limit) and fixed costs.
Partial recharging for EVs at available recharging stations during trips is allowed, as well as
intermittent recharging at the depot. The main challenges with using EVs are their limited
driving range and considerably long charging time. The limited driving range will likely
remain the main obstacle to using EVs in the medium term as long as there is no global
infrastructure for replacing batteries or direct power induction to EVs during their trip.
Although the driving range limit of EVs make them less practical for use in real life,
advantages like free or cheap access to a congestion zone provide an incentive to use them
as an alternative fleet. The zone-dependency aspect of the problem that we discuss in
this chapter, is similar to site dependency in the site-dependent vehicle routing problem
introduced by Nag et al. (1988). In their problem, different types of vehicles could only
visit their preassigned customers; that is, no vehicle traveled from one customer to another
customer unless both customers were assigned to the same type of vehicle. The difference

between the site-dependent vehicle routing problem and our problem is that, in the latter,

3http:/ /www.isoe.de /english /projects /futurefleet.htm
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the customers are not preassigned to each type of vehicle. There are two types of customers
with regard to their geographic location: inside or outside congestion /low-emission zones.
ICEVs are charged a zone fee when they cross the congestion/low-emission zone. Hence,
customers of both types can be potentially visited by each type of vehicle.

In contrast to economic empirical research focusing on national or household data, op-
timization models, used in the logistic problems, provide a chance to study the economic
impacts of EV policies on freight transport at a company level. The literature has scarcely
addressed a research that explores the relationships between 1) policy measures, 2) likely
individual company’s actions in response to the measures, 3) effects on operational (routing)
costs, and 4) changes to the environmental impact and welfare. The present study estab-
lishes a framework combining an optimization model with economic analysis for evaluating

EV-supporting policies and investigating these relationships.

7.2 A framework for policy evaluation

To evaluate the impacts of different EV-supporting policy options on the logistic costs of
the company and welfare, we propose a framework that combines an optimization model
with economic analysis, as shown in Figure 7.1. First, we develop scenarios for comparison
based on policies that support the purchase and use of EVs: The purchase subsidy for
EV, limited access (zone fee) to congestion/low-emission zones with exemptions for EVs,
and vehicle taxes with exemptions for EVs. Second, we evaluate policy implementations
and adjustments for their effect on a company’s decision on vehicle fleet composition and
routing. Finally, we evaluate the influence of company’s optimal decisions on the tax revenue
of the government, customer and producer surpluses, and externalities such as emissions and
congestion. Then, we calculate the total change in welfare in order to evaluate the impacts

of policies on society.
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Figure 7.1: Framework for evaluating the impacts of policies on the logistic costs of a
company and social welfare

7.2.1 Scenarios

We consider three policies owing to their comparable efficiencies and social feasibility for
supporting EV adoption (Taefi et al., 2016): The purchase subsidy for EV, limited access
(zone fee) to congestion/low-emission zones with exemptions for EVs, and vehicle taxes
with exemptions for EVs. A baseline scenario and three primary scenarios are established,

as presented below.

e Baseline: no purchase subsidy, no vehicle taxes, and no zone fee charged for both EVs

and ICEVs.
e Scenario 1: implementation of purchase subsidy on vehicle prices for EVs.
e Scenario 2: implementation of a zone fee with exemptions for EVs.

e Scenario 3: implementation of vehicle taxes with exemptions for EVs.
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7.2.2 Optimization model

In this section, we describe a company’s logistic problem and provide an optimization model.
We consider an individual logistics company? that provides delivery service for a single
product within a single-echelon distribution system. The distribution system consists of
two levels. The first level consists of depots, and the second level consists of customers.
Each customer is visited once. Each customer is given a deterministic delivery demand, and
the splitting of demands is not permitted. The depots are uncapacitated. Each vehicle visits
the customers in a tour starting and ending at the same depot. Figure 7.2 illustrates the
two levels. The black circles represent the customers. The triangles represent the depots.
The mixed fleet of vehicles consists of EVs and ICEVs. The two types of vehicles differ
regarding the driving range, cargo capacity, acquisition cost, energy cost, and zone fee to
access the limited zone. We assume that both types of vehicles move at a constant speed
that is the same for both inside and outside the limited zone. The EVs are fully charged at
depots. We did not consider EV recharging during a daily delivery service because the EVs
are being used by a logistics company for short-distance deliveries in an urban area.

The urban area in the problem is divided into two areas: outside and inside the limited
zone. The area inside the dashed line circle in Figure 7.2 represents the boundary of the
limited zone. The marginal external cost is higher for driving vehicles inside the limited
zone than outside owing to the high-density population, heavy traffic, and urban landscape.
The aim of the problem is to decide the vehicles routes and fleet size for EVs and ICEVs
while minimizing the vehicle routing costs, purchasing costs, and entrance fee to the limited
zone. We term the problem as the zone-dependent vehicle routing problem with a mixed

fleet.

4We focus on a logistics company that provides delivery service for products such as milk or newspapers,
where the vehicle routing plan is the same everyday.
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Figure 7.2: Illustration of the first and second levels

Below, we present an arc-based mixed-integer linear programming (MILP) formulation
for the zone-dependent vehicle routing problem with a mixed fleet. The time frame of
the optimization model is set to one day. The problem is defined on a directed graph
G(V, A), where V represents the set of nodes and A is the set of arcs. V = D U J, where
D is the set of depots and J is the set of customers. V¢ is the subset of nodes i € V
located outside the limited zone. The set of arcs A includes arcs between node ¢ € V
and node 5 € V, excluding the arcs between node ¢ and j, Vi,5 € D. It is defined as
A={(i,7)]i,5 € V\{(i,j)|i,j € D}}. d;; is the traveling distance for traversing arc (7, j),
Y(i,j) € A. AZ C A is the subset of arcs (,j) € A that connect two nodes i,j € V°
without crossing the limited zone. «; is the proportion of arc (i,j) € A that is located
inside the zone.

