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Abstract

We analyze the performance of venture-backed IPOs on the New York Stock Exchange and

Nasdaq between 2011 and 2019. Throughout this period, a large number of venture-backed

tech companies with billion-dollar valuations have gone public, and many have experienced

significant valuation cuts during their first months of trading.

By using multiple regression analysis and the Mann-Whitney U test, we find evidence

of a positive relationship between offer size and first-day returns. We also find that

tech companies and unprofitable companies achieve higher first-day returns than other

companies. When looking at the three months after the first day of trading, the analyses

indicate opposite effects, and we find that unprofitable tech companies going public achieve

significantly lower returns than other companies. However, results for the three-month

time period are in general less conclusive than those for the first-day of trading. Contrary

to our hypothesis, the amount of pre-IPO funding does not seem to affect aftermarket

performance.

Keywords – NHH, master thesis, initial public offerings, venture capital
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1 Introduction

1.1 Motivation and Background

The initial public offering market of 2019 has been strange. High-profile unicorns1 such

as Uber, Lyft and Slack have gone public this year, with less than stellar performance -

all trading well below their offer prices shortly after their initial public offerings (IPOs).

Another highly anticipated IPO, WeWork, was delayed indefinitely after public markets

basically revolted against their $47 billion valuation. This was later cut down to $8 billion

(Klebnikov, 2019). As of 30 September 2019, companies such as Groupon, Spotify and

Snap were also trading below their IPO offer prices (Carlson, 2019).

These companies share a few key characteristics:

• They all define themselves as “tech companies”

• Before they went public, they were heavily funded by venture capitalists

• Their IPOs were among the largest of 2019

• They were unprofitable when they went public2

It is easy to draw lines between the IPO class of 2019 and the dot-com boom in the

late 90’s. Not since then have so many highly valued tech companies gone public in

such short time (Grocer and Russell, 2019). Both then and now, tech companies spent

enormous amounts on advertisement, bragged about their ability to change the world,

but struggled to find a path to profitability. And both then and now, valuations of billion

dollar tech-companies have been dramatically reduced in a matter of weeks (Thompson,

2019).

This mildly troubling development forms the backdrop for this thesis, where we will search

for patterns for which companies experience similar stock price movements after going

public.

1Term used to describe a privately held startup company valued at over $1 billion
2Grocer and Russell (2019)
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1.2 Problem Definition

As the stock exchanges in the world where most high-profile IPOs take place, we focus on

new listings on the New York Stock Exchange (NYSE) and Nasdaq. Since 2010, there have

been around 1 600 listings on these two stock exchanges, including all the aforementioned

companies. In light of the growing venture capital industry and increasing amounts of

private investments in unlisted companies, we will focus on companies that have raised

external funding in the private market prior to going public. For the sake of convenience,

we will refer to all private funding as venture capital. Specifically, we will investigate

whether their stock performance in the first three months of trading can be explained by

selected publicly available information, such as the four characteristics mentioned above.

The intention of this exercise is not to predict after-market performance of specific future

IPOs, which would demand a much higher level of detail and careful consideration of

individual companies. Rather, we will address macro trends in the IPO landscape, such as

increasing access to private equity financing and seemingly decreasing investor demands

for profitability in the immediate future. As such, we aim to identify correlations rather

than causalities.

In order to do this, we will use statistical analysis to explore the relationship between stock

returns and selected explanatory variables, including amount of pre-IPO funding, IPO size,

profitability, and industry. When analyzing post-IPO stock performance, first-day trading

gains are most often analyzed separately. Thus, two separate time horizons for stock

returns will be examined: returns from the first day of trading after IPO, and from the

subsequent three months of trading, excluding first-day trading gains. The three-month

time horizon is chosen because it enables investigation of short-to-medium-run returns

while also capturing as many of the 2019 IPOs as possible.
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2 Theory

Before diving into the dataset of our thesis, established theory and previous studies will be

examined to further understand our problem definition. We will start by introducing the

most important financial expressions used in the thesis, before studying the key findings

of previous research. These findings, together with the trends mentioned in the chapter

regarding our motivation, will form the hypothesis of our thesis.

2.1 Relevant Theory and Definitions

Equity Financing for Private Companies

As the thesis investigates companies that raised external capital before going public, it is

relevant to assess the processes for equity financing of private companies. In Corporate

Finance (2017), Berk and DeMarzo outline the typical equity financing life cycle of a

successful startup firm. Figure 2.1 illustrates a typical funding story for a successful firm,

from idea to IPO, where all funding rounds have been added together. The length of each

bar indicates the firm’s post-money valuation, in other words the enterprise value of the

firm after investments have been made, or after the firm has gone public. The percentages

within each bar indicate the ownership split between the founder, venture capitalists, and

the public. In the example below, the firm raised $3 million in external funding (pre-IPO

funding) before going public, and raised another $4 million in their IPO (offer size).

Figure 2.1: Typical Funding Story of a Successful Startup Firm
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When someone starts a business, they usually provide the initial capital necessary by

themselves or with help from their immediate family. As the business grows, however, the

need for increasingly larger amounts of capital makes it necessary to seek sources of outside

capital. This funding can be raised from several potential sources, such as angel investors,

venture capital firms, institutional investors, corporate investors, and crowdfunding. In

this thesis, we will not distinguish between funding from different sources, but simply

refer to all as pre-IPO funding.

The first outside capital a company raises is typically from a so-called angel investor. An

angel investor is often a wealthy individual willing to help new companies get started in

exchange for a share of the business. This investment is typically followed by a seed round,

where the source can for instance be angel investors, groups of angel investors, accredited

investors or equity crowdfunding groups (Sarath, 2019). Following the seed round, the

next rounds of funding are commonly named alphabetically, and referred to as Series A,

Series B and so on.

Although all pre-IPO capital can be described as venture capital, these alphabetically

named rounds are considered the stage where venture capital firms join the party.

Venture Capital

A venture capital (VC) firm is a limited partnership that specializes in raising money to

invest in the private equity of young firms (Berk and DeMarzo, 2017). Investors in venture

capital funds are typically large institutions, such as pension funds, financial firms, and

insurance companies (Zider, 1998).

Over the past 50 years, the venture capital industry has grown enormously. Both when

measured in number of deals and in total investment volume, the sector grew steeply in

the 1990s, and peaked at the height of the internet boom in 2000. The activity declined

significantly after the tech bubble burst, but has since then grown back to late 1990s

levels, despite a dip after the 2007-2008 financial crisis (Berk and DeMarzo, 2017).

In order to cash in on their investment, venture capitalists have two main exit strategies

to choose from: through an acquisition, or through a public offering (Berk and DeMarzo,

2017).



2.2 Literature Review 5

The Initial Public Offering

An initial public offering is the process in which a company sells shares of its stock to

the public for the first time. The shares sold in the IPO may either be new shares that

raise new capital, or existing shares that are sold by the current shareholders (Berk and

DeMarzo, 2017). The first-mentioned is called a primary offering, and is typically used

to finance further growth. The latter is called a secondary offering, and is the action

that offers a direct exit opportunity for the venture capitalists at the time of the IPO.

Alternatively, the venture capitalists holds on to their share until some time after the

IPO, and sell them on the public market(Berk and DeMarzo, 2017).

The amount of capital raised in an IPO can be referred to in several ways. We will mainly

use offer size or IPO size. As a company does not have to list 100% of their shares in

their IPO, the offer size must not be confused with the enterprise value of a company.

2.2 Literature Review

The Changing Role of the IPO

The main motive of going public has traditionally been to achieve greater liquidity

and better access to capital (Berk and DeMarzo, 2017). Through both the initial and

subsequent offerings, companies are typically able to raise larger amounts of capital in

the public compared to the private markets. Increased liquidity of the firm’s stock, as

a consequence of public trading and continuously adjustments of market values, makes

the company a less risky investment. This can contribute to easier access to additional

capital (Beck, 2017).

However, as mentioned above, public offerings are not only a means of accessing external

capital, but also a typical exit strategy for existing investors. In an article published

in 2018, Døskeland and Strömberg find that the private capital markets are increasing

relative to the public markets, and particularly growth companies in the tech industry

stay private longer. Thus, the role of the IPO might be shifting from mainly being a

way of raising capital to mainly being a way for venture capitalists to cash in on their

investments in startup companies.
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Underpricing

When assessing research on aftermarket performance, the phenomenon of IPO underpricing

is widely discussed in academic literature. Underpricing can be defined as when the IPO

price is lower than the closing price at the first trading day of an IPO (Berk and DeMarzo,

2017), and will often be referred to as first-day returns in this thesis. In the time period

between 1960 and 2015, the average first-day return in the US market was 17% (Berk

and DeMarzo, 2017), which serves as evidence of considerable average underpricing. As

company shares are sold at a price below what the market would evidently be willing

to pay, underpricing is a substantial indirect cost for the company conducting the IPO

(Loughran and Ritter, 2002). In 2002, Loughran and Ritter calculated that the average

IPO leaves $9.1 million on the table, which is twice of the average fees paid to investment

bankers.

In the IPO process, the party that buys the securities from the issuing company and sells

them on to investors is called an underwriter (Banton, 2019). When underwriters provide

firm commitments, they expose themselves to a certain risk: if they overestimate the

interest in the market, the underwriter might end up having to sell shares at a lower price

than they bought them for, thereby taking a loss (Banton, 2019). To minimize their own

exposure to this risk, underwriters hence have the incentive to intentionally underprice

IPOs (Berk and DeMarzo, 2017). Loughran and Ritter (2002) stated that only 9% of all

US IPOs between 1990 and 1998 experienced a fall in share price on the first trading day,

and for 16% the offer price is the same as the price at the end of the first day. In other

words, the majority of IPOs in this period experienced a price increase, meaning they

were underpriced.

Aftermarket Performance

While IPOs tend to be underpriced at offer, they appear to underperform in the long-run.

Ritter (1991) defined “long-run” as a three-year period, calculated from the closing market

price on the first day of public trading to the market price on the three-year anniversary.

First-day returns are excluded to isolate underpricing from long-run performance. In his

studies from 1991, Ritter found that his sample of 1 526 American IPOs in the period

from 1975 to 1984 significantly underperformed against a set of comparable firms that
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went public longer back in time. Together with Ivo Welch, he later confirmed his findings

with the article “A Review of IPO Activity, Pricing, and Allocations” published in 2002.

Ritter and Welch (2002) investigated IPOs between 1980 and 2001 and found that for the

subsequent three years the IPOs underperformed the market by an average of 23.4%.

Like Ritter, we will exclude first-day trading gains when looking at aftermarket performance.

