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Abstract 

A value-weighted (equal-weighted) portfolio comprised of the twenty percent of the stocks on the 

Oslo Stock Exchange with the lowest beta each month produced cumulative excess returns of 1241% 

(692%) from 1990 to 2018. A value-weighted (equal-weighted) portfolio comprised of the twenty 

percent of the stocks on the Oslo Stock Exchange with the highest beta only generated cumulative 

excess returns of 6% (22%) over the same period. 

The beta anomaly refers to the low (high) abnormal returns of stocks with a high (low) beta. In this 

thesis, we examine the presence of a beta anomaly on the Oslo Stock Exchange in the period of 1990 

to 2018, and perform a replicating study of A Lottery Demand-Based Explanation of the Beta Anomaly, by 

Bali, Brown, Murray, and Tang, to investigate whether the notion of lottery demand - investors’ 

disproportionately high demand for lottery-like stocks - can explain the beta anomaly. Our results 

demonstrate an economically large and statistically significant beta anomaly on the Oslo Stock 

Exchange relative to conventional asset pricing models. We also find that our proxy for lottery demand, 

a variable MAX, correlates negatively with future stock returns. However, our results do not support 

the postulation that lottery demand plays an important role in generating the beta anomaly on the Oslo 

Stock Exchange, and our conclusions thus deviate from those of the paper we replicate.  
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1 Introduction 

The high (low) abnormal returns of stocks with low (high) beta – commonly referred to as the beta 

anomaly – is the oldest and one of the most robust stock market anomalies documented in empirical 

asset pricing research. The anomaly has piqued the interest of many a researcher since the 1970’s, when 

early empirical research by Black, Jensen, and Scholes (1972), Fama and MacBeth (1973), and Haugen 

and Heinz (1975) revealed that the security market line was, in reality, flatter than predicted by the 

acclaimed CAPM. The finding is still considered anomalous as the positive beta-return relation 

predicted by the CAPM is embedded in most modern asset pricing models.  

There is a plethora of research documenting the anomaly across geographies, time periods, and asset 

classes. Although the cause of the anomaly is highly debated in the international scientific community, 

there appears to be a broad consensus regarding its existence. Interestingly, the three studies examining 

the beta anomaly on the Oslo Stock Exchange (Frazzini & Pedersen, 2014; Juneja & Bordvik, 2017; 

Christensen, 2019) present conflicting results regarding its existence.  

With this backdrop, we attempt to kill two birds with one stone in this thesis; to thoroughly probe into 

the existence of the beta anomaly on the Oslo Stock Exchange, and to test the proposed explanation 

for the anomaly which we find the most intuitively appealing – the lottery demand-based explanation 

of the beta anomaly. 

As such, this thesis is both an inquiry into the existence of the beta anomaly on the Oslo Stock 

Exchange, and a replicating study of A Lottery Demand-Based Explanation of the Beta Anomaly, by Bali, 

Brown, Murray, and Tang (2017). The central postulation of their paper is that investors’ demand for 

lottery-like stocks plays an important role in generating the beta anomaly. Their logical reasoning is as 

follows. Investors have a disproportionately high demand for stocks with a payoff structure resembling 

that of real lotteries, and such lottery-stocks are, for the most part, also high-beta stocks. Lottery 

investors should therefore exert a disproportionately high price pressure on high-beta stocks relative 

to low-beta stocks and thus contribute to generating the beta anomaly. 

The postulation of Bali et al. (2017) is underpinned by three principal hypotheses, which we use in this 

thesis to test the lottery demand-based explanation of the beta anomaly. The three hypotheses we test 

are: (I) the beta anomaly is present in the Norwegian stock market, (II) there is a lottery demand 

phenomenon in the Norwegian stock market, and (III) lottery demand plays an important role in 
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generating the beta anomaly. We replicate the study on a sample of all listed companies on the Oslo 

Stock Exchange in the period of 1985 to 2018. 

We test The Beta Anomaly (I) by performing univariate portfolio analyses on monthly quintile 

portfolios sorted on an ascending ordering of the stocks’ market beta. We demonstrate that a zero-

cost portfolio with a long position in the low-beta quintile portfolio and a short position in the high-

beta quintile portfolio (“low-high beta portfolio” hereafter) generates economically large and 

statistically significant positive abnormal returns relative to the CAPM. We also demonstrate that a 

value-weighted low-high beta portfolio generates economically large and statistically significant 

abnormal returns relative to the Fama and French (1993) and Carhart (1997) four-factor (FFC4) model 

augmented with the liquidity factor of Næs, Skjeltorp, and Ødegaard (2009) (FFC4 + LIQ). The 

abnormal returns are, however, statistically insignificant for the corresponding equal-weighted 

portfolio, and our robustness tests illustrate that the statistical significance of the beta anomaly relative 

to the FFC4 + LIQ model is sensitive to our choice of time period and data filters. Nevertheless, our 

combined results strongly indicate that low-beta stocks outperform high-beta stocks on a risk-adjusted 

basis in our sample, underpinning the existence of a beta anomaly on the Oslo Stock Exchange.  

The Lottery Demand Phenomenon (II) refers to the high (low) abnormal returns of stocks that 

experience a low (high) amount of lottery demand-price pressure. We follow Bali et al. (2017) and use 

a variable MAX as a proxy for lottery demand. MAX is defined as the average of the five highest daily 

returns in the previous month. To test the lottery demand phenomenon on the Oslo Stock Exchange, 

we first evaluate whether MAX is an accurate proxy of lottery demand, and subsequently analyze the 

relation between MAX and one-month-ahead abnormal returns. 

To assess whether MAX is a good proxy for lottery demand on the Oslo Stock Exchange, we measure 

the idiosyncratic volatility (IVOL), idiosyncratic skewness (ISKEW), and the stock price (PRICE) for 

each MAX-sorted quintile portfolio. We find that quintile portfolios constructed to be monotonically 

increasing in MAX are also monotonically increasing in IVOL and ISKEW, and monotonically 

decreasing in PRICE. We conclude that MAX effectively captures the lottery-stock characteristics put 

forth by Kumar (2009).  

As with the beta anomaly, we test the relation between MAX and future abnormal returns by 

constructing monthly quintile portfolios based on an ascending ordering of MAX. We demonstrate 

that a zero-cost portfolio with a long position in the low-MAX quintile portfolio and a short position 
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in the high-MAX quintile portfolio (“low-high MAX portfolio” hereafter) generates statistically 

significant abnormal returns relative to the FFC4 + LIQ model. The results are generally robust to 

variations in data filters but not across different time periods. Our results thus strongly indicate that 

there is a statistically significant negative relation between MAX and future abnormal returns in our 

sample. Still, the ambiguous results from our robustness tests prevent us from concluding with great 

certainty. 

We test the Lottery Demand-Based Explanation of the Beta Anomaly (III) by analyzing the 

returns of the beta-sorted portfolios controlling for MAX using three different methodologies. In 

general, we find limited evidence suggesting that lottery demand, as measured by MAX, plays an 

important role in generating the beta anomaly in our sample. A bivariate portfolio analysis 

demonstrates that controlling for MAX has a limited impact on the abnormal returns of the low-high 

beta portfolio, and a univariate portfolio analysis sorting on the portion of beta that is orthogonal to 

MAX yields similar results. We find that in three out of the four conducted tests in the univariate and 

bivariate portfolio analyses, the abnormal returns of the low-high beta portfolio remain statistically 

significant despite the portfolio being neutralized to MAX.  

By augmenting the FFC4 + LIQ factor model with a lottery demand factor FMAX, we find that the 

abnormal returns of the low-high beta portfolio are no longer statistically significant. However, the 

abnormal returns remain economically large, and we demonstrate that an IVOL factor constructed 

analogously to the FMAX factor is equally capable of explaining the abnormal returns associated with 

the beta anomaly as FMAX. Seen in conjunction with the results from the bivariate portfolio analysis 

and the univariate portfolio analysis sorting on the component of beta that is orthogonal to MAX, we 

find that our analyses do not provide any conclusive evidence in favor of the lottery-demand 

explanation of the beta anomaly. 

