
 
 

Machine Learning in Default 

Prediction 

The Incremental Power of Machine Learning Techniques in 

Mortgage Default Prediction  

Arvin Matre 

Supervisor: Jonas Andersson 

Master thesis in Economics and Business Administration Major in 

Finance 

NORWEGIAN SCHOOL OF ECONOMICS 

 

 

 

 

This thesis was written as a part of the Master of Science in Economics and Business 

Administration at NHH. Please note that neither the institution nor the examiners are 

responsible − through the approval of this thesis − for the theories and methods used, or results 

and conclusions drawn in this work. 

Norwegian School of Economics  

Bergen, Fall 2019 

 



 ii 

Acknowledgements 

 

 

 
 

This master thesis was written as part of the master’s degree in economics and business 

administration with major in finance at the Norwegian School of Economics.  

Working with a large and high dimensional data set this semester has been a rewarding 

experience. Through this thesis I have developed deep insight into the process of modelling 

probability of default, both how it is done today and how it may be done in the future.  

The employees at a financial services firm that shall remain nameless throughout this thesis 

were kind enough to let me handle this sensitive dataset. I could not have written this 

without them. Thank you very much for your generous help. 

I would also like to express my gratitude and appreciation to Jonas Andersson, my 

supervisor for this thesis, for valuable guidance. You have been helpful in answering my 

questions throughout this semester.  

  



 iii 

Abstract 

 

 

 

In this thesis, alternative machine learning techniques have been used to test if these perform 

better than a Logistic Regression in predicting default on retail mortgages. It is found that the 

ROC AUC statistic is slightly better for the advanced machine learning techniques, i.e. the 

Neural Networks, Support Vector Machines and Random Forests. Importantly, all classifiers 

are trained on the same variables, which are all Weight of Evidence transformed. This 

enables us to compare the results and view the incremental predictive power as solely a 

result of the classifiers. Also, it enables us to use the same methodology for probability of 

default modelling as practitioners currently use, i.e. with Weight of Evidence transformed 

variables.  

The analysis is based on a dataset with observations on each loan issued from a financial 

services firm in the market for retail mortgages in the years 2009-2017. After univariate and 

multivariate analysis, the number of candidate variables are reduced from 549 to 19.  

The best model is the deep Neural Network, with an impressive ROC AUC of 0,902. This is 

very high for prediction of default. Still, the Logistic Regression model also has a very high 

statistic of 0,882. A more primitive machine learning technique is also included in the 

analysis, the Decision Tree. As expected, this classifier has the lowest ROC AUC of 0,732. 

Through the exploratory analysis with WoE variables interesting relationships are found, 

which may enjoy some readers.  
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1. Introduction and Main Findings 

This master thesis aims at providing insights into the potential for alternative machine learning 

techniques for the estimation of default risk on individual customers in mortgage lending. 

Logistic regression has been the most common estimation technique for decades, as it has 

provided a fine balance between predictive ability and ease of interpretation. However, 

corporations today have more information on customers and their behavior than ever before, 

opening the question as to if any other machine learning techniques should be used.  

Modelling probability of default, or more specifically credit scoring, is the use of statistical 

inference to transform relevant data into measures that may be used to guide credit decisions 

(Anderson, 2007). In a sense, it is the further development of more subjective credit scoring 

techniques, which have been used throughout the centuries, to take advantage of the large 

amounts of data now available, enabled by the computing power of todays’ machines. Credit 

scoring has been especially helpful in high volume mortgage lending and for smaller 

businesses, where the cost of making a bank representative do an evaluation of the potential 

customer has been greater than the potential income – which has led many bank not to issue 

credit for these customers at all.  

There are different types of credit scores, and the most informative separation might be 

between application scores and behavior scores. Application scores are used for origination of 

new loans, where data about the borrower’s income, size of the loan, previous behavior with 

other products in the bank etc. are used. Behavior scores are used to guide decision making 

regarding over-limit management, evaluating the risk of the portfolio and more. This thesis is 

concerned with developing probability of default (PD) models on a dataset with customers 

that have been granted a loan, i.e. for applicants. 

The predictive models used for credit scoring may be separated into parametric and non-

parametric models, where the former models make assumptions about the data, while the 

second does not (Anderson, 2007). The typical models used by banks to estimate default 

probabilities are logistic regression models, which are parametric.  

In response to the assumptions needed to calculate parametric models, and the need to build 

models with better predictive abilities, non-parametric models are increasingly considered and 
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used by financial institutions. Machine learning models are associated with this category of 

models. There are mainly two drawbacks with these models: 

1. Lack of transparency 

2. Tendency to overfit 

Regulators have strict requirements concerning the interpretability of credit scoring models. 

Indeed, the burden is on the bank to provide evidence of model interpretability (Finanstilsynet 

, 2019). This is, without doubt, a strength of the logistic regression models – they are easy to 

interpret. However, there are some machine learning models that also provide high 

interpretability, such as decision threes. Concerning the tendency to overfit, this is certainly a 

potential danger if only a training set was used to create the model. However, all modern 

statistical and machine learning tools allow for the data to be split into training, validation and 

testing splits, which should reduce the tendency to overfit. Further, the ability of machine 

learning models to capture non-linearities and interactions in the data might outweigh these 

issues. 

The dataset used is provided by a financial services firm and contains 549 variables. The 

dataset is of very high quality and has been used for internal development of models prior to 

this thesis. It comes pre-cleaned, but some modifications are done. Each entry represents a 

loan agreement from the financial institution to the private customer. All loans are secured 

against the property bought, thus we are dealing with mortgages for the retail market.  

The variables used to train the models are first chosen based on univariate analysis using the 

Information Value (IV) statistic, before a multivariate analysis with stepwise regression is 

performed. Also, new variables are created based on interactions. Following the multivariate 

analysis, we are left with 19 variables. To create a level playing field, the analysis begins with 

the same 19 variables used for all estimation techniques. Weight of Evidence transformations 

are used in the univariate analysis, but also to account for missing values, outliers and ease for 

interpretation. Then, by comparing the Logistic Regression to other machine learning 

techniques on the Weight of Evidence transformed variables, the exact increase in predictive 

power can be inferred. Had the machine learning classifiers been trained on variables that were 

not transformed the results would not be comparable to the current modelling methodology 

for probability of default, since there Weight of Evidence transformations are used.  
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Different statistical and machine learning techniques are used to estimate models for 

predicting default; Logistic Regression, Decision Trees, Random Forest, Neural Networks, 

Gradient Boosting, K-Nearest Neighbors and Support Vector Machines. The models are 

evaluated on their predictive performance using the ROC AUC measure. Although the use of 

Weight of Evidence transformed variables and logistic regression has been the industry 

standard, partly because it makes it possible to construct an easy to understand scorecard, it is 

found that the more advanced machine learning models perform slightly better.  

The Neural Network, Support Vector Machine and Random Forest classifiers all perform 

better than the logistic regression, but only slightly. The deep Neural Network performs best 

with a ROC AUC of 0.903, compared to 0.883 for the logistic regression. This is in line with 

the results from previous literature on the subject. For example, West (2000) and Lee et al. 

(2002) find that Neural Networks perform better than K-Nearest Neighbors, Decision Trees 

and Logistic Regressions. The Decision Tree has the lowest ROC AUC, which is not suprising 

given that it is a very simple algorithm.  

The thesis is concluded by a statement about the impact these results may have for financial 

institutions using the estimation techniques. Since the differences between the advanced 

machine learning techniques and the Logistic Regression are small, it is not obvious that the 

former should be adopted. There are clearly costs associated with the black-box nature of these 

advanced machine learning models, and legal risks associated with customers’ right to 

explanation and the general legislation around interpretability of credit scoring algorithms. 

Lastly, it should be mentioned that although sentences such as “The Logistic Regression 

versus the machine learning models” will appear, the Logistic Regression may also be seen as 

a machine learning model. Indeed, all models considered are classifiers. Thus, the distinction 

is made purely for pragmatic reasons.  
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2. Literature Review 

2.1 Predictive Performance of Machine Learning Techniques 

Thomas (2000) and Crook et al. (2007) gives an account of different publications investigating 

the use of machine learning techniques for PD modelling. For example, in Baesens (2003) it 

is observed that while Neural Networks (NN) have not been used much in this setting, it is a 

very common technique in other areas of banks, particularly fraud detection. When NNs are 

compared with Logistic Regression, Decision Trees, K-Nearest Neighbours (K-NN) and 

Support Vector Machines (SVM), it is found that NNs and SVM often perform best. This is 

also what is found by other authors. For example, comparing NNs with a Logistic Regression, 

both West (2000) and Lee et al. (2002) find the NN to be superior. Still, K-NN is also found 

to have high predictive power by Ong et al. (2005). 

Table 2.1 displays the error rates for different classifiers in relevant papers. One should be 

cautious in comparing the results between different papers, since the error rates are defined in 

slightly different ways, but within paper comparisons are legitimate (bold numbers indicate 

“best in the given paper”). As can be seen from the table, Logistics Regressions often perform 

quite well. Thus, one should not exaggerate the impact of an implementation of more advanced 

machine learning techniques based on the current literature. Also, one should note that if the 

activation function in the NN is logistic, it very much behaves as a Logistic Regression 

between the hidden layers. In that way, it might be seen as a generalization of the Logistic 

Regression. 