However, in light of the disappointing performance of the mentioned IPO class of 2019,

we want to investigate more immediate effects of the IPOs. Consequently, this thesis will

assess the aftermarket performance for the first three months after going public.

Overestimating Growth Opportunities

Ritter (1991) mentions risk mismeasurement and bad luck as possible explanations for the

phenomenon of underperformance in the aftermarket, as well as the scenario of “fads and

over-optimism”. The latter is particularly interesting, as it is likely to be valid for highly

anticipated IPOs such as Uber, Lyft and Slack. The term “fads” was established by Shiller

(1990) as “scenarios of firms going public when investors are irrationally over-optimistic

about the future potential of certain industries” (Ritter, 1991). Ritter found that firms

with high adjusted first-day returns have a tendency to have the poorest aftermarket

performance (Ritter, 1991). As this effect is stronger for smaller and younger companies

than for more established companies, it might indicate that a tendency of over-optimism

exists; growth opportunities of IPOs seem to be systematically overestimated by investors.

There has been found evidence that the company’s age at the time of the IPO strongly

correlates with its aftermarket performance (Ritter, 1991). In his research, Ritter found

that relatively young growth companies were well represented among the long-term

underperformers, especially among those that IPOed in high-volume years. The same

group also tends to have the greatest first-day return. Conversely, more established

companies experience the opposite effect; less underpricing and higher long-run returns.

In their analysis of first-day returns of IPOs in Taiwan, Shen and Goo (2019) found a

positive correlation between aftermarket risk and first-day returns. Interpreting age as a

proxy for aftermarket risk, where young companies are more risky than older companies,

their observations are consistent with the concept that risky issues experience higher

average first-day returns (Ritter, 1991).
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Similar patterns are shown when assessing the size of the IPO and their IPO performance.

Ritter (1991) found that smaller IPOs have the highest average adjusted first-day returns,

as well as the poorest aftermarket performance. These findings confirmed his previous

work with Randolph P. Beatty in 1986, where they argued that also the offer size could

be used as a proxy for risk. Smaller offerings tend to be more speculative than larger

offerings, hence experiencing higher first-day return (Ritter and Beatty, 1986).

This finding is particularly interesting when investigating the extreme underperformance

of the mentioned unicorns that went public in 2019. As the largest IPOs of today do

not involve well-established and profitable companies, but rather growing tech companies

without a certain path to profitability, the findings of Ritter and Beatty from 1986 may

no longer be valid.

The Effect of Being Backed by Venture Capital

Earlier this year, Crunchbase, a leading platform for company insights, published an

article stating that there are more VC funds than ever, that the average transaction size

is increasing and that giant tech companies are able to raise private financing rounds of

sizes that were never possible before (Rowley, 2019). Yet, there has not been done much

research on how the amount of pre-IPO funding relates to first-day or long-term stock

performance. However, there has been done research on how venture-backed companies

perform compared to non-venture-backed companies. The conclusions vary; whereas

Megginson and Weiss (1991) found that venture capital-backed IPOs between 1983 and

1987 were significantly less underpriced than others, Ritter (2019) found the opposite for

IPOs between 2009 and 2019. Given the more recent dataset, which also covered a longer

period of time, we consider Ritter’s findings more relevant for our work.

Concerning long-run performance, Brav and Gompers (1997) provide evidence of better

performance for VC-backed IPOs. They emphasize factors such as access to top-tier

investment banks, less information asymmetries and a demand of better corporate

governance as benefits of being venture-backed. Additionally, Brav and Gompers argue

that smaller non-venture-backed IPOs are more likely to be owned by individuals, who are

more likely to be affected by fads. The VC effect might be linked to Ritter and Beatty’s

findings of 1986 regarding a company’s size at IPO. They found that VC-backed IPOs
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usually are bigger because the amount of funding and guidance received have helped them

grow.

2.3 Hypotheses

The overall problem definition of our thesis was introduced in chapter 1. We wish to

explore the relationship between stock returns and the following four attributes: amount

of pre-IPO funding, IPO size, negative profitability, and status as tech company. The

research assessed in this chapter forms the basis of what we expect to find when analysing

the mentioned relationships, and therefore define our hypotheses.

There are typically high expectations related to large IPOs, and to IPOs of heavily venture-

backed companies. This also applies to tech companies, which can lead to investors being

over-optimistic of IPOs with either of these three characteristics. Further, both Ritter and

Beatty (1986), and Shen and Goo (2019) have found that risky IPOs in general experience

higher first-day returns than other IPOs. As future profitability cannot be taken for

granted, companies that have yet to deliver positive net earnings are more risky to invest

in than other companies. With all of this in mind, our first hypothesis is as follows:

Hypothesis 1: status as tech company, amount of pre-IPO funding, IPO size, and negative

profitability are all positively correlated with first-day return

Because firms with high first-day returns typically underperform in the longer run, our

second hypothesis is as follows:

Hypothesis 2: status as tech company, amount of pre-IPO funding, IPO size, and negative

profitability are all negatively correlated with three-month return, excluding first-day trading

gains

Lastly, we expect companies that hold multiple of the attributes to be even more affected,

leading to our third and final hypothesis:

Hypothesis 3: When combining the characteristics, correlations on both first-day return

and three-month return will be even stronger than they are individually

We hope to contribute to prior research done on IPOs by testing these hypotheses on a

recent dataset consisting only of venture-backed IPOs. To our knowledge, there exists
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no literature on this specific group, and neither on the relationship between amount of

pre-IPO funding and post-IPO stock performance. In light of the increasing amounts

of private investments in unlisted companies, as well as other already mentioned macro

trends in the IPO landscape, we hope our work will be particularly relevant to the IPO

market going forward.
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3 Data Collection and Cleaning

In order to answer our hypothesis, we need data on four key areas:

1. A set of companies going public to examine

2. Pre-IPO funding rounds for these companies

3. Pre-IPO accounting numbers for these companies

4. Post-IPO stock performance for these companies

In this chapter, we will explain were this data was found, as well as how it was cleaned

and compiled.

Initial Public Offerings

In order to investigate post-IPO stock performance, we need information about all the IPOs

that have taken place at NYSE and Nasdaq within the relevant time frame. The Securities

Data Company (SDC) Platinum database is ideal for this purpose. SDC Platinum is

an online historical financial transactions database, providing detailed information on

financial transactions such as new issues, mergers and acquisitions and private equity. As

we will use accounting data from the year before a company’s IPO for our analyses, and

the accounting data goes back to 2010, we use collect data from SDC Platinum on all

IPOs after 1 January 2011. Because they are critical for our analyses and data handling,

we remove entries where either offer price per share, offer size, or International Securities

Identification Number (ISIN) is missing. This returns a dataset with 1 531 IPOs.

Adjusting IPO Offer Prices for Stock Splits

To boost the liquidity of their shares, a company can divide its existing shares into multiple

shares. This action is called a stock split, and reduces the value of each share by the factor

induced by the stock split ratio. Conversely, companies can also conduct reverse stock

splits to increase the price of the stock. While the source from which we fetch historical

stock prices adjust for stock splits in their database, SDC do not. Because we intend to

use the offer price as a basis for calculation of returns, we hence need to adjust the offer

prices from SDC Platinum for stock splits.
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Historical data on stock splits is available at Investing.com’s Stock Split Calendar. In

order to efficiently extract data on all stock splits since 1 January 2011, we use a Python

script based on the Beautiful Soup library to scrape the Stock Split Calendar. This returns

a total of 3 230 stock splits, with split ratios ranging from 1:25 000 to 1 333:1. Each

ratio is then converted to a multiplier by finding the inverse of the ratio’s numerator and

denominator. We create an offer price multiplier by calculating the product of all the

multipliers for the same stock.

We then merge the stock split dataset with the IPO dataset. As companies can change

tickers over time, we might experience cases where a ticker belongs to different companies

in the two datasets. To overcome the possibility of mismatching offer price multipliers and

offer prices, and thus corrupting our dataset, we use a fuzzy string matching algorithm.

After merging the datasets using the company ticker as key, we test the similarity between

the company name column from each dataset. The results from this exercise are displayed

in table A1.1 in appendix A1.

Using the ticker as key, we found 13 matches between the stock split dataset and the IPO

dataset, and fuzzy matching uncovered 1 case where the ticker had changed owner since

the IPO. Thus, the offer price of 12 companies was adjusted for stock splits (and reverse

splits), with multipliers ranging from 150 to 0.17. When cross-checking against Seeking

Alpha, widely considered a reliable source of information about financial markets, we find

no indications that these multipliers are incorrect, and thus keep the adjusted offer prices

in the dataset.

Funding Rounds

As for IPOs, we collect data on funding rounds from SDC Platinum. One of their products,

VentureXpert, contains detailed information on investments in unlisted companies. As

we intend to investigate the relationship between pre-IPO funding and post-IPO stock

performance, we download data on pre-IPO investments in companies later listed on either

New York Stock Exchange or Nasdaq.

For each investment, we collect the name and ticker of the company that was invested

in, disclosed and estimated investment amount, round number, and name and type of

investor. For investments where the disclosed investment amount is not available, we use
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the estimated investment amount as replacement. In order to capture as much information

as possible, we collect data on all investments available in the database, dating back to

1965. This yields a dataset of 54 362 individual investments in 4 512 different companies.

Investments where neither disclosed nor estimated amount is available are removed from

the dataset, returning 48 676 individual investments in 3 902 different companies. Table

3.1 provides an overview of the most active investors in our dataset, measured by the

value of investment rounds they have participated in. As SDC do not distinguish between

types of investors, both venture capital and private equity investments are included.

Table 3.1: Most Active Investors

Investor Number of
Investments

Sum of Investment Rounds
Participated In (mUSD)

Carlyle Investment Management 64 33 053
Thomas H Lee Partners 56 18 383
New Enterprise Associates 620 14 641
Sequoia Capital Operations 402 12 033
Bessemer Venture Partners 276 6 662
Technology Crossover Ventures 129 5 968
Energy & Minerals Group 3 4 284
RBC Capital Markets Corp 2 4 274
Boyu Capital Advisory Co Ltd 2 4 150
Polaris Growth Management LLC 220 3 903

As mentioned in chapter 2, investments in non-listed companies often happen in rounds

where the company raises funds from multiple investors at once. When a funding round is

announced, it is typically the total amount raised from all investors which is disclosed,

and not the amount invested by each individual investor. In order to avoid funding round

duplications, we therefore group the funding rounds by company name and round number,

returning a final dataset with 14 713 funding rounds, still for 3 902 companies.