When we reverse the roles of MAX and beta, we find that the low-high MAX portfolio no longer 

generates statistically significant abnormal returns when the portfolio is constructed to have a neutral 

exposure to beta. The results demonstrate that the documented negative relation between MAX and 

abnormal returns in our sample cannot necessarily be attributed to investor demand for lottery-like 

assets. Consequently, the statistically significant abnormal returns of the low-high MAX portfolio in 

our sample cannot be interpreted to illustrate a statistically significant lottery demand phenomenon on 

the Oslo Stock Exchange.  
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We contribute to the existing literature in two principal ways. Firstly, by replicating the study of Bali et 

al. (2017) on a Norwegian sample, we provide an out-of-sample robustness test of their results, which 

we believe could prove important in generalizing the findings in the paper. Secondly, we expand the 

study of Bali et al. (2017), most notably by analyzing the long-term cumulative returns of portfolios 

sorted on beta and MAX and assessing the trading costs associated with investing in the portfolios. 

However, we also deviate by providing additional robustness tests, particularly by assessing the strong 

observed correlation between IVOL and the proxy for lottery demand, MAX. 

From a personal standpoint, we find the topic interesting as the studies on the beta anomaly in Norway 

offer conflicting conclusions, and a proof of its existence could potentially alter investors’ perception 

of the beta-return relation in Norway. Furthermore, we believe that shedding light on the performance 

of lottery-like stocks could be a wake-up call for many Norwegian retail investors. Stock discussions 

among retail investors, for instance, in the school cafeteria or in Norwegian online forums, often 

revolve around stocks with lottery traits.  

The remainder of the thesis is organized as follows. Section 2 lays out relevant asset pricing theory and 

presents existing literature on the beta anomaly. Section 3 describes our data and the adjustments we 

have made. Section 4 introduces the variables and presents the methodology used to estimate them. 

Section 5 describes our empirical methodology, and section 6 presents our results from testing 

hypothesis I-III. Section 7 discusses limitations to our paper and brings suggestions for further 

research. Section 8 concludes.   
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2 Theory and Literature Review 

The purpose of this section is to provide the reader with the necessary theoretical foundation to 

interpret our results and give an overview of the existing literature on the topic. The section 

encompasses relevant asset pricing theory, literature on the existence of the beta anomaly and the 

proposed explanations for it, as well as an introduction to the lottery demand-based explanation of the 

beta anomaly.  

2.1 A Brief Introduction to Asset Pricing 

In general, the word anomaly means a deviation from the common rule. As such, an asset pricing 

anomaly refers to an observed deviation from conventional asset pricing models and theory. Since this 

paper is on the beta anomaly and its explanations, we begin this section by giving a brief introduction 

to the history and theory1 behind the asset pricing models discussed in this thesis. 

Modern Portfolio Theory and Tobin’s Separation Theorem 

All neoclassical equilibrium asset pricing models build upon the seminal work of Markowitz and Tobin. 

Markowitz (1952) recognized how cross-sectional correlation in stock returns affects the variance of a 

portfolio and was the first to entertain the notion of a mean-variance efficient frontier of stock 

portfolios. His Modern Portfolio Theory proposes that all portfolios but those on the frontier are inferior, 

and that all risk-averse, mean-variance optimizing investors select portfolios along the frontier 

corresponding to their risk preferences. 

Tobin (1958), through his Separation Theorem, introduced a risk-free asset to the investable universe of 

Markowitz. The inclusion of a risk-free asset implies that investors can scale the risk-return relation of 

any portfolio to suit their risk preferences. As such, all investors select the risky portfolio on 

Markowitz’s efficient frontier with the highest return per unit of risk – the tangency portfolio – and 

borrow or lend at the risk-free rate to achieve the desired portfolio risk-return relation. The resulting 

risk-return relation faced by investors in the market can be expressed by the acclaimed Capital Market 

Line (CML), illustrated in figure 1 and given by 

𝑟𝑝 − 𝑟𝑓 = (𝑟𝑝∗ − 𝑟𝑓) ∗
𝜎𝑝

𝜎𝑝∗
 

 
1 The general theory on asset pricing models is primarily based on Body, Kane and Marcus (2014) 
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where subscript p refers to any efficient, investable portfolio (i.e., any combination of the tangency 

portfolio and the risk-free asset), and subscript p* refers to the tangency portfolio. Hence, the risk 

premium of an efficient portfolio is equal to the risk premium of the tangency portfolio, multiplied by 

the variance ratio of the efficient portfolio to the tangency portfolio. The CML depicts the expected 

return and standard deviation of all combinations of the tangency portfolio and the risk-free asset, and 

its slope represents the Sharpe ratio of the tangency portfolio. 

Figure 1: Illustration of the Efficient Frontier, the CML and the Tangency Portfolio 

The figure illustrates Markowitz’ efficient frontier of stock portfolios, the Capital Market Line (CML) and the tangency 
portfolio in a fictive market consisting of three stocks.   

 

 

          

         

         

         

         

         

         

         

         

         

         

         

         

         

         

          

        

         

         
 

The Capital Asset Pricing Model 

The combined work of Markowitz and Tobin constituted a paradigm shift in finance. However, despite 

its theoretical elegance, the CML can only be used to price efficient portfolios. It is thus of little use in 

explaining cross-sectional differences in individual stock returns. In this regard, the CAPM was the 

pioneer (Sharpe, 1964; Lintner 1965; Mossin 1966). The CAPM builds on the theoretical foundation 
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portfolio weights in risky assets. The efficient portfolio must then be the value-weighted portfolio of 

all the assets in the investable universe – the market portfolio. Thus, in pricing a single stock, the 

appropriate risk to consider for an investor is the additional risk the security contributes to the market 

portfolio if included. This incremental increase in portfolio risk is measured by a stock’s beta. 

Ultimately, the risk premium, E[Ri], of an asset i can be expressed by 

𝐸[𝑅𝑖] = 𝛽𝑖𝐸[𝑅𝑚] 

where,  

𝛽𝑖 =
𝐶𝑜𝑣(𝑟𝑖, 𝑟𝑚)

𝑉𝑎𝑟(𝑟𝑚)
 

The equation above states the CAPM on its unconditional form.2 It implies that the risk premium of 

a single asset should be a positive, linear function of its sensitivity towards the market risk premium as 

measured by beta.  

The core strength of the CAPM is that it is theoretically consistent under its assumptions. It provides 

an intuitive framework on how assets should be priced in market equilibrium and offers an explanation 

to why market risk should be the only priced factor. However, as demonstrated in numerous empirical 

studies since the middle of the 1970s, the risk-return relation observed empirically is not in line with 

the CAPM’s predictions.3  

Arbitrage Pricing Theory (APT) 

Interestingly, the CAPM’s empirical inadequacies sparked an ever-growing body of research dedicated 

to exploring effects in cross-sectional stock returns that violate the CAPM’s basic tenets. One of these 

efforts was Ross’ (1976) Arbitrage Pricing Theory (APT), developed as an alternative to the empirically 

flawed CAPM. The central intuition behind APT is that several systematic risk factors influence long-

term stock returns, and that expected stock returns can be described by a linear combination of the 

stocks’ sensitivity towards these risk factors if all arbitrage opportunities are fully exploited. In general, 

the expected excess return of stock i under APT can be expressed by 

𝐸[𝑅𝑖] = ∑ 𝛽𝑖,𝑘𝐹𝑘

𝑛

𝑘=1

 

 
2 The graph representation of the unconditional CAPM is often referred to as the security market line (SML). 
3 The early empirical evidence against the CAPM is presented in section 2.2. 
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where Fk represents the risk premium of systematic risk factor k, and βi,k represents stock, i’s sensitivity 

towards risk factor k. At first glance, the general APT model appears very similar to the CAPM. The 

only noticable difference is that APT allows for several systematic risk factors. However, the models 

differ significantly in their theoretical foundation as the CAPM is an equilibrium model, while the APT 

is underpinned by a no-arbitrage assumption.  