In the comparison between Logistic Regression and NNs by Desai et al. (1997) the logistic 

regression is actually found to perform better. However, as is noted by the authors, “the 

accuracy of neural networks … depends on the values of certain parameters which are under 

the control of the investigator” (Desai et al., 1997). This might explain why there is a large 

variation in results from comparing advanced machine learning models and the Logistic 

Regression.  

Decision Trees are rather often found to have low accuracy in prediction (Krauss, 2014). 

Therefore, a more general type of tree technique is more common in predictions – Random 

Forests. Random Forest techniques belong to the class of ensemble methods. These methods 

combine a set of trees, which to some extent overcomes the instability of single trees.  
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In the general literature there has been many comparisons between classifiers in their 

predictive power, but relatively few in the area of consumer credit data, and particularly in 

application scoring. It might be that the data and the abstract data structures in datasets for 

consumer credit scoring are so different from each other (i.e. from bank to bank) that it is not 

clear which method is best to use in general (Crook et al., 2007). Indeed, since banks could 

save a tremendous amount on choosing the right customers to lend to, the best approach might 

be to try different methods.  

Hand (2006) argues that the relative differences in predictive power between the classifiers 

could be exaggerated. This could for example be a result of the “reject inference” problem. 

One classifier that performs well on the dataset does not necessarily perform better than other 

classifiers on through-the-door applicants. Further, Hand argues that the aim of the classifier 

should be to maximize profit. If an evaluation method such as a profit matrix is used, it might 

give different results than when using the ROC AUC statistic, which is more common in 

research. 

Table 2.1: Error rates for machine learning techniques in the literature 

 

Some authors have tried to combine different classifiers. For example, Kao and Chiu (2001) 

used a combination of NNs and Decision Trees. Other authors have used Decision Trees to 

select variables to use in a Logistic Regression. 

2.2 The Basel Accords 

2.2.1 The Context 

The Basel Accords (Basel I, II and III) shall not be a main discussion topic in this thesis. 

However, it is important to see the context this thesis is written in. In Basel II, the three pillars 

of sound regulation are described, the first of which is minimum capital requirements (Basel, 

2005). The banks may choose for themselves which method to follow to calculate minimum 

 Boyle et 

al. 

(1992) 

Henley 

(1995) 

Desai et 

al 

(1997) 

Yobas 

et al. 

(2000) 

West 

(2000) 

Lee et 

al. 

(2002) 

Baesens 

(2003) 

Ong 

et al. 

(2005) 

Logistic regression  43,3 67,3  81,8 73,5 79,3  

Decision trees 75,0 43,8  62,3 77,0  77,0 78,4 

Neural networks   66,4 62,0 82,6 77,0 79,4 81,7 

K-NN     76,7  78,2 82,8 

SVM       79,7  
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capital requirements, so called regulatory capital. In the standardized approach, a fixed 

percentage of outstanding loans is set aside. This percentage varies for different asset classes. 

This may be seen as the easiest and most primitive approach, but it may be very expensive for 

the banks in that they hold much capital when it is not needed, and the opposite. In the Internal 

Ratings Based (IRB) approach, the bank chooses the percentage of total exposure in each asset 

class to set aside. Expected and unexpected losses are to be calculated, where the second is of 

much greater importance. Indeed, regulatory capital is only concerned with the unexpected 

losses. As part of the methodology to calculate unexpected losses, PD models are built. The 

implication is that when reading this thesis, one should note that the models described are not 

used by the firm to score customers prior to issuing a loan. The models are used by the firm to 

set aside enough regulatory capital. Still, the potential for using the models for screening shall 

be discussed. 

2.2.2 Definiton of Default 

One should reach a balance between “strict” definitions of default and the concern for having 

enough observations in the sample with event = 1 (Siddiqi, 2006). Strict definitions would for 

example allow for more “days delinquent”, as then one would be surer that the customer is in 

default. But doing so would perhaps leave too few event observations in the sample. With PD 

modeling for banks, the most important consideration to make when defining defaults is the 

regulatory requirements. Under Basel II, a default event has occurred when either or both of 

the following conditions are fulfilled: 

- “The bank considers that the obligor is unlikely to pay its credit obligations to the 

banking group in full, without recourse by the bank to actions such as realizing 

security (if held)” 

- “The obligor is past due more than 90 days on any material credit obligation to the 

banking group. Overdrafts will be considered as being past due once the customer 

has breached an advised limit or been advised of a limit smaller than current 

outstanding” (BIS, 2006) 

 

 

 



 7 

3. Methodology 

This chapter is split in three. The first part describes the machine learning techniques that are 

most common in the literature on credit scoring. In the second part, Weight of Evidence is 

introduced as a method to transform variables, a common method for capturing non-linear 

effects in PD modelling. The third part describes the two methods used for evaluation of the 

models – the confusion matrix and ROC AUC.  

3.1 Classification Techniques for Credit Scoring 

Table 3.1 gives an account of different predictive models typically used in the literature on 

machine learning algorithms for PD modelling, and a short description of them. All models 

except the first are non-parametric. In the sub chapters below, each classification technique 

will be explained, and the unique hyperparameters to be tuned in the classification techniques 

shall be emphasized. 

Table 3.1: Classification Techniques for Credit Scoring 

Predictive model Description 

Logistic regression Regression with probabilistic dependent 

variable 

Decision trees  Sequence of branching operations 

partitioning the data 

Neural Networks Network of nodes weighing and 

transforming input 

Support Vector Machines Fitting hyperplanes in the feature space to 

best classify the dependent variable 

Random Forest Ensemble learning by constructing multiple 

decision trees 

Gradient Boosting Constructing a model based on ensemble of 

weaker models with boosting 

K-Nearest Neighbors Classification using the k nearest neighbors 

in the feature space 
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3.1.1 Logistic Regression 

Logistic Regression uses maximum likelihood to estimate parameters in the model: 

 ln (
𝑝(𝐺𝑜𝑜𝑑)

1 − 𝑝(𝐺𝑜𝑜𝑑)
) =  𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 +⋯+ 𝑏𝑘𝑥𝑘   (3.1) 

As can be seen, the dependent variable is transformed into the log-odds. It is not possible to 

use an analytical approach to find the parameters of the model (unlike with Linear Regression 

and OLS), so an iterative process must be used. The process starts with random parameters, 

which are iteratively modified until the likelihood function (equation 3.7 below) is maximized. 

More specifically the Logistic Regression model begins with the assumption that for each 

potential outcome of the dependent variable, the probability of y = 1 is p, while the probability 

of y = 0 is (1-p). p is modelled as: 

 𝑝 =
exp (𝑍)

1 + exp (𝑍)
=

1

1 + exp (−𝑍)
 (3.2) 

 𝑍 = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 +⋯ (3.3) 

This follows from, 

 Pr(𝑦𝑖 = 1) = Pr(𝑍𝑖 + 𝜀𝑖 ≥ 0) = Pr(𝜀𝑖 ≥ −𝑍𝑖) = Pr(𝜀𝑖 ≤ 𝑍𝑖) (3.4) 

, with i for each observation in the dataset. 𝜀𝑖 is the part of Z not accounted for by the 

predictors.  

The last probability in the equation above is thus the cumulative distribution function (CDF) 

evaluated at 𝑍𝑖. Now, assuming 𝜀𝑖 follows a standard logistic distribution, 

 Pr(𝜀𝑖 ≤ 𝑍𝑖) =  
1

1 + exp (−𝑍𝑖)
 (3.5) 

, which follows since the CDF of the logistic distribution is: 

 F(𝑍; 𝜇, 𝑠) =  
1

1 + exp (−
𝑍 − 𝜇
𝑠 )

 (3.6) 



 9 

, where μ is zero and s is 1, since it is the CDF of the standard logistic distribution. The solver 

then maximizes the log-likelihood function: 

 ln(likelihood) =∑[𝑦𝑖 ln(𝑝𝑖) + (1 − 𝑦𝑖)ln (1 − 𝑝𝑖)]

𝑛

𝑖=1

 (3.7) 

, where for ease of reading equation 3.5 is set to 𝑝𝑖. As can be seen, each predictor affects 𝑝𝑖 

through 𝑍𝑖.  

Importantly for the modeling of PD, the Logistic Regression does not make the modeler decide 

on hyperparameters before estimating the model. Thus, it is easy to implement and reproduce. 

3.1.2 Decision Trees 

Decision Trees split the data into partitions with operations at each branch. The top node is 

called the root node, and each node underneath is a child node. At the bottom of the tree are 

leaves, nodes that are either entirely pure or that is not split further due to size constraints. The 

nodes are split in two or more (except for the leaves) and the depth of the tree, as in the number 

of levels, is normally part of the input (maximum depth). Figure 3.1 gives an example of a 

simple decision tree with only one split (Provost & Fawcett, 2015). Intuitively, the child nodes 

are “purer” than the parent, in that they are more homogenous. This can be seen from the fact 

that the share of each type is more different in the child nodes than in the parent. 

Figure 3.1 Visual illustration of partitioning in Decision Tree 
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To split the dataset, several splitting rules may be chosen. One common approach is to use 

an entropy measure to calculate the information gain (IG) of the split, such that 

𝐼𝐺(𝑝𝑎𝑟𝑒𝑛𝑡, 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛) =  

𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑝𝑎𝑟𝑒𝑛𝑡) − [𝑝(𝑐1) × 𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑐1) + 𝑝(𝑐2) × 𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑐2) +⋯ ]  

(3.8) 

It is common to begin at the top node and recursively partition the data such that the IG is 

greatest at each split. This is a type of greedy algorithm, since a local optimum is solved for 

at each split to try to find the global optimum.  