D, is the given demand of customer j € J. Kpgy is the set of EVs. Kjcpy is the set
of ICEVs. Q. is the capacity of vehicle k € Kyt € {EV,ICEV}. A fixed acquisition
cost fr including vehicle registration tax is assigned to vehicle k € K;,t € {EV,ICEV}.
A purchase subsidy Sy is assigned to vehicle k € Kt € {EV,ICEV}. A fixed annual
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circulation tax Cj is assigned to vehicle k € Ky, t € {EV, ICEV}. Py is the energy price,
and 7T, is the energy tax per liter for ICEVs and per watt-hour for EVs for vehicle & €
Kyt € {EV,ICEV}. & is the energy efficiency (in Wh/km for EVs and L/km for ICEVs)
for vehicle k € K, t € {EV,ICEV}. Fj is the entrance fee paid by vehicle k € Kjopy if it
crosses the limited zone at least once (i.e., if the trip for vehicle k € K;cpy includes at least
one arc (i,j) € A\ A?). F is paid by the ICEV only for its first entrance to the limited
zone. Each vehicle k € Kgy has a limited driving range Ry.

The decision variables are as follows. x;, € {0, 1} is the routing variable. It is equal to
unity if arc (7, j) is traversed by vehicle k,Vk € K, (i,j) € A and zero otherwise. Binary
variable y, € {0,1} is defined as equal to unity if the route performed by vehicle k € K
consists of at least one arc crossing the zone and zero otherwise.

The sets, parameters, and decision variables are summarized in Table 7.1.
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Table 7.1: Sets, parameters, and variables used in the MILP model for the zone-dependent
vehicle routing problem with a mixed fleet

Sets and parameters Description

D set of depots

J set of customers

V=DulJ set of all nodes

Vo subset of nodes i € V located outside the limited zone

A set of arcs

A7 c A subset of arcs (4,7) € A that connect two nodes 7,5 € V°
without crossing the limited zone

D; demand of customer j, Vj € J

di; traveling distance for traversing arc (¢, 7), V(¢,7) € A

5 proportion of arc (7, §) located inside the zone, V(4,5) € A

Kgv set of EVs

Kicev set of ICEVs

K = Kpyv UKjcrv
Qp

set of all vehicles
capacity of vehicle k € K;,t € {EV,ICEV}

fx acquisition cost of vehicle including
vehicle registration tax, k € K, t € {EV, ICEV}
Sk subsidy on purchase price of vehicle, k € K, t € {EV,ICEV}
Cr, annual circulation tax of vehicle k € K;,t € {EV,ICEV}
Fi entrance fee paid by vehicle k € Kjopy entering the limited zone
Ry, driving range limit for vehicle k € Kgy
Pr. energy price per liter for ICEV and per watt-hour
for EV for vehicle k € Ky, t € {EV,ICEV}
Te energy tax per liter for ICEV and per watt-hour
for EV for vehicle k € Ky, t € {EV,ICEV}
o energy efficiency for vehicle k € Ky, t € {EV,ICEV}
M a sufficiently large number
Variable Description
zii, € {0,1} binary variable equal to 1 if arc (4, 7) is traversed
by vehicle k, Vk € K, (4,7) € A, 0 otherwise
yp € {0,1} binary variable equal to 1 if the route performed by vehicle k € K

consists of at least one arc crossing the zone, 0 otherwise
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mlnz Z (P + Ti)Ex zg$z]k+zzz fr + Cr — Sk)xsjr + Z Fupe  (7.1)

keEK (i,7)€A keK i€eD jeJ k€EKicEV

The objective function (7.1) consists of three components: the routing costs, fixed costs
of vehicles, and sum of entrance fees to the limited zone for ICEVs. The costs in the objective
function are calculated on daily basis. The constraints can be classified as follows: routing
constraints, vehicle capacity, vehicle range, and vehicle symmetry removal.

Constraints

€D jeJ
i€V keK
i€V i€V
DY 2 <IS|-1 VS C L ke K (7.5)
€S jes

Constraints (7.2), (7.3), (7.4), and (7.5) are routing constraints. Constraints (7.2) impose
that no vehicle starts from more than one depot. Constraints (7.3) state that each customer
is visited by exactly one vehicle. Constraints (7.4) state that, if a vehicle enters node j € V|

it must exit from it. Constraints (7.5) eliminate sub-tours.

(i,5)€A\AZ

Constraints (7.6) ensure that y is equal to unity if the route performed by vehicle k € K
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consists of at least one arc (i,j) € A\ AZ (i.e., Z Tie > 1).
(i,5)€A\AZ

Y Diwip < Qe VhkeK (7.7)
eV jed
Constraints (7.7) ensure that the demand volumes of customers must respect the vehicle

capacity.

Z dz']wijk < Ry vk ¢ Kgv (78)
(i,7)€A

Constraints (7.8) limit the vehicle range and ensure that the total duration of a tour

performed by an EV must respect its driving range limit.

DD w0 i Vhe Ko # KLt e {EV,ICEV} (7.9)

i€D jev i€D jev

Constraints (7.9) avoid vehicle symmetry. These constraints are valid because the fleet
of vehicles for each type is identical. Constraints (7.9) state that vehicle k& can only be
dispatched if vehicle k — 1 has already been dispatched. K/ is the first element of K;,t €
{EV, ICEV}.

zie € {0,1} V(i,j)) € A ke K; y.€{0,1} Vke K (7.10)

Finally, constraints (7.10) define the nature of the variables.