The CAPM assumes all market participants to be risk-averse, mean-variance optimizers. Consequently, 

in the event of a mispricing, all market participants slightly tilt their portfolios to alter their exposure 

to the mispriced security and the market returns to equilibrium. APT, on the other hand, is based on 

the law of one price, and as Ross (1976) puts it, “is much more an arbitrage relation than an equilibrium 

condition […]” (p. 355). APT solely relies on three postulations (Bodie, Kane, & Marcus, 2014): (i) stock 

returns can be described by a factor model, (ii) the investable universe is vast enough to diversify away 

idiosyncratic risk, and (iii) all arbitrage-opportunities are fully exploited. Underpinned by these 

assumptions, the APT ensures fair pricing through the following logic. If all investors are well-

diversified, there is no exposure to the idiosyncratic risk of any single security, and the only relevant 

risk exposure of an investor is his exposure to the systematic risk factors. Consequently, provided that 

the relevant systematic risk factors in explaining future stock returns are known in the market and all 

arbitrage opportunities are exploited, it follows from the law of one price that two stocks with the 

same risk factor sensitivity must be priced equally. If not, it is possible to construct a replicating 

portfolio with the same factor exposure, but at a different price than the mispriced asset, and by 

constructing a zero-cost, long-short portfolio, it is possible to generate arbitrage profits on the 

mispricing.  

Although APT is useful in the sense that it is light in the assumptions, it does not provide any guidance 

to which systematic risk factors that are relevant in explaining expected returns. The dominant 

approach in determining these risk factors in practice is through empirical analysis of company-specific 

characteristics as proxies for systematic risk factors. The renowned Fama and French 3-Factor model 

(FF3) (Fama & French, 1993) is one example of such an APT-based model. The model gained its wide 

popularity by demonstrating that by adding the two factors small minus big (SMB)4 and high minus low 

 
4 The SMB factor is based the size effect (Banz, 1981) - that small firms offer higher risk-adjusted returns than large firms.  
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(HML)5 to the unconditional CAPM, the model’s ability to predict cross-sectional variation in stock 

returns increased substantially (Dimson & Mussavian, 1998).  

The strength of the APT-based models is thus that they offer increased precision in predicting cross-

sectional differences in stock returns compared to equilibrium models, such as the CAPM (Dimson & 

Mussavian, 1999). However, what the APT-based models make up in predictive power, they lack in 

theoretical foundation. There is no underlying theoretical foundation explaining why any of the 

conventional factors should be related to returns.  

A stock market anomaly is merely a reflection of an asset pricing model’s inability to explain cross-

sectional differences in stock returns. As such, when we evaluate our results against commonly 

accepted asset pricing models, we are, in a broader sense, solely testing the validity of the applied 

models. At this point in time, it appears to be no common agreement on which factors are the “true” 

factors in the APT-based models and, as such, we must make do with what is common in the asset 

pricing literature. However, the continuous discoveries of deviations from conventional models and 

theory prove that there is still headroom in better understanding what drives stock returns. This paper 

aims to investigate one of the oldest, most disputed anomalies – the beta anomaly. 

2.2 An Overview of Low-Risk Anomalies 

Although the focus of this paper is on the beta anomaly, we deem it important to clarify the position 

of the beta anomaly within the vast universe of stock market anomalies. The beta anomaly falls under 

the broader category of low-risk anomalies – a body of anomalies directly related to the risk-return 

relation in stock returns. The low-risk anomaly (or equivalently, the low-risk effect) comprises the 

empirical finding that an investor’s increased exposure to volatility does not command a greater risk-

adjusted return as predicted by conventional asset pricing models.  

However, the volatility of a stock can be defined as the sum of the stock’s systematic risk and 

idiosyncratic risk. As such, the research streams on the topic of low risk anomalies has developed into 

three separate, yet interrelated anomalies: the total volatility anomaly, the idiosyncratic volatility 

anomaly, and the beta anomaly. In the following, we briefly introduce the total volatility anomaly and 

the idiosyncratic volatility anomaly, but the primary focus of the next section lies on the beta anomaly 

and its explanations. 

 
5 The HML factor is based on the finding of Fama and French (1992) - that value stocks (stocks with a high book-to-
market ratio) outperform growth stocks (stocks with a low book-market ratio). 
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The Total Volatility Anomaly  

The total volatility anomaly refers to the positive (negative) abnormal returns of stocks with low (high) 

total volatility. The initiation of the research stream on the topic was highly motivated by the empirical 

findings of Clarke, de Silva & Thorley (2006) which revealed that the returns of minimum variance 

portfolios constructed on US data in the period of 1968-2005 generated comparable returns as the 

market portfolio, but with a standard deviation 25% lower than that of the market. With this backdrop, 

Blitz and van Vliet (2007) examined the performance of decile portfolios sorted by three-month 

historical return volatility on a global data sample, spanning from 1986 to 2006. They document a 

positive, economically large and statistically significant alpha spread between the two extreme volatility-

sorted decile portfolios (low-risk portfolio minus high risk-portfolio) relative to the CAPM and the 

FF3 model in the US, Europe, and Japan. The findings are supported by several more recent studies; 

Baker and Haugen (2012) document statistically significant differences in returns and Sharpe ratios 

between quintile portfolios sorted by total volatility across 33 different markets from 1990 to 2011, 

and Blitz, Pang and van Vliet (2013) document the total volatility anomaly in a sample comprised of 

observations from 30 emerging equity markets.  

The Idiosyncratic Volatility (IVOL) Anomaly 

The IVOL anomaly refers to the high (low) risk-adjusted returns of stocks with low (high) idiosyncratic 

volatility. This empirical finding is considered anomalous as it contradicts the fundamental assumption 

of the CAPM that all market participants hold the optimal, well-diversified portfolio and should thus 

not be compensated (or penalized) for exposure to idiosyncratic risk. 

The finding was formalized by Ang, Hodrick, Xing, and Zhang (2006) in the highly influential6 paper 

The Cross-Section of Volatility and Expected Returns. The main sample in the paper comprises all US stocks 

listed on NYSE, NASDAQ, and AMEX from 1963 to 2000. To demonstrate the anomaly, the stocks 

are sorted into quintile portfolios by IVOL each month, and the difference in one-month-ahead 

abnormal returns between the high-IVOL portfolio and the low-IVOL portfolio is calculated. 

Evidently, the long-short portfolio with a long position in the high-IVOL portfolio and a short position 

in the low-IVOL portfolio generates a statistically significant negative monthly alpha of 1.19% relative 

to the FF3 model. The results alone constitute a powerful manifestation of the IVOL anomaly, and 

the paper marked the beginning of an entire stream of research within IVOL anomalies.  

 
6 The paper ranks 20th on the list of the most cited articles published in The Journal of Finance of all time. 
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The Beta Anomaly 

The beta anomaly refers to the high (low) abnormal returns of stocks with low (high) beta. Not only 

is the beta anomaly the oldest stock market anomaly, it is also widely considered as one of the greatest 

anomalies in finance as it challenges the very core of the CAPM. The anomaly was discovered during 

the first empirical tests of the CAPM in the 1970’s when Black, Jensen, and Scholes (1972), Fama and 

MacBeth (1973) and Haugen and Heinz (1975) found that the relation between beta and returns in the 

stock market was flatter than the CAPM’s predictions.7 Nevertheless, the CAPM’s notion that higher 

systematic risk commands a greater return stayed conventional knowledge until the nineties when 

Fama and French (1992) discovered that beta was largely unpriced in the market when controlling for 

size. Following this finding is an extensive body of literature documenting the beta anomaly across 

geographies, time periods and asset classes (Rouwenhosrst, 1999; Blitz & van Vliet, 2007; Baker, 

Bradley & Wurgler, 2011; Blitz, Pang & van Vliet, 2012; Baker, Bradley & Talifeiro, 2014; Frazzini & 

Pedersen, 2014; Bali, Brown, Murray & Tang, 2017).  

