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Abstract 

Machine learning increasingly permeates our everyday lives, from artificial intelligence 

suggesting how we complete a text message to big data selecting creepily relevant ads to show 

us as we browse the web. While science and technology researchers have pushed these 

methods forward and private companies have embraced their power in significant changes to 

their processes, the field of economics has largely watched them go by. Despite the credibility 

revolution and increased focus on estimating causal effects, the econometric techniques in use 

today are largely identical to the ones used three decades ago. 

This thesis contributes to the growing field of literature at the intercept of machine learning 

and economics by exploring whether modern computational statistics methods can provide 

practical value to resource economists. I answer the following research question: 

Can integrating machine learning methods into econometric models improve upon traditional 

methods and add value in solving resource economics problems? 

To answer this question, I review the machine learning literature on causal analysis to find that 

machine learning methods solve certain types of problems in unique ways that traditional 

methods cannot. To test the benefit of these new methods in a resource economics setting, I 

apply machine learning to a fisheries problem based on the Costello, Gaines, & Lynham 

(2008a) article, Can Catch Shares Prevent Fisheries Collapse?,  and analyse performance in 

a first-stage estimation task for propensity score matching. 

The results show machine learning can improve performance for prediction-based 

econometrics tasks under certain conditions. Shrinkage-based methods like Lasso regression 

proved to substantially improve model fit for datasets with moderate variance, while 

performing in-line with traditional methods when this condition didn’t hold. While more 

flexible methods like Random Forest performed extremely well fitting the data, they captured 

significant levels of noise by overfitting, challenging the external validity of their predictions. 

Machine learning identified and modelled valid selection bias that traditional methods could 

not – demonstrating value in solving practical resource economics problems. The impact of 

first-stage overfitting on the final causal model was unclear and presents an important area for 

further research, but the overall findings support the application of machine learning methods 

for robustness analysis on prediction tasks in resource economics.  
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Abbreviations 

Abbreviation Description 

ML Machine learning 

  

CV Cross-validation (machine learning process) 

  

MSE Mean-squared error (regression metric) 

  

OLS Ordinary least-squares regression (econometric method) 

  

CART Classification and Regression Trees (machine learning algorithm) 

  

RF Random Forest (machine learning algorithm) 

  

RSS Residual sum-of-squares (regression metric) 

  

PO Potential Outcomes (causal framework) 

  

SC Synthetic Control (econometric method) 

  

IV Instrumental variables (econometric method) 

  

2SLS Two-stage least-squares IV procedure (econometric method) 

  

PSM Propensity score matching (econometric method) 

  

P-score Propensity score (econometric metric) 

  

SUTVA Stable Unit Treatment Value Assumption (data assumption) 

  

DiD Difference-in-differences (econometric method) 

  

ITQ Individual Transferable Quota (fisheries regulation system) 

  

LME Large Marine Ecosystem (fisheries geographic classification) 

  

MLE Maximum Likelihood Estimation (econometric method) 

  

FB Fishbase (database) 

  

MHS Maddison Historical Statistics (database) 

  

SAU SeaAroundUs project (database) 
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Chapter 1 Background 

This chapter provides a high-level introduction to machine learning and contextualizes it from 

an econometric perspective. I provide a formal definition for machine learning and an 

overview of the types of tasks it is designed for. Then I compare its goals, methods and 

strengths versus the traditional econometric tools used in practice today.  

Machine Learning Defined 

Machine Learning is a vast and rapidly growing field with an active body of literature coming 

out of academia and private companies such as Google and Microsoft Research. While initially 

developed in computer science departments, it has seeped into statistics and now touches most 

fields from social sciences to medicine. Over the past several decades increases in 

computational power and falling digital storage costs have contributed to a shift in 

computational statistics, sometimes dubbed the “data revolution,” (Einav & Levin, 2013).  

Such a bold noun hints at the youth of the field which, along with its interdisciplinary nature, 

has resulted in a tangle of names used to describe its techniques: big data, artificial intelligence, 

data science, deep learning, neural networks, etc. There is significant overlap between all these 

classifications so the terminology disputes common to the field tend towards fruitless exercises 

in splitting hairs.  

For the purpose of this thesis I will abstract from such semantic discussion and stick to 

machine learning as a broad label encapsulating all the recent data-driven statistical 

techniques. To formalize this in a single definition, machine learning (ML) is: 

A set of techniques in which algorithms are applied to datasets to construct models, 

taking the data itself as an input determining model design. It is generally employed 

with the goal of prediction and characterized by tuning parameters fitted using the data 

in an iterative feedback process such as cross-validation. 

This approach is at odds with traditional econometrics, where the model specification process 

and the data must be strictly divided - an expert pre-specifies the model design using their 

knowledge and intuition. This sharp methodological difference has advantages and 

disadvantages when it comes to the economist’s primary goal of causal analysis.  
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Supervised vs Unsupervised Machine Learning 

While the primary definition of machine learning is accurate, it also is necessarily ambiguous 

due to the breadth of techniques in the field. At its core ML is a set of algorithms each designed 

for specific tasks, so field is commonly divided into two branches based on a classification of 

these tasks: supervised and unsupervised. 

Unsupervised Learning 

Unsupervised learning is used for grouping or clustering observations by splitting them into 

subgroups based on the similarity of their covariates. This sort of method takes unlabelled data 

- that is, data without a specified dependent variable - so its results are not testable for 

predictive accuracy (hence unsupervised). Unsupervised algorithms are most naturally 

applicable in pre-processing tasks called dimensionality reduction, where data that has many 

covariates is distilled into to a smaller set of new covariates that contain roughly the same 

information. Then traditional or supervised learning statistical methods can be applied to the 

new dataset. Some specific algorithms that fall in this category are k-means clustering, 

principal components analysis (PCA) and latent dirichlet allocation (LDA) models.  

In a survey of ML applications for economics, Athey (2018a) finds unsupervised methods 

most useful as an intermediate step in empirical work as a data-driven way to create new 

variables. For example, given a textual product description, clustering algorithms could find 

and file products into subgroups based on similarity. Or taking Yelp data, an unsupervised 

algorithm could categorize the reviews into types (Athey, 2018a). While these are powerful 

tools for creating new and innovative datasets, this paper will focus on the other, supervised 

side of ML, which more closely parallels traditional econometric methods. 

Supervised Learning 

Supervised learning takes data with a label - or specified dependent variable - and uses data-

driven models to find relationships between the label and covariates. Typical applications 

include prediction of continuous dependent variables (regression) and classification of 

categorical dependent variables. However, the methods are flexible and can also be used for 

dimensionality reduction and pre-processing work. The numerous supervised algorithms differ 

in their flexibility when fitting data, from simple linear specifications to highly non-linear and 

nonparametric models. Due to their development in computer science programs, these 
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methods tend to be computationally efficient and scalable to large sample sizes and many 

covariates (high-dimensional data). This thesis focuses only on supervised learning methods 

as this is the more naturally adapted branch. Specific supervised algorithms are discussed in 

Chapter 2 and then applied to a fisheries management problem in Chapter 5.  

Machine Learning vs Econometrics 

ML and econometrics have similarities from their shared roots in statistics, but they diverge 

in terms of goals, priorities and methods. The result is two sets of tools with distinct advantages 

and weaknesses, and potential to complement each other if combined wisely.  

Since what Angrist and Pischke call the “credibility revolution in empirical economics,” 

econometric methods have been designed for causal inference, focusing on efficiency with 

relatively small data sets and a limited set of hand-selected covariates (2010). Ordinary least-

squares (OLS) is such a popular method because it is easily interpretable, provides measures 

of marginal effects and has optimal asymptotic properties allowing easily calculated inference 

statistics. This is possible due to significant assumptions on the data structure and relationships 

which must be defended. Models are constrained in their flexibility by a requirement to be 

linear in parameters and the need to pre-specify relationships based on expert’s intuition rather 

than the data. For most economic applications this system has served well. 

Machine learning was developed to solve these limitations of traditional statistical methods, 

sometimes at the cost of interpretability and statistical inference. The primary goal of machine 

learning is accurate predictions, so the methods are designed to have maximum flexibility lest 

any signal is missed in the fitting process. The result is models that can capture complex 

interrelationships in highly non-linear ways, with the data determining model design rather 

than any single person’s intuition. This flexibility necessitated new ways to test models, based 

less on asymptotic properties and more on proving performance on new data. The result was 

a set of computationally efficient methods that flexibly fit any kind of data – including high-

dimensional and large datasets – with little loss in performance. 

The below table provides a high-level comparison of the two fields:  
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Table 1: Comparison: Econometrics vs Machine Learning 

 Econometrics Machine Learning 

Goals Inference/causal analysis Prediction 

Strengths Designed for causal inference 

(interpretable, asymptotic 

properties, etc.) 

 

Efficient with small data, low-

dimensional data 

Flexibility in fitting data 

(capturing complex 

relationships, interactions, etc.)  

 

Prediction accuracy 

 

Weaknesses Strong assumptions  

(e.g. parametric form) 

 

Limited flexibility in fitting 

data  

(may not capture all the signal) 

Not designed for causal inference 

(e.g. interpretability/black box 

challenges, lack of valid 

marginal effects/inference stats) 

 

Too flexible in fitting data 

sometimes (may capture too 

much noise, overfitting risk) 

External Validation 

Method 

Inference statistics  

(e.g. standard error, based on 

parametric assumptions)  

Validation sets 

(e.g. cross-validation, sample-

splitting) 

Flexibility Moderate 

(constrained to linear-in-

parameters; some less-common 

exceptions – e.g. kernels, 

splines, sieves)  

High 

 (highly nonlinear and 

nonparametric modelling 

options)  

High-dimensional 

data capability 

Medium  

(computational limitations, 

least-squares “curse of 

dimensionality”)  

High 

(many algorithms designed to 

deal with large number of 

covariates) 

Model design Manual specification from 

intuition, ad-hoc 

experimentation 

(e.g. if testing heterogeneity, 

must self-select groups in pre-

analysis) 

Adaptive – model uses data itself 

to choose specification (“learns”) 

(e.g. algo selects groups with 

heterogenous relationships using 

data)  

Honesty/Replication Opacity in model construction 

process 

(e.g. p-value hacking, multiple-

hypothesis testing issues w/o 

validation process) 

Data-driven fitting process  

(Systematic w/ validation process 

to prove generalizability) 

 



 14 

Chapter 2 Selected Machine Learning Methods 

This chapter provides brief background on the most important concepts, methods and 

algorithms in Machine Learning. It covers the foundational off-the-shelf ML methods which 

are extensively covered in popular introductory ML textbooks (Hastie, Tibshirani, & 

Friedman, 2009; James, Witten, Hastie, & Tibshirani, 2013; Murphy, 2012; Efron, & Hastie, 

2016; Géron, 2019). For deeper understanding beyond the scope of this thesis I refer the reader 

to these resources. 

ML Fundamentals 

All ML methods discussed in this thesis can be described by four components: a predictor 

model, loss function, tuning parameter and cross validation process. These parts are combined 

into an algorithm – the program that iterates over models and data until an optimized 

specification is discovered, constructed and output. 

1) Predictor model  

The predictor model is an algorithm that controls the underlying structure of the fitted 

model. It can be as simple as a linear function (e.g. Lasso regression) or more complex 

like a decision tree (e.g. CART). Ensemble methods extend these to combine multiple 

models into a single predictor. The best algorithm to use depends on data 

characteristics, output goals and preferences on bias-variance tradeoff. 

2) Loss function 

The loss-function acts as a measure of accuracy for the predictor model and is used in 

the fitting process to construct models. Common loss functions include mean squared 

error (MSE) for regression and cross-entropy for classification problems.  

3) Tuning parameter  

Tuning parameters control the flexibility of model fitting. They can be used to adjust 

penalty terms in the loss-function or as a constraint on some model feature. Typically 

cross validation is used to select an optimal value. 

4) Cross validation (CV) process 

Cross validation is a process that splits a dataset into a training set used to fit a model 

and a test set used to evaluate the model. It is standard process in ML to use CV to 

identify optimal tuning parameters and to measure external validity of the model. This 



 15 

setup is a critical difference from econometrics as it allows ML algorithms to learn from 

the data without biasing performance (more on this in Resampling section below).  

Overfitting and Tuning Parameters 

ML algorithms’ edge in predictive accuracy comes from their flexibility and ability to test 

many specifications on real data while fitting a model (i.e. use the data to decide model form). 

If left unchecked this feedback process tends to result in ungeneralizable models – models that 

do not perform well on new data (data unseen in the fitting process).  This problem is called 

overfitting in ML literature and it occurs when the algorithm’s learning process creates a model 

that internalizes both the signal and noise from the training data (overtraining is another term 

for this issue which makes the cause more explicit).  

Because of this built-in tendency to overlearn from (overtrain on) the data, ML methods are 

characterized by adjustable tuning parameters. By limiting flexibility in the fitting processes, 

these regulate the complexity of the output model and implicitly control how much 

information (signal and noise) is captured in training. Tuning parameters are generally 

implemented as a penalty for complexity in the model’s optimization criteria or constraints on 

output model form (e.g. number of levels on decision tree).  

Tuning parameter values are a critical choice in constructing a good model that properly 

balances fit internally (prediction on the training data) and external validity (generalizability, 

prediction on new data). Because the best tuning parameter value is unique for each dataset, 

ML has developed ways to search for optimized values called cross-validation. 

Resampling  

Resampling methods are commonly used in training a model (model selection) and evaluating 

performance (model assessment). James et al. describe it as “drawing samples from a training 

set and refitting a model of interest on each sample in order to obtain additional information 

about the fitted model,” (2013). Practical implementations can be categorized as cross-

validation and bootstrapping.  

Cross-Validation  

As discussed, overfitting is a primary concern in ML since the data is used as a direct input in 

model design. Cross validation (CV) aims to mitigate this issue by holding out observations 
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during the training step so that a valid test error can be calculated on data that was unseen 

during fitting. There are three common methods by which this sampling is applied:  

Validation set method – The simplest form of CV entails randomly splitting the data into 2 

sets (training set and test set). The model is fitted on the training set, then deployed to make 

predictions on the test set which are used to calculate the test-set error rate (often mean-squared 

error, MSE). While this is a simple method to implement, results can suffer from high 

variability (since it relies on a single sample) and test error may be overestimated since only a 

limited portion of the data (20-30%) is used in the calculation.  

 

Leave One-Out method (LOOCV) – This method involves training/testing the model N times 

(where N is the number of observations), holding out a single observation as the test set each 

time. The resultant N approximately unbiased test error results are then averaged to create the 

overall test error estimate. While this method mitigates the main drawbacks of the simple 

validation set method (upward biased error, high sensitivity to sample), it is computationally 

intensive to retrain models N times. 

 

k-Fold method – This method involves randomly1 dividing the dataset into k different groups 

(or folds) of observations, then training/testing the model k times, each time holding out a 

different fold as the test set. The overall test error estimate is taken as the average error over 

all the runs. This is a compromise between the first two methods that balances robustness with 

computational feasibility. 

 

All methods discussed above can be used in the model selection process of choosing tuning 

parameters. In practice they are deployed to calculate test errors in a grid-search, where the 

model is retrained across a set of different tuning parameter values. The parameter with the 

lowest test-error is taken as the optimal model specification. The term cross-validation in ML 

generally refers to this entire process (splitting, predicting, testing).   

 

1 A note on random sampling for CV – In validation-set and k-fold methods, it is critical for sampling to be random so that 

both test set and training set are representative of the full dataset. When there is some imbalance in the dataset – for example, 

if one group in a classification problem is very rare - a further stratification condition is often placed on the sampling so that 

the resultant test/training sets are comparable. 



 17 

For testing the model’s external validity – the model assessment process – a holdout set is 

usually removed from the dataset before CV takes place. While this step is identical to the 

validation set method, ML literature generally reserves the term cross-validation for sample 

splitting and evaluation that occurs within the parameter-tuning context. 

Bootstrap  

Bootstrapping is a resampling method that differs from CV in that random samples are made 

with replacement. This results in many samples that are representative of - but not identical to 

- the original dataset, and thus can be used for evaluating the model. This method is particularly 

useful for estimating inference parameters when the model is non-linear and thereby standard 

errors are mathematically difficult to attain.  

Certain ML algorithms also employ bootstrapping in their model training stages. For example, 

bagging (bootstrap aggregation), which is employed in the Random Forest algorithm, uses 

bootstrap samples to train many separate trees (see further discussion in Ensemble Methods 

section). 

Linear ML Algorithms 

Linear regularization algorithms are among the most popular ML methods, benefiting from 

relative simplicity and a functional form shared with the ubiquitous ordinary-least-squares 

(OLS) regression. In this section I focus on what Hastie, Tibshirani, and Friedman (2009) refer 

to as shrinkage methods: Lasso, Ridge and Elastic-Net regressions. These provide a good intro 

to ML and the power of tuning parameters. Other useful linear methods beyond the scope of 

this thesis include subset-selection and support vector machines (SVMs). 

Shrinkage Methods 

Shrinkage methods start with a traditional OLS model, then add a tuning-parameter-based 

regularization term to the optimization criteria that penalizes larger coefficients and shrinks 

their values towards 0. This tuning parameter is akin to a control knob for bias-variance 

tradeoff – higher values reduce variance at the cost of some bias in the coefficients. 

Regularization of this form results in “substantial reduction in the variance of the predictions, 

at the expense of a slight increase in bias,” usually a worthwhile tradeoff given that 
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performance metrics are a function of both bias and variance (James, Witten, Hastie, & 

Tibshirani, 2013).  

By including a tuning parameter in the regularization term, shrinkage methods introduce 

flexibility in the model fitting and allow data to be used directly in the choosing the 

optimization criteria. This alternative fitting procedure can offer better predictive accuracy, 

particularly in the case of high-dimensional data (when number of covariates, p, is high 

relative to sample size, n). Under an assumption of sparsity (i.e. there are more covariates 

present than are relevant to the outcome variable), shrinkage algorithms can automate the 

variable selection process by removing the weak covariates from the model. 

Ridge Regression 

Ridge regression uses the least-squares model as a base but adds the ℓ2 norm as a penalty term 

in the optimization criteria. This term serves to shrink the coefficient values towards 0 across 

the board. The fitting process minimizes2: 

𝑅𝑆𝑆 + 𝜆 ∑ 𝛽𝑗
2

𝑝

𝑗=1

  

 

A regularization parameter, 𝜆, controls the weight given to the shrinkage criteria and is treated 

as a tuning parameter. Tuning is done by cross-validation to find an optimal regularization 

level that minimizes a scoring metric (usually MSE). As 𝜆 increases the coefficients will shift 

further towards 0 across the board, while 𝜆 = 0 results in a model with unconstrained 

coefficients identical to the OLS model.  

Lasso Regression 

Lasso regression uses the ℓ1 norm as a penalty term in the optimization criteria, which will 

decrease as the coefficient values shrink towards 0. The fitting process minimizes: 

𝑅𝑆𝑆 + 𝜆 ∑|𝛽𝑗|

𝑝

𝑗=1

  

 

2 Note: all shrinkage methods can be applied with a different base optimization criterion than least-squares – for example, to 

apply shrinkage to a maximum-likelihood estimator the penalty term is added to negative log-loss rather than RSS.  
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The regularization term in this model also shrinks coefficients, but unlike the Ridge criteria it 

will shrink some coefficients all the way down to 0 when 𝜆 is large enough. The resultant 

output is a sparse model which includes only a subset of the original covariates; a higher 𝜆 

value shrink coefficients further towards 0 and increase sparsity of the output model. Because 

of this characteristic the Lasso regression can be employed as an automated means of variable 

selection to remove less useful variables and create more interpretable models. Like Ridge 

regression, 𝜆 = 0 results in a model identical to OLS. 