7.2.3 Economic analysis

Following the least cost principle, the optimal decisions of an individual logistics company
regarding vehicle fleet composition and routes with a mixed fleet of EVs and ICEVs are

determined in response to different EV-supporting policy options. The proposed optimiza-
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tion model provides rational decisions of an individual company regardless of unobserved
factors, such as personal preferences of the decision makers. The optimal decisions of a com-
pany may change according to policy adjustments under different policy scenarios in Section
7.2.1. Together with changes in the vehicle fleet composition and routing plan, such deci-
sions change the total cost of the company (i.e., surplus), tax revenue of the government,
energy consumption, and thus the emissions of different pollutants. Such responsiveness

changes the social welfare as given in the following expression:

AW = AS + AR — AEC (7.11)

AW is the change in social welfare that is induced by policy changes and the company’s
responses. AS is the sum of changes in the customer surplus AC'S and producer surplus

APS in terms of the delivery service.

AS = ACS + APS (7.12)

The customer surplus is the total difference between the willingness to pay WP and

service price for all customers P.,.

ACS = AWP — AP, (7.13)

The producer surplus is the difference between the service price for the producer P, and
the total delivery cost T'C' (i.e., value of the objective function in the optimization model)

for the logistics company.

APS = AP, — ATC (7.14)

In order to focus on the company side, we assumed that the price that the customer
pays and price that the producer receives are the same: F.=F,. Any taxes imposed by

the government are treated as an internal business cost for the company in the short run.
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Therefore, the service price does not change. The customer’s willingness to pay does not
change either in the short run. Finally, we obtain the change in the total surplus as the

company’s total delivery cost.

AS = —ATC (7.15)

AR is the change in government tax revenues, including changes in the vehicle purchase
subsidy APS, vehicle taxes AVT, fuel tax AFT, and zone fee for getting access to the
limited zone ALEZ.

AR =APS +AVT + AFT + ALEZ (7.16)

The proposed optimization model is based on a daily calculation. The purchase subsidy
and vehicle taxes are converted to a daily cost with a discount rate of 0.05 and lifetime of

10 x 365 days. The zone fee and fuel tax are daily costs for using EVs and ICEVs.

APS = AY N S (7.17)

keK ieD jeJ

AVT = A YN (fu+ Co)ai (7.18)

keK ieD jeJ

kEK (i,7)€A
ALEZ = A Fiyr (7.20)
kEK
AFEC is the change in the total external cost of climate change, local air pollution and
congestion. e}, Vk € Kt € {EV,ICEV},j € {I,0} is the marginal external cost per liter
of fuel for an ICEV or per watt-hour of electricity for an EV, where [ stands for inside the
limited zone and O stands for outside the limited zone. «;; is the proportion of arc (i,j) € A

located inside the zone. & is the energy efficiency for vehicle k € K, t € {EV,ICEV}.
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AFC is calculated as follows.

AEC = AZ Z ozweké'kdwxwarAZ Z — aj)ey, Skdwxwk (7.21)

kEK (i,j)€EA kEK (i,j)EA

The first component in Equation (7.21) represents the change in the external cost inside
the limited zone, and the second component relates to the change in the external cost outside
the limited zone.

The marginal external costs are calculated differently for EVs and ICEVs. The costs of
three externalities are considered: climate change eﬂ;, local air pollution egi, and congestion

63?;.
el = el eyl tesh Yhke K, te{BV,ICEV},je{l 0} (7.22)

e Climate change: The CO, emissions of driving (per liter) an ICEV come from the
fuel combustion, while the CO, emissions of EV (per kW h) result from the electricity
production depending on the energy source. The impact of CO, emissions from road
vehicles on global warming is independent of the timing and location. Therefore, the
marginal damage costs of CO, from inside and outside the zone are the same: e} =

el Vk € Kt € {EV,ICEV}.

e Local air pollution: Local emissions (NO,, SOy, PM, NMVOC, CO, for gasoline) from
driving an ICEV (per liter) come from fuel combustion, while emissions (NH3, NO,,
SO,, PMy5, NMVOC, COy) from driving an EV (per kWh) result from electricity
production. Local emissions give rise to air pollution and cause cardiovascular and
respiratory diseases. Emissions are released from high stacks. Within-country exter-
nalities of power plants are less dependent on the local population density, whereas
externalities of fuel combustion in cars are strongly site-specific. The emissions from
ICEVs have higher damage cost inside the limited zone, which is usually highly popu-

lated, than outside the zone: eylopy > €29 5. Emissions from electricity production
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only affect the residents around the power plant, which is usually located outside of
urban areas. Thus, for urban areas inside and outside the zone, the marginal costs of

local pollution resulting from electricity production are the same: eshy = €25y

e Congestion: External costs of congestion occur when users plan their mobility in-
dividually but the required resource (i.e., the infrastructure) is too scarce to fulfil
the demand mobility (Jochem et al., 2016). For both EVs and ICEVs, the con-
gestion cost per kilometer are the same, but the congestion cost inside the lim-
ited zone, which usually has heavy traffic, is higher than outside the zone: es. >
st \Vk € Kt € {EV,ICEV}. To maintain unit consistency in the equations, the
marginal congestion cost (per kilometer) can be converted to the marginal congestion

cost (per liter for ICEVs and per kW h for EVs) according to the energy efficiency &.