To the best of our knowledge, there are only three studies commenting on the existence of the beta 

anomaly in Norway, of which two are master theses. Frazzini and Pedersen (2014) document the 

abnormal returns of their betting-against-beta (BAB) strategy across 20 countries in the period of 1984 

to 2009 and find no evidence of a statistically significant beta anomaly in Norway. Juneja and Bordvik 

(2017) investigate the beta anomaly in the Norwegian market in the period 1986-2014 and argue that 

there is no beta anomaly in Norway relative to the unconditional CAPM. Christensen (2019), in a 

master thesis investigating the suitability of mispricing models on the Oslo Stock Exchange, finds a 

statistically significant beta anomaly relative to various pricing models in the period 1998-2018. 

However, he does not make further comments on the finding, as this was not the purpose of the paper. 

2.3 Explanations of the Beta Anomaly  

In this thesis, we test the lottery-demand based explanation of the beta anomaly in the Norwegian 

stock market. However, ever since the discovery of the anomaly in the mid-1970s, the anomaly has 

been attributed to numerous other explanations than that of investors’ demand for lottery-like stocks. 

 
7 More specifically, when examining the empirical fit of the security market line, Black, Jensen, and Scholes (1972) found 
that the return of zero-beta stocks were higher than the risk-free rate (i.e., the intercept of the CAPM-implied SML was 
too low), and that a higher beta commanded a lower increase in return than predicted by the CAPM (i.e., the CAPM-
implied SML was too steep).  
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This section first introduces the reader to what we believe are the most recognized suggested 

explanations for the anomaly, followed by a review of the key findings in the paper we replicate.  

Leverage Constraints 

Black (1972, 1993), who co-wrote the paper first documenting the anomaly, was also the first to 

hypothesize that the beta anomaly may be due to leverage constraints among market participants. Most 

notably, he theoretically showed that in the presence of leverage constraints, the linear relation between 

systematic risk and return would be flatter than predicted by the unconditional CAPM.  

According to the CAPM, all market participants hold the efficient portfolio and lever (or de-lever) this 

portfolio in accordance with their risk preferences. In the presence of leverage constraints, however, 

an investor requiring expected returns in excess of the efficient portfolio returns has no other option 

but to deviate from the efficient portfolio weights and disproportionately allocate capital to high-beta 

stocks. Frazzini and Pedersen (2014) argue that several types of large institutional investors are subject 

to inflexible investment mandates, and consequently constrained in the amount of leverage they can 

use. This results in a disproportionately high demand price-pressure being exerted on high-beta stocks, 

which subsequently decrease (increase) the future return of high-beta (low-beta) stocks. Frazzini and 

Pedersen (2014) attribute the observed inverted beta-return relation in the stock market to the 

abovementioned effect.  

Constraints on Short Selling 

Given the long-standing empirical evidence of the beta anomaly, one would expect capable investors 

to exploit the mispricing and drive the risk-return relation closer to an equilibrium. After all, why would 

unconstrained arbitrageurs let such an opportunity pass? 

Baker, Bradley, and Wurgler (2011) show that the stocks comprising the most volatile portfolios tend 

to be small and illiquid. Such stocks are expensive to trade, and particularly expensive to short-sell, due 

to substantial borrowing costs and a lack of stocks available for borrowing. Furthermore, Novy-Marx 

and Velikov (2018) show that Frazzini and Pedersen’s (2014) BAB strategy – which is designed to 

capitalize on the beta anomaly – allocates close to 40 cents of every dollar invested in the short 

portfolio to stocks in the smallest decile in terms of market capitalization.8 Even though the strategy 

produces impressive profits on paper, exploiting the anomaly is far from trivial in the real world. 

 
8 Listed stocks on AMEX, NASDAQ, and NYSE grouped into deciles by NYSE decile size breaks. 
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Considerable trading costs might deter investors from Betting Against Beta, and the distorted risk-return 

relation may prevail in the markets. 

Benchmarking 

Although constraints on short selling is an intuitive explanation for the dismal return of high-beta 

portfolios, the explanation falls short in explaining why market participants refrain from overweighting 

low-beta stocks given their superior performance. In this regard, Baker et al. (2011) note that large 

institutional investors are predominantly evaluated based on relative performance measures9, as 

opposed to absolute returns. One example of such a relative performance measure is the information 

ratio (IR), which is defined as 

𝐼𝑅 =
𝑃𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 𝑟𝑒𝑡𝑢𝑟𝑛 − 𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘 𝑟𝑒𝑡𝑢𝑟𝑛

𝑇𝑟𝑎𝑐𝑘𝑖𝑛𝑔 𝑒𝑟𝑟𝑜𝑟
 

where benchmark return refers to the return of the benchmark the fund manager is evaluated against, 

and tracking error is the standard deviation of the return difference between the portfolio and the 

benchmark. In short, if an investor seeking to maximize IR is unable to enter levered positions, which 

is the case for many mutual funds and pension funds, allocating capital to low-beta stocks often lead 

to a greater increase in tracking error than benchmark outperformance. This discourages fund 

managers to disproportionately allocate capital to low-beta stocks as this would lead to a lower IR even 

though portfolio alpha would increase.  

Coskewness as a Priced Factor 

The CAPM assumes that investors only care about the mean and variance of the return distribution, 

which implies that investors deem higher-order distribution moments irrelevant in explaining equity 

returns. However, Schneider, Wagner, and Zechner (2017) offer a conflicting view. They assume that 

investors require compensation for exposure to negative coskewness and demonstrate that CAPM 

alphas of beta-sorted portfolios are directly related to residual coskewness risk. Consequently, in their 

view, factor model alphas of volatility sorted portfolios – the beta anomaly – is merely a reflection of 

compensation for coskewness risk. As expected residual coskewness is impossible to observe ex-ante 

for market participants, the authors use option-implied ex-ante skewness to proxy for expected 

coskewness. The proxy is rather successful, and they demonstrate empirically that factor models 

 
9 According to Sensoy (2009), 61.3% of US mutual funds are benchmarked to the S&P500 while 94.6% are benchmarked 
to a popular US index. 



14 
 

accounting for ex-ante skewness erode the CAPM alphas of volatility-sorted portfolios and the BAB 

factor. However, the validity of their postulation depends entirely on the assumption that coskewness 

is priced in the market.  

IVOL 

Analogous to the beta anomaly, the IVOL anomaly has withstood numerous empirical tests across 

geographies and time periods. Liu, Stambaugh, and Yuan (2018) suggest that the two anomalies are 

intertwined in the form that the IVOL anomaly is the driver behind the beta anomaly. The empirical 

foundation for their view is that the beta anomaly is non-existent when controlling for IVOL, while 

the IVOL anomaly persists after controlling for beta. Additionally, they analyze this finding further by 

segmenting this effect into over- and underpriced stocks (equivalent to Stambaugh, Yu & Yuan, 2015) 

and find that the relation between IVOL and returns is positive for underpriced stocks, while the 

opposite is documented for overpriced stocks. This leads to the conclusion that the beta anomaly is 

only present in periods of high cross-sectional correlation between beta and IVOL, and in periods 

when the market is overpriced. Furthermore, they attribute the general prevalence of the IVOL 

anomaly to investors being relatively less able (or willing) to short overpriced stocks than they are able 

to enter long positions in underpriced stocks, leading to a negative IVOL-return relation in the stock 

market as a whole.  

Bruno and Haug (2018) offer a more theoretically sophisticated explanation for the IVOL anomaly. 