As investment amounts are registered in nominal US dollar value, we use the cpi Python

library to adjust investment amounts for inflation in accordance with the US Consumer

Price Index. For later analyses, we then compute the total amount of funding raised

pre-IPO for each company, and merge with the IPO dataset.
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Accounting Data

In order to investigate the relationship between pre-IPO profitability and post-IPO stock

performance, we collect accounting information from the Orbis database. According to

themselves, Orbis is “the world’s most powerful comparable data resource on private

companies”. Because the accounting data from Orbis will be matched and merged with

the IPO dataset, we gather as much data from Orbis as possible in order to maximize the

number of matches. Thus, we download historical data on revenue, net income, industry

code, total assets and number of employees for all current and formerly publicly listed firms

in the database, 121 973 in total. This includes companies listed on all stock exchanges

in the world. As we will merge this data with data from SDC Platinum using ISIN, we

remove rows where ISIN in missing, leaving 105 725 companies.

Orbis provides historical data from 2010 and onwards, limiting us to assess worldwide

IPOs from 2011 and onwards. We remove companies with IPOs before this, thereby

reducing the number of companies in the Orbis dataset to 18 220. We then calculate

profit margin by dividing net income by revenue.

After merging with the IPO dataset, the size of the dataset is reduced to 1 250 companies.

At this point, the only data point missing is the target variable.

Stock Data

As stated earlier, we aim to see whether pre-IPO information can be used to explain

aftermarket stock performance. Thus, we gather historical stock price development for the

companies in the merged dataset from Yahoo Finance, using the yfinance Python library.

As we will investigate the stock price development following the IPO, we gather data

for the first 63 trading days, equivalent to three calendar months. In order to adjust for

market development in the same period, we also gather data for the development of the

S&P 500 index in the same period. The S&P 500 is a stock market index that measures

the performance of the 500 largest companies listed on US stock exchanges, and is widely

considered to be a good representation of the US stock market. Thus, we will use this as

a baseline to calculate abnormal returns. For first-day returns, where the IPO date is t,

this is done as follows:
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First-Day Return+ 1 =
Closing Pricet
Offer Price

S&P Return+ 1 =
S&P Closing Pricet
S&P Closing Pricet−1

Abnormal First-Day Return =
First-Day Return+ 1

S&P Return+ 1

Similarly, abnormal returns for the three months subsequent to the first day of trading

are calculated as follows:

Three-Month Return+ 1 =
Closing Pricet+62

Closing Pricet

S&P Return+ 1 =
S&P Closing Pricet+62

S&P Closing Pricet

Abnormal Three-Month Return =
Three-Month Return+ 1

S&P Return+ 1

An abnormal return above 1.00 can be interpreted as IPOs outperforming the S&P 500.

Conversely, an abnormal return of less than 1.00 indicates that the IPO was outperformed

by the S&P 500.

Out of the 1 250 companies in the dataset, historical stock price data is available for

871, due to for instance mergers and acquisitions, or companies going private. After

investigating the most extreme observations of returns, we manually change the data

points that are incorrect and we find the correct data. In other cases, for instance when

the data from Yahoo Finance is sporadically missing or inconsistent, we remove the data

point from the dataset.

Like we did for stock splits, we also perform a fuzzy string matching exercise in order to

avoid mismatching of companies and stock returns, leading to removal of 32 observations.

Table A1.2 in appendix A1 shows examples of fuzzy string matching results from this

exercise.

Finally, we manually remove observations where key data is missing or obviously incorrect.

Examples of obviously incorrect data include IPO dates and founding dates that are set to

the future, and negative amounts of pre-IPO funding. This exercise brings the number of
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observations down to 644. Because we intend to only examine companies that have raised

external capital in the private market before going public, we remove companies without

any information on this. This leaves us with a dataset consisting of 180 companies, which

we will use for our analyses.

Selection Bias

For our analyses to be reliable, it is essential that the observations in our dataset are

representative for the group we intend to analyse, namely venture-backed companies

that have gone public. Our data is collected from sources that are widely considered

as reliable, and we gathered all IPOs for the period we are investigating. The dataset

we started with should therefore be representative. Throughout the data cleaning and

compilation process, however, the number of companies in our dataset has been massively

reduced. The boiled-down dataset could be subject to selection bias, caused for instance

by higher degree of data availability for high-profile companies. Nevertheless, filtrations

are unavoidable in order to carry out the desired analyses.
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4 Descriptive Analysis

In this chapter, we will present descriptive analyses of our compiled and cleaned dataset.

After providing a general overview of the characteristics of the dataset, we will examine

distributions of the data points which will later be used for statistical analyses. We will

also plot selected independent variables against post-IPO returns, to see whether there

are any clear patterns that can be seen with the naked eye.

Note that whereas we calculated abnormal returns to be used as target variables in the

statistical analyses, we use simple stock returns for the descriptive analyses. As these

analyses are meant to be only indicative, simple returns are preferred because they are

easier to relate to and compare. Simple returns for the two time frames are calculated as

follows:

First-Day Simple Return =
Closing Pricet
Offer Price

− 1

Three-Month Simple Return =
Closing Pricet+62

Closing Pricet
− 1

General Descriptive Statistics

As already mentioned, we have data on 180 venture-backed IPOs, dating back to 2011.

The companies raised a median of $111.2 million in their offerings, and raised $140.0

million in pre-IPO funding. The median age of the companies when they filed for IPO

was 10.9 years, 22.8% of the companies in the dataset were profitable the year before

their IPO, and 31.1% were tech companies. Table 4.1 displays annual averages of these

metrics, where average offer sizes and pre-IPO funding amounts are adjusted for inflation.

There are no clear historical trends, perhaps with the exception of profitability the year

before IPO, although the lowest observations are in the middle of the time frame. This is

likely as a result of the narrow time frame in scope, as previous research has shown that

companies going public today are in general older, larger and to a lesser extent profitable

compared to companies that went public a few decades ago (Ritter, 2018).
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Table 4.1: Descriptive Statistics, by Year

Year Number
of IPOs

Median Offering
Size (mUSD)

Median Pre-IPO
Funding
(mUSD)

Median Age
at IPO
(Years)

% Profitable
Year Before

IPO

% Tech
Companies

2011 7 152.4 366.5 12.3 42.9% 42.9%
2012 7 82.0 133.2 7.6 57.1% 28.6%
2013 33 112.6 147.5 8.4 36.4% 18.2%
2014 45 106.1 113.4 9.3 22.4% 31.1%
2015 21 107.9 112.3 9.5 4.8% 33.3%
2016 12 95.0 146.3 8.4 8.3% 25.0%
2017 22 111.3 122.4 10.7 22.7% 45.5%
2018 18 177.3 174.5 8.5 11.1% 33.3%
2019 15 175.8 1 166.2 9.3 13.3% 33.3%
Total 180 111.2 140.0 10.0 22.8% 31.1%

With regards to potential selection bias, these figures are roughly in line with previous

statistics. Ritter (2018) examined 834 VC-backed IPOs from between 2011 and 2017 and

found the median age to be between 10 and 12 for each of these years. Similarly to our

dataset, he also found the percentage of companies that were profitable when going public

to vary significantly, ranging from 16% to 64%. A likely explanation for why his numbers

are higher than ours is that Ritter measured profitability the year of IPO rather than the

year before, giving the companies more time to achieve profitability. Concerning offering

size, Renaissance Capital3, a company providing pre-IPO institutional research, reported

in 2018 annual median offer sizes of US IPOs to be slightly lower than those in our dataset.

Contrary to us, however, Renaissance Capital do not single out VC-backed IPOs. Before

removing non-backed IPOs from our dataset, we saw that they were on average smaller

than backed IPOs. For tech status and pre-IPO funding, we have not found any data that

could be used to validate our dataset against selection bias. Considering that the other

attributes are aligned with comparable datasets, there is nonetheless reason to believe

that our dataset is free of selection bias.

3Not to be confused with Renaissance Technologies, the hedge fund
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Returns

Calculated from the offer price, the median return for the IPOs in the dataset (table 4.2)

was 17.7% on the first day of trading, and 29.7% after three months. However, when the

first day of trading is excluded, the median return is lower, 7.4%. Although weak, the

trend seems to be that average first-day return has increased over the observed period.

Table 4.2: Average Simple Returns

Year 1 Day 3 Months, Including
First Day of Trading

3 Months, Excluding
First Day of Trading

2011 14.8% 13.8% 2.5%
2012 8.4% 24.1% 12.5%
2013 28.6% 53.9% 21.0%
2014 27.8% 42.5% 14.1%
2015 32.1% 18.7% -9.2%
2016 30.7% 77.7% 35.2%
2017 17.7% 42.3% 18.2%
2018 33.0% 38.1% 2.8%
2019 44.6% 87.0% 16.0%
Total 28.2% 45.1% 12.8%

Figure 4.1 shows the distribution of first-day trading gains of the IPOs in our dataset. It

is evident that most companies filing for IPO experience an appreciation in their share

price compared to the offer price of the IPO. This is in line with the phenomenon of

underpricing, as discussed in the literature review. On the negative end, the most extreme

observation in the dataset is Chegg Inc., who experienced a share price decline of 23% on

their first day of trading. On the positive of the scale is Beyond Meat, the producer of

plant-based meat substitutes whose share price rose by 163% on their first day of trading

in May 2019. This was the best first-day performance of a US IPO larger than $200

million since the dot-com boom (Murphy, 2019).
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Figure 4.1: Distribution of First-Day Simple Returns

When looking at the three-month horizon, the distribution is more spread out across the

axis, as illustrated in figure 4.2. Also here, Beyond Meat is on the far right. Even after

their remarkable price increase at the day of IPO, the Beyond Meat stock continued to

rise, tripling in value over the next three months of trading - totalling a value increase

of 686.0% from their offer price. At the other end of the axis is Castlight Health, a San

Francisco-based healthcare navigation company who experienced a stock price depreciation

of 57.6% in the three months following their IPO in March 2014.

Figure 4.2: Distribution of Simple Returns Three Months After IPO
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Industries

By using the EU industry standards classification system (NACE) code of each company,

we can investigate whether there are patterns to be found when dividing companies by

industry. NACE divides companies into 21 broad sections. The top three most represented

sections in our dataset are Manufacturing (65 IPOs), Information and Communication

(56 IPOs), and Professional Scientific and Technical Activities (33 IPOs), leaving 26 IPOs

in other sections. This distribution is visualized in figure 4.3.

Figure 4.3: Distribution of Dataset

Within the Manufacturing section, 32 out of 65 companies are manufacturers of

pharmaceutical preparations (NACE code 21.20), 11 are manufacturers of medical and

dental instruments and supplies (code 32.50), and 9 are manufacturers of electronic

components (code 26.11).