As can be seen, IG measures the difference between the entropy of the parent and the 

weighted sum of the entropy of the children, where each child is denoted (𝑐𝑘). Entropy is 

calculated as: 

 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 =  −𝑝1 log(𝑝1) − 𝑝2 log(𝑝2) (3.9) 

When using Decision Trees, some hyperparameters must be specified. For instance, entropy 

is not the only purity measure. The Gini index is a common alternative. Maximum depth 

specifies the maximum number of recursive partitions that are allowed, i.e. how deep the tree 

is. Maximum branch specifies the maximum number of branches that may be split in each 

node. 

3.1.3 Neural Networks (NN) 

NNs may be visually represented as “neurons” distributed between layers, where the first layer 

is considered the input layer, and the last layer is considered the output layer. Each neuron 

takes inputs, computes a weighted sum of the inputs, and then uses an activation function to 

transform it in a non-linear way (Mueller & Massaron, 2016). 

The architecture of a neural network describes the number of neurons and how they are 

arranged in layers. Typically, one two or three layers are used, with neurons split equally 

between these layers. The number of layers and neurons are part of the hyperparameters to be 

specified before training. 

NNs are great at recognizing patterns in data. Although they are not much used in practice for 

PD modelling, other areas within banks are more or less dependent on the models, for example 

in fraud detection and Anti Money Laundering (AML). Unfortunately, NN is perhaps the 
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machine learning technique most prone to overfit. This comes as a consequence of its great 

capacity to recognize patterns. Another issue with NNs in PD modelling is the difficulty of 

interpreting what drives the model to classify some as good or bad. This black box nature of 

NNs limits transparency. 

3.1.4 Random Forests 

Randoms Forest models take advantage of a technique called Bootstrap Aggregation (Bagging 

for short). With this technique, random samples with replacement from the dataset are chosen 

with pairs of the feature vector and the dependent variable. Trees are then built on all these 

samples. Then, in a classification setting, the mode of the predictions for all trees is used for 

estimating the dependent variables on new observations. This technique will generally 

increase performance since variance is reduced as long as the correlation between the trees is 

relatively low. In addition, Random Forests are characterized by the fact that variables chosen 

to partition the data in each split are chosen at random, not by any measure of information 

gain, as described in the section on Decision Trees.  

Thus, Random Forest models are differentiated from Decision Trees in two respects: 1. several 

trees are generated, trained on different samples, and 2. The variables chosen in each node are 

not chosen based on discriminatory power but simply by random (Krauss, 2014).  

In generating any Random Forest model, at least two parameters must be specified; the number 

of trees to grow (i.e. the number of samples to be selected) and the number of variables to 

consider at each node.  

3.1.5 Support Vector Machines (SVM) 

SVMs are classifiers defined by separating the feature space with a hyperplane. With only two 

features this may be visualized as a line separating the labeled data, as in Figure 3.2. 

Figure 3.2: Visual Illustration of SVM with Two Features 
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With three dimensions it may be visualized as a plane separating the data, but with more 

dimensions it becomes difficult to visualize. In figure 3 a linear SVM is drawn, but non-linear 

SVMs also exist, making use of the so-called kernel trick to separate the data (Provost & 

Fawcett, 2015). Also, it is rare for data to be perfectly linearly separable, as in Figure 3.2. 

Therefore, in most cases a hinge loss function is used, where data on the wrong side of the 

separator is “punished” proportional to the distance from the separator. These hinge loss 

functions normally do not use the square of this distance, unlike ordinary least squares, making 

SVMs less prone to adjust to outliers. The separator is thus formed by maximizing the margin, 

defined as the distance between the separator and the nearest data point.  

The above discussion sheds light on the three important hyperparameters for the SVM. 

Gamma is a parameter of the kernel for non-linear classification. Cost is the cost of 

misclassification in the hinge loss function. Epsilon is the margin of tolerance. 

3.1.6 K-Nearest Neighbor (KNN) 

The KNN algorithm classifies new observations based on target values for the nearest 

neighbors in the feature space. What is defined as a near neighbor is part of the 

hyperparameters. For example, one could define the number of neighbors to be 10. The new 

observation is then assigned to the class that is most common among the 10 nearest neighbors. 

Most often, the algorithm is weighted, such that the nearest neighbors have higher weights 

(Provost & Fawcett, 2015). Also, the “distance” to a neighbor is often defined as the Euclidean 

distance. The number of neighbors to be chosen which most optimally discriminates between 

the classes is an empirical matter and different values should be tried.  

3.1.7 Gradient Boosting 

A Gradient Boosting algorithm seeks to approximate a function of weights on weaker 

classifiers (such as Decision Trees) to minimize the loss function. The algorithm starts with 

arbitrary weights and proceeds in a “greedy” fashion. Many Gradient Boosting algorithms are 

based on the recursive partitioning algorithm described in Friedman (2001) and Friedman 

(2002). Decision Trees are used as weak classifiers, making use of “Tree boosting”. This 

creates a series of decision trees from samples of the data (SAS, 2017). The hyperparameters 

that must be specified are reflections of the above description. 
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Iterations specifies the number of trees to be grown. Train proportion specifies the percentage 

of data to train each tree with. Further, the more general Decision Tree hyperparameters must 

be specified, such as Maximum branch and Maximum depth, as described above.  

3.2 Weight of Evidence and Information Value 

3.2.1 Weight of Evidence (WoE) 

In PD modelling, the Logistic Regression is typically combined with Weight of Evidence 

(WoE) transformations (Anderson, 2007). In this transformation, each explanatory variable is 

replaced with its WoE. There are several advantages of using WoE transformed variables 

(Siddiqi, 2006): 

• It makes it possible to capture non-linear relationships between the predictor and the 

dependent variable (explained below) 

• It explicitly handles the issue of outliers by either grouping them in an existing bin or 

creating a new bin 

• It handles the issue of missing variables by either grouping them in a separate bin or 

for example grouping them in the bin with the greatest number of observations 

• It allows for a monotonic increase or decrease in the effect of a variable 

• It makes the results easy to understand 

WoE is used to assess the relative risk of the attributes within a characteristic (variable). Thus, 

attributes with similar risk characteristics are typically merged. WoE is typically available for 

calculation in statistical packages, where the output typically is a graph as depicted in Figure 

3.3. As can be seen, although the WoE is monotonically increasing with age, it is not increasing 

linearly. As a result, non-linear effect can be identified.  
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Figure 3.3: Example WoE Transformation 

 

The WoE of an attribute is calculated as (SAS Institute Inc, 2013): 

 𝑊𝑂𝐸𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 = 𝑙𝑛 (
𝑝𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒
𝑛𝑜𝑛−𝑒𝑣𝑒𝑛𝑡

𝑝𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒
𝑒𝑣𝑒𝑛𝑡 ) = 𝑙𝑛

(

 
 
𝑁𝑛𝑜𝑛−𝑒𝑣𝑒𝑛𝑡
𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒

𝑁𝑛𝑜𝑛−𝑒𝑣𝑒𝑛𝑡
𝑡𝑜𝑡𝑎𝑙

𝑁𝑒𝑣𝑒𝑛𝑡
𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒

𝑁𝑒𝑣𝑒𝑛𝑡
𝑡𝑜𝑡𝑎𝑙

)

 
 

 (3.10) 

𝑁𝑛𝑜𝑛−𝑒𝑣𝑒𝑛𝑡
𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 = the number of nonevent observations that exhibit the attribute 

𝑁𝑛𝑜𝑛−𝑒𝑣𝑒𝑛𝑡
𝑡𝑜𝑡𝑎𝑙 = the total number of nonevent observations 

𝑁𝑒𝑣𝑒𝑛𝑡
𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 = the number of event observations that exhibit the attribute 

𝑁𝑒𝑣𝑒𝑛𝑡
𝑡𝑜𝑡𝑎𝑙 = the total number of event records 

An example of the calculation of WOE for age is given in Table 3.2. As can be seen, the WoE 

for the attributes are consistent with the visual illustration in Figure 3.3. Also, the WoE is 

monotonically increasing, making interpretation easy and intuitive. Often, constraints on the 

number of bins are part of the software, for example a minimum of 5 percent of the 

observations in any bin. When optimizing the bins, both the absolute size of WoE for each 

attribute, and the difference in WoE between each attribute, is maximized. The larger this 

difference, the greater predictive ability of the characteristic. Missing values are often placed 

in a separate bin, since assuming that observations with missing values have characteristics 

that do not systematically vary from non-missing observations is probably wrong. Also, the 

computer’s optimization of bins is part of an iterative process with business judgement driving 

optimization of bins. For example, in Norway there are regulations on loan-to-value both for 
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primary and secondary houses. For primary houses, 15 percent equity is required, while for 

secondary houses, 40 percent is required (Lendo, 2019). Binning should capture this regulatory 

pattern. Business judgement thus plays a significant role in the credit scoring process, often 

involving people from operations and different business units.  

