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Abstract

This thesis investigates the applicability of extreme gradient boosting (XGBoost) compared

to the generalized additive model (GAM) approach to create a desktop valuation model

of second-hand Handysize bulkers. The data basis is 1880 unique sales transactions in the

period from January 1996 to September 2019 derived from Clarkson Research. This thesis

contributes to existing literature by applying an XGBoost algorithm and a data-driven

GAM approach to vessel valuation.

Using vessel-specific and market variables, we find evidence that the XGBoost algorithm

is more suited for desktop valuation of Handysize bulk carriers than the GAM approach.

The predictive power of XGBoost in this instance could be caused by its ability to model

complex relationships between multiple variables. Supporting existing research in maritime

economics, we find linear models to be inadequate at vessel valuation. When fitting the

XGBoost model, vessel age at sale, timecharter rates and fuel efficiency index are identified

as the most important variables. We also find vessels priced over $20 million to be

significantly harder to predict. This could be a consequence of a scarce data basis, vessel

characteristics not present in the data or the majority of these transactions occurring

during the financial super cycle years of 2003 to 2009.

The XGBoost algorithm facilitates accurate predictions of vessel prices based on vessel

characteristics and market conditions, and provides a useful machine learning framework

for desktop valuation. The flexibility of the XGBoost algorithm can make it highly usable

for investors, ship owners and other market players in the maritime industry.

Keywords – Second-Hand Vessel Valuation, Generalized Additive Models (GAM),

Extreme Gradient Boosting (XGBoost)



Contents iii

Contents

1 Introduction 1

2 Literature Review 3

3 Data 6

4 Methodology 12
4.1 Cross-validation and validation set . . . . . . . . . . . . . . . . . . . . . 12
4.2 Variable selection with the Boruta algorithm . . . . . . . . . . . . . . . . 13
4.3 Generalized linear model . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.4 Generalized additive model . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.5 Extreme gradient boosting . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.6 Model evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Empirical Analysis 19
5.1 Fitting the models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2 Evaluation of models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6 Conclusion 33

References 35

Appendix 38
A1 Descriptive statistics by yearly periods . . . . . . . . . . . . . . . . . . . 38
A2 Boruta model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
A3 Histogram of logarithmic sales price . . . . . . . . . . . . . . . . . . . . . 39
A4 Smoothed terms for GAMs . . . . . . . . . . . . . . . . . . . . . . . . . . 40
A5 Fitted- versus actual prices for the training set . . . . . . . . . . . . . . . 40



iv List of Figures

List of Figures
3.1 Trends in FEI, horsepower, speed and fuel consumption . . . . . . . . . . 10
3.2 Yearly average sales prices and transactions . . . . . . . . . . . . . . . . 11
5.1 Fitted- versus actual values in the validation set . . . . . . . . . . . . . . 24
5.2 Smooth of tc1y, age, tc1y ∗ age and age ∗ dwt . . . . . . . . . . . . . . . 27
5.3 Variable Importance - XGBoost . . . . . . . . . . . . . . . . . . . . . . . 29
5.4 Regression tree - XGBoost . . . . . . . . . . . . . . . . . . . . . . . . . . 31
A2.1 Boruta model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
A3.1 Histogram of logarithmic sales price . . . . . . . . . . . . . . . . . . . . . 39
A5.1 Fitted- versus actual prices for the training set . . . . . . . . . . . . . . . 40



List of Tables v

List of Tables
3.1 Numerical variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Dummy variables’ distribution . . . . . . . . . . . . . . . . . . . . . . . . 8
5.1 Parameter values - XGBoost . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
A1.1 Descriptive statistics by year . . . . . . . . . . . . . . . . . . . . . . . . . 38
A4.1 Smoothed terms benchmark- and iterated GAM . . . . . . . . . . . . . . 40



1

1 Introduction

Shipping is an industry were the main asset, the ships, are frequently traded. Therefore, the

second-hand market, also called the sale and purchase (S&P) market, plays an important

economic role in the industry. "The remarkable feature of this market is that ships worth

tens of millions of dollars are traded like sacks of potatoes at a country market", Stopford

(2009, p.198). Vessels have the characteristics of fixed assets, which means they are liquid,

easy to resale, and valuable as scrap because of the hull construction (Thalassinos and

Politis, 2014). Second-hand prices of vessels fluctuate rapidly, as Stopford (1988, p.383)

notes: “Typically, second-hand prices will respond sharply to changes in market conditions,

and it is not uncommon for the prices paid to double, or halve, within a period of a few

months”. The volatility in the market makes it important to purchase/sell a vessel at the

right time, as these vessels are worth millions of dollars.

Volatility and frequent transactions in the S&P market emphasize the importance of a

fast and reliable "desktop valuation" of vessels. Desktop valuation models provide an

assessment of the value of an asset without the need for a physical inspection (Warren

et al., 2005). Vessel-specific desktop valuation is particularly valuable to brokers, financiers

and owners when brokers valuations are expensive or not available (Adland and Köhn,

2019). For investors trying to diversify their portfolio with real assets, in this case ships,

an accurate valuation is also important. Real assets tend to have low correlation with

financial assets, making them valuable for a diversified portfolio (Bodie et al., 2014).

The focus of this thesis is the S&P market for Handysize bulk carriers, where vessels are

specified by a deadweight carrying capacity between 10000 and 40000 tonnes (Clarkson

Research, 2019b). A bulk carrier is a single-deck ship designed to carry dry cargoes, such

as ore, coal, sugar or cereals (Stopford, 2009). The trading flexibility, and moderate

investment size of Handysize bulkers, ensures that the second-hand market for those ships

remains sufficiently liquid throughout the shipping market cycle (Adland et al., 2018). As

the Handysize vessels are relatively small, and less costly than bigger ships, they are a lot

more frequently traded than other ship sizes.

In Maritime Economics by Stopford (2009), some main influences on the ship price at a

specific point in time are proposed, two of them being freight rates (timecharter rates) and
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vessel age. For the freight market, highs and lows are transferred into the S&P market.

The second influence is age, and vessel values are typically depreciated by 4-6% each year.

Furthermore, there are many other ship-specific factors influencing the value of the vessel,

like ship size, ship type, yard of build and technical specifications such as speed, fuel

consumption, type of engine and cargo capacity.

Previous publications have suggested that a linear model is insufficient in desktop valuation

of second-hand vessels (Adland and Koekebakker, 2007; Adland and Köhn, 2019). Köhn

(2008) found that the generalized additive model (GAM) framework in the context of

shipping economics yielded good results, suggesting GAMs to be a good way to model

economic aspects of the maritime industry. Different machine learning approaches have

proved useful in valuations of financial assets, and could therefore also be interesting

in vessel valuation (Gu et al., 2018). Extreme gradient boosting (XGBoost) is a very

powerful and effective scalable tree boosting machine learning algorithm, widely used by

data scientists to achieve state-of-the-art predictive accuracy (Chen and Guestrin, 2016).

Since GAM and XGBoost respectively are renowned for their flexibility and predictive

power, we fit these models to a set of historical transaction data, and test which model

provides the most accurate valuations of second-hand Handysize vessels.

This master’s thesis, to the best of our knowledge, has several contributions to second-hand

vessel desktop valuation. This is the first academic article on second-hand price modelling

testing a data-driven iterated GAM. This approach tests a series of GAMs with different

interaction terms, choosing the most accurate. Secondly, we contribute to the field of

shipping economics by comparing an XGBoost model’s performance in desktop valuation

with the currently renowned GAM approach. This leads to our research question:

Is an extreme gradient boosting approach more suitable than a data-driven

generalized additive model in valuation of second-hand Handysize bulk carriers?

The remainder of this thesis is structured as follows. First, we review relevant existing

literature regarding second-hand vessel valuation. Next, we describe the data and

methodical framework for the thesis. Further, the results are compared and analyzed.