Within the Information and Communication section, 33 out of 56 companies are classified

as “publishers of other software” (code 58.29), 11 belong to “Other information technology

and computer service activities” (code 62.09), and 9 belong to “Computer programming

activities” (code 62.01). This section includes heavily funded companies such as Uber,

Snap, Facebook, Pinterest and Twitter, all among the top 10 most funded IPOs in our

dataset. For the sake of convenience, companies belonging to the Informantion and

Communication section will be referred to as “tech companies”, and other companies will

be referred to as“non-tech companies”.

Within the Professional Scientific and Technical Activities section, 28 out of 33 companies

operate within research and experimental development on biotechnology (code 72.11).
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Figure 4.4: Average Simple Returns, by ISIN Industry Section

Figure 4.4 shows average returns for the three sections described above, as well as for the

26 companies in other sections. Apart from Manufacturing companies, average return is

higher on the first day of trading than in the following three months for all industrys. Tech

companies experience the highest first-day returns, and nearly the lowest returns in the

following three months, only “beaten” by Professional Scientific and Technical activities.

Despite their slow start, manufacturing companies’ high returns in the following months

make them outperform the other industries when looking at three-month return.

Offer Size

When a company is filing for an initial public offering, they offer a number of shares to

the public for a given price per share. As mentioned in the theory section, the offer size

of an IPO is quite simply the number of shares offered to the market multiplied by the

offer price per share.

Figure 4.5 displays the distribution of inflation-adjusted offer sizes in our dataset. The

majority of the observations raised between $50 and $150 million when they went public,

and only 13 companies raised less than $50 million. This aligns with the median offer size

of US IPOs in 2014, which according to Berk and DeMarzo (2017) was $100 million. By

significant margin, the largest IPO in the dataset are Alibaba and Facebook, raising $23.1

and $17.5 billion, respectively. Adding Uber’s $8.1 billion IPO, the top three raised more

than the other 177 companies in the dataset combined - $48.7 vs. $36.4 billion.
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Figure 4.5: Distribution of Offer Sizes

In figure 4.6, offer size is plotted against first-day and three-month returns, respectively. In

order to adjust for skewness in offer sizes, a base-10 log scale is used for the horizontal axis.

There seems to be a slight correlation between first-day return and offer size, although

some of the largest IPOs in the dataset achieved modest or even negative returns on their

first day of trading.

Figure 4.6: Plotting Simple Returns Against Offer Size

For three-month returns, on the other hand, it is not possible to identify any clear pattern

when plotting against offer size.

Amount of Pre-IPO Funding

Figure 4.7 shows the distribution of pre-IPO funding amount. The shape of this histogram

is fairly similar to the one displaying offer size distribution, likely indicating a covariance

between offer size and pre-IPO funding amount.
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Figure 4.7: Distribution of Pre-IPO Funding Amount

Slightly over a third of the companies in the dataset raised between $50 and $150 million

in pre-IPO funding, and three quarters raised less than $250 million. 16 companies raised

more than $750 million, and the range within this group is enormous: the three companies

that raised the most funding were Uber ($11.9 billion), Alibaba ($9.6 billion) and Lyft

($5.0 billion). Their combined pre-IPO funding amount, $26.5 billion, constitutes 38% of

all the funding amounts in our dataset added together.

When pre-IPO funding amounts are plotted against returns, as illustrated in figure 4.8, it

is difficult to spot any clear trends apart from a more scattered distribution of returns

with the longer time horizon. As or offer size, a base-10 log scale is used for the horizontal

axis.

Figure 4.8: Plotting Simple Returns Against Pre-IPO Funding Amount
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Company Age at IPO

Figure 4.9 shows distribution of company age at IPO. The younger end of the scale is filled

predominantly with pharmaceutical companies, with Spark Therapeutics as the youngest

company going public in our dataset. Spark develops gene therapies, and filed for IPO in

January 2015, only two years after the company’s inception in 2013. The oldest company

for which we were able to find reliable data was NGL Energy Partners, who waited 71

years before going public in 2011.

Figure 4.9: Distribution of Company Age at IPO

Similarly to earlier, it is difficult to spot any clear patterns when age is plotted against

returns, as displayed in figure 4.10. Thus, a statistically significant linear correlation

between returns and company age at IPO is unlikely. As earlier, a base-10 log scale is

used for the horizontal axis.

Figure 4.10: Plotting Simple Returns Against Company Age at IPO
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Profit Margin Year Before IPO

The most recent year for which Orbis provides accounting data is 2018. In order to

include IPOs from 2019, we will therefore use profit margin the year before IPO as

the measurement of profitability for our analyses. Thus, when discussing “unprofitable

companies”, we will refer to companies with negative profit margin the year before IPO.

As mentioned earlier, one of the main motives of an IPO has traditionally been to raise

capital in order to finance growth (Berk and DeMarzo, 2017). Driven by the increased

access to private growth capital provided by venture capitalists, companies today typically

wait longer before they file for IPO (Døskeland and Strömberg, 2018). Thus, one would

expect that companies going public today are more mature than they used to be. However,

this does not appear to be reflected when looking at the profitability of companies filing for

IPO in recent years. In fact, according to Rooney (2019), Goldman Sachs are forecasting

that less than a quarter of the companies going public in 2019 will report positive net

income this year, which is the lowest level since the tech bubble of the early 2000s. A

similar trend can be spotted in our dataset, as illustrated in figure 4.11.

Figure 4.11: % of Venture-Backed IPOs with Positive Profit Margin year before IPO

Figure 4.12 shows the distribution of profit margins the year before IPO. It is evident from

the figure that most of the companies in our dataset were unprofitable the year before

they filed for IPO, as already mentioned in the introduction. Out of the 180 companies,

only 39 (22.8%) reported a positive bottom line the year before their IPO.
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Figure 4.12: Distribution of Profit Margin Year Before IPO

Moreover, it stands out that 46 companies (25.6%) had profit margins lower than -100%.

40 of these companies are either biotechnology or pharmaceutical companies, both typically

research and development-heavy industries.

Figure 4.13 displays returns plotted against profit margin year before IPO, excluding the

nine companies with profit margins below -800%. As earlier, there are no clear patterns

suggesting a linear correlation between returns and profit margin year before IPO.

Figure 4.13: Plotting Simple Returns Against Profit Margin Year Before IPO
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5 Analyzing Individual Attributes

While we introduced and explored the dataset in the previous chapter, more targeted

analysis will be done in this chapter. The aim is to answer our first two hypotheses:

Hypothesis 1: status as tech company, amount of pre-IPO funding, IPO size, and negative

profitability are all negatively correlated with first-day return

Hypothesis 2: status as tech company, amount of pre-IPO funding, IPO size, and negative

profitability are all negatively correlated with three-month return, excluding first-day trading

gains

In order to successfully answer our hypotheses, we will make use of both non-statistical

and statistical analysis. Whereas the former will be used to visually search for patterns in

the performance of companies holding each of the attributes, the latter will be used to

examine whether or not the patterns are statistically significant.

The non-statistical analysis will be executed by dividing the dataset into groups based

on the four characteristics, which will be compared in order to see if there are any clear

patterns. Similarly to for the descriptive statistics, we will use simple returns for these

analyses.

To determine the statistical significance of the patterns, multiple regression analysis

will be used to investigate whether there are linear correlations between post-IPO stock

performance and the independent variables in the dataset. As stated in the data chapter,

we will use abnormal returns for these analyses.

In this chapter, each of the four characteristics in scope will be analyzed independently,

as outlined above. The next subchapter explains how the regression analysis was carried

out, before proceeding with analysis results in the subsequent subchapter.
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5.1 Method: Multiple Regression Analysis

To investigate whether there are statistically significant relationships between post-IPO

stock performance and the attributes, multiple regressions and the ordinary least squares

(OLS) method will be used. This method chooses the estimates that minimize the sum of

the squared residuals to provide as precise estimates as possible (Wooldridge, 2012).

5.1.1 Model Formulations

In our regressions, the first-day and three-month returns serve as the dependent variables.

In addition to the attributes that form part of our hypothesis, which are the independent

variables, we add certain data points from our dataset to serve as control variables.

Following, the regression models are formulated, before the different variables will be

further explained in the next sub-chapter.

Regression Model for the First Trading Day

logabnormalreturn1 = β0 + β1logtotalraised + β2logoffersize +

β3lognumberofemployees+ β4logageatipo+ β5Dprofitnegative + β6Dover250 + β7Dtech + ε

Regression Model for the First Three Months of Trading

logabnormalreturn90 = β0 + β1logtotalraised + β2logoffersize +

β3lognumberofemployees+ β4logageatipo+ β5Dprofitnegative + β6Dover250 + β7Dtech + ε

5.1.2 Explanation of Model Variables

In this section, we will provide brief explanations of the variables used in our regression

models. Most of the continuous variables are log-transformed to improve linearity. Further

details concerning this can be found in appendix A2.

Dependent Variables

First-day abnormal return: logabnormalreturn1

The dependent variable logabnormalreturn1 is the log-transformed abnormal return of the

first day of trading. The S&P 500 index is used as a benchmark to calculate the abnormal

return.
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Three-month abnormal return: logabnormalreturn90

The dependent variable logabnormalreturn90 is the log-transformed abnormal return for

the first three months of trading, excluding first-day trading gains. The value is calculated

by adjusting the return to the S&P 500 index for the same time period.

Independent Variables

Adjusted offer size: logoffersize

The offer size is the log-transformation of number of shares offered multiplied with the

price per share. As our dataset contains information on IPOs from 2011 and onwards, the

offer size has been adjusted with the US Consumer Price Index to make sure the data is

comparable.

Adjusted total raised before IPO: logtotalraised

The value of the variable is the log-transformed total amount of funding the company has

raised before their IPO. The different funding rounds are adjusted with the US Consumer

Price Index from the time the funding was raised.

Company age at IPO: logageatipo

The company’s age at IPO is found by subtracting the year when the company was

founded from the year they went public. As the age of a few companies were significantly

higher than most other companies, it is log-transformed.

Number of employees the year before IPO: lognumberofemployees

The variable is the log-transformed number of employees the company had the year before

they went public.

Dummy variable for tech companies: Dtech

The dummy variable has a value of one when the company is classified as a tech company,

and a value of zero for non-tech companies. As explained earlier, “tech companies” are

defined by using the EU industry standards classification system (NACE) code of each

company, where companies classified as “Information and communication” are set to be

“tech companies”.
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Dummy variable for negativ profit margins the year before IPO:

Dprofitnegative

The dataset contains the profit margins for each company the year before they went public.

The dummy holds a value of one if the company had a negative profit margin, and a value

of zero if they were profitable. As stated in previous chapters, we will simply refer to

these companies as “profitable” and “unprofitable” companies.