Table 3.2: Example WoE Calculation 

 

3.2.2 Information Value 

A related concept to WoE is Information Value (IV), which is given in the last column of 

Table 3.2. IV is often used to select predictors in the univariate selection processes. IV is 

defined as: 

 𝐼𝑉 =  ∑(
𝑁𝑛𝑜𝑛−𝑒𝑣𝑒𝑛𝑡
𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒

𝑁𝑛𝑜𝑛−𝑒𝑣𝑒𝑛𝑡
𝑡𝑜𝑡𝑎𝑙 −

𝑁𝑒𝑣𝑒𝑛𝑡
𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒

𝑁𝑒𝑣𝑒𝑛𝑡
𝑡𝑜𝑡𝑎𝑙 )

𝑚

𝑖=1

×𝑊𝑜𝐸𝑖 (3.11) 

, where m is the number of bins. As can be seen, IV is a weighted sum of the WoE of the 

characteristic’s attributes. Thus, the higher the IV, the higher is the predictive ability of the 

characteristic. In the industry, but also in textbooks, rules of thumb are used to describe the IV 

of characteristics. According to Siddiqi (2006), one rule of thumb is that IV of: 

- Less than 0.02 is regarded as unpredictive  

- From 0.02 to 0.1 is regarded as a weak predictor 

- From 0.1 to 0.3 is a medium predictor 

- Greater than 0.3 is a strong predictor 

It is important to note that IV increases with number of bins. Thus, one should balance the 

ease of interpretation when there are few bins with greater discriminatory power for more bins.  

Of course, univariate analysis is not enough for choosing which variables should enter a 

regression. Typically, all variables that pass the univariate analysis enter a stepwise regression 

Range Bin Non-events Events % of non-events % of events WOE IV

10-20 1 589 345 17 % 41 % -0,887 0,215

21-30 2 601 278 17 % 33 % -0,651 0,103

31-40 3 938 126 27 % 15 % 0,586 0,070

>41 4 1345 89 39 % 11 % 1,294 0,364

Total: 3473 838 0,752
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procedure. You then (hopefully) end up with a few variables that have both high individual 

predictive power and that have low correlation.  

3.2.3 Akaike’s Information Criterion 

The Akaike’s Information Criterion (AIC) is a statistic commonly used in the stepwise 

regression procedure. When comparing models with different AICs, the model with the lowest 

AIC is chosen, all else equal. The formula for computing the statistic is given below (Konishi 

& Kitagawa, 2008): 

 𝐴𝐼𝐶 = 2𝑘 − 2ln (𝐿) (3.12) 

As can be inferred from the definition, the statistic penalizes models with many parameters 

(k) and gives preference for models with high model fit, measured by the likelihood function 

(L). As such, the statistic may be interpreted as a tool to select models while avoiding 

overfitting. 

3.3 Evaluation Methods 

Several different metrics may be used to evaluate performance of a credit scoring model, and 

the most common are the Gini statistic, the Receiver Operating Statistic Area Under the Curve 

(ROC AUC) and the Kolmogorov-Smirnov (KS) statistic. The KS statistic is a very simplistic 

measure. And, since ROC AUC is approximately a linear function of the Gini statistic 

(equation 3.13), only the former metric is used. 

 𝑅𝑂𝐶𝐴𝑈𝐶 ≈ (1 + 𝐺𝑖𝑛𝑖)/2 (3.13) 

To explain the ROC AUC statistic, two concepts must be explained first, sensitivity and 

specificity: 

 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑖𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 (3.14) 

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 (3.15) 

Sensitivity measures the ability to detect true positives, while specificity measures the ability 

to detect true negatives. There is an inherent tradeoff between the two. As such, a graph can 
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be made with 1-specificity on the x-axis and sensitivity on the y-axis. This gives the Receiver 

Operating Characteristic (ROC) curve, as seen in Figure 3.4. The figure illustrates that a model 

randomly assigning default or non-default to the observations is a straight line in the ROC 

chart. In general, the goal for the model is to maximize the area under the ROC, i.e. having as 

high sensitivity as possible for the same false positive rate. This area is abbreviated AUC – 

Area under the curve, thus the name of the metric is ROC AUC.  

Figure 3.4: Illustration of the ROC (Anderson, 2007) 

 

The KS statistic measures a slightly different aspect of performance. It is built on the 

comparison of the empirical cumulative distribution function (ECDF) and some other CDF, in 

our case another ECDF. For PD modelling, the first ECDF is the distribution of bads, while 

the second ECDF is the distribution of goods. The KS statistic is then defined as the maximum 

difference between the two CDF’s. Again, this is a very simplistic measure, since it only 

considers the difference at a given point (not the entire area). 

3.4 Hyperparmeter Tuning 

Hyperparameter tuning is the term used for the process of finding the optimal values for 

hyperparameters in machine learning algorithms. These hyperparameters are different from 

other parameters in that they are set before learning, while the other parameters are learned. 

The “optimal values” can be described as the set of hyperparameter values that minimize some 

pre-defined loss function.  
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Often, a Grid Search is performed to find the optimal hyperparameters. A grid search is 

performed as an exhaustive search on a set of different values for the hyperparameters, which 

are usually chosen beforehand. Of course, since there might be a huge number of combinations 

for the hyperparameters, this is a high dimensional problem.  

Random Search, another method for hyperparameter tuning, takes advantage of the fact that 

often there are only a few hyperparameters that determine the performance of the model. By 

randomly selecting values for hyperparameters, the aim is to get as close as possible to the 

best solution found with a Grid Search.  
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4. Data Description 

4.1 Data Source and Anonymity 

The dataset has been collected from a financial services firm. It was created by extracting 

information from the firm’s data warehouse. There are 891 554 observations, which consist of 

all accepted mortgage agreements from 2009 to 2017. Since the observations describe 

mortgage agreements at the time of application, the dataset is characterized as an “application” 

dataset, unlike a “behavioural” dataset, which follows the individuals over time. 

The financial services firm shall remain nameless throughout this thesis. With the information 

provided in this thesis competitors might infer how well the models of the firm in question 

work, or stakeholders might obtain information that should only be held by company insiders. 

Henceforth the financial services firm shall be referred to as “the firm”.   

4.2 Programming Language 

Since the firm did not want the dataset to be exported to Python or R, all operations were done 

in the firm’s internal system, SAS Miner. SAS Miner is a popular program for building credit 

scoring models in the industry. Although the program is not much used in academia, there is 

no reason to believe that using another program would be better. 

4.3 Candidate Variables 

There are 549 candidate variables. These were previously identified through discussions and 

workshops by the employees of the firm, both within the department making the model and 

between product departments. The variables are related to risks that the firm has deemed 

potentially important for the behaviour of loan applicants. The variables may be placed in the 

following categories, with several variables in each category:  

- Transactions related to the customer, including transactions related to the checking and 

savings account 

- Measures of the size of the loan in relation to equity and income 

- The obligor’s savings and debt 
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- Characteristics related to the obligor, such as age, marital status etc.  

- Characteristics related to the co-debtor  

- The obligor’s previous credit history, including payment remarks and reminders  

4.4 Target Selection 

There exists one observation per obligor, and for this observation, there are 24 binary variables 

for each month following the beginning of the agreement, where a value of “Yes” means that 

the customer is at least 90 days due with a payment. A new variable is created to define default, 

“Default_24”. This is a binary variable equal to unity if there is “Yes” in any month variable 

and the amount due is at least 500 NOK. This is in line with the discussion from the literature 

review on Basel requirements. 

There are two considerations that had to be made when defining a default. First, what is the 

appropriate number of months to include in the prediction? Industry practice is to estimate 

default for either 12 or 24 months following the loan agreement. A default period of 24 months 

is used in this thesis to make sure that long-term defaults are captured, not only short-term. 

The second consideration is what the size of amount due should be set at. The Basel regulatory 

framework does not set an exact limit for this and instruct banks to act on its own judgement 

(Basel, 2005). 500 NOK seems like a likely significant amount. Anyhow, the cut-off would 

not influence the expected loss calculation, since a higher cut-off would yield lower PD, but 

higher Loss Given Default (LGD).  

4.5 Data Partitioning 

The data is partitioned into a training, validation and test split. The training split is used to 

train the model and obtain the best model weights. The validation split is then used to fine-

tune the model to avoid overfitting. The test split is used solely to examine the predictive 

abilities of the model, for example to test the ROC AUC statistics. For small datasets one 

should consider not including the test split, as it reduces the number of observations available 

for training, but since our dataset consist of almost one million observations it is deemed 

appropriate to use all three splits (SAS, 2017). The observations are sampled into each of the 

three splits with a random number generator (seed set at 12345)  
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The standard training, validation and test split of 40-30-30 in SAS is used. Anyhow, due to 

the large amount of observations this is not deemed important. 

4.6 Oversampling 

Due to the nature of mortgage defaults and the strict regulation surrounding it, with protection 

of consumers, defaults are very rare in the sample. For the firm to remain anonymous, the 

exact percentage shall not be disclosed. For datasets involving PD modelling it is common 

practice to oversample the dataset (SAS, 2017). For large datasets this can tremendously 

decrease model fitting time, which is highly appreciated when many models are built. The 

dataset it therefore concentrated to a 2 percent event rate. 