Elastic-Net Regression 

The Elastic-Net model includes penalty terms for both the ℓ1 and  ℓ2 norms, so the fitting 

process minimizes:  

𝑅𝑆𝑆 +  𝜆1 ∑|𝛽𝑗|

𝑝

𝑗=1

 +  𝜆2 ∑ 𝛽𝑗
2

𝑝

𝑗=1

 

The penalty terms are interpreted the same as Lasso and Ridge respectively. Depending on the 

two tuning parameters the model will be a combination of Ridge/Lasso (𝜆1 > 0, 𝜆2 > 0) or 

one of three special cases: OLS (𝜆1 = 0, 𝜆2 = 0), Ridge (𝜆1 = 0, 𝜆2 > 0), or Lasso (𝜆1 > 0, 

𝜆2 = 0). This algorithm benefits by offering potentially sparse solutions using the ℓ1 term, 

while the ℓ2 term increases robustness in the case of highly-multicollinear variables. 

Shrinkage Implementation Notes 

To decide between Ridge, Lasso and Elastic-Net models, the literature recommends a heuristic 

approach to fit each using cross-validation and compare the results (James, Witten, Hastie, & 

Tibshirani, 2013). Ridge can perform better when many covariates are relevant and have 

smaller individual impacts, or when high multicollinearity in covariates is a concern. Lasso 

performs well when there are a small number of covariates with large impacts or when variable 

selection is a goal. Elastic-Net offers a balance between the two.  

Since shrinkage penalizes coefficients for their size, the dataset should be standardized or 

normalized before implementing the regressions so that each covariate is on a common scale. 

Standardization involves transforming each covariate so that its mean is 0 and standard 

deviation is 1. Normalization rescales each covariate into a range of [0,1] 3. Standardization is 

 

3 Common practice is to also re-center normalized covariates to [-0.5,0.5] to help with convergence/optimization 
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more robust to outliers but makes implicit parametric assumptions on each covariate that are 

not always justifiable.  

Tree-Based ML Algorithms 

One benefit of ML methods is their ability to fit complex relationships in a non-parametric 

fashion. Regression trees offer a highly non-linear modeling strategy that exemplifies this 

flexibility gain when functional form assumptions are relaxed.  

Classification and Regression Tree (CART) 

Classification and Regression Tree (CART) is a non-parametric ML method that can be used 

to predict discrete values (classification) or continuous values (regression). Initially developed 

by Breiman et al. (1984), it is based on the hierarchical structure of a decision tree which 

divides the data into subsets by partitioning the covariate space. After creating these subsets – 

labelled as a leaf, 𝑙𝑚 – an estimator is calculated for each leaf, generally a simple average 

value of the observations that lie within (or mode if dealing with categorical/classification 

problem). To make a prediction on new data, the algorithm identifies the leaf its’ covariates 

fit into and use that leaf’s estimate. Below is an example of the tree structure where the 

covariate space is two variables, 𝑥 and 𝑧: 

 

Figure 1: Example of Decision Tree covariate space partitioning  

 

Terminology 

While heavy on terminology, CART models use tree analogies to make it more intuitive. The 

structure is based around nodes (the dots in fig. 1), connected to one another by branches (the 
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lines). The parent of a node is the node immediately preceding it, while the children are the 

immediate successors beneath (e.g. blue nodes in fig. 1 are parents of green and children of 

the red).  

The root node is on top of the tree and has no parents (red in fig. 1). It is a special-case of a 

decision node – which are nodes that take a set of observations, pass a condition splitting the 

data on some covariate, and output parted sets as children. Each condition on a decision node 

takes a threshold value and an inequality operator.  

Leaf or terminal nodes (green in fig. 1) do not have any children and represent the final 

partitions the data is separated into, at the bottom of a tree. Each leaf in this example can be 

visualized in the 2D rendering of the covariate space on the left. The key requirement is no 

overlap in the partitions, so every observation lies in a single leaf.  

The tree can be described by its depth – or the maximum length of a path from root node to 

leaf node (depth is 2 in the example). It can also be described by the number of leaves (4 in 

this example). Depth and number of leaves are commonly used as constraints on model 

complexity and tuned using cross-validation.  

Setup 

While intuitive and simple in structure, trees remain very flexible and require careful 

parameter tuning in the construction process. To formalize this method4, assume a dataset 

containing observation units 𝑖 that each have a pair (𝑋𝑖, 𝑌𝑖) representing a vector of observable 

characteristics (covariates) and an outcome target (dependent variable) respectively. The tree 

is built to predict the outcome 𝑌 using the estimator 𝜇̂(𝑋𝑖), which is the sample mean of 

dependent variable 𝑌𝑖 within leaf 𝑙(𝑋𝑖). 

Tree Construction 

The method for constructing – or fitting/training – a regression tree occurs in two stages: 

growing and pruning. In pre-processing the data is randomly split into a training sample and a 

validation sample using one of the cross-validation methods (e.g. validation set, k-folds). 

Below I cover the fitting process in detail for one potential implementation of CART in which 

 

4 Note: formal CART model and notation in this section is based on (Athey, 2018b) 
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mean-squared error (MSE) is the base optimization criterion and cross-validation scoring 

metric, and the tuning parameter weights a penalty term on number of leaves in the tree.  

 

Stage 1: Growing Tree  

Goal: partition covariate space into a deep tree that maximizes 𝑄𝑐𝑟𝑖𝑡 (−in-sample variance) 

Recursive binary splitting is used to grow a deep tree model with the training sample data. The 

algorithm uses a top-down approach in that it starts with a single node containing all the 

observations and then progressively adds splits/decision nodes to partition the covariate space. 

It continues to add more partitions until each terminal node reaches some specified size. It is 

computationally infeasible to test every possible set of decision trees, so this approach uses a 

greedy algorithm to decide which splits to make. This means the split decisions occur in a 

bubble – they are not forward-looking and consider only the immediate/direct impact on 

optimization criterion. At each split the algorithm identifies which single partition will 

increase the optimization criterion (𝑄𝑐𝑟𝑖𝑡) most and repeats this process. 

For this stage the optimization criterion, 𝑄𝑐𝑟𝑖𝑡, is based on an in-sample goodness-of-fit 

function, 𝑄𝑖𝑛−𝑠𝑎𝑚𝑝𝑙𝑒, and a regularization term with tuning parameter 𝜆: 

𝑄𝑖𝑛−𝑠𝑎𝑚𝑝𝑙𝑒 = −𝑀𝑆𝐸 (𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝐸𝑟𝑟𝑜𝑟) = −
1

𝑁
∑ (𝜇̂(𝑋𝑖) − 𝑌𝑖)

2𝑁
𝑖=1   

𝑄𝑐𝑟𝑖𝑡 = 𝑄𝑖𝑛−𝑠𝑎𝑚𝑝𝑙𝑒 − 𝜆|𝐿|             where |L| is total # of leaves (terminal nodes)  

Overfitting is expected to occur when fitting using in-sample MSE estimates. Adding another 

split will always decrease the MSE, so by construction the criterion 𝑄𝑖𝑛−𝑠𝑎𝑚𝑝𝑙𝑒 incentivizes 

the model to keep splitting until leaves have a single observation each (in which case MSE=0). 

The regularization term (𝜆 ∗ # 𝑙𝑒𝑎𝑣𝑒𝑠) is included in 𝑄𝑐𝑟𝑖𝑡 to penalize the complexity of the 

model and restricts the depth of the tree depending on the tuning parameter value, 𝜆. It is given 

a constant positive value in Stage 1 to encourage a deep tree that will be trimmed in Stage 2.  

Stage 2: Pruning tree  

Goal: identify regularization parameter (𝜆) that maximizes 𝑄𝑜𝑠 (-out-of-sample variance) 

The second stage - pruning the tree - involves cross-validation to identify the optimal tuning 

parameter, 𝜆, and thus specify the optimal size of the tree. The criterion, 𝑄𝑜𝑠, is calculated 

using out-of-sample data (the validation-set held out from Stage 1).  
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𝑄𝑜𝑠 = −𝑀𝑆𝐸      𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑜𝑛 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 

Using separate data for growing and pruning makes variance estimates in this step unbiased – 

higher MSE values are a sign of overfit models and the lowest MSE option is the best model. 

This optimal model is typically identified using a grid-search over different 𝜆 levels, selecting 

the one that returns the highest criterion 𝑄𝑜𝑠 (the lowest out-of-sample MSE value). Higher 𝜆 

values trim off more leaves (the so-called “pruning” of branches) and result in a simpler model.  

Applying the Model 

After identifying the optimal 𝜆 value in stage 2, estimator model can be constructed by simply 

taking the 𝜆 value from Stage 2 and plugging it into the Stage 1 algorithm to regrow the tree 

on training data. Given the greedy, algorithmic approach to fitting CART the specification on 

any single construction is unstable. Multiple different splits may have the same effect on 𝑄𝑐𝑟𝑖𝑡 

and the algorithm will be indifferent between them. The result is that 2 decision trees 

constructed on the same data could have different structures/splits. Random Forest methods 

attempt to reduce this variability by combining many different trees into a single estimator 

(see the Ensemble Methods section for further discussion). 

Tuning Parameters and Scoring Criterion 

An advantage of tree-methods is that they are compatible with a large variety of parameters, 

optimization criterion and scoring metrics. This allows them to fit nearly any data type but 

makes covering all varieties impractical in the scope of this thesis. The setup above (MSE plus 

a penalty term for number of leaves) is a standard off-the-shelf method that was included 

primarily for intuition on how tuning parameters are used in CART. Several other constraints 

can be substituted for or combined with the penalty term, such as depth of the tree or number 

of observations in each terminal leaf.  

Likewise, in the pruning stage MSE is often substituted for different scoring metrics (e.g. 

cross-entropy for classification problems, negative log-loss for probability problems). In the 

empirical application section of this thesis I employ CART with tuning parameters for both 

maximum tree depth and number of leaves, using MSE as the splitting criterion in growing 

and log-loss as the scoring metric in the cross-validation stage.  
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Measuring Performance (External Validity) 

Performance is typically measured using a held-out set of data (data not used in fitting or cross 

validation) to avoid bias from the feedback loop inherent in parameter tuning. While mean 

squared error (MSE) is the most popular metric for regression, classification tree methods 

often use accuracy scores or area-under the curve (AUC) analysis based on the ROC or 

precision-recall curves. Traditional inference values may also be calculated such as standard 

error but must be adjusted for the tree-structure by using leaf-level adjustments. 

  

 

Ensemble Methods 

Ensemble methods are a popular ML strategy in which multiple base models are combined to 

create a single aggregated estimator. This can improve generalizability of the model by 

reducing sensitivity of the results to a single misspecified model and by combining diverse 

models that may capture different signal.  

CART Fitting Process: 

Preprocessing: 

 (optional) Split off a validation set to test external validity on fitted model 

Make cross-validation splits (e.g. validation set method) 

 Select optimization metric 𝑄𝑐𝑟𝑖𝑡:  

𝑄𝑖𝑛−𝑠𝑎𝑚𝑝𝑙𝑒 metric (e.g. MSE) 

Penalty terms/constraints (e.g. maximum tree depth, penalty for # leaves)  

 Select a CV scoring metric 𝑄𝑜𝑠 (e.g. MSE, classification accuracy)  

Stage 1: Growing Tree  

Implement algorithm on training set with weak penalty/constraint parameters  

(will split to maximize 𝑄𝑐𝑟𝑖𝑡 and make a deep tree) 

Stage 2: Pruning Tree (cross-validation) 

 Use tree from stage 1 and test set (from CV split) in grid-search to find optimal 𝜆  

(will choose 𝜆 that maximizes 𝑄𝑜𝑠)  

Stage 3: Creating Estimator  

 Plug optimal 𝜆 into algorithm from Stage 1 and train to get final model 

Stage 4: Measure performance 

Use model from Stage 3 to predict MSE on validation set  
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Averaging methods are a subclass of ensemble methods in which base model predictions are 

aggregated and then averaged. The base models can be of the same form (e.g. multiple CART 

regressions in a Random Forest) or based on different algorithms (e.g. combine CART with 

Lasso regression).  

Boosting methods are a subclass of ensemble methods that use incremental learning – they 

train models sequentially with each subsequent fitting focusing on the residuals or 

misclassifications from the previous model. AdaBoost (adaptive boosting) is a popular 

implementation of this sort. While a promising field, boosting has not permeated the 

econometric field much so will not be further discussed in this thesis. 

Random Forest (RF) 

Random Forest (Breiman, 2001) is an averaging ensemble method that tries to improve upon 

the underlying CART model by combining predictions from many individual decision trees 

(hence the “forest”). A natural cost of their flexibility, individual decision trees tend to suffer 

from high variance - meaning they are very sensitive to the specific data sample on which they 

are trained. Forest methods reduce this variance by combining many trees fitted on different 

training samples, in the process mitigating bias from individual misspecified trees by blending 

them with the larger number of accurately specified trees. To achieve these better predictions, 

bagged trees are combined with a decorrelating mechanism. 

Bagging 

The bootstrap is a statistical method for resampling in which many separate samples are 

created from one dataset using random samples with replacement. The result is many 

representative samples that are unlikely to be identical to the original. Bagging (bootstrap 

aggregation) is when bootstrap samples are used to fit many individual models which are then 

combined (aggregated) to make a single prediction.  

Bagged trees are grown deep and not pruned, so the individual trees have high variance but 

low bias. The aggregation of models reduces the overall variance and combats overfitting by 

using estimators constructed from multiple datasets. 

Decorrelating Mechanism 

While the randomness of bootstraps encourages lower correlation between trees versus 

training each on the same sample, bagged trees are still prone to high correlation. Running 

many trees on the same covariate space is likely to result in similar, correlated splits focused 
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on only the most important variables. If there is an especially strong covariate, it is likely to 

appear near the top of all individual trees fitted by CART regardless of the samples.  

Since the benefits of aggregation are much higher with low-correlated trees, the Random 

Forest adds another level of decorrelation: when fitting the trees, every partition restricted to 

a random subset of covariates. Under ordinary CART the decision trees search over the entire 

set of covariates (of size 𝑝), and partition at each stage on the one that increases the criterion 

most. Random Forest begins each partition by creating a new set of split candidates from a 

random sample of covariates (of size 𝑚 < 𝑝). The rule-of-thumb approach in ML is to choose 

𝑚 = √𝑝. This significantly reduces correlation from strong covariates, since the average 

fraction of splits that a given coefficient is excluded from is  
(𝑝−𝑚)

𝑝
. (James, Witten, Hastie, & 

Tibshirani, 2013). 

Forest Construction Process:  

The Random Forest construction process relies heavily on the CART algorithm, which is 

modified, applied many times, and the results averaged. Each tree is fitted on a different 

bootstrap sample from the training set and has an added layer of randomness in that each 

partition is restricted to a random sample of covariates of size 𝑚 < 𝑝. The process can be 

broken down as follows5: 

1) Specify model parameters for number of trees (𝐵) and number of split candidates (𝑚) 

2) For each 𝑏 = 1, … 𝐵, draw a bootstrap sample 𝑆𝑏 ⊆ {1, … , 𝑛} from the training set 

3) For each b= 1, … 𝐵, grow a tree (deep, without pruning) on the sample 𝑆𝑏 using 

recursive partitioning and restricting each partition’s split candidates to a random sample 

of the covariates from 𝑋𝑖 of size 𝑚. The result is a set of fitted trees, 𝑓𝑏(𝑥). 

4) Use the average predictions from all fitted trees as the estimator: 

𝑓𝑝𝑟𝑒𝑑(𝑥) =
1

𝐵
∑ 𝑓𝑏(𝑥)

𝐵

𝑏=1

 

 

5 Note: formal notation based on that from (James, Witten, Hastie, & Tibshirani, 2013) 
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Cross-Validation Process:  

Cross-validation is typically added to the above process to select optimal values of the tuning 

parameters, 𝐵 and 𝑚. Drawing parallels to the CART process described above, the growing 

stage for RF involves constructing a large forest of many trees and the pruning stage removes 

trees (rather than branches) until the proper level of complexity is reached.  

The bootstrap structure of the model-fitting process also enables an alternative to the 

traditional cross-validation methods that is useful if the sample size is small. To measure 

performance of a bagged estimator, one can employ the out-of-bag (OOB) error estimate. 

Breiman (1996) found that this method returns “nearly optimal estimates of generalization 

errors for bagged predictors” - and therefore it can be used in place of hold-out methods for 

evaluating external validity. On average each bootstrap sample will contain two-thirds of the 

observations from the training data, and the other one-third of observations is called the OOB 

sample. To construct the OOB error term, an algorithm makes predictions for each 

observation, 𝑖, by aggregating only the trees in which 𝑖 falls in the OOB sample (i.e. only use 

predictions from trees that never saw 𝑖 in training). These predictions are then used to calculate 

the error on each observation which are combined into a full OOB error estimate for the overall 

model. 

Tuning Parameters and Scoring Criterion 

The most critical parameters controlling complexity of the RF model are: 

Number of trees (B) – This controls how many different bootstrap samples are taken and fitted 

to trees for use as a predictor. A higher value will be more flexible and can lead to overfitting 

past a point – particularly if the trees are highly correlated. 

Number of split candidates (m) – This controls the number of covariates available to use at 

each partition of tree (common approach in ML is to choose 𝑚 = √𝑝). A high value will result 

in more highly correlated trees, so typically values are kept low to maximize the forest’s 

variance-reduction effect.   

 

Tree-level parameters – Any tuning parameter available in the CART algorithm is available 

in RF too – such as depth of tree, number of leaves, etc. These are typically set at levels that 

encourage deep trees and no pruning/cross-validation is implemented. This makes the tree-

level predictions low-bias, while the forest will mitigate the high variance. 
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As with CART models, the RF algorithm allows various scoring criterion to be used in the 

cross-validation/pruning step: MSE, accuracy score, R-squared, cross-entropy, log-loss, etc. 

Once the CV has identified the optimal tuning parameters, model implementation is the same 

as CART as well (refit algorithm on training set with optimal parameter value).  

Interpreting RF Output 

Random Forests tend to improve predictions and reduce variance versus a single decision tree, 

but it comes at the cost of interpretability. While a single CART estimator is easily visualized 

and the most important variables are salient on the tree diagram (higher up = more important), 

this is not practical when scaled to an entire forest. Therefore, RF algorithms include a measure 

of variable importance in their output which ranks each covariate by its impact on the 

optimization criteria (e.g. how much its splits reduce RSS). The rankings include scores that 

reveal relative importance – so it is clear when several of variables have outsized impact. 

Measuring Performance 

Performance is measured in same process as CART – using predictions from the final model 

on a held-out validation set for external validity checks.  