Dummy variable for companies that raised over $250 million before IPO:

Dover250

Instead of only investigating whether there is a linear relationship between the amount

of funding each company have raised before IPO and their returns post-IPO, we will

investigate if the most funded companies perform differently than others. The dummy

variables will therefore hold a value of one if the company raised $250 million or more.

These companies will be referred to as “heavily funded companies”. The dummy variable

will hold a value of zero for all other companies.

5.1.3 OLS Violations

There are certain assumptions that must hold true for the regression models to be accurate

(Wooldridge, 2014). The main assumptions for the ordinary least squares method are:

1. Linearity in the parameters

2. Random sampling

3. No perfect collinearity

4. Zero conditional mean

5. Homoscedasticity

To determine the validity of our analysis, violations of these assumptions have been

investigated. Variables are log-transformed to improve the linear relationship between

the dependent and the independent variables, and the variance inflation indicators and a

correlation matrix have been calculated to reveal potential multicollinearity. Further, the

RESET test and the White test are run to make sure the zero conditional mean assumption

is valid and to identify potential homoscedasticity. The tests show no sign of violations
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of these OLS assumptions. However, as discussed in chapter 3 and 4, the assumption of

random sampling is harder to confirm, as our data cleaning might have biased our data.

Still, through thorough assessment of the dataset, we feel comfortable assuming that the

dataset is a representative sample of the whole population of venture-backed IPOs.

Consequently, we assume that the dataset does not violate any of the OLS assumptions.

The Gauss-Markov theorem is therefore valid, and our OLS estimators are the Best Linear

Unbiased Estimators (BLUEs) for the model (Wooldridge, 2012). Moreover, normally

distributed unobserved error terms are prefered for exact statistical inference (Wooldridge,

2012). We have therefore analysed the residuals, as well as the distribution of the dependent

variables. With as many as 180 observations, the central limit theorem concludes that

the OLS estimators satisfy asymptotic normality, meaning we can assume we have an

approximate normal distribution (Wooldridge, 2012).

Further details concerning model validation can be found in appendix A2.
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5.1.4 Regression Results

Table 5.1 and table 5.2 show the results of our regression analysis, which will be explained

and discussed in subchapter 5.2.

Table 5.1: Regression Results Against Abnormal First-Day Return

Variables (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
logtotal-
raised 0.0255* 0.0119 0.0145 0.0226*

(0.051) (0.405) (0.480) (0.079)
logoffer-
size 0.0416** 0.0264 0.0494* 0.0533***0.0381** 0.0461** 0.0448** 0.0564***

(0.030) (0.380) (0.070) (0.009) (0.030) (0.010) (0.025) (0.001)
lognumberof-
employees -0.005 -0.008

(0.786) (0.610)
logageatipo -0.054 -0.026

(0.127) (0.379)
profitnegative 0.130** 0.0841* 0.0834* 0.0952*

(0.014) (0.070) (0.061) (0.033)
over250 0.0008 0.0144 0.0185

(0.990) (0.774) (0.714)
techyn 0.0946** 0.0850** 0.111***

(0.020) (0.036) (0.005)
_cons 0.085 -0.053 0.164 -0.086 -0.062 -0.007 -0.109 0.066 -0.015 -0.142

(0.195) (0.558) (0.216) (0.506) (0.640) (0.933) (0.280) (0.311) (0.871) (0.156)
N 180 180 124 124 180 180 180 180 180 180
R2 0.0213 0.0472 0.0502 0.0745 0.0724 0.0723 0.0907 0.0637 0.0441 0.0677

P-values in parentheses, Significance: * p<0.10, ** p<0.05, *** p<0.01

The regression table reports the coefficients and p-values (in parentheses) from the regressions run with
log-transformed abnormal first day returns as the dependent variable.
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Table 5.2: Regression Results Against Abnormal Three-Month Return, Excluding the
First Day of Trading

Variables (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
logtotal-
raised -0.027 -0.022 -0.038 -0.024

(0.116) (0.236) (0.174) (0.151)
logoffer-
size -0.013 0.008 -0.015 -0.024 -0.017 -0.025 -0.016 -0.034

(0.597) (0.849) (0.690) (0.366) (0.471) (0.293) (0.555) (0.137)
lognumberof-
employees -0.004 0.006

(0.864) (0.789)
logageatipo 0.052 0.022

(0.279) (0.575)
profitnegative -0.101 -0.087 -0.086 -0.097

(0.158) (0.158) (0.146) (0.101)
over250 -0.096 -0.050 -0.054

(0.246) (0.455) (0.422)
techyn -0.086 -0.076 -0.09*

(0.112) (0.161) (0.086)
_cons 0.178** 0.222* 0.088 0.176 0.196 0.157 0.262* 0.194** 0.137 0.293**

(0.038) (0.064) (0.617) (0.317) (0.266) (0.167) (0.052) (0.024) (0.269) (0.029)
N 180 180 124 124 180 180 180 180 180 180
R2 0.014 0.015 0.032 0.034 0.028 0.022 0.033 0.030 0.011 0.022

P-values in parentheses, Significance: * p<0.10, ** p<0.05, *** p<0.01

The regression table reports the coefficients and p-values (in parentheses) from the regressions run with
log-transformed abnormal three-month return as the dependent variable.

5.2 Findings

5.2.1 Amount of Pre-IPO Funding

In the descriptive analysis, we saw few signs of a linear relationship between pre-IPO

funding and post-IPO stock performance. In order to investigate this relation in a slightly

different way, the companies in the dataset are divided into two groups, based on whether

or not they raised more than $250 million in pre-IPO funding. This specific amount is

chosen in order to separate the top quartile from the rest of the dataset, rounded to the

nearest $50 million. There are 43 companies in the group that raised $250 million or

more in pre-IPO funding. As already mentioned, these will for the sake of convenience be

referred to as “heavily funded companies”.

Figure 5.1 displays post-IPO stock performance for companies that raised external funding

before their IPO.
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Figure 5.1: Indexed Average Returns, Much vs. Not-So-Much Funding

The graph on the left displays indexed average post-IPO stock performance with the IPO

offer price as starting point. It is evident that both groups on average are underpriced, and

that heavily funded IPOs were on average more underpriced than other IPOs. However,

over the following three months, the heavily funded companies were outperformed by

the other companies. This is particularly evident when first-day gains are excluded, as

illustrated in the graph on the right. Although both groups appreciated in value, the

average nominal return for companies that raised less than $250 million is approximately

three times those of companies that raised more than $250 million (15% vs. 5%).

If the part of hypothesis 1 about pre-IPO funding and its effect on underpricing is true, we

would expect the variables in the regression models related to funding to be significantly

positive. However, the regression results, displayed in table 5.1, do not confirm our

hypothesis. The continuous variable “logtotalraised” would be significant if there was

a linear relationship between the amount of funding raised and the first-day return.

Although two out of four regressions show significant results for this variable, it is only

at a 10% significance level, and the p-values for the two remaining coefficients are far

from significant. It is also worth noticing that the variable is only significant when it is

not combined with the significant variable for offer size. It is therefore reason to believe

that the significant results for the “logtotalraised” variable in regression (1) and (8) hold

information of the offer size and hence provide biased results.

Even though a linear relationship between the first-day return and the amount of pre-IPO

funding seems unlikely, the most funded companies might still perform differently than

others on their first day of trading. To investigate this relationship, the regressions include
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a dummy variable for heavily funded companies. As our hypotheses are partially motivated

by the performance of the aforementioned unicorns that went public in 2019, and that

the increased access to private funding might have affected their performance, we would

expect the dummy variable to be significant. However, the regressions reveal no significant

differences in first-day return for the companies in the “over250”-category. Based on these

results, the most funded companies do not seem to be more underpriced at IPO than

other companies, and our hypothesis seems to be rejected.

For the three-month time horizon, one of our hypotheses is that pre-IPO funding and

abnormal returns are negatively correlated. Thus, we expect to find that the coefficients

for the explanatory variables related to pre-IPO funding have negative prefixes and are

statistically significant. Although the regression results, as displayed in table 5.2, imply a

negative relationship for both the continuous and the binary variable, the correlations are

not statistically significant. Thus, this hypothesis can be rejected.

5.2.2 Tech Companies vs. Non-Tech Companies

As described in the descriptive analysis chapter, the companies can be divided into industry

categories by using the EU NACE code. Figure 5.2 shows average indexed returns for the

three largest categories, as well as the rest of the companies in the dataset.

Figure 5.2: Indexed Average Returns, by Industry

It is evident that the tech companies were more underpriced than other companies in our

dataset. Over the first three months after the IPO however, manufacturing companies

on average outperform other companies. This applies regardless of whether or not gains

from the first day of trading are included, but is particularly evident when they are
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excluded. From the right graph in figure 5.2, it also appears that tech companies and

companies within professional scientific and technical activities on average experienced

very modest returns in the first three months following their IPO, on average 3.8% and

2.0%, respectively, when first day gains are excluded.

When instead dividing into “tech” and “non-tech” companies, the picture is very similar to

for pre-IPO funding: tech companies are more underpriced than other companies, but

perform worse over the next three months (figure 5.3). After 3 months, and excluding

first-day trading gains, non-tech companies delivered average returns of 17.7%, almost

five times as high as tech companies (3.8%).

Figure 5.3: Indexed Average Returns, Tech vs. Non-Tech IPOs

In the multiple regression results (table 5.1), the tech label seems to have a significant

positive impact on the first-day return. This is consistent throughout all three regressions,

and the results show that if a company is categorized as a tech company, first-day abnormal

return increases with an average of about 9.7%. The scenario of “fads” may be the case

for these companies, as the substantial underpricing can be a sign of investors being

overoptimistic about future potential of companies in the tech industry.

As for the amount of pre-IPO funding, we also expect to find a significant negative

relationship between three-month returns and the tech label. Although the covariaton is

consistently negative, the correlation is only significant in one of the three models, and on

a 10% level. This is also the only statistically significant result of the regressions using

three-month returns as the target variable. Thus, we cannot unambiguously conclude that

tech companies perform worse than other companies on the three-month horizon.
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5.2.3 Offer Size

Like for amount of pre-IPO funding, we separate the dataset into two groups based on

whether or not companies are among the top 25% with regards to size of their IPO. This

split is done at $200 million, and average indexed stock price development for these two

groups are illustrated in figure 5.4.

Figure 5.4: Indexed Average Returns, Large vs. Not-So-Large IPOs

As expected, IPOs larger than $200 million are on average more underpriced than smaller

IPOs. Whereas the average first-day return for smaller IPOs is 24.1%, the average for

the largest IPOs is 40.7%. Contrary to the other characteristics in scope, however, the

stocks of the largest IPOs in our dataset perform slightly better than others also on the

three-month term, in spite of modest returns in the first month.