4.7 Deflation of Monetary Values 

Several variables in the dataset are monetary, and originally registered nominally. This of 

course creates a problem in that changes in the general price and salary level makes the model 

weights wrong if not adjusted. Monetary values are therefore deflated to 2005 level using the 

SSB consumer price index (SSB, 2019), except for income variables, where the SSB salary 

index is more accurate (SSB, 2019). The following formula has been used to deflate variables: 

 𝑋𝑖𝑡
𝑟 =

𝑋𝑖𝑡
𝑛𝑜𝑚

𝑃𝑡
𝑡0

 (4.1) 

, where 𝑋𝑖𝑡
𝑟  is the deflated value of variable i in period t and 𝑃𝑡

𝑡0 is the Consumer Price Index 

in period t. 

4.8 Reject Inference 

The model is built on a dataset with known good and bad customers. That is, applicants that 

were actually given a loan. This creates a sample bias, since through-the-door customers do 

not have the same characteristics as the dataset customers unless the previous loans were 

issued completely randomly, which is highly unlikely. Therefore, a method is required to 

account for this. Reject inference is a term used for these methods.  
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The sample bias creates problems not only with credit scoring new applicants, but also from a 

performance and policy perspective. The sample bias may give an artificially low PD level for 

the portfolio, which decreases the expected and unexpected loss and thus the regulatory 

capital. In cases with very high approval rates, reject inference becomes less important, as the 

assumption that all rejects equal bad customers is almost true. This is close to reality in 

mortgage lending, as lenders typically do not approve loans on the basis of expected loss 

prediction, but on whether the customer fulfills certain criteria regarding loan-to-value, debt 

ratio, etc. In such an environment, it is not recommended to use reject inference methods 

(Siddiqi, 2006). Therefore, such methods are not considered in this thesis. Further, the use of 

such methods may be very expensive. There are no techniques to estimate with certainty the 

characteristic of rejected applicants, as they have been rejected. The closest one could get to 

an experiment is to randomly accept applicants for some period of time, but this would be an 

expensive experiment to run, with few financial benefits in the case of mortgage lending.  

4.9 Variable Definitions 

Table 4.1 displays the variables in the dataset, grouped in variable categories. For variable 

categories with very similar variables not all are represented in the table below. Also, due to 

the number of variables in the dataset, only variables that are not obviously defined (such as 

age) and are relevant for the coming chapters are mentioned in the subchapters below. Other 

variables, such as the employment variable, are described in appendix 1.  
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Table 4.1: Overview of Variables in Dataset 

Variable category Variable Definition 

Customer 

characteristics 

Age Age of debtor 

Housing Whether obligor is living in a house, apartment, 

etc. 

Employment Employment condition of debtor 

Children Number of children of debtor 

Co_debtor Binary variable on whether debtor has co-debtor 

Relationship Relationship status of debtor 

Mortgage Binary variable on whether debtor has had a 

mortgage with the firm in the last 12 months 

Other_loan Binary variable on whether debtor has had other 

financing with the firm in the last 12 months (for 

example for a car loan) 

Transaction variables Fixed_in_trans_MIN12 

 

Sum of fixed incoming transactions, minimum in 

the last 12 months 

Fixed_num_out_trans_STD12 Number of outgoing transactions, standard 

deviation last 12 months 

Credit card variables CC_limit_MIN6 Limit utilization of credit card, minimum in last 6 

months 

Savings variables Savings_balance_AVG3 Balance on savings account, average last three 

months 

Payment reminder 

variables 

Pay_rem_num_24m Number of first-time and second-time payment 

reminders received in the last 24 months 

Pay_rem_last Days since last payment reminder 

Default variables Previous_defaults_all Describing if obligor has defaulted on previous 

agreements 

Payment remark 

variables 

Payment_remark Variable indicating if the obligor has a payment 

remark  

Loan/economic 

characteristics 

Net_income Sum of the debtor’s and co-debtor’s net income 

Debt_to_equity Debt to equity 

Debt_to_income Debt to income, including co-debtor  

Net_worth Net worth of main debtor and co-debtor 

Granted_loan Absolute size of loan  

4.9.1 Co-debtor Variables 

There are several variables that describe the co-debtor. However, there is one specific variable 

describing whether the main-debtor has a co-debtor at all. As we shall see later, this is 



 24 

important when designing interaction variables. Co_debtor is a binary variable equal to unity 

if the applicant has a co-debtor, with a mean of 59 percent, as is seen from figure 4.2.  There 

are no missing values for this variable. The following frequencies are observed: 

Figure 4.1: Distribution of Values in Co-debtor Variable 

 

4.9.2 Transaction Variables 

There are several transaction variables. There are variables concerning whether the transaction 

has gone into the account or out of the account, variables measuring the sum of all transactions 

or the number of specific transactions. Also, there are variables describing both variable 

transactions and fixed transactions (for example leasing costs for a car every month). 

In addition, several statistics are computed, significantly increasing the number of variables. 

The following list is an exhaustive account of all statistics considered: 

- MIN: Minimum  

- MAX: Maximum 

- AVG: Average 

- MED: Median 

- SUM: Sum 

- STD: Standard deviation 

Further, after each statistic, the number of months prior to the application is considered. For 

example, MIN3 would be the minimum for the last three months. Putting it all together, an 

example variable name would be the 12-month standard deviation of the sum of variable 

transactions going out of the account. 
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As one would expect, all these options result in many variables in this category. In total there 

are 181 transaction variables. 

4.9.3 Savings Variables 

The savings variables contain statistics on the balance of the savings account of the applicant, 

including the balance on any stock market funds or other investment vehicles the applicant 

may be invested in. This is viewed as a reasonable way to measure savings, since most 

customers not only invest in their low interest rate savings account but also in higher yielding 

funds.  

These variables are measured with the statistics MIN, MAX, AVG, MED, SUM or STD, as 

defined above. Of course, not all applicants have a savings account in the firm at the time of 

application, giving some missing values (19 percent for all variables). In total there are 31 

savings variables.  

4.9.4 Credit Card Variables 

For applicants with credit cards which have been used prior to the application date there should 

be useful information regarding their repayment behavior and thus their creditworthiness.  

There are three types of credit card variables, measuring: 

- Number of transactions 

- Percent of limit drawn 

- Size of the interest expense balance 

As with previous variables the credit card variables are measured on several statistics.  Not all 

applicants have credit card history in the firm, giving 30 percent missing values.   

4.9.5 Payment Reminder Variables 

There are three payment reminder variables in the dataset, “Pay_rem_num_24m”, 

“Pay_rem_last” and “Pay_rem_last_co”  

“Pay_rem_num_24m” is an interval variable measuring the number of first-time and second-

time payment reminders the obligor has received in the last 24 months.  
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“Pay_rem_last” describes the number of days since the last payment reminder for the main 

obligor. There is a corresponding variable for the co-debtor, which is also included in the 

dataset, “Pay_rem_last_co”. A missing value for the Pay_rem_last variables indicates that the 

main or co -debtor have not received any payment reminders. For the number of payment 

reminders variable, we should separate between customers that have the value 0 because they 

have not defaulted, and those that have the value 0 simply because they are a new customer. 

This extra logic is introduced later. 

 

4.9.6 Default Variables 

Default variables describing previous defaults are separated in categories to indicate whether 

the variable is based on credit card agreements, mortgage agreements, other agreements or all. 

Previous defaults are calculated based on either the last 12 or 24 months. The variables may 

take on either “Missing”, “Small_def” or “Large_def” as value. The co-debtor also has similar 

variables. Customers without registered defaults have Missing as value, while Small_def and 

Large_def denotes less serious and serious defaults respectively. A less serious default is 

defined as a default where the customer has paid interest but not principal to delay repayment, 

while in a serious default neither interest nor principal has been paid.  

To make sure that customers with an earlier agreement with the firm who has not defaulted 

are separated from those that simply has not had an agreement with the firm (and therefore not 

defaulted), additional logic is needed, as is described later.  

4.9.7 Payment Remark Variables 

Payment remark variables are calculated in different categories, measuring either the number 

of payment remarks or the size of the payment remarks. This could be payment remarks for 

the main obligor (the applicant) or payment remarks for the co-debtor.  

The variables used in the final model may take on any of the following three values: 

- Missing: Missing information on this application 

- N: There is no payment remark at the time of application 

- Y: There is a payment remark at the time of application 
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Frequencies for Payment_remark is seen in Figure 4.4.  

Figure 4.2: Distribution of Values in Payment Remarks 
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The Debt-to-equity variable measures the size of the loan relative to equity. Since there is 
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5. Interactions and Selection of Variables 

5.1 Variable Interactions 

As part of the exploratory analysis of a dataset it is common practice to transform variables to 

increase explanatory power. The two main ways of transforming variables are with 

polynomials/logarithms and with interactions. Transformations with polynomials or 

logarithms are common when the objective is to better fit non-linear patterns in the data. 

However, since the weight of evidence transformations account for these non-linearities, the 

purpose of doing polynomial/logarithmic transformations is gone. Still, the weight of evidence 

transformations does not account for interactions that might exists between variables.  

Table 5.1 displays variable interactions performed, and the inputs to the interaction variables. 