7.3 Numerical experiments

As an application of the proposed framework, we implemented numerical experiments using
data generated for a transport network and the policy scenarios provided in Section 7.2.1
in order to analyze the impact of different policies on the optimal decisions of a logistics
company. We also performed a sensitivity analysis to determine the robustness of the results
with different types of vehicles and transport networks. The heterogonous vehicle routing
problems are hard optimization problems. Because of the complexity of the problem, only
small-size instances can be solved optimally by exact solvers, and for large-size instances
obtained from real transport networks, a solution approach that can provide high-quality
solutions would be required in order to fairly compare the results under different policies.
Here, we do not provide a solution approach for the problem, but we aim to implement the
proposed framework on a small transport network in order to have a fair comparison among
the optimal solutions obtained by the optimization model under different scenarios. The

computations for the MILP formulation (i.e., equations (7.1)-(7.10)) were coded in AMPL
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by using the solver Gurobi 6.5 on a computer with 24 CPU cores and 35 GB of RAM. All

of the instances were solved optimally within a time limit of 12 hours.

7.3.1 Problem instances

In this section, we provide the problem instances. All instances were generated for a trans-
port network consisting of 15 customers that are scattered on a square plane with a single
depot. The instances differed regarding the purchase subsidy, vehicle taxes, and zone fee
for the different scenarios provided in Section 7.2.1 (i.e., each instance corresponds to each
scenario with the same transport network but with different values of parameters Sk, fi, Ck,
and F}, in the objective function of the optimization model). Figure 7.3 shows an example of
a feasible solution for the transport network. The black circles represent the customers. The
triangle represents the depot. The area inside the dashed line circle in Figure 7.3 represents
the limited zone. The customers inside the limited zone are distributed uniformly. The
dotted lines represent the routes performed by EVs and the solid lines represent the routes
performed by ICEVs. The customer demands were generated from a uniform distribution
between 15% and 25% of the ICEV capacity: d; ~U(0.15* Qrepv,0.25% Qropy). In order

to replicate the experiments, the distance matrix and demands are available upon request.

o Customer

A Depot

--------- Route performed by EV

—Route performed by ICEV

Figure 7.3: Feasible solution for the transport network
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The selected vehicles for urban freight transport were Renault Kangoo Maxi ZE for
EVs and Renault Trafic Energy dci 95 for diesel vehicles. Table 7.2 provides the vehicle
characteristics that are collected from the official website of the car manufacturer. Header
Price corresponds to the purchase price of the vehicle. Header Playload represents the
maximum load weight (in kg) that each vehicle can carry. Header Tailpipe CO, corresponds
to the amount of COy (g/km) emitted by each vehicle. Header Energy efficiency represents
the amount of energy consumed per kilometer by each type of vehicle (Wh/km for EV and

L/km for diesel vehicles).?

Table 7.2: Vehicle characteristics

Type EV ICEV
Model Kangoo Maxi ZE Trafic Energy dci 95
Price 22650 £ 25750 £
Playload 650 kg 1040 kg
Tailpipe CO, 0 g/km 164 g/km
Energy efficiency 150 Wh/km 0.064 L/km

We converted taxes/costs into a daily basis with an annual discount rate of 5%. Three
types of policies were set at three pounds per vehicle per day® for the convenience of compar-
ison. For further analysis on the primary scenarios in Section 7.2.1, we generated additional
sub-scenarios regarding the related amount of taxation. The amount of taxation (i.e., the
vehicle purchase subsidy, vehicle taxes, and zone fee) was changed from one to ten pounds
in Scenarios 1, 2, and 3. We compared all scenarios to the baseline for welfare changes.

In this study, we chose the UK as an example to set the parameters in the optimization

model and economic analysis. The data from IEA (2017) was used in order to obtain the

®In sensitivity analysis, we also use a smaller diesel vehicle ( Kangoo Mazi deci 90) with same car model
and a larger diesel vehicle (Master Energy dei 110).

®These are reasonable amounts according to the fiscal incentives offered in European countries like the
UK and France.
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prices and taxes of electricity and diesel for the UK in 2014. The marginal external costs
per unit of electricity are calculated by Yan (2017) based on the energy mix of electricity
generation (IEA, 2016), emission factors (Buekers et al., 2014) and social costs of pollu-
tants (Markandya et al., 2010) in UK. The marginal external costs per unit of diesel are
calculated based on emission factors and social costs of pollutants by Parry et al. (2014).
The congestion cost was taken from Maibach et al. (2008). We regard the terms inside
the limited zone and outside the limited zone as urban and suburban, respectively, that are
defined for calculating different external costs of congestion in Maibach et al. (2008). The
marginal cost of emissions or congestion inside the limited zone was set as 50% higher than

that outside the zone. The details of the data are presented in the Table 7.3.

Table 7.3: Data for variables

Variable Data
Electricity price 0.1556 £/EWh
Electricity tax 0.0074 £/EWh
Diesel price 1.3350 £/L
Diesel tax 0.8020 £/L
Marginal external cost of CO, emission (electricity generation) 0.0084 €/kWh
Marginal external cost of CO, emission (diesel combustion) 0.2024 €/L
Marginal external cost of local air pollution (electricity generation) 0.0045 €/kWh
Marginal external cost of local air pollution (diesel combustion) 0.2177 €/L

Marginal external cost of congestion for diesel and electric vehicles 0.0100 €/km

7.3.2 Computational results

We tested the proposed framework by using the data provided in Section 7.3.1 under the
policy scenarios provided in Section 7.2.1. Table 7.4 provides the results on a daily basis
obtained by solving the optimization model under different scenarios. Header Number rep-
resents the optimal number of vehicles for each type obtained by solving the optimization
model. The numbers in parentheses refer to the number of ICEVs entering the limited

zone. Columns Distance (in) and Distance (out) represent the total distance (in kilome-
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ters) traveled by each type of vehicle inside the limited zone (i.e., Z Z a5, V€
kEK: (4,5)EA
{EV,ICEV}) and outside (ie., Y Y (1 —ay)diai ¥t € {EV,ICEV}), respectively.
keK (ij)€A
Header Total cost represents the sum of the routing costs, fixed usage cost of vehicles, and

entrance fee to the limited zone (i.e., the optimal value for the objective function of the
optimization model). Headers AR, AEC, and AS represent the changes in tax revenues,
external costs, and producer surplus, respectively. AW is the change in total welfare for
different scenarios.