The regression analyses clearly demonstrate that offer size is correlated with first-day

returns, with a significance level of 5% or less in 6 out of 8 regressions. This means that

larger IPOs tend to be more underpriced than smaller IPOs. We find that for a one

percent increase in offer size, the first-day abnormal return increases with an average of

4.3%.

For three-month returns, both expectations and results are similar to the previous

characteristics. With one exception, the coefficient prefixes are negative, but none

are statistically significant. Thus, we cannot confirm our hypothesis that larger IPOs are

outperformed by smaller IPOs in the first three months of trading.
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5.2.4 Profitable Companies vs. Unprofitable Companies

Similarly to before, we divide the companies in two groups, this time based on whether or

not they were profitable the year before their IPO. As explained in previous paragraphs,

we will refer to these companies as “profitable” or “unprofitable” companies. There are

41 profitable and 139 unprofitable companies in the dataset. This division seemingly

tells a similar story to earlier, only with different main characters: the unprofitable

companies were on average slightly more underpriced than profitable companies, but

were clearly outperformed by the profitable companies in the following three months

of trading (figure 5.5). After three months of trading, and excluding first-day trading

gains, profitable companies delivered on average a return of 19.8%, whereas unprofitable

companies delivered an average return of 11.2%.

Figure 5.5: Indexed Average Returns, Profitable vs. Unprofitable Companies

As discussed earlier concerning age, companies with a negative profit margin can also be

considered risky investments, leaving an expectation of high first-day returns. One could

therefore expect the dummy variable “profitnegative” to be relevant when analyzing first-

day returns. All regressions show significant results at a 10% or 5% level for “profitnegative”,

and the coefficients hover around 9%. The interpretation of our results is therefore that

companies with a negative profit margin the year before IPO are on average 9% more

underpriced than others.

Unsurprisingly, the coefficient indicates that unprofitable companies are outperformed by

profitable companies on the three-month horizon. Equally unsurprising, this relationship

is not statistically significant - although it is very close to be significant in one of the

four models, where it is significant on a 10.1%-level. Nevertheless, we cannot confirm
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our hypothesis that unprofitable companies going public are outperformed by profitable

companies going public in the first three months of trading.

5.3 Summary and Discussion

In this chapter, we analyzed for relationships between post-IPO stock performance and

four key attributes: status as tech company, amount of pre-IPO funding, IPO size, and

negative profitability.

In line with our hypothesis, multiple regression results indicated that each attribute is

associated with high first-day returns and low returns in the subsequent months. However,

correlations are almost without exception statistically significant only for the first day of

trading.

Despite the lack of statistical significance, it is worth noticing that practically all coefficients

in the regressions change from positive to negative when switching from first-day to three-

month returns. The interpretation of this is that factors having a positive effect on

underpricing have a negative effect on three-month performance. This is consistent with

Ritter’s findings, as he finds that firms with high adjusted first-day returns tend to perform

poorly in the aftermarket (Ritter, 1991).

While most of our hypotheses are in line with previous literature, those regarding offer

size are not. Ritter (1991) found that smaller companies tend to be more underpriced

than larger companies. He also found that younger companies are more underpriced

than older companies. Ritter argues that growth companies are considered more exposed

to aftermarket risk than mature companies, and experience a higher first-day return.

This is consistent with the findings of Shen and Goo (2019), that aftermarket risk and

first-day returns are positively correlated. However, whereas the largest IPOs used to

involve mature, stable companies, the largest IPOs of the last decade have rather involved

growth companies with uncertain futures in terms of delivering lasting profits. This change

might explain why the relationship between the size of the initial offer and the level of

underpricing has turned.

Pre-IPO funding turned out to be the least influential of the four attributes. Considering

the increasing access to private equity capital for unlisted companies combined with

disappointing performance of recent heavily funded companies going public, we expected



5.3 Summary and Discussion 41

to find a stronger relationship. However, the analyses indicated a stronger relationship

between offer size and returns. As the companies that caught our attention - such as

Uber, Lyft and Slack - are among both the most venture-backed and the largest IPOs, it

appears that offer size might be a better proxy for hype than funding.
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6 Analyzing Combinations of Attributes

In this chapter, we will investigate our third hypothesis:

Hypothesis 3: When combining the characteristics, their effects on both first-day return

and three-month return will be even stronger than they are individually

Groups of companies are formed by combining characteristics based on the significant

relationships observed in the regressions. Even though the significant results were primarily

found for the first-day return, we will investigate whether combinations of these attributes

also have an impact on the three-month return. Despite not finding a linear relationship

between offer size and the three-month return, the largest IPOs may still perform differently

than others. For further analysis we will therefore investigate companies with an offer size

above $200 million, as well as tech companies and unprofitable companies. Companies

with an offer size above $200 million will be referred to as “large IPOs”. The dummy

variable for heavily funded companies did not provide significant results in the regressions,

and will not be included in further analysis. However, as illustrated in figure 6.1, these

groups of companies are, unsurprisingly, largely the same.

Figure 6.1: Overlap Between Large IPOs and Heavily Funded Companies

6.1 Rephrasing the Hypothesis

When we split the dataset into groups based on the four attributes in the previous chapter,

the pattern was always the same: companies holding the attribute had on average higher

first-day returns and lower three-month returns than other companies. This raises an

obvious question: are we looking at virtually the same group of companies over and over?

If not, can combinations of variables yield even more conclusive results? The first question

can be answered by looking at the Venn diagram in figure 6.2.
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Figure 6.2: Overlapping Characteristics

Of the 180 companies in the dataset, 77% (139) were not profitable the year before their

IPO. This is more or less consistent when combining with other groups: 82% of tech

companies were not profitable the year before their IPO, whereas the number is slightly

lower for companies with an offer size above $200 million (59%). 12 companies in the

dataset hold all three attributes.

It is therefore clear that even though a similar pattern can be observed for the individual

characteristics, the companies within each category are not the same. This finding indicates

that if each attribute affect the aftermarket performance in similar directions, companies

holding a combination of the attributes should experience even stronger effects.

With the previous paragraphs in mind, our hypothesis for the combined variables can be

rephrased as follows:

When combining the characteristics “tech”, “unprofitable” and “large IPO”, the positive

effect on first-day returns and negative effect on returns in the subsequent three months

will be even stronger than the effect of each characteristic individually

In this chapter, we will investigate whether this is true.

6.2 Method: Mann-Whitney U Test

Figure 6.2 presents how the relevant characteristics overlap, and thereby how groups

of companies holding more than one characteristic are formed. Returns for members
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of these groups will be compared with returns for non-members through a two-sample

Mann-Whitney U test (also called the Wilcoxon rank-sum test).

The Mann-Whitney U test investigates whether two samples are significantly different

from each other. The test does not require normally distributed observations, and can be

used for samples of different sizes. As it uses the sum of the ranks of the observations,

instead of the mean of each sample, outliers will not gain too much weight in the test.

To further investigate the dataset, the Mann-Whitney U test will be used to test the

following groups against the rest of the dataset:

1. Tech companies with large IPOs

2. Unprofitable tech companies

3. Unprofitable companies with large IPOs

4. Unprofitable tech companies with large IPOs

In line with our hypothesis, we expect to find that all groups perform different than others,

with a better first-day performance, and a worse performance in the three-month time

frame.

6.2.1 Test Results

Table 6.1 and 6.2 show the results of the Mann-Whitney U tests, which will be explained

and discussed in subchapter 6.3.

Table 6.1: Mann-Whitney U Test: First-Day Return

Group compared to the rest of the dataset Significant? Performance
compared to others

Tech companies with large IPOs (18 obs) Yes,
α = 5%

Better in 67.1% of all
cases

Unprofitable tech companies (46 obs) Yes,
α = 1%

Better in 69.3% of all
cases

Unprofitable companies with large IPOs (26 obs) Yes,
α = 1%

Better in 67.2% of all
cases

Unprofitable tech companies with large IPOs
(12 obs)

Yes,
α = 1%

Better in 73.3% of all
cases
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Table 6.2: Mann-Whitney U Test: Three-Month Return

Group compared to the rest of the dataset Significant? Performance
compared to others

Tech companies with large IPOs (18 obs) No Worse in 59.9% of all
cases

Unprofitable tech companies (46 obs) Yes,
α = 10%

Worse in 59.1% of all
cases

Unprofitable companies with large IPOs (26 obs) No Worse in 56.1% of all
cases

Unprofitable tech companies with large IPOs
(12 obs) No Worse in 61.5% of all

cases

6.3 Findings

6.3.1 Tech Companies With Large IPOs

Out of 56 tech IPOs in the dataset, 18 were larger than $200 million. Figure 6.3 displays

average stock development calculated from offer price and closing price after the first day

of trading for this group compared to the other 162 companies in the dataset.

Figure 6.3: Indexed Average Returns, Tech Companies With Large IPOs

The patterns are similar to those observed earlier: higher first-day returns for the large

tech IPOs than for other IPOs, while the large tech IPOs are outperformed in the next

three months of trading. Specifically, tech companies with large IPOs had on average

17.5 percentage points higher first-day returns than other companies, and 15.2 percentage

points lower returns in the next three months.

The Mann-Whitney U test results, as shown in tables 6.1 and 6.2, confirm that tech
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companies with large IPOs outperform others on the first day of trading, with a higher

return in 67.1% of all cases. This result is significant at a 5% level, and supports our

hypothesis.

On the three-month horizon, large tech IPOs deliver lower returns than other companies

59.9% of the time. However, this underperformance is not significant.

6.3.2 Unprofitable Tech Companies

There are 46 tech companies that were unprofitable the year before IPO, making it the

largest overlap of the characteristics that are being examined. These companies had an

average first-day return of 39.1%, 14.2 percentage points above other companies. As

expected, the next three months generate far lower returns. The stocks of the unprofitable

tech companies increased by on average 1.7% - 15.8 percentage points lower than other

companies.

Figure 6.4: Indexed Average Returns, Unprofitable Tech Companies

From the regressions in table 5.1 we find that the significance of unprofitable companies is

not consistent at a 5% level. However, the unprofitable tech companies perform significantly

better than others on the first trading day. Companies in this group outperform other

companies going public in 69.3% of all cases, leaving them the pairwise combination of

attributes that most often generates higher first-day returns than others. This result is

significant at a 1% significance level.

As the only group with significant results in the three-month time frame, the unprofitable

tech companies’ performance is found to be significantly different than others in the

Mann-Whitney U test, at a 10% significance level. This group has a lower three-month
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return than others in 59.1% of all cases. Comparing the results from the tests done for

the first-day return and the three-month return, the unprofitable tech companies provide

the most significant results for both models, but with opposite effects. In other words,

our hypothesis seems to be confirmed for this specific combination of characteristics.

