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Introduction

The world’s water, energy and climate systems are inextricably linked. Water plays
a key role at every stage of the energy production process, including the generation
of electricity, where it is used for producing hydropower and cooling thermal power
plants (DOE, 2014; IEA, 2012). In return, substantial quantities of energy are needed
to treat, transport and ultimately dispose of the freshwater resources that sustain
our civilisation. At the same time, the composition of global energy technologies
will determine the magnitude of future climate change in decades to come. And, of
course, climate change threatens to cause major disruptions to freshwater supplies
through changes to the earth’s hydrological cycle (IPCC, 2014).

The present dissertation is an attempt to better understand the economic nature of
these linkages. How do changes to one element propagate through to the others?
What are the policy implications of such mutual dependencies and how is policy
affected by the beliefs of economic agents? Moreover, how does market structure
alter the utilisation of environmental goods and natural resources?

Providing answers to the above questions invites a number of complications. For
example, a recurrent problem of valuing environmental goods and services is that
these resources are not consistently priced, if at all. A related problem is that many
environmental goods are characterised by indeterminate property rights regimes.
We must therefore impute their economic value through revealed preference meth-
ods (i.e. travel costing and hedonic pricing), or elicit people’s stated preferences
through surveys (i.e. contingent valuation).1 A third alternative is to look at the
production process directly and see how a change in environmental inputs affects
the value of some final good (e.g. McConnell and Bockstael, 2005). This latter ap-
proach best describes the methodological framework of Chapters 1 and 3. By ex-

1There is a rich literature on these two general approaches and their respective strengths and
weaknesses. Useful overviews are provided by Hanemann (1994), Pearce (2002), Phaneuf and Smith
(2005), Palmquist (2005), and Carson and Hanemann (2005) amongst others. More recently, the Jour-
nal of Economic Perspectives issued a special symposium on contingent valuation, with contributions
by Kling et al. (2012) and Carson (2012), as well as a more critical take by Hausman (2012).
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plicitly characterising a firm’s production decision in terms of market conditions
and environmental inputs, we are able to draw a causal link between these inputs
and the resulting economic output. This allows us to measure the economic value of
environmental goods even in the absence of detailed market information about the
goods themselves. An example from the first chapter is that insufficient access to
cooling water can force thermal power plants to throttle production, thereby raising
electricity prices in a quantifiable manner.

Unfortunately, it is not always possible to delineate a clear link between environ-
mental amenities and economic outcomes. Sometimes the very status of an environ-
mental good is unclear. This is particularly true from the perspective of individuals
who do not get to experience its quality or effects directly. The prime exemplar is
climate change. Climate change is by its very definition a global phenomenon that
no individual or location experiences directly.2 We must therefore infer its key at-
tributes (e.g. global mean surface temperature) by compiling data from a network
of satellites or observation stations located at different points around the world.
Yet, this opens the door for policy polarization, as stakeholder beliefs are shaped
by different priors and conflicting lines of personal experience. Such issues form
the backdrop for Chapter 2, which distils support for climate policy as a matter of
Bayesian learning. The goal is to determine under which conditions rational agents
can reasonably disagree about something as important as climate policy — even
when ostensibly faced with the same evidence.

The interweaving of water, energy and climate systems further threatens to im-
pose paradoxical choices upon policy makers over the long term. For example,
hydropower and nuclear power are the world’s foremost sources of non-fossil fuel
energy (excluding biomass). They are certainly the leading forms of low-carbon
electric energy at present, and together account for over a quarter of global electric-
ity generation (Figure 1). Yet, both are vulnerable to the effects of climate change
due to their acute dependencies on water resources. Nuclear’s low thermal efficien-
cies make it especially susceptible to cooling water scarcity, while retreating glaciers
and altered rainfall patterns may serve to significantly reduce hydropower capaci-
ties. Countries that attempt to mitigate against climate change by investing heavily
in these two energy sources are potentially undermining their future energy stabil-
ity if other countries do not follow suit. At the very least, it suggests an additional
layer of trade-offs for evaluating climate mitigation options versus adaptation path-
ways.

2Of course, the consequences of climate change may be felt directly at the local scale. Increased
storm surge risk due to rising sea levels and so forth.
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Figure 1: Contribution to global primary energy supply and electricity generation
in 2012. Source: IEA (2014b)

Of course, climate change stands to affect the supply of energy in more ways than
just freshwater availability. Disruptions to natural weather systems may bring ad-
verse impacts to the wind power industry, for whom wind reliability and consis-
tency are paramount. Conversely, the advent of ice-free summers in the Arctic
would lengthen the drilling season there and potentially open up the global mar-
ket to substantial new quantities of hydrocarbons. This promises to be a growing
area of geopolitical intrigue, as Arctic nations both vie for resource supremacy and
attempt to balance environmental concerns.3 An accessible overview of these and
other vulnerabilities, as well as opportunities, is provided by Schaeffer et al. (2012).

It is furthermore important to contextualise such issues against the broader eco-
nomic and political milieu. As I write this introduction, U.S. presidential hope-
fuls are contesting the Democratic and Republican primary nominations of their
respective parties. Democratic Party frontrunner Hillary Clinton has just declared
her opposition to the contentious Keystone XL oil pipeline, on the grounds that
it is a distraction from the overarching challenges of climate change and the need
to modernize energy infrastructure (Clinton, 2015). Yet, in a televised debate less
than a week earlier, her Republican counterparts vowed to repeal the climate poli-

3C.f. Recent opinion articles in the popular press and elsewhere such as Borgerson (2013), Jacob-
sen (2015), Reiss (2015), and Myers (2015).
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Figure 2: Primary energy consumption by fuel source (excluding biomass), 1965–
2014. Source: BP (2015)

cies brought forward by President Obama’s administration, which they claimed
would destroy the economy (Woolf, 2015). One candidate, Florida senator Marco
Rubio, went on to characterise his position as one of strategic, national self-interest:
“America is a lot of things[...] but America is not a planet.” A comment that, in its
own way, succinctly highlights the free-rider problem inherent to all common-pool
resources.

No doubt energy and the environment will continue to provide fodder for politi-
cal rhetoric and theatre. What is equally true, however, is that climate policy has
the potential to render specific energy technologies uneconomical; witness the on-
going debate over stranded fossil-fuel assets and the larger divestment movement
(Van Renssen, 2014; IEA, 2014a; Carrington, 2015a,b). The coal industry has come
under particular fire in recent years, with Norway’s sovereign wealth fund provid-
ing perhaps the most high profile case of strategic divestment.4 Yet, while much of
the developed world looks to move beyond coal, no other energy source has made
more substantive inroads at a global level since the turn of the millennium (Fig-
ure 2). Activism on its own is unlikely to have much of impact next to the growing
energy demands of China, India and other emerging economies.

4The fund, formally the Norwegian Government Pension Fund Global, has since drawn criticism
from environmental groups for offsetting its coal divestments with an increased holding in oil and
gas companies (ibid.).
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It should also be said that the war on coal, at least in North America, has been made
politically and economically feasible thanks largely to the shale gas revolution (c.f.
Grunwald, 2015). Shale gas — via its reliance on hydraulic fracturing, or “fracking”
— comes with its own set of environmental concerns. Apart from methane leak-
ages that may undermine its comparative climate credentials, these too are chiefly
related to water. This dissertation will not address shale gas specifically. However,
I shall note in passing that the improved thermal efficiencies of gas-fired power
plants (relative to coal and nuclear plants) can help to ameliorate at least some of
these water concerns. Indeed, numerous studies support the notion that a large-
scale coal-to-gas reversion in the electricity sector, underpinned by increasing sup-
plies from hydraulic fracturing, may actually lead to significant water savings over
the energy production life-cycle (Jenner and Lamadrid, 2013; Laurenzi and Jersey,
2013; Meldrum et al., 2013; Chang et al., 2015).

Similar trade-offs and complementarities can be found all over the world. In Eu-
rope, for example, Germany has embarked upon a much-fêted programme of en-
ergy transition. This Energiewende envisages a sustained and dramatic increase in
renewable energy sources over the coming decades. The country has simultane-
ously committed to phasing out its nuclear power fleet by 2022. As a result, Ger-
many is now investing heavily in expanded grid capacity to its northerly neigh-
bour, Norway, whose hydropower resources offer the most cost-effective way of ac-
commodating the intermittency of large-scale wind and solar (Gullberg et al., 2014;
Tønseth, 2014; Adomaitis, 2015). Once again, the broader point is that energy, water
resources and climate policy are bound together in a common economic arc.

The individual chapters of this dissertation are best viewed as standalone papers, in
the sense that they address distinct economic questions. However, they are unified
by the common environmental themes described above. Similarly, while the chap-
ters rely on a different econometric methods — instrumental variables, Bayesian
regression, and fixed effects — they share an overarching empirical approach. In
each case, a dataset has been constructed de novo from a variety of source materials
so as to explore a specific aspect of the water-energy-climate nexus. The structure
and institutional constraints of the data have then determined which methods are
appropriate for answering the question at hand. My graduate studies have taught
me that flexibility and resourcefulness are among the most vital components of the
modern researcher’s toolkit. It is my hope that the mix of topics and methods in
this dissertation will be interpreted in that light.

The following subsections describe the individual chapters in greater detail.

xii



Chapter 1: Electricity prices, river temperatures and cool-

ing water scarcity

Coauthored with Øivind A. Nilsen. Published in Land Economics 2014,
90(1): 131–148.

Chapter 1 establishes an empirical relationship between electricity prices and fresh-
water availability. While this relationship is self-evident in the case of hydropower
production, our present context is the less obvious case of thermal-based power
production.

We begin by defining a stylised theoretical model to capture the essence of the prob-
lem. The intuition is as follows. Thermal power plants produce electricity more
efficiently in the presence of an external coolant, such as water taken from a nearby
river. The extent of this efficiency boost depends on the temperature of the intake
water and how much is being withdrawn. Plants can compensate for warmer in-
take water by withdrawing more of it. However, we assume that water becomes
costly to withdraw as it gets scarcer. At the same time, a regulator sets a temper-
ature cap on discharging used cooling water back into the environment in order
to safeguard against thermal pollution. When this constraint is binding, producers
must choose between reduced water intake, thus compromising plant efficiency, or
incurring regulation costs. Either choice will result in an inward shift of the supply
curve and a higher electricity price.

The primary challenge of moving from our theoretical framework to an empirical
setting is that electricity prices and quantities are jointly determined by demand
and supply forces. We use an instrumental variable approach to overcome this si-
multaneity problem. We are thus able to control for demand-side effects and isolate
the impact of water-related shocks to electricity supply. Applying our econometric
model on German data, we find that the electricity price increases in response to
both lower river levels and higher river temperatures. The empirical results accord
closely with our theoretical predictions and reflect the thermal power industry’s
vulnerability to water scarcity in an absolute and relative (i.e. regulatory) sense.
One implication of our findings is that climate change will cause higher energy
prices, not only through increased demand for cooling, but also through water-
related supply shocks.
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Chapter 2: Sceptic priors and climate change mitigation

Despite an overwhelming scientific consensus, many people are openly sceptical
about anthropogenic climate change. The reasons for this persistent scepticism is
a matter of some debate among researchers (Clark et al., 2013; Kahan et al., 2011,
2012). What seems beyond dispute, however, is that public scepticism has under-
mined attempts to enact meaningful climate policies on a global scale.

Chapter 2 begins with a simple question: How much evidence is needed to convince
climate sceptics that they are wrong? I characterise the problem within a Bayesian
framework, where a group of hypothetical sceptics are left to update their prior be-
liefs in conjunction with historical evidence for climate change. The primary finding
is that instrumental climate data from the last century and a half overwhelms all but
the most extreme priors. In Bayesian language, the posterior beliefs of the different
sceptics gravitate strongly toward the mainstream consensus — i.e. climate change
is real and caused by humans. I show further that the updated sceptic beliefs are
consistent with a social cost of carbon that is significantly greater than zero. These
results suggest that it should be possible to obtain broad support for a carbon price,
provided that people simply have access to the available evidence.

The idealised structure of the Bayesian model in this chapter necessitates some cau-
tion in how we interpret its relevance for our current policy impasse. However, I
argue that two points are particularly salient. First, the results can help to explain
why climate change remains such a polarizing issue. As all intermediate positions
are subsumed into the mainstream, only the most extreme sceptics remain wedded
to their priors. No amount of new information is going to convince this group that it
needs to reconsider its position on climate change. Second, the Bayesian framework
is able to bridge the divide between competing theories of climate scepticism as a
societal phenomenon. Using the insights of Jaynes (2003), I show that incorporat-
ing priors about source credibility allows for the same evidence to cause diverging
beliefs among partisans. The policy implication is that additional evidence for cli-
mate change is unlikely to change beliefs unless sceptics experience the effects of
climate change directly, or this evidence comes from sources that they regard as
unambiguously trustworthy. Merely communicating additional evidence through
existing channels and organisations — such as the Intergovernmental Panel on Cli-
mate Change — is unlikely to have much of an impact.
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Chapter 3: Market might. Hydro power.

Chapter 3 concerns the most explicit link between water and energy: hydropower
production. In particular, how do firm incentives for exploiting water resources
vary along with changes in market concentration.

The distinctive characteristics of hydropower — seasonality, storability, negligible
variable costs — has interesting implications for the way that water resources are
utilised. Theory tells us that dominant hydropower firms will withhold produc-
tion during periods with relatively inelastic demand (Førsund, 2015). This will al-
low them to recoup higher profits by driving up the price when consumers are the
least responsive to such changes. Testing this in an empirical setting has proven
difficult, however, because of data limitations. The contribution of this chapter is
to bridge that gap by introducing a uniquely detailed dataset of Norwegian hy-
dropower reservoirs, firms and electricity flows. Exogenous changes to bidding
area divisions and transmission constraints allow me to cleanly identify variations
in reservoir volumes arising from differences in local market share.

Consistent with theory, I find that market power causes firms to strategically real-
locate their water resources across periods. An increase in regional market share is
associated with higher reservoir volumes during summer months and lower reser-
voir volumes during winter months. Drawing on the insights of previous stud-
ies (Johnsen, 2001; Hansen, 2004; Bye and Hansen, 2008), I argue that this result is
driven by the seasonal differences in demand elasticities. Electricity in the Norwe-
gian winter is predominantly used for heating, which allows for numerous substi-
tutes and, hence, a relatively higher elasticity of demand. In contrast, electricity
consumption during summer is primarily given over to technical end-uses, which
do not allow for easy substitution.

The size of this reallocation effect is modest next to other factors governing reser-
voir management, such as annual inflows from snow-melt. Yet, it may still cause
the production profile of hydropower firms to diverge in meaningful ways if the
differences in market share are large enough, and particularly when regional trans-
mission constraints are binding.
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a Factor of Production,” in Karl-Göran Mäler and Jeffrey R. Vincent (eds.), “Valu-
ing Environmental Changes,” volume 2 of Handbook of Environmental Economics,
chapter 14, Elsevier, pp. 621–669.

xviii

http://www.reuters.com/article/2015/06/11/us-norway-oil-arctic-idUKKBN0OR1GJ20150611
http://www.reuters.com/article/2015/06/11/us-norway-oil-arctic-idUKKBN0OR1GJ20150611


Meldrum, James, Syndi Nettles-Anderson, Garvin Heath, and Jordan Macknick
(2013). “Life cycle water use for electricity generation: a review and harmoniza-
tion of literature estimates,” Environmental Research Letters, 8(1): 1–18.

Myers, Stephen Lee (2015). “U.S. Is Playing Catch-Up With Russia in Scramble for
the Arctic,” The New York Times, 29 August 2015. Available: http://www.nytimes.
com/2015/08/30/world/united-states-russia-arctic-exploration.html.

Palmquist, Raymond B. (2005). “Property Value Models,” in Karl-Göran Mäler and
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Chapter 1

Electricity prices, river temperatures
and cooling water scarcity

Abstract

Thermal-based power stations rely on water for cooling purposes. These water
sources may be subject to incidents of scarcity, environmental regulations and com-
peting economic concerns. This paper analyses the impact of water scarcity and in-
creased river temperatures on German electricity prices from 2002 to 2009. Having
controlled for demand-side effects, we find that electricity prices are significantly
affected by both a change in river temperatures and the relative abundance of river
water. An implication is that future climate change will affect electricity prices not
only through changes in demand, but also through increased water temperatures
and scarcity.

JEL Codes: Q25, Q41, Q5, C3
Keywords: Thermal-based power, water scarcity, water-energy nexus.
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1.1 Introduction

Thermal-based power facilities, such as nuclear and coal-fired plants, are critically
dependent on water for cooling purposes. This enables them to maintain high pro-
duction efficiencies, but also means that they require access to vast quantities of wa-
ter. To give an indication of scale, the thermal power industry accounts for roughly
40 percent of all freshwater withdrawals in the United States – a figure that places
it alongside the agricultural sector (DOE, 2006). Unlike agriculture, the majority
of these withdrawals are returned to their natural source. However, discharging
used cooling water back into the environment presents problems of its own. Excess
thermal energy absorbed during the heat exchange will naturally cause the water
to warm up prior to being released back into the river or lake from which it was
taken. This raises the ambient temperature of the water source itself and can ulti-
mately bring detrimental effects to the aquatic ecosystem. Water temperatures at or
above the mid-20s degree Celsius (◦C) mark are considered particularly dangerous
to aqueous plants and certain fish species, since this leads to reduced oxygen levels
and raised concentrations of ammonia (Langford, 1990). As a result, many countries
have enacted environmental regulations on the maximum allowable temperature of
discharge water from power stations, otherwise known as “thermal pollution”.1

Within this context, an emerging literature has developed that seeks to analyse how
thermal-based power production might be constrained by access to water resources.
Some studies largely abstract from wider climate phenomena and focus primarily
on what growing energy demand means for water consumption (for instance, see
Feeley et al., 2008; NETL, 2009a,b,c). Others have specifically tried to incorporate
climate change into their analysis and even suggest adaptive strategies available
to the thermal power industry in coping with a warming world.2 The Fourth As-
sessment Report of the Intergovernmental Panel on Climate Change (IPCC, 2007)
synthesised several such studies in suggesting that future energy generation will
be vulnerable to higher temperatures and a reduced availability of cooling water

1The vulnerability to water scarcity, as well as problems related to thermal pollution, varies ac-
cording to fuel type and cooling technology. For example, the low thermal efficiencies of nuclear
plants make them particularly susceptible to water-related issues — see DOE (2006).

2The links between thermal-based power production, water scarcity and climate have also re-
ceived growing attention in popular media formats. This includes news stories of European power
plants shutting down during heat waves of the last decade (Gentleman, 2003; Godoy, 2006; Pag-
namenta, 2009) and similar problems in the US (AP, 2008; Sohn, 2011; Eaton, 2012), as well as im-
plications of the nuclear power sector’s dependency on water and recurring incidents of drought
(Kanter, 2007; Dell’Amore, 2010). The linkage between power supply and water needs has also re-
ceived increased attention in the wake of recent events at the Fukushima Daiichi nuclear plant in
Japan (Chellaney, 2011).
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for thermal power stations. Citing effects from the 2003 European heat wave as a
precautionary example, the report declared: “[E]lectricity production was under-
mined by the facts that the temperature of rivers rose, reducing the cooling effi-
ciency of thermal power plants (conventional and nuclear) and that flows of rivers
were diminished” (ibid., p. 367). Though typically local in focus, the list of indi-
vidual studies covering equivalent issues includes Hurd and Harrod (2001); Arnell
et al. (2005); Maulbetsch and DiFilippo (2006); Kirshen et al. (2008); Sovacool (2009);
Sovacool and Sovacool (2009).