They prove mathematically that equity IVOL should be negatively correlated with expected equity 

returns, both in the cross-section and in the time series. The technical reason is that equity returns and 

equity IVOL have opposite responses to increases in asset IVOL. The proof is rooted in the law of 

one price and the portfolio view of equity. According to the law of one price, excess equity returns 

should be proportional to excess asset returns, with the constant of proportionality being the elasticity 

of equity with regards to assets. The elasticity is a function of several factors, of which the most notable 

are leverage and asset IVOL. As elasticity decreases in asset IVOL, the relation between excess equity 

returns and asset IVOL is negative. On the other hand, equity IVOL is proved to be positively 

correlated with asset IVOL. Consequently, variation in asset IVOL across stocks induces a negative 

relation between equity IVOL and equity returns in the cross-section.  

It is important to note that Bruno and Haug (2018) do not suggest that their finding on the IVOL-

return relation is an explanation for the beta anomaly. However, in line with the postulation of Liu et 

al. (2018), if IVOL is highly correlated with beta in the cross-section, factor model alphas generated by 
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beta-sorted portfolios could exist due to the IVOL-return relation described by Bruno and Haug 

(2018).  

Lottery Demand 

An intuitive and appealing explanation of the beta anomaly is that of investors’ demand for lottery-like 

stocks. Lottery behavior is a classic example of human contradiction of rationality - the expected value 

of buying a lottery ticket is never positive. Yet however, the international gambling industry generates 

a gross gaming yield10 in excess of USD 450bn annually (Statista, 2018).  

In 2002, Daniel Kahneman received the Nobel Prize for his research on behavioral economics, and in 

particular, for his work on the Cumulative Prospect Theory (CPT) (Kahneman & Tversky, 1992). Simply 

put, the CPT is a synthesis of several observed human biases transformed into a decision-making 

model under risk. Consequently, it can be considered as an alternative to, and a disproof of, the use of 

expected value as the rule in human decision making. To avoid diving into the CPT in its entirety, we 

only consider the observed human bias that people tend to overweight small probabilities and thus 

have a predisposed inclination to engage in activities with a small probability of a large payoff, 

regardless of if the expected value is negative. Examples of such behavior are the purchase of excess 

insurance or lottery tickets.  

Several researchers have proposed that this inclination affects investor behavior in the stock markets 

to the extent that it influences asset prices. Barbaris and Huang (2007) argue that this inclination is 

inconsistent with the notion that investors are strict mean-variance optimizers. They argue that under 

CPT, investors also consider positive skewness a desirable trait, and argue that this can cause 

overpricing in positively skewed stocks. Similarly, Mitton and Vorkink (2007) attribute portfolio 

underdiversification – which itself is a contradiction of mean-variance optimization - to preferences 

for skewness among investors.  

Kumar (2009) argues that lottery-stocks must have a payoff structure resembling that of real lotteries. 

He infers that lotteries are cheap to enter, exhibit high variance in the distribution of the payoffs, and 

involve a small probability of a large payoff. As such, Kumar (2009) defines lottery-stocks as stocks 

with high IVOL (volatile payoff distribution), high skewness (possibility of a large payoff) and a low 

stock price (cheap entry). He underpins his postulation by showing that that people who exhibit 

 
10 Gross gaming yield is defined as the amount retained by operators after the payment of winnings but before the deduction 
of the costs of the operation (Statista, 2019). 
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gambling behavior outside of the stock market invest disproportionately in lottery-stocks compared to 

other individual investors and institutional investors. Kumar’s (2009) definition of lottery-stocks has 

generally been accepted by academics further exploring the lottery effect, such as Bali, Cakci, and 

Whitelaw (2011) and Han and Kumar (2013).  

2.4 Dissecting the Paper – The Key Findings of Bali et al. (2017) 

Although there are several efforts to link lottery-behavior to asset prices, there is, to our knowledge, 

only one paper directly relating it to the beta anomaly. The paper, which we base a significant part of 

our thesis on, A Lottery Demand-Based Explanation of the Beta Anomaly, by Bali et al. (2017), postulates 

that lottery demand plays an important role in generating the anomalous beta-return relation observed 

in the markets since the 1970s. The study is conducted using data on all publicly listed stocks in the 

US from August 1963 through December 2012.11 The central logical reasoning underpinning their 

paper can best be expressed in the words of the authors: 

“[…] lottery investors generate demand for stocks with high probabilities of large short-term up moves in the stock price. 

Such up moves are partially generated by a stock’s sensitivity to the overall market – market beta. A disproportionately 

high (low) amount of lottery demand-based price pressure is therefore exerted on high-beta (low-beta) stocks, pushing the 

prices of such stocks up (down) and therefore decreasing (increasing) future returns.” (p. 1) 

To test this notion, they formulate and test three different hypotheses. Below follows a summary of 

their key findings under each hypothesis and an explanation as to why the hypothesis is relevant for 

testing their main problem statement.  

1. The beta anomaly is prevalent in the US stock market. In order to recommend lottery demand 

as the preferred explanation for the beta anomaly, it is imperative to first prove the existence of the 

anomaly. By constructing beta-sorted decile portfolios and generating a zero-cost portfolio with a long 

position in the high-beta decile portfolio and a short position in the low-beta decile portfolio, the 

authors successfully generate an economically large and statistically significant beta anomaly relative to 

conventional asset pricing models. This result is hardly surprising. The anomaly has been documented 

in the US market across numerous studies since the 1970’s.  

2. There is a “lottery demand phenomenon” in the US stock market. The lottery demand 

phenomenon refers to the low (high) abnormal returns of stocks that experience a high (low) amount 

 
11 To evaluate the robustness of their results, Bali et al. (2017) also conduct additional analyses on an extended sample from 
1931 through 2012. 
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of lottery demand-price pressure. The testability of this hypothesis thus relies on two critical 

assumptions: (i) an accurate proxy for lottery demand exists, and (ii) future abnormal returns and 

lottery demand have opposite responses to an increase in the proxy (i.e. lottery demand is negatively 

related to future stock returns).  

The authors follow Bali et al. (2011) and use a variable MAX as a proxy for lottery demand. MAX is 

defined as the average of the five highest daily returns in the previous month. A zero-cost portfolio 

with a long position in a high-MAX decile portfolio and a short position in a low-MAX decile portfolio 

yields economically large and statistically significant negative abnormal returns relative to conventional 

asset pricing models. In other words, MAX is negatively correlated with future stock returns. The 

results are robust to various robustness tests, such as variations in how MAX is measured. The 

statistically significant alpha produced from the long-short MAX portfolio is hereafter referred to as 

the “lottery demand phenomenon.”  

The finding that MAX can neutralize the beta anomaly is not itself a proof of validity for the lottery 

demand-based explanation. The missing piece is that MAX must be an accurate proxy of lottery 

demand. The authors argue that since MAX is positively correlated with IVOL and idiosyncratic 

skewness, and negatively correlated with stock price - the three lottery-traits put forth by Kumar (2009) 

– MAX is an accurate measure of lottery demand. As an additional argument to support their 

conclusion to the hypothesis, the authors also examine the beta anomaly and the lottery demand 

phenomenon while controlling for the degree of institutional ownership. They find that the abnormal 

returns of zero-cost beta-sorted decile portfolios and zero-cost MAX-sorted decile portfolios are 

statistically insignificant in stocks with a high degree of institutional ownership and highly statistically 

significant in stocks with a low degree of institutional ownership. This test is based on the notion that 

behavioral biases (such as lottery behavior) are primarily concentrated among individual investors, as 

suggested by Kumar (2009). 

3. Lottery demand, as measured by MAX, neutralizes the beta anomaly. This hypothesis tests 

the very heart of the paper and can thus be regarded as the most crucial hypothesis. Without digging 

into the details of their methodology, the authors use various tests to demonstrate that MAX 

neutralizes the beta anomaly. More specifically, they show that the anomaly is no longer present when 

beta-sorted portfolios are neutralized to the MAX variable, regression specifications control for MAX, 

or factor models include a MAX-factor. To demonstrate the explanatory power of MAX relative to 

other factors, the authors show that the beta anomaly is robust to controlling for other factors known 
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to be correlated with future stock returns, such as the three Fama and French (1993) factors, IVOL 

and idiosyncratic skewness.  