6.3.3 Unprofitable Companies With Large IPOs

26 companies with IPOs larger than $200 million were unprofitable the year before IPO.

As shown in figure 6.5, these companies had on average 21.5 percentage points higher

first-day returns than other companies, similar to the groups examined above. In the

following three months, they also achieved on average higher returns than others, by 4.25

percentage points. Although this irregular pattern might be a consequence of being an

average of rather few observations, it is the first assessed group that breaks with the

pattern of higher first-day returns followed by lower returns over the next months.

Figure 6.5: Indexed Average Returns, Unprofitable Companies With Large IPOs

As one could expect based on the non-statistic analysis, results from the Mann-Whitney

U test are highly significant for first-day returns. It returns a significance level of 1%, and

shows that unprofitable companies with large IPOs perform better than other companies

in 67.2% of all cases.

Unsurprisingly, the better performance found for the three-month period is not significant.

However, despite having higher average returns than others, the Mann-Whitney U test

states that the group performs worse than others. A likely explanation is that the group

includes for instance Beyond Meat, whose aforementioned sky high returns both on the first

day and the next three months of trading pulled the average significantly up. Nevertheless,
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with non-significant results, we cannot confirm our hypothesis that unprofitable companies

with large IPOs perform worse than others on the three-month horizon.

6.3.4 Unprofitable Tech Companies With Large IPOs

As the Venn diagram in figure 6.2 shows, there are 12 companies that hold all three

attributes. As we have found each attribute to impact stock performance, expectations

are high that the combination of all three attributes will yield significant results that align

with our hypothesis on both time horizons. Figure 6.6 shows that the unprofitable tech

companies with large IPOs had a 23.5 percentage points higher average first-day return

than other companies. Over the next three months, however, they were outperformed by

a margin of 18.3 percentage points.

Figure 6.6: Indexed Average Returns, All Three Attributes

The Mann-Whitney U test confirms that this is the group that most often outperform

others the first day of trading, generating higher first-day returns that others in 73.3 of

all cases. Unsurprisingly, this finding is significant at a 1% significance level.

Consisting of companies holding all of the three attributes, we expected this group to

differ significantly from others also on the three-month horizon. The results from the

Mann-Whitney U test states that the group performs worse in 61.5% of all cases, but,

slightly unexpected, this result is not significant.
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6.4 Summary and Discussion

This chapter has focused on answering whether our hypothesis regarding companies

holding more than one of the mentioned attributes hold true. As stated in the beginning

of the chapter, our hypothesis was that:

When combining the characteristics “tech”, “unprofitable” and “large IPO”, the positive

effect on first-day returns and negative effect on returns in the subsequent three months

will be even stronger than the effect of each characteristic individually

To answer whether this is true, both non-statistical and statistical analyses have been

used. We found that for the pairwise combinations of the attributes, all three groups

perform significantly better than other companies on the first day of trading. Of the

pairwise combinations of attributes, the group of unprofitable companies with large IPOs

performs better than others in the most cases. Results were even clearer for companies

holding all three attributes.

Despite the regressions’ lack of significant correlations for the three-month return, we

believed that the Mann-Whitney U test would uncover significant patterns. Although the

results from the Mann-Whitney U test state that all groups in the test perform worse than

other companies in the time frame of three months, only one group provide significant

results; the unprofitable tech companies.

In total, all groups deliver higher first-day returns than others, followed by worse

performance in the next three months. By the nature of the categories, the high first-day

returns may be related to the “hype” of these kinds of companies, or the “fads” as Ritter

defined them. As the results are opposite for the performance after three months of

trading, excluding this positive first-day trading gain, the differences seem to diminish

and the total returns from the initial offer evens out to some extent. This is consistent

with Ritter’s research. He states that his findings indicate that the underpriced companies

are not priced too low, but their market value at the end of the first day is set too high

(Ritter, 1991). In our analysis, we see similar trends, but as the three-month results are

not consistently significant we cannot draw the same conclusions as Ritter. This might be

caused by our shorter time frame of three months, compared to his time frame of three

years.
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7 Conclusion

We have investigated post-IPO stock performance of initial public offerings on the New

York Stock Exchange and Nasdaq that raised private funding before going public. We

looked for relationships between stock performance in the first three months of trading and

selected publicly available information. Our hypotheses were that status as tech company,

amount of pre-IPO funding, IPO size, and negative profitability have (1) positive impact

on stock performance on the first day of trading, (2) negative impact on stock performance

in the subsequent three months, and (3) that impacts are even stronger for combinations

of the attributes. This was tested for by making use of multiple regression analyses, as

well as Mann-Whitney U tests.

Our regression analyses provided evidence of a statistically significant positive relationship

between offer size and first-day returns. The models also indicated that tech companies

achieve higher first-day returns than non-tech companies, and that unprofitable companies

achieve higher first-day returns than profitable companies. When looking at stock

performance in the three months following the first day of trading, however, the regression

analyses did not provide any statistically significant results.

When instead splitting the dataset into groups based on the four attributes, the Mann-

Whitney U test partially confirmed that combinations of the attributes yield even more

conclusive results. For first-day returns, all combinations yielded significant results. For

the next three months, however, only the combination of negative profitability and tech

proved to be significant.

Thus, the results partially confirmed our hypotheses, and is in line with previous research

done on the subject. Hype and aftermarket risk are typically associated with high first-day

returns, which in turn are associated with low returns in the subsequent time period.

With increasing access to private equity financing, tech companies’ convincing promises

to change the world, and decreasing investor demands for profitability in the immediate

future, today’s companies going public are larger, more hyped and less profitable than

ever before. Given our findings, and that these trends in the IPO landscape persist, we

can thus expect average stock returns of future IPOs to be higher on the first-day and

lower in the longer run than what they are today.
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Suggestions for Further Research

Although our analyses provide some significant evidence of factors related to aftermarket

performance of venture-backed IPOs, we see several ways of doing further research on

the field. Firstly, it is possible to challenge the tech classification. Thompson (2019)

argues that several of the high-profile IPOs of 2019 that have depreciated in value are

not “real tech companies”. Several of them either sell both hardware and software - like

the stationary-bike company Peloton - or their core offering is a digital marketplace

for transaction of services in the physical world - such as Uber and Lyft. Singling out

these “non-pure-tech” companies rather than all tech companies might have produced

more significant results. Peloton, Uber and Lyft, as well as Spotify, Groupon and Snap,

also have in common that they are consumer-facing, and thus naturally more prone to

hype than for instance niche enterprise tech companies - potentially impacting both their

pre-market valuations and aftermarket performance.

Secondly, a longer observation period than three months could be applied. We saw for

some of the group comparisons that the graphs were seemingly moving further apart from

each other over time, potentially indicating that a longer observation period could have

yielded clearer results. However, this is not at all guaranteed, and the differences might

just as well decrease over time.

Finally, a larger dataset might have provided clearer and more robust results. We were

constrained by availability of accounting data, limiting the dataset to IPOs from 2011

onwards. Having access to data from further back in time would increase the amount of

observations, thus improving the robustness of our analyses. However, older data might

not reflect the aforementioned trends in the IPO landscape. Hence, it could be even more

interesting to perform this exercise again at a later stage.



52 References

References
Banton, C. (2019). Underwriter. Investopedia.

Beck, J. (2017). Determinants of ipo underpricing: Tech vs nontech industries. Major
Themes in Economics, 19.

Berk, J. and DeMarzo, P. (2017). Corporate Finance. Pearson, 4th edition.

Brav, A. and Gompers, P. A. (1997). Myth or reality? the long-run underperformance of
initial public offerings: Evidence from venture and nonventure capital-backed companies.
The Journal of Finance.

Carlson, B. (2019). If you think there’s something strange about the 2019 ipo
market—you’re right. Fortune.

Døskeland, T. M. and Strömberg, P. (2018). Evaluating investments in unlisted equity for
the norwegian government pension fund global (gpfg). Regjeringen.

Grocer, S. and Russell, K. (2019). Uber is going public: How today’s tech i.p.o.s differ
from the dot-com boom. The New York Times.

Klebnikov, S. (2019). Wework’s valuation plummets to $8 billion as softbank completes
takeover. Forbes.

Loughran, T. and Ritter, J. (2002). Why don’t issuers get upset about leaving money on
the table in ipos? Review of Financial Studies, 15(2):413–444.

Megginson, W. L. and Weiss, K. A. (1991). Venture capitalist certification in initial public
offerings. The Journal of Finance.

Murphy, M. (2019). Beyond meat soars 163% in biggest-popping u.s. ipo since 2000.
MarketWatch.

PennState Science (2018). 10.7 - Detecting Multicollinearity Using Variance Inflation
Factors. The Pennsylvania State University, Pennsylvania, USA.

Ritter, J. R. (1991). The long-run performance of initial public offerings. The Journal of
Finance.

Ritter, J. R. (2018). Initial public offerings: Median age of ipos through 2017.

Ritter, J. R. (2019). Why don’t issuers get upset about leaving money on the table in
ipos?

Ritter, J. R. and Beatty, R. P. (1986). Investment banking, reputation, and the
underpricing of initial public offerings. The Journal of Financial Economics.

Ritter, J. R. and Welch, I. (2002). A review of ipo activity, pricing, and allocations. The
Journal of Finance.

Rooney, K. (2019). This year’s ipo class is the least profitable of any year since the tech
bubble. CNBC.

Rowley, J. D. (2019). There are more vc funds than ever, but capital concentrates at the
top. Crunchbase.



References 53

Sarath, C. (2019). Seed funding — things you need to know. The Startup.

Shen, F.-Y. and Goo, Y.-J. (2019). The ipo initial returnsaftermarket risk question
revisited: evidence from firms in taiwan. Investment Management and Financial
Innovations, 16.

Shiller, R. J. (1990). Market volatility and investor behavior. The American Economic
Review.

Thompson, D. (2019). The not-com bubble is popping. The Atlantic.

Wooldridge, J. M. (2012). Introductory Econometrics: A Modern Approach. Cengage
Learning.

Zider, B. (1998). How venture capital works. Harvard Business Review.



54

Appendix

A1 Fuzzy String Matching

Table A1.1: Stock Splits Identified for Tickers in Dataset

Ticker Name from SDC Platinum Name from Investing.com Offer Price
Multiplicator

Fuzz
Score

Same
Company?