In terms of predictive capability, Koch and Vögele (2009) offer an adaptable frame-
work that lends itself to scenario analysis. They construct an integrated water man-
agement model that can be used to simulate the interconnected effects of chang-
ing energy needs and water availability on thermal-based power production. This
model is then applied to individual plants under various hypothetical climate and
economic scenarios. However, whilst Koch and Vögele go on to comment on some
broader socio-economic outcomes, they acknowledge that their simulations do not
account for the fact that “water shortages affecting large regions[...] could have an
impact on energy prices”. Förster and Lilliestam (2010) adopt a somewhat narrower
approach by simulating the effects of climate change on a single large (hypothetical)
nuclear plant in Central Europe that is reliant on once-through cooling technology.
Their results indicate that annual load losses could be as high as 11.8 percent, with
annual plant losses upwards of e100 million for the worst case scenarios. In turn,
Van Vliet et al. (2012) provide a more general overview of how the power sector
will be affected by climate change. Their simulations show that the average sum-
mer capacity of power plants in Europe and the United States will be reduced by
6.3 percent to 19 percent, or 4.4 percent to 16 percent, depending on cooling sys-
tem type and climate scenario for 2031-2060. They too, however, make no explicit
attempts to model for an effect on electricity prices.

In contrast to the simulation-based studies above, Linnerud et al. (2011) tread an
empirical line. Using European data to analyse the impact that climate change may
have on the nuclear industry, they find that an average temperature rise of 1◦C
reduces the supply of nuclear power by roughly half a percent. Finally, Kopytko
and Perkins (2011) provide a discursive overview of the inherent vulnerabilities
that nuclear power will be exposed to as a result of climate change. Among other
things, they specifically highlight cooling water scarcity as an impediment to future
investments in inland nuclear plants.

The purpose of this paper is to determine how electricity prices are affected by
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access to cooling water. Despite increasing concern over the large volumes of water
use in thermal-based power production, we are unaware of any studies that have
analysed this question in an empirical setting.3 Our aim is to quantify what these
effects are and, in so doing, provide a fresh look at how inadequate freshwater
supplies can yield direct economic costs.

We use German data in this study as this has several advantages. First, at a total con-
sumption level of around 550 TWh in 2010, the German power market is the largest
in Europe and is characterised by a diverse mix of input fuels (Kristiansen, 2011).
The market is also supplied by a large number of power plants scattered around the
country. That said, only four companies are responsible for approximately 80 per-
cent of total production capacity (Müsgens, 2006; Möst and Genoese, 2009). During
the 2002–2009 review period of this paper, the country derived around 60 percent of
its electricity needs from fossil fuels (mostly coal), 23 percent from nuclear, and the
remainder from a combination of renewables.4 According to the International En-
ergy Agency (IEA, 2011a) and as shown in Figure 1.1, these numbers very closely
parallel those of the OECD region as a whole.5 Germany is therefore a very rea-
sonable “representative agent”, from which one can make wider inferences about
the impact that water scarcity has on thermal power production and, consequently,
electricity prices.

The second factor in support of Germany as a case study is the availability of a
wide series of relevant data – including wholesale electricity data and hydrological
records — which makes it an amenable choice for conducting empirical analysis.
The German power market was fully liberalised in 1998 and by 2001 the major elec-
tricity trading platforms had merged to form a single entity, the Leipzig-based Eu-
ropean Energy Exchange (EEX). With regard to institutional settings, market partic-
ipants on the EEX are able to trade a variety of products corresponding to different
time horizons and derivative positions. A range of standardised products are also
traded in the form of bilateral over-the-counter (OTC) agreements between direct
counterparties, often concluded via brokerage firms. Our main focus in this pa-

3Boogert and Dupont (2005) suggest that water temperatures resulted in increased Dutch elec-
tricity prices (via a supply-side shock) during the 2003 heat wave. However, their concise paper
does not offer any empirics beyond some descriptive statistics.

4The role of nuclear power in Germany has been highly contested over the last several decades,
with renewed public interest in the wake of the stricken Fukushima Daiichi plant in Japan. Follow-
ing a period of political flip-flopping on the issue, in 2011 the German government committed to
phasing out nuclear power by 2022. We do not explicitly consider these developments, since they
took place after our period of study.

5The relative role that thermal-based power plays is comparable even at a global level – where
the contributions of fossil fuels and nuclear to total power generation in 2009 were 67 percent and
13 percent, respectively (IEA, 2011b).
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Figure 1.1: Contribution to nal electricitydemand in 2009. Source: IEA (2011a)

per is the day-ahead EEX spot auction, during which hourly electricity contracts

and block contracts can be traded until midnight of the previous day.6 The EEX

spot market accounts for approximately 30 percent of German electricitydemand,

and we would expect certainly marginal changes in river levels or temperatures

to be re ected in these prices. Furthermore, the spot price also acts as a reference

point for all upstream market participants, regardless of where and what they are

trading. If not, there would be costless arbitrage opportunities (Viehmann, 2011),

6Insteadofusingaveragedailyprices,onemightbe tempted toargue thathigher-frequencydata
(e.g. hourly)would allow for ahigherdegreeof analyticalprecision. There are several reasonswhy
wedonot follow this approach. First, the supply ofproduced electricity isnotparticularly exible
for thebaseloadplants thatwe focuson in this study. Second, environmental authorities arehighly
unlikely to respond to changes on an hourly basis, but rather issue daily orders to power plant
operators. Third,dailydata is consistentwithourotherdata (e.g. hydrological).
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Kristiansen (2011). The day-ahead spot market should thus not only reflect the un-
derlying long-term demand and supply conditions of the power sector, but also
respond to short-term shocks. This includes power plants being entered into con-
strained production due restrictions on their intake of cooling water.

The third and perhaps most important reason for using German data, is that the
country’s electricity sector has proven vulnerable to incidences of water scarcity
and compromised water quality in the past. This has been especially true during
very hot periods such as the European heat waves in 2003 and 2006, when Ger-
many joined the likes of France and Spain in suffering from significantly reduced
production capacities. A proximate cause of this outcome was the fact that river
temperatures began to exceed the regulatory threshold imposed on thermal wa-
ter pollution. Faced with a power system already straining under the pressure of
unusually high demand for air-conditioning, German federal authorities initially
provided emergency dispensation for power stations to flout environmental laws.
However, they were eventually forced to uphold the standard restrictions on dis-
charging hot water into the environment in order to protect river fauna and flora.
At least 15 thermal plants had to be shut down or entered into constrained pro-
duction because of water-related issues during the summer months of 2003 (Müller
et al., 2007, 2008). Similarly, at least 12 plants were throttled during the 2006 heat
wave so as to limit the discharge of thermal waste water into rivers.

It is against this backdrop that we can preview our key findings. Having success-
fully controlled for various demand-side factors, our empirical results indicate that
the electricity price is significantly affected by both a change in river temperatures
and the relative abundance of river water. Falling river levels are generally asso-
ciated with a higher electricity price, while prices will also be driven higher once
average river temperatures breach regulatory thresholds. For instance, we estimate
that an increase in average river temperatures from 25 ◦C to 26 ◦C will bring about
a near four percent increase in electricity prices over the course of a week.

The remainder of the paper is structured as follows. Section 2 presents the theoreti-
cal framework and discusses our econometric strategy. Section 3 describes the data.
Section 4 presents the empirical findings together with a discussion on alternate
specifications and aggregation issues. Concluding remarks are provided in Section
5.
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1.2 Theoretical model and econometric approach

Our model aims to incorporate the thermal production process – albeit in a highly
stylised manner – to account for the effect that increased river temperatures have
on electricity output. In brief, thermal energy can be converted into electrical en-
ergy more efficiently in the presence of an external coolant, such as water. This
result is famously rendered by Carnot’s theorem, which holds that the efficiency
of a thermal-based engine is directly proportional to the temperature differential
between its high and low temperature reservoirs (e.g. Langford, 1990). This allows
excess heat from the production cycle to be transferred to the coolant and subse-
quently disposed of. The cooling technology that thermal-based power plants use
may be divided into two broad categories: once-through or closed-circuit systems.
The former requires that far greater volumes of water be withdrawn from natural
sources, while the latter “consumes” more in the form of evaporation. That said,
we abstract from such differences and instead focus on the core principle that cool-
ing is essential to maintaining efficiency levels in any thermal-based power plant
– irrespective of whether it is fuelled by coal, gas or nuclear energy. We therefore
assume a simple production technology of

Q = A(TEW − T) · W. (1.1)

In other words, the production of electricity Q is contingent on the difference in
temperature of the discharge water at the outlet point, TEW , and the cooling water
at the intake point, T. Production will increase as this temperature difference in-
creases, i.e. A′ > 0.7 This formulation effectively takes the inner workings of the
thermal engine as exogenous and instead focuses on the fact that surplus heat en-
ergy is transferred to the cooling water via a heat exchange. A higher temperature
difference between the discharge water and its original source therefore implies a
higher thermal efficiency (i.e. conversion of thermal energy into electrical energy).
Importantly, the model also captures the possibly that thermal-based plants can use
more cooling water, W, to compensate for a low temperature differential. Figure 1.2
provides a stylised depiction of the production cycle used in our model.

The production of electricity by thermal-based power stations is subject to the fol-

7An underlying assumption is that TEW ≥ T. In other words, there is a cooling effect due to
the heat exchange that takes place in the plant condenser. The specification that we have used
here is thus also indicative of the fact that the cooling effect becomes increasingly negligible as the
temperature difference falls.
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Figure 1.2: Water intake and cooling for apowerplant

lowing constraint,

W
S

· TEW +
S W

S
· T T. (1.2)

This re ects the fact that environmentalauthorities seta cap,T,on the temperature

of thedownstream rivervolume,S,whichoccurs as a resultof themixingbetween

discharged cooling water, W, and the river water not used for cooling, (S W).

Thus, W
S is theshareof total riverwaterused forcooling. Theconstraint implies that

rather thanundergoing a complete shutdown, theplanthas theoptionof reducing

the owofdischarge relative to thevolumeofdownstreammixingwaterwhen the

temperature of each unit of discharged water, TEW, is relatively hot. However, as

the temperatureof the riverwater itselfapproaches the regulatory limit (e.g. during

veryhot summermonths), theplanthas little room formanoeuvringandwill likely

have todecreaseoutput. 8

The strategic decision variable available to power plants in our theoretical frame-

8Of course, environmental authoritieswill also typically impose limitson the temperatureof the
dischargedwater itself– letussayT EW –and/oron the temperaturedifferentialbetween riverwater
at the intakepointand thedischarge (c.f.Mimleretal.,2009). In the interestsofparsimony,however,
we ignore theseadditional limits inourmodel. Indeed,one couldargue that includinga constraint,
T, on the temperature of the downstream river volume, S, already serves to capture these effects
indirectly.
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work is quantity. It should be noted that electricity is a homogeneous product that
cannot be stored, and demand must be perfectly balanced by supply at all times.
Given the institutional settings of the German power market, our model allows for
potential market power, but is also generalizable to a situation where the represen-
tative power plant behaves as a price-taker. We therefore model the profit, π, for
thermal-based plants as

π = p(Q + F) · Q − c(Q)− pW(RL) · W, (1.3)

where p(.) denotes the inverse demand function and total electricity demand is the
sum of power produced by the analysed plants, Q, together with electricity imports
and the other sources that aren’t dependent on cooling water (e.g. wind power), F.
The cost function, c(Q), captures the marginal costs associated with the production
of additional quantities of electricity. In addition to these standard production costs,
the latter part of the expression, pW(RL) · W, reflects the fact that there are costs
associated with drawing cooling water, W, from its source. These are assumed to
be a function of the river level, RL, such that pW

′ < 0.

By substituting in the technology function for the water parameter, W, we have the
following profit maximisation problem:

max
Q

p(Q + F) · Q − c(Q)− pW(RL) · Q
A(TEW − T)

, (1.4)

subject to

Q
S · A(TEW − T)

· TEW +

(
1 − Q

S · A(TEW − T)

)
· T ≤ T.

Taking the first-order condition with respect to Q yields

p∗ · (1 − 1
ε
) =

∂c(Q∗)

∂Q
+

pw(RL)
A(TEW − T)

+ λ ·
[

TEW − T
S · A(TEW − T)

]
, (1.5)

where Q∗ is the optimal level of produced energy (with corresponding optimal
price, p∗), λ is the shadow price of the constraint, and ε denotes the price elas-
ticity where we have integrated out the demand effects for electricity provided by
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the other sources.9

Given that pW
′ < 0, a lower river level will effectively have the same impact as

an increase in production costs. Falling river levels will consequently reduce the
supply of electricity and ultimately bring about an increase in price, i.e. ∂p∗

∂RL > 0.
The effect of river temperatures is slightly more complex as it will impact price
through various channels. First, an increase in T will negatively impact the thermal
efficiency of a plant. This effect could be mitigated by withdrawing more cooling
water, although this will bring with it its own costs, since profit is a function of
pw(RL) · W. Moreover, when the constraint is binding (λ > 0), the only way that
a power plant can respond to an increased river temperature will be to reduce W
and therefore lower the production. In either case, an increase in T will reduce the
quantity of electricity by shifting the supply curve to the left. This in turn will lead
to an increase in price, i.e. ∂p∗

∂T > 0.10

It is well known that electricity prices and quantities are jointly determined in the
market-clearing process. This simultaneity needs to be accounted for in the empiri-
cal estimation of our theoretical model. We therefore begin by defining the follow-
ing supply equation:

ln Pt = β0 + β1 ln Qt + β2 ln RLt + β3 ln RTt + β4 ln Ft + βT’Tt + vt, (1.6)

where P is the daily clearing price for electricity, Q is the daily electricity consump-
tion, RL is the average river level, RT is the average river temperature, F is fuel
(input) costs, and T is a set of seasonal and trend variables.

The regressors of greatest interest to this study are river levels, RL, and river tem-
peratures, RT. These two coefficients should reflect how electricity supply is con-
strained by diminished cooling water availability, due to either relative scarcity (i.e.
falling river levels) or regulatory concerns (i.e. river temperatures breaching envi-
ronmentally sensitive thresholds).

The aforementioned simultaneity of supply and demand means that simply re-
gressing electricity prices on quantities using ordinary least squares (OLS) will
generate inconsistent parameter estimates. We resolve this issue by adopting an

9This means that the model encompasses settings where the representative plant is a price-taker
(i.e. ε → ∞), or where it exercises market power. Of course, a plant’s ability to react to changes in
demand or marginal costs will also depend on what fuel type they are. For instance, nuclear power
plants are built for providing a constant baseload, while gas-fired plants are more flexible.

10Please see Appendix 1.A for a more detailed derivation of the comparative statics.
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instrumental variable (IV) approach within a two-stage least squares (2SLS) frame-
work. Instrumenting for Q should allow us to properly identify the causal effect
that changing volumes have on electricity prices. Our set of instruments begins
with a concept widely used in energy modelling, namely degree days (see, for in-
stance, Halvorsen, 1975; Quayle and Diaz, 1980). Heating degree days (HDD) and
cooling degree days (CDD) are complementary terms that capture the nonlinear ef-
fect that changing temperatures have on electricity demand. They do this by mea-
suring the extent to which air temperatures fall outside a given comfort zone, which
we define here as 18 ◦C to 22 ◦C.11 The HDD variable measures how far the tem-
perature drops below 18 ◦C on any given “cold” day (thus requiring heating), while
CDD measures how far the temperature exceeds 22 ◦C on any given “hot” day (thus
requiring cooling).12 Our set of instruments is completed by a dummy variable that
corresponds to non-working days, NWD. This variable is included to reflect the
fact that electricity demand typically falls on weekends and public holidays due to
reduced industrial activity. The reduced form regression equation is thus

ln Pt = π0 + π1 ln HDDt + π2 ln CDDt + π3 ln NWDt

+ π4 ln RLt + π5RTt + πTTt + ut. (1.7)

The critical assumption for our chosen instrumental variables – CDD, HDD and
NWD – is that they pass the exclusion restrictions requirement. That is, they affect
prices only indirectly through changes in demand. The temperature discomfort as-
sociated with CDD and HDD is thus assumed to cause an increase in demand but
have no bearing on direct supply. Given that we control for changing river levels
and river temperatures separately, this seems to be a valid assumption. Similarly,
it is extremely unlikely that the supply of electricity will be materially constrained
by the fact that it is a weekday or public holiday. The main factors of produc-
tion are not affected by the day of the week, for instance, and power companies
will be able operate at normal capacity irrespective of such considerations. To be
sure of the exogeneity of the instruments, however, we conduct a Sargan-Hansen
overidentification test to confirm our economic reasoning. Furthermore, the stan-
dard Durbin-Wu-Hausman specification test is used to test for endogeneity. The

11This is a fairly standard range in the literature. Some studies (e.g. Bessec and Fouquau, 2008)
contend that the turning point for temperate European countries occurs at slightly low intervals,
from roughly 16 ◦C. Having tested this formally, however, there is no significant difference in using
16 ◦C or 18◦C as the threshold for HDDs for our data set.

12To illustrate, an aggregate daily temperature of 17 ◦C would correspond to one HDD, while
a temperature of 15 ◦C would equate to three HDDs. Similarly, a temperature of 27 ◦C would
correspond to five CDDs, and so forth.
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Kleibergen-Paap test, a robust variant of the Stock and Yogo (2005) test that allows
for non-iid errors, is used to check the validity of our instruments (see Baum et al.,
2007). This is complemented by a simple F-test of the instruments in the first-stage
regression (Staiger and Stock, 1997).

1.3 Data

The data for this paper are collected from several different sources, with each series
consisting of daily observations over a seven-year period from 2002 to 2009. Ger-
man spot electricity prices and volumes are obtained from the EEX. These electricity
data are available for both base (24-hour continuous) and peak (12 hours from 8am
to 8pm) periods. However, we focus exclusively on the base series in this paper.
Our primary motivation is that the power plants most vulnerable to water-related
factors – such as nuclear and coal-fired plants – are all baseload electricity oper-
ators. Consequently, one would expect that the impact of any supply constraints
to these plants will already be visible within the base price. Moreover, having a
data point that runs over an entire day helps to ensure consistency with the other
variables, which also cover daily time steps. It should also be noted that electricity
prices in Germany are geographically uniform with no zonal differentiation.13 Both
electricity prices and volumes are log-transformed for the regression analysis.

Air temperature data are obtained from Deutscher Wetterdienst (the German Me-
teorological Service). To compute aggregate temperature data, daily values are
first collected for each capital city of the 16 German federal states. In the minor-
ity of cases where data limitations mean that a state cannot be represented by its
capital, a significant counterpart city is used instead.14 The mean temperature
recording in all of these cities (computed from 24 hourly observations) is then com-
puted into a single daily mean temperature series for the entire country. This ag-
gregating step is taken to ensure consistency with the uniform electricity prices
across the German states. Next, we create a set of degree day interaction dum-
mies, HDD and CDD. These variables are adjusted so as to reflect logged values,
i.e. Dtemp>22 ◦C · log(temp − 22 ◦C) and Dtemp<18 ◦C · log(18 ◦C − temp). The daily
mean air temperature series is shown in Figure 1.3 together with the designated

13The regulatory framework of the EEX does allow for the market to be broken up into different
price zones when grid capacities are unable to fully execute the spot auction schedules, but this was
not necessary during the review period of this study (Ockenfels et al., 2008).

14For instance, data for Wiesbaden, the capital of Hesse, were not available so these were substi-
tuted with data from the much bigger Frankfurt.
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Figure 1.4: Effectof river temperatureon electricityprice
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Finally, we include a number of parameters in the model to control for trend and
seasonality. Month and year dummies are created to pick up the standard seasonal
characteristics found in electricity data, as well as unaccounted trends in demand.
(For example, those stemming from changes in consumers’ aggregate income level
over the review period.) Furthermore, since electricity consumption is expected
to be highly correlated with economic activity, a dummy variable for non-working
days (i.e. weekends and public holidays) is also included in the regression analysis.

1.4 Results

Our primary estimation results are presented in Table 1.1. Model (1) is charac-
terised by a static setting that utilises only contemporaneous variables. Models (2)
and (3) are dynamic in the sense that they include lagged electricity price and vol-
ume observations as additional regressors. All results have been calculated using
heteroskedasticity- and autocorrelation-consistent (HAC) estimators (Newey and
West, 1987).