3 Data 

This section presents our main stock sample, our sources of data, and the adjustments made.  

3.1 Stock Sample  

Our main source of data is Børsprosjektet at NHH. Børsprosjektet contains stock data on all publicly listed 

companies in Norway from January 1980 through December 2018. However, the data sample used in 

this paper begins on January 1st, 1985. The shortening of the dataset is a consequence of unsatisfactory 

data quality in the database prior to 1985; observations on returns and the number of shares 

outstanding were missing for a significant part of the sample.  

We retrieve both daily and monthly stock data. The resulting dataset contains observations for 885 

different stocks over a period of 34 years. Each stock is assigned a unique identifying code, which 

corresponds to the variable SecurityId in the database. We have used the variable Generic for data on 

stock prices and ReturnAdjGeneric for stock returns. Generic is a collective variable equal to the latest 

available daily last price. The variable last price is only available on days the stock has been traded, and 

the Generic variable thus reflects the last available daily closing price. ReturnAdjGeneric computes the 

simple nominal returns adjusted for dividends, stock splits and reverse splits. Furthermore, the 

variables SharesIssued and OffShareTurnover are used to obtain the number of shares outstanding and the 

number of officially traded shares for the period, respectively. It is worth noting that observations with 

no official turnover will have no last price, and ReturnAdjGeneric will therefore equal zero in these 

instances. Twenty-five percent of the daily return observations in the dataset are equal to zero due to 

no official turnover. Summary statistics for the mentioned variables in the pre-filtered dataset are 

presented in Table 1. 

  



19 
 

Table 1: Summary Statistics of Unfiltered Data 

  The table presents summary statistics for the variables in our unfiltered dataset. The data sample was retrieved from 

NHH’s Børsprosjektet and covers the period from Jan. 1985 through Dec. 2018. Panel A presents summary statistics for 

the daily data while Panel B presents summary statistics for the monthly data. Generic is a collective variable equal to the 

last available daily closing price. ReturnAdjGeneric computes the nominal simple returns adjusted for dividends, stock 

splits and reverse splits. MCAP equals the securities’ market capitalization computed as the product of SharesIssued and 

Generic. ShareIssued represents the number of outstanding shares, while OffShareTurnover equals the number of officially 

traded shares for the given day (month) in the daily (monthly) dataset.  

      
Panel A: Daily Data 

Variable N Mean SD Min Max 

Generic 1 669 695 108.87 365.14 0.02 24 000.00 

ReturnAdjGeneric 1 669 695 0.00 0.04 -0.97 14.00 

SharesIssued 1 669 694 101 402 586 364 085 777 0.00 20 640 180 097 

MCAP 1 669 694 4 699 603 509 22 583 178 786 0.00 682 689 344 752 

OffShareTurnover 1 246 260 634 391 4 832 068 1 1 576 555 064 

      
Panel B: Monthly Data 

Variable N Mean SD Min Max 

Generic 82 221 110.29 385.44 0.02 23 000.00 

ReturnAdjGeneric 81 515 0.01 0.17 -0.97 8.24 

SharesIssued 82 428 99 501 088 358 422 356 0.00 20 272 457 825 

MCAP 82 221 4 616 019 303 22 346 483 092 0.00 631 352 126 394 

OffShareTurnover 79 082 9 683 428 57 133 033 -1 946 722 005I 1 989 745 188 

I There are four monthly stock observations in the monthly dataset with a negative value of OffShareTurnover. We do not, 

however, rely on the monthly values of OffShareTurnover for any calculations, as all turnover calculations in this paper are 
based on the daily observations of OffShareTurnover which we find to be correct. As the corresponding monthly observations 
of Generic, ReturnAdjGeneric and SharesIssued are also correct for the stocks with the negative monthly values of 
OffShareTurnover, we do not remove the observations.  

3.1.1 Data Filters 

In line with Bali et al. (2017), we limit our analysis to only include common shares. In Børsprosjektet, 

this corresponds to A shares, B shares, and ordinary shares. We do, however, deviate by also including 

Primary Capital Certificates in our study. Although not technically a common stock, Primary Capital 

Certificates are listed on the exchange and trade correspondingly. In our view, to omit Primary Capital 

Certificates would lead to an inaccurate representation of the Norwegian investment universe as 

Norwegian savings banks make up a significant share of the investment opportunities within the 

Norwegian financial sector. Lastly, we limit our analysis to stocks listed on the Oslo Stock Exchange 

(OSE hereafter) and exclude stocks listed on Oslo Axess. 

According to professor Bernt Arne Ødegaard (2019, Ødegaard hereafter), not all stocks should 

necessarily be included when conducting empirical asset pricing analyses on the OSE. Low valued 
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stocks (penny stocks) and illiquid stocks can be particularly problematic. It is common in the asset 

pricing literature to remove penny stocks as they may have microstructure-issues related to illiquidity 

and highly exaggerated returns. With regards to a Norwegian stock sample, Ødegaard recommends 

removing all observations for a given stock in years where its share price has been observed at a level 

below NOK 10 or its market capitalization has been observed at a level below NOK 1mn. In our 

sample, 389 out of the 885 stocks have at some point in time traded below NOK 10, and removing 

them would have a significant impact on our sample size. In general, we believe it is important to be 

cautious when filtering based on share price and market capitalization as these variables are directly 

linked to stock returns. In addition, we find that filtering on a yearly interval may be too strict for our 

sample as it would induce undesirable biases to our analyses. One example of such a bias is that the 

poor performance of several oil service companies following the oil price crash in 2014 would be 

omitted from the analyses while their strong performance in the years leading up to the crisis would 

be included (e.g. DOF Subsea or Odfjell Drilling).  

To better preserve our sample size and avoid unwanted biases, we lower Ødegaard’s stock price 

restriction to NOK 1 and only remove stocks in months where its share price has been observed below 

NOK 1 or its market capitalization has been observed below NOK 1mn.12 By removing months of 

observations rather than years, we aim to reduce the potential bias stemming from poorly performing 

stocks falling out of our sample. Filtering on a monthly interval is also in line with Bali et al. (2017).  

To reduce the impact of illiquid stocks, Ødegaard removes stocks with less than 20 trading days in a 

given year. We generally follow his example, but we also impose an additional restriction targeting the 

trading volume: each year, we remove the 2.5 percent of the stocks in the sample with the lowest 

average daily turnover13 in NOK. The trading-volume restriction is primarily imposed to reduce the 

impact of potential microstructure-issues in our sample due to our more lenient stock price 

restriction.14 The liquidity filters are enforced on a yearly interval in line with Ødegaard as liquidity is 

not directly linked to stock performance and should thus not bias our results. We have illustrated the 

 
12 We do not find it constructive to use relative filters based on market capitalization and share price, although it is common 
in the literature. Relative measures would result in the removal of stocks with high market capitalization and high share 
prices form our sample in the 1980s and 1990s.  
13 Defined as the average trading volume in days the stock has been traded over the course of a year. 
14 Increasing the liquidity of our sample should also make the results of our analysis more representative for what an 
investor could expect to achieve in the market by replicating our methodology. 
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impact of our filters on the number of stocks in our sample in Table 2, and summary statistics for our 

filtered sample are presented in Table A.1 in the appendix. 

3.2 Factors and Risk-free rate 

We retrieve historical daily data and monthly data on the Fama and French factors, the Carhart (1997) 

momentum factor, the liquidity factor, and estimates of the historical risk-free rate from professor 

Bernt Arne Ødegaard’s website15 for the period of 1985 to 2018. The Fama and French factors are 

calculated according to Fama and French (1998) and the momentum factor is calculated according to 

Carhart (1997) on Norwegian data. The liquidity factor for the OSE is constructed following the 

methodology of Næs, Skjeltorp, and Ødegaard (2009), equal to the monthly difference in returns 

between the return of the least liquid portfolio and the most liquid portfolio out of three portfolios 

sorted on relative bid-ask spread in the previous month. The estimates of the risk-free rate are the 

forward-looking interest rates of borrowing at the given date of the stated period. Data on Frazzini 

and Pedersen’s (2014) betting-against-beta (BAB) factor on Norwegian data is retrieved from AQRs 

website16 for the period of 1985 to 2018.  