Finally, a conclusion is presented, with limitations and recommendations for future

research.
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2 Literature Review

In this section we review relevant literature to our thesis from an application point of

view, reviewing papers addressing second-hand vessel pricing, mainly through econometric

models.

The literature on second-hand vessel valuation is mainly twofold. One stream is dedicated

to testing whether the efficient market hypothesis (EMH) holds in the shipping market.

The EMH is tested in many previous papers, such as Hale and Vanags (1992), Glen

(1997), Kavussanos and Alizadeh (2002) and Adland and Koekebakker (2004). Kavussanos

(1996a,b, 1997) creates models based on the autoregressive conditional heteroscedasticity,

utilized for the purpose of second-hand vessel pricing. His main focus is the dynamics

of price volatility for different sized second-hand ships, and concludes that volatility is

lower in Handysize compared to the bigger vessel sizes. Pruyn et al. (2011) summarize

the past 20 years of research on the EMH, and find it to still be inconclusive in shipping

economics. The second stream, based on econometric models, is the main focus of the

literature review.

In the maritime industry, many of the empirical researches about second-hand vessel

pricing are based on time-series. Charemza and Gronicki (1981) suggest equations for

supply and demand, where ship prices adjust over time by freight- and activity rates.

Beenstock (1985) argues that vessels should be considered as a capital asset, and supply

and demand analysis is inappropriate. He proposes a framework based on portfolio theory,

with expected ship returns inversely related to alternative investments. In subsequent

papers, Beenstock and Vergottis (1989a,b, 1993a,b) further develop this idea.

Tsolakis et al. (2003) continue the time-series work, but focus more on a structural

approach in modelling second-hand prices. They create functions where the demand is

expressed as timecharter rates, new-building price, second-hand price and the cost of

capital (3-month LIBOR). Tsolakis et al. (2003) propose supply as a function of orderbook

to fleet ratio and second-hand prices, and find an equilibrium point for the second-hand

vessel price based on vector autoregression and non-structured models.

Adland and Koekebakker (2007) present an analysis of ship valuation using cross-sectional

data based on actual sale and purchase transactions in the second-hand market for
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Handysize bulk carriers. This approach allows investigation of price formation in the

second-market free of broker bias and measurement error. Adland and Koekebakker

(2007) applies a two- and a three-factor model for the second-hand prices. A flexible

non-parametric vessel valuation function allows for the presence of non-linear relationships.

Their findings conclude that a three-factor model is not capable of fully explaining the

second-hand prices. According to them, this is because of the exclusion of several vessel-

specific variables an experienced ship broker would have included, such as engine make

and other technical specifications.

Köhn (2008) addresses current issues in maritime economics by the application of semi-

parametric estimations, using the GAM framework in his PhD. His empirical results

confirm the findings in recent literature; that ship valuation is a non-linear function of

the main drivers such as ship size, age and market conditions. The major implication

is that, from an investors point of view, the application of non-linear models for asset

valuation allow for a more efficient capital allocation through a much more precise price

estimation. He also addresses GAM as a promising way of quantitative modelling in

shipping economics.

Adland et al. (2018) expand the number of variables from the Adland and Koekebakker

(2007) study. Adland et al. (2018) investigate whether the energy efficiency of vessels is

reflected in sales prices in the second-hand market for Handysize bulk carriers. Mainly

using linear regressions, Adland et al. (2018) add a wide variety of technical specifications,

such as country of build, buyer country and the number of previous sales. Energy efficiency

is identified as a significant factor in determining the second-hand prices of vessels, with

higher energy efficiency increasing sales prices.

Further, Adland and Köhn (2019) propose a multivariate semi-parametric valuation model

for oceangoing chemical tankers using the GAM framework. The GAM outperform linear

methods of estimation in terms of explanatory power. In conclusion they found that

GAM provide an appropriate framework to model highly heterogeneous assets, with new

vessel-specific factors having a significant impact on prices.

Gu et al. (2018) find that machine learning simplifies the investigation into economic

mechanisms of asset pricing, and highlight the value of machine learning in the field

of financial innovation. As machine learning has become a more prominent tool in
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valuation of financial assets, it is reasonable to further examine its possible applications

in the perspective of real assets, and shipping economics. In previous research, different

approaches have been used in vessel valuation, with the common denominator being a

predetermined model structure. So far, the application of machine learning techniques

deriving relationships between independent variables from the data sample, rather than

economic intuition, is not largely represented in research regarding vessel valuation.

Machine learning techniques determining model structure based on the data sample has

obtained good results in other fields of real asset pricing. For instance, Park and Bae

(2015) utilized an adaptive boosting approach (ADABoost), to predict real estate prices.

Based on the findings of Park and Bae (2015) and Gu et al. (2018), it is interesting to test

a more data-driven GAM approach and a gradient boosting approach in vessel valuation.
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3 Data

The Handysize bulk carrier fleet consists of 3431 ships, as of the 31st of September 2019,

with 1319 different owners from 68 different countries (Clarkson Research, 2019b). There

are 686 owners owning only one Handysize bulker, and 1185 owners who own five or less.

In other words, the ownership is quite diverse, implying a market power dispersed between

many small market players. The vessels in the fleet have an average deadweight tonnes

(DWT) capacity of 27986, and an average length of 168 meters. DWT is the weight a ship

can carry when loaded to its marks, including cargo, fuel, fresh water, and crew (Stopford,

2009).

The sales transactions are obtained from Clarkson Research (2019b), for the period

of January 1, 1996 to September 31, 2019. In total, the dataset contains 2434 sales

transactions, including the sales prices, sales dates, buyer- and seller countries and if a

sale was a part of a block sale. The dataset also includes the year and month the vessel

was built, building company and in which country it was built. We also have certain

technical specifications and vessel specific variables, such as size (DWT), grain capacity, the

design speed, fuel consumption, engine power, horsepower, fuel type, engine manufacturer,

number of holds, number of hatches and gear summary (cranes and derricks).

To complement the dataset, we add two variables as proxy for market conditions in the

shipping industry, and one variable for cost of capital. The first is one year timecharter

(TC) rates for a standard Handysize bulker quoted at 32000 deadweight tonnes, collected

from Clarkson Research (2019a). The TC rates are the average daily price, in dollars, for

the hire of a vessel in a yearly perspective (Stopford, 2009). The TC rates were quoted at

28000 DWT from 1996 until April 2002, and quoted at 32000 DWT from December 2016.

In between it was quoted at 30000 DWT. We choose to get the values quoted at the same

DWT for the whole period, and transform the values so all of them are quoted at 30000

DWT. Even though it might not be a one-to-one relationship between the quoted size

and TC, we find it more accurate to quote them at the same size.

Secondly, we add orderbook to fleet (OTF) ratio in the Handysize bulker market. This

ratio accounts for newly ordered ships divided by the total fleet (Clarkson Research,

2019a). OTF is another variable to account for the "temperature" in the market. Since
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the TC control for market conditions for ships already existing, we add the OTF ratio to

account for new entries in the market. The third variable we add to the dataset is 3-month

London Interbank Offered Rate (LIBOR) as the cost of capital (Clarkson Research, 2019a).

LIBOR might impact predictions, as it can affect both supply and demand of second-hand

vessels. A lower LIBOR could explain an increased frequency of loans and willingness to

buy vessels. On the other hand, a low LIBOR could be an indicator of low returns, and

therefore decrease the willingness to buy vessels.

The rationale for including TC, LIBOR and OTF is that the information should be

available at the time of a sale. TC is released first day of the week, LIBOR is released

daily and OTF is released the first day of the month.