When the incentive of three pounds per day (net present value) was provided, the pur-
chase subsidy on EVs and zone fee on ICEVs increased the share of EVs in the vehicle fleet
composition. With the purchase subsidy and zone fee, two EVs were purchased in order
to replace one diesel car. This means that the operational cost (i.e., routing cost and zone
entrance fee) saving of replacing two EVs by one diesel vehicle exceeded the extra purchasing
cost of two EVs. The vehicle taxes on ICEVs made no difference to the company’s logistic
decisions.

With the purchase subsidy (Scenario 1) and zone fee (Scenario 2), the total distance
(i.e., either inside or outside the limited zone) covered by all EVs increased almost twofold,
while the average distance per EV decreased. For the diesel vehicles, the opposite changes
were observed. EVs are limited by their driving range, so ICEVs have to visit customers
out of EVs’ driving ranges. In particular, without the zone fee, all diesel vehicles crossed
the limited zone in order to travel the shortest delivery distance. With the zone fee for
ICEVs and fee exemptions for EVs (Scenario 2), only one out of two diesel vehicles entered
the limited zone. In order to avoid paving the zone fee, the diesel vehicles needed to travel
around the zone to reach the customers on the other side of the zone, which increased the
total traveling distance. Still, the zone fee did not prevent all diesel vehicles from entering
the limited zone. For some diesel vehicles, paying the zone fee to go through the zone led
to a lower total cost than traveling around the zone to reach customers on the other side.

The purchase subsidy and zone fee reduced the use of ICEVs both inside and outside the
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zone. Notably, they reduced the inside-zone distance traveled by ICEVs by more than 50 %
compared to the baseline. The external costs of emissions and congestion were decreased by
more than 10%. Because taxes and subsidies are transferred within the society, the change
in welfare largely depends on changes in the external cost. As one can see from the results
in Table 7.4, the zone fee produced the largest improvement in welfare.

The vehicle taxes were not observed to have any impact on the company’s decisions. To
directly compare policies, the effects of different amounts of taxation on the resultant welfare
were compared.” In Figure 7.4, the horizontal axis represents the amount of tax (net present
value) for all three policies from one to ten pounds per day. With a daily subsidy/tax rate
of two or more than two pounds, the zone fee and purchase subsidy led to increase EV share
and the total social welfare was improved. With a daily subsidy/tax rate of four pounds,
these two policies were stable, and no further change was induced, while the vehicle taxes
started to impact company’s logistic decisions. Above four pounds, further strengthening of
EV policies failed to promote the use of more EVs or improve the welfare. This was due to
the technical performances of the vehicles rather than the incentives provided by policies.
Overall, the zone fee improved the welfare, while vehicle taxes and purchase subsidy had

the same level of welfare improvement.

Table 7.4: Impacts of different EV-supporting policy options on company’s decisions and
social welfare

Scenario Type Number Distance (in) Distance (out) Total cost AS AR  AEC AW

Baseline EV 2 135.43 346.05 195.23
ICEV  3(3) 275.47 1131.83

Scenario 1 (purchase subsidy) EV 4 231.25 606.65 186.50 8.73 -20.76 -1426 2.23
ICEV  2(2) 122.94 1106.06

Scenario 2 (zone fee) EV 4 231.25 606.65 201.72 -6.49 -5.63 -17.94 5.83
ICEV  2(1) 104.28 1127.26

Scenario 3 (vehicle taxes) EV 2 135.43 346.05 204.23 -9.00 9.00  0.00  0.00
ICEV  3(3) 275.47 1131.83

"details are provided in Tables 7.5-7.7 in the appendix
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Figure 7.4: Welfare changes corresponding to changes in the daily tax rate

7.3.3 Sensitivity analysis

The results of the sensitivity analysis are presented here. We focused on the fact that a
logistics company might have different types of vehicles or operates in different cities. We
used the scenarios in Section 7.2.1 to determine the results of changes in EV technology ®,
the transport network?, substitution between vehicles by comparison to a smaller diesel
vehicle, and changes in customer demand'®. All results are provided in Tables 7.8-7.12 in
the appendix.

For each individual case in the sensitivity analysis, the total social welfare hardly im-
proved after the purchase subsidy, zone fee, and vehicle taxes were implemented. For the
within-scenario comparison to the main results (i.e., the results provided in Table 7.4), the

current policies designed for promoting the use of EVs were less effective according to the

8The driving range was increased from 258 to 300 km, or the capacity was increased by 25%.
9Distances between customers were reduced by 50%.
10The customer demand was increased by 20%.
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sengitivity analysis. As one can see from the results in Tables 7.8-7.10, technological im-
provements reduced the relative disadvantage of EV (i.e., limited driving range) in the cases
of extended range, enlarged capacity, and smaller diesel vehicles. In these cases, the EV
share in the vehicle fleet composition increased compared to the main results. As presented
in Tables 7.11-7.12, local factors (e.g., short distances between customers) in favor of EV
worked the same way as technological improvements.

In a few cases with the zone fee, the social welfare decreased while the vehicle fleet
composition did not change. The zone fee increased the total travel distance for diesel

vehicles, which led to a higher external cost and lower welfare.