3.3 Index Data  

We download daily and monthly historical market returns for the OBX and the Oslo Børs All-share 

index (OSEAX) from Ødegaard’s website. The OBX is adjusted for dividends and consists of the 25 

most liquid stocks on the OSE ranked by 6-month trailing turnover. The OSEAX is also adjusted for 

dividends and consists of all stocks listed on the OSE. The OSEAX has return observations for our 

entire sample period (Jan. 1985 – Dec. 2018), while the OBX returns start from January 1987. We use 

the MSCI World index returns as our proxy for the global market portfolio and download monthly 

MSCI index returns for the period 1987-2018 from Compustat. The index has 1,651 constituents 

representing 23 developed markets and covers approximately 85% of the free float-adjusted market 

capitalization in each country (MSCI, 2019). The MSCI returns are converted to NOK using daily 

NOK/USD exchange rates collected from Norges Bank.    

 
15 Link to website: http://finance.bi.no/~bernt/financial_data/ose_asset_pricing_data/index.html 
16 Link to website: https://www.aqr.com/Insights/Datasets/Betting-Against-Beta-Equity-Factors-Monthly 

http://finance.bi.no/~bernt/financial_data/ose_asset_pricing_data/index.html
https://www.aqr.com/Insights/Datasets/Betting-Against-Beta-Equity-Factors-Monthly
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Table 2: Evolution in the Number of Stocks in the Data Sample per Year after Imposing Filters 
The table presents the number of unique stocks in our data sample for each year after imposing filters.  

Explanation of columns: “Total Stocks” refers to the total number of stocks in the data sample for a given year before 

filters. The requirement for a stock to be included in a given year is one valid return observation. “Security Type” is the 

number of stocks left in the sample after free-float shares are removed. “Market” is the number of stocks left in the 

sample after stocks listed on Oslo Axess are removed. “MCAP” represents the number of stocks left in the sample after 

stocks are removed for the months their market capitalization is observed below NOK 1mn. “Share Price” represents the 

number of stocks left in the sample after stocks are removed for the months their stock price is observed below NOK 1. 

“Trading Days” represents the number of stocks left in the sample after all stocks that have been traded less than 20 days 

for a given year is removed. “Turnover” represents the filtered stocks in the 2.5 percentile in terms of average daily 

turnover over the course of a year. 
        

Year Total Stocks Security Type 
Market 
(OSE) 

MCAP 
>NOK 1M  

Share Price 
> NOK 1 

Trading 
Days > 20  

Turnover 
> 2.5 percentile 

1985 164 164 164 142 142 138 136 

1986 173 173 173 153 153 145 142 

1987 168 168 168 152 152 141 137 

1988 153 152 152 139 139 121 118 

1989 165 155 155 148 148 136 134 

1990 179 167 167 159 159 146 145 

1991 166 153 153 148 148 136 136 

1992 164 153 153 148 148 120 120 

1993 175 165 165 162 161 135 135 

1994 185 175 175 173 173 153 152 

1995 185 185 185 185 183 165 163 

1996 203 203 203 203 203 189 187 

1997 248 248 248 246 244 226 222 

1998 268 268 268 265 262 243 243 

1999 261 261 261 261 258 239 239 

2000 257 257 257 257 253 236 235 

2001 243 243 243 243 238 219 217 

2002 224 224 224 224 214 200 200 

2003 216 216 216 215 197 180 180 

2004 207 207 207 205 197 191 186 

2005 238 238 238 238 237 225 221 

2006 257 257 257 257 257 248 243 

2007 290 290 264 264 264 261 256 

2008 283 283 248 246 246 241 238 

2009 265 265 228 227 221 214 211 

2010 257 257 220 216 211 209 207 

2011 251 251 211 207 204 201 198 

2012 240 240 205 200 196 196 195 

2013 240 240 202 200 197 194 191 

2014 235 235 197 195 194 191 190 

2015 229 229 194 194 191 191 189 

2016 220 220 192 192 188 187 183 

2017 227 227 202 202 200 198 194 

2018 220 220 202 202 200 199 194 
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4 Variables 

This section presents the variables in our dataset and the methodology used to estimate them.  

4.1 Market Returns 

We construct our own market indexes using our filtered data sample to ensure that the investment 

opportunities in our constructed portfolios and the market index are consistent. We construct both a 

value-weighted (VW hereafter) and an equal-weighted (EW hereafter) market index. The EW index 

returns for month t +1 are computed as the sum of the monthly returns for the individual stocks in 

month t + 1, divided by the total number of stocks in month t + 1. The VW index returns for month 

t +1 are computed based on  

𝑟𝑀,𝑡+1 =  ∑
𝑟𝑖,𝑡+1 ∗ 𝑀𝐶𝑖,𝑡

𝑀𝐶𝑀,𝑡

𝑛

𝑖=1

 

where 𝑟𝑀,𝑡+1 is the VW market return in month t +1, 𝑟𝑖,𝑡+1 is the return of stock i in month t + 1,  

𝑀𝐶𝑖,𝑡 is the market capitalization of stock i in month t and 𝑀𝐶𝑀,𝑡 equals the sum of the individual 

stocks’ market capitalization in month t. 

We have plotted our index returns “Market Equal Weight” and “Market Value Weight” in Figure 2 

against the returns of the OBX and the OSEAX from 1990 to 2018. Our VW market index tracks the 

OSEAX well, and we attribute the minor observable deviation to the filters we have applied to our 

dataset and our use of a monthly rebalancing frequency. The OSEAX is rebalanced on a semi-annual 

basis.  
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Figure 2: Cumulative Index Returns 
The figure presents the cumulative performance (in NOK) of a NOK 1 investment in the different market indices from 
Jan. 1990 through Dec. 2018. The EW and VW market index are based on our filtered data sample. Allshare, OBX and 
the risk-free rate are retrieved from Ødegaard’s website.  

         
         

         

         

         

         

         

         

         

         

         

         
         

         

         

         

         

4.2 Beta Estimation 

In this thesis, we evaluate the performance of quintile portfolios sorted on ex-ante estimates of market 

beta and the amount of lottery demand for a stock, and we thus estimate each stock’s beta rather than 

estimating betas on a portfolio level. We use three different approaches to estimate a stock’s market 

beta. Our main model estimates the market beta (β5Y) at the end of month t to be the slope coefficient 

from a regression of excess stock returns on excess VW market returns using monthly returns from 

the 60-month period prior to and including month t. We require a stock to have a minimum of 36 

valid monthly returns for beta computations and define valid returns as monthly returns with official 

share turnover greater than 0. Furthermore, only valid returns are included in the regression. By 

conducting a simulated computer, quasi-experiment, Serra and Montelac (2013) find that including 

return periods without share turnover in beta estimation results in beta estimates that are statistically 

different from the underlying betas. They conclude that the best alternative for stocks with low liquidity 

is to use the trade-to-trade method and only include valid stock returns and the corresponding market 

returns in the beta regression.  