Summary: ML Method Comparison 

These five methods are a good representation of machine learning, covering many of the 

benefits over traditional statistical methods. Each has relative strengths and weaknesses (see 

table below), but the tuning parameters make each flexible enough for many applications and 

data types. To date, the bulk of ML econometrics literature sticks to these algorithms and as 

such they will be a good set of methods to test. 
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Table 2: Comparison of Selected ML Algorithms 

ML Method Strengths Weaknesses 

Ridge Regression Variance reduction 

Highly multicollinear data 

robustness 

Biased (shrunk) coefficients 

Lasso Regression Variance reduction 

Sparse model output (feature 

selection) 

Biased (shrunk) coefficients 

Elastic Net Variance reduction 

Highly multicollinear data 

robustness 

Sparse model output (feature 

selection) 

Biased (shrunk) coefficients 

Trees (CART) Flexible, non-linear model fitting 

(allows complex interactions) 

Computationally efficient 

High variance tendency 

Stability issues (highly 

dependent on sample)  

No coefficients/marginal effects  

Random Forest 

(RF) 

Flexible, non-linear model fitting 

(allows complex interactions) 

Variance/stability improvements 

(over CART) 

No coefficients/marginal effects 
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Chapter 3 Econometric Applications for Machine 

Learning 

This chapter discusses machine learning tools in the context of economics applications. I 

review how econometric literature has integrated machine learning to date and overview 

several potential application areas. Finally, I frame the developments from a resource 

economics viewpoint to determine if ML has value to add to the field in practice. 

State of Machine Learning in Econometrics 

ML methods are increasingly finding their way into econometric literature as the field matures 

and its techniques become more salient. An example of the field’s blend of academia and 

business, one of the early surveys to consider big data methods (trees, shrinkage methods) for 

causal questions was written by Google Chief Economist Hal Varian (2014), providing 

examples of macroeconomic applications. Belloni et al (2014) were early proponents of Lasso 

regressions for causal problems, exploring how they can help in high-dimensional settings 

through regularization and variable selection. In her survey, The Impact of Machine Learning 

on Economics, Susan Athey reviews the literature to conclude that ML “yields great 

improvements when the goal is semi-parametric estimation or when there are a large number 

of covariates relative to the number of observations,” (Athey, 2018a). Following up on this 

finding, Athey and Imbens (2019) identify several major classes of causal problems best suited 

to capitalize on these advantages, from heterogeneous treatment effects to adaptive 

experimental design.  

Throughout these papers a common theme is that ML methods add the most value when 

applied for their natural strength: prediction. To identify prediction applications, Mullainathan 

and Spiess (2017) divide economics problems into two categories:  

1) parameter estimation: concerned with finding 𝛽̂ (estimate of 𝛽, the marginal effect of 

𝑥 on 𝑦) 

2) prediction:  concerned with finding 𝑦̂ (estimate of 𝑦, the outcome based on 𝑥)  

The paper goes on to declare “machine learning belongs in the part of the [economist’s] 

toolbox marked 𝑦̂ rather than in the more familiar 𝛽̂ compartment,” since ML methods are not 

designed to create unbiased estimates of marginal effects (Mullainathan & Spiess, 2017). 
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ML for Prediction Problems (𝑦̂) 

Supporting this analysis, I found most of the econometric ML literature to-date deals with 𝑦̂-

problems. Prediction problems in economics are commonly implemented using the Potential 

Outcomes (PO) framework and, as such, the bulk of applied econometric research on ML 

focuses on this structure. 

Treatment Effects under Potential Outcomes Framework 

In simplified terms, the PO framework seeks to estimate the causal impact of a binary 

treatment (𝑊) by taking the average difference in the control group’s outcome (𝑦|𝑊 = 0 ) 

and the treated group’s outcome (𝑦|𝑊 = 1). This difference is termed the average treatment 

effect (ATE) and it relies on the two groups being the same (e.g. totally random) aside from 

the treatment (see Appendix 3 for more in-depth discussion of this framework and 

assumptions). Since only the outcome 𝑦 is of interest and no marginal effects are measured, 

this is a prime application for prediction methods. The canonical problem in ML applications 

of this sort estimates ATE under the uncounfoundedness assumption, which relies on 

treatment being assigned as good as randomly conditional on observable characteristics of the 

observations (Athey & Imbens, 2019).  

Since off-the-shelf ML algorithms do not calculate formal inference statistics with their 

predictions, they must be adapted to get valid confidence intervals for the treatment effect. 

Research in this area proposes adjustments in the algorithm settings (e.g. new fitting criterion) 

and then illustrate that the new specification meets asymptotic conditions necessary for 

inference. New cross-validation techniques are also proposed in order to avoid bias from the 

fitting process. For example, Athey and Imbens (2016) develop a causal tree method that 

substitutes a custom optimization criterion into the CART algorithm and prescribes a new, 

“honest” form of cross-validation based on sample-splitting to avoid bias. Causal forest 

techniques extend and adapt this methodology to a Random Forest-type ensemble algorithm 

(Athey, Tibshrani & Wager, 2019; Nie & Wager, 2017; Kunzel et al, 2019). 

These methods are generally found to improve upon traditional semi-parametric methods (e.g. 

kernel, splines) through more flexible functional form and scalability to high-dimensional data 

without major losses in performance. However, beyond linearity-in-parameters, the methods 

do little to relax traditional assumptions and they require very specific conditions be met for 
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valid inference statistics (i.e. data must fulfil the strict PO and uncounfoundedness 

assumptions).  

Synthetic Control  

Synthetic control (SC) is a relatively new tool for estimating causal effects created by Abadie 

and Gardeazabal (2003) and then expanded on by Abadie, Diamond and Hainmueller (2010). 

Since then it has been deployed in numerous papers as a method of estimating better 

counterfactuals for comparative case studies. In their Report on the State of Applied 

Econometrics, Athey and Imbens (2017) go so far as to crown it “arguably the most important 

innovation in the policy evaluation literature in the last 15 years.”  

In a case-study setting with panel data for a single treated unit and several control units, the 

method works by predicting the counterfactual outcome for the treated unit using some 

weighted mix of the control units’ observed outcomes in the post-treatment period. The 

difference between the post-treatment outcomes in the treated unit and the synthetic control 

unit is interpreted as the causal effect. 

The critical step is calculating the optimal weight for each control unit to create a synthetic 

control unit with characteristics as close to the treatment group as possible. The standard 

method is to use linear regression for this task, but this limits the number of control units and 

matching criteria that can be used. ML methods have been proposed to improve the accuracy 

of the counterfactual prediction by allowing a flexible functional form in the matching, 

extending coverage to higher-dimensional datasets and allowing more control units to be used 

(Ben-Micheal, Feller, & Rothstein, 2018; Kinn, 2018). 

ML for Parameter Estimation Problems (𝛽̂) 

Even though ML methods do not work as the final model for a parameter estimation (𝛽̂) 

problem, there are several econometric processes in which prediction is a goal in pre-

processing. In many multi-stage econometric processes, the preliminary steps implicitly use 

prediction to strengthen the causal interpretation of the final stages. Since these steps generally 

don’t require inference statistics, off-the-shelf ML algorithms can be applied to improve 

results, particularly when the data that is high dimensional, sparse or containing nonlinear 

underlying structures.  
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Variable Selection  

While not a prediction application per se, the most basic application of off-the-shelf ML is for 

data-driven variable selection. Methods like Lasso and Elastic-Net, which return sparse 

models (i.e. remove some covariates), can be run on a high-dimensional model specification 

to identify which variables are least critical in the regression. Any variables whose coefficient 

is shrunk to 0 could be dropped and then the final model run using OLS to get unshrunk 

coefficients. For causal interpretations using this method an assumption of sparsity is required 

and there is a danger that regularization could remove a causally relevant variable while 

keeping its highly correlated pair. Mullainathan and Spiess (2017) show that there are some 

serious instabilities in variable selection using Lasso, so causal conclusions on the resultant 

sparse models are questionable. Furthermore, regardless of how sophisticated a model is used 

to choose variables, this method is vulnerable to bias from unobservables and the classical 

linear model assumptions must hold. 

 The Random Forest could also be helpful in variable selection due to its variable importance 

output. This measures which covariates reduce the optimization criterion (e.g. RSS) most 

across the many models and could give a researcher some insight to relationships present in a 

dataset even if the final model is not used for prediction. 

Instrumental Variables  

The two-stage least-squares (2SLS) instrumental variable procedure in econometrics involves 

an estimation step where a variable, 𝑥, is regressed on the instrument, 𝑧, to get a fitted value 

𝑥̂. In stage 2 the 𝑥̂ is then included the regression for the causal model. With this set up, stage 

1 is essentially a prediction problem in which overfitting must be avoided, a situation for which 

ML methods are designed. Belloni et al. (2014) propose using Lasso for the first-stage 

regression in order to perform variable selection on a set of potential instrumental variables 

and improve predictions. For cases of high-dimensional instruments in which the sparsity 

assumption cannot be made, Hansen and Kozbur (2014) offer a Ridge regression method 

argued to work with weak-instruments. Hartford et al. (2017) apply advanced, highly nonlinear 

ML algorithms called neural nets to a similar type of problem in what they refer to as Deep 

IV.  

While each of these methods is designed to improve results on high-dimensional data, the 

exclusion requirement on instruments limits how often they are of practical use. Every 



 34 

instrument and the dependent variable must only be related through the variable of interest, 

something that becomes difficult to support when there are many instruments used. 

Propensity Score Matching 

Propensity score matching (PSM) is very popular application for ML in causal analysis 

literature, used by a broad spectrum of researchers from epidemiology to economics. The 

method (covered in more detail in the Empirical Application chapter) aims to control for 

selection bias in treatment-assignment, often an unavoidable issue when using observational 

data. To control for the factors that influence whether an observation receives treatment, a 

two-stage process is implemented. 

First, a binary indicator reflecting treatment implementation is regressed on observable 

variables to create an estimate for the probability each observation receives the treatment 

conditional on their observables. During stage 2 these estimates are integrated into the final 

regression – either by reweighting the outcome or by including the probability as a control 

variable. 

Since predicting accurate probabilities of treatment is the main goal in stage one, it is common 

for practitioners to use all their available data to estimate it. The traditional implementation in 

this step (logit model) is not designed for high-dimensional data, so there is room for 

improvement by using off-the-shelf ML methods to form better probability estimates. Better 

probabilities theoretically result in better controls and a less biased causal model.  

ML for Resource Economics 

Due to the nature of assumptions in prediction (𝑦̂) type problems, ML methods based on the 

PO framework are not of much use in resource economics – a field that primarily deals with 

dynamic problems and time-series/panel data. In searching for applications, I found the PO 

assumption of strict Stable Unit Treatment Value Assumption (SUTVA) would often be 

violated. This contains the “no-interference” assumption that there are no externalities or 

network effects from treatment of a given unit. The method is designed for randomly or quasi-

randomly sampled and unclustered data for which this is reasonable assumption. The panel 

data that resource problems use has two dimensions for interference to occur – time and panel 
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grouping – so the assumption is very difficult to justify and ML predictions of 𝑦̂ will be 

rendered biased.  

Synthetic control methods also rely on the no-interference assumption (Abadie et al., 2010), 

but in a case-study format interference becomes easier avoid. For example, if the treated unit 

is a country and there is concern over spillover effects within its region, the control donor pool 

can be restricted to countries outside that region. SC offers an alternative to the popular 

difference-in-difference identification strategy that can apply for policy evaluation in resource 

problems. For example, Smith (2015) uses synthetic control to analyse the resource curse using 

a panel of countries, Reimera and Haynie (2018) use it to explore economics impacts of marine 

reserves, and Sills et al (2015) apply the method to a tropical deforestation intervention. 

Many resource economics problems are concerned with marginal effects, so the pre-

processing ML methods designed for parameter estimation (𝛽̂ problems) may be of use. 

Instrumental variable problems are widely used in the field, so improvements to the 2SLS 

process have potential to add value. While propensity scores are often used within the PO 

model, they can also control for selection bias in common treatment-effect regression designs 

like difference-in-differences (DiD) models. In the next section I will test whether ML adds 

value in this propensity score DiD setting using an empirical example related to fisheries.  
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Chapter 4 Empirical Application: Fisheries 

This chapter offers background information on the fisheries management article that I will use 

for an empirical test of machine learning’s performance and value for resource economics. I 

introduce the original paper’s dataset and my recreation of it, provide background on the 

paper’s methodology, and discuss its core model specifications. The models and recreated 

dataset introduced in this chapter will be used in Chapter 5 where I apply ML methods to a 

propensity score estimation task. 

Background 

For evaluating machine learning methods on a practical resource economics problem, I will 

use a well-known fisheries management article titled Can Catch Shares Prevent Fisheries 

Collapse? (Costello, Gaines, & Lynham, 2008a). This paper examines a problem that is 

structurally representative of resource economics and uses a large dataset – particularly in 

terms of width (number of covariates) – making it a good test for ML.  

Costello et al. examine the problem of fishery collapse, testing for a causal relationship with 

the implementation of catch-share fishery regulations. More concretely, the paper asks 

whether implementing ITQ6-type property rights in a fishery reduces the probability of fishery 

collapse thereafter. Collapsed fisheries are defined in line with prior research (Worm et al., 

2006) as those in which annual harvest is less than 10% of the previous maximum harvest. 

The authors note that “this collapse metric may overestimate the frequency of collapsed 

fisheries,” but this errors on the side of conservative causal attribution (Costello, Gaines, & 

Lynham, 2008a). Several models are considered in the analysis, revolving around a binary 

treatment indicator for ITQ and a binary outcome indicator for fishery collapse.  

 

6 Individual Transferable Quota 
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Data 

Costello et al. Dataset 

The original paper uses a panel dataset containing annual catch, taxonomic, and ITQ 

information for 11,135 fisheries from 1950-2003. To remain in line with the Worm et al. 

(2006) definition of collapse, Costello separates fisheries at the large marine ecosystem (LME) 

level and by species. Since this is a wide measure typically containing more than one 

regulatory body (multiple countries may fish in a single LME), ITQ treatment status for each 

LME is based on the primary commercial fishing country’s system.  

The species/catch time-series data was sourced from the SeaAroundUs public database (Pauly 

& Zeller, 2015). Costello et al. “searched published literature and government reports, 

interviewed experts on global fisheries,” to manually identify the catch-share status of each 

fishery (2008a). For the study 121 fisheries were identified as under ITQ systems by 2003.  

Recreated Dataset 

To recreate the study, I likewise made use of the SeaAroundUs database for LME-level catch 

volume time-series and used Costello’s list of ITQs (Pauly & Zeller, 2015; Costello, Gaines 

& Lynham, 2008b). The latest ITQ list has data through 2007 (148 fisheries) but I limited my 

recreation to the original 2003 cut-off to replicate the study more closely. This resulted in an 

initial database of 11,770 fisheries including 113 under catch-shares and catch data from 1950-

2003.  

Due to inconsistencies in the taxonomic level at which fisheries were reported, I further 

trimmed the dataset so that only fisheries with both genus and species identified were included. 

Taxonomic information was cross-referenced using FishBase, SeaLifeBase, and WoRMS 

databases (Froese & Pauly, 2019; Palomares & Pauly, 2019; WoRMS Editorial Board, 2019). 

The cleaned and trimmed dataset contained 273,548 observations across 6,406 fisheries. This 

includes observations from 62 LMEs, 698 genera and 1,270 species.  

The original paper doesn’t report the exact data cleaning decisions, but as a point of 

comparison they end up with 302,852 observations over 64 LMEs, 687 genera and 1,179 

species. Comparing over reported summary values from the original report, the recreated 

dataset looks to be reasonably close (conservative in collapse metric if anything):  
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Table 3: Comparison of Dataset Descriptive Statistics 

Variable Recreated Costello 

Percent Collapsed (2003) 30.1% 27% 

   

Relative fraction collapsed, ITQ 

fisheries versus non-ITQ (2003) 

50.2% 50% 

   

Annual trend towards collapse (global) 0.58% 0.5% 

 

Visualization of trends from the recreated dataset also resemble the trends from the original 

paper and show a divergence between ITQ and non-ITQ fisheries in prevalence of collapse 

after the implementation period begins (green line reflects year of first ITQ implementation): 

 

Figure 2: Collapse Trends in Recreated Dataset  

Replication Results  

Using the recreated dataset, I attempted to replicate the primary models with generally close 

results (see Appendix 1 for regression results). This serves as a check on the base dataset and 

offers a point of comparison for several alternate data samples in future tests. 
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Econometric Methods Background 

This section provides background on the theory and implementation of three econometric 

methods the Costello et al. paper relies on: difference-in-differences, logit regression and 

propensity score matching. Discussion is kept brief and focused within the context of this 

application, but Angrist and Pischke (2009) offer a useful reference for deeper background.  

Difference-in-Differences 

Costello et al. use a Difference-in-Differences (DiD) strategy for estimating the causal effect 

of the ITQ policy. The observations are separated into two groups – treatment and control – 

based on whether they received the intervention of interest (ITQ). This setup removes bias in 

the causal effect parameter stemming “from permanent differences between [treatment and 

control] groups, as well as biases from comparisons over time in the treatment group that could 

be the result of trends due to other causes of the outcome,” (“Difference-in-Difference 

Estimation,” n.d.). To implement DiD, a group indicator dummy and time trend are included 

in the regression along with the treatment variable (for Costello model treatment is number of 

years ITQ has been in place).  

The critical assumption for DiD to result in unbiased estimates is the parallel trends 

assumption. This assumes that that had the intervention never occurred, the difference in 

outcome between treatment and control groups would be constant over time. This means pre-

treatment observed outcomes for both groups must follow the same trend and post-treatment 

the counterfactual outcome for the treatment group is assumed to be a parallel trend to the 

control group’s observed outcome.  

Logit Regression 

Due to the binary nature of the outcome variable (fishery collapse), Costello et al. employ a 

logit model to estimate the causal effect. This improves results versus an OLS regression by 

mitigating heteroskedasticity concerns and restricting probability estimates to the [0,1] range. 

To get these benefits the outcome variable is transformed using a logit link function, 

log (
𝑌𝑖𝑡

1−𝑌𝑖𝑡
), a binomial distribution is assumed, and least-squares optimization is replaced with 

maximum-likelihood estimation (MLE) – meaning the RSS criterion is replaced with log-loss.  
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These changes have consequences for the model output in that the estimated coefficients 

represent the rate of change in log-odds of the positive binary outcome rather than the more 

interpretable probability. To get the effect in terms of probability a non-linear transformation 

must be made (Pr =
1

1+𝑒−(𝑙𝑜𝑔-𝑜𝑑𝑑𝑠)
). This means the marginal effect of interest is different at 

different levels of the covariates, so inference requires some form of averaging to get a single 

value (Costello uses average marginal effect). This also requires a new estimation of the 

standard errors for the marginal effect on probability, for which Costello uses the delta method.   