7.4 Conclusions

EVs are often considered as a critical solution to climate stabilization. For an individual
logistics company, costs and technical disadvantages limit the purchase and use of EVs.
EV-supporting policies provide strong incentives for EVs in urban freight transport, which
is responsible for a significant amount of CO; and local pollutant emissions. Only a small
body of literature has focused on how EV policies affect logistics companies and therefore
society. To throw light on the relevant issues, we examined common vehicle specific EV-
supporting policies: the purchase subsidy for EVs, vehicle taxes with exemptions for EVs,
and limited access (zone fee) to a low-emission /congestion zone with exemptions for EVs.
We developed a framework that combines an optimization model with economic analysis to
evaluate the effects of EV-supporting policies on an individual company’s optimal decisions
regarding vehicle fleet composition and routes, external costs of emissions and congestions,
and social welfare.

We carried out numerical experiments using data generated for a small transport network
under different policy scenarios. Based on the results from the numerical experiments, the

purchase subsidy on EVs, zone fee on ICEVs, and vehicle taxes on ICEVs increased the EV
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share in the vehicle fleet of the logistics company and decreased the distances traveled by
ICEVs, which reduced externalities and improved social welfare. In the considered scenarios,
the zone fee was more effective at improving social welfare. This is because the zone fee
significantly reduces the external cost by preventing emissions and congestion inside the
limited zone. However, in some cases of the sensitivity analysis, the zone fee increased
external costs by forcing ICEVs to travel around the zone to reach customers on the other
side, which may lead to more emissions from fuel combustion or congestion. The vehicle
taxes and subsidy had the same influences on the company and society, although they
performed differently at low tax/subsidy rates. Lastly, the sensitivity analysis showed that
local factors at the company and city levels, such as the vehicle type and transport network,

are also important for designing efficient EV-supporting policies for urban logistics.
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7.5 Appendix: details of results obtained from tax changes

and sensitivity analysis

Tax changes

Table 7.5: Impacts of different EV-supporting policy options with different purchase subsidy

Scenario Subsidy Type Number Distance (in) Distance (out) Total cost AR AEC AS AW

Scenariol.10 10 EV 4 231.30 606.70 158.50 -48.72 -14.26 36.73 2.27
ICEV  2(2) 122.90 1106.10

Scenariol.9 9 EV 4 231.30 606.70 162.50 -44.72  -14.26  32.73 227
ICEV  2(2) 122.90 1106.10

Scenariol.8 8 EV 4 231.30 606.70 166.50 -40.72  -14.26 2873 2.27
ICEV  2(2) 122.90 1106.10

Scenariol.7 7 EV 4 231.30 606.70 170.50 -36.72  -14.26 24.73 227
ICEV  2(2) 122.90 1106.10

Scenariol.6 6 EV 4 231.30 606.70 174.50 -32.72  -14.26 20.73 227
ICEV  2(2) 122.90 1106.10

Scenariol.5 5 EV 4 231.30 606.70 178.50 -28.72 -14.26  16.73 2.27
ICEV  2(2) 122.90 1106.10

Scenariol.d 4 EV 4 231.30 606.70 182.50 -24.72 -14.26 12,73 227
ICEV  2(2) 122.90 1106.10

Scenariol.3 3 EV 4 231.30 606.70 186.50 -20.72 -14.26 873 227
ICEV  2(2) 122.90 1106.10

Scenariol.2 2 EV 4 231.30 606.70 190.50 -16.72 -14.26 4.73 227
ICEV  2(2) 122.90 1106.10

Scenariol.1 1 EV 2 135.40 346.10 193.23 -2.00  0.00 2.00  0.00
ICEV  3(3) 275.50 1131.80
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Table 7.6: Impacts of different EV-supporting policy options with different zone fees

Scenario Fee Type Number Distance (in) Distance (out) Total cost AR AEC AS AW

Scenario 2.10 10 EV 4 231.25 606.65 208.72 141 -17.94 -13.49 586
ICEV  2(1) 104.28 1127.26

Scenario 2.9 9 EV 4 231.25 606.65 207.72 0.41 -17.94 -1249 5.86
ICEV  2(1) 104.28 1127.26

Scenario 2.8 8 EV 4 231.25 606.65 206.72 -0.59 -17.94 -11.49 5386
ICEV  2(1) 104.28 1127.26

Scenario 2.7 7 EV 4 231.25 606.65 205.72 -1.59 -17.94 -1049 5.86
ICEV  2(1) 104.28 1127.26

Scenario 2.6 6 EV 4 231.25 606.65 204.72 -2.59 -17.94 -949 586
ICEV  2(1) 104.28 1127.26

Scenario 2.5 5 EV 4 231.25 606.65 203.72 -3.59 -17.94 -849 586
ICEV  2(1) 104.28 1127.26

Scenario 2.4 4 EV 4 231.25 606.65 202.72 -4.59 -1794 -749 586
ICEV  2(1) 104.28 1127.26

Scenario 2.3 3 EV 4 231.25 606.65 201.72 -5.59 -17.94 649 586
ICEV  2(1) 104.28 1127.26

Scenario 2.2 2 EV 4 231.25 606.65 200.72 -6.59 -17.94 -549 586
ICEV  2(1) 104.28 1127.26

Scenario 2.1 1 EV 2 135.43 346.05 198.23 3.00 0.00 -3.00  0.00
ICEV  3(3) 275.47 1131.83
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Table 7.7: Impacts of different EV-supporting policy options with different vehicle taxes

Scenario Tax Type Number Distance (in) Distance (out) Total cost AR AEC AS AW

Scenario 3.10 10 EV 4 231.25 606.65 218.50 1128 -14.26 -2327 2.27
ICEV  2(2) 122.94 1106.06