Further, the data is cleaned by removing sales with untrustworthy currency conversions,

auction sales, judicial sales and block sales. A large portion of the observations were

removed, as they were part of a block sale, making it difficult to assign an accurate

transaction value for each vessel. Transactions with missing data for any of the variables

are also omitted. A total number of 1880 transactions remain.

Following the data cleaning, we create a new variable for the age of the vessel at sale. To

fully utilize the grain capacity and DWT variables, we create a new variable for cubic

utilization, defined as grain capacity divided by DWT. We create a variable for total gear

capacity, which is the number of gears times the capacity of each gear. We find that 91%

(1711 of 1880) of the observations’ engine summary is either MAN, Mitsubishi or Sulzer.

Therefore, we extract those values from the column, and end up with a dummy for engine

manufacturer and a category called other.

In accordance with previous research, we create a Fuel Efficiency Index (FEI) variable.

FEI was first defined by Adland et al. (2017) and has the following formula:

FEI =
Fuel consumption

DWT ∗ Speed ∗ 24
∗ 106 (3.1)

The FEI measures fuel consumption on a “grams per tonnemile” basis, and a low FEI

indicates a fuel efficient vessel.

After the creation of new variables and data cleaning, we end up with 1880 transactions,

and a total of 17 explanatory variables. See Table 3.1 for the numerical variables’ and 3.2
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for dummy variables’ descriptive statistics. Appendix A1 shows descriptive statistics for

three different time periods, as well as the whole period.

Table 3.1: Numerical variables

Variable Minimum Mean Maximum
Response variable

Price (mUSD) 0.60 8.44 49.5
Explanatory variables

Age (at sale) 1 18 40
Deadweight tonnes 10703 28722 39814
Cubic Utilization 0.60 1.28 2.06

Speed (knots) 10 13.9 17.7
Fuel consumption (tpd) 11.5 25 58

Horsepower 3300 9022 18700
Engine RPM 92 151 1200

Number of holds 2 4.9 9
Number of hatches 2 5 12

Gear capacity (tonnes) 0 102.8 350
Fuel efficiency index 1.41 2.68 6.37

One year timecharter rates ($/Day) 4375 12207 40800
Orderbook to fleet (%) 2.28 17 49.58
LIBOR 3-month (%) 0.32 2.93 6.96

Source: Clarkson Research (2019a,b).

Table 3.2: Dummy variables’ distribution

Builder country Engine manufacturer Fuel type
Japan 74.2% MAN 38.4% HFO 84.3%
China 6.9% Mitsubishi 25.2% IFO 15.7%

South Korea 4.3% Sulzer 27.5%
Brazil 2% Other 8.9%
Other 12.6%

Source: Clarkson Research (2019b).

From Table 3.1, we can see that the average age at sale is 18 years, the average size of

the ships is 28772 DWT, the average fuel consumption is 25 tonnes per day, and the

average gear capacity is 102.8 tonnes. On average, the sales price of a Handysize bulker is

$8.44m over the whole period. We can also see clear differences between the minimum and

maximum values of the timecharter rates, respectively 4375 and 40800 dollars per day,
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averaging at 12207. An even bigger difference is observed in the orderbook to fleet ratio,

with a minimum of 2.3%, average of 17% and a maximum of 49.6%. These values are

good indicators of the volatility of respectively the freight market and the S&P market.

Table 3.2 presents the percentage distribution of the dummy variables in the dataset.

Most of the vessels in the dataset was built in Japan (74.2%), 6.9% in China and 4.3%

in South Korea. The engine manufacturers in the Handysize vessels are mainly MAN

(38.4%), with Mitsubishi and Sulzer at respectively 25.2% and 27.5%. It is also eminent

that most of the vessels use heavy fuel oil (HFO) with 84.3%, and a minority of 15.7% use

intermediate fuel oil (IFO). To further investigate the data, it is split into groups divided

by years.

Appendix A1 displays the development of the variables divided into three time periods,

1996-2003, 2004-2009 and 2010-2019, and for the full period. We also display standard

deviation for sales price, $7m and median $6.25m for the whole period. From the table, we

can see the price, TC and OTF were clearly highest during the 2004-2009 period. Another

interesting observation from 2004-2009 is that the average DWT is lowest, at 27931, and

the average vessel age at sale is highest, at 20.2 years. In addition, we can detect other

interesting trends. Sales of vessels produced in China has increased from 1.4% to 13.4%

from the first to the last period. Sales with intermediate fuel oil has increased from 8.2%

to 25.5%, and vessels with a MAN engine are more frequently sold, increasing from 26.8%

to 52.3%.
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Figure 3.1: Trends in FEI, horsepower, speed and fuel consumption

Source: Clarkson Research (2019b).

Trends for a decreasing fuel efficiency index, fuel consumption, speed and horsepower

are presented in Figure 3.1 on a yearly basis. Decreasing average fuel consumption,

speed and horsepower indicates more fuel efficient vessels and environmental friendly ships.

Reductions in speed and fuel consumption could reduce CO2 emissions and operating costs,

which is important for the environment and shipping companies (Lindstad et al., 2011).

Financiers and vessel owners are increasingly conscious of the negative environmental

consequences from maritime transport, and energy efficiency might be a competitive

element when buying a second-hand vessel (Raucci et al., 2017). This, combined with

technological enhancements, could pose an explanation of the improved fuel efficiency
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over time. Energy efficiency is also a significant determinant of the second-hand price,

with improved energy efficiency increasing sales price (Adland et al., 2018).

Figure 3.2: Yearly average sales prices and transactions

Source: Clarkson Research (2019b).

In Figure 3.2, we can see the development of the average sales price and the number of

transactions in the period of January 1996 - September 2019. The vertical dotted lines

represent the years 2003 and 2009, dividing the groups as in Appendix A1. The period of

2003 to 2008 was the commodity market super cycle, and is clearly displayed in the graph

(Erten and Ocampo, 2013). The average amount of yearly transactions is 78.3, ranging

from 33 transactions in 2014 to 160 transactions in 2009. In the years of 2007 and 2009,

the number of transactions, respectively 158 and 160, are more than doubled compared to

the sample average. We can also see the impact of the financial crisis on sales prices from

2008 to 2009, changing from an average sales price of $18.3m to $7.2m.
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4 Methodology

The focus of this section is explaining the different prediction methods to be applied in

the analysis; generalized linear model, generalized additive model and extreme gradient

boosting. These methods are used, as they are known to yield good prediction results

and facilitate different degrees of model complexity (James et al., 2013).

4.1 Cross-validation and validation set

The dataset is divided into a training- and a test (validation) set, to have a basis for

out-of-sample evaluation of the prediction models (James et al., 2013). Models are fitted

to the training set and validated on the test set. The training set makes up 80% of the

data, the test makes up the final 20%, and the observations that go in to each set is

arbitrarily selected.

The training of the different models is done on the training set using k-fold cross-validation.

This method divides the training set into k number of subsets, or folds, of almost equal

non-overlapping size (James et al., 2013). The model is fitted k number of times, where

one fold is held out as the test set, and the relevant error metrics are calculated for every

held-out fold. The error metrics, explained in section 4.6, are used for optimizing the

model and/or tune the model parameters. A large value for k would on average yield

lower prediction error variance, but a higher bias in the different prediction errors. This

is due to the trade-off between bias and variance. The higher the bias of a model, the

lower its ability is to represent the relevant relationships in the data (James et al., 2013).

The higher the variance of a model, the less suited a fitted model is for out-of-sample

prediction. After the k-fold cross-validation is performed, a final model is returned.

The final model’s fit to the training data forms the basis for calculating the training error

metrics, and the predictions performed on the validation set are used to calculate the test

error metrics (James et al., 2013). Another approach to cross-validation could have been

leave-one-out cross-validation (LOOCV). The LOOCV approach uses a single observation

(x1, y1) for the validation inside the training set, and the remaining observations (x2, y2),

. . . , (xn, yn) would make up the training set. This approach demands high processing

power, and would not be possible in this thesis, due to the use of complicated prediction
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methods. Also, the LOOCV would result in a high prediction variance, making the model

less suitable for out-of-sample prediction (James et al., 2013).