Propensity Score Matching 

Selection bias occurs in non-random studies when there is a systematic difference between 

control and treatment groups due to the way treatment is assigned (or selected). If this 

difference effects the trends over time, then the parallel trends assumption of the DiD model 

will be violated and causal estimates will be biased. Propensity score matching (PSM) is a 

technique designed to mitigate selection bias by conditioning each unit on the observable 

characteristics that effect its treatment. This is achieved using a propensity score, representing 

the probability of treatment (𝑊𝑖) conditional on a set of observable variables (𝑋𝑖): 

𝑝𝑟𝑜𝑝𝑒𝑛𝑠𝑖𝑡𝑦 𝑠𝑐𝑜𝑟𝑒 =  𝑒(𝑥) = 𝑃[𝑊𝑖 = 1|𝑋𝑖 = 𝑥] 

Implementation 

Implementation of PSM in a regression context occurs in two stages:  

Stage 1: Estimating Propensity Scores 

A propensity score value must be estimated for each observation – in econometrics this is 

traditionally done using a logit model by regressing the treatment indicator dummy on any 

covariates thought to impact it. Then probabilities are backed out from the log-odds fitted 

value:  

Pr(𝑊𝑖 = 1) =
1

1 + 𝑒−(𝛽0+𝛽1𝑋𝑖)
 

Since this is essentially a prediction problem, ML techniques offer an alternative method for 

estimating p-scores. By allowing a more flexible fit to the data these may result in more 

accurate estimated values. I test this on the Costello et al. models in Chapter 5. 
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Stage 2: Adding Propensity Scores to Causal Model 

To realize the benefit of propensity scores in removing bias, they must be integrated into the 

final causal model by one of several ways, from directly matching up units with similar odds 

of treatment to reweighting outcomes based on the propensity score. In the DiD strategy 

propensity score estimates are generally added to the regression as a control variable that 

implicitly “matches” the observations.  

Assumptions 

For this process to fully eliminate the selection bias, two assumptions must hold: 

Assumption A1 Unconfoundedness:    𝑊𝑖|Xi ⊥ (𝑌𝑖(0), 𝑌𝑖(1))  

Also called selection-on-observables or strongly ignorable treatment assignment, this 

assumes that, conditional on the observable variables, treatment assignment is as good 

as random.  

Assumption A2 Overlap:                      0 < 𝑒(𝑥) < 1  

This assumption requires there to be overlap in covariate values of the treated group 

and control group. In practice this requires the distribution of propensity scores to be 

bounded away from 0 and 1.  

Costello et al. Models 

Costello et al. use several different models to estimate the causal effect of ITQ systems and 

check that results are robust. In this section I overview each of the specifications. 

First-Cut Model Specification 

As an initial baseline model, Costello et al. pool all the catch observations into two groups, 

ITQ and non-ITQ (just 2 observations per time period). They then run a regression of percent 

of fisheries within each group (indexed 𝑖) that are collapsed at time 𝑡 (𝑃𝑐𝑡𝐶𝑜𝑙𝑙𝑎𝑝𝑠𝑒𝑑𝑖𝑡) on a 

group dummy indicator (𝐼𝑇𝑄𝑖), the fraction of ITQ fisheries that have implemented their 

catch-shares by year 𝑡 (𝐼𝑇𝑄𝑖𝑚𝑝𝑡, trending towards 1), a linear time trend (𝑡𝑖𝑚𝑒𝑡), and an 

interaction between the group dummy and implemented-ITQ fraction.  

𝑭𝒊𝒓𝒔𝒕-𝑪𝒖𝒕 𝑴𝒐𝒅𝒆𝒍:  

𝑃𝑐𝑡𝐶𝑜𝑙𝑙𝑎𝑝𝑠𝑒𝑑𝑖𝑡 =  𝛽0 + 𝛽1𝐼𝑇𝑄𝑖 + 𝛽2𝐼𝑇𝑄𝑖𝑚𝑝𝑡 + 𝛽3𝐼𝑇𝑄𝑖 ∗ 𝐼𝑇𝑄𝑖𝑚𝑝𝑡 + 𝛽4𝑡𝑖𝑚𝑒𝑡  
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𝛽3 is the parameter of interest for causal analysis and represents how much implementing ITQs 

reduces the percentage of collapsed fisheries. This is used as a simple high-level model for 

checking that the data has reasonable trends. The main causal models in this article employ 

fishery-specific estimation methods.  

Base Model Specification 

To test the hypothesis that ITQ implementation reduces the probability of fishery collapse, 

Costello et al. use a difference-in-differences (DiD) framework with a logistic regression. The 

binary collapse indicator is transformed by the logit link function to create the outcome of 

interest. The base specification treats each annual catch observation (indexed by fishery, 𝑖, and 

time, 𝑡) as independent in a simple logit regression optimizing on maximum likelihood:  

𝑩𝒂𝒔𝒆 𝑴𝒐𝒅𝒆𝒍:  

Pr(𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒𝑑𝑖𝑡 = 1) =
1

1 + 𝑒−(𝛽0+ 𝛽1𝐼𝑇𝑄𝑖+ 𝛽2𝑦𝑒𝑎𝑟𝑠𝑜𝑓𝐼𝑇𝑄𝑖𝑡+ 𝛽3𝑡𝑖𝑚𝑒𝑡)
 

𝐼𝑇𝑄𝑖 - is a dummy ITQ group indicator variable, takes value of 1 if fishery 𝑖  

implements a catch-share system by 2003 

𝑦𝑒𝑎𝑟𝑠𝑜𝑓𝐼𝑇𝑄𝑖𝑡  - is the continuous treatment variable, reflects number of years 

a catch-share system has been in place at fishery 𝑖, time 𝑡  

𝑡𝑖𝑚𝑒𝑡  - is a simple linear time-trend  

Under this specification the parameter of focus is 𝛽2 which represents the marginal effect of a 

year under ITQ management on the probability of collapse. The 𝛽1 coefficient represents the 

general difference between collapse probability in the ITQ group versus the non-ITQ group. 

This term is critical for the DiD identification framework and controls for time-varying 

unobservables under the parallel trends assumption. 

Advanced Model Specifications 

Acknowledging the potential biases in the base model, Costello et al. then add a propensity 

score to the regression to control for selection bias and use a fixed-effects transformation to 

control for time-invariable fishery-specific unobservables.  
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Propensity Score Model 

Costello et al. use propensity score matching to control for selection bias with the goal of 

creating “treated and control groups that are as similar as possible,” (2008a). To implement 

PSM in the model, they estimate propensity scores and add them to the base regression:  

𝑩𝒂𝒔𝒆 𝑷-𝒔𝒄𝒐𝒓𝒆 𝑴𝒐𝒅𝒆𝒍:  

Pr(𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒𝑑𝑖𝑡 = 1) =
1

1 + 𝑒−(𝛽0+ 𝛽1𝐼𝑇𝑄𝑖+ 𝛽2𝑦𝑒𝑎𝑟𝑠𝑜𝑓𝐼𝑇𝑄𝑖𝑡+ 𝛽3𝑡𝑖𝑚𝑒𝑡+𝐩𝐬𝐜𝐨𝐫𝐞itλ)
 

The researchers try several model specifications for estimating the propensity score, fitting a 

logit regression of the treatment indicator (𝐼𝑇𝑄𝑖𝑚𝑝𝑙𝑖𝑡, a year-specific dummy indicator for 

whether ITQ is in place) on dummy variables for the LMEs, Genera and Species. For example, 

the first specification used LME classification dummies (indexed 𝑙 ∈ 𝐿) as the covariates: 

𝑳𝑴𝑬 𝑷-𝒔𝒄𝒐𝒓𝒆 𝑷𝒓𝒆𝒅𝒊𝒄𝒕𝒐𝒓 𝑴𝒐𝒅𝒆𝒍:  

𝑝𝑠𝑐𝑜𝑟𝑒𝑖𝑡 = Pr(𝐼𝑇𝑄𝑖𝑚𝑝𝑙𝑖𝑡 = 1)  =
1

1 + 𝑒−(𝛼0+ 𝛼1𝐿𝑀𝐸1+⋯𝛼𝐿𝐿𝑀𝐸𝐿)
 

Costello then ran this regression for each year to get a probability of treatment for each fishery 

conditional on year and the observables included as covariates. Further specifications tested 

included genera dummies only, species dummies only, and an “all-in” model including all 

LME/genus/species dummies.  

Given the number of levels in each categorical variable (64 LMEs, 687 genera, 1,179 species), 

Costello’s dummy approach results in large covariate sets. Since the estimators were refit for 

each year, they can be rewritten as a single model including year dummies (52) and full 

interaction terms. This results in very high-dimensional regressions… even the simplest 

specification (LME dummies) has 3,3961 covariates. The “all-in” specification (including 

LME, genus and species) has over 100,000 covariates. Since ML methods are designed for 

use with high-dimensional data in mind, this is an optimal area to apply them. 

Fixed Effect Model 

To control for potential bias from time-invariant unobservables, the authors rerun the base 

model after a Fixed-Effect transformation clustering on fisheries. This removes any time-

constant variables so the 𝐼𝑇𝑄𝑖 indicator drops out of the regression and marginal effects on 

probability are not possible to calculate. Therefore reported coefficients for this regression 
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reflect rate of change in log-odds. Thus, while potential bias is removed, the interpretability is 

compromised. 
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Chapter 5 Empirical ML Test: Propensity Score Matching 

This chapter provides a test on the value of off-the-shelf machine learning methods for first-

stage propensity score estimation. Model specifications and data are inspired by the Costello 

et al. paper (2008a), but the goal is findings that are generalizable to parameter estimation 

problems across resource economics.  

First, I explain the test design and implementation, which involves the application of logit, 

shrinkage (Lasso/Ridge/Elastic-Net), CART, and Random Forest regressions to three 

covariate sets to create propensity score predictors. Next, I compare the results of these first-

stage regressions across fitting methods, discussing the quality of estimates with consideration 

for potential overfitting problems. Finally, I use each trained model to predict propensity 

scores and apply them to Costello’s second stage causal models to evaluate robustness of the 

main results to the new methods. 

Background 

As discussed in Chapter 3, propensity score estimation is a popular application for machine 

learning methods in causal analysis literature because it is a prediction problem for which 

inference statistics are not generally required. In practice, this causal indifference in stage one 

results in a tendency to include many covariates to improve the model fit. Zigler and Dominici 

refer to this as the “kitchen sink” approach – in which researchers throw all their available data 

fields into the matching estimator and ignore the risk of confounders (2014).  

When applying high-dimensional data, the risk is that resulting estimates will include both 

true signal (the variables that are causally impacting treatment) and noise from extra variables 

(confounders) – which could result in more variance in stage two without any improvement 

on bias. Schuster et al. test this with high-dimensional logistic estimators and conclude 

“overfitting of propensity score models should be avoided to obtain reliable estimates of 

treatment or exposure effects” (2016).  

While the final impact of overfitting propensity scores is still an area of active debate, the root 

issue is one that ML procedures have been designed to account for. The standard process of 

cross-validation is tailored to improve external validity and prevent noise from overpowering 

the signal in fitted models, while still allowing for a flexible fit on the data. To test if this adds 
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value in a propensity score estimator, I apply several algorithms to a high-dimensional dataset 

side by side with traditional logistic regression, using a hold-out validation set to measure the 

results. 

The Test 

I test the claim that off-the-shelf ML methods produce better out-of-sample predictions than 

traditional econometric methods in a propensity score estimation scenario. The expected result 

is better prediction through ML’s ability “to fit complex and very flexible functional forms to 

the data without simply overfitting,” (Mullainathan & Spiess, 2017). To support this 

hypothesis, ML methods must show two results: 

1) More accurate predictions (lower error) than the traditional alternative 

2) Levels of overfitting in-line with or below the traditional alternative 

Result 1 serves as evidence that the flexible fitting process does improve the model fit and 

prediction accuracy. Result 2 is a requirement for the model to be generalizable and for the 

findings in Result 1 to be meaningful, since overfit models result in poor out-of-sample 

predictions and produce misleading (overstated) fit metrics.  

Validation Method 

Since ML tuning parameters are chosen with feedback from the training dataset, model fit 

must be evaluated on data unseen during the model construction process. Before fitting the 

estimators, a hold-out validation set containing 30% of the observations is randomly selected 

and removed, leaving 70% of the data for training. While this separation of data is unnatural 

for the logit models used by Costello in the original paper (no tuning parameters), the process 

provides a better point of comparison between methods and allows a test for overfitting. The 

same training set is used for each method, so they are on the same playing field.  

Since the outcome is unbalanced (only ~6% of the observations have ITQs implemented), I 

use an endogenous stratified splitting method when creating the validation set. The result is 

that each set has similar fraction of positive binary outcomes, which helps ensure the two 

samples are representative of the full dataset.  
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Model-Fitting Procedure 

Each model is fit on the training set (70% of full dataset), using its method’s standard off-the-

shelf implementation. This means the ML methods add an extra step for parameter tuning 

(cross-validation), while the traditional method (logit model) is fitted in one step on the full 

training set.  

Cross-Validation 

The specific cross-validation process used for each model is dependent on the algorithm. 

Validation-set CV was employed for the shrinkage models (Lasso, Ridge, Elastic-Net), 

holding out a stratified random sample of 30% of the training set for use as the test sample in 

scoring different tuning parameters. This decision was made primarily on computational 

grounds, but k-fold was also tested and found to have similar performance results. 

The tree methods (CART, Random Forest) make use of stratified k-fold CV with 5 folds. This 

was possible due to the computational efficiency of their fitting method. Testing on several 

specifications, 5 folds had results better than a simple validation-set and in-line with higher 

fold-counts.   

Parameter-Tuning 

Each algorithm was implemented using the standard tuning parameters that are covered in 

most introductory literature: 

Table 4: Parameters Tuned by Cross Validation 

Algorithm Tuning Parameters 

Ridge 𝜆  (weight on l2 regularization penalty) 

Lasso 𝜆  (weight on l1 regularization penalty) 

Elastic-Net 𝜆1 (weight on l1 / Lasso penalty) 

𝜆2 (weight on l2 / Ridge penalty) 

CART Maximum Depth  

Maximum Leaves (terminal nodes) 

Random Forest Number of Trees 
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Maximum Features (𝑚, size of split candidate 

pool as percent of parameter count 𝑝) 

Maximum Depth (of each individual tree) 

 

For all methods the final tuning parameters were selected from a range of values using a grid-

search with a log-loss scoring criteria calculated on the CV test set(s). Since the tree methods 

have several parameters, I added a step to narrow down the parameter ranges included in the 

grid-search and make it more computationally tractable.  

This parameter-search step calculated test scores for a range of each parameter while holding 

the others constant. The results are best visualized in a validation curve like the one below:  

 

Figure 3: Validation Curve Example (Model 1, CART, Max-Depth) 

The curve provides a visual example of overfitting – increasing model complexity (max depth) 

always improves the training fit, but past a certain point (6) it results in worse performance on 

the CV set and harms generalizability. For the grid search I focused on values around this 

optimal depth of 6 (see Appendix 4 for reporting of curves for other parameters).   

Performance Evaluation 

The fitted models were used to calculate performance metrics (measures of fit) on both the 

training and validation sets created in the initial split. To test overall model fit (Result 1), the 

performance scores are directly compared using the validation set. To check for overfitting 

(Result 2) a ratio of the performance score on the validation set to score on the training set is 

calculated and may be compared across models. A very high validation error relative to the 
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training set error is a sign that noise in the training set is overfitted into the model and the 

predictions on new data may be questionable. 

Performance Metric 

Performance is compared using the log-loss and mean-squared-error (MSE) metrics, since 

they are both meaningful for the prediction type (probability) and robust to unbalanced 

outcomes. Log-loss is the fitting criterion in the logistic model (maximum-likelihood 

optimization) – it penalizes bad probability estimates exponentially for their degree of 

wrongness and gives a value in range [0,∞) where 0 is perfect predictions. 

Mean squared error (MSE) was chosen as a secondary metric since it is the standard measure 

of error in ML for most regression functions (and the splitting criterion in tree methods). In 

this case MSE is equivalent to the Brier score which is designed as a loss-function for 

probability regressions. It takes the average squared difference between the predicted 

probability and the actual outcome, resulting in a value between 0 and 1 with lower values 

representing better fit.  

Test Dataset 1 (Global Fisheries) 

Data 

Starting with the recreated dataset described in Chapter 4, I dropped all observations before 

1970 to remove the unnecessarily long pre-treatment time-series. This has little effect on the 

overall results (see “first-cut” results below) and serves to create a more balanced dataset in 

terms of ITQ-implementations versus total observations. This improves convergence on the 

solution at no significant cost on the empirical results or causal identification. It also increases 

the ratio of number of parameters to observations, which increases the overfitting risk and 

creates a good test for ML. 
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Table 5: Estimated Coefficients from First-Cut Model (Dataset 1) 

Variable Dataset 1 Costello 

ITQi -0.0460*** -0.0428*** 

 (0.00560) (0.00505) 

   

ITQ_impt 0.0387*** 0.0090 

 (0.0141) (0.01255) 

   

ITQi 

*ITQ_impt 

-0.175*** -0.1367*** 

 (0.0135) (0.01188) 

   

timet 0.00484*** 0.0049*** 

 (0.000274) (0.00025) 

   

Intercept 0.0199*** 0.0096* 

 (0.00627) (0.00627) 

R-squared 0.922 0.92 

N 108 108 
       Standard errors in parentheses. Coefficients reflect rate of change for 

      percent of fisheries collapsed  
      * p < 0.1, ** p < 0.05, *** p < 0.01 

Model 1 

Specification (Model 1) 

All propensity score estimator models tested in this thesis differ from the Costello et al. 

(2008a) version by removing the full interaction term between year dummy and the categorical 

variable dummies. That specification resulted in a high-dimensional covariate space that 

would not converge to a solution under the logit model given my limited computational 

resources. Instead I included full year dummies to capture any year-specific shocks and a linear 

time trend to capture constant changes in treatment implementation over time. The resultant 

models are still relatively high-dimensional and remain a valid test with potential for 

overfitting.  

As a base specification, Model 1 includes all LME dummies and time trends (95 covariates): 

𝑴𝒐𝒅𝒆𝒍 𝟏: 

 𝑝𝑠𝑐𝑜𝑟𝑒𝑖𝑡 = Pr(𝐼𝑇𝑄𝑖𝑚𝑝𝑙𝑖𝑡 = 1)  =
1

1 + 𝑒−(𝛼0+ 𝛼1𝐿𝑀𝐸1+⋯𝛼𝐿𝐿𝑀𝐸𝐿+ 𝜃2YR2+⋯ 𝜃𝑇YR𝑇 + time𝑡)
 

Where 𝐿𝑀𝐸l is indicator dummy for fishery LME , 𝑌𝑅t is time dummy indicator,   

𝑡𝑖𝑚𝑒𝑡 is linear time trend 
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Results (Model 1) 

ML was widely ineffective on Model 1, with the Logit model outperforming all others on both 

validation-set scoring metrics (MSE and log-loss):  

 
Table 6: Propensity Score Fitting Results (Model 1) 

Model Optimal Tuning 

Parameters 

MSE 

(valid. set) 

Log-loss 

(valid. set) 

Overfit 

Ratio 

(MSE) 

Overfit 

Ratio  

(Log-Loss) 

Logit NA 0.00503 0.01755 1 1 

Lasso λ:  0.1 0.00504 0.01773 1.002 1.010 

Ridge λ:  0.1 0.00504 0.01773 1.002 1.007 

Elastic-

Net 
𝜆1= 0.1   (Lasso) 

𝜆2= 0      (Ridge) 

0.00504 0.01773 1.002 1.009 

CART Max depth: 10 

Max leaves: 45 

0.00505 0.01822 1.031 1.076 

Random 

Forest 

Num of trees: 35 

Max features:  50% 

Max depth: 10 

0.00505 0.01779 1.031 1.056 

Performance metrics (MSE, Log-loss) calculated on the held-out validation set (lower score is better fit). The 

overfit ratio represents performance score calculated on validation set divided by score calculated on the 

training set (large values are sign of overfitting).   