Considering model (1) first, the rationale underpinning this “static” specification
is that – given its role as an optimising market – the spot power exchange should
effectively constitute a new market each day. The coefficient on volume (5.976) sug-
gests that a one percent increase in the volume of consumed electricity will induce
a six percent increase in the base electricity price. This implies that the daily power
supply in Germany is highly inelastic, which we would expect given the very short-
term nature of the data used in this study (i.e. daily observations).

Water scarcity, as measured by changes to the average river level, returns a neg-
ative coefficient in the static model (−1.025); indicating that the electricity price is
expected to fall by around one percent for every one percent rise in river levels. This
is consistent with our earlier hypothesis that electricity prices move in the opposite
direction to the availability of cooling water, even after controlling for potential de-
mand effects.

Model (1) also shows that there is a positive, statistically significant relationship
between the electricity price and an aggregate river temperature over 25 ◦C. Once
this threshold is breached, the price rises by 0.277 percent with every additional
percentage increase in river temperatures. To put this in perspective, a rise in aver-
age river temperatures from 25 ◦C to 26 ◦C would yield an approximate 1.2 percent
increase in the price of electricity. The fact that the DRT> 25◦C dummy returns a
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Table 1.1: Primary Models

Dependent Variable: Price (e/MWh)

Model 1 Model 2 Model 3

Coefficients

Volume (1,000 MWh) 5.976∗∗ (0.503) 8.267∗∗ (1.021) 8.233∗∗ (0.998)
Predetermined Variables

L1.Price 0.624∗∗ (0.0541) 0.625∗∗ (0.0537)
L7.Price 0.138∗∗ (0.0533) 0.141∗∗ (0.0526)
L1.Volume −3.729∗∗ (0.466) −3.697∗∗ (0.451
L7.Volume −2.280∗∗ (0.372) −2.272∗∗ (0.361)

River Levels (cm)
Single series −1.025∗∗ (0.234) -0.389∗∗ (0.135)
“Low”(0-33%) −0.206 (0.232)
“Medium”(33-67%) −0.148 (0.303)
“High” (67-100%) −0.580∗∗ (0.223)

River Temperature (◦C)
DRiv25 (1 = RT > 25 ◦C) 0.0944 (0.156) −0.0529 (0.0751) −0.0273 (0.0745)
RT − 25 ◦C, if > 25 ◦C 0.277∗∗ (0.0550) 0.210∗∗ (0.0286) 0.218∗∗ (0.0288)

Brent (90-day MA, e/bbl) 0.528 (0.442) 0.163 (0.200) 0.149 (0.185)

Tests

1SLS instrument joint significance test 123.65∗∗ 36.56∗∗ 37.13∗∗

Instrument relevance testb 65.01∗∗ 23.64∗∗ 25.70∗∗

Overidentifying restrictions testc 3.20 5.43 5.40
Autocorrelation testd 1604.23∗∗ 2.69 2.69
Joint significance tests χ2

Month Dummies 64.76∗∗ 35.33∗∗ 35.91∗∗

Year Dummies 147.73∗∗ 42.45∗∗ 43.92∗∗

N 2,922 2,915 2,915
∗ p < 0.05, ∗∗ p < 0.01
Notes: All variables are entered in logarithmic form. Standard errors for the coefficients are reported in
parentheses. For the tests, p-values are reported rather than test statistics. A constant term, year and
month dummies are also included as regressors in the price equation. However, the estimated coeffi-
cients attached to these variables are not reported in the table. Heating degree days (HDD), cooling
degree days (CDD), and a Non-working day (NWD) dummy are used as instruments in the first-stage
regression.
a Durbin-Wu-Hausman F-test includes the saved residuals from the first-stage regression in the second
stage of the 2SLS estimation. H0: System is exogenous.
b Kleibergen-Paap Wald rk F statistic. H0: System is underidentified and the instruments are not rele-
vant (i.e. weak).
c The Hansen J statistic for overidentifying restrictions is computed using HAC estimators. H0: Instru-
ments are exogenous.
d The autocorrelation test statistics is the F statistics of the coefficient from a regression where the resid-
ual from the main regression is regressed on its own lagged value.
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statistically insignificant coefficient implies that there is no discontinuity around
this 25 ◦C threshold. Again, this is consistent with our theoretical model in which,
rather than simply shutting down, power plants have the option of reducing power
to stay within the regulatory limits set by authorities.

While fuel costs are not of special interest to this paper, the coefficient on the 90-day
MA for Brent crude is positive, albeit statistically insignificant. We would expect
a positive sign given that fossil fuels serve as an important factor of production in
generating electricity. The set of month and year dummies are not reported on an
individual basis, but they are all jointly significant.16

Our use of an IV/2SLS approach has been motivated by the fact that prices and
quantities are determined simultaneously. This is confirmed by the Durbin-Wu-
Hausman test, which shows that endogeneity is a problem and that OLS should
be discarded in favour of 2SLS. The Kleibergen Paap test indicates that our instru-
ments are highly relevant (i.e. no weak instrument problem). We complement this
with the recommendation of Staiger and Stock (1997) by using an F-test to test the
relevance of the instruments in the first stage of the 2SLS. This F-statistic is signifi-
cantly greater than their “rule of thumb” value of 10 and so we again reject the null
of weak instruments. In addition, Hansen’s J test of overidentifying restrictions
shows that they are also valid.17

Applying an augmented Dickey-Fuller test (ADF) on the residuals for model (1)
shows that persistency in the data does not appear to be a problem.18 However,
further testing does reveal the presence of positive autocorrelation. A probable ex-
planation for this is misspecified dynamics in particular, our reliance thus far on
a completely static model specification. Yet it could be argued that today’s elec-

16There is an increasingly negative coefficient on the year dummy coefficients until 2009, demon-
strating that electricity prices have been increasing slowly relative to volumes over the years. Fur-
thermore, the coefficients on the month dummies indicate that German electricity prices are typically
higher in the summer months.

17 It could be argued that our CDD instrument has a potentially direct effect on electricity sup-
ply since high air temperatures – the basis for CDD – and river temperatures are correlated, albeit
with a lag of several days. The increase in river temperatures implies a higher likelihood of regu-
latory enforcement. If so, there could be a direct link between CDD and supply of electricity that
consequently violates the exogeneity assumption. In the spirit of an overidentification test, we have
therefore run an auxiliary 2SLS that only uses our other two instruments; HDD and NWD. These
two instruments are exogenous by assumption and we have no cause to think that they should be
correlated with high river temperatures. We find that the predicted residuals of this auxiliary re-
gression are not correlated with the debatable instrument CDD (p-value = 0.180). This suggests that
CDD is a valid instrument in our setting.

18Although not reported, it is also tested whether persistency (i.e. non-stationarity) is a problem
for the log-transformed electricity prices- and volumes using an ADF test. Having accounted for
trends in the form of year and monthly dummies we are able to reject the null hypothesis of non-
stationarity for these series.
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tricity price is correlated with the previous day’s price, or even that of the week
before. This idea is given credence by the fact that electricity supply is comprised
of quasi-fixed proportions of baseload and variable power. Baseload facilities such
as nuclear and coal-fired power plants are typically constrained in their ability to
change output levels.19 One might therefore argue that there is some “memory”
in the power market system and that our modelling efforts could be improved by
incorporating dynamic aspects.

The key results from two such dynamic models, which include one- and seven-
day lags for both electricity price and volumes, are presented in the second and
third columns of Table 1.1. These lags are chosen to account for the inertia from
the previous day and weekday effects. Model (2) is a straightforward extension of
our static model, while in model (3) we want to open up for the possibility that
changes in water availability matter at different stages of relative abundance. Thus,
the continuous river level series has been replaced by spline partitions. Since the
majority of the coefficients of these two models are qualitatively indistinguishable,
we consider them together.

It can immediately be seen that the coefficients on the lagged endogenous variables
in both dynamic models are all statistically significant. This goes some way towards
vindicating our suspicions that the German electricity spot exchange does not sim-
ply constitute a “new” market every day. Illustrating by way of model (2), the coef-
ficient on the contemporaneous volume of electricity (i.e. 8.267) denotes the short-
run, instantaneous impact of a change in quantity on price. The corresponding
long-run multiplier is found by incorporating the lagged endogenous variables of
our model and can be calculated as [(8.267 − 3.729 − 2.28)/(1 − 0.624 − 0.138) =]

9.487. Testing this figure reveals it to be statistically significant at the one percent
level. The dynamic model specification therefore predicts that a one percent in-
crease in electricity volumes will lead to a 9.5 percent increase in price over the
course of a full week. Again, this describes a very inelastic supply curve, but it is
representative of the inertia present within the power system.

Looking next at the effect of river temperatures, both dynamic models show that
there is a positive impact on electricity prices once the 25 ◦C threshold is breached.
A one percent increase in river temperatures above this mark will yield an increase

19The load-following capacity of baseload power is an important concept here. In particular, nu-
clear and coal-fired plants are normally run continuously at more-or-less constant level of output.
This is both a matter of economic efficiency (since they have low variable costs in comparison with
the high fixed costs that must be recouped), and technical efficiency (since these plants cannot read-
ily alter power output in the same way that gas or hydro plants can). See, for instance, WNA (2011).
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in contemporaneous prices slightly greater than 0.2 percent. The equivalent long-
run effect is closer to 0.9 percent. Thus, a temperature rise from 25 ◦C to 26 ◦C
would bring about an immediate price increase of approximately 0.9 percent, or
equivalently, an increase of 3.8 percent over the next seven days. Once more, these
effects are all statistically significant at the one percent level.

The key distinction between our two dynamic models lies in the way that they mea-
sure the impact of changing river levels. Model (2) is a straightforward extension
of model (1) in that it uses a single, continuous series. Like its static counterpart,
model (2) suggests a negative relationship with the electricity price: A one percent
drop in river levels is associated with a 0.4 percent rise in the concurrent electricity
price, while the relevant long-run multiplier suggests an approximate 1.6 percent
rise over the course of a week.

For model (3), we split the river level series into three splines of equal size based on
percentile distribution: i) “low” (0%–33%); ii) “medium” (33%–67%); and iii) “high”
(67%–100%).20 Only changes within the “high” river level category are shown to be
statistically significant: A one percent drop in river levels within this range will
lead to a 0.6 percent rise in contemporaneous prices, or a 1.8 percent rise in the long
run. A potential explanation for the insignificance of the “medium” and “low”
river level splines could be that those plants most reliant on water consumption
– i.e. those most sensitive to water scarcity – have already been forced to power
down by the time that rivers reach their lowest levels. Regardless, formal testing
reveals that the coefficient on the “mid” spline is statistically indistinguishable from
that of the “high” spline (p-value of 0.31). Conducting a similar test on the “low”
spline coefficient reveals that it too is statistically identical to the “high” spline (p-
value of 0.18). As a consequence of these tests, it makes sense to do away with the
separate splines and simply include river levels as a single continuous series as in
our preferred specification, model (2).

Running through the same set of statistical tests described previously, we are able to
confirm the validity of our instruments (as well as the presence of endogeneity that
necessitates the use of an IV approach in the first place). A more pertinent question
concerning the extension towards a dynamic specification, however, is whether it
removes the autocorrelation that was present in the static models. It is well known
that in addition to efficiency concerns, inclusion of the lagged dependent variable
will lead to biased coefficient estimates in the presence of serially correlated resid-

20Admittedly, these splines are chosen somewhat arbitrarily. However, having experimented with
different cut-off points, our conclusion is that the main results are robust to such changes.
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uals. That said, testing reveals that autocorrelation is not present in any of the
dynamic models. This adds further credibility to the notion that the dynamic spec-
ification of our model is preferable to its static counterpart.21

In addition to the primary models presented in Table 1.1, we have run a number of
alternate specifications and supplementary regressions to confirm the robustness of
our findings.22 First, instead of using month dummies, we have also tried to control
for seasonal effects by incorporating a trigonometric wave function in the models.23

Doing so does not change our results in any material way. Second, we have replaced
the splines of model (3) with a set of dummies that similarly divides the river level
series into equal thirds (“low”, “middle” and “high”) based on the overall distribu-
tion. Rather than measuring the potential difference in slope coefficients, the aim
here is to assess whether there are any statistically significant differences in the in-
tercepts of the different river level groups. Again, we find that electricity prices will
be driven higher as river levels fall.24

By focusing on high river temperatures (i.e. 25 ◦C and above), our goal has been to
capture the impact that regulatory constraints have on power supply. Such regula-
tory interventions are a direct result of the increased river temperatures which are
measured directly in our analysis. In addition, by holding our data together with
shutdown dates collected by Müller et al. (2007), we find a jump in prices during
the period of regulatory enforcement compared with those immediately preceding
and/or following them.25 There is also an uncanny overlap between these days and
times where the average river temperature exceeds the 25 ◦C mark. We view this as
supplementary evidence in favour of our analysis of the effects of regulatory actions
and increased river temperature, as well as our defined regulatory threshold.26

21While of lesser importance to this study, we again note that the coefficient on fuel costs remains
positive yet insignificant under the dynamic specification.

22While none of the results from the alternate specifications are reported here, they are available
from the authors upon request.

23The formulas used are F(t) = sin(2πt/365) and G(t) = cos(2πt/365), respectively, where t
denotes time in days. This reflects the fact that a full seasonal cycle would complete once a year.

24We have also included a log-transformed, 90-day MA of CO2 future contracts as a proxy for the
input costs of thermal-based electricity production. While we only have available data for the period
2006–2009, the basic results of our regression analysis are not altered by the inclusion of this CO2
permit variable.

25Müller et al. (2007) include information about shutdown dates over the period 19–31 July 2006
based on secondary sources, such as newspaper and other media articles. Such data are likely to be
incomplete and imprecise and should therefore be used with great care.

26The aggregate 25 ◦C threshold that we have defined does gloss over some river- and site-specific
issues. The permitted mixing temperature from the thermal discharge in Germany varies between
23 ◦C and 28 ◦C Müller et al. (2007). Our choice of 25 ◦C is based on a careful reading of the literature,
as well as some initial testing of different thresholds.
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So far, we have followed an aggregated approach with regards to both river level
and river temperature. This decision has primarily been motivated by the fact that
Germany has a single electricity price common to all regions. Moreover, the pur-
pose of this paper is to essentially test for systematic risks – particularly with regards
to river temperatures and the regulation of thermal pollution. However, it could
still be asked whether the individual rivers in our dataset are similar enough to
warrant this type of aggregation. We have therefore subjected our data to several
robustness checks. First, we construct a simple correlation matrix of the (detrended)
individual river temperature series.27 These correlation coefficients fall within the
interval [0.80, 0.94] and are highly significant. We have also looked at the share of
individual temperature observations that coincide with the days that our average
river temperature series breaches the 25 ◦C threshold. The likelihood of an individ-
ual river exceeding 25 ◦C given that the average series does, is very high (= 0.993).
These exercises illustrate the close correspondence between the individual temper-
ature trends and the aggregated measure of critical river temperature that we have
constructed.

The correlation coefficients for the individual river levels are less pronounced, but
are still highly significant. To provide a more formal test of the disaggregated river
level effects though, we incorporate data from each of the individual rivers sep-
arately into the regression analysis. More precisely, we run four new regressions
based on the specifications of model (2) – each time replacing the average river
level series with data from a single river. These results are presented in Table 1.2.
As can be seen from the table, the individual river level coefficients are all negative
and thus indicative of a higher electricity price when river levels fall. That is not
to say that they all have the same marginal impact, although this is perhaps not
surprising given that the importance of these rivers in terms of providing cooling
water to Germany’s thermal industry can vary quite substantially.28

In sum, we believe that these results serve to emphasis the validity of our predom-
inantly aggregate approach. Again, the purpose of this paper is to test for sys-
tematic vulnerabilities and we would argue that focusing too much on individual
trends and measurements actually distracts from the wider climate and its associ-
ated risks. The real danger implicit in climate change, for example, is that mean
values are pushed closer to their regulatory thresholds, such that widespread ca-
pacity reductions become more commonplace. It therefore seems most appropriate
to focus on the “average” effect, since this captures the systemic risk that comes

27These series are detrended using the set of month and year dummies.
28As expected, the other coefficients are extremely similar across the four different models.
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Table 1.2: Individual River Levels

Dependent Variable: Price (e/MWh)

Elbe Main Neckar Rhine

Coefficients
Volume (1,000 MWh) 8.099∗∗ (1.004) 8.256∗∗ (1.020) 8.081∗∗ (0.982) 8.277∗∗ (1.029)
Predetermined Variables

L1.Price 0.644∗∗ (0.0530) 0.633∗∗ (0.0532) 0.623∗∗ (0.0527) 0.620∗∗ (0.0553)
L7.Price 0.158∗∗ (0.0540) 0.153∗∗ (0.0530) 0.168∗∗ (0.0531) 0.140∗∗ (0.0537)
L1.Volume −3.738∗∗ (0.464) −3.757∗∗ (0.460) −3.672∗∗ (0.447) −3.749∗∗ (0.472)
L7.Volume −2.230∗∗ (0.374) −2.330∗∗ (0.368) −2.271∗∗ (0.360) −2.284∗∗ (0.379)

River Levels (cm)
Single series −0.130 (0.0741) −0.372∗ (0.171) −0.511∗∗ (0.142) −0.217∗∗ (0.0740)

River Temperature (◦C)
DRiv25 (1 = RT > 25 ◦C) −0.0246 (0.0732) 0.00289 (0.0739) 0.00373 (0.0739) −0.0683 (0.0752)
RT − 25 ◦C, if > 25 ◦C 0.208∗∗ (0.0301) 0.222∗∗ (0.0282) 0.227∗∗ (0.0284) 0.210∗∗ (0.0280)

Brent (90-day MA, e/bbl) 0.131 (0.194) 0.113 (0.189) 0.0755 (0.191) 0.137 (0.205)

Tests
Endogeneity testa 478.40∗∗ 431.99∗∗ 442.59∗∗ 448.29∗∗

1SLS instrument joint significance test 36.78∗∗ 36.67∗∗ 37.14∗∗ 36.63∗∗

Instrument relevance testb 22.74∗∗ 24.55∗∗ 23.26∗∗ 29.37∗∗

Overidentifying restrictions testc 5.27 5.78 5.58 5.23
Autocorrelation testd 4.27∗ 3.38 4.24∗ 2.75
Joint significance tests

(
χ2)

Month Dummies 35.25∗∗ 36.04∗∗ 37.95∗∗ 36.89∗∗

Year Dummies 39.31∗∗ 38.95∗∗ 43.02∗∗ 42.16∗∗

N 2,915 2,915 2,915 2,915
∗ p < 0.05, ∗∗ p < 0.01
Notes: Based on Model (2) in Table 1.1. For each regression, the average river level series from Model (2) have been
replaced with level data from an individual river. All other coefficients are excluded.
a b c d See Table 1.1 for interpretation.

when rivers all across the country are breeching their regulatory thresholds at the
same time.

1.5 Concluding remarks

This paper has sought to quantify how electricity prices are affected by the availabil-
ity of cooling water. Our analysis is primarily motivated by the fact that water plays
a critical in the thermal production cycle, where tremendous volumes of freshwa-
ter are drawn every day to serve the cooling needs of thermal-based power plants
around the world. At the same time, these water sources are subject to environmen-
tal regulations, competing economic concerns and periods of relative scarcity. We
have argued that Germany serves as a good case study to investigate these issues
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and have based our analysis on daily data taken over a period of seven years.