Generally, we want to combine variables with information on whether there has actually been 

a customer relationship. For example, a variable that only can take on the values “has defaulted 

with the firm in the past” and “has not defaulted” is less informative than if the variable could 

take on the values “has defaulted with the firm in the past”, “has not defaulted and has been a 

customer with the firm for 24 months before application” and “has not defaulted and has not 

been a customer with the firm prior to the application”. Indeed, if the customer has not 

defaulted and has been a customer with the firm, she has proven to be responsible. This is just 

one example of several variables where it could be appropriate to interact a variable with 

another variable on the customer’s relationship with the firm. As can be seen from table 5.1, 

this interaction has been performed for several variables, i.e. whether the customer has had a 

mortgage or another loan in the past has been accounted for.  
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Table 5.1: Illustration of Interactions 

5.1.1 Interactions on Default Variables 

Previous_defaults_all was earlier introduced as a default variable. Unfortunately, this variable 

did not separate new customers to the firm from those that already have a relationship. The 

new, modified version can take on any of four values. This can be done because it is interacted 

with two variables describing whether the customer had a credit obligation with the firm in 

the past. The new values are given below: 

- Missing: No default 

- New_customer: This is a new customer to the firm, thus there are no previous 

agreements 

- Small_def: Minor default in one or more agreements in the past 

Interaction variable name  Inputs to interaction variable 

Previous_defaults_all_customer 

Previous_defaults_all 

Mortgage 

Other_loan 

Co_debtor_default 

Co_debtor 

Co_debtor_previous_def 

= max(Previous_defaults_mort24_co,   

Previous_defaults_CC24_co ,   

Previous_defaults_other24_co ) 

Pay_rem_num_24m_customer 

Pay_rem_num_24m 

Mortgage 

Other_loan 

Pay_rem_last_customer 

Pay_rem_last 

Mortgage 

Other_loan 

Payment_remark_both 
Payment_remark 

Payment_remark_co 

Debt_to_income Debt_to_income 

CC_limit_AVG12_customer 
CC_limit_AVG12 

CC_quantity_SUM12 
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- Large_def: Serious default in one or more agreements in the past 

To qualify as missing (i.e. no default) the customer must have had an agreement with the firm 

12 months prior to the application. If not, it is registered as “New_customer” (if there are no 

defaults). This variable is thus able to separate those customers that have “proven” to be low 

risk borrowers from those that have not proven this.  

5.1.2 Interactions on Co-Debtor Default Variables 

There are two variables entering this interaction – Co_debtor and Co_debtor_previous_def. 

The last variable provides information on the historical defaults of the co-debtor, and 

considers mortgage loans, credit card loans and other loans. Co_debtor is a binary variable 

with information on whether the main-debtor has a co-debtor.  

Co_debtor_default is the interaction of these two variables. This nominal variable is more 

complex than others in that it provides information from two sources. First it separates those 

that do have a co-debtor from those that do not. Secondly, it contains information on possible 

defaults by the co-debtor in the period before the mortgage application. The variable divides 

customers into five categories: 

- Co-debtor with no defaults: The applicant has a co-debtor and he/she has not 

defaulted in the past 

- Co-debtor new customer: The customer has a co-debtor, but he/she is new to the firm 

and thus there is no information on past payment behavior 

- No co-debtor: The applicant does not have a co-debtor 

- Co-debtor with small default: The applicant has a co-debtor and he/she is registered 

with a minor default in the past 

- Co-debtor with serous default: The applicant has a co-debtor and he/she is registered 

with a serious default in the past 

All credit obligations the co-debtor may have had in the past are considered, including 

mortgages and credit cards. There are no missing values for this variable.  

5.1.3 Interaction on Payment Reminder Variables 

Pay_rem_num_24m_customer is created by the interaction between Pay_rem_num_24m, 

Mortgage and Other_loan, as can be seen from Table 5.1. 
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Due to difficulties in interpreting missing values (could be either an unknown customer to the 

firm, or a good customer), extra logic is needed. A new value, -999, is given to customers 

without a credit obligation in the past. This extra logic makes the variable significantly better 

at discriminating good and bad applicants.  

Pay_rem_last_customer is created by the interaction between Pay_rem_last, Mortgage and 

Other_loan. There is a similar interaction for the co-debtor. For these variables, missing is the 

best value, since that means no payment reminders have been received. Still, additional logic 

is needed for this variable, since applicants without any credit obligations with the firm should 

not receive the same score as applicants with previous obligations to the firm and without any 

payment reminders, since applicants in the latter category have “proven” their 

creditworthiness. Customers without a credit obligation in the past is given the value -999, 

such that observations with missing value both have had a credit obligation and did not default. 

5.1.4 Interaction on Payment Remark Variables 

Since the firm has info on both debtor and co-debtor payment remarks, it could be helpful to 

create a new variable which takes both into account. This is what Payment_remark_borth does. 

The variable is created by combining Payment_remark and Payment_remark_co. We thus get 

the values:  

- N 

- Y 

- N&N 

- N&Y 

- Y&Y 

- Y&N 

- Missing 

, where the first letter describes whether the main-debtor has a payment remark (Y) or not (N), 

and the same for the co-debtor with the second letter.  

5.1.5 Interactions on Debt-to-Income Variables 

Debt_to_income is already included in the dataset as a variable that considers the debt-to-

income ratio of both debtor and co-debtor, i.e. the sum of debt for both divided by the sum of 

gross income for both. It is therefore not necessary to do anything with the individual debt-to-

income variables.  
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5.1.6 Interactions on Credit Card Variables 

CC_limit_AVG12_customer is an interaction between the CC_limit_AVG12 and 

CC_quantity_SUM12 variables. CC_limit_AVG12_customer takes on the value of 

CC_limit_AVG12, i.e. the average credit card limit utilization in the past 12 months, but only 

given that it has been used, i.e. CC_quantity_SUM12 is greater than 0. This should provide 

some additional information, since it is important to separate between customers that have a 

credit card that is regularly used and have the discipline to repay the debt, and customers that 

have a credit card but simply do not use it, as they have not proven this discipline.  

5.2 Variable selection 

The variable selection process consists of two parts. In the first part, univariate analysis is 

carried out on all variables to find variables with high discriminatory power. To compare 

variables’ univariate discriminatory power the Information Value (IV) statistic is used. This 

provides a quick way to filter out variables that do not have explanatory power. A 0.10 IV 

cutoff is used as the minimum IV to include a variable for further analysis. This is regarded as 

conservative, as explained in chapter 3.2.2.  

The transaction and savings account variables differ from the other variables in that there are 

many variations of them. The variables are organized in a hierarchy according to Figure 5.1, 

which breaks up one of the branches for the transaction variables. A similar figure could be 

made for the savings account variables. As can be seen, all variables are given with different 

durations; past 12, 9, 6 or 3 months. To ease interpretability and avoid overfitting, only 

variables for the last 12 months are included for the transaction and savings account variables. 

This is supported by the fact that for most variables, the 12 month statistic has the best 

discriminatory power, as can be seen in appendix 2. The rest of the variables with IV above 

0.10 are included in the Logistic Regression. 
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Figure 5.1: Overview of Transaction Variables 

 

As discussed above, only variables with IV above 0,10 are included. However, one should not 

only measure the univariate discriminatory power to decide if a variable should be included in 

the regression. In the final Logistic Regression, we want variables with both high 

discriminatory power and low correlation with other variables. Indeed, if we include two 

variables with high discriminatory power but that measure approximately the same thing, it 

suffices to include one of them.  

We cannot know which combination of variables will produce the best Logistic Regression 

model from the previous discussions on univariate discriminatory power. An iterative 

selection method is needed to produce the best combination of variables (or an approximation 

of it). To this end, stepwise regression is carried out, with the criterion being Akaike’s 

Information Criterion (AIC).  

After stepwise regression has been performed, we are left with the 19 variables in Table 5.2: 
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Table 5.2: List of Variables chosen with Stepwise Regression 

Variable name Variable definition 

Net_worth Net worth both main debtor and co debtor 

Fixed_in_trans_MIN12 Minumum fixed payments coming into checking account last 12 months 

Fixed_in_trans_STD12 Standard deviation of fixed payments coming into checking account last 12 

months 

Fixed_out_trans _MAX12 Maximum fixed payments coming out of checking account last 12 months 

Fixed_out_trans _STD12 Standard deviation of fixed payments coming out of checking account last 12 

months 

Variable_out_trans _STD12 Standard deviation of variable payments coming out of checking account last 12 

months 

CC_limit_AVG12_customer Credit card money drawn as percentage of limit 

Net_income Sum of main and co -debtor net income  

Savings_balance _MIN12 Minimum balance on savings accounts last 12 months 

Savings_balance_STD12 Standard deviation of balance on savings accounts last 12 months 

Employment Employment condition of debtor 

Payment_remark_both Payment remarks for main and co -debtor 

Debt_to_equity Debt to equity ratio for main and co -debtor 

Pay_rem_last_customer Days since last first time payment reminder 

Debt_to_income Debt to income ratio using sum of main and co -debtor income and debt 

Co_debtor_default Credit defaults of co-debtor 

Pay_rem_num_24m_customer Number of first-time and second-time payment reminders last 2 years 

Previous_defaults_all_customer Default status on any credit obligations with the firm  

Granted_loan Absolute size of the loan 
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6. Weight of Evidence Transformations  

6.1 Weight of Evidence Transformations 

When the interactive grouping performs univariate analysis on each variable to find which has 

IV above 0.10, it first transforms the variables to weight of evidence variables. As explained 

in chapter 3.2.1, the grouping in WoE variables is done by minimizing entropy. However, the 

WoE variables should also be adjusted to reflect business practice. In this regard, two variables 

are particularly important – the debt to income and debt to equity variables. As explained, the 

values for these variables are regulated by the financial authorities. In particular, debt to 

income must be below 5, and debt to total value below 85 percent, equal to an equity share of 

15 percent. Also, for secondary mortgages, debt to total value must be below 60 percent. 