Under this specification the Logit model is unanimously the best model, both on data fit and 

overfitting – of which there is none since performance is equal in training and validation sets 

(overfit ratio = 1).  

All three shrinkage methods optimized at the lowest tested tuning parameter (λ = 0.1), setting 

a small weight on the penalty term and a low level of regularization. This result implies that 

reducing bias is relatively more important than reducing variance for improving the 

performance metric (log-loss).  Under Lasso and Elastic-Net the tuning parameter was large 

enough to engage variable selection – shrinking coefficients on 33 of the 95 covariates to down 

0.  

Non-linear ML methods beat logit performance on the training set but scored worse on the 

validation set. This illustrates their ability to capture more information from hidden and 
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nonlinear interactions, but in this case the additional information was largely noise 

(overfitting). Random Forest performance is very close to the single CART with a slight 

reduction in overfitting (overfit ratio on log-loss 1.056 vs 1.076). The similar scoring between 

the two methods is a sign that the data is relatively stable and therefore doesn’t benefit much 

from the extra layers of randomization (bootstrapping and splitting criterion). 

A potentially useful output from the Random Forest algorithm is feature importance rankings. 

This improves model interpretability by ranking all covariates based on their contribution 

towards the estimates (calculated as the total reduction in error, RSS, from all the covariate’s 

splits across all trees, divided by the total number of trees). A covariate is more important if it 

is used more often and if it has a bigger impact on the error term. Scores are then scaled so 

that the total importance metrics sum to 1. For this regression the top 10 most important 

covariates are: 

 

Figure 4: Random Forest Covariate Importance (Model 1) 

 

The results on this test do not support ML methods for p-score estimations, but they do show 

a potential use as a data exploration tool for high-dimensional datasets. The variable selection 

from shrinkage methods can direct researchers towards variables that they may want to 

reconsider including in the analysis, while the covariate importance metrics from the random 

forest can help identify some of the most important drivers of variance.  
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There is no clear explanation for ML’s underperformance on this test, but I have two theories 

on potential causes:  

1) the dimensionality of the dataset/specification  

2) the variance in the underlying data 

While 95 covariates represent a high-dimensional problem by economics standards, the model 

did not result in much overfitting which suggests that it was not high-dimensional enough to 

benefit from ML’s strength. Likewise, the variance in these covariates is limited since they are 

sparse dummies in which each observation takes only three non-zero values out of 95. This 

does not give the ML models, particularly the non-linear ones, much to work with to find 

highly complex relationships. To test each of these theories I ran tests on two more models. 

Model 2 

Specification (Model 2) 

To test a higher-dimensional specification I initially set out to recreate Costello’s “all-in” 

specification (including LME, genus, and species dummies) in my analysis. However, even 

excluding the time-interaction variables, convergence failed due to high multicollinearity 

between species and genus dummy variables. 461 genera in the dataset include only a single 

observed species and over three-quarters of the genera contain only two. Since the two fields 

largely capture the same information, I ran the second model with genus dummies but not 

species.  

The second test specification includes LME, genus and time dummies/trend (792 covariates):  

𝑴𝒐𝒅𝒆𝒍 𝟐: 

 𝑝𝑠𝑐𝑜𝑟𝑒𝑖𝑡 = Pr(𝐼𝑇𝑄𝑖𝑚𝑝𝑙𝑖𝑡 = 1) =
1

1+𝑒−(𝛼0+ 𝛼1𝐿𝑀𝐸1+⋯𝛼𝐿𝐿𝑀𝐸𝐿+𝛾1𝐺𝑒𝑛𝑢𝑠1+⋯𝛾𝐺𝐺𝑒𝑛𝑢𝑠𝐺+ 𝜃1YR1+⋯ 𝜃𝑇YR𝑇 + time𝑡) 

Where 𝐿𝑀𝐸l is indicator dummy for fishery LME, 𝐺𝑒𝑛𝑢𝑠𝑔 is indicator dummy for fishery 

genus, 𝑌𝑅t is time dummy, 𝑡𝑖𝑚𝑒𝑡 is linear time trend 

Results (Model 2) 

Again, ML methods proved largely ineffective, with logit outperforming all but the nonlinear 

models, which suffered from overfitting: 
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Table 7: Propensity Score Fitting Results (Model 2) 

Model Optimal Tuning 

Parameters 

MSE 

(valid. set) 

Log-loss 

(valid. set) 

Overfit 

Ratio 

(MSE) 

Overfit 

Ratio 

(Log-

Loss) 

Logit NA 0.00249 0.00883 1.13 1.11 

Lasso λ: 0.1 0.00249 0.00887 1.13 1.11 

Ridge λ: 0.1 0.00251 0.00900 1.12 1.10 

Elastic-

Net 
𝜆1= 0.1   (Lasso) 

𝜆2= 0      (Ridge)  

0.00249 0.00887 1.13 1.11 

CART Max depth: 20 

Max number leaves: 75 

0.00190 0.01201 1.13 1.20 

Random 

Forest 

Num of trees: 100 

Max features:  0.28% 

Max depth: 40 

0.00128 0.00609 3.05 3.88 

Performance metrics (MSE, Log-loss) calculated on the held-out validation set (lower score is better fit). The 

overfit ratio represents performance score calculated on validation set divided by score calculated on the 

training set (large values are sign of overfitting).   

Logit slightly outperformed its linear ML alternatives in both performance metrics and, while 

the higher-dimensional setting increases the overfitting ratio, the results are within reasonable 

levels (validation set only ~10% higher error). Regularization tuning parameters in the 

shrinkage models again optimized at the lowest penalty weightings, implying that variance is 

already low. Lasso/Elastic-Net models performed significant variable-selection, shrinking 446 

of 792 coefficients down to 0. 

CART performed very well on the larger covariate space by the MSE metric but 

underperformed on log-loss. This might be explained by the difference in criterion for 

choosing tree partitions (MSE) versus the criterion for fitting logit regressions (log-loss). The 

grid search was based on log-loss as the scoring metric, but splitting decisions look to have a 

bigger performance impact in fitting. Given the higher overfitting score (20% increase in log-
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loss from training to validation) and poor log-loss score, logit remains the preferred model. 

Random Forest highly outperformed all other methods on both metrics, but there is evidence 

of serious overfitting: log-loss jumps nearly 4x and MSE increases 3x from training to 

validation. Caution is advised when using this model’s predictions as it contains significant 

noise. The variable importance list may still provide some value in identifying strong 

predictors: 

 
Figure 5: Random Forest Covariate Importance (Model 2) 

 

The top 3 covariates are the same as Model 1, with time trend the most important variable (by 

far in this case). Still the ML methods on whole are underwhelming even under the higher-

dimensional setting. To check the theory that higher variance in the covariate set is necessary 

to unlock ML potential I ran one more model on a newly constructed dataset.  

Test Dataset 2 (OECD Fisheries) 

The covariate sets tested in Models 1 and 2 had limited variance because they were all sparse 

dummies (plus a linear trend). Since ML methods are best for picking up complex and hidden 

variance in high dimensions this may not be a fair test for their potential. To test the theory 

that ML adds more value in the presence of more continuous and time-varying covariates, I 
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constructed a new dataset: instead of area and taxonomic dummy variables the new fields 

capture similar characteristics using continuous biological, commercial and macro data. 

Data 

Sample Restrictions 

Due to limited data availability, several changes were made to the data sample for the final 

test. The time-series date range has been changed to 1970-2008, trimming away some pre-

treatment observations and adding 5 years to the tail end to counter reduction in sample size. 

To allow the use of biological data, species have been restricted to those in the Fishbase 

database (Froese & Pauly, 2019).  In effect this removes just three groups which differ from 

fish in significant ways: crustaceans, molluscs, and cephalopods. The bulk of fisheries remain 

covered after this restriction, so the results are still generalizable to a wide range of species 

and ecosystems. The final, most restrictive change is a constraint on countries to facilitate the 

use of macro data. Only OECD fisheries are considered – defined as fisheries whose catch 

reporting entities since 1950 have all been in the current list of 36 OECD countries.  

The resulting dataset contains 59,969 observations and 2,074 fisheries, covering 54 different 

LMEs, 383 genera and 631 species. There are 30 fisheries with ITQs – a ratio in-line with the 

original dataset in the ~1% range. As a sanity check on general trends for the new sample, I 

compare results on the “first-cut” model versus the full Costello dataset:  

Table 8: Estimated Coefficients from First-Cut Model (OECD sample) 

Variable OECD Sample Costello 

ITQi -0.113*** -0.0428*** 

 (0.0172) (0.00505) 

   

ITQ_impt 0.107** 0.0090 

 (0.0449) (0.01255) 

   

ITQi 

*ITQ_impt 

-0.0799** -0.1367*** 

 (0.0135) (0.01188) 

   

timet 0.00279* 0.0049*** 

 (0.00153) (0.00025) 

   

Intercept 0.113** 0.0096* 

 (0.0465) (0.00627) 

R-squared 0.75 0.92 
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N 78 108 
          Standard errors in parentheses. Coefficients reflect rate of change for 

        percent of fisheries collapsed  
       * p < 0.1, ** p < 0.05, *** p < 0.01 

 

Trends are reasonably close to the original findings – the effect of implementing ITQs in the 

new sample is an 8% reduction in percentage of collapsed fisheries versus 13% in the original 

data.  

New Data Fields 

Using this sample of fisheries, I gathered additional data to create a broad set of covariates 

with more variance than Costello’s dummy fields, while covering a similar range of biological, 

commercial, and regional information that could impact ITQ implementation. Biological fields 

were primarily pulled from the FishBase (FB) database (Froese & Pauly, 2019). The 

SeaAroundUs (SAU) database was tapped for species classification fields and catch 

composition details such as country, gear-type and end-use type (Pauly & Zeller, 2015). 

Maddison Historical Statistics (MHS) was used for historical macro data on GDP and 

population (Maddison Project, 2018; Bolt et al., 2018). A detailed list of these new fields with 

sources is included in the model description below. 

Model 3 

Specification (Model 3) 

To test the ML methods on a higher variance “kitchen sink” specification, I substituted the full 

set of newly created covariates for the dummy variables and kept the time dummies/trend. The 

resulting model uses the following 124 covariates to estimate probability of ITQ 

implementation (see Appendix 4 for breakdown of dummy variable classes):  

Table 9: Description of Covariates in Model 3 

Variable Type Description Source 

Biological Covariates 

Commercial 

group 

Dummies (9) Broadest species grouping, classifies species 

along general commercial lines (e.g. 

anchovies, tuna/billfishes)  

SAU 

Functional 

group 

Dummies (23) Secondary species grouping metric, classifies 

on taxonomic traits, ecosystem, diet and size 

SAU 
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Common depth Continuous (2) Variables for species’ common high and low 

depth, measure of ecosystem 

FB 

Trophic level Continuous Measure of the species’ diet and level in the 

food chain 

FB 

Vulnerability Continuous Measure 0-100 of fish vulnerability to 

extinction, est. based on ecological and life-

history characteristics 

FB* 

Years-to- 

maturity 

Discrete,  

4 levels 

Estimate of species’ time to sexual maturity, 

based on FB resilience classifications (range 

0.5-15 years), measure of species’ 

productivity 

FB 

Commercial Covariates 

Gear category Continuous, 

fractions (7)  

Ratio of year’s tonnage caught on different 

fishing methods (e.g. trawls/dragged gear, 

gillnet), fishery-level 

SAU 

End use type Continuous, 

fractions (4) 

Ratio of year’s catch earmarked for 4 

different uses (e.g. human consumption, 

discard), fishery-level 

SAU 

Fishing sector Continuous, 

fractions (4) 

Ratio of year’s tonnage caught by type of 

fishing entities (e.g. commercial, 

subsistence), fishery-level 

SAU 

Price category Discrete,  

4 levels 

Species price category (ordinal values 1-4), 

model-based estimates pulled from FB 

categories low-very high 

FB** 

Macro Covariates 

Real GDP per 

capita 

Continuous GDP per capita, in 2011 US dollars, annual 

measure, weighted by country historical 

catch 

MHS 

Population Continuous Annual measure, weighted by country 

historical catch 

MHS 

Historical 

country weight 

Continuous, 

fractions (30) 

Time-constant covariate indicating ratio of 

total tonnage the country has accounted for in 

given fishery (1950-2008) 

SAU 

Time covariates 

Linear time-

trend 

Discrete,  

39 levels 

Annual time trend – to capture long-term 

shifts towards ITQ implementation 

N/A 
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Time dummies Dummy (38) Dummy for each year (excluding base), 

capturing any year-specific shocks in 

implementation 

N/A 

* vulnerability score based on model (Cheung, Pitcher, & Pauly, 2005) 

** price category estimate based on model (Sumaila et al., 2007) 

This set of variables is designed to capture most of the factors from Costello’s high-

dimensional specification while including more continuous, discrete and time-varying metrics. 

The specification remains reasonably high in dimensions – 484 observations per parameter - 

so should provide a good test for ML methods.  

Results (Model 3) 

ML methods beat the base Logit model across the board with largely tempered overfit levels: 

Table 10: Propensity Score Fitting Results (Model 3) 

Model Optimal Tuning 

Parameters 

MSE 

(valid. set) 

Log-loss 

(valid. set) 

Overfit 

Ratio 

(MSE) 

Overfit 

Ratio 

(Log-

Loss) 

Logit NA 0.00729 0.04041 1.00 0.99 

Lasso λ: 0.2 0.00504 0.02077 1.02 1.04 

Ridge λ:  0.1 0.00505 0.02084 1.02 1.04 

Elastic-

Net 
𝜆1= 0.19   (Lasso) 

𝜆2= 0.57   (Ridge) 

0.00504 0.02078 1.02 1.04 

CART Max depth: 4  

Max number leaves: 15 

0.00516 0.03084 1.01 1.17 

Random 

Forest 

Num of trees: 50 

Max features:  15% 

Max depth: 15 

0.00270 0.00927 3.29 2.45 

Performance metrics (MSE, Log-loss) calculated on the held-out validation set (lower score is better fit). The 

overfit ratio represents performance score calculated on validation set divided by score calculated on the 

training set (large values are sign of overfitting).   

The logit model again shows no overfitting, with an overfit ratio below 1 – evidence of 

underfitting if anything. ML results support this finding that the logit left signal uncaptured by 
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greatly improving performance. Shrinkage methods provide the most value as they boost 

performance without raising overfitting concerns.  

Shrinkage methods resulted in a nearly two-fold improvement in performance versus the base 

logit model. Both Elastic-Net and Lasso tuning parameters optimized above the minimum 

tested level and thus engaged stronger regularization (traded more bias for variance) than in 

Models 1 and 2. Variable selection from the regularization resulted in 41 coefficients zeroed-

out using Lasso and 31 using Elastic-Net – out of a total 124.   

The single CART method results in a relatively shallow tree (4 layers, 15 nodes), which 

underperforms shrinkage and but improves upon logit performance to the tune of ~25%. 

Overfitting risk is lower on this dataset than the previous models (no overfit on MSE, 1.17 

overfit ratio on log-odds), but it remains higher than the linear models.  

Random Forest greatly outperforms all other methods, even reducing the error metrics versus 

shrinkage methods by ~50%. However, there is again a high degree of overfitting present since 

performance in validation was around 3x worse than the training results. The model’s feature 

importance metrics show a more balanced set of covariates than previous models, but again 

Iceland is a key influence in predicting ITQ implementations: 

 

 

Figure 6: Random Forest Covariate Importance (Model 3) 
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These results suggest that the underlying data has sizeable variance, sparsity and no 

particularly strong nonlinear relationships. Lasso regression results in the best balance of 

performance and overfitting, proof that off-the-shelf ML can provide value in pre-processing 

prediction tasks for econometrics. Again, overfitting in the more advanced/nonlinear ML 

methods resulted in less generalizable models that may have suspect results. Different 

economics datasets may very well benefit from the tree methods with generalizable results, 

but in this application researchers are better off adhering to Occam’s razor and using the less 

complication method. 

ML Impact on Final Parameter Estimators 

While ML methods have shown to improve accuracy of propensity score estimations under 

some conditions, it is unclear what effect this has on the final causal model. To test if the new 

methods resulted in any notable changes to the coefficient of interest (the causal effect of 

ITQs), I used each fitted model to predict propensity scores and then included these values in 

the final regressions according to the Costello et al. models (see Appendix 2 for full results of 

regressions).  

ML estimates resulted in considerably different causal parameters versus the logit model 

estimates in some cases. For a sense of these effects, this section presents two examples aimed 

at answering two of the most important questions to economists:  

1) Does overfitting in stage 1 impact the causal parameter estimates in stage 2?  

2) Do improvements to propensity score estimates have a notable impact on causal 

parameter results? 

Tests for question 1 serve as a check for whether practitioners should be concerned with 

overfitting in the pre-processing task. Tests for question 2 check if practitioners should care 

about the fit improvement ML offers in stage 1 (i.e. is there a value-add for the ultimate goal 

of causal inference).  

Overfitting Estimator and Causal Results 

The non-linear estimators from Model 1 provide an ideal test for whether overfitting in stage 

one of the propensity score process impacts causal parameters in stage two. Performance 

metrics on the validation set are similar across all fitting methods, so the level of overfitting is 



 62 

the primary difference between estimators: none in Logit model, low levels in shrinkage 

models and moderately high levels in CART/RF models. Using Costello’s base p-score causal 

model, there is no significant impact from overfitting on the final model. All predictors result 

in a causal effect of just below 0.009% reduction in collapse probability for each year of ITQ, 

significant at the 1% level: 

Table 11: Regression Results for P-Score Base Model (Model 1 estimates) 

 Logit Pscores 

(Model 1) 

CART Pscores 

(Model 1) 

Rand Forest 

Pscores (Model 1)  
   

itq -0.155*** -0.157*** -0.157*** 

 (0.0126) (0.0126) (0.0126) 

    

years_of_itq -0.00895*** -0.00867*** -0.00869*** 

 (0.00213) (0.00214) (0.00214) 

    

time 0.00583*** 0.00583*** 0.00583*** 

 (0.0000982) (0.0000982) (0.0000982) 

    

p_score 0.164*** 0.165*** 0.166*** 

 (0.0272) (0.0267) (0.0269) 

    

Pseudo R2 0.0205 0.0205 0.0205 

AIC 192749.4 192747.8 192747.7 

BIC 192800.1 192798.4 192798.4 

Observations 186843 186843 186843 
P-scores included in regression were estimated using test Model 1 and method noted in column title 

Coefficients reflect average marginal effect on probability of collapse  

Standard errors in parentheses below coefficients, calculated using the delta method 
* p < 0.1, ** p < 0.05, *** p < 0.01 

 

The fixed-effect model tells a different story. Again, the logit and shrinkage methods result in 

similar causal effect coefficients (around -0.011 log-odds effect and not significantly different 

from 0 at 10%). However, CART/RF p-scores result in a causal coefficient (years_of_itq) 

around 4x larger than the other regressions and significant at the 5% level. The overfit models 

reduce standard error on the causal parameter, which is a potential indicator that the overfit 

model improved the matching quality.  