Having successfully controlled for various demand effects within a 2SLS regression
framework, our results indicate that electricity prices are significantly affected by
both falling river levels and higher river temperatures. The magnitude of these re-
lationships varies according to the exact specifications of the regression model at
hand and we have explored several contemporaneous and dynamic settings. Qual-
itatively, however, they all tell a very similar story: electricity prices are driven
higher by falling river levels and high river temperatures. Under a fully contem-
poraneous setting, the electricity price is expected to rise by around one percent
for every one percent that river levels fall. The dynamic specification, on the other
hand, suggests that the price will rise at about half that rate in the short-run, before
increasing to approximately one and a half percent in the long-run. With regards
to river temperatures, the models imply that the price of electricity will increase by
roughly one percent for every degree that temperatures rise above a 25 ◦C thresh-
old. Incorporating the longer-run effects implied by a dynamic model shows that
prices will rise by nearly four percent over the course of a week. In addition to this
slope effect, we test for a price discontinuity on either side of this 25 ◦C threshold.
However, we do not find evidence of a marked price jump once the threshold is
breached. An explanation, which is consistent with our theoretical model and the
surveyed literature, is that power plants reduce their output in stages rather than
simply shutting down. This allows them some additional scope for managing ther-
mal pollution, although a decrease in output – and hence increase in price – cannot
be fully avoided.

One implication of our findings is that future climate change will impact electricity
prices not only through changes in demand, but also as a result of increased cooling
water scarcity. We believe that this type of analysis would lend itself to applications
in a number of regions and countries – all of which are marked by a marked de-
pendency on thermal-based power, at the same time as being prone to drought and
periodic heat waves.

23



References

AP (2008). “Drought could shut down nuclear power plants,” Associated Press, 23
January 2008. Available: http://www.msnbc.msn.com/id/22804065/ns/weather/
t/drought-could-shut-down-nuclear-power-plants/.

Arnell, Nigel, Emma L Tompkins, Neil Adger, and Kate Delaney (2005). “Vulnera-
bility To Abrupt Climate Change In Europe,” Tyndall Centre Technical Report 34,
Tyndall Centre for Climate Change Research.

Baum, Christopher F, Mark E Schaffer, and Steven Stillman (2007). “Enhanced rou-
tines for instrumental variables/GMM estimation and testing,” Stata Journal, 7(4):
465–506.

Bessec, Marie and Julien Fouquau (2008). “The non-linear link between electricity
consumption and temperature in Europe: a threshold panel approach,” Energy
Economics, 30(5): 2705–2721.

Boogert, Alexander and Dominique Dupont (2005). “The nature of supply side ef-
fects on electricity prices: The impact of water temperature,” Economics Letters,
88(1): 121–125.

Chellaney, Brahma (2011). “Japans Nuclear Morality Tale,” Project Syndicate,
14 March 2011. Available:http://www.project-syndicate.org/commentary/

japan-s-nuclear-morality-tale.

Dell’Amore, Christine (2010). “Nuclear Reactors, Dams at Risk Due
to Global Warming,” National Geographic News, 26 February 2010.
Available: http://news.nationalgeographic.com/news/2010/02/

100226-water-energy-climate-change-dams-nuclear/.

Dixit, Avinash K. (1990). Optimization In Economic Theory, Oxford University Press.

DOE (2006). “Energy demands on water resources: Report to congress on the inter-
dependency of energy and water,” Technical report, U.S. Department of Energy,

24

http://www.msnbc.msn.com/id/22804065/ns/weather/t/drought-could-shut-down-nuclear-power-plants/
http://www.msnbc.msn.com/id/22804065/ns/weather/t/drought-could-shut-down-nuclear-power-plants/
Available: http://www.project-syndicate.org/commentary/japan-s-nuclear-morality-tale
Available: http://www.project-syndicate.org/commentary/japan-s-nuclear-morality-tale
http://news.nationalgeographic.com/news/2010/02/100226-water-energy-climate-change-dams-nuclear/
http://news.nationalgeographic.com/news/2010/02/100226-water-energy-climate-change-dams-nuclear/


Washington D.C., report to Congress on the interdependency of energy and wa-
ter.

Eaton, Jon (2012). “Record Heat, Drought Pose Problems for U.S.
Electric Power,” National Geographic News, 17 August 2012. Avail-
able: http://news.nationalgeographic.com/news/energy/2012/08/

120817-record-heat-drought-pose-problems-for-electric-power-grid/.

Feeley, Thomas J., Timothy J. Skone, Gary J. Stiegel Jr, Andrea McNemar, Michael
Nemeth, Brian Schimmoller, James T. Murphy, and Lynn Manfredo (2008). “Wa-
ter: A critical resource in the thermoelectric power industry,” Energy, 33(1): 1–11.

Förster, Hannah and Johan Lilliestam (2010). “Modeling thermoelectric power gen-
eration in view of climate change,” Regional Environmental Change, 10(4): 327–338.

Gentleman, Amelia (2003). “France faces nuclear power crisis,” The Guardian,
8 April 2010. Available: http://www.theguardian.com/news/2003/aug/13/

france.internationalnews.

Godoy, Julio (2006). “European Heat Wave Shows Limits of Nuclear En-
ergy,” One World, 26 July 2006. Available: http://us.oneworld.net/article/

european-heat-wave-shows-limits-nuclear-energy.

Halvorsen, Robert (1975). “Residential demand for electric energy,” The Review of
Economics and Statistics, 57(1): 12–18.

Hurd, Brian and Megan Harrod (2001). “Water resources: Economic Analysis,” in
Robert Mendelsohn (ed.), “Global Warming and the American Economy: A Re-
gional Assessment of Climate Change Impacts,” chapter 5, Edward Elgar Pub-
lishing Ltd, pp. 106–131.

IEA (2011a). Energy Balances of OECD Countries 2011, International Energy Agency,
OECD Publishing.

IEA (2011b). World Energy Outlook 2011, International Energy Agency, OECD Pub-
lishing.

IPCC (2007). Climate change 2007: Impacts, Adaptation and Vulnerability. Contribution
of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on
Climate Change, [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Av-
eryt, M.Tignor and H.L. Miller (eds.)], Cambridge: Cambridge University Press,
1st edition.

25

http://news.nationalgeographic.com/news/energy/2012/08/120817-record-heat-drought-pose-problems-for-electric-power-grid/
http://news.nationalgeographic.com/news/energy/2012/08/120817-record-heat-drought-pose-problems-for-electric-power-grid/
http://www.theguardian.com/news/2003/aug/13/france.internationalnews
http://www.theguardian.com/news/2003/aug/13/france.internationalnews
http://us.oneworld.net/article/european-heat-wave-shows-limits-nuclear-energy
http://us.oneworld.net/article/european-heat-wave-shows-limits-nuclear-energy


Kanter, James (2007). “Climate change puts nuclear energy into hot water,” The
New York Times, 20 May 2007. Available:http://www.nytimes.com/2007/05/20/
health/20iht-nuke.1.5788480.html.

Kirshen, Paul, Matthias Ruth, and William Anderson (2008). “Interdependencies
of urban climate change impacts and adaptation strategies: a case study of
metropolitan boston usa,” Climatic Change, 86(1-2): 105–122.
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Appendix

1.A Comparative statics: Effect of a change in river tem-

perature on optimal quantity and price

We start from our first-order condition (eq. 1.5),

p∗ · (1 + 1
ε
) =

∂c(Q∗)

∂Q
+

pw(RL)
A(TEW − T)

+ λ ·
[

TEW − T
S · A(TEW − T)

]

and want to find the effect of a river-level temperature increase on the prices. Us-
ing standard comparative statics we define the problem as follows (e.g. Dixit, 1990,
chap. 8):

dQ
qT

= −∂G(Q, T)/∂T
∂(G, T)/∂Q

,

where

G(Q, T) =
W
S

· TEW +
S − W

S
· T

=
W
S

· (TEW − T) + 1

=
Q

S · A(.)
· (TEW − T) + 1,

which is the LHS of the constraint G(Q, T) ≤ T. We have that

∂G(.)
∂Q

=
TEW − T
S · A(.)

> 0
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and

∂G(.)
∂T

=
Q
S
·
[

A′(.) · (TEW − T)− A(.)
A(.)2

]
+ 1

=
A(.)W

S
·
[

A′(.) · (TEW − T)− A(.)
A(.)2

]
+ 1

=
1

A(.)
·
[

W
S

·
[
A′(.)(TEW − T)− A(.)

]
+ A(.)

]
=

1
A(.)

·
[

S − W
S

· A(.) + A′(.) · (TEW − T)
]

> 0,

as long as A′(.) > 0 (and TEW > T). That means that dQ
qT < 0. This is an inward shift

of the supply curve. With a given demand, and assuming that the supply curve
is not completely flat, then a rise in river temperature will lead to an increased
electricity price.
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Chapter 2

Sceptic priors and climate change
mitigation

Abstract

How much evidence would it take to convince sceptics that they are wrong about
global warming? I explore this question within a Bayesian framework. I consider a
group of stylised climate sceptics and examine how these individuals update their
beliefs in light of the available evidence. I find that all but the most extreme pri-
ors are overwhelmed by the historical data. The resulting posterior distributions
of climate sensitivity correspond closely to existing estimates from the literature.
I show further that the updated sceptic beliefs are consistent with a social cost of
carbon that is substantially greater than zero. I conclude by discussing the general
conditions for consensus formation under Bayesian learning, its relevance to our
current policy impasse, and offer some remarks about finding common ground in
the future.

JEL Codes: Q54, Q58, C11
Keywords: climate change, climate scepticism, social cost of carbon, Bayesian econo-
metrics
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2.1 Introduction

Climate change has come to represent a defining policy issue of our age. Yet despite
an overwhelming scientific consensus, many ordinary citizens and policy makers
are sceptical about anthropogenic global warming.1 What are we to make of this
scepticism? And just how much evidence would it take to convince a climate scep-
tic that they are wrong? The present paper addresses these questions within an
idealised Bayesian framework. My approach is to combine sceptic priors with avail-
able climate data, and thereby obtain posterior probabilities about climate change
that are logically consistent with the beliefs of sceptics. I consider whether real
people behave like rational Bayesian agents and discuss how apparent deviations
from this ideal can be accommodated within the same conceptual framework. In so
doing, I hope to shed light on the current policy impasse and offer some remarks
about the possibility for finding common ground in the near future.

Numerous studies have explored the cultural factors and psychological motivations
that underlie climate scepticism (e.g. Kahan et al., 2011, 2012; McCright and Dunlap,
2011a,b; Corner et al., 2012; Ranney et al., 2012; Clark et al., 2013, and references
therein). My present concern is less with the origins of scepticism than what it
represents — a set of beliefs about the likely causes of global warming, which will
in turn affect how new information about those causes is interpreted. A convenient
way to model such beliefs is by defining scepticism in terms of climate sensitivity,
i.e. the temperature response to a doubling of CO2. More precisely, we can map
sceptic beliefs directly to subjective estimates of climate sensitivity, since they both
describe the likely causes and probability distribution of future warming.

Climate sensitivity can be defined in several ways and it is important to distinguish
between these variants for accurate analysis. I focus on the policy-relevant measure
known as transient climate response (TCR). Formally, TCR describes the warming
at the time of CO2 doubling — i.e. after 70 years — in a 1% per year increasing
CO2 experiment (Allen and Frame, 2007; Otto et al., 2013; IPCC, 2013, Box 12.2).
For the purposes of this paper, however, it will simply be thought of as the contem-
poraneous change in global temperature that results from a steady doubling of at-
mospheric CO2. According to the the Intergovernmental Panel on Climate Change
(IPCC, 2013), TCR is “likely” to be somewhere in the range of 1.0–2.5 ◦C. This cor-
responds roughly to a 66–100% probability interval in IPCC terminology. The IPCC
further emphasises the inherently Bayesian nature of climate sensitivity estimates,

1For review and further discussion, see: Oreskes (2004); Anderegg et al. (2010); Doran and Zim-
merman (2011); Cook et al. (2013); Verheggen et al. (2014); Saad (2014); Tol (2014).
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going so far as to state:

“[T]he probabilistic estimates available in the literature for climate sys-
tem parameters, such as ECS [i.e. equilibrium climate sensitivity] and
TCR have all been based, implicitly or explicitly, on adopting a Bayesian
approach and therefore, even if it is not explicitly stated, involve using
some kind of prior information.” (IPCC, 2013, p. 922)

To understand why classical (frequentist) methods are ill-suited for the task of pro-
ducing credible estimates of climate sensitivity, recall that frequentism interprets
probability as the limiting frequency in a large number of repeated draws. Such
a narrow definition holds little relevance to the question of climate sensitivity, for
which there exists but one unique value. There is no sample of “sensitivities” to
draw from. The present paper also adopts a Bayesian approach to the question of
climate sensitivity and its concomitant policy implications. However, it differs from
the previous literature primarily on two accounts.

First, I deliberately focus on the beliefs of sceptics as a means for evaluating the
case to mitigate against climate change. Priors for determining climate sensitivity
are usually based on the judgements of scientific experts, or obtained more objec-
tively through noninformative priors. Such approaches may have obvious scientific
merit when it comes to establishing a best estimate of climate sensitivity. However,
they are of limited relevance for understanding people’s motivations and voting
behaviour when it comes to actual climate policy. My approach is to take sceptics
at their word and work through to the conclusions of their stated priors. Although
contrarian beliefs have generally been ignored in the policy literature to date, a
handful of studies do try to consider policy options from the sceptic’s perspective.
Van Wijnbergen and Willems (2015) show that climate sceptics actually have an in-
centive to reduce emissions, as it will facilitate learning about the true causes of
climate change. Kagan (2014) introduces various levels of scepticism into a numeri-
cal model and solves for optimal climate policy under the threat of catastrophe. He
shows that even complete sceptics will not follow an unbounded emissions path.
The possibility of (exogenous) catastrophe causes agents to draw down on their cap-
ital stock in pre-emptive fashion, leaving investment insufficient for continued eco-
nomic growth beyond some point. From a methodological perspective, the current
paper is mostly empirical in nature. This contrasts with the game-theoretic and nu-
merical approaches of Van Wijnbergen and Willems (2015) and Kagan (2014), who
are attempting to pin down the strategic emissions and learning paths for climate
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sceptics under future uncertainty. My purpose is less to provide a prescriptive emis-
sions path than it is to establish the ground rules for thinking about climate policy
today, given the information that is already available to us.

A second distinguishing feature of this paper is that the results are derived via
conceptually straightforward time-series regression analysis. While climate scien-
tists have typically relied on complex computer models to simulate TCR, a growing
body of research is aimed at understanding the link between human activities and
climate change through the purview of time-series econometrics. Much of this lit-
erature has concerned itself with the apparent non-stationarity of climate data over
time. Suffice it to say that the present paper takes as its foundation newer studies
by Gay-Garcia et al. (2009) and Estrada et al. (2013a,b), who argue convincingly that
global surface temperatures and anthropogenic forcings can best be described as
trend-stationary processes, incorporating at least one structural change.2 Such mat-
ters notwithstanding, virtually all econometric studies of climate change attribution
to date have been carried out in the frequentist paradigm. They do not consider the
influence of priors, nor are they able to yield the probabilistic estimates that are
characteristic of Bayesian analysis. An early exception is that of Tol and De Vos
(1998), who are motivated to adopt a Bayesian approach because of multicollinear-
ity in their anthropogenic emissions data. Multicollinearity does not plague more
recently available datasets, which unitise and aggregate various radiative forcings
into a single series (see Section 2.2). This allows us to pin down the influence of
specific forcings with greater confidence, and so obtain a more precise estimate of
climate sensitivity. Furthermore, Tol and De Vos do not consider the influence of
overtly contrarian priors as a basis for affecting policy.

2.2 Data

The various data sources for this paper are summarised in Table 2.1. Global mean
surface temperature data (1850–2013) are taken from the HadCRUT4 dataset, jointly
compiled by the UK Met Office and the Climatic Research Unit at the University of
East Anglia. Two alternate global temperature reconstructions — one provided by

2The upshot is to permit the use of level terms in an ordinary least squares (OLS) regression
framework. Another group of researchers has argued that the instrumental temperature record con-
tains a stochastic trend that is imparted by (and therefore cointegrates with) the time-series data of
radiative forcings, such as the atmospheric concentration of greenhouse gases and solar irradiance.
Proponents of this view include Stern and Kaufmann (2000); Kaufmann and Stern (2002); Kaufmann
et al. (2006); Mills (2009); Kaufmann et al. (2010, 2013). The reader is referred to Estrada and Perron
(2013) for a useful overview.
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Table 2.1: Data sources

Variable Product Description Period

GMST HadCRUT4 a Global mean surface temperature. Primary series.
Compiled by the UK Met Office and the Climatic
Research Unit at the University of East Anglia.

1850–2013

CW2014 b Secondary series. Compiled by Cowtan and Way
(2014). Corrects for coverage bias in HadCRUT4.

1850–2013

GISTEMP c Secondary series. Compiled by the NASA God-
dard Institute for Space Studies.

1880–2013

RF RCP d Total radiative forcing due to anthropogenic
and natural factors (excluding volcanic aerosols).
Compiled by Meinshausen et al. (2011). Histori-
cal data until 2005, simulated scenarios thereafter.

1750–2300

AER RCP d Radiative forcing due to volcanic stratospheric
aerosols. Compiled by Meinshausen et al. (2011).

1750–2005

AMO NOAA e Atlantic Multidecadal Oscillation. 1856–2005
SOI NCAR f Southern Oscillation Index. 1866–2005

a http://www.metoffice.gov.uk/hadobs/hadcrut4/data/current/download.html
b http://www-users.york.ac.uk/~kdc3/papers/coverage2013/series.html
c http://data.giss.nasa.gov/gistemp/
d http://www.iiasa.ac.at/web-apps/tnt/RcpDb
e http://www.esrl.noaa.gov/psd/data/timeseries/AMO/
f http://www.cgd.ucar.edu/cas/catalog/climind/soi.html

Cowtan and Way (2014) and the other by the NASA Goddard Institute for Space
Studies (GISTEMP) — are used as a check against coverage issues and other un-
certainties. Radiative forcing data (1765–2005) are taken from the Representative
Concentration Pathway (RCP) database, hosted by the Potsdam Institute for Cli-
mate Impact Research. These data include anthropogenic sources of radiative forc-
ing like industrial greenhouse gas emissions, as well as natural sources like solar
irradiance and volcanic eruptions. It is important to note that the forcings are de-
fined in terms of a common unit, Watts per square metre (Wm−2). This allows
for aggregation into a composite series of total radiative forcing, which circum-
vents the attributional problems that we would otherwise encounter due to se-
vere multicollinearities among the different series of greenhouse gases. Data for
two major oceanic-atmospheric phenomena, the Atlantic Multidecadal Oscillation
(AMO, 1856–2013) and the Southern Oscillation Index (SOI, 1866–2013), are taken
from the U.S. National Oceanic and Atmospheric Administration (NOAA) and Na-
tional Center for Atmospheric Research (NCAR). Summarising the common his-
toric dataset, we have 140 annual observations running over 1866–2005.

35

http://www.metoffice.gov.uk/hadobs/hadcrut4/data/current/download.html
http://www-users.york.ac.uk/~kdc3/papers/coverage2013/series.html
http://data.giss.nasa.gov/gistemp/
http://www.iiasa.ac.at/web-apps/tnt/RcpDb
http://www.esrl.noaa.gov/psd/data/timeseries/AMO/
http://www.cgd.ucar.edu/cas/catalog/climind/soi.html


2.3 Econometric approach

2.3.1 Bayesian regression overview

The Bayesian regression framework is less familiar to many researchers than the
frequentist paradigm that is commonly taught in universities. For this reason, I
provide a brief overview of the key principles of the Bayesian method and high-
light some important distinctions versus the frequentist approach. A more in-depth
discussion may be found in Koop (2006), Gill (2007), Albert (2009), Jackman (2009),
and Kruschke (2014) among others.