4.2 Variable selection with the Boruta algorithm

To exclude unimportant variables from the prediction models, we apply the Boruta

algorithm. The Boruta algorithm is applied using the R package Boruta (Kursa and

Rudnicki, 2010), which utilizes an algorithm wrapped around the random forests algorithm

from the R package randomForest (Liaw and Wiener, 2002). The Boruta algorithm creates

a set of shadow variables in the dataset, with arbitrary values for each observation. A

random forest model is fitted to predict the response variable, using the dataset with the

shadow variables. After fitting the random forest model, the Boruta algorithm calculates

the Z-score of each variable using the following formula:

Z =
Average Loss

Standard deviation of the variable
(4.1)

The process of testing the Z-score for the variables is repeated until all of the variables are

classified as important or unimportant. A variable is deemed important by the Boruta

algorithm if the variable has a higher Z-score than any of the shadow variables (Kursa

and Rudnicki, 2010).

4.3 Generalized linear model

Nelder and Wedderburn (1972) created the generalized linear model (GLM), which is a

flexible generalization of a linear regression. The model allows for distributions other than

Gaussian, and for a degree of non-linearity in the model structure (Wood, 2017). The

structure of a GLM is:

g(µi) = Xiβi (4.2)

In equation 4.2, µi ≡ E(Yi), g is a smooth monotonic "link function", Xi is the

ith row of a model matrix, X, β is a vector of unknown parameters, and Yi ∼

some exponential family distribution (Wood, 2017). If a Gaussian distributed GLM

is assumed, the GLM is characterised by a dependent variable, whose distribution has

mean = φ, variance = σ2 and φ = predicted g =
∑
β̂ixi (Nelder and Wedderburn, 1972).
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In this case, equation 4.2 would look like a linear regression.

4.4 Generalized additive model

The generalized additive model (GAM), created by Hastie and Tibshirani (1986), is an

extension of the GLM. The GAM fits a GLM with a linear predictor involving a smooth

term which is the sum of smooth functions of explanatory variables (Wood, 2017). GAM

replaces the linear form of
∑
βiXi by a sum of smooth functions

∑
si(Xi) (Hastie and

Tibshirani, 1986). The general model is structured as follows:

g(µi) = Aiθ + f1(x1i) + f2(x2i) + f3(x3i, x4i) (4.3)

where g(µi) ≡ E(Yi) and Yi ∼ EF (µi, φ). Yi is a response variable, EF (µi, φ) denotes an

exponential family distribution with mean µi, and scale parameter φ. Ai is a vector of

explanatory variables for strictly parametric components, θ is the corresponding parameter

vector, and fi are smooth functions of the non-parametric model variables, xk (Hastie and

Tibshirani, 1986; Wood, 2017).

A GAM is additive because a separate fi is calculated for each xi and added together

(James et al., 2013). The GAM is flexible, and can model non-linear relationships, making

it possible to avoid specific assumptions about the functional form of these relations.

Because of its additive structure, it is possible to examine effects of each xi on g, holding

the other variables constant.

Regression splines are created by specifying a set of knots, producing a sequence of

basis functions and then using least squares to estimate the spline coefficients (James

et al., 2013). Thin plate regression splines (TPRS) avoid the problem of subjectivity by

automatizing the knot placement for the smoothing splines (Wood, 2017). TPRS are

also relatively cheap to compute, and can be constructed for smooths of any number of

predictor variables.

The TPRS approach is a general solution to the problem of estimating a smooth function

at particular values of the predictors (Wood, 2017). Consider the problem of estimating

g(x) such that yi = g(xi) + εi, where εi is a random error term and x is a d-vector. TPRS
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estimates g by finding the function f̂ which minimizes

||y − f ||2 + λJmd(f) (4.4)

where y is the vector of yi data and f = [f(x1), ..., f(xn)]T (Wood, 2017). Jmd(f) is a

penalty function measuring the "wiggliness" of f , and λ is a smoothing parameter. λ

controls the important bias-variance trade-off between smoothing the functions adequately

and fitting f to the data specifically enough (Wood, 2017). In other words, λ is chosen to

prevent underfitting and overfitting.

The problem of choosing the optimal smoothing parameter, λ, is solved using generalized

cross-validation (GCV). GCV is the most frequently used way of determining the smoothing

parameter, λ (Wood, 2017). If λ is too low, the data will be under-smoothed and if it is

too high the data will be over-smoothed. In both cases, the estimate f̂ will not be an

accurate estimation of f . This means that the choice of lambda should be to make f̂

as close to f as possible. Generalized cross-validation is used to minimize the following

formula:

Vg =
n
∑n

i=1(yi − f̂i)2

[n− tr(A)]2
(4.5)

Equation 4.5 returns the GCV score, which is an estimate of the mean square prediction

error (Wood, 2017). The GCV approach refits the model to subsets of the data, before

resampling it. Different values for λ are used, and the model with the best fit is chosen.

4.5 Extreme gradient boosting

Extreme gradient boosting (XGBoost) is an algorithm combining several weak learners,

typically regression trees, to create a strong predictive model, created by Chen and

Guestrin (2016). Boosting refers to the sequential ensemble of trees, where new trees are

built based on residuals in previous trees (Friedman et al., 2000). Hence, the sequentially

added trees are trained on the variance in the training set not adequately explained by

the existing trees. New trees are added until the algorithm reaches the maximum number

of trees, or the new trees do not add significant predictive power. At the beginning

of the algorithm, each observation is predicted as the mean of all observed response

variables, with an equal weight of 1
N

(Friedman et al., 2008). The weights will be adjusted
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throughout every iteration. The more a prediction misses, the higher the weight of that

observation in that tree, and the more the algorithm is forced to focus on this observation

(Chen and Guestrin, 2016).

The process of fitting the XGBoost algorithm revolves around sequential tuning of a series

of model parameters, and choosing the parameters that gives the most accurate model

(Chen and Guestrin, 2016). Before explaining the effect of each parameter on the model,

and in what order the parameters are tuned, it is noted that the nrounds (B) parameter is

tested for multiple values in every tune iteration (James et al., 2013). B sets the maximum

number of trees the algorithm ensembles. For each parameter tuning, the algorithm will

return the optimal combination of input parameters, by minimizing the Loss function

presented in equation 4.6.

L(φ) =
∑
i

l(ŷi, yi) +
∑
k

Ω(fk)

where Ω(f) = γT +
1

2
λ||w||2

(4.6)

In equation 4.6, L(φ) is the estimated predictive loss (l), which represents a second-degree

approximation of the residuals (Chen and Guestrin, 2016). Ω(f) is a function penalizing

complex models, and is meant to prevent overfitting. The number of leafs (T) in a tree is

penalized through the Gamma (γ) parameter.

The first two parameters normally tuned are the learning rate (λ) and the max depth

(d) of the regression trees (Friedman et al., 2008). The learning rate decides the weight

placed on each sequentially added tree. A low λ will give a more robust model, as each

step has less impact, but a low λ will also require a large number of trees, B, hence being

computationally expensive. The max depth indicates how many levels the regression tress

is allowed to have. Deep trees can lead to overfitting of the training set, as unnecessarily

complex patterns can be modelled, whereas shallow trees can be excessively simplistic

(James et al., 2013).

In the second tuning, min_child_weight is set, deciding the minimum required weight for

all observations in a single tree (Kuhn and Johnson, 2013). A low min_child_weight can

lead to overfitting, as the model can be prone for very specific trends. On the contrary, a



4.6 Model evaluation 17

high min_child_weight can lead to underfitting, as important trends are overlooked.