 

 



 63 

Table 12: Regression Results for P-Score FE Model (Model 1 estimates) 

 Logit Pscores 

(Model 1) 

CART Pscores 

(Model 1) 

Rand Forest 

Pscores (Model 1)  
   

itq 0 0 0 

 (.) (.) (.) 

    

years_of_itq -0.0114 -0.0438** -0.0417** 

 (0.0202) (0.0195) (0.0195) 

    

time 0.0763*** 0.0755*** 0.0757*** 

 (0.00106) (0.00105) (0.00105) 

    

p_score -5.563*** -4.010*** -4.204*** 

 (0.448) (0.405) (0.409) 

    

Fixed Effects Yes Yes Yes 

Pseudo R2 0.0801 0.0794 0.0795 

AIC 68013.8 68069.6 68062.2 

BIC 68042.0 68097.8 68090.4 

Observations 89848 89848 89848 
Fixed effects clustering by fishery 

P-scores included in regression were estimated using test Model 1 and method noted in column title 

Coefficients reflect log-odds of collapse (marginal effects not possible with fixed-effects model) 

Standard errors in parentheses below coefficients 
* p < 0.1, ** p < 0.05, *** p < 0.01 

 

This result runs contrary to the Schuster et al. study that found “considerably inflated standard 

errors of effect estimates when using overfitted propensity score models,” (2016). It is possible 

that more severe overfitting levels have a different effect than that recorded in this test. The 

lightly supportable, though cautious, finding here is that overfitting in the first stage does not 

negatively impact the causal parameter estimation when restricted to moderately high levels. 

Improved Predictions and Causal Results 

Model 3 estimators serve as a good test for the impact of improved first-stage model fit on the 

final causal parameters using p-scores. Shrinkage methods significantly improved prediction 

accuracy over the logit model without any major changes in overfitting levels so comparing 

the two can identify if there is a parameter estimation impact. Using Costello’s base p-score 

model, the causal parameter is 4x larger using shrinkage estimates:  
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Table 13: Regression Results for P-Score Base Model (Model 3 estimates) 

 Logit Pscores  

(Model 3) 

Lasso Pscores 

(Model 3) 

Ridge Pscores 

(Model 3) 

Elast Net Pscores  

(Model 3)  
    

itq -0.237*** -0.207*** -0.205*** -0.206*** 

 (0.0244) (0.0254) (0.0254) (0.0254) 

     

years_of_itq 0.00811*** 0.0318*** 0.0324*** 0.0320*** 

 (0.00271) (0.00339) (0.00340) (0.00339) 

     

time 0.00716*** 0.00766*** 0.00770*** 0.00767*** 

 (0.000159) (0.000160) (0.000160) (0.000160) 

     

p_score - -1.654*** -1.801*** -1.705*** 

 (dropped, 

lack of variance) 

(0.106) (0.111) (0.108) 

     

Pseudo R2 0.0307 0.0360 0.0365 0.0362 

AIC 68169.2 67795.7 67763.6 67784.7 

BIC 68205.2 67840.7 67808.6 67829.7 

Observations 59969 59969 59969 59969 
P-scores included in regression were estimated using test Model 3 and method noted in column title 

Coefficients reflect average marginal effect on probability of collapse  

Standard errors in parentheses below coefficients, calculated using the delta method 
* p < 0.1, ** p < 0.05, *** p < 0.01 

An interesting result in this case is that the propensity score completely dropped out when 

using the logit-estimated values due to a lack of variance in the scores. According to the logit 

estimator the observations are already properly balanced in terms of their likelihood of ITQ 

implementation (~50% odds for all): 

Table 14: Propensity Score Estimates Distribution (Model 3) 

 Logit Lasso Ridge Elastic Net CART R. Forest 

 Min.    0.4996 0 0 0 0 0 

 1st Qu. 0.4997 0.0000002 0.0000007   0.0000003    0.0005410                     0    

 Median  0.4999 0.0000097 0.000021 0.0000135  0.0005410                     0    

 Mean    0.5 0.007381 0.007384 0.0073842 0.007372 0.007241 

 3rd Qu. 0.5002 0.000414 0.000570 0.0004668 0.006044 0 

 Max.    0.5004 0.992405 0.991068 0.9919689 1 1 

SD 0.0002515 0.047630 0.046920 0.0474256 0.046689 0.067285 
Distribution statistics of p-score estimates on the full OECD dataset, method of p-score prediction in column title 

The better-fit models have a much broader range of conditional treatment probabilities, 

meaning they detect observable selection bias where the logit model does not. Since there is 

not overfitting, this difference is attributable to valid signal – meaning that the traditional 

method suffers from selection bias which ML is able to capture and fix. Ramifications on the 
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causal parameters for the fixed effects model are even more significant, changing the 

coefficient from negative to positive and highly significant: 

Table 15: Regression Results for P-Score FE Model (Model 3 estimates) 

 Logit Pscores  

(Model 3) 

Lasso Pscores 

(Model 3) 

Ridge Pscores 

(Model 3) 

Elast Net Pscores  

(Model 3)  
    

itq 0 0 0 0 

 (.) (.) (.) (.) 

     

years_of_itq -0.0368* 0.283*** 0.291*** 0.286*** 

 (0.0195) (0.0356) (0.0362) (0.0358) 

     

time 0.0702*** 0.0746*** 0.0748*** 0.0747*** 

 (0.00156) (0.00160) (0.00160) (0.00160) 

     

p_score 0 -10.02*** -10.51*** -10.16*** 

 (dropped, 

lack of variance) 

 

(0.780) (0.760) (0.760) 

     

Fixed Effects Yes Yes Yes Yes 

Pseudo R2 0.0815 0.0910 0.0914 0.0911 

AIC 26320.3 26050.3 26039.3 26047.3 

BIC 26337.2 26075.6 26064.7 26072.6 

Observations 34756 34756 34756 34756 
Fixed effects clustering by fishery 

P-scores included in regression were estimated using test Model 3 and method noted in column title 

Coefficients reflect log-odds of collapse (marginal effects not possible with fixed-effects model) 

Standard errors in parentheses below coefficients  
* p < 0.1, ** p < 0.05, *** p < 0.01 

The key finding here is that improved fit in stage 1 models can have major impacts on the 

causal parameter. When there is no overfitting, a better-fit model results in propensity score 

estimations that capture more valid selection bias and improve the causal interpretability of 

the final parameters. This supports the conclusion that by improving first-stage regression fit 

in a parameter estimation scenario, ML methods can improve final causal analysis and provide 

value in resource economics. 

A Note on Causal Inference 

There are two issues that challenge the causal interpretation of the methodologies used both 

in the original paper by Costello et al. (2008a) and the empirical application in this thesis. 

First, Lechner (2010) warns of bias in the causal effect estimation when using difference-in-

differences with a logit regression, showing that the non-linear transformation results in a 
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violation of the parallel trends assumption. Second, there is evidence of the overlap assumption 

being violated in implementation of the propensity scores. Given the unbalanced nature of the 

treatment (ITQ implementation is rare), p-score estimates in model specifications – both from 

the Costello models and the test models – tend to have values at or near 0 (and 1 in some 

cases). Each of these issues is discussed further in Appendix 3.  

Discussion 

While results from the causal parameter tests in this chapter may be threatened by the 

aforementioned causal model issues, the primary finding of this empirical analysis remains 

valid: there is potential for ML to improve non-inference based econometric tasks under 

certain circumstances. ML methods were shown to improve the fit of prediction-based pre-

processing tasks, conditional the underlying data having a moderate level of variance. In the 

case of low-variance data, increasing dimensionality from moderate to high was shown to have 

little impact on the effectiveness of ML. Further research is necessary to see if finding would 

hold for a higher-variance dataset. 

Despite procedures designed around creating externally valid models, highly flexible ML 

algorithms proved to result in substantial overfitting. Though Random Forest resulted in 

significantly better model fits in-sample, it captured significant levels of noise in the training 

making out-of-sample predictions questionable. Shrinkage methods proved to offer an 

adequate level of flexibility in the resource economics application, performing in-line with or 

better than traditional methods in all cases, and resulting in preferable outcomes to the tree-

based alternatives.  

While an impact on causal results from using ML in pre-processing was detected, its exact 

nature and sensitivity to overfitting remains uncertain. Due to causal shortcomings in model 

design, the end-model results of these tests must be taken with caution. Practitioners should 

be careful to make sure results from ML models in pre-processing adhere to the underlying 

assumptions on the identification strategies used.  

At the very least these results support the use of ML in economics for robustness analysis 

whenever there are prediction tasks that do not require formal marginal parameters or 

confidence intervals. Given the prediction abilities of ML illustrated in the test of Model 3, 
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applications involving prediction like synthetic control and matching look to be great areas for 

further research. 
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Chapter 6 Conclusion 

This thesis aims to answer two questions: whether traditional econometric tools can be 

improved by integrating machine learning methods, and whether these improvements have 

practical value for the goal of solving resource economics problems. To answer these 

questions, an implicit step was required to identify the econometrics tasks that machine 

learning is most likely to benefit. In reviewing existing literature, I found that ML 

outperforms traditional methods in prediction tasks and, since off-the-shelf ML is not well 

suited for inference, I determined the best application for resource economics would be in 

pre-processing (non-inference) prediction tasks. To gather evidence in response the two 

primary questions, I used machine learning on one such task – propensity score estimation – 

in an empirical application to fisheries using a paper by Costello et al. (2008a).  

Empirical test results give strong evidence that ML does improve upon traditional methods’ 

prediction performance when there is moderate variance in the underlying data and a 

reasonably high number of covariates. This result proved to be of practical value for resource 

economics, as there is direct evidence that ML models identified and fitted valid selection 

bias that was otherwise missed by the traditional logit model.  

ML methods were not without limitations however – empirical results show that for low-

variance data they do not significantly improve predictions and have a tendency towards 

overfitting when there are high dimensions. When higher variance covariates were used, 

overfitting levels fell. One limitation of this study is that moderate-variance data was 

available for only 124 covariates; testing on a higher-dimensional dataset would improve the 

robustness of the results.  

As theory would predict, overfitting was shown to be highest for the most flexible ML 

algorithms tested (CART and Random Forest) and under the highest-dimensional dataset 

tested. Test results show signs that these methods fit a significant amount of noise from the 

training set into their models, which threatens generalizability of their results. The analysis 

was unable to reveal the consequences of this overfitting for the final causal model. Since 

overfitting is the biggest threat to ML results in practice, this represents an important area for 

future research. Still a higher-level conclusion from the results is that more complexity in the 

model is not always better. 
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The main limitation of this empirical test was an inability to reliably measure how improved 

predictions in stage 1 translated to changes in causal results in stage 2. This was the 

unfortunate result of likely violations in propensity score assumptions and issues in the final 

causal model that challenge a causal interpretation of stage 2 results. While this leaves some 

important questions unanswered, it serves as a good reminder for practitioners that 

regardless of the complexity or performance of models plugged into econometric tasks, the 

foundational assumptions must still hold. ML methods should in no way be treated as a 

silver bullet allowing researchers to be lazy elsewhere. 

Findings from this thesis support the use of off-the-shelf ML methods to improve pre-

processing prediction tasks for resource economics, for example propensity score matching 

and two-stage instrumental variable tasks. Since the downstream effects of overfitting are 

not yet fully understood, however, immediate application of these methods is best restricted 

to use for robustness analysis. The empirical application in this thesis provides a potential 

best practice method for checking the robustness of these first-stage regressions: fit the five 

machine learning models and the traditional one, calculating model fit and overfit metrics to 

evaluate the credibility of each result.  

An alternate approach that requires less steps for researchers would be to simply implement 

the Elastic-Net regression. A grid search using this model can test specifications for Lasso, 

Ridge, Lasso/Ridge mixes, and traditional OLS/logit regressions all in a single run. While 

shrinkage methods do not have the extreme flexibility in fitting that tree methods do, the 

empirical test proved them more resilient to overfitting and they performed roughly as well 

or better than traditional methods in every test. They also provide a simple, intuitive 

introduction to ML methods due to their similarity to OLS. This implementation offers an 

efficient solution to robustness analysis and would be relatively painless for practitioners. 

This thesis contributes to econometrics literature by providing an empirical test for machine 

learning in non-inference tasks and, to my knowledge, provides the first general discussion 

of machine learning for resource economics problems. The results of this thesis encourage 

further research on machine learning both for resource economics and economics more 

generally. In particular, the synthetic control model is one area that is underexplored for 

machine learning applications and potentially offers significant value for empirical resource 

economics. Research on the effect of overfitting in the first-stage predictions on second-
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stage causal model results would fill a critical gap in this thesis’ findings and could foster 

more confident implementation of machine learning methods in practice.  

While machine learning integration for resource economics may not have the 

“revolutionary” impact that it has made on the technology and business world, this thesis 

illustrates its serious potential. The field has been underexplored to date, but causal analysis 

using ML is gaining attention every day and the literature is growing. Economics 

practitioners should pay attention and keep an open mind, so the next three decades may see 

even more progress than those previous. 
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Software Packages Used7: 

Language Packages Use 

R Tidyverse Data cleaning/wrangling 

Data exploration/ visualizations 

rfishbase Data gathering (API) 

Haven Exporting to Stata format 

Python scikit-learn Machine learning modeling and 

analysis 

Pandas Data cleaning/wrangling 

Seaborn Data visualizations 

Pickle Model result storage 

Stata margins Econometrics modeling (causal 

model regressions) 

estout Constructing regression tables  

Julia DataFrames Data wrangling 

GLM Fitting logit p-score models (for 

replication task only) 

 

 

7 Copy of code used in analysis for this thesis available on request 
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 Appendix 1: Replication Results 

This appendix reports regression results from my replication of the Costello et al. causal 

models using the recreated dataset side by side with reported results from the original study 

(Costello, Gaines, & Lynham, 2008a). Results show similar trends and significance levels in 

general. 

First-Cut Model Results 

Table 16: Regression Results for First-Cut Model Replication 

Variable Recreated Costello 

ITQi -0.0460*** -0.0428*** 

 (0.00560) (0.00505) 

   

ITQ_impt 0.0387*** 0.0090 

 (0.0141) (0.01255) 

   

ITQi *ITQ_impt -0.175*** -0.1367*** 

 (0.0135) (0.01188) 

   

timet 0.00484*** 0.0049*** 

 (0.000274) (0.00025) 

   

Intercept 0.0199*** 0.0096* 

 (0.00627) (0.00627) 

R-squared 0.92 0.92 

N 108 108 
Standard errors in parentheses below coefficients  

Dependent variable was percent of fisheries collapsed. 
* p < 0.1, ** p < 0.05, *** p < 0.01 

Base Model Results 

Table 17: Regression Results for Base Model Replication 

Variable Recreated Logit Costello Logit 

ITQi -0.103*** -0.0706*** 

 (0.00875) (0.00490) 

   

years_of_itqit -0.00682*** -0.0049*** 

 (0.00159) (0.00136) 

   

timet 0.00623*** 0.0054*** 

 (0.0000490) (0.00004) 
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Pseudo R2 0.0715 0.06 

AIC 229,880.6 251,696.6 

BIC 229,922.7 251,739.1 

Observations 273,548 302,852 
Coefficients reflect average marginal effect on probability of collapse  

Standard errors in parentheses below coefficients, calculated using the delta method 
* p < 0.1, ** p < 0.05, *** p < 0.01 

Propensity Score Model Results 

Table 18: Regression Results for P-Score Base Model Replication 

Variable Recr. 

Pscore 

(LME) 

Costello 

Pscore 

(LME) 

Recr. 

Pscore 

(Genus) 

Costello 

Pscore  

(Genus)  

Recr. 

Pscore 

(species) 

Costello 

Pscore 

(species) 

ITQi -0.103*** -0.0741*** -0.103*** -0.0679*** -0.103*** -

0.0687*** 

 (0.00875) (0.00428) (0.00875) (0.00443) (0.00875) (0.00441) 

       

years_of_itqit -0.00682*** -0.0037*** -0.00682*** -0.0054*** -

0.00682*** 

-

0.0051*** 

 (0.00159) (0.00137) (0.00159) (0.00136) (0.00159) (0.00139) 

       

timet 0.00623*** 0.0054*** 0.00623*** 0.0054*** 0.00623*** 0.0054*** 

 (0.0000490) (0.00004) (0.0000490) (0.00004) (0.0000490) (0.00004) 

       

Pscore -0.0261 Not 

Reported 

0.0154 Not 

Reported 

0.0198 Not 

Reported 

 (0.0236)  (0.0262)  (0.0214)  

       

Intercept NA NA NA NA NA NA 

       

Pseudo R2 0.0715 0.06 0.0715 0.06 0.0715 0.06 

AIC 229881.4 251,580.60 229882.3 251,575.60 229881.8 251,494.6 

BIC 229934.0 251,931.1 229934.9 251,926.1 229934.4 251,845.1 

Observations 273548 302,852 273548 302,852 273548 302,852 
P-scores included in regression were estimated using logit regression on categorical variable in column title 

Coefficients reflect average marginal effect on probability of collapse  

Standard errors in parentheses below coefficients, calculated using the delta method 
* p < 0.1, ** p < 0.05, *** p < 0.01 
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Fixed Effects Model Results 

Table 19: Regression Results for Fixed Effects Model Replication 

 Recr. FE 

(full sample) 

Costello FE 

(full sample) 

Recr FE  

(ITQ only 

sample) 

Costello FE 

(ITQ only 

sample) 

ITQi - - - - 

     

years_of_itqit -0.119*** -0.1206*** -0.0259 -0.0123*** 

 (0.0179) (0.01363) (0.0230) (0.00184) 

     

timet 0.0763*** 0.0888*** 0.0336*** 0.00788*** 

 (0.000657) (0.00063) (0.00663) (0.00000304) 

     

intercept NA NA NA NA 

     

Fixed Effects Yes Yes Yes Yes 

Pseudo R2 0.157 0.18 0.0291 0.10 

AIC 93,739.0 123,430.1 1225.8 1,448.551 

BIC 93,758.7 123,450.4 1236.7 1,460.052 

Observations 134,338 186,554 1760 2,322 
Fixed effects clustering by fishery 

Coefficients reflect log-odds of collapse (marginal effects not possible with fixed-effects model) 

Standard errors in parentheses below coefficients  
* p < 0.1, ** p < 0.05, *** p < 0.01 
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Appendix 2: P-Score Application Regression Results 

This appendix reports full regression results from the empirical tests in Chapter 5. Causal 

model specifications are based on Costello et al. (2018a), fitted using the datasets and 

propensity scores estimates discussed in Chapter 5. 