A Bayesian regression model uses the logical structure of Bayes’ theorem to estimate
probable values of a set of parameters θ, given data X:

p(θ|X) =
p(X|θ)p(θ)

p(X)
. (2.1)

Here, p(θ|X) is known as the posterior density and serves as the fundamental cri-
terion of interest in the Bayesian framework. The posterior asks, “What are the
probable values of our parameters, given the observed data?” This stands in direct
contrast to the first term in the numerator, p(X|θ), which is the familiar likelihood
function that we recognise from frequentist statistics. The likelihood essentially re-
verses the question posed by the posterior; it instead evaluates how likely we are to
observe some data for a given set of parameters (e.g. under certain distributional
assumptions). The second term in the numerator, p(θ), is the prior density that one
assigns to values of θ. The choice of prior can prove to be a contentious issue in
Bayesian analysis and is often given primacy as a result. For the moment, it will
suffice to say that the prior should encapsulate our knowledge about the param-
eters before we have analysed the current dataset. Insofar as we are interested in
learning about θ, it is common practice to ignore the term in the denominator, p(X).
This is simply the marginal probability of the data and can be thought of as a nor-
malisation constant, which helps to ensure that the posterior is a proper probability
distribution (i.e. integrates to one) and can be calculated ad hoc if needed. For this
reason, equation (2.1) is typically re-written as

p(θ|X) ∝ p(X|θ)p(θ). (2.2)

Equation (2.2) embodies the mantra of Bayesian statistics: “The posterior is pro-
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portional to the likelihood times the prior.” Solving for the posterior typically in-
volves the combination of various integrals, which cannot be calculated analyti-
cally.3 Fortunately, the advent of increased computing power and software allows
us to simulate the posterior density with relative ease using Markov Chain Monte
Carlo (MCMC) routines. This can be done for virtually any manner of prior and
data/likelihood combination. The upshot is that obtaining a valid posterior is sim-
ply a matter of (i) choosing a prior distribution for our regression parameters, i.e.
regression coefficients and variances, and (ii) specifying a likelihood function to fit
the data. For ease of exposition — how we map parameter values to beliefs about
TCR will be determined by the specification of the regression model — I begin with
the likelihood function.

2.3.2 Likelihood function

Consider the regression equation

GMSTt = α0 + β1RFt + γ2AERt + δ3SOIt + η4AMOt + εt, (2.3)

where GMST is the global mean surface temperature anomaly relative to the pre-
industrial period (here defined as the 1851–1880 average), RF is total radiative forc-
ing due to both anthropogenic and natural factors (excluding stratospheric aerosols),
AER is the radiative forcing due to the release of stratospheric aerosols during vol-
canic eruptions, and SOI and AMO are scaled indices of these respective climatic
phenomena. The subscript t denotes time. The simple OLS specification above be-
lies the fact that it is a statistically valid regression model for estimating global tem-
perature (Estrada and Perron, 2012; Estrada et al., 2013a). That being said, lumping
natural and anthropogenic forcings together within the same composite RF term
may seem a puzzling choice in the context of present paper. After all, our goal is
to disentangle scepticism about the human role in climate change. And yet, this is
a necessary step to ensure that the model does not become unphysical. The under-
lying forcings in the dataset are expressed in terms of a common unit (Wm−2) and
the model must therefore constrain them to have the same effect on temperature.4

Ignoring such physical constraints — e.g. by entering solar irradiance as a separate

3A well-known exception occurs in the case of so-called conjugate priors, but this places severe
restrictions on type of questions that can asked of the data.

4The forcing imparted by stratospheric aerosols, on the other hand, is of a more transitory nature.
This explains why AER may be included as a separate component to RF in the regression equation
(Estrada et al., 2013a).
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regressor and further imposing subjective priors on the anthropogenic components
of the model — nonetheless leads to very similar conclusions as the more correct
formulation. Similarly, while it is possible to incorporate dynamic elements into the
model, doing so would create interpretative complications. For example, running a
dynamic specification where the lagged dependent variable is included as a regres-
sor yields virtually identical results to the present set-up, once long-run effects are
calculated. Such an approach would however make it difficult (if not impossible)
to establish consistent beliefs about climate sensitivity.5 A static formulation allows
us to avoid these inconsistencies at no real cost to model fit.

Equation (2.3) implies a likelihood function that is multivariate normal,

p(GMST|β, σ2) =
1

(2πσ2)
T/2 exp

[
− (GMST − Xβ)′(GMST − Xβ)

2σ2

]
, (2.4)

where X is the design matrix of explanatory variables; β is the coefficient vector;
σ2 = Var(ε) is the variance of the error term; and T = 140 is the observed number
of time periods. Equation (2.4) could also be written as GMST|β, σ2 ∼ NT(Xβ, σ2I).
Further discussion of the multivariate normal likelihood function, and how it might
combine with specific priors to yield a valid posterior, is provided in Appendix 2.A.

An important feature of equations (2.3) and (2.4) is that they define how we should
map probabilities about the regression parameters to beliefs about climate sensi-
tivity. Recall that TCR describes the contemporaneous change in temperature that
will accompany a steady doubling of atmospheric CO2 concentrations. It follows
trivially that

TCR = β1 ∗ F2× , (2.5)

where β1 is the regression coefficient describing how responsive global tempera-
tures are to a change in total radiative forcing; and F2× is the change in forcing that
results from a doubling of CO2. For the latter, I use the IPCC’s best estimate of

5Recall that the long-run multiplier of any variable in a ADL(p, q) model is determined by the
coefficients on its own lags , as well as those on the dependent variable. Assuming we used an
ADL(1,0) model, for instance, the long-run effect of a change in total radiative forcing would be
βLR = β1

1−θ , where θ is the coefficient on GMSTt−1. However, defining strong priors over β1 can
affect the posterior estimate for other coefficients (including θ) as a simple consequence of best-
fit mechanics. Since both parameters are necessary to calculate TCR in such a dynamic setting —
yet both are also varying — it will in general not be possible to make meaningful or consistent
comparisons between between prior and posterior beliefs.
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F2× = 3.71 Wm−2 and further assume an additional ±10% variation to account for
uncertainties over spatial heterogeneity and cloud formation (Schmidt, 2007; IPCC,
2001, Chapter 6).6 The key point is that assigning a distribution over the parame-
ter β1 will necessarily imply a distribution for TCR, and vice versa. We therefore
have a direct means of linking prior and posterior probabilities of the regression pa-
rameters to beliefs about TCR. It also means that the primary goal of the regression
analysis will be to determine probable values of β1. The rest of the parameters will
take a backseat in the analysis that follows, acting largely as controls.

2.3.3 Priors

Climate scepticism is a matter of degree. I account for this by defining a simple
matrix of stylised sceptic priors as per Table 2.2. Rows in panel (A) differentiate cli-
mate sceptics according to their best estimate of TCR. A lukewarmer’s prior for TCR
is centred around a 1 ◦C mean, while a denier’s is distributed around a 0 ◦C mean. A
lukewarmer believes that humans are having an effect on the climate, but to a lesser
extent than the mainstream consensus. A denier, on the other hand, believes that
there is probably no relationship between human activity and global temperatures.
Columns in panel (A) describe varying levels of prior certainty in the form of vari-
ance. A “moderate” level of certainty corresponds to a belief that the true value of
TCR lies within a 1 ◦C range of one’s best estimate with 95% probability. In contrast,
a person with “strong” certainty about their prior feels that a probability range of
just 0.25 ◦C is appropriate. Following equation (2.5), obtaining priors over β1 is
simply a matter of dividing the respective TCR distributions by F2× = 3.71 Wm−2.
These are the parameters that actually enter the Bayesian regression model and are
shown in panel (B) of Table 2.2.

In addition to the subjective priors of our stylised sceptics, a noninformative prior
provides a useful reference case for the analysis. Loosely speaking, noninforma-
tive priors are vague and should not privilege any parameter values before one
sees the data. Candidates include uniform priors, a normally distributed prior with
large variance, Jaynes’ maximum entropy prior, or the Jeffreys class of invariant
prior. However, uniform priors have been fiercely criticized in the context of cli-
mate change attribution (Annan and Hargreaves, 2011; Pueyo, 2012; Lewis, 2013).

6It is worth noting that a number of studies which rely on time-series methods to derive an
estimate of climate sensitivity — e.g. Kaufmann et al. (2006); Mills (2009); Estrada and Perron (2012)
— do so under the assumption that F2× = 4.37 Wm−2. This outdated figure appears to be based
on early calculations by Hansen et al. (1988). The climate sensitivity estimates of these studies may
consequently be regarded as inflated.
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Table 2.2: Sceptic priors

(A) TCR (◦C)

Type Moderate Strong

Lukewarmer N (1, 0.2502) N (1, 0.0652)

Denier N (0, 0.2502) N (0, 0.0652)

(B) Implied β1

Type Moderate Strong

Lukewarmer N (0.270, 0.06742) N (0.270, 0.01752)

Denier N (0, 0.06742) N (0, 0.01752)

Notes: Priors are based on an assumed normal distribution over the transient
climate response (TCR). Rows denote an individual’s mean, or best, estimate
of TCR. Lukewarmers are assumed to lie at the very low end of the IPCC’s
likely range (1–2.5 ◦C), while Deniers expect TCR to be somewhere around zero.
Columns denote uncertainty in the form of variance. A person with “moderate”
convictions believes that the true value of TCR lies within a 1 ◦C interval of their
prior mean (95% probability), while that interval falls to just 0.25 ◦C for someone
with “strong” convictions. The implied priors for the regression parameter β1 in
panel (B) are obtained using the simple formula described in equation (2.5), i.e.
β1 = TCR/3.71.

I therefore favour a standard noninformative prior for the regression parameters,
such that g(θ, σ2) ∝ 1

σ2 . Nonetheless, experimenting with other options shows that
this choice does not materially affect the conclusions that we may draw from the
analysis.

Two points merit further discussion before continuing on to the posterior results.
The first is that our group of sceptics only hold subjective priors about TCR and,
thus, β1. Noninformative priors are always assumed for the remaining parameters
in the regression equation. The second point is to acknowledge that these sceptics
are little more than stylised caricatures. Their priors are simply taken as given. We
are not concerned with where these priors come from and why they are of a par-
ticular strength. However, such abstractions allow us to explore the way in which
climate sceptics might interpret evidence for climate change. Moreover, it gives a
sense of just how strong someone’s prior beliefs need to be, so as to preclude their
acceptance of any policy interventions.
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2.4 Results

2.4.1 Posterior regression results and TCR distributions

The posterior regression results for the various prior types are presented in Ta-
ble 2.3. Beginning with the noninformative case in column (1), it is reassuring to
note that all of the regression coefficients are credibly different from zero and of the
anticipated sign. For example, global mean surface temperature is negatively corre-
lated with SOI. This is to be expected since the El Niño phenomenon is defined by
SOI moving into its negative phase. The posterior density of our main parameter
of interest, the coefficient on RF, shows that global temperature will rise by an aver-
age of 0.4 ◦C for every Wm−2 increase in total radiative forcing. Of greater interest,
however, is the fact that the posterior estimates yielded by the group of sceptical
priors in columns (2)–(5) are very similar to this noninformative case. With the ex-
ception of the Strong Denier, there is a clear tendency to congregate towards the
noninformative parameter values.

Of course, the exact values of the regression parameters are themselves of some-
what limited interest. Rather, their primary usefulness is to enable the recovery of
posterior beliefs about TCR. These are plotted in Figure 2.1. We see that the pos-
terior TCR distributions are generally clustered around a best estimate of 1.5 ◦C,
with a 95% credible interval somewhere in the region of 1.3–1.7 ◦C depending on
the prior. (See Table 2.B.1 in the Appendices for more information.) Figure 2.1 also
makes clear that, excepting the Strong Denier, the posterior beliefs of the various
sceptics fall comfortably within the IPCC “likely” range. However, the derived
probability intervals are decidedly narrower and TCR values at the upper end of
the spectrum are discounted accordingly. That being said, the HadCRUT4 record is
known to suffer from slight biases due to incomplete coverage of in situ thermome-
ter readings. I therefore re-run the Bayesian regression model using two alternate
reconstructions of global temperature data as a check against this issue. Cowtan
and Way (2014), hereafter CW2014, correct for the HadCRUT4 biases using an inter-
polation algorithm based on the “kriging” method. Similarly, the NASA Goddard
Institute for Space Studies uses an extrapolation method to overcome coverage bias
in GISTEMP, its own reconstruction of global surface temperatures. Re-running the
model with these alternate series yields moderately higher TCR values. Under a
noninformative prior, the posterior TCR means and 95% credible intervals are 1.6
◦C (1.4–1.7 ◦C) for CW2014, and 1.7 ◦C (1.5–1.9 ◦C) for GISTEMP; see Table 2.B.2 in
the appendices. While I omit them for brevity, the posterior results for the group
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Table 2.3: Posterior regression results

Dependent variable: Global mean surface temperature anomaly (◦C)

Moderate
Lukewarmer

Strong
Lukewarmer

Moderate
Denier

Strong
DenierNoninformative

(1) (2) (3) (4) (5)

Total radiative forcing 0.415 0.409 0.359 0.399 0.109
[ 0.389, 0.441] [ 0.384, 0.434] [ 0.335, 0.381] [ 0.374, 0.425] [ 0.070, 0.148]

Stratospheric aerosols 0.047 0.047 0.047 0.047 0.042
[ 0.004, 0.091] [ 0.004, 0.091] [ 0.001, 0.093] [ 0.004, 0.090] [-0.055, 0.138]

SOI -0.028 -0.028 -0.032 -0.029 -0.049
[-0.039, -0.016] [-0.040, -0.016] [-0.044, -0.019] [-0.041, -0.017] [-0.077, -0.023]

AMO 0.481 0.481 0.479 0.481 0.469
[ 0.407, 0.556] [ 0.407, 0.555] [ 0.400, 0.557] [ 0.406, 0.556] [ 0.299, 0.637]

Constant -0.110 -0.106 -0.072 -0.099 0.097
[-0.131, -0.088] [-0.127, -0.084] [-0.092, -0.050] [-0.120, -0.077] [ 0.059, 0.138]

Notes: Mean values are given, with square brackets denoting 95% credible intervals. Columns are distinguished
by different sets of prior covariates. Column (1) specifies noninformative priors over all regression parameters.
Columns (2)–(5) each take a unique prior over the parameter β1, which is the coefficient pertaining to total radia-
tive forcing — compare with Table 2.2. For the remaining parameters, noninformative priors are again assumed
The dataset consists of 140 annual observations over the period 1866–2005. Total radiative forcing (comprising
anthropogenic forces and solar irradiance) and stratospheric aerosols are measured in Wm−2. The Southern
Oscillation Index (SOI) and Atlantic Multidecadal Oscillation (AMO) are measured as scaled indices.

of climate sceptics are similarly nudged higher towards the new noninformative
distributions. Given that my explicit goal in this paper is to evaluate policy options
from the perspective of climate sceptics, I continue to use the results from the Had-
CRUT4 series as a default. Yet, it should be noted that this is a conservative choice
that is likely to (at least marginally) understate the true level of warming.

Further insight into the updating behaviour of our stylised sceptics is provided
by the recursive TCR estimates shown in Figure 2.2. It is apparent that stronger
convictions about one’s prior beliefs have a greater dampening effect on posterior
outcomes than the prior mean. The Moderate Denier converges quicker to the non-
informative distribution than the Strong Lukewarmer, for example. That being said,
certain sceptics will only converge to the noninformative distribution after “seeing”
data from a number of decades. This does not alter the conclusions that we are able
to draw from the Bayesian analysis.7 However, it does highlight the importance of
using all of the available instrumental climate data for building any kind of policy

7As long as we have fully specified a prior that encapsulates someone’s initial beliefs, then we
should in principle treat the full historical dataset as new information for updating those beliefs.
As a corollary, concerns over the use of the full historical dataset would only hold sway in cases
where priors already incorporate information that has been obtained from applying the model on a
sub-sample of the dataset. In that case, we would need to exclude the sub-sample from the analysis
to derive a valid posterior that avoids double counting.
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Table 2.4: Covariate vectors for prediction in the year 2100

RCP 2.6 RCP 4.5 RCP 6.0 RCP 8.5
420 ppmv CO2 540 ppmv CO2 670 ppmv CO2 940 ppmv CO2

RF2100 2.626 4.281 5.522 8.340
Due to CO2 85% 83% 86% 78%
Due to solar 7% 4% 3% 2%

AER 0.017 0.017 0.017 0.017

SOI -0.079 -0.079 -0.079 -0.079

AMO -0.002 -0.002 -0.002 -0.002

Notes: Covariates are used to predict the global mean surface temperature anomaly in the year 2100.
The Representative Concentration Pathways (RCPs) are a family of forcing scenarios developed for
the IPCC (Van Vuuren et al., 2011). Each RCP has a core component of atmospheric CO2 concentra-
tions, measured in parts per million volume (ppmv). With regard to the covariates in the regression
model, total radiative forcing (RF) and stratospheric aerosols (AER) are measured in Wm−2. The
Southern Oscillation Index (SOI) and Atlantic Multidecadal Oscilliation (AMO) are measured as
scaled indices. Future values for RF are taken from the RCP database. For the rest, historical mean
values are used.

The point of using the RCPs is not to interpret them as precise forecasts far into the
future. Rather, they serve as allegories to aid our understanding about the relative
risks associated with different states of world. It is worth emphasising that each
RCP presumes significantly different policy foundations. RCPs 2.6 and 4.5 corre-
spond to lower emissions scenarios that would only be possible in the presence
of an appropriately levied carbon price, global treaties that limit carbon leakage
between regions, etc. In other words, these two scenarios take climate policy as
antecedent to their outcomes. RCPs 6.0 and 8.5 do not incorporate such assump-
tions and instead correspond to what we might call “business as usual” paths —
insofar as they inexorably relax assumed constraints on fossil fuel consumption.
These scenarios are free of the regulations needed to drive emissions mitigation on
a meaningful scale.

Figure 2.3 shows the temperature evolution for each RCP under the noninforma-
tive case, which we again take as the benchmark. (The figure also reaffirms the
excellent model fit to historic observations.) The principal message is that CO2 con-
centrations must be constrained to RCP 4.5 or lower, if we are to avoid a 2 ◦C rise
in global temperature. Given the prominence of this particular threshold in inter-
national climate treaties and the popular narrative, the result is a reinforcement of
commonly cited emissions targets such as 450 and 540 ppmv. On the other hand,
we can expect to even breech 3 ◦C by the year 2100 if we continue along a truly
unconstrained emissions path à la RCP 8.5.
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Figure 2.3: Model t andprediction: Noninformativepriors

Notes:Temperature anomaly relative to the1851–1880 average. Shaded areasdenote95%
credible intervals.

Whatof thepredictionsyieldedbyourgroupofclimatesceptics? While it isstraight-

forward to redraw Figure 2.3 for eachprior type, amore intuitive comparison can

bemadeby lookingat the totalwarming that eachperson expectsby the endof the

century. Figure 2.4plots thepredictive temperaturedensity in theyear 2100 for all

prior types byRCP scenario. Again, thedata have a clear tendency to overwhelm

even reasonablystaunch formsofclimatescepticism. Nearlyallof thestylisedscep-

ticswould expect tobreach the 2 C thresholdby 2100underRCP 6.0,while a tem-

perature rise ofmore than 3 C is likely under underRCP 8.5. An exception can

only be found in the form of the Strong Denier, whose extreme prior dominates

theposterior in away that obviatesnearly all concern about large temperature in-

creases.

2.4.3 Welfare implications and the social costof carbon

Provided they consider enoughdata, even climate scepticswould seemingly agree

that a 2 C target requires limiting CO2 concentrations to 540 ppmv. Of course,

whether individuals actually subscribe topolicymeasures aimed at achieving this

goal is dependent onmany things; their choice of discount rate, beliefs about the
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Table 2.5: Social cost of carbon (US$2005 per tonne)

Mean Median 95% Probability interval

Noninformative 55.76 39.25 [11.32, 158.22]
Moderate Lukewarmer 71.14 37.61 [10.98, 154.54]
Strong Lukewarmer 39.64 25.70 [ 7.10, 103.12]
Moderate Denier 55.64 34.95 [10.10, 144.55]
Strong Denier 1.85 1.54 [ -0.17, 5.54]

Results for each agent type are obtained from 10,000 simulation runs of PAGE09 (Hope,
2011a). Posterior TCR distributions serve as key inputs to the model, while the remain-
ing parameters are set to the PAGE09 model defaults.

parameters (Hope, 2011a,b).