ET Exacttarget Inc Energy Transfer 0.25 27 No
HCA HCA Holdings Inc HCA 0.22 32 Yes
TTPH Tetraphase Pharmaceuticals Tetraphase 20.00 50 Yes
FRAN Francesca’s Holdings Francescas 12.00 61 Yes
GNCA Genocea Biosciences Genocea Bio 8.00 65 Yes
SRC Spirit Realty Capital Spirit Realty 2.62 68 Yes
OSMT Osmotica Pharmaceuticals Osmotica Pharma 0.50 70 Yes
HTBX Heat Biologics Inc Heat Biologics 10.00 88 Yes
RWLK Rewalk Robotics Ltd Rewalk Robotics 25.00 88 Yes
WLH William Lyon Homes Inc William Lyon Homes 8.25 90 Yes
OBLN Obalon Therapeutics Inc Obalon Therapeutics 10.00 90 Yes
ONTX Onconova Therapeutics Inc Onconova Therapeutics 150.00 91 Yes
SFBS Servisfirst Bancshares Inc Servisfirst Bancshares 0.17 92 Yes

Table A1.2: Fuzzy String Matching of Company Names

Ticker Name rom SDC Platinum Name from Yahoo Finance Fuzz
Score

Same
Company?

EARN Ellington Residential Earn 17 No
VLRS Controladora Vuela Volaris 26 No
ET Energy Transfer LP Exacttarget Inc 30 No
EGRX Eagle Pharmaceuticals Eagle 31 Yes
IFRX Inflarx N.V. Fireman BV 36 No
PUYI Puyi American Depository Puyi Inc 41 Yes
ULTA Ulta Beauty Inc Ulta Salon Cosmetic 42 Yes
ARMK Aramark Aramark Holdings Corp 50 Yes
FBNK Facebank Group Inc First Connecticut Bancorp 51 No
APTV Aptiv PLC Delphi Automotive PLC 53 No
TC Tuanche Limited Tuanche Internet Info 55 Yes
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A2 OLS Violations

Linearity in the Parameters

The assumption of linearity depends on the dependent variable being a linear function

of the independent variable (Wooldridge, 2014). This assumption is not very restrictive,

as both the dependent and the independent variables can be arbitrary functions of the

underlying parameters of interest. Non-linear parameters can be transformed to linear

variables in the model through for example functions of natural logarithms and squares.

In our dataset, several variables are log-transformed to improve the linear relationship

between the dependent and the independent variables.

Random Sampling

For the sample to be representative for the whole population it is crucial that it is collected

randomly. Our data is collected from sources we consider reliable, and we gathered

all IPOs for the time period we are investigating. The dataset we started with should

therefore be representative. However, our data cleaning might bias our data. As data

points were missing for many observations, the final dataset only holds information on a

fraction of the total number of IPOs in the time period. We cannot be completely sure

that the deleted observations were randomly chosen, as there might be reasons why some

companies did not have all data points registered. This might bias our results.

No Perfect Collinearity

The assumption of no perfect collinearity states that there can be no constant independent

variables, and no exact linear relationship between the independent variables (Wooldridge,

2014). For dummy variables or variables representing shares of a whole, the model cannot

include all shares, or mutually exclusive dummies, as they will be perfectly dependent on

each other.

While perfect collinearity violates one of the assumptions for the OLS model,

multicollinearity can still be included. Multicollinearity can be defined as a high, but not

perfect, correlations between the independent variables (Wooldridge, 2014). A model with

multicollinearity will provide the best OLS estimates, but it will not be as precise due to

larger standard errors. One solution is to remove one of the correlated variables, but it is
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important to be aware that it might lead to omitted variable bias. Whether to include the

correlated variables or not, is therefore a tradeoff between precision and bias. For research

purposes, multicollinearity can create problems, as statistical inference is more difficult.

However, when looking for causality, we often favor avoiding the omitted variable bias

over good precision (Wooldridge, 2012).

In our dataset, multicollinearity is tested for by calculating the variance inflation indicator

(VIF) found in table 1 and through the correlation matrix shown in table 2. Science argue

what size a VIF can hold without causing issues in the regressions, due to high correlation.

The VIFs observed in table 1 are far below the most commonly used limit of 10, but even

when using the more conservative level of 4 (PennState Science, 2018) as our limit, our

variables show no sign of severe correlation.

The correlation matrix shown as table 2 confirms the conclusion from the VIF calculations.

With correlations higher than 0,8 severe problems with multicollinearity commonly appear,

but in the correlation matrix of our independent variables we find no values of such size.

The highest values of correlation is found for the variables "over250" and "lntotalraised",

with a correlation of 0.7262. This observation seems to be natural, as the dummy variable

"over250" is calculated directly from the value of the total amount raised before IPO. The

second largest value is found for the number of employees and the size of the IPO, with a

correlation of 0.6320.

Table A2.1: Correlation Matrix

lntotal-
raised

lnpri..-
amount

ln..-
employees

lnage-
atipo

profit-
negative over250 tech

lntotalraised 1.0000

lnoffersize 0.5474 1.0000

lnno.ofemployees 0.2163 0.6320 1.0000

lnageatipo -0.0612 0.0549 0.3089 1.0000

profitnegative 0.0004 -0.2461 -0.3048 -0.3307 1.0000

over250 0.7262 0.5265 0.3744 0.0401 -0.1232 1.0000

tech 0.0636 0.2270 0.3506 -0.1399 0.1039 0.1206 1.0000
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Zero Conditional Mean

The zero conditional mean assumption is a key assumption to be able to draw conclusions

on causality. It states that the unobserved factors is independent of the independent

variable, which means that the error term u have an expected value of zero given any

value of the independent variable E(u|x) = 0 (Wooldridge, 2012). When this assumption

is violated x is often called endogenous.

If the original equation satisfies the zero conditional mean assumption, then no nonlinear

functions of the independent variables should be significant when added to the model

(Wooldridge, 2012). With this rule as a basis, Ramsey’s (1969) regression specification

error test (RESET) investigates whether the assumption holds for a given regression

model. The RESET test is used to detect functional misspecification in our dataset,

and show no signs of omitted variables. The p-value for the regression model with the

log-transformed abnormal first day return as the dependent variables is 0.3538, and the

regression model with the log-transformed abnormal three-month return as the dependent

variable the p-value is 0.2254. Both p-values are above the traditional significant level

of 5%, and we cannot reject the null hypothesis of not having omitted variables in the

models. We will therefore assume that the variables are exogenous, resulting in unbiased

coefficient estimates in the regressions.

Although this may be true, discussions regarding whether the RESET test is an accurate

way of detecting omitted variables are present. Wooldridge argues that the test has

no power for detecting omitted variables if their expectations are linear in the included

independent variables in the model (Wooldridge, 2012). For testing functional form,

however, the RESET test is established as a good approach.

Homoscedasticity

For the assumption of homoscedasticity to hold true, the variance of the unobserved

factors, the error term, need to be constant for any given value of the explanatory variables

(Wooldridge, 2012). This assumption is important for creating an efficient OLS model,

and a violation will result in less precise estimations. However, heteroskedasticity does not

cause inconsistency or bias in the estimators of the coefficients, nor affects the goodness

of fit (R2) of the OLS model.
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To investigate whether the dataset holds signs of heteroskedasticity, the White’s test

is used. With first day return as the dependent variable, the regression generates a χ2

-value of 31,71 and a p-value is 0.4811. For the three-month return the results are almost

identical, with a χ2 -value of 30.56 and a p-value of 0.5397. With p-values far from what

would be necessary to reject the null hypothesis of homoscedasticity, we can, according

to the Gauss-Markov theorem, assume that the regressions is the best unbiased linear

estimator.

The Normality Assumption

For the OLS to be the best linear unbiased estimator there are no requirements of normality.

However, normally distributed unobserved error terms are prefered for exact statistical

inference (Wooldridge, 2012). For the normality assumption to hold, the unobserved

population errors need to be independent of the explanatory variables and normally

distributed with zero mean and variance σ2 (Wooldridge, 2012). As the error term, u, is

unobserved, we will investigate the residuals, u_hat, as well as the distribution of the

dependent variables. To determine whether the residuals are normally distributed, we

have plotted the residuals in a histogram, before using the Skewness and kurtosis test for

normality.

(a) Residuals, First-Day Return (b) Residuals, Three-Month Return

Figure A2.1: Distribution of Residuals, u_hat

Both histograms show that most residuals have values close to zero. The histogram

representing the residuals for the regression run with the log-transformed abnormal first

day return as the dependent variable seem to have more negative observations than

positive, while the histogram for the three months return looks more evenly distributed
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around zero. To test whether the skewness is significant enough to reject a null hypothesis

of normally distributed residuals, we use the Skewness and kurtosis test for normality.

For the first day return regression, the test generates a p-value of 0.0373. As this is less

than the 5% significant level, we can reject the null hypothesis of normal distribution

of the residuals. However, the three-month regression received different results. The

Skewness and kurtosis test for normality generates a p-value of 0.3557 and we cannot

reject that the residuals are normally distributed. See appendix 1 for the Stata output.

Further, the dependent variables are assessed. As a starting point, the distribution of

the non-logged abnormal return variables are investigated, before looking at the log-

transformed versions.

(a) Abnormalreturn1 (b) Abnormalreturn90

Figure A2.2: Distribution of Non-Logged Variables

(a) Logabnormalreturn1 (b) Logabnormalreturn90

Figure A2.3: Distribution of Log-Transformed Variables

The Kernel density estimates for the abnormal returns before logging the variables, show a
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distribution that is heavily skewed to the right. Logging them clearly gives better results,

with distributions closer to normality. Some skewness is still observable, especially when

looking at the first day return were the Kernel density curve has maximum point at a

lower value than the normal distribution. The distribution of the three-month return

variable seems to follow the normal distribution quite well. To determine whether the

skewness is significant enough to reject a null hypothesis of normal distribution, we use

the Skewness and kurtosis test for normality.

The p-values for the logged dependent variables confirm our observation that the dependent

variables are closer to being normally distributed when they are log-transformed. The

p-values of the non-logged variables were 0.0000, confidently rejecting the null hypothesis of

normality. When log-transforming the dependent variables, the p-values are of greater size.

For the logged three-month return variable, the p-value of 0.2901 is not significant, and

we cannot reject the null hypothesis of normal distribution. However, the first day-return

still receives a significant p-value of 0.0014, and we have to reject the null hypothesis at

the 5% significant level. As with the residuals, normality for the three-month return error

seem more likely than for the errors of the first day return model.

We can conclude that the log-transforming dependent variables improved the distribution,

but were not sufficient to achieve normality for both models. This may be caused by

outliers in our dataset. The most extreme observations are not excluded, but they

have been investigated to be sure that the data is correct. However, with a number of

observation as high as 180, the central limit theorem conclude that the OLS estimators

satisfy asymptotic normality, meaning we can assume we have an approximate normal

distribution (Wooldridge, 2012).