Model 1 P-Scores – Causal Regression Results 

Propensity Score Base Model Results: 

Table 20: Regression Results for P-Score Base Model (Model 1 estimates, pt. 1) 

 Logit Pscores  

(Model 1) 

Lasso Pscores 

(Model 1) 

Ridge Pscores 

(Model 1) 

Elast Net Pscores  

(Model 1)  
    

itq -0.155*** -0.155*** -0.155*** -0.155*** 

 (0.0126) (0.0126) (0.0126) (0.0126) 

     

years_of_itq -0.00895*** -0.00895*** -0.00895*** -0.00895*** 

 (0.00213) (0.00213) (0.00213) (0.00213) 

     

time 0.00583*** 0.00583*** 0.00583*** 0.00583*** 

 (0.0000982) (0.0000982) (0.0000982) (0.0000982) 

     

p_score 0.164*** 0.164*** 0.165*** 0.164*** 

 (0.0272) (0.0273) (0.0274) (0.0273) 

     

Pseudo R2 0.0205 0.0205 0.0205 0.0205 

AIC 192749.4 192749.6 192749.4 192749.6 

BIC 192800.1 192800.3 192800.1 192800.3 

Observations 186843 186843 186843 186843 
P-scores included in regression were estimated using test Model 1 and method noted in column title 

Coefficients reflect average marginal effect on probability of collapse  

Standard errors in parentheses below coefficients, calculated using the delta method 
* p < 0.1, ** p < 0.05, *** p < 0.01 

 

 
Table 21: Regression Results for P-Score Base Model (Model 1 estimates, pt. 2) 

 Logit Pscores 

(Model 1) 

CART Pscores 

(Model 1) 

Rand Forest 

Pscores (Model 1)  
   

itq -0.155*** -0.157*** -0.157*** 

 (0.0126) (0.0126) (0.0126) 

    

years_of_itq -0.00895*** -0.00867*** -0.00869*** 

 (0.00213) (0.00214) (0.00214) 
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time 0.00583*** 0.00583*** 0.00583*** 

 (0.0000982) (0.0000982) (0.0000982) 

    

p_score 0.164*** 0.165*** 0.166*** 

 (0.0272) (0.0267) (0.0269) 

    

Pseudo R2 0.0205 0.0205 0.0205 

AIC 192749.4 192747.8 192747.7 

BIC 192800.1 192798.4 192798.4 

Observations 186843 186843 186843 
P-scores included in regression were estimated using test Model 1 and method noted in column title 

Coefficients reflect average marginal effect on probability of collapse  

Standard errors in parentheses below coefficients, calculated using the delta method 
* p < 0.1, ** p < 0.05, *** p < 0.01 

Propensity Score Fixed Effects Model Results 

Table 22: Regression Results for P-Score FE Model (Model 1 estimates, pt. 1) 

 Logit Pscores  

(Model 1) 

Lasso Pscores 

(Model 1) 

Ridge Pscores 

(Model 1) 

Elast Net Pscores  

(Model 1)  
    

itq 0 0 0 0 

 (.) (.) (.) (.) 

     

years_of_itq -0.0114 -0.0110 -0.0110 -0.0110 

 (0.0202) (0.0202) (0.0202) (0.0202) 

     

time 0.0763*** 0.0763*** 0.0763*** 0.0763*** 

 (0.00106) (0.00106) (0.00106) (0.00106) 

     

p_score -5.563*** -5.585*** -5.621*** -5.585*** 

 (0.448) (0.448) (0.451) (0.448) 

     

Fixed Effects Yes Yes Yes Yes 

AIC 68013.8 68013.1 68013.1 68013.1 

BIC 68042.0 68041.3 68041.3 68041.3 

Observations 89848 89848 89848 89848 
Fixed effects clustering by fishery 

P-scores included in regression were estimated using test Model 1 and method noted in column title 

Coefficients reflect log-odds of collapse (marginal effects not possible with fixed-effects model) 

Standard errors in parentheses below coefficients  
* p < 0.1, ** p < 0.05, *** p < 0.01 
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Table 23: Regression Results for P-Score FE Model (Model 1 estimates, pt. 2) 

 Logit Pscores 

(Model 1) 

CART Pscores 

(Model 1) 

Rand Forest 

Pscores (Model 1)  
   

itq 0 0 0 

 (.) (.) (.) 

    

years_of_itq -0.0114 -0.0438** -0.0417** 

 (0.0202) (0.0195) (0.0195) 

    

time 0.0763*** 0.0755*** 0.0757*** 

 (0.00106) (0.00105) (0.00105) 

    

p_score -5.563*** -4.010*** -4.204*** 

 (0.448) (0.405) (0.409) 

    

Fixed Effects Yes Yes Yes 

Pseudo R2 0.0801 0.0794 0.0795 

AIC 68013.8 68069.6 68062.2 

BIC 68042.0 68097.8 68090.4 

Observations 89848 89848 89848 
Fixed effects clustering by fishery 

P-scores included in regression were estimated using test Model 1 and method noted in column title 

Coefficients reflect log-odds of collapse (marginal effects not possible with fixed-effects model) 

Standard errors in parentheses below coefficients  
* p < 0.1, ** p < 0.05, *** p < 0.01 

 

Model 2 P-Scores – Causal Regression Results 

Propensity Score Base Model Results: 

Table 24: Regression Results for P-Score Base Model (Model 2 estimates, pt. 1) 

 Logit Pscores  

(Model 2) 

Lasso Pscores 

(Model 2) 

Ridge Pscores 

(Model 2) 

Elast Net Pscores  

(Model 2)  
    

itq -0.153*** -0.153*** -0.153*** -0.153*** 

 (0.0131) (0.0131) (0.0131) (0.0131) 

     

years_of_itq -0.00947*** -0.00934*** -0.00947*** -0.00934*** 

 (0.00253) (0.00254) (0.00253) (0.00254) 

     

time 0.00590*** 0.00590*** 0.00590*** 0.00590*** 

 (0.0000975) (0.0000975) (0.0000975) (0.0000975) 

     

p_score 0.0584** 0.0563** 0.0608** 0.0563** 
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 (0.0267) (0.0270) (0.0278) (0.0270) 

     

Pseudo R2 0.0204 0.0204 0.0204 0.0204 

AIC 192780.0 192780.4 192780.0 192780.4 

BIC 192830.7 192831.1 192830.7 192831.1 

Observations 186843 186843 186843 186843 
P-scores included in regression were estimated using test Model 2 and method noted in column title 

Coefficients reflect average marginal effect on probability of collapse  

Standard errors in parentheses below coefficients, calculated using the delta method 
* p < 0.1, ** p < 0.05, *** p < 0.01 

 

Table 25: Regression Results for P-Score Base Model (Model 2 estimates, pt. 2) 

 Logit Pscores 

(Model 2) 

CART Pscores 

(Model 2) 

Rand Forest 

Pscores (Model 2)  
   

itq -0.153*** -0.131*** -0.153*** 

 (0.0131) (0.0126) (0.0136) 

    

years_of_itq -0.00947*** 0.00154 -0.00936*** 

 (0.00253) (0.00257) (0.00296) 

    

time 0.00590*** 0.00593*** 0.00591*** 

 (0.0000975) (0.0000972) (0.0000973) 

    

p_score 0.0584** -0.145*** 0.0444 

 (0.0267) (0.0313) (0.0307) 

    

Pseudo R2 0.0204 0.0205 0.0204 

AIC 192780.0 192762.0 192782.6 

BIC 192830.7 192812.7 192833.3 

Observations 186843 186843 186843 
P-scores included in regression were estimated using test Model 2 and method noted in column title 

Coefficients reflect average marginal effect on probability of collapse  

Standard errors in parentheses below coefficients, calculated using the delta method 
* p < 0.1, ** p < 0.05, *** p < 0.01 

 

Propensity Score Fixed Effects Model Results 

Table 26: Regression Results for P-Score FE Model (Model 2 estimates, pt. 1) 

 Logit Pscores  

(Model 2) 

Lasso Pscores 

(Model 2) 

Ridge Pscores 

(Model 2) 

Elast Net Pscores  

(Model 2)  
    

itq 0 0 0 0 

 (.) (.) (.) (.) 

     

years_of_itq -0.00946 -0.00747 -0.00285 -0.00747 

 (0.0253) (0.0253) (0.0253) (0.0253) 
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time 0.0741*** 0.0741*** 0.0742*** 0.0741*** 

 (0.00103) (0.00103) (0.00104) (0.00103) 

     

p_score -1.726*** -1.790*** -1.986*** -1.790*** 

 (0.337) (0.342) (0.359) (0.342) 

     

Fixed Effects Yes Yes Yes Yes 

Pseudo R2 0.0784 0.0784 0.0785 0.0784 

AIC 68140.8 68139.8 68136.6 68139.8 

BIC 68169.0 68168.1 68164.8 68168.1 

Observations 89848 89848 89848 89848 
Fixed effects clustering by fishery 

P-scores included in regression were estimated using test Model 2 and method noted in column title 

Coefficients reflect log-odds of collapse (marginal effects not possible with fixed-effects model) 

Standard errors in parentheses below coefficients  
* p < 0.1, ** p < 0.05, *** p < 0.01 

 

 
Table 27: Regression Results for P-Score FE Model (Model 2 estimates, pt. 2) 

 Logit Pscores 

(Model 2) 

CART Pscores 

(Model 2) 

Rand Forest 

Pscores (Model 2)  
   

itq 0 0 0 

 (.) (.) (.) 

    

years_of_itq -0.00946 0.0108 0.00401 

 (0.0253) (0.0248) (0.0276) 

    

time 0.0741*** 0.0738*** 0.0738*** 

 (0.00103) (0.00103) (0.00103) 

    

p_score -1.726*** -2.088*** -1.456*** 

 (0.337) (0.308) (0.299) 

    

Fixed Effects No Yes Yes 

Pseudo R2 0.0784 0.0787 0.0784 

AIC 68140.8 68116.2 68141.9 

BIC 68169.0 68144.4 68170.2 

Observations 89848 89848 89848 
Fixed effects clustering by fishery 

P-scores included in regression were estimated using test Model 2 and method noted in column title 

Coefficients reflect log-odds of collapse (marginal effects not possible with fixed-effects model) 

Standard errors in parentheses below coefficients 
* p < 0.1, ** p < 0.05, *** p < 0.01 
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Model 3 P-Scores – Causal Regression Results 

Propensity Score Base Model Results: 

Table 28: Regression Results for P-Score Base Model (Model 3 estimates, pt. 1) 

 Logit Pscores  

(Model 3) 

Lasso Pscores 

(Model 3) 

Ridge Pscores 

(Model 3) 

Elast Net Pscores  

(Model 3)  
    

itq -0.237*** -0.207*** -0.205*** -0.206*** 

 (0.0244) (0.0254) (0.0254) (0.0254) 

     

years_of_itq 0.00811*** 0.0318*** 0.0324*** 0.0320*** 

 (0.00271) (0.00339) (0.00340) (0.00339) 

     

time 0.00716*** 0.00766*** 0.00770*** 0.00767*** 

 (0.000159) (0.000160) (0.000160) (0.000160) 

     

p_score - -1.654*** -1.801*** -1.705*** 

 (dropped, 

lack of variance) 

(0.106) (0.111) (0.108) 

     

Pseudo R2 0.0307 0.0360 0.0365 0.0362 

AIC 68169.2 67795.7 67763.6 67784.7 

BIC 68205.2 67840.7 67808.6 67829.7 

Observations 59969 59969 59969 59969 
P-scores included in regression were estimated using test Model 3 and method noted in column title 

Coefficients reflect average marginal effect on probability of collapse  

Standard errors in parentheses below coefficients, calculated using the delta method 
* p < 0.1, ** p < 0.05, *** p < 0.01 

 

 
Table 29: Regression Results for P-Score Base Model (Model 3 estimates, pt. 2) 

 Logit Pscores 

(Model 3) 

CART Pscores 

(Model 3) 

Rand Forest 

Pscores (Model 3)  
   

itq -0.237*** -0.225*** -0.188*** 

 (0.0244) (0.0266) (0.0245) 

    

years_of_itq 0.00811*** 0.03174*** 0.0241*** 

 (0.00271) (0.00365) (0.00385) 

    

time 0.00716*** 0.00779*** 0.00722*** 

 (0.000159) (0.000160) (0.000159) 

    

p_score - -4.328*** -0.367*** 

 (dropped, 

lack of variance) 

(0.21190) (0.0647) 
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Pseudo R2 0.0307 0.0393 0.0312 

AIC 68169.2 67550.69. 68134.1 

BIC 68205.2 67605.7 68179.1 

Observations 59969 59969 59969 
P-scores included in regression were estimated using test Model 3 and method noted in column title 

Coefficients reflect average marginal effect on probability of collapse  

Standard errors in parentheses below coefficients, calculated using the delta method 
* p < 0.1, ** p < 0.05, *** p < 0.01 

Propensity Score Fixed Effects Model Results 

 
Table 30: Regression Results for P-Score FE Model (Model 3 estimates, pt. 1) 

 Logit Pscores  

(Model 3) 

Lasso Pscores 

(Model 3) 

Ridge Pscores 

(Model 3) 

Elast Net Pscores  

(Model 3)  
    

itq 0 0 0 0 

 (.) (.) (.) (.) 

     

years_of_itq -0.0368* 0.283*** 0.291*** 0.286*** 

 (0.0195) (0.0356) (0.0362) (0.0358) 

     

time 0.0702*** 0.0746*** 0.0748*** 0.0747*** 

 (0.00156) (0.00160) (0.00160) (0.00160) 

     

p_score 0 -10.02*** -10.51*** -10.16*** 

 (dropped, 

lack of variance) 

 

(0.780) (0.760) (0.760) 

     

Fixed Effects Yes Yes Yes Yes 

Pseudo R2 0.0815 0.0910 0.0914 0.0911 

AIC 26320.3 26050.3 26039.3 26047.3 

BIC 26337.2 26075.6 26064.7 26072.6 

Observations 34756 34756 34756 34756 
Fixed effects clustering by fishery 

P-scores included in regression were estimated using test Model 3 and method noted in column title 

Coefficients reflect log-odds of collapse (marginal effects not possible with fixed-effects model) 

Standard errors in parentheses below coefficients  
* p < 0.1, ** p < 0.05, *** p < 0.01 

 
Table 31: Regression Results for P-Score FE Model (Model 3 estimates, pt. 2) 

 Logit Pscores 

(Model 3) 

CART Pscores 

(Model 3) 

Rand Forest 

Pscores (Model 3)  
   

itq 0 0 0 

 (.) (.) (.) 

    

years_of_itq -0.0368* 0.510*** 0.0802*** 
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 (0.0195) (0.0596) (0.0297) 

    

time 0.0702*** 0.0749*** 0.0710*** 

 (0.00156) (0.00161) (0.00157) 

    

p_score 0 -20.29*** -2.320*** 

 (dropped, 

lack of variance) 

(1.474) (0.429) 

    

Fixed Effects Yes Yes Yes 

Pseudo R2 0.0815 0.0956 0.0826 

AIC 26320.3 25918.4 26290.0 

BIC 26337.2 25943.7 26315.4 

Observations 34756 34756 34756 
Fixed effects clustering by fishery 

P-scores included in regression were estimated using test Model 3 and method noted in column title 

Coefficients reflect log-odds of collapse (marginal effects not possible with fixed-effects model) 

Standard errors in parentheses below coefficients  
* p < 0.1, ** p < 0.05, *** p < 0.01 
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Appendix 3: Supplementary Background & Analysis 

Background: Potential Outcomes (PO) Framework 

The Potential Outcomes (PO) framework is a widely used model for causal analysis across 

many disciplines. Jerzey Neyman laid early groundwork for this model in the 1920s, with its 

modern form developed by Donald Rubin in the 1970s (Rubin, 1974; Rubin, 1978). The model 

is alternately referred to as the Rubin Causal Model or Neyman-Rubin Model. While different 

causal frameworks have been proposed since – most notably Judea Pearl’s graphical DAG 

approach (Pearl, 2009) which has gained traction in ML causal identification literature – the 

Rubin Causal Model remains a standard in treatment-effect work for economics today. 

At a high level, the PO framework is a causal analysis tool where a treatment (or intervention, 

manipulation) is applied to a unit to discover how it effects some outcome of interest. Imbens 

(2019) highlights three critical components of the model. First is the treatment/cause, which 

takes on different values for individuals depending on what intervention is applied to them. 

Second is the presence of multiple units – a requirement so that outcomes may be observed 

from units receiving different levels of treatment. And finally, an assignment mechanism 

which selects which units receive which treatment. The nature of each of these components 

determines which data, assumptions, and estimands are proper for causal inference. To make 

this more concrete I cover some formal implementations below8. 

Model Setup 

The formal PO model setup contains N units indexed 𝑖 = 1, … , 𝑁. Units can have various 

forms but typically represent a person, object or group at a certain point in time. The treatment 

variable, 𝑊, indicates the different levels of intervention. This thesis focuses on a binary 

treatment where indicator 𝑊𝑖 ∈ {0,1} takes a value of 1 when unit 𝑖 is exposed to the treatment 

and 0 when unit 𝑖 is not exposed to the treatment (is in control group). Each unit is assigned 

to a single treatment. 

 

8 Notation and formulas are based on Athey, Wager and Muhlbach’s tutorial (2019) 
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Potential outcomes are denoted 𝑌𝑖(𝑊), representing the outcome variable of interest for unit 𝑖 

when exposed to treatment level 𝑊. Under the binary treatment scenario, every unit has two 

potential outcomes (𝑌𝑖(1), 𝑌𝑖(0)) – one for each unit-treatment pair. Since every unit is 

assigned to a single treatment group, only one of the potential outcomes is observable, a 

distinction highlighted by the observed outcome variable, 𝑌𝑖
𝑜𝑏𝑠 = 𝑊𝑖𝑌𝑖(1) − (1 − 𝑊𝑖)𝑌𝑖(0). 

The data for each unit is (𝑌𝑖
𝑜𝑏𝑠, 𝑊𝑖, 𝑋𝑖), where 𝑌𝑖

𝑜𝑏𝑠 and 𝑊𝑖 are the single observed outcome 

and treatment indicator variables respectively and 𝑋𝑖 is a vector containing all other observable 

variables in the dataset. 𝑋𝑖 is sometimes referred to as the pre-treatment variables, suggestive 

of the importance in considering their timing and potential for reverse causality. 

Causal Effect 

The value of interest in this framework is the unit-level causal effect: 𝜏𝑖 = 𝑌𝑖(1) − 𝑌𝑖(0). 

Defined as the difference between potential outcomes for unit 𝑖 under treatment and control 

groups, this metric is not directly observable – a fact known as the “fundamental problem of 

causal inference” (Holland, 1986). Since every unit is assigned to a single treatment group 

only one of the potential outcomes is observable, the other, unobserved outcome is referred to 

as the counterfactual and must be estimated. 

This is an important point and worth repeating: the causal effect is defined by potential 

outcomes but estimated using observed outcomes. Since only one treatment is observed for 

each unit, this estimation can be thought of as a missing data problem in which the 

counterfactuals must be imputed. The method of imputation is dependent on characteristics of 

the data, with a few baseline assumptions required across the board.  

Assumptions 

There are a few critical assumptions that must hold for unbiased causal inference using the PO 

model: 

Assumption PO.1: Stable Unit Treatment Value Assumption (SUTVA) 

“The potential outcomes for any unit do not vary with the treatments assigned to other 

units, and, for each unit, there are no different forms or versions of each treatment 

level, which lead to different potential outcomes.” - (Imbens & Rubin, 2015) 

This assumption can be decomposed into two different parts: 
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A. the no-interference assumption that there are no externalities or network effects 

from treatment of a given unit 

B. the no hidden variations of treatment assumption that a treatment is applied 

consistently across units in a specific treatment assignment group. 