Consequently, the WoE variables are adjusted to reflect these business considerations, as can 

be seen for the respective variables below. 

In the WoE transformation the variables are grouped (and discretized for interval variables) 

according to the figures below. These are then used as input variables for the Logistic 

Regression and all machine learning techniques.  

As can be seen from chapter 3.2.1, the bins in the WoE transformed variables are usually 

defined. However, for the firm to remain anonymous, this shall not be disclosed. Instead, more 

general names are used for the bins, such as bin 1, 2 and 3, or low, medium, high. 

6.1.1 Transaction Variables 

In Figure 6.1, the WoE for each grouping is given for one of the transaction variables. As can 

be seen, there is in a monotonic decrease in the WoE for this variable - the standard deviation 

of fixed cash inflows. For example, we can see that the WoE for values in the first bucket is 

approximately 1,3. The WOE for values higher than this is lower, and each consecutive group 

has a lower WOE than the one before. As explained in the theory chapter, this is generally 

preferred when using WOE transformations, as it makes for an easy to understand relationship 

between the variable and the outcome. 

Of course, the Missing category is not part of this monotonic relationship. Anyhow, it is useful 

to discuss cases where the Missing category has a very different WOE value than expected. In 
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this case, obligors with a Missing value for the transaction variables do not have any payment 

history. 

There are in total five transaction variables after stepwise regression, but Figure 6.1 is 

representative. 

Figure 6.1: WoE for the Attributes of a Transaction Variable 

 

6.1.2 Savings Variables 

Figure 7 illustrates the WoE for the discretization of a savings variable, specifically the 

minimum balance on the savings accounts in the last 12 months. As expected, a higher 

minimum balance is associated with a higher WOE score. The customers in the Missing 

category do not have a savings account, and the WOE score for this group is negative.  

There are two savings variables passing stepwise regression, but Figure 6.2 is representative.  

Figure 6.2: WoE for the Attributes of a Savings Variable 
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6.1.3 Default Variable 

The WOE scores for the default variable Previous_defaults_all_customer is seen in Figure 6.3. 

This variable takes the value of the “worst” default in the last twelve months. As expected, 

missing is the category with highest WOE, since this means no default. Interestingly, the 

category “New_customer” has a negative WOE. Intuitively this may be interpreted as that 

customers with no agreements for the last 12 months have not proven their creditworthiness 

to the same extent as those in the Missing category, which have had an agreement. Also as 

expected, those with the value “Large_def”, which is the worst default category, have the 

lowest WOE.   

Figure 6.3: WoE for the Attributes of a Default Variable 

 

6.1.4 Payment Reminder Variables 

Figure 6.4 displays the WoE transformations for one of the two payment reminder variables. 

The figure illustrates the relationship that more payment remarks give a lower WoE score. The 

first category displays customers that have a value below 0, which in all cases is -999, 

indicating that they have not had an agreement 12 months prior to being scored. That is 
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chapter 4.9. 
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Figure 6.4: WoE for the Attributes of a Payment Reminder Variable 

 

6.1.5 Co-Debtor Variables and Payment Remarks 

As explained in chapter 5.1, the payment remark variable is an interaction variable. It considers 

payment remarks both for the main debtor and the co-debtor. One of the variables going into 

this interaction is the variable describing whether the main debtor has a co-debtor.  

The payment remark variable is seen in Figure 6.5. The groupings are made up of 

combinations of payment remarks for the main debtor and the co-debtor. For example, N|Y 

means that the main debtor has no payment remarks at the time of application (N), while the 

co-debtor has (Y). As can be seen from Figure 6.5, all combinations that contain Y – i.e. that 

the debtor or co-debtor has a payment remark, are grouped together and receive the lowest 

WoE score, which makes sense. The highest score is given to those with no payment remarks 

(N|N).  

Figure 6.5: WoE for the Attributes of a Payment Remark Variable 
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6.1.6 Credit Card Variable 

Figure 6.6 displays the WOE scores for the credit card variable. This variable describes how 

many percent of the limitation on the credit card the debtor has drawn. As expected, customers 

with higher limit utilization are associated with higher default rates, which is why they are 

given lower WoE score in the transformation. Again, customers in the Missing category are 

penalized, which intuitively is because they have not proven their credit worthiness. As 

explained in the variable definitions chapter, customers in the Missing category have had no 

agreements with the firm in the last twelve months.  

Figure 6.6: WoE for the Attributes of a Credit Card Variable 
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Figure 6.7: WoE for the Attributes of Debt-to-Income Variable 
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Figure 6.8: WoE for the Attributes of Debt-to-Equity Variable 
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7. Empirical Results 

7.1 Hyperparameter Tuning 

The machine learning techniques considered in this paper all require some hyperparameter 

tuning for maximal performance. Since there are typically many parameters to tune for each 

technique, this is a high-dimensional problem, and manual trial and error would take a long 

time. Therefore, this is carried out with a grid search optimizer in practice. This is also the 

method followed here. Table 7.1 displays the hyperparameters that were tuned for each model, 

and the search space for these hyperparameters. For each machine learning technique there are 

even more hyperparameters that may be tuned than those presented in the table, but the most 

important hyperparameters are presented. A full list of hyperparameters for each model is seen 

in appendix 3 for reproducibility of results.  

Table 7.1 Overview of Search Space for Hyperparameter Tuning 

Machine Learning Technique Hyperparameters Search Space 

Neural Network 

Number of layers 1, 2, 3 

Number of hidden neurons 10, 20, 40, 80 

Number of iterations 300, 1000 

Gradient Boosting 

Maximum branch 30, 60 

Maximum depth  20, 40 

N iterations 100, 200 

Train proportion 30, 60 

Random Forest  

Maximum number of trees 100, 200 

Maximum depth  30, 50 

Proportion of obs. in each sample 0.3, 0.6 

K-NN 
Number of neighbors 8, 16 

Weighted Yes, No 

Support Vector Machine 

Gamma  1  

Cost  1, 3 

Epsilon  1.0E-6, 1.0E-5 

Decision Tree 

Maximum branch 10, 20 

Maximum depth  30, 50 

Nominal target criterion Entropy, ProbChisq 
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7.2  ROC Charts and ROC AUC Statistics 

The NN is a complex machine learning algorithm with many different architectures. A NN 

could be “deep” in that it has many hidden layers. The NNs with one and two hidden layers 

are therefore regarded as different models in the following discussion.  

Table 7.2 displays the ROC AUC for the Logistic Regression and the machine learning 

techniques, descending. The scores are based on the test set.  

Table 7.2 Overview of Results – ROC AUC 

Machine Learning Technique AUC ROC 

Deep neural network (two layers) 0,903 

Neural network  0,902 

Support Vector Machine 0,898 

Random Forest 0,897 

Logistic regression 0,883 

Gradient boosting 0,882 

K-NN 0,795 

Decision Tree 0,732 

 

As can be seen from the table, the NNs perform best. Interestingly, all machine learning 

techniques except the Decision Tree and K-NN perform about equally well. The Decision Tree 

performs much worse, which is expected, since it is a very simple machine learning technique. 

Indeed, the decision tree is so simple that one cannot blame it for the same black-box properties 

as the other techniques. Also, one would expect the Random Forest to outperform the Decision 

Tree, since the former is a more advanced and general version of the latter. As seen from the 

table, The K-NN algorithm has relatively low predictive power. The NN performs slightly 

better when it is deep, but anyhow it obtains a high ROC AUC.  

The ability of the classifiers to discriminate between customers of different quality is evaluated 

with the ROC chart. The chart it set up such that the False Positive Rate (FPR) and the True 

Positive Rate (TPR) is plotted against each other, with different thresholds. The ROC chart 

for all classifiers is illustrated in Figure 7.1. Since the classifiers perform roughly equally well, 

with most classifiers achieving a ROC AUC between 0.88 and 0.90, it is difficult to clearly 



 43 

see the difference. Still, one might observe that the deep neural network (light blue) 

consistently has a higher TPR (Sensitivity) for a given FPR (1-Specificity) than the other 

classifiers. Also, it is clear from the figure that the Decision Tree and the K-NN perform worst. 

Figure 7.1: ROC Chart for all Classification Techniques 

 

7.3 Confusion Matrix 

Table 7.3 displays the confusion matrix for the deep NN, the SVM and the logistic regression. 

As can be seen, the deep NN has the highest number of true positives and true negatives, which 

is not surprising given that it is the best classifier. Notice that SAS has only used a sample of 

the observations to build the confusion matrix (hence the low number of observations).  