Table 2.5, together with Figure 2.B.2 in the appendices, present probability distribu-
tions for the SCC across all prior groups in 2005 US dollars. In each case, the model
has been simulated 10,000 times to produce accurate estimates. The resulting dis-
tributions are highly skewed and characterised by extremely long upper tails. This
is partly due to the fact that PAGE09, like most IAMs, assumes that economic dam-
ages are convex in temperature. In addition, PAGE09 allows for the possibility of
large-scale discontinuities (e.g. melting of the Greenland ice sheet) at temperatures
above 3 ◦C . Such low probability, high impact events would cause vast economic
losses and yield some extreme SCC values as a consequence (Hope, 2011a,b). For
this reason, I provide both the mean and median SCC values alongside the 95%
probability interval.

Excepting the Strong Denier, the SCC for all prior types is comfortably larger than
zero. The mean value ranges from $40 to $71 per tonne (2005 prices), while the 95%
probability interval extends from around $10 to upwards of $100 per tonne.9 These
results are consistent with the SCC estimates found within the literature. For exam-
ple, an influential synthesis report by the United States Government’s Interagency
Working Group on the Social Cost of Carbon (IWG, 2010, 2013) finds a mean SCC
value of $11–$52 per tonne (2007 prices), depending on the preferred discount rate.
The encouraging point from a policy perspective is that such congruency exists in
spite of our deliberate consideration of climate scepticism. Another way to frame
the SCC estimates presented here is to imagine that each prior type represents an
equal segment of a voting population. We would then expect to see broad sup-
port for a carbon tax of at least $20–$25, if not double that. While such a thought
experiment clearly abstracts from the many complications that would arise from

9The Moderate Lukewarmer obtains the highest mean value (higher than even the noninforma-
tive case), because of the larger variance attached to his posterior TCR estimate.
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free-riding and so forth, again we see that nominal climate scepticism does not cor-
respond to a mechanical dismissal of climate policy.

2.5 Discussion

We have seen that a non-trivial carbon price is consistent with a range of contrarian
priors once we allow for updating of beliefs and, crucially, consider enough of the
available data. An optimist might interpret these findings as a sign that common
ground on climate policy is closer than many people think. On the other hand, they
may also help to explain why the policy debate is so polarised in the first place. As
all intermediate positions are absorbed into the mainstream, only the most hardcore
sceptics will remain wedded to their priors. This group is unlikely to brook any
proposals for reduced carbon emissions and no amount of new information will
convince them otherwise. In that case, and given the persistent scepticism that one
sees in opinion polls about climate change (e.g. Saad, 2014), it becomes reasonable
to ask whether real-life sceptics (i) actually hold such extreme views, and (ii) are
numerous enough to prevent political action. Such considerations are reinforced by
the idealized nature of the analysis until now. Irrespective of the scientific merit of
working through such a set-up, clearly normal people do not update their priors
in lockstep with a Bayesian regression model, supported by large dataset of time-
series observations.

A natural starting point for thinking about these issues is to take a closer look at
the mechanisms underlying posterior agreement formation. The notion that parti-
sans should converge toward consensus with increasing information has long been
taken as a logical consequence of Bayes’ theorem. Indeed, empirical evidence to the
contrary has been cited as a weakness of the Bayesian paradigm and its relevance to
real-life problems (Kahneman and Tversky, 1972). This is a misconception. Noth-
ing in the Bayesian paradigm precludes the possibility of diverging opinions in the
face of shared information. It may even be the case that the same information has
a polarising effect on individuals, in that it pushes them towards opposite conclu-
sions. Bullock (2009) discusses some of the conditions that will prevent partisans
from reaching consensus on political issues, even when these agents are assumed
to update their beliefs in a fully Bayesian manner.10 A more general framework
is provided by Jaynes (2003), who shows that the perceived trustworthiness of new

10Such conditions include whether new evidence falls in between or outside the set of assigned
prior probabilities, and whether partisans are learning about a variable that may itself be changing
over time (e.g. a third party’s support for some political proposal).
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information is the key determinant for whether Bayesian agents converge toward
consensus. Jaynes evinces the need to broaden our understanding of “prior” so that
it incorporates not only our existing beliefs about some phenomenon S, but also our
incredulity about any new data source that claims to tell us something about S. He
provides several amusing examples, from extrasensory perception to drug safety
scares, to drive home his point. Here I adapt one such example to our present prob-
lem:

Consider three individuals who hold different prior beliefs about climate change.
Al is a “warmist”, Bob is a “lukewarmer” and Christie is a “denier”. Let us say
that these labels are encapsulated by the probabilities that each person assigns to
climate sensitivity S. For simplicity, we assume that only two states of the world
are possible such that climate sensitivity is either high or low: S ∈ SL, SH. Denote
by I an individual’s existing information about the world. Then, indexing by the
first letter of a person’s name, the prior probability that each person assigns to a
high climate sensitivity is P(SH|IA) = 0.90, P(SH|IB) = 0.40, and P(SH|IC) = 0.10.

Now imagine that the IPCC issues a statement in which it claims that climate sen-
sitivity is high. How do the three individuals respond to this new data, D = DH?
The answer depends crucially on the regard that each person holds for the IPCC it-
self. Suppose we have the following situation. All three agree that the IPCC would
present data supporting a high climate sensitivity if that was the true state of the
world, i.e. P(DH|SH, IA) = P(DH|SH, IB) = P(DH|SH, IC) = 1.00. However, they
disagree on whether the IPCC can be trusted to disavow the high sensitivity hy-
pothesis if the science actually supported a low climate sensitivity. In this case, we
have P(DH|SL, IA) = 0.05, P(DH|SL, IB) = 0.89, and P(DH|SL, IC) = 0.05. Putting
it into words, Al and Christie hold wildly different priors about climate sensitivity.
Yet, they both regard the IPCC as an upstanding institution which can be trusted
to accurately represent the science of climate change. In contrast, Bob is not only
somewhat sanguine about expected future warming; he is dubious about the very
motives of the IPCC. He is, in effect, a cynic who believes that the IPCC is willing
to lie in advancement of its agenda.

Recovering posterior beliefs about climate sensitivity is then a simple matter of
modifying Bayes’ theorem to account for each person’s (dis)trust in the IPCC. For
Al, we have
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P(SH|DH, IA) =
P(DH|SH, IA)P(SH|IA)

P(DH|SH, IA)P(SH|IA) + P(DH|SL, IA)P(SL|IA)

=
1.0 × 0.9

1.0 × 0.9 + 0.05 × 0.1
≈ 0.98.

Similarly, we get P(SH|DH, IB) ≈ 0.43 for Bob and P(SH|DH, IC) ≈ 0.69 for Christie.
Comparing the prior and posterior beliefs of these three individuals, Al is even
more of a believer in the high sensitivity hypothesis than before, having raised
his subjective probability for SH from 90% to 98%. Christie has experienced a still
greater effect and has updated her subjective probability for SH from 10% to 69%.
In other words, she now attaches a larger probability to the high sensitivity hypoth-
esis than the low sensitivity alternative. But what of cynical Bob? Well, it appears
that he has not been swayed by the IPCC report in the slightest; both his prior and
posterior probabilities suggest that SH only has an approximately 40% chance of
being true. Bob’s extreme mistrust has effectively led him to discount the IPCC’s
high sensitivity claim in its entirety.

Extending the above framework to account for increasing granularity is concep-
tually straightforward. The principal insight remains the same. Trust is as much
a determinant of whether beliefs are amenable to data, and whether individuals
converge towards consensus, as the precision of the data itself. The relevance to
the climate change debate is clear, particularly given evidence of scientific dis-
trust among certain segments of the population (Malka et al., 2009; Krosnick and
MacInnis, 2010; Gauchat, 2012; Leiserowitz et al., 2013; Fiske and Dupree, 2014;
Hmielowski et al., 2014). Equally importantly, the modified Bayesian framework
offers a bridge between competing explanations of climate scepticism as a phe-
nomenon. For instance, the “deficit model” posits a lack of scientific knowledge
and understanding as key drivers of scepticism, whereas advocates of the “cultural
cognition” theory argue that group identity and value systems are more relevant
(Clark et al., 2013; Kahan et al., 2011, 2012). A Bayesian model that incorporates
perceptions of source credibility is able to accommodate both camps. Exposure to
new scientific evidence can ameliorate a person’s scepticism, but only if their pri-
ors allow for it. This includes whether factors such as cultural identity cause them
to discount some sources of information more than others. Disentangling the root
causes of such “information immunity” — i.e. whether sceptics do not update their
beliefs because they are extremely sure of their priors, distrustful of climate experts,
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or some combination thereof — remains an important area for future research.

2.6 Concluding remarks

The goal of this paper has been to explore the way in which prior beliefs affect our
willingness to mitigate against climate change. The Bayesian paradigm provides
a natural analytical framework and I have proposed a group of stylised sceptics to
embody the degrees of climate scepticism that one encounters in the real world. The
primary finding is that subjective priors are generally overwhelmed by the empiri-
cal evidence for climate change. Once they have updated their beliefs in accordance
with the available data, most sceptics demonstrate a clear tendency to congregate
towards the noninformative case that serves as an objective reference point for this
study. Depending on the preferred reconstruction of global temperatures, the 95%
posterior probability range for TCR under a noninformative prior is somewhere
between 1.4 ◦C and 1.9 ◦C. This implies a tighter bound on climate sensitivity than
suggested by the IPCC (2013), whose “likely” range for TCR is 1.0–2.5 ◦C. While
such a finding would offer comfort against the most alarming rates of future warm-
ing, it should not be taken as evidence against the need for climate mitigation. In-
deed, the updated beliefs of our various sceptics are shown to be consistent with a
carbon price that is substantially greater than zero. I obtain a mean SCC range of
approximately $40–$70 per tonne using the PAGE09 model of Hope (2011a). Only
those with extreme a priori sceptic beliefs will find themselves in disagreement, or
feel any confidence in the notion that unfettered emissions growth will not lead to
sizeable future warming. Taken together, the results suggest that a rational climate
sceptic — even one that holds relatively strong prior beliefs — could embrace pol-
icy measures to constrain CO2 emissions once they have seen all of the data. These
findings may ultimately be seen as a reflection of the compelling case for man-made
climate change provided by the available evidence.
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Appendix

2.A Bayesian multivariate linear regression

Suppose we are interested in describing the mean variation of some dependent vari-
able y in response to a vector of k explanatory variables x1, . . . , xk over time. If our
sample runs over T periods, then we have

yt = β1xt1 + . . . + βkxtk + εt, t = 1, . . . , T, (2.A.1)

where β1, . . . , βk are unknown regression parameters. This can be written in ex-
pected conditional value form as

E(yt|β, X) = βxt1 + . . . + βkxtk, t = 1, . . . , T. (2.A.2)

Letting Xt = (xt1, . . . , xtk) denote the row vector of k predictors for the tth period
and β = (β1, . . . , βk) the column vector of regression coefficients, we can simplify
to

E(y|β, X) = Xβ. (2.A.3)

In a linear regression model, the yt observations are assumed to be conditionally
independent given values of the parameters and explanatory variables. We also as-
sume equal variances across periods, Var(yt|θ, X) = σ2, where θ = (β1, . . . , βk, σ2)

is the vector of unknown regression parameters. Finally, it is assumed that the
errors, εt = yt − E(yt|β, X) are independent and normally distributed, such that
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ε ∼ N (0, σ2). Our model can now be written in matrix notation for all periods as

y|β, σ2 ∼ NT(Xβ, σ2I), (2.A.4)

where y is the vector of observations; X is the T × k design matrix; I is the identity
matrix; and NT(µ, A) denotes a multivariate normal distribution of dimension T
with mean vector µ and variance-covariance matrix A. Mapping this model to a
valid posterior density will depend on the particular choice of prior. However, the
general form is given by the joint distribution

p(β, σ2|y) = p(β|y, σ2)p(σ2|y). (2.A.5)

To further illustrate using an example described by Albert (2009), suppose we apply
a standard noninformative prior of g(β, σ2) ∝ 1

σ2 . Then the posterior distribution of
the coefficient vector β, conditional on the error variance σ2, is multivariate normal

β|y, σ2 ∼ N (β̂, Vβσ2), (2.A.6)

where β̂ = (X′X)−1X′y is the OLS estimate of the true value of β; and Vβσ2 =

(X′X)−1σ2 is the variance-covariance matrix. If one defines the inverse gamma
density IG(a, b), proportional to y−a−1exp(−b/y), then the marginal posterior dis-
tribution of σ2 is itself inverse gamma

σ2|y ∼ IG
(

n − k
2

,
(y − Xβ̂)′(y − Xβ̂)

2

)
. (2.A.7)
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2.B Supplementary tables and figures

Table 2.B.1: Transient climate response (◦C)

Prior Posterior

Noninformative - 1.5
[1.4, 1.7]

Moderate Lukewarmer 1.0 1.5
[0.5, 1.5] [1.3, 1.7]

Strong Lukewarmer 1.0 1.3
[0.9, 1.1] [1.2, 1.5]

Moderate Denier 0.0 1.5
[-0.5, 0.5] [1.3, 1.7]

Strong Denier 0.0 0.4
[-0.1, 0.1] [0.3, 0.6]

Mean estimates are given, with square brackets denoting
95% credible intervals.

Table 2.B.2: Transient climate response (◦C): Results from different temperature
series

Mean 95% Credible interval Effective sample period

HadCRUT4a 1.5 [1.4, 1.7] 1866–2005
CW2014b 1.6 [1.4, 1.8] 1866–2005
GISTEMPc 1.7 [1.5, 1.9] 1880–2005

All estimates are computed using noninformative priors. The effective sample pe-
riod is limited either by overlap with other regression covariates (a,b), and/or because
data begin at a later date (c).
a Compiled by the Hadley Centre of the UK Met Office and the Climatic Research

Unit at the University of East Anglia. Serves as the default temperature series in this
paper.
b Cowtan and Way (2014). Corrects for biases in the HadCRUT4 series due incom-

plete global coverage.
c Compiled by the NASA Goddard Institute for Space Studies.
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Chapter 3

Market might. Hydro power.

Abstract

I test for evidence of strategic behaviour in the Norwegian electricity sector using
a uniquely detailed dataset of hydropower reservoirs. Consistent with theory, I
find that market power leads to an intertemporal reallocation of water resources
across periods. An increase in market power causes firms to withhold production
when demand is at its most inelastic. This would permit dominant firms to recoup
higher profits while consumers are least responsive to price changes. The effects
are modest next to other factors governing reservoir management, such as annual
snow-melt. Yet, they may still cause the production profile of hydropower firms to
diverge in meaningful ways if the differences in market share are large enough, and
particularly when regional transmission constraints are binding.

JEL Codes: Q25, Q41, L12, L13
Keywords: market power, electricity markets, hydropower, renewable energy
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3.1 Introduction

Much of economics is concerned with deviations from the ideal of competitive mar-
kets. A standard result from microeconomic theory is that dominant firms will tend
to produce less than the social optimum, thereby raising prices and ensuring higher
profits (e.g. Mas-Colell et al., 1995). How this behaviour manifests itself in reality
will depend on the specific institutional characteristics of the market in question.
Moreover, testing theoretical predictions in an empirical setting can prove challeng-
ing due to the limitations of real-world data. The present paper contributes to our
understanding of these issues within a particular empirical context. Namely, how
does market power affect firm behaviour in a hydro-based electricity market?

Hydropower has several unusual features that make it interesting from an eco-
nomic perspective. To begin with, the variable costs of operating a hydropower
plant are negligible. Employee wages and maintenance fees are best regarded as
fixed costs independent of output. At the same time, reservoir inflows are both
stochastic and highly seasonal. Yet, water is a durable good that can be stored for
long periods of time. The producer’s decision collapses into one of how much wa-
ter should be used today and how much should be saved for tomorrow. In other
words, production in a hydropower system is a dynamic optimisation problem de-
termined by the opportunity cost of water — the so-called water value. Together
with variations in demand, this creates opportunities for exploiting market power
via intertemporal price discrimination. A firm with market power can increase
profits by withholding supply in periods with relatively inelastic demand; hence
driving up price when consumers are least responsive to such changes. Dominant
hydropower firms will reallocate their water resources across periods in accordance
with this strategy.

The present paper provides empirical evidence of such strategic behaviour among
Norwegian hydropower firms. An increase in market power leads to a modest,
but distinctive, pattern of intertemporal resource shifting. Compared to previous
studies, I use a much richer dataset that links individual hydropower reservoirs to
specific firms, as well as broader market data such as electricity flows and trans-
mission constraints. These data allow me to make several contributions to the lit-
erature. First and foremost, rather than inferring evidence of market power solely
through aggregate measures such as wholesale electricity prices, I am able to look
at the behaviour of individual hydropower plants directly. The relationship be-
tween water resource management and market power is therefore determined at
the firm-reservoir level. This refinement not only establishes a close correspon-
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dence between the empirical set-up and underlying theory, but also permits the use
of a conceptually straightforward regression framework (i.e. panel fixed effects).
Changes to bidding area divisions and binding transmission constraints provide
the additional layers of exogenous variation that enable me to cleanly identify the
effect of local market power on firm behaviour. In addition to the above, I consider
a longer time period than previous studies. My sample runs over 14 years from the
beginning of 2000 until the end of 2013. In so doing, I hope to shed light on the
way that dominant firms will strategically utilise their water resources, not just in
the short-term, but in response to changing market conditions over the course of
months, seasons and years.

Related studies on anti-competitive behaviour in the Norwegian — and broader
Nordic — market include Johnsen et al. (1999), Hjalmarsson (2000), Steen (2004),
Kauppi and Liski (2008), and Mirza and Bergland (2012). A review is provided by
Fridolfsson and Tangerås (2009). The general finding is one of healthy competition,
but with some scope for exercising local market power due to constraints in trans-
mission capacities. However, as noted, all of the above studies rely on aggregate
data. This places strong restrictions on the methods that can be used to used to
support causal inference. For example, several studies make use of the well-known
Bresnahan (1982) and Lau (1982) framework for estimating market power in the ab-
sence of marginal cost data. Yet the Bresnahan-Lau model ultimately presumes that
firms face a static production decision at each point in time. It is therefore of lim-
ited use for understanding the intertemporal aspects of hydropower production.1

Moreover, the empirical analyses to date have tended to focus on short-run devi-
ations from competitive prices. There is still some uncertainty regarding strategic
behaviour among dominant firms over long periods of time. I attempt to resolve
these uncertainties in the present paper.

The remainder of the paper is organised as follows. Section 3.2 provides the theo-
retical underpinnings for understanding firm behaviour in a hydropower system.
Section 3.3 introduces the dataset and describes the key institutional settings of the
Norwegian electricity market. Section 3.4 describes the econometric strategy for

1Fridolfsson and Tangerås (2009, p. 3689) are led to remark in their review: “A lack of firm level
data may explain why only the Bresnahan-Lau model or the even less demanding methodology
proposed by Johnsen et al. [sc. 1999] has been applied to the Nordic power market. This suggests
that more detailed data would be highly valuable for [determining] market power in the Nordic
market for wholesale electricity.” Similarly, Kauppi and Liski (2008, p. 35): “Our approach to effi-
cient allocations and those distorted by imperfect competition is aggregative. Analysis exploiting
more detailed information on capacities, usage, and regional heterogeneity is therefore called for. If
such data becomes available, one could potentially estimate hydro usage policies directly from the
data[...]”
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causal inference, before moving on to the ensuing results in Section 3.5. Section 3.6
concludes.

3.2 Theoretical motivation

In his influential text on hydropower economics, Førsund (2015) outlines the ways
in which market power can affect firm behaviour in various hydropower systems.
The general result is to incentivise a reallocation of water from periods with rela-
tively inelastic demand to periods with relatively more elastic demand. The contri-
bution of this paper is empirical and, as such, I will not describe these theoretical
permutations in detail. However, it will be useful to recapitulate a version of the
simplest case — i.e. monopoly with no uncertainty, outside trade or reservoir con-
straints — to get a sense of the underlying intuition.