Scenario 3.9 9  EV 4 231.25 606.65 216.50 928 1426 -21.27 227
ICEV  2(2) 122.94 1106.06

Scenarioc 3.8 8  EV 4 231.25 606.65 214.50 728 1426 -19.27 227
ICEV  2(2) 122.94 1106.06

Scenario 3.7 7 EV 4 231.25 606.65 212.50 528 1426 -17.27 227
ICEV  2(2) 122.94 1106.06

Scenarioc 3.6 6  EV 4 231.25 606.65 210.50 328 1426 -1527 227
ICEV  2(2) 122.94 1106.06

Scenario 3.5 5  EV 4 231.25 606.65 208.50 128 -14.26 -13.27 2.27
ICEV  2(2) 122.94 1106.06

Scenario 3.4 4  EV 4 231.25 606.65 206.50 0.72 <1426 -11.27 227
ICEV  2(2) 122.94 1106.06

Scenario 3.3 3 EV 2 135.43 346.05 204.23 9.00 000 -9.00 0.00
ICEV  3(3) 275.47 1131.83

Scenario 3.2 2 EV 2 135.43 346.05 201.23 6.00 000 -6.00 0.00
ICEV  3(3) 275.47 1131.83

Scenario3.1 1 EV 2 135.43 346.05 198.23 300 000 -3.00 0.00
ICEV  3(3) 275.47 1131.83
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Sensitivity analysis

Table 7.8: Impacts of different EV-supporting policy options for EVs with an extended

driving range

Scenario Type Number Distance (in) Distance (out) Total cost AS AR  AEC AW

Baseline EV 4 328.48 623.04 184.74
ICEV  2(1) 70.23 966.61

Scenario 1 (subsidy) EV 4 328.48 623.04 172.74 12.00 -12.00 0.00  0.00
ICEV  2(1) 70.23 966.61

Scenario 2 (zone fee) EV 4 328.48 623.04 187.74 -3.00 300 0.00 0.00
ICEV  2(1) 70.23 966.61

Scenario 3 (vehicle taxes) EV 4 328.48 623.04 190.74 -6.00 6.00 000 0.00
ICEV  2(1) 70.23 966.61

Table 7.9: Impacts of different EV-supporting policy options for EVs with a larger carrying

capacity

Scenario Type Number Distance (in) Distance (out) Total cost AS AR AEC AW

Baseline EV 3 142.94 515.00 182.51
ICEV  2(2) 143.94 1085.06

Scenario 1 (subsidy) EV 3 142.94 515.00 173.51 9.00 -9.00 0.00 0.00
ICEV  2(2) 143.94 1085.06

Scenario 2 (zone fee) EV 3 180.30 554.08 187.51 -5.00 3.22 010 -1.88
ICEV  2(1) 104.28 1127.26

Scenario 3 (vehicle taxes) EV 3 142.94 515.00 188.51 -6.00 6.00 0.00 0.00
ICEV  2(2) 143.94 1085.06
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Table 7.10: Impacts of different EV-supporting policy options with a smaller diesel vehicle

Scenario Type Number Distance (in) Distance (out) Total cost AS AR AEC AW

Baseline EV 3 192.91 541.25 163.26
ICEV  3(3) 195.01 1241.43

Scenario 1 (subsidy) EV 3 192.91 541.25 154.26 9.00 -9.00 0.00 0.00
ICEV  3(3) 195.01 1241.43

Scenario 2 (zone fee) EV 3 276.25 429.13 170.76 -7.50 7.82 913 -881
ICEV  3(2) 157.51 1315.03

Scenario 3 (vehicle taxes) EV 3 192.91 541.25 167.74 -4.48 4.48 0.00  0.00
ICEV  3(3) 195.01 1241.43

Table 7.11: Impacts of different EV-supporting policy options for a smaller city

Scenario Type Number Distance (in) Distance (out) Total cost AS AR  AEC AW

Baseline EV 6 196.19 924.57 118.32
ICEV  1(1) 4778 15.82

Scenario 1 (subsidy) EV 6 196.19 924.57 100.32 18.00 -18.00 0.00  0.00
ICEV  1(1) 4778 15.82

Scenario 2 (zone fee) EV 6 196.19 924.57 121.32 -3.00 3.00  0.00 0.00
ICEV  1(1) 4778 15.82

Scenario 3 (vehicle taxes) EV 6 196.19 924.57 121.32 -3.00 3.00  0.00 0.00
ICEV  1(1) 4778 15.82

Table 7.12: Impacts of different EV-supporting policy options for a city with larger demands

Scenario Type Number Distance (in) Distance (out) Total cost AS AR AEC AW

Baseline EV 3 231.25 434.13 208.61
ICEV  3(2) 174.51 1201.07

Scenario 1 (subsidy) EV 3 231.25 434.13 199.61 9.00 -9.00 0.00 0.00
ICEV  3(2) 174.51 1201.07

Scenario 2 (zone fee) EV 3 231.25 434.13 214.61 -6.00 6.00 0.00 0.00
ICEV  3(2) 174.51 1201.07

Scenario 3 (vehicle taxes) EV 3 231.25 434.13 217.61 -9.00 9.00 0.00 0.00
ICEV  3(2) 174.51 1201.07
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Chapter 8