Table 7.3 Confusion Matrix of Best Classifiers and Logistic Regression 

Actual 

    Deep NN:   NN:   Logistic regression 

    Default non-default   Default non-default   Default non-default 

Prediction 
Default 67 55   84 95   64 110 

non-default 673 36210   656 36170   676 36155 
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7.4 Impact for the Firm  

The result of the analysis has been that some of the machine learning techniques, most notably 

the deep NN, perform slightly better than the logistic regression. The question for the financial 

institution becomes whether this is of any relevance. As explained, the main drawback of the 

machine learning models is that they are difficult to interpret. The “Right to explanation” is 

thus not satisfied, as it would be difficult to explain exactly why the applicant was denied a 

loan. Under Recital 71 of the GDPR, the data subject “should have the right … to obtain an 

explanation of the decision reached” (GDPR, 2016). The right to explanation is only one of 

the challenges with advanced machine learning models, the black-box issue is a more general 

problem. Some of the machine learning models are not difficult to interpret and may give exact 

answers to “right to explanation” questions. The simple Decision Tree would go under this 

category. But as seen in the previous analysis, this model performs much worse than a Logistic 

Regression, and is thus not relevant. The only models performing better than the Logistic 

Regression are also very complex.  

When applicants in Norwegian banks satisfy the standards for debt to equity ratio and debt to 

income ratio, they are given a loan unconditional on other variables. In other words, the banks 

do not bother with predicting individual-level probability of default, exposure at default and 

loss given default to estimate individual-level expected loss. The banks believe that customers 

satisfying the criteria on debt to equity and debt to income are probability solvent enough to 

bother with individual-level estimation of expected loss. From a theoretical standpoint, one 

would believe that banks do this exercise on each applicant, and only issue loans for customers 

with expected interest rate income above expected loss.  

The field of Explainable AI (XAI) is still young, but in the future we may have come a long 

way in designing advanced models that are also explainable. Still, some authors believe that 

there is an inherent tradeoff between interpretability and accuracy, which limits the potential 

for XAI (Theodorou, Wortham, & Bryson, 2017). Still, If the field of XAI advances any 

further, it should be feasible to use advanced machine learning techniques in the PD 

calculation as part of the IRB approach, and perhaps also in individual-level prediction of 

expected loss.  
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8. Conclusion 

In this master thesis the incremental power of machine learning techniques over Logistic 

Regression estimation has been analysed. The same WoE variables were used for all classifiers 

to make results comparable. The ROC AUC for the best classifier was found to be only 0,02 

above the Logistic Regression.  

The results of the analysis may suggest a ceiling for the predictive performance of the Logistic 

Regression model. The Logistic Regression model may be used for PD estimation in many 

years to come, and it is useful to know about how well it might perform. There is no reason to 

believe that it should perform better than the advanced black-box models such as the deep NN, 

and the results therefore work well as an estimation of the ceiling. If that argument holds, the 

model made by WoE transformation and Logistic Regression is very well specified, since it 

performs almost equally well as the most advanced model in this analysis.  

Regardless of the above it is difficult to argue for the introduction of more advanced machine 

learning models when the difference in ROC AUC above the logistic regression is 0,02. 

Indeed, if there are any significant non-linear effects in the variables, it seems like the WOE 

transformation before the logistic regression captures it well.  
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Appendix 

Appendix 1 – Variable descriptions left out of chapter 4.9 

Employment Variable 

There is one employment variable – “Employment”. This is a nominal variable and can take 

any of the following values: NW, LO, ST, YA, WI. There is a lack of information conserning 

what these abbreviations stand for, which of course is a cause for consern. However, because 

the variable might be of significant importance, it is included as a variable to be tested.  

Relationship Status Variable 

There is one relationship status variable. This nominal variable can take on the values: 

- EN: Engaged 

- WI: Widow/widower 

- SE: Separation 

- DI: Divorce 

- CP: Common-law partner 

- UM: Unmarried 

- MA: Married 

- Missing 

 

Income Variables 

There are four income variables in the dataset. The definition of each income variable is given 

below. 

Net_income: The sum of the debtor’s and co-debtor’s net income. The net income for the last 

three years is found from the tax returns, which are official. The most recent year’s income is 

used.  

Net_income_max: Same as above, but the maximum net income for the last three years is 

used.  

Net_income_co: Co-debtor’s net income. The net income for the last three years is found from 

the tax returns. The most recent year’s income is used. 

Net_income_main: Same as above, but for the main debtor.  
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Net Worth Variables 

There are four net worth variables. The definition of each variable is given below: 

Net_worth: This variable takes the sum of the main debtor’s and co-debtor’s net worth. The 

tree previous years are examined, and the nearest year with values for both main debtor and 

co-debtor is used.  

Net_worth_AVG: Same as above, but the average value.  

Net_worth_co: This is the co-debtor’s net worth in the tax returns for one of the three previous 

years (the nearest year without missing value is chosen).  

Net_worth_main: Same as above, but for the main debtor.  
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Appendix 2 – Choosing only the 12-month variables 

 

 

 

 

 

3 6 9 12

0.815 0.787 0.736 0.732

0.813 0.769 0.76 0.759

0.768 0.765 0.733 0.75

0.765 0.738 0.733 0.737

0.724 0.698 0.646 0.625

0.406 0.501 0.491 0.511

3 6 9 12

0.254 0.316 0.345 0.352

0.172 0.148 0.157 0.15

0.168 0.141 0.149 0.145

0.161 0.145 0.149 0.132

0.121 0.103 0.103 0.112

Below Below 0.105 0.766

3 6 9 12

Below Below Below Below

Below Below Below Below

Below 0.11 0.13 0.158

Below 0.111 0.133 0.154

Below 0.1 0.1 0.114

Below 0.101 0.102 0.12

3 6 9 12

Below Below Below 0.104

0.122 0.105 Below Below

0.11 Below 0.1 0.105

0.11 Below 0.102 0.108

0.169 0.212 0.251 0.25

Below 0.1 0.102 0.108

3 6 9 12

0.161 0.183 0.18 0.188

0.151 0.14 0.134 0.143

0.154 0.15 0.133 0.146

0.151 0.159 0.15 0.15

0.153 0.147 0.143 0.148

0.153 0.197 0.237 0.239

Fixed_in_trans_MAX

Savings_balance_MIN

Savings_balance_MED

Savings_balance_SUM

Savings_balance_AVG

Savings_balance_MAX

Savings_balance_STD

Fixed_in_trans_MIN

Fixed_in_trans_MED

Fixed_in_trans_SUM

Fixed_in_trans_AVG

Fixed_out_trans_SUM

Fixed_in_trans_STD

Variable_in_trans_MIN

Variable_in_trans_MED

Variable_in_trans_SUM

Variable_in_trans_AVG

Variable_in_trans_MAX

Variable_in_trans_STD

Fixed_out_trans_MIN

Fixed_out_trans_MED

Varibale_out_trans_SUM

Varibale_out_trans_AVG

Varibale_out_trans_MAX

Varibale_out_trans_STD

Fixed_out_trans_AVG

Fixed_out_trans_MAX

Fixed_out_trans_STD

Varibale_out_trans_MIN

Varibale_out_trans_MED
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Appendix 3 – Full list of hyperparameters 

  

NN:

Use inverse priors: No

Create validation No

Input standardization Range

Architecture Two layers

Number of hidden neurons 20

Target standardization Range

Target activation function: Identity

Target error function Normal

Number of tries 2

Maximum iterations 300

Use missing as level No

Maximum number of links 1000

RF:

Maximum number of trees: 100

Seed 12345

Type of sample Proportion

Proportion of obs in each sample 0,6

Maximum depth 30

Missing values Use in search

Maximum use in search 1

Significance level 0,05

Maximum categories in split search 30

Minimum category size 5

Exhaustive 5000

Method for leaf size Default

Variable selection Yes

Variable importance method Loss reduction

Gradient Boosting:

N iterations 200

Seed 12345

Shrinkage 0,1

Train proportion 60

Huber M-regression No

Maximum branch 30

Maximum depth 40

Minimum categorical size 5

Reuse variable 1

Categorical bins 30

Interval bins 100

Missing values Use in search

Performance Disk

Leaf fraction 0,1

Number of surrogate rules 0

Exhaustive 5000

Node sample 20 000

Assessment measure Decision

Subseries Best assessment value

Create H statistic No

Variable selection Yes

Observation Based Importance No
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SVM

Maximum iterations 80

Use missing as level No

Tolerance 1.0E-6

Penalty 1

Optimization method Interior Point

KNN

Method RD-Tree

Number of neighbors 16

Epsilon 0

Number of buckets 8

Weighted Yes

Create nodes No

Create neighbor variables Yes

Decision tree

Interval target criterion ProbF

Nominal target criterion Entropy

Ordinal target criterion Entropy

Significance level 0,2

Missing values Use in search

Use input once No

Maximum branch 10

Maximum depth 50

Minimum categorical size 5

Leaf size 5

Number of rules 5

Number of surrugate rules 5

Use decisions No

Use priors No

Exhaustive 5000

Node sample 20 000

Method Assessment

Assessment measure Decision

Observation based importance No

Bonferroni adjustment Yes

Time of Bonferroni adjustment Before

Inputs No

Depth adjustment Yes

Leaf variable Yes

Create sample Default

Performance Disk

Variable selection Yes

Leaf Role Segment
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Scorecard (log. Reg)

Analysis variables WOE

Freeze scorecard points None

Output variables Complete

Intercept based scorecard No

Reverse scorecard No

Odds 50

Scorecard points 200

Points to double odds 20

Scorecard type Detailed

Precision 0

Bucketing method Min/max distribution

Number of buckets 25

Use indeterminate values No

Revenue accepted good 1000

Cost accepted bad 50000

Current approval rate 70

Current event rate 2,5

Generate characteristic analysis No

Selection model Stepwise

Criterion AIC