In the third tuning, colsample_bytree and subsample is set. colsample_bytree decides

the fraction of variables to be sampled in a new tree (Chen and Guestrin, 2016). The

subsample parameter decides the fraction of the training set used to train each tree. Small

subsamples can lead to underfitting, and large subsamples can lead to overfitting. In the

fourth tuning, Gamma (γ) is tuned. Gamma constraints the minimum effect each new

tree can have on the loss function, before the algorithm is stopped (Kuhn and Johnson,

2013). In the fifth and sixth tunes, the model is sequentially tuned for learning rate and

the exactly optimal maximum number of trees.

4.6 Model evaluation

To evaluate the different models’ performances, the adjusted R2, training and test root

mean squared error (RMSE) and mean absolute percentage error (MAPE) are calculated.

When comparing predictive models, it is advantageous to examine different error metrics,

to get a nuanced basis for model evaluation.

A common measure of how well the model fits the dependent variable in the training

set, is the correlation coefficient of determination, R2 (Harel, 2009). This measure of the

model fit lies between 0 and 1 (0% to 100%). Since R2 always increases as more variables

are added to the model, the adjusted R2 is a better measure for how well the model fits

the data. The adjusted R2 will account for the number of independent variables in the

model. However, the adjusted R2 is only a good measure for how well the model fit the

training data, not out-of-sample predictive power (James et al., 2013).

Mean squared error (MSE) is a measure of a models squared residuals (James et al., 2013).

The root of the mean squared error (RMSE) is an error term on the same scale as the

dependent variable, making it easy to interpret. The RMSE is calculated for both the

training and the test set, and is an acknowledged way of testing model accuracy (James

et al., 2013). The RMSE is calculated using the formula in equation 4.7.

RMSE =

√√√√ 1

N

N∑
i=1

(f̂(xi)− yi)2 (4.7)
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In equation 4.7, N is the number of predicted observations, yi is the observed value and

f̂(xi) is the predicted value for observation i. As RMSE is calculated using squared

residuals, large residuals will be heavily penalized by this error measurement. Hence,

RMSE is suitable when it is appropriate to penalize a model for large residuals (James

et al., 2013).

An error measurement that does not penalize large residuals as severely as RMSE is the

mean absolute percentage error (MAPE), calculated using the following equation:

MAPE =
1

n

N∑
i=1

|f̂(xi)− yi|
|yi|

(4.8)

where f̂ is the model function, xi is the list of explanatory variables (input) and yi denotes

the target variables (De Myttenaere et al., 2016). MAPE is a good error measurement

when you have a varying specter of values in the response variable. As MAPE is calculated

as a percentage, it takes the value of the observed response variable into account. Thus,

penalization of the residuals is scaled to the observed value (James et al., 2013). Scaling

can be a useful trait of the error metric when predicting a variable like price, as a $1

million residual is more significant for a price of $5 million than $50 million.

The combination of the adjusted R2, RMSE and MAPE facilitates a nuanced and accurate

basis for model evaluation.
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5 Empirical Analysis

In this section, the methods described in section 4 will be applied to the dataset described

in section 3, to predict second-hand Handysize bulk carrier prices. First, the Boruta

algorithm will be applied to check variable importance in the independent variables.

Further, we will present how the different models are fitted. Lastly, we will examine and

compare the models and their results.

Variable selection is performed using the R package Boruta (Kursa and Rudnicki, 2010).

The response variable is second-hand price, and all the predictors are used in the model

with 11 iterations. The figure in Appendix A2 shows the relative importance of the

predictors, where the horizontal axis represents the predictors and the vertical axis

represents the variable importance. From a total of 17 independent variables, all of them

are classified as important. According to Kursa and Rudnicki (2010), Boruta is a heuristic

method, which seeks to find all relevant variables, including weakly relevant ones. Hence,

many of the variables classified as important, might only be slightly relevant.

The Boruta algorithm’s results indicate that all variables should be included in the

predictions. In this thesis, the main focus is maximizing predictive power, rather than

identifying inference. Therefore, we choose to initially include all the variables deemed

important by the Boruta algorithm. As the Boruta algorithm is based on a random forest

model, it will not be affected by problems with multicollinearity (Kursa and Rudnicki,

2010). Problems with multicollinearity could occur when two or more variables are highly

correlated and account for the same variation in price. Initially, multicollinearity does

not pose a problem for predictive power, but it makes interpretation of variable effects

more complicated (Paul, 2006). However, including several variables that account for

the same price variation can cause unstable predictions, when slight changes in the data

is introduced (James et al., 2013; Paul, 2006). This will be further addressed when the

GAMs are fitted.

5.1 Fitting the models

Models are created based on the logarithm of price as the response variable, mainly to

avoid predicting negative prices. Another advantage of log-transforming the price is that
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we can assume a Gaussian distribution, as seen in the histogram of logarithmic price

in Appendix A3. A response variable with a Gaussian distribution could reduce the

computational cost of some models, by eliminating the need for a link function (Friedman

et al., 2008). To properly scale the dollar values of the TC rates to the price variable, this

variable is also transformed to the logarithmic scale.

All of the models presented will be estimated using a training set, arbitrarily including 80%

of the observations. The last 20% will be used as out-of-sample validation of the models.

K-fold cross-validation will be used when training the different models, as described in

section 4. We use k = 5, as this facilitates a sensible trade-off between the prediction

error bias and variance with relatively small datasets (James et al., 2013).

The first model we fit is a GLM, through the use of the caret R package (Kuhn et al.,

2008). As the response variable is approximately distributed in a Gaussian manner, the

GLM will be structured as a standard linear regression (Nelder and Wedderburn, 1972).

The GLM is created as a benchmark to maximize predictive power, and is therefore fitted

using all of the explanatory variables (James et al., 2013).

Next, we create a benchmark GAM using the mgcv package in R (Wood, 2017). When

fitting the benchmark GAM, smoothing terms are created for all numeric variables in

Figure 3.1, except the number of holds and hatchets, as their respective effective degrees

of freedom (EDF) are too low to be smoothed. A variable’s EDF is a measurement of

the freedom a variable has to vary (Janson et al., 2015). The smoothing terms allow for

non-linear relationships between the independent variables and price to be modelled, as

explained in section 4.4. As with the GLM, the model is fit using all of the explanatory

variables.

To obtain an interpretative GAM, a low degree of concurvity in the non-parametric

terms and multicollinearity of the parametric terms is desirable. A high degree of

concurvity for a variable indicates that its smoothing term could be approximated by one

or more other smoothing terms. One could argue that predictive power is more important

than variable interpretability, and that addressing multicollinearity and concurvity is a

redundant procedure. However, including variables with a high degree of multicollinearity

or concurvity can cause problems when the initial predictive power of the variables is

unknown, and lead to the predictive model being based on faulty assumptions (James
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et al., 2013). Hence, addressing multicollinearity and concurvity makes the model more

robust.

To ensure robustness, the model is set to penalize the smoothing terms and reduce the

effect of variables which could be explained by other variables, effectively setting the effect

of variables that cause a high degree of concurvity or multicollinearity to zero (Marra

and Wood, 2011). A summary of the benchmark GAM is displayed in Appendix A4,

indicating that the effect of the speed and hp variables are non-significant, and set to zero.

The benchmark GAM is presented in the following equation:

g(E(pricei|.)) = θ0 + s(agei) + s(dwti) + s(cubici) + s(speedi) + s(fuelconi)

+s(hpi) + s(rpmi) + holdsi + hatchesi + s(gearcapi) + s(feii)

+Ibuilderi + Ifueltypei + Ienginei + s(tc1yi) + s(otfi) + s(libori)

(5.1)

In the regression equation 5.1, s refers to the different smoothing terms of the numeric

variables, and I indicate transformation from factorial variables to dummy variables.