Conclusions and future work

In the first part of the thesis, we introduced a new location-routing problem, and dis-
cussed both modeling and solution approaches. Motivated by the actual problem of a
national postal service company, we introduced and defined a new problem that incorpo-
rates synchronization and delivery and pickup activities in a two-echelon location-routing
problem (2E-LRP). Due to the complexity of the problem, only very small instances could
be solved using exact approaches. We proposed a decomposition-based heuristic and pro-
vided the computational results with this method for four sets of instances. These sets
included 112 instances: 96 small- and medium-size instances and 16 large-size instances.
The decomposition-based heuristic was able to find the best known solutions in 26 of the 112
instances, including 11 small- and medium-size instances and 15 large-size instances. For
the small- and medium-size instances, the average gaps to the best-known solution (GBKs)
with the decomposition-based heuristic and CPLEX were 4.23 and 0.34, respectively, and
the computational effort of the decomposition-based heuristic was almost one-fourth the
time spent by CPLEX. In order to check the effect of the first phase of the decomposition-
based heuristic on the solution quality, we modified the proposed method according to the
common approach used in the literature for choosing facility configurations. We compared

the results of the original and modified methods, and the former provided better-quality
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solutions for a given number of iterations. It could be worthwhile to test the first phase of
the proposed method on other solution approaches in the LRP literature. It is also worth
adapting the state of the art heuristics for 2E-LRP (e.g., the adaptive large neighborhood
search by Contardo et al. (2012)) for the new 2E-LRP that we introduced in this thesis.

In addition to the solution approach, we proposed three data-driven schemes that we used
in combination with mixed-integer linear programming (MILP). The aim of the schemes is
to remove routes that are unlikely to be part of high-quality solutions so that promising
solutions can be obtained in considerably less time. The computational results on the four
sets of instances revealed that, with the first scheme (i.e., removing long arcs connecting
pairs of far apart nodes), the solution quality either stayed the same or improved. When
all three schemes were used in combination, feasible solutions were found for some of the
larger instances that were unsolvable without schemes or with only the first scheme. In our
numerical experiments, we observed that, with the increase in size of instances, the solution
quality obtained by the schemes was better than without the schemes. Let’s consider the first
scheme. For large-size instances, in the optimal solution, we expect that far away customers
are connected to each other through the customers located between them. Therefore, we
expect a better performance by the first scheme because more long arcs are expected to
be removed from the set of feasible solutions. However, due to the limitations of the exact
solver, we were not able to observe further improvement in solution quality by the schemes
for larger-size instances. As an opportunity for future research, it could be worthwhile to
test the proposed schemes in combination with other heuristics or exact approaches provided
in the LRP literature.

We generalized the problem by considering the vehicle capacity, multiple trips by vehi-
cles, and decisions on terminal locations. In the new 2E-LRP that we introduced in this
thesis, traveling times were assumed to be deterministic, but in reality they depend on dif-
ferent factors such as congestion and weather. In addition, for parcel services, the presence

of customers is often not known from day to day because not all customers receive packages
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every day. In such uncertain situations, the use of deterministic and static methods might
lead to suboptimal solutions. Future research needs to address the incorporation of the
stochastic presence of customers and time-dependency of travels in the actual problem of
Posten Norge.

The scope of the second part of the thesis was to illustrate how a simple vehicle routing
problem could be used to enhance economic evaluation procedures of supporting policies
for electric vehicles. We proposed a framework that combines an optimization model with
economic analysis in order to evaluate the effects of EV-supporting policies on the logistic
costs of a company and the environmental benefits/social welfare. Based on three EV-
supporting policy options: The purchase subsidy, vehicle taxes with exemptions for EVs,
and zone fee exemptions for EVs, we determined optimal decisions of a company regarding
vehicle fleet composition and routes, and we evaluated the policies according to externality
and welfare changes. We carried out numerical experiments using data generated for a small
transport network under different policy scenarios. Based on the results from the numerical
experiments, the purchase subsidy on EVs, zone fee on ICEVs, and vehicle taxes on ICEVs
increased the EV share in the vehicle fleet of company and decreased the distances traveled
by ICEVs, which reduced externalities and improved social welfare. Among EV-supporting
policies, the zone fee was more effective at improving social welfare because it significantly
reduces the external cost by preventing emissions and congestion inside the limited zone.
However, in some cases of the sensitivity analysis, the zone fee increased external costs by
forcing ICEVs to travel around the zone. The results from the sensitivity analysis showed
that local factors at the company and city levels, such as the vehicle type and transport
network, are also important for designing efficient EV-supporting policies for urban logistics.

The proposed framework should be seen as a preliminary attempt to evaluate individual
company’s actions in response to policies for EVs and effectiveness of the policies through the
combination of an optimization model and economic analysis, which provide an evaluation

of EV policies from a different perspective and also lays an important basis for further
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explorations. As opportunities for future research, more comprehensive models can be
established to deal with realistic issues such as real-time deliveries and idling. Deliveries
during off-hours with less traffic will consume less fuel or emit less pollution per kilometer,
while idling due to deliveries during rush-hours will lead to more fuel consumption (and
emissions) than moving traffic. Moreover, transport networks my turn more complicated in
practice. For instance, urban geographic features and regional driving requirements have
important impacts on driving speeds and therefore, real-world fuel consumption and COy
emission can be different from the one labelled by car companies. In order to consider
the gaps between the labelled values and real values of fuel consumption and emission
rates, scientific evidences for specific vehicles are needed for precise calculations. A more
realistic issue that we did not consider in our study is alternative roads between customers.
Especially, in this study, the cost per unit of distance will consist of both fuel cost and
entrance fee to the zone. Therefore, the shortest roads between two customers do not
necessarily mean roads with the lowest cost. To study cases of alternative roads, visualizing
urban road grids though geographic information systems may be necessary. At last, due to
the complexity of the optimization problem, an efficient solution approach for large-scale
transport networks would improve the validity of our proposed framework. To do this, one
could adapt state-of-the-art heuristics used in the literature of heterogenous vehicle routing

problems (e.g., Subramanian et al. (2012); Penna et al. (2013)).
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