Assumption PO.2: The data must be an as-good-as-random sample drawn from a large 

population. 

The conditions upon which this assumption can be supported determine which estimand to use 

and depend on the treatment assignment mechanism in play. 

Randomization Levels 

Randomized Experiments 

Randomized experiments are the gold standard for causal inference and are characterized by 

an assignment mechanism where treatment assignment is completely random for each unit 

(i.e. probability of every unit-treatment pair is even). This design ensures that treatment is 

independent of the potential outcomes (independence assumption): 

𝑊𝑖 ⊥ (𝑌𝑖(0), 𝑌𝑖(1))             𝐀𝐬𝐬𝐮𝐦𝐩𝐭𝐢𝐨𝐧: 𝐈𝐧𝐝𝐞𝐩𝐞𝐧𝐝𝐞𝐧𝐜𝐞 

With the above assumption met from random assignment, a naïve approach can be made for 

treatment effect estimation and the ATE estimator may be specified as the simple average of 

each observed group: 

𝐴𝑇𝐸𝑁𝑎𝑖𝑣𝑒   = 𝐸[𝑌𝑖(1)|𝑊𝑖 = 1] − 𝐸[𝑌𝑖(0)|𝑊𝑖 = 0]      

The implied naïve ATE estimator: 

 𝜏̂𝑁𝑎𝑖𝑣𝑒 =
1

𝑁T
∑ 𝑦𝑖 {𝑖:𝑊𝑖=1} −

1

𝑁C
∑ 𝑦𝑖  {𝑖:𝑊𝑖=0}   

Observational Data Under Unconfoundedness: 

In practice, economists rarely have the luxury of experimental conditions and must make do 

with observational data. This means that the assignment mechanism cannot be controlled and 

directly randomized, rather the units must be split into treatment/control groups based on some 

previous record, observable datapoint or identification strategy. The nonrandomness of this 

mechanism violates the original independence assumption, but may fulfill the weaker 

uncounfoundedness (ignorability) assumption: 
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  𝑊𝑖 ⊥  (𝑌𝑖(0), 𝑌𝑖(1)) | 𝑋𝑖 Assumption: Unconfoundedness  

This assumption is referred to “selection on observables,” since it implies that treatment 

assignment is randomly assigned conditional on the observable control variables 𝑋𝑖. For 

conditioning to work an overlap assumption must also hold: 

 0 < Pr(𝑊𝑖 = 1| 𝑋𝑖) < 1 Assumption: Overlap 

 

When these properties hold, causal inference is possible, but the ATE estimator must be 

adjusted – conditioned on 𝑋𝑖 – to find the conditional ATE (CATE):  

𝐶𝐴𝑇𝐸(𝑥) = 𝐸[𝜏𝑖|𝑋𝑖 = 𝑥]                                           

= 𝐸[𝑌𝑖(1) − 𝑌𝑖(0)|𝑋𝑖 = 𝑥] 

= 𝐸[𝑌𝑖(1)|𝑋] − 𝐸[𝑌𝑖(0)|𝑋𝑖 = 𝑥]  ∵  𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑡𝑦 𝑜𝑓 𝑒𝑥𝑝𝑒𝑐𝑡𝑎𝑡𝑖𝑜𝑛𝑠 

     = 𝐸[𝑌𝑖(1)|𝑊𝑖 = 1,  𝑋𝑖 = 𝑥]

− 𝐸[𝑌𝑖(0)|𝑊𝑖 = 1,  𝑋𝑖 = 𝑥]  ∵ 𝑢𝑛𝑐𝑜𝑛𝑓𝑜𝑢𝑛𝑑𝑒𝑑𝑛𝑒𝑠𝑠 

=  𝜇(1, 𝑥) − 𝜇(0, 𝑥) 

The CATE estimator can be estimated by several different methods including propensity score 

weighting and rebalancing on covariates (for discussion on how propensity score matching 

may be implemented in practice see Econometric Methods Background section in Chapter 4). 

Observational Data with Unobserved Confounders 

Observational data that doesn’t fulfill the unconfoundedness assumption is subject to selection 

bias – the assignment mechanism cannot be made independent of the potential outcomes due 

to unobserved confounders. Therefore, the treatment variable cannot be used for causal 

analysis. An instrumental variable (IV) approach may open such a dataset up for causal 

analysis (Angrist & Pischke, 2009) but this is beyond the scope of this paper.  

Based on these randomization techniques the PO framework estimates the treatment effect by 

fitting models to the proper estimator (ATE, CATE, etc.). This tends to abstract away from 

marginal effects of control variables, but there are some additional steps that may be taken to 

estimate heterogeneity in treatment effect (HTE). However, when coefficient values on a 

regression are of primary importance the classical linear model is more appropriate. 
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Background: Synthetic Control (SC) Method  

Synthetic control (SC) is a relatively new econometric tool first created by Abadie and 

Gardeazabal (2003) and then expanded on by Abadie, Diamond and Hainmueller (2010). 

Formal implementation of the model discussed below is based on the 2010 paper, using 

potential outcome notation from the previous section. 

Set-up 

SC may be applied when there is a single treatment unit of interest and several control units 

from which a researcher would like to construct a counterfactual. The set up can be described 

using potential outcomes notation where there are J+1 observed units, indexed by 𝑖. A single 

unit (𝑖=1) receives the intervention and the remaining units (𝑖 = 2,… J+1) make up the control 

units – what Abadie et al. dub the donor pool for counterfactual estimation. The outcome of 

interest is observed over periods 𝑡 = 1, … , 𝑇, and 𝑇0 represents the final pre-intervention 

period. There must be at least one pre-intervention period in which the treatment unit is 

observed in the control state (1 ≤  𝑇0 < 𝑇). Once the intervention is made in the treatment unit 

it remains in place and is indicated by the binary treatment variable9, 𝐷𝑖𝑡 taking a value of 1. 

Since only region 1 received treatment and only after period 𝑇0: 

 𝐷𝑖𝑡 = {
1   𝑖𝑓 𝑖 = 1 𝑎𝑛𝑑 𝑡 > 𝑇0

0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

The relevant data format for SC is visualized a matrix with columns representing the time-

series and a row for each individual observation: 

      𝐷𝐽+1 𝑥 𝑇 = (

0 ⋯
0 ⋯

0 1 1
0 0 0

⋮ ⋱
0 ⋯

⋮ ⋮ ⋮ 
0 0 0 

       𝑖 = 1, 𝑡𝑟𝑒𝑎𝑡𝑒𝑑 𝑎𝑙𝑙 𝑡 > 𝑇0

𝑖 = 2, 𝑁𝑒𝑣𝑒𝑟 𝑡𝑟𝑒𝑎𝑡𝑒𝑑
𝑁𝑒𝑣𝑒𝑟 𝑡𝑟𝑒𝑎𝑡𝑒𝑑            

       𝑖 = 𝐽 + 1, 𝑁𝑒𝑣𝑒𝑟 𝑡𝑟𝑒𝑎𝑡𝑒𝑑

)  

Assumptions 

To interpret SC results as causal there are two key assumptions that must hold: 

 

9 Note: treatment variable receives slightly different notation versus the PO model above, replacing 𝑊 with 𝐷 to avoid 

confusion with the weights, 𝑤𝑗 , used in SC 
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Assumption SC.1  No interference between units  

Assumes outcomes of untreated units (donor units) are unaffected by the intervention 

in treatment unit. Further discussion of this assumption can be found in Rosenbaum’s 

paper (2007). 

Assumption SC.2  No anticipation of intervention 

Assumes that the treated unit is unaffected by the intervention until after the 

implementation date (only affected when 𝑡 > 𝑇0). If this assumption doesn’t hold but 

the period when anticipation begins is known then 𝑇0 can be adjusted to reflect the first 

period that there may be a reaction so that there is an estimated counterfactual for all 

periods where the intervention has an effect (anticipatory and post-treatment). 

 

Model Estimator: 

Treatment effect takes its form from the PO framework:  

𝜏𝑖𝑡 = 𝑌𝑖𝑡(1) − 𝑌𝑖𝑡(0) 

Observed outcome takes its form from the PO framework:  

𝑌𝑖𝑡
𝑜𝑏𝑠 = 𝐷𝑖𝑡𝑌𝑖𝑡(1) + (1 − 𝐷𝑖𝑡)𝑌𝑖𝑡(0) 

Our value of interest is the treatment effect for unit 𝑖=1 in treatment periods 𝑇0 < 𝑡 ≤ 𝑇: 

𝜏1𝑡 = 𝑌1𝑡(1) − 𝑌1𝑡(0) 

Because the value of 𝑌1𝑡(0) is unobserved for these periods, SC uses the donor pool’s observed 

outcomes to estimate its value. This is done by assigning weights to each control unit so that 

the estimator is: 

𝜏̂1𝑡 = 𝑌1𝑡(1) − ∑ 𝑤𝑗
∗ ∗ 𝑌(0)𝑗𝑡

𝐽+1

𝑖=2

 

  𝑓𝑜𝑟 𝑡 ∈ {𝑇0, … , 𝑇} 

  𝑤ℎ𝑒𝑟𝑒 𝑤𝑗
∗ 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑜𝑢𝑡𝑝𝑢𝑡 𝑏𝑦 𝑆𝐶 

The critical function of SC is to calculate this optimal weight, 𝑤𝑗
∗, for each control unit. 

Suppose 𝑊 is a (Jx1) vector of weights =  (𝑤2, … , 𝑤𝑗+1) such that: 

𝑤𝑗 ≥ 0, ∀𝑗 ∈ 2, … , 𝐽 + 1 
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𝑎𝑛𝑑 ∑ 𝑤𝑗 

𝐽+1

𝑗=2

= 1  

The vector 𝑊 represents a synthetic control – the weighted average of all units in the donor 

pool. To fit these weights to be the best possible counterfactual, the SC method algorithmically 

calculates the optimal weights for each unit (represent them as 𝑤𝑗
∗) to match values from a 

factor model for the control outcome: 

 𝑌𝑖𝑡(0) = 𝛿𝑡 + 𝑍𝑖𝜃𝑡 +  𝜆𝑡𝜇𝑖 + 𝜖𝑖𝑡 

  𝛿𝑡  unobserved common time factor  

  𝑍𝑖 (r x 1) vector of observed covariates (unaffected by intervention) 

  𝜃𝑡 (1 x r) vector of unknown parameters 

  𝜇𝑖 (1 x F) vector of unknown common factors 

  𝜖𝑖𝑡 unobserved transitory shocks at unit-level, has zero mean 

The 𝜆𝑡𝜇𝑖 term captures heterogeneous responses to multiple unobserved factors. By 

reweighting the controls (donor pool) so that the SC unit matches 𝑍𝑖 and the pre-treatment 𝑌1𝑡 

(for the treated unit), this ensures that the common factors 𝜇𝑖 are matched and the SC will 

provide an unbiased counterfactual. Put in simpler terms, this method identifies the control 

unit weights that create a synthetic control unit with the same observed covariates and outcome 

values in the pre-intervention stage. The weights can then be used to impute the counterfactual 

over the intervention period in an unbiased way.   

Evaluating Results 

A visual analysis is common for SC methods, in which the outcome of interest is plotted over 

time for the treated unit and the synthetic control unit. The quality of the synthetic control can 

be estimated by looking how close the pre-treatment trend in the graph is, while the causal 

effect is represented by the difference between the plots after treatment date. While the model 

is restrictive in that only a single treatment unit is analysed at once, this setup allows longer 

term effects and heterogeneity in effect over time to be seen.  
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Analysis: Causal Identification Issues  

This section covers several challenges to a causal interpretation of the Costello et al. (2008a) 

model specifications. The focus is on possible bias from the logit implementation and 

violations of critical propensity score matching assumptions. 

Issue 1: Bias from Logit Transformation 

Due to the binary outcome variable, 𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒𝑑𝑖𝑡, an OLS regression would fail the 

homoskedasticity and normality assumptions. Since the simple linear model doesn’t restrict 

the range of possible fitted values it could also result in probability estimates outside of the 0-

1 range. To account for this, Costello et al. transform the outcome using the logit link function, 

log (
𝐶𝑜𝑙𝑙𝑎𝑝𝑠𝑒𝑑𝑖𝑡

1−𝐶𝑜𝑙𝑙𝑎𝑝𝑠𝑒𝑑𝑖𝑡
) and use a binomial distribution. This solves the issues associated with OLS 

but introduces new problems since the regression is based on log-odds rather than the 

interpretable value of interest, probability.  

To back out the probability using the fitted model, there must be a non-linear transformation 

(Pr =
1

1+𝑒−(𝑙𝑜𝑔−𝑜𝑑𝑑𝑠)). This means the marginal effect of interest is different at different levels 

of the covariate… inference requires some form of averaging to get a single value. This also 

means that standard errors must be backed out using non-traditional ways like the delta method 

or bootstrapping. Such transformations may be unbiased under the strictest OLS assumptions 

(i.i.d. error term N~0), but the Difference-in-Differences (DiD) and Fixed-Effects (FE) models 

Costello employs are designed to relax this very assumption. In the non-linear transformation 

their algebraic properties cancelling out portions of systematic error break down. 

The DiD framework allows the error term to contain time-varying unobservables that effect 

all units the same (parallel trend). Lechner shows that logit-type models generally violate this 

parallel trend assumption because the linear trend does not carry over to the non-linear 

transformation, and “[t]herefore, estimation based on this model does not identify the causal 

effect,” (2010). He proves that the results will only be unbiased if there are no group-specific 

differences, which is exactly the parameter of interest.  

By using conditional fixed effects with a logit transformation, unbiased estimates of the log-

odds coefficients are possible (Chamberlain, 1980). However, Coupé discusses that this 

method does not provide individual estimates for the fixed-effect value “which are needed if 
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one wants to compute statistics like marginal effects,” (2005). This means probability-based 

marginal effects backed out of a FE logit model will be biased. For this reason, Costello only 

reports the FE models using log-odds coefficients – a big sacrifice in the interpretability of 

results. 

Issue 2: Propensity Score Problems 

Overlap Assumption Violation 

The overlap assumption in propensity score matching states that for unbiased causal effect in 

the face of selection bias from observables, there must be common support over the 

observables for both treatment and control units. That is, for any stratification of observables 

𝑋𝑖 = 𝑥 there must observations for each group present, so a proper match can be used in 

calculating the counterfactual. Formally this condition is: 

0 < Pr(𝑊𝑖 = 1| 𝑋𝑖) < 1    𝑶𝒗𝒆𝒓𝒍𝒂𝒑 𝑨𝒔𝒔𝒖𝒎𝒑𝒕𝒊𝒐𝒏 

This means that the p-scores must be bounded away from 0 and 1 – something that can be 

tested by looking at the distribution of p-score estimates.  

Since Costello runs the p-score regressions on each year individually, this clearly isn’t the case 

– from 1950 until 1975 there are no treated units so these p-scores will be bounded on 0. 

Likewise, splitting the covariate space on such high-dimensional dummy variables creates 

very narrow strata that are unlikely to contain the needed overlap. To check the extent of this 

overlap violation, I estimated propensity score using Costello’s models on the recreated dataset 

– first running it on each year individually (_yr suffix) and then running the models on the full 

dataset (all years at once) including just a linear time trend (_notr suffix). A boxplot of the 

results shows that the propensity scores for all specifications are highly skewed towards 0 – 

and often equal to 0, indicating that the overlap assumption is violated (diamond represents 

the mean): 
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Figure 7: Propensity Score Distributions – Full Recreated Dataset 

A primary factor resulting in these skewed propensity score estimates is that ITQ 

implementation is rare. Only 1% of fisheries have ITQ systems by 2003 and, even then, each 

ITQ fishery has at least a 25 year period of pre-implementation observations. To get overlap 

there must be much wider strata (e.g. use Order dummies instead of Species for taxonomic 

strata) or the sample must be restricted. Hajage et al (2016) find that, in the case of rare 

exposure, propensity score matching performs better when run on only the treatment group. 

This removes the difference-in-difference benefits from the control group but increases the 

quality of propensity score in controlling selection bias. To test this, I reran the p-score 

predictor models on a sample of the recreated model including only the treated units:  
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Figure 8: Propensity Score Distributions – Recr. Dataset (Treated Group) 

Under this restriction the overlap issue is much reduced, however there are still some values 

at the extremes (0 and 1). Further limitations on the dataset yet may be required for strict 

overlap conditions to hold. This illustrates that the use of propensity scores by Costello et al. 

on the full sample is likely to result in biased causal effects.  
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 Appendix 4: Supplementary Tables & Figures 

Validation Curves 

Model 1 

CART 

 

Figure 9: Validation curves from parameter search (Model 1, CART) 

Random Forest 

 

Figure 10: Validation curves from parameter search (Model 1, Rand. Forest) 
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Model 2 

CART 

 

Figure 11: Validation curves from parameter search (Model 2, CART) 

Random Forest 

 

 

Figure 12: Validation curves from parameter search (Model 2, Rand. Forest) 



 104 

Model 3 

CART 

 

Figure 13: Validation curves from parameter search (Model 3, CART) 

Random Forest 

 
Figure 14: Validation curves from parameter search (Model 3, Rand. Forest) 



 105 

Model 3 Covariate Details 

This table provides a list of the different possible values for each categorical variable included 

in propensity score Model 3. It also provides reference data for two continuous variables that 

are estimated values based on models. 

Table 32: Model 3 Covariate Details 

Variable Note 

Commercial 

Groups 

Cod-likes                            

Flatfishes                           

Herring-likes                           

Perch-likes                     

Salmon, smelts, etc                    

Scorpionfishes                        

Sharks & rays                       

Tuna & billfishes 

Other fishes & inverts 

Functional 

Groups 

Large bathypelagics (>=90 cm) 

Large benthopelagics (>=90 cm) 

Large demersals (>=90 cm) 

Large flatfishes (>=90 cm) 

Large pelagics (>=90 cm) 

Large rays (>=90 cm) 

Large reef assoc. fish (>=90 cm) 

Large sharks (>=90 cm) 

Medium bathydemersals (30 - 89 cm) 

Medium bathypelagics (30 - 89 cm) 

Medium benthopelagics (30 - 89 cm) 

Medium demersals (30 - 89 cm) 

Medium pelagics (30 - 89 cm) 

Medium reef assoc. fish (30 - 89 

cm) 

Small bathydemersals (<30 cm) 

Small bathypelagics (<30 cm) 

Small benthopelagics (<30 cm) 

Small demersals (<30 cm) 

Small pelagics (<30 cm) 

Small reef assoc. fish (<30 cm) 

Small to medium flatfishes (<90 

cm) 

Small to medium rays (<90 cm) 

Small to medium sharks (<90 cm) 

Gear Category  gillnet_gear 

line_gear 

pot_trap_gear 
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seine_encircling_nets 

susbsistence_artisanal_recreational_gear 

trawls_dragged_gear 

unkown_gear 

End use types Direct human consumption 

Discard 

Fishmeal and fish oil 

Other 

Fishing sector Artisanal 

Industrial 

Recreational 

Subsistence 

Price category Pulled from FishBase, estimator model based on ex-vessel price paper  

 (Sumaila et al, 2007) 

Vulnerability Pulled from FishBase, estimator model based on paper (Cheung, Pitcher & 

Pauly, 2005)  

 

 

 