Consider the profit maximization problem of a hydropower monopoly in a two
period setting,

max
2

∑
t=1

pt (qt) · qt

s.t.
2

∑
t=1

qt ≤ W,

(3.1)

where pt (qt) is an inverse demand function with standard properties (e.g. price
decreasing in quantity), qt is the quantity of electricity demanded by consumers
(or, more precisely, the water equivalent thereof), and W is the known water en-
dowment for the monopolist’s reservoir. As is standard in this literature, we may
further take period one to be summer and period two to be winter. This assumption
has no bearing on the theoretical results, but will become useful as a reference for
the empirical setup later.

The necessary first order conditions for profit maximization are

∂L
∂qt

= pt
′ (qt) · qt + pt (qt)− λ ≤ 0

( = 0 for qt > 0)
(3.2)
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and

λ ≥ 0

( = 0 for
2

∑
t=1

qt < W).
(3.3)

The parameter λ denotes the shadow price on stored water, i.e. positive if the re-
source constraint in equation (3.1) is binding and zero otherwise. Without loss of
generality, let us assume that the shadow price is positive and that the monopolist
also produces in both periods.2 The first order conditions may then be written as

p1 (q1)

(
1 +

1
ε1

)
= p2 (q2)

(
1 +

1
ε2

)
= λ, (3.4)

where εt =
pt
qt

∂qt
∂pt

< 0 is the price elasticity of demand. Rearranging equation (3.4),
it is easy to see that prices depend on the relative demand elasticities in each period.
For example, we would have

p1 (q1) > p2 (q2) if |ε1 (q1)| < |ε2 (q2)| . (3.5)

Since we have assumed a downward-sloping demand curve, the above corresponds
to

q1 < q2 if |ε1 (q1)| < |ε2 (q2)| . (3.6)

The monopolist solution thus involves a reallocation of production across periods,
contingent on the elasticity of demand. This contrasts with the social solution that
arises under perfect competition, where production and prices are equalised across
periods.3 We can further generalise the difference between monopoly and perfect
competition in this simple setup as

qM
t < qC

t and qM
t̂ > qC

t̂ if |εt (qt)| < |εt̂ (qt̂)| , (3.7)

2If we instead assumed that the shadow price is zero (due to a non-binding resource constraint),
then the ensuing results are largely unchanged but for some fraction of water that remains unused.

3By definition, the price elasticity of demand facing a competitive firm is always perfectly elastic,
i.e. ε → ∞. That competition leads to equal prices and quantities across periods is easily shown by
solving the above set-up as a social optimisation problem that maximizes total welfare. See Førsund
(2015).
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where the M and C superscripts denote the monopolist and competitive outcomes,
respectively. The monopolist is able to recoup higher profits by withholding sup-
ply — hence driving up the electricity price — during the relatively inelastic pe-
riod when consumers are least responsive to such changes. In other words, market
power not only causes prices and quantities to diverge from their social optimums,
but also implies an observable difference in the way that reservoirs are managed.
Reservoirs belonging to dominant firms will tend to be relatively fuller during in-
elastic periods than they would otherwise have been under competition. The re-
verse is true during elastic periods.

The theoretical extensions that Førsund (2015) and others (e.g. Hansen, 2009; Math-
iesen et al., 2013) explore beyond the simple case presented here may be regarded
as variations on a theme. While each variation has the ability to ameliorate or ex-
acerbate market distortions in its own way, the substantive result is largely un-
changed.4 Market power leads to a strategy of shifting water use from relatively
inelastic demand periods to relatively elastic ones. As we shall see, in the Norwe-
gian context this amounts to comparatively fuller reservoirs during summer, with
dominant firms undersupplying relative to the competitive outcome, and vice versa
during winter.

3.3 Market characteristics and data

This paper introduces a rich and uniquely detailed dataset of Norwegian hydropower
reservoirs, which has been constructed from a variety of sources. It is hence worth
describing the original sources in some detail, as well as the methods that have been
used to merge these disparate parts into a unified dataset.5 However, I first provide
a brief overview of the Norwegian electricity market and its main institutional fea-
tures.

4For example, trade with outside regions can moderate the intertemporal disparities yielded by
the standard monopoly model. However, accounting for transmission constraints brings us back
towards the original result.

5Data work was primarily executed in the R programming environment. While the subsequent
subsections provide a descriptive overview of methods, full data cleaning and merging documenta-
tion is available upon request.
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3.3.1 The Norwegian electricity market

Norway liberalised its electricity sector in 1991, placing it in the vanguard of a
broader deregulation movement (Bye and Hope, 2005; Joskow, 2008). Together with
its neighbours — Sweden, Finland and Denmark — Norway would go on to form
the world’s first, and still largest, multinational power exchange, Nord Pool.6 The
foundation of this exchange is the day-ahead Elspot auction for physical delivery of
electricity. Hourly supply and demand bids are aggregated and then matched to
determine a market clearing price, commonly referred to as the system price. A key
institutional feature of the Nord Pool exchange is that countries are sub-divided
into distinct Elspot bidding areas. Absent transmission constraints, area prices are
equal to the common system price. However, when transmission constraints are
binding, each area becomes its own separate market and prices can diverge as a
result. This potentially confers local market power to dominant firms within those
areas.

Norway is currently comprised of five Elspot bidding areas: NO1 (east), NO2 (south),
NO3 (mid), NO4 (north), and NO5 (west). It should be noted that this configuration
of bidding areas has changed multiple times over the last decade and a half. New
bidding areas have been added (and sometimes removed) and boundaries between
existing areas have been redrawn. Such “regime” changes are important from an
empirical perspective, because they provide an exogenous source of variation in
local market power. More specifically, the changing division of bidding areas, in
combination with data on individual hydro reservoirs and binding transmissions
constraints, will allow me to identify the causal effect of local market power on firm
behaviour. I expand upon this point in the empirical section of the paper.

We have seen from theory that relative demand elasticities are central in determin-
ing how dominant hydropower firms would reallocate production across periods.
Electricity demand in Norway fluctuates significantly over the course of hours,
days of the week, and time of year. The principal focus of this paper is the be-
haviour of hydropower firms over the longer-term. It therefore makes sense to ab-
stract from short-term fluctuations (e.g. day versus night, weekdays versus week-
ends) and concentrate on the demand variations over the course of months and
seasons. Winter electricity consumption in Norway is approximately double that of
summer, primarily because of indoor heating requirements. At the same time, elec-

6Hydropower predominates at both the national and regional level. Norwegian reservoirs alone
generated around 130 TWh of electricity in 2013. This corresponds to 96 percent of national elec-
tricity generation and more than a third of the 380 TWh generated in the Nordic region as a whole
(NordREG, 2014; SSB, 2015).
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trical heating is substitutable (wood, fuels, etc.) and hence permits greater flexibility
among consumers. In contrast, summer electricity demand is dominated by techni-
cal end-uses that do not allow for easy substitution. These seasonal differences in
substitution and adjustment possibilities contribute to a somewhat surprising find-
ing: Demand elasticities are significantly higher during the Norwegian winter than
they are during summer (Johnsen, 2001; Hansen, 2004; Bye and Hansen, 2008). I
take this observation as given for interpreting the empirical results later in the pa-
per. Norwegian electricity demand is relatively more inelastic during summer, and
relatively more elastic during winter.

3.3.2 Hydropower reservoirs

Time series data for the 500 most important hydropower reservoirs — represent-
ing approximately 97 percent of total Norwegian system capacity — were obtained
from the Norwegian Water and Energy Directorate (NVE). For most reservoirs,
these data are observed at a daily resolution from January 2000 to December 2013,
and contain water readings in terms of both volumes (million m3) and levels (m). It
should be noted that reservoirs in Norway are subject to regulation regarding their
maximum (and minimum) holding capacities. Hydropower firms are held respon-
sible for keeping their reservoirs within these boundaries in order to protect against
dangerous flooding and environmental degradation.

To ensure comparability between the different reservoir sizes in my dataset, the
reservoir data are normalised as percentages of their respective maximum regu-
lated capacities. While this normalisation procedure is generally straightforward, a
number of reservoirs in the dataset suffer from discrete jumps in measurement val-
ues, while others have conflicting regulatory limits ascribed to them. These anoma-
lies may reflect adjustments to the base measurement value (e.g., metres above sea
level versus a local reference point), regulatory changes, and, in some rare cases,
building out of extra capacity. To account and correct for such anomalies, the data
are run through an automated filter to detect large, discrete jumps in measurement
values and other outliers. These are then corrected as best as possible by reconcil-
ing the data with the various regulatory limits, and by comparing the volume and
levels series for consistency.7

A related problem is that some reservoirs exhibit distinctly unnatural trends. Most

7While the data analysis part of this study does not utilise the levels series, it nonetheless provides
a very useful counterpoint to the volumes series for this reason.
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obviously, long streaks of the same recurring value. This issue is effectively limited
to small reservoirs in the dataset and almost certainly constitutes measurement er-
ror. Streaks extending over 10 or more consecutive observations are thus discarded
from the analysis. As a final check, time-series plots of all 500 individual reservoirs
are examined manually to check for abnormalities that the automated filters may
have missed, leaving a handful of cases to be corrected as per the above. Any re-
maining data anomalies that could not be reconciled in a satisfactory manner, or
rationally accounted for, have been dropped from the analysis. This leaves a clean
dataset of 499 Norwegian hydropower reservoirs approaching 2 million daily ob-
servations.

Following the logic of several previous studies (e.g. Steen, 2004; Mirza and Berg-
land, 2012), this paper focuses on local market power in the Norwegian electric-
ity sector that arises from internal transmission bottlenecks.8 However, the rich-
ness of my dataset allows me to go further by tracking changes to the way that
Elspot bidding areas have been configured over time. These changes create an ad-
ditional source of variation in local market power that allows me to cleanly identify
its impact on hydro firm behaviour vis-à-vis the management of individual reser-
voirs. The next step in the data compilation process thus involves linking each
hydropower reservoir to a set of relevant covariates, including firm information,
current Elspot region, and geographic coordinates. These data are again obtained
from the NVE and provide the means for determining the market power that each
firm wields within a designated Elspot bidding area (as well as the Norwegian elec-
tricity sector as a whole) at a given point in time.

I define market power in this paper as the share of summed maximum reservoir ca-
pacities that each producer wields within a designated bidding area. More specif-
ically, the market share S of hydropower firm f , in a bidding area comprising F
firms in total, is given as

S f =
∑i=1 Ri f

∑F
j=1 ∑i=1 Rij

, (3.8)

where Ri is the maximum regulated capacity of reservoir i. This “share of overall
capacity” definition is perhaps best regarded as proxy for true market power; in the
sense that it captures potential, rather than actual, output of a firm relative to its
competitors. However, it thereby avoids the endogeneity problem associated with

8Earlier theoretical contributions and empirical applications to other markets include those by
Joskow and Tirole (2000) and Borenstein et al. (2000).
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definitions that do measure actual output. Namely that changes in output have
a direct impact on contemporaneous reservoir water volumes, which serve as the
dependent variable in my econometric model.9

Tracing the evolution of local market power (market share) over time now involves
three steps: (i) mapping reservoirs to the correct bidding area under a particular
Elspot regime, (ii) summing the maximum reservoir capacities within these areas
by firm, and (iii) comparing the summed firm capacities to the overall reservoir
capacity within an area. The information needed to complete these steps does not
readily exist. However, using the current Elspot allocation as a fixed starting point
— together with the series of reservoir coordinates already obtained, the Elspot
change log document hosted by Nord Pool10, a map of the Norwegian electricity
grid components11, and several other sources — I am able to manually back out
the divisions of 16 earlier regimes going back to the beginning of 2000. These are
depicted in Appendix 3.A. The most recent Elspot regime, which went into effect
on 2 December 2013, is shown on its own in Figure 3.1. I will at times refer to these
various regimes by the capitalised letters A to Q for convenience. Furthermore,
note that the bidding areas are not consistently defined under the different regimes,
even if they have been assigned the same name. For example, NO1 under regime
A is very different in size and coverage to NO1 under regime Q. To avoid potential
confusion on this matter, I will use the term zone to denote specific regime-area
combinations, e.g. A-NO1 versus Q-NO1.

Based on the above distinctions, there are several ways that one could measure
(regional) market power within the Norwegian electricity system, and how this
changes over time. Table 3.1 shows the Herfindahl index measures for the vari-
ous bidding areas under different Elspot regimes. Approximately 36 percent of the
55 realised zones are characterised by an index score indicating high concentration
(H > 0.25), 42 percent are moderately concentrated (0.15 < H < 0.25), while the re-
maining 22 percent are unconcentrated (H < 0.15). As an alternative to the Herfind-
ahl index, we can also look at the market shares wielded by the top three producers
in each area. These are shown in Appendix 3.B and provide further evidence of
potential market power at the regional level. The leading hydropower firm in some

9Similarly, note that this definition of market power is expressed in terms of volume, rather than
actual energy output. Although the physical volume of water held by a hydropower reservoir does
not perfectly correlate with its true energy potential — other factors such as flow rate and fall height
can influence the final outcome — it should again serve as a good proxy. Moreover, one could
reasonably expect variations between reservoir volumes and energy potential to average out across
producers.

10http://nordpoolspot.com/globalassets/download-center/elspot/elspot-area-change-log.pdf
11http://gis3.nve.no/link/?link=nettanlegg
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Figure 3.1: Norwegian hydropower reservoirs byElspot bidding area (as of 2De-
cember 2013)

areasmay command asmuch as 60percentof availablewatervolumes,depending

on the regime.

3.3.3 Electricity ows and transmission constraints

Allelectricitydataareobtained fromNordPool. The owofexcesselectricity from

one Elspot area to another takes place via prede ned corridors. That is, up to the

capacityconstraintsof the transmission linesmakingup thatcorridor. Note too that

abidding area canhave several corridors attached to it,dependingon thenumber

ofneighbouring areas that it shares borderswith. Electricity ows for the individ-

ual Norwegian bidding areas are available at an hourly basis, by corridor, from

November2000onwards. 12 These owsare thenmatched to themaximum transfer

capacities for the relevant corridors at each hour. The transmission constraint on

12Real-time ows can be viewed on the Statnettwebsite: http://www.statnett.no/en/Market-
and-operations/Data-from-the-power-system/Nordic-power- ow/
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Table 3.1: Herfindahl index of the Norwegian Elspot bidding areas over time

Regime Date NO1 NO2 NO3 NO4 NO5

A 01 Jan 2000 0.139 0.348 – – –
B 02 Oct 2000 0.139 0.192 0.443 – –
C 01 Jan 2001 0.139 0.348 – – –
D 12 Mar 2001 0.143 0.147 0.443 – –
E 11 Jun 2001 0.139 0.348 – – –
F 16 Dec 2002 0.159 0.243 0.215 0.373 –
G 02 Jun 2003 0.139 0.348 – – –
H 13 Dec 2003 0.137 0.294 0.373 – –
I 29 May 2004 0.139 0.348 – – –
J 18 Nov 2006 0.139 0.192 0.443 – –
K 17 Nov 2008 0.139 0.348 – – –
L 13 Apr 2009 0.139 0.192 0.443 – –
M 11 Jan 2010 0.152 0.216 0.192 0.443 –
N 15 Mar 2010 0.205 0.257 0.185 0.443 0.171
O 05 Sep 2011 0.205 0.244 0.185 0.443 0.208
P 05 Dec 2011 0.205 0.244 0.185 0.443 0.208
Q 02 Dec 2013 0.325 0.237 0.185 0.443 0.200

a corridor is defined as binding — whether importing or exporting — whenever
the hourly flows reach the maximum transfer capacity. It is furthermore possible to
infer binding transmission constraints during the nine months prior to November
2000 by looking at differences in spot prices between neighbouring regions. For
instance, if the price in NO2 is higher than NO1, then it is reasonable to infer that
NO2 is importing electricity from NO1, and that the transfer constraint is also bind-
ing. If the spot price between two regions is equal, then we do not know much
beyond the fact that the constraint is not binding. We cannot reliably say which
area is exporting to the other, and vice versa.

All told, a binding constraint is a relatively common occurrence. Figure 3.2 shows
that bidding areas can generally expect to reach the maximum transfer capacity
along one of their corridors at least once per day on average. As per Figure 3.3, the
picture is qualitatively similar even if we further normalise by the total in-use hours
for each bidding area. For example, in 2000, bidding area NO1 ran up against the
maximum transfer capacity 78 percent of time that it was exporting power to one
of its neighbours, and 45 percent of the time that it was importing power.
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Figure 3.2: Percentage of operating days with a binding transmission constraint of
at least one hour along at least one corridor

3.4 Econometric approach

Consider a fixed effects model to estimate water volumes in reservoir i (i, ..., N),
belonging to hydropower firm f ( f = 1, ..., F), at time t (t = 1, ..., T). The primary
observation unit is the reservoir, while the secondary observation unit is the firm.
Following the notation of Abowd et al. (2008), the reservoir–firm relationship may
be conceptualised through a link function, f = F(i, t), which indicates that firm f is
managing reservoir i at time t. The regression model may thus be written as

Vit =
12

∑
m=1

βmMmt +
12

∑
m=1

γmMmt · Sit,F(it) + XβX + ai + vit, (3.9)

where V is reservoir volume as a percentage of maximum regulated capacity, Mm is
set of month dummies, and S is the market share wielded by the operating firm as
per equation (3.8). By interacting S with Mm, we are allowing for the fact that mar-
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Figure 3.3: Binding transmission constraints as a percentage of total in-use hours
along all corridors

ket share can have a differential effect on reservoir volumes, depending on how the
price elasticity of demand varies by period.13 The regression model is completed by
a group of additional controls, X, while the first component of the composite error
term, ai + vit, denotes an unobservable reservoir-specific effect — e.g. idiosyncratic
operating characteristics or hydrological conditions — that we eliminate from the
model via within group transformation. The key parameters of interest in the above
regression model are the γm coefficients pertaining to the interacted market share
terms. Given the observed variations in Norwegian demand elasticities — i.e. rel-
atively more inelastic when it is warmer (Johnsen, 2001; Hansen, 2004; Bye and
Hansen, 2008) — we would expect a positive sign on these coefficients during the
summer months as dominant producers withhold their production, before turning

13Following Balli and Sørensen (2013), the reservoir-specific means may also be subtracted from
the continuous market share variable prior to running the regression, so as to safeguard against
possibly spurious results in the interaction term. That is, the estimated model becomes Vit =

∑12
m=1 βm Mmt + ∑12

m=1 γm Mmt · (Sit,F(it) − Si) + ai + εit. Given that the underlying logic of the model
is unchanged, I shall nonetheless continue using the notation of equation (3.9) for simplicity.
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negative in the winter months.

While the naive specification of regression equation (3.9) captures the essence of the
underlying theory, it suffers from two, related conceptual limitations: It does not
explicitly account for the conditions that make local market power possible, and
it does not address a potential identification problem related to changing demand.
Fortunately, the nature of dataset allows me to correct for both limitations simply
by adding a few additional controls to the model. To see why this is the case, it is
worth taking a brief digression to discuss some of the specific empirical advantages
of the dataset.

This paper aims to exploit the boundary changes that have been made to the Nor-
wegian Elspot bidding areas over time. A key underlying assumption is that these
changes yield a plausibly exogenous source of variation in regional market power.
My identification strategy thus relies on the fact that (i) the Elspot area divisions are
determined by outside factors, and (ii) they affect a hydropower firm’s production
decision only via changes in market share. It is relatively straightforward to argue
for the former. The reason that separate bidding areas exist in the first place is that
geographical and technical constraints limit the flow of electricity that is physically
possible between two regions (Steen, 2004; Mirza and Bergland, 2012; ENTSOE,
2015, etc.). That these bidding areas have been redrawn over time as the system
operator seeks to best manage internal congestion issues, scheduled maintenance,
outages, and the laying out of new cables, is in of itself testament to the underlying
physical constraints.