To further assess the applicability of generalized additive modelling for vessel pricing, two

sequentially tested interaction terms will be added to the GAM. In the same way as the

benchmark GAM, an iterated GAM is fitted using the mgcv package in R (Wood, 2017).

For the interaction terms, smoothing functions are created to model influence on price

for all possible combinations of the two variables. Given the importance of tc1y and age

in the Boruta plot in Appendix A2, these variables will make up the first factors of two

created interaction terms. For the second factors in each of the interaction terms, all 14

of the numerical variables are tested, except for the variable making up the first factor of

the term. For an overview of the numeric variables, see Table 3.1. The approach iterates

through 169 models.

For each GAM, the cross-validated RMSE is returned and used to compare the model to

the currently best performing model. As the cross-validated training error is a suitable

proxy for out-of-sample prediction error, the cross-validated RMSE is used for model

selection. If the training error calculated on the final model was used in model selection,

instead of the cross-validation error, the method could be prone to choosing a model that

overfit the data. The currently best performing model is saved, and replaced if a new

combination of interaction terms yields a lower cross-validated RMSE. As the interaction
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terms are created by iterating through the variables, this is a highly data-driven approach

to fit a GAM. The optimal interaction terms found are tc1y ∗ age and age ∗ dwt.

One could argue that iterating though 169 models is excessive to find these interaction

terms, as it could make intuitive sense to combine two important variables in tc1y∗age and

a vessel-specific variable, dwt, with the age in age ∗ dwt. However, this iterative approach

is based on the assessment of predictive power rather than an educated judgement. This

method could potentially uncover relationships between different variables not represented

in conventional maritime economics.

Lastly, we fit an extreme gradient boosting model. As an XGBoost model is free to use any

variable as much, or as little, as appropriate, this method is not affected by multicollinearity

of variables, and produces a robust model (Ding et al., 2016). The sequential parameter

tuning, with k-fold cross-validation, described in section 4.5 is applied to the training set,

using the caret R package (Kuhn et al., 2008). The parameters selected are presented in

Table 5.1.

Table 5.1: Parameter values - XGBoost

Parameter B d λ γ colsample_bytree min_child_weight Subsample
Value 649 4 0.025 0.05 1 3 0.5

As seen in Table 5.1, the model uses 649 regression trees, each having a relatively low

impact on the prediction, due to the low learning rate of 0.025. The values for subsample

and colsample_bytree, of respectively 0.5 and 1, indicate that 50% of the observations

are used to train each tree, and all observations are eligible for use in each tree. The

possibility to use any variables in all trees could be advantageous, as the Boruta algorithm

uncovered a large difference in relative variable importance. A γ value larger than zero,

and the relatively high min_child_weight value of 3, could balance out the maximum tree

depth of 4, which makes for a pretty complex model (Chen and Guestrin, 2016). Overall,

the combination of parameters could facilitate a balanced degree of model complexity

(Kuhn and Johnson, 2013; Chen and Guestrin, 2016).
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5.2 Evaluation of models

After fitting the models, their predictive performance are examined and compared. First,

we compare the GLM to the benchmark GAM, then the benchmark GAM to the iterated

GAM, and lastly we compare the iterated GAM to the XGBoost. The models’ evaluation

metrics are shown in Table 5.2, calculated as explained in section 4.6. As the price variable

is log-transformed, the adjusted R2 is manually calculated for how well the model explains

deviance in the exponentially back-transformed price variable.

Table 5.2: Evaluation metrics

Evaluation metrics GLM Benchmark GAM Iterated GAM XGBoost
Adj. R2 84.27% 88.06% 91.18% 89.9%

Train RMSE 2.8 2.44 2.1 2.24
Test RMSE 2.95 2.88 2.7 2.48

Train MAPE 19.95% 16.33% 14.73% 16.14%
Test MAPE 21.26% 18.74% 18.31% 16.6%

To visualize the out-of-sample predictions, the fitted prices for the test set are plotted

against the actual prices in Figure 5.1. A 45° line is added to the plots, representing a

perfect prediction. The closer an observation is to the 45° line, the better the prediction

is.
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Figure 5.1: Fitted- versus actual values in the validation set

Source: Clarkson Research (2019a,b).

As seen in Table 5.2, the adjusted R2 for the GLM is 84.27%, indicating that the model

explains about 84% of the variance in the training set observations’ prices. The GLM’s

train- and test MAPE are respectively 19.95% and 21.26%. The RMSE is 2.8 for the

training set and 2.95 for the test set. So far, the GLM seems to fit and predict the data in

a reasonable manner, as the test errors are slightly higher than the training errors. Test

errors larger than training errors, but not by a large margin, indicates a good trade-off

between overfitting and underfitting the training data (James et al., 2013). If the test error

measurements are very high compared to the training measurements, it might indicate

that the model is overfitted to the training set, and that the model is not suitable for

out-of-sample predictions.

From Figure 5.1 it appears that GLM does not capture certain relationships in the data,

as the price of vessels costing over $20 million are generally being predicted too high or

too low. Therefore, it is interesting to compare the model with GAMs, as they facilitate

modeling of non-linear relationships.

The benchmark GAM seems to do an even better job than the GLM at both fitting the

training data and predicting the test set. The train and test RMSE and MAPE are all

lower than those of the GLM. The adjusted R2 is higher, and indicates that the fitted model
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accounts for approximately 88% of the variation in price in the training set. Contradictory

to the GLM, the benchmark GAM seems to detect some of the characteristics for the

higher priced ships, as seen in Figure 5.1. However, prices over $20m still seem to be

predicted somewhat low or high. The slight improvement of the GAM compared to the

GLM could be explained by the modeling of non-linear relationships.

In Appendix A4, the EDF reflects the degree of non-linearity in the predictors in the

GAMs, and the significance of these. The values are calculated to a null hypothesis of a

linear relationship versus the alternative of a non-linear relationship for each smoothed

variable (James et al., 2013). From Appendix A4, we can see that speed and hp, are the

only variables with weak evidence for non-linearity and significance in the benchmark

GAM. This implies that the model has deemed these variables as redundant, and set

their effect on price to zero, indicating how the GAMs automatically addresses concurvity

and multicollinearity. All the remaining smoothed variables have significantly non-linear

relationships with price.

Further, we will examine the iterated GAM, and compare it to the benchmark GAM. For

the iterated GAM, all the error metrics are lower than those of the benchmark GAM. As

explained in section 4.6, the MAPE metric provides a good understanding of prediction

error, as it is scaled to the observed values. The training and test MAPE, of respectively

14.73% and 18.31%, indicate that the training set is a lot more accurately predicted than

the test set. The increased divergence between test and train error metrics, compared

to benchmark GAM, could imply that the interaction terms leads the model to slightly

overfit the training set. However, as the iterated GAM has lower train and test error

metrics than the benchmark GAM, it seems to be better suited to fit the data and perform

out-of-sample predictions.

As the iterated GAM has yielded the best results this far, it is interesting to compare it to

the XGBoost approach. The test error metrics of the XGBoost model are slightly higher

than the training error metrics, showing no clear indications of overfitting or underfitting.

The test RMSE and test MAPE are both lower for the XGBoost model than for the other

models. Although the training error measurements of the XGBoost is slightly higher

than those of the iterated GAM, the XGBoost seems to be best suited for out-of-sample

prediction.



26 5.2 Evaluation of models

The application of precise desktop ship valuation can be highly useful for investors, ship

owners or other market players in the maritime industry, with more accurate prediction

leading to better informed decision making. As the average transaction value in the

dataset is $8.44m, increasing price prediction accuracy with a few percentage points could

have a large economic impact. Due to the volatile S&P market for vessels, increased

prediction accuracy could be important to facilitate well-timed sales or purchases.

In previous research, the GAM approach has yielded good results in desktop valuation of

chemical tankers, and modelling shipping markets, mainly due to its flexibility (Köhn,

2008; Adland and Köhn, 2019). One of the major differences between the XGBoost

approach and the GAM approach is that an XGBoost model makes predictions based on

a series of regression trees, enabling complex relationships between all the variables in the

dataset to be modeled. Where the GAM is limited to a set number of interaction terms,

the XGBoost model can create decision rules for multiple variables in any branch of any

tree, as well as model non-linearity in each separate variable. As the GAM is additive

in nature, it cannot capture non-linear relationships between variables not included in

interaction terms.

Application of XGBoost in vessel valuation could for instance allow the effect vessel-

specific variables to be modeled differently, based on a set of market variables or other

vessel-specific variables. This attribute of the XGBoost algorithm can be beneficial, as

certain variables could affect the influence of other variables. Our analysis indicates

that the XGBoost algorithm’s ability to model complex relationships in the data makes

the algorithm suitable for application in desktop valuation, as out-of-sample prediction

accuracy is 1.7 percentage points better than the most accurate GAM.

Where the GAM arguably is advantageous to the XGBoost, is in interpretability of different

variables’ effect on the response variable (James et al., 2013). Because of the additive

structure of the GAM, a variable’s effect on price can be examined, holding all other

variables constant. The smoothing plots from the iterated GAM facilitate interpretation of

a single smoothed variable’s effect on the price, whereas the XGBoost models a variable’s

effect in different trees, and in combination with other variables. Therefore, the iterated

GAM will be the main focus when examining variable effects on price. An interpretation

of the GAM’s variables will not account for the complex relationships between variables
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modeled in the XGBoost model. Rather, it will give a general overview of impacts on price

from specific variables in the training set. In Figure 5.2, smoothing plots for age, tc1y

and the interaction terms for tc1y ∗ age and age ∗ dwt in the iterated GAM are presented.

Figure 5.2: Smooth of tc1y, age, tc1y ∗ age and age ∗ dwt

Source: Clarkson Research (2019a,b).

The black lines in Figure 5.2 for tc1y and age in the two upper plots represent the

smoothed variables, and the dotted lines are the confidence bands. The confidence

bands indicate more uncertainty regarding the effect of smaller and higher values, mainly

due to fewer observations. Relationships with second-hand price for age and tc1y are

strongly non-linear, as indicated in the plots and Appendix A4 from their high EDF and

significance.

The positive influence of tc1y on price could be explained by tc1y containing a lot of

information about possible future income. If the valuation was done through an income-

or discounted cash flow approach, TC rates would probably be one of the best indicators
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for future income (Stopford, 2009). As tc1y accounts for the state of the freight market,

mainly in the short term, a high tc1y indicates positive expectations for future earnings.

Vessel age at sale affects the second-hand price negatively until a certain point, around

age 30, as seen in Figure 5.2. The age curve has larger confidence bands after the shift,

indicating an increased degree of uncertainty. Depreciation reflects the loss of performance,

higher maintenance, technical obsolescence and expectations about the economic life of an

ageing vessel (Stopford, 2009). So far, the findings regarding the effect age has on price

does not coincide with existing literature, as real assets are expected to depreciate at a

constant or varying rate (Hulten and Wykoff, 1980). However, to fully explain the tc1y

and age effects in the iterated GAM, they must be examined along with the interaction

terms.

The two lower plots in Figure 5.2 show the interaction terms tc1y ∗ age and age ∗ dwt.

The scale of impact on price for each interaction term is shown on their right side. From

the tc1y ∗ age plot, we can see that high values for vessel age mostly affect the price

negatively, with only a few combinations of tc1y and age having a positive effect. The

tc1y ∗ age seems to function as a counterweight for the age variable, as the interaction’s

effect on price is mainly negative for age over 30. From the interaction between age ∗ dwt,

it appears that small vessels and bigger vessels with an old vessel age affect the price

positively, but at a low rate.

After examining different variables’ impact on price in the iterated GAM, the relative

importance of the variables in the XGBoost model are presented in Figure 5.3. Although

the complexity of the XGBoost model makes it difficult to interpret the full effect of a

variable on price, relative importance indicates which variables cause the model’s high

predictive power.
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Figure 5.3: Variable Importance - XGBoost

Source: Clarkson Research (2019a,b).

Figure 5.3 implies that age and tc1y are the most important variables, followed by fei,

otf and dwt. In Maritime Economics, Stopford (2009) identified age and timecharter

as two of the main influences of second-hand vessel prices, supporting the legitimacy

of the XGBoost results. The importance of these variables is also coherent with the

proposition of Beenstock (1985), who argued that vessel prices should be priced using a

framework based on portfolio theory. If a ship is viewed as a capital asset in a portfolio,

the future income creating higher return on investment and duration of the asset are key

components in vessel pricing (Bodie et al., 2014). The importance of the depreciation

from age and increasing price with tc1y are coherent with previous research regarding

desktop valuation and shipping economics (Adland and Koekebakker, 2007; Adland and

Köhn, 2019; Stopford, 2009).

The fuel efficiency index proposed by Adland et al. (2017) is the third most important

variable in the XGBoost model. Adland et al. (2018) states that the fuel efficiency of

vessels could be more beneficial when freight rates are low, due to potential cost savings.

As the XGBoost model is based on a series of regression trees, such a relationship between

variables can easily be modelled, emphasizing the applicability of the XGBoost algorithm

for desktop vessel valuation.

Interestingly, engine, builder and fueltype are relatively unimportant in valuation of

vessels. An initial expectation was that these variables would be more important when
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predicting the second-hand price. However, for fueltype this could be explained by 84.3%

of the vessels sold using heavy fuel oil, as seen in Appendix A1. Hence, the relatively

low importance of fueltype could be interpreted as a result of a homogeneous data basis,

rather than lack of general predictive power. The same logic applies to builder, as most

of the vessels (74.2%) are built in Japan. On the other hand, the engine variable has a

more diverse data basis. Given the heterogeneous distribution of the engine variable, the

relatively low importance could be interpreted as a lack of predictive power.

To improve the understanding of the tree based XGBoost model, we plot one of the

regression trees in Figure 5.4. It is important to emphasize that this tree is only one of

649 trees, and that other variables will be included in other trees. However, the plotted

tree gives a good indication of how the XGBoost model makes predictions. The boxes

illustrate decision nodes, and the circles illustrate the tree’s leafs. Starting from the left

node, each variable proceeds to one of two branches, based on age. The two next nodes

have decision rules regarding the tc1y. Depending on of what branch an observation

follows, age, tc1y, otf and/or dwt are tested. The Value in each leaf is multiplied with

the λ and added to the predictions of the variables in that leaf. This is repeated for every

tree created by the algorithm, making up the total prediction. As subsample is 0.5, 50%

of the variables will be sorted in the different leafs of a tree.
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Figure 5.4: Regression tree - XGBoost

Source: Clarkson Research (2019a,b).

Although the overall predictive results seemingly implies good predictive accuracy,

particularly for the XGBoost model, the plots of the fitted test set prices against the

actual prices in Figure 5.1 indicate that all the models seem to have problems with a set

of observations systematically being predicted too low. These observations start at an

actual price of around $20 million, and the predictive error seems to increase as the actual

value goes up, with a relatively similar deviation pattern for all the models. This might

imply there are drivers of price not captured in the data.

To further examine the increase in predictive error for transactions over $20 million, the

fitted training set prices are plotted against actual prices in Appendix A5. Similarly

to the prediction of the test set values, the fitted values for certain observations in the



32 5.2 Evaluation of models

training priced over $20 million are too low. Apparently, the systematic errors found in

the test set predictions are also present in the training set. This trend could be present as

a consequence of certain ship characteristics or market conditions not being represented

in the dataset. For instance, Pruyn et al. (2011) argues for new-building price level as a

considerable explanatory variable to use in second-hand price models. This is an example

of a variable that could counteract the systematic prediction error occurring for vessels

priced over $20 million.