The second component of my identification strategy — i.e. changes to the Elspot
bidding areas should affect producer behaviour only through changes in market
share — is potentially complicated by the fact that the demand will also change
with a redrawing of the bidding areas. Yet, the demand complication is dealt with
fairly easily through the inclusion of zone dummies. This controls for demand by
grouping reservoirs at the zone level. (Recall that a zone denotes a bidding area un-
der a particular Elspot regime.) Any residual differences between otherwise similar
reservoirs can then be interpreted as a causal result of market share, since produc-
ers within the same zone will always face the same demand; irrespective of whether
transmission constraints are binding or not.

It is worth noting, however, that this latter claim would not hold true if we were to
compare plants with different production technologies (e.g. hydro versus nuclear).
Electricity in modern power systems is dispatched according to the merit order of
production, with plants ranked in ascending order of their marginal costs; see Fig-
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Figure 3.4: Merit order of electricity generation

ure 3.4. Depending on the supply characteristics of the redrawn bidding areas, the
relative positions that two plants occupy along the merit curve would therefore
likely change if they did not have the same production technology. In other words,
the probability of them serving the same consumer — or, at least, their relative prob-
abilities — would diverge and we would no longer be able to control effectively for
demand. The exclusive focus on hydropower plants in the present paper circum-
vents this problem. The fact that the marginal costs of hydropower production are
negligible, thereby ensuring that these plants always occupy the lower rungs of the
merit curve, further simplifies the econometric analysis (Førsund, 2015; Kauppi and
Liski, 2008).

Having considered the issues of identification and regional market conditions, let
us return to the regression model. Equation (3.10) expands on the earlier specifi-
cation in equation (3.9) by explicitly introducing zone and regime dummies into
model.14 Employing a reservoir–firm link function as per before, we now estimate

14Including regime dummies alongside the zone dummies may at first seem redundant. After all,
zones are already denoting regime-area combinations. However, doing so allows for the possibility
that the configuration of bidding areas under a particular regime brings about an aggregate effect.
For example, some regimes may comprise a less efficient configuration of bidding areas, which raises
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water volumes of hydropower reservoir i, belonging to firm f , in zone z, and at
time t as

Vit =
12

∑
m=1

βmMmt +
12

∑
m=1

γmMmt · Sit,F(it)

+
17

∑
r=1

δrRrt +
55

∑
z=1

ηzZit + XβX + ai + vit,

(3.10)

where Rr is a set of regime dummies, Zz is a set of zone (i.e. regime-area) dummies,
and the remaining parameters are as before. Given that producers will be able to
exploit their local market power most effectively when transmission constraint are
binding, we may also want to limit the analysis to dates where this condition is
true. An alternative approach would be to account for binding transmission con-
straints through additional dummy variables, or even a continuous variable mea-
suring the extent to which the constraints were binding relative to the desired time
period. However, both of these alternatives would significantly increase the param-
eter space and lead to three-way interaction terms, which do not lend themselves
to clear interpretation.

As a final practical matter, recall that the compiled dataset comprises nearly 2 mil-
lion daily observations over 500 reservoirs. Implementing the above regression on
a panel dataset of this size is problematic because of software and technical limita-
tions associated with in-memory performance (e.g. see Wickham, 2014). To ease the
computational burden, as well as reduce the time series dimensionality of the prob-
lem, the data are collapsed into their weekly means or, where appropriate, modes.15

This leaves a more manageable dataset of approximately 335,000 observations.

3.5 Results

The main empirical results are presented in Table 3.2 and Figure 3.5. While each col-
umn in the table depicts a different model specification, the highlighted coefficients
may all be interpreted in the same way. These correspond to the γm parameters
described in regression equations (3.9) and (3.10), and show the marginal effect of
increasing market share on reservoir volumes, contingent on month (season). Our

the possibility of transmission bottlenecks and congestion within the system as a whole. This would
have potential knock-on effects beyond the individual constraints pertaining to any one zone.

15For example, a bidding area is defined as experiencing a binding constraint in electricity flow at
the weekly scale if this is true for most days during that particular week.
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theoretical framework — together with the empirical literature on Norwegian de-
mand elasticities — suggests that the sign on these variables should be positive
during the summer months and negative during the winter months. Moreover,
since both reservoir volume and market share are measured in percentages, the
coefficients should be read as elasticities. While the remaining coefficients and in-
teraction dummies have been omitted from the table for brevity, these are all jointly
significant and, in the case of the month dummies, of the expected sign and magni-
tude.

Model (1) is a direct application of the naive specification in equation (3.9). The re-
sults are reasonably encouraging with respect to theory. We see that higher market
share generally leads to a fall in reservoir volumes (i.e. increased production) dur-
ing winter. However, evidence for the reverse during summer is less clear. More
importantly, we cannot be sure that these results are empirically valid, since there
has been no attempt to control for potential changes in demand due to redrawn
bidding areas, nor binding transmission constraints. Model (2) seeks to address
these shortcomings by introducing zone and regime dummies — as per regression
equation (3.10). The new specification yields an improved correspondence between
the empirical results and theory. We now obtain coefficients that are of the expected
sign and statistically significant across both seasons. Yet, we are still not explic-
itly controlling for transmission constraints. The last two model specifications are
aimed at addressing this issue. Model (3) imposes a filter that limits the sample
to observations that experienced a binding transmission constraint of at least one
hour.16 It almost goes without saying that is a rather weak requirement — less than
three percent of the observations fall out of the sample — and it does not come as
a surprise that the coefficients are barely changed by its introduction. In contrast,
Model (4) imposes a more meaningful filter on the sample. Here we exclude any
observations where binding transmission constraints account for less than 50 per-
cent of total in-use hours for that week. That is, if a reservoir belongs to a zone
where power was flowing to or from its neighbours for 100 hours in a week, then
we would filter out this reservoir if the relevant transmission corridors were con-
strained for less than 50 hours. Approximately a third of observations drop out of
the analysis as a result of this more stringent filter.

Model (4) most accurately captures the conditions that make local market power
possible. It hence represents the preferred regression specification and is deserv-
ing of a more detailed discussion. We see that increasing market power causes

16For the weekly data used in the analysis, this would apply to reservoirs that lie within a zone
where the majority of days during that week experienced a constraint of at least one hour.
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Table 3.2: Regression results

Dependent Variable: Reservoir volume

(1) (2) (3) (4)

Market share effect

Summer months

May −0.197∗∗∗ −0.073∗∗∗ −0.025 −0.132∗∗∗

(0.023) (0.023) (0.024) (0.034)
June 0.005 0.127∗∗∗ 0.137∗∗∗ 0.142∗∗∗

(0.024) (0.024) (0.024) (0.031)
July −0.017 0.108∗∗∗ 0.125∗∗∗ 0.242∗∗∗

(0.024) (0.024) (0.024) (0.030)
August 0.009 0.118∗∗∗ 0.128∗∗∗ 0.269∗∗∗

(0.024) (0.024) (0.024) (0.029)
September 0.061∗∗ 0.036 0.061∗∗ 0.206∗∗∗

(0.023) (0.024) (0.024) (0.028)
October 0.072∗∗∗ 0.036 0.037 −0.016

(0.024) (0.024) (0.024) (0.032)

Winter months

November 0.076∗∗∗ 0.036 0.041∗ −0.054
(0.024) (0.024) (0.024) (0.037)

December −0.135∗∗∗ −0.075∗∗∗ −0.075∗∗∗ −0.151∗∗∗

(0.022) (0.022) (0.023) (0.032)
January −0.249∗∗∗ −0.125∗∗∗ −0.143∗∗∗ −0.119∗∗∗

(0.023) (0.023) (0.024) (0.031)
February −0.321∗∗∗ −0.203∗∗∗ −0.258∗∗∗ −0.380∗∗∗

(0.025) (0.025) (0.026) (0.036)
March −0.213∗∗∗ −0.098∗∗∗ −0.152∗∗∗ −0.323∗∗∗

(0.023) (0.023) (0.024) (0.034)
April −0.031 0.088∗∗∗ −0.020 −0.161∗∗∗

(0.023) (0.024) (0.025) (0.034)

Month dummies Yes Yes Yes Yes
Regime-zone dummies No Yes Yes Yes
Constrained transmission No No Weak Stringent

N 335,462 335,462 325,750 229,461
R2 0.357 0.386 0.386 0.394
Adjusted R2 0.356 0.386 0.386 0.393
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Coefficients estimated using reservoir fixed effects. Standard errors for the coefficients are reported
in parentheses. While certain controls and dummy variables have been omitted for brevity, these are
jointly highly significant. The table shows the effect of a one percent increase in producer market
share on reservoir volumes, expressed as a percentage of maximum capacity. Columns (1) through
(4) denote increasing model controls and restrictions on the sample. See text for details.
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Figure 3.5: Marginal effect of a one percent increase in producer market share on
reservoir volumes by month. Dots denote point estimates and the error bars show
95 percent confidence intervals. The stippled horizontal and vertical lines help to
identify statistical significance, and summer and winter seasons, respectively. Mod-
els are distinguished by increasing controls and restrictions on the sample, with
Model (4) being the preferred specification. See Table 3.2 and the text for more de-
tail.

hydropower firms to reallocate their water resources in a distinct, intertemporal
manner. Taking the peak summer month of August as an example, a one percent
increase in producer market share corresponds to 0.3 percent increase reservoir vol-
umes on average. Conversely, the same change in market share yields a 0.4 percent
mean decrease in volumes during the peak winter month of February. All of this
accords with the predictions of economic theory and our knowledge of demand
elasticities in Norway. Dominant hydropower firms will restrict their production
during the Norwegian summer when the demand for electricity is relatively more
inelastic, and oversupply during the winter when the elasticity of demand is rela-
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tively more elastic.17

It should be said that the comparative impact of this market share effect on reser-
voir volumes is modest next to the role of other factors like snow-melt runoff and
changes in aggregate electricity demand. Reservoir volumes typically vary over a
range of 70 to 85 percent of maximum regulated capacity as one moves from the
pre-melt trough in early spring to the autumn peak. Yet, it still suggests that firms
within the same bidding area will operate their reservoirs in meaningfully distinct
ways when the differences in local market share are large enough. As an example,
consider bidding area NO2 from regime M onwards (i.e. January 2010 – December
2013). The regional market shares for the top three firms in this area were stable over
the period, with Statkraft SF reservoirs accounting for roughly 40 percent of regional
volume capacity, Agder Energi Produksjon 21 percent, and Sira Kvina Kraftselskap 16
percent. Model (4) implies a seasonal differential between the reservoirs belonging
to these firms of up to seven percent (allowing for model uncertainty). Indeed, the
difference is even greater when we look at the actual reservoir volumes averaged
across the three firms for this period — see Figure 3.C.1. Of course, we have not
controlled for any confounding factors in this simple example and so it should not
be taken as anything more than a piece of descriptive evidence in support of the
formal econometric analysis. The fact that the qualitative pattern is consistent with
the main empirical results is probably of greater significance.

As a final robustness check, I have also run a set of auxiliary regression models
that use an algorithmic routine to compute multi-level fixed effects in an efficient
iterative procedure (Gaure, 2013).18 This effectively allows us to control for higher-
level fixed effects (e.g. firms, zones) in a way that does not require specifying fac-
tor dummies directly in the regression equation. As expected, the results closely
approximate those provided in Table 3.2 and the main qualitative finding is thus
unchanged. Higher market share is associated with fuller reservoirs in the summer
and emptier reservoirs in the winter. These results are available from the author
upon request.

17These results correspond reasonably well to the aggregate intra-yearly variations in Nordic
reservoir levels identified by Kauppi and Liski (2008). Their simulations suggest that, relative to
the competitive solution, market power resulted in reservoirs being underutilised during the sum-
mer months of 2003–2005. See Figure 5 of their paper.

18The routine is based on a series of Gauss-Seidel iterations also described by Guimarães and
Portugal (2010).
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3.6 Concluding remarks

This paper has been motivated by a simple question: How does market power af-
fect firm behaviour in a hydro-based electricity system? The answer, according to
economic theory at least, is clear. Dominant hydropower firms can be expected to
reallocate their water resources away from periods with relatively inelastic demand
for electricity, to periods with relatively elastic demand. This would allow them to
recoup higher profits by restricting supply when consumers are least responsive
to the resulting price increase. In the case of Norway, this translates to fuller hy-
dro reservoirs in the summer months, followed by lower reservoirs in the winter
months.

I test this hypothesis using a uniquely detailed dataset of approximately 500 Nor-
wegian hydropower reservoirs. Exogenous changes to bidding area divisions and
transmission constraints allow me to cleanly identify variations in reservoir vol-
umes arising from differences in local market share. Consistent with the predic-
tions of theory, the empirical findings reveal a modest, yet definitive, intertemporal
pattern in the way that market power alters utilisation of water resources. Taking
my preferred regression specification as a benchmark, a one percent increase in pro-
ducer market share yields a 0.2–0.3 increase in reservoir volumes during the peak
summer months, and a 0.3–0.4 percent decrease during the peak winter months.
This market share effect is distinct from the regular seasonal patterns in reservoir
volumes that arise from annual snow-melt inflows and so forth.

Constructing a large dataset such as this from disparate sources obviously entails
numerous choices in how one compiles the data. For instance, an implicit simplify-
ing assumption in my empirical analysis has been that firm ownership of reservoirs
remains constant over the review period. This may not be an entirely benign as-
sumption and could mask some important results if there was significant merger
and acquisition activity during that time. On the other hand, the Norwegian elec-
tricity sector had been liberalised for nearly two decades by the beginning of the
study period. The relative maturity of the market should at least give us some con-
fidence regarding the stability of the competitive structure over this period. In a
similar vein, the effects of partial- and cross-ownership have not been considered
(c.f. Amundsen and Bergman, 2002). Fully accounting for these issues is a poten-
tially fruitful topic for future research.

Such caveats notwithstanding, the results of this paper may be interpreted as em-
pirical vindication of the underlying theory. More to the point, they can help guide
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policy and competition authorities in effectively regulating electricity markets like
the Norwegian system, where hydropower comprises a major share of generation,
or transmission constraints create opportunities for producers to exercise local mar-
ket power.
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Göteborg University. School of Business, Economics and Law. Working Papers in
Economics, no. 28. Available: http://www.ssb.no/a/english/publikasjoner/

pdf/doc_200413_en/doc_200413_en.pdf.

Johnsen, Tor Arnt (2001). “Demand, generation and price in the Norwegian market
for electric power,” Energy Economics, 23(3): 227–251.

Johnsen, Tor Arnt, Shashi Kant Verma, and Catherine D Wolfram (1999). “Zonal
pricing and demand-side bidding in the Norwegian electricity market,” Program
on Workable Energy Regulation (POWER) working paper series, No. PWP-063.
Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.16.
2190&rep=rep1&type=pdf.

Joskow, Paul L. (2008). “Lessons learned from electricity market liberalization,” The
Energy Journal, 29(2): 9–42, Special Issue. The Future of Electricity: Papers in
Honor of David Newbery.

Joskow, Paul L. and Jean Tirole (2000). “Transmission rights and market power on
electric power networks,” RAND Journal of Economics, 31(3): 450–487.

Kauppi, Olli and Matti Liski (2008). “An Empirical Model of Imperfect Dy-
namic Competition and Application to Hydroelectricity Storage,” MIT-CEEPR
WP-2008-012. Available: http://web.mit.edu/ceepr/www/publications/

workingpapers/2008-011.pdf.

Lau, Lawrence J. (1982). “On identifying the degree of competitiveness from indus-
try price and output data,” Economics Letters, 10(1): 93–99.

88

http://www.ssb.no/a/english/publikasjoner/pdf/doc_200413_en/doc_200413_en.pdf
http://www.ssb.no/a/english/publikasjoner/pdf/doc_200413_en/doc_200413_en.pdf
http://www.ssb.no/a/english/publikasjoner/pdf/doc_200413_en/doc_200413_en.pdf
http://www.ssb.no/a/english/publikasjoner/pdf/doc_200413_en/doc_200413_en.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.16.2190&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.16.2190&rep=rep1&type=pdf
http://web.mit.edu/ceepr/www/publications/workingpapers/2008-011.pdf
http://web.mit.edu/ceepr/www/publications/workingpapers/2008-011.pdf


Mas-Colell, Andreu, Michael D. Whinston, and Jerry R. Green (1995). Microeconomic
Theory, Oxford University Press.

Mathiesen, Lars, Jostein Skaar, and Lars Sørgard (2013). “Electricity Production in a
Hydro System with a Reservoir Constraint,” The Scandinavian Journal of Economics,
115(2): 575–594.

Mirza, Faisal Mehmood and Olvar Bergland (2012). “Transmission congestion and
market power: the case of the Norwegian electricity market,” The Journal of Energy
Markets, 5(2): 59–88.

NordREG (2014). “Nordic Market Report 2014: Development in the Nordic
Electricity Market,” Report 4/2014, Nordic Energy Regulators, Available:
http://www.nordicenergyregulators.org/wp-content/uploads/2014/06/

Nordic-Market-Report-2014.pdf.

SSB (2015). “Electricity, annual figures, 2013,” Statisttics Norway, 25 March
2015. Available: http://www.ssb.no/en/energi-og-industri/statistikker/

elektrisitetaar/aar/2015-03-25.

Steen, Frode (2004). “Do bottlenecks generate market power? An empirical study
of the Norwegian electricity market,” Norwegian School of Economics. Discus-
sion Paper 26/03. Available: http://www.nhh.no/Files/Filer/institutter/

sam/Discussion%20papers/2003/26.pdf.

Wickham, Hadley (2014). “Advanced R,” in John M. Chambers, Torsten Hothorn,
Duncan Temple Lang, and Hadley Wickham (eds.), “The R Series,” Chapman &
Hall / CRC, 1st edition.

89

http://www.nordicenergyregulators.org/wp-content/uploads/2014/06/Nordic-Market-Report-2014.pdf
http://www.nordicenergyregulators.org/wp-content/uploads/2014/06/Nordic-Market-Report-2014.pdf
http://www.ssb.no/en/energi-og-industri/statistikker/elektrisitetaar/aar/2015-03-25
http://www.ssb.no/en/energi-og-industri/statistikker/elektrisitetaar/aar/2015-03-25
http://www.nhh.no/Files/Filer/institutter/sam/Discussion%20papers/2003/26.pdf
http://www.nhh.no/Files/Filer/institutter/sam/Discussion%20papers/2003/26.pdf


Appendix

3.A Previous Elspot regimes

3.B Market shares of top three producers

3.C Reservoir volumes for top three NO2 producers,

Jan 2010 – Dec 2013

90



Fig
u
re
3.A
.1
:E
ls
p
ot
re
gim
es
A
–
H
(1
Ja
n
u
ar
y
20
00
–
13
D
ec
em
be
r
20
03
)

91



Fig
u
re
3.A
.2
:E
ls
p
otregim
es
I
-
P
(2
9
M
ay
2004
–
5
D
ecem
ber
2011

92



NO1 NO2 NO3 NO4

0.2

0.4

0.6

0.2

0.4

0.6

0.2

0.4

0.6

0.2

0.4

0.6

0.2

0.4

0.6

0.2

0.4

0.6

0.2

0.4

0.6

0.2

0.4

0.6

A
B

C
D

E
F

G
H

1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd

Producer rank

M
ar

k
et

 s
h

ar
e

Figure 3.B.1: Market shares of top three producers in each bidding area (Elspot
regimes A – H)
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Figure 3.B.2: Market shares of top three producers in each bidding area (Elspot
regimes I – Q). Note: Regime P excluded for readability as it is identical to regime O.
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Figure 3.C.1: Mean monthly reservoir volumes for the top three producers in the
NO2 bidding area from January 2000 to December 2013 (i.e. regimes M to Q).
The width of the individudal lines is representative of the relative regional mar-
ket shares over this period: Statkraft SF (40 percent), Agder Energi Produksjon (21
percent), and Sira Kvina Kraftselskap (16 percent).
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