Another explanation of the increase in predictive error for observations with prices over $20

million could be the lack of observations in this price range. Only 8% (149 of 1880) of the

sales transactions are priced over $20 million. Looking further into those 149 observations,

89% of them were in the super cycle years from late 2003 to early 2009. As prices deviate

more from the average sales price of $8.44m, and the amount of observations decreases

with increased price, it is reasonable that those observations will be harder to predict.

The scarce data basis for higher priced vessels can make it challenging to train the models

and recognize certain characteristics of those ships.

A third explanation could be irrational market behavior. At times of extreme growth

of prices in a commodity market, market players tend to invest on the basis of earlier

price increase, and not on the fundamental information (Szyszka, 2010). These irrational

investors will increase divergence from the true value of the asset. Since most of the

transactions over $20m was during a super cycle, this could offer an explanation for why

prices peaked in this period, hence explaining why our models predict the price too low.

One solution to this problem of lower predictive power for transactions over $20m could

be to remove the whole super cycle period from our dataset. We did not want to do

this because of the importance of being able to predict prices, also during a booming

period. Also, to justify systematically omitting a set of variables based on time period,

they should be considered as error inputs, not observations with unusual values (James

et al., 2013). By removing these observations, we would indirectly assume an ability to

predict a super cycle and its crash, which is unlikely (Van den Berg et al., 2008).
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6 Conclusion

The main objective of this thesis has been to compare extreme gradient boosting to

generalized additive models in desktop valuation of second-hand Handysize bulkers. We

found evidence that the XGboost algorithm improves desktop valuation accuracy, compared

to the GAM approach. The XGBoost yielded the best predictive accuracy, on average

missing by 16.6% on out-of-sample predictions, a 1.7 percentage points decrease from the

data-driven GAM’s test mean absolute percentage error.

The XGBoost approach contributes to research on Handysize vessel valuation, mainly by

facilitating complex variable relationships in a substantial degree compared to methods

applied in previous research. However, the GAMs arguably facilitate variable inference

in a better way than XGBoost, making them valuable for interpreting variable effects.

An interesting aspect of the analysis was the systematic increase in predictive error for

transactions over $20 million. As 89% of these transactions occurred between 2003 and

2009, these findings could emphasize the difficulty of predicting vessel prices during a

super cycle.

We have found age at sale, timecharter rates and fuel efficiency index to be the three most

important variables in valuation of second-hand prices, using the XGBoost algorithm.

These findings coincides with previous research in maritime economics (Adland and

Koekebakker, 2007; Stopford, 2009; Adland et al., 2018). In addition, the effective degrees

of freedom and significance of variables found in the GAMs showed evidence of linear

models to be insufficient in vessel valuation.

To sum up - the use of several vessel-specific variables and market variables yields promising

prediction results. Notably, the XGBoost algorithm provide an appropriate framework

in desktop valuation of second-hand Handysize bulk carriers. The application of the

XGBoost algorithm in vessel valuation could be advantageous for investors, ship owners

and other market players in the maritime industry.

Although our thesis presented a prediction model that yields promising results, it has

certain limitations. The transaction data was collected from Clarkson Research. As the

data basis is not cross checked with other data sources, there is a possibility of typing errors

and incorrect values to be included in the data, potentially causing wrongful conclusions
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to be drawn. Also, as the block sales transactions were omitted, certain mechanisms in

the S&P market might not have been addressed.

The iterated GAM presented was limited to testing two interaction terms, which might not

have been sufficient to capture all relevant relationships between the independent variables.

Also, the interaction terms in the iterated GAM were based on variable importance found in

the Boruta algorithm. It is no guarantee that the important variables found by the Boruta

algorithm are equally important in the GAMs, and testing more interaction combinations

could be beneficial. The tested parameters in the tuning of the XGBoost model were

also limited, due to computational cost. Although the process of parameter tuning the

XGBoost model was done with caution, a more thorough tuning of the parameters could

improve predictive results.

In future research, we recommend testing other, and maybe more complex, machine

learning techniques. It would be interesting to see research papers using the XGBoost

algorithm in other shipping sizes and classes. We also recommend experimenting with

adding more variables, for instance delivery time for a newly built ship, a proxy for

new building vessel price and the relationship between sellers and buyers. Adding new

variables, and possibly excluding some of the variables used in this thesis, might lead to

even more accurate desktop valuations.
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Appendix

A1 Descriptive statistics by yearly periods

Table A1.1: Descriptive statistics by year

Vessel characteristics Variable name 1996-2003 2004-2009 2010-2019 All
Sales price (million USD) price

Average 5.15 12 7.56 8.44
Standard deviation 3.7 8.9 4.9 7

Median 4.5 10 6.35 6.25

Explanatory variables
Age at sale (years) age 17.2 20.2 16.3 18

Size (DWT) dwt 28592 27931 29751 28722
Cubic utilization cubic 1.27 1.27 1.3 1.28

Gear capacity (tonnes) gearcap 94.9 99.4 114.3 102.8
Speed (knots) speed 14.1 13.8 13.8 13.9

Fuel consumption (tpd) fuelcon 27.2 24.7 23.1 25
Engine (rpm) rpm 160.2 152.6 139.2 151
Horsepower hp 9404 8993 8685 9022

Number of holds holds 4.9 4.8 4.9 4.9
Number of hatches hatches 5.1 4.9 4.9 5

FEI (grams per tonnemile) fei 2.9 2.7 2.4 2.7

Market variables
Timecharter (1 year) tc1y 7315 18767 9461 12207
Orderbook / fleet (%) otf 3.93 26.48 18.84 17

LIBOR 3M (%) libor 4.27 3.43 1.07 2.93

Builder country (%) builder
Japan 75.8 74.2 72.7 74.2
China 1.4 5.9 13.4 6.9

South Korea 3.6 3.5 5.8 4.3
Brazil 3.4 2.3 0.2 2

Other countries 15.8 14.1 7.9 12.6
Fuel type (%) fueltype

HFO 91.8 86.5 74.5 84.3
IFO 8.2 13.5 25.5 15.7

engine manufacturer (%) engine
MAN 26.8 35.9 52.3 38.4

Mitsubishi 18.4 24.4 32.8 25.2
Sulzer 39.3 30.9 12.1 27.5

Other manufacturers 15.5 8.8 2.8 8.9

Number of observations 586 690 604 1880

Source: Clarkson Research (2019a,b).
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A2 Boruta model

Figure A2.1: Boruta model

Source: Clarkson Research (2019a,b).

A3 Histogram of logarithmic sales price

Figure A3.1: Histogram of logarithmic sales price

Source: Clarkson Research (2019b).
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A4 Smoothed terms for GAMs

Table A4.1: Smoothed terms benchmark- and iterated GAM

Benchmark GAM Iterated GAM
Variable EDF Significance EDF Significance

age 5.470 *** 7.531 ***
speed 7.859e-06 1.954e-06

gearcap 7.437 ** 7.544 **
tc1y 8.164 *** 8.695 ***
libor 6.812 *** 6.259 ***
rpm 6.823 *** 3.332 ***
otf 7.997 *** 7.974 ***

fuelcon 7.202 *** 6.820 *
hp 7.234e-01 2.514e-06

dwt 3.357 *** 4.260 ***
cubic 6.832 *** 6.462 ***

fei 7.377 *** 7.121 ***
tc1y * age 1.504e+01 ***
age * dwt 1.369e+01 ***

Source: Clarkson Research (2019a,b).

A5 Fitted- versus actual prices for the training set

Figure A5.1: Fitted- versus actual prices for the training set

Source: Clarkson Research (2019a,b).