Bali et al. (2017) use betas calculated on a one-year period of daily returns in their focal analyses. This 

is consistent with Daves, Erhardt, and Kunkel (2000), who argue that daily return frequency produces 

lower standard errors. Furthermore, Daves et al. (2000) prefer a return history shorter than three years 
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to reduce the chance of significant changes to companies’ beta. On the other hand, Dimson (1979) 

argues that the beta of companies that are not traded every day is biased downwards and, according to 

Scholes and Williams (1997), the problems with non-synchronism between stock returns and market 

returns are increasingly serious when daily data is used. Since lower frequencies can result in biased 

beta estimates for illiquid stocks, Damodaran (1994) and Koller, Goedhart, and Wessels (2002) prefer 

the use of monthly data. As discussed in the data section (section 3.1.1), the OSE is relatively illiquid, 

and our filtered daily sample contains 324 364 daily zero-return observations with no official turnover, 

which amounts to 22% of our total observations. As we study the performance of portfolios sorted 

on beta with a small sample of Norwegian stocks, biased estimates of beta can be especially impactful. 

We therefore select monthly frequency as our preferred beta-estimation method in our focal analyses 

throughout the thesis.  

To evaluate the robustness of our results and further explore the relation between beta and one-month-

ahead excess returns, we also estimate a stock’s market beta (β1Y) using one year of daily returns, and 

by regressing the monthly stock returns on the MSCI World index (βMSCI). We estimate β1Y for month 

t following the methodology of Bali et al. (2017) using daily excess returns from the 12-month period 

up to and including month t. We require a minimum of 200 valid daily return observations in the 

calculation period, and in line with our estimation of β5Y, only valid returns are included in the 

regression. βMSCI is calculated following the same methodology as β5Y, with the exception that we 

regress the monthly excess stock returns on the MSCI World index returns in NOK in excess of the 

risk-free rate in Norway.  

4.3 Lottery Demand  

We measure the amount of lottery demand for a stock following Bali et al. (2011) and Bali et al. (2017) 

using the variable MAX. MAX is calculated, for each month t, as the average of the five highest daily 

returns of the stock in month t. In line with Bali et al. (2017), we require a minimum of 15 valid daily 

return observations in the given month to estimate MAX.   
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4.4 Other Variables  

In addition to estimating beta and the amount of lottery demand for each stock, we also estimate each 

stock’s idiosyncratic volatility (IVOL) and idiosyncratic skewness (ISKEW). We calculate the IVOL 

of a stock in month t following the methodology of Bali et al. (2017) as the standard deviation of the 

residuals from a regression of valid excess stock returns on the Fama and French 3-factor model.17 We 

use one month of daily return data and require a minimum of 15 valid daily returns within the given 

month. The Fama and French (1993) three-factor regression specification is   

𝑟𝑖,𝑑 = 𝑎 + 𝑏1𝑀𝐾𝑇𝑑 + 𝑏2𝑆𝑀𝐵𝑑 + 𝑏3𝐻𝑀𝐿𝑑 + 𝑒𝑖,𝑑 

where MKTd represents the VW excess market returns on day d, and SMBd and HMLd represent the 

return of the size factor and book-to-market factor as calculated by Ødegaard, respectively, on day d. 

ISKEW is calculated in a similar manner following Boyer, Mitton, and Vorkink (2010) as the 

skewness18 of the residuals from a regression of valid excess stock returns on the Fama and French 3-

factor model. We use one month of daily return data and require a minimum of 15 valid daily returns. 

Summary statistics of the variables are presented in Table 3 below.  

Table 3: Summary Statistics of Calculated Variables 

  

  

  

The table presents summary statistics for the estimated variables in our dataset. See section 4.2 for calculations on β5Y, 
β1Y and βMSCI. See section 4.3 for calculations on MAX. See section 4.4 for calculations on IVOL and ISKEW.  

      
Variable N Mean SD Min Max 

β5Y 44354 0.895 0.581 -2.277 6.322 

β1Y 35731 0.866 0.504 -2.177 4.902 

βMSCI 44344 0.775 0.732 -4.947 5.497 

MAX 43528 0.037 0.028 -0.003 1.147 

IVOL 43528 0.025 0.019 0.000 0.812 

ISKEW 43528 0.218 0.726 -3.736 4.310 

 

  

 
17 We use HML and SMB factors estimated on Norwegian data. 
18 Skewness is calculated using the skewness function in R where skewness is defined by 𝛾1 =  

𝑢3

𝑢2

3
2

 , where 𝑢3 and  𝑢2 are the 

third and second moments.  
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5 Methodology 

The methodology section is divided into three subsections. The first subsection (5.1) presents the 

methodology used to examine the beta anomaly and the lottery demand phenomenon in the 

Norwegian stock market. The second subsection (5.2) presents the methodology used to assess the 

ability of lottery demand to explain the beta anomaly in Norway. The third subsection (5.3) outlines 

how we present and evaluate the generated results.  

5.1 The Beta Anomaly and the Lottery Demand Phenomenon 

5.1.1 Univariate Portfolio Analysis  

To assess the beta anomaly and the lottery demand phenomenon on the OSE, we perform univariate 

portfolio analyses as is common in the literature. Bali et al. (2017) conduct univariate portfolio analyses 

by dividing their sample into decile portfolios. However, constructing decile portfolios based on our 

Norwegian sample would result in an insufficient number of stocks per portfolio as the sample is too 

narrow in the cross-section. According to Ødegaard, a minimum of ten Norwegian stocks are needed 

for a diversified portfolio, and by using quintile breakpoints, our portfolios meet this requirement in 

most years. Using quartile breakpoints would be preferable from the perspective of diversification; 

however, it would also reduce the difference in average beta and MAX values across our constructed 

portfolios and thus make the relation between our sorting variables and returns increasingly difficult 

to test. We believe that the use of quintile breakpoints best balances the two considerations.  

We follow the same portfolio formation methodology for all measures of beta and MAX throughout 

the thesis. Starting in December 1989, we sort all stocks into quintile portfolios at the end of month t 

based on an ascending order of the sorting variable. We then calculate the corresponding excess 

portfolio returns in month t+1. December 1989 (at market close) is the natural starting point for our 

analysis as we use a 60-month return window to calculate β5Y.19 Furthermore, we use the same starting 

point for all portfolio formations and return calculations, regardless of the sorting variable. This is to 

ensure consistency in the analysis between portfolios sorted by beta and portfolios sorted by MAX. 

The portfolios are rebalanced monthly, and the procedure is repeated through December 2018, 

resulting in a total of 348 monthly observations of portfolio excess returns.  

 
19 Data from 1985 to 1990 (60 monthly return observations) is used to estimate β5Y and the first portfolio sort is 
therefore conducted at market close December 1989. This implies that our analysis covers portfolio returns from January 
1990 through December 2018.  
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We calculate both VW and EW portfolio excess returns to increase the robustness of our results. On 

the one hand, VW returns are preferable to EW returns as capital will be allocated according to the 

individual stocks’ market capitalization. We do not control for transaction costs in our return 

calculations, and large allocations relative to a stock’s market capitalization can yield impracticable 

“paper profits” as the illiquidity of the stock relative to the size of the allocation could result in 

considerable transaction costs. Furthermore, EW portfolios tend to have a higher turnover than VW 

portfolios as they require continuous rebalancing to maintain equal weights. EW portfolio returns may 

thus exhibit a minor value bias as the portfolio (by construction) tends to sell winning stocks and buy 

losing stocks. On the other hand, we find that the EW portfolios arguably provide a better 

representation of how the average stock in the portfolio performed. As the OSE is dominated by a 

few large stocks, VW portfolio returns could be heavily tilted towards the performance of only a 

handful of stocks. This could make portfolio returns undiversified and potentially result in a distorted 

relation between our sorting variables and VW returns. However, as introduced in the data section 

(section 3), the OSE is also greatly influenced by illiquid stocks, which may make EW returns artificially 

high. Hence, we deem it necessary to consider both VW and EW returns in our analyses.  

5.2 The Lottery Demand Phenomenon as an Explanation of the Beta Anomaly 

To investigate the role lottery demand plays in generating the beta anomaly on the OSE, we follow the 

methodology of Bali et al. (2017)20 and explore the relation between market beta and one-month-ahead 

excess returns after controlling for MAX. To ensure that our results are sufficiently robust, we control 

for MAX using three different methods. First, we conduct a bivariate portfolio analysis, which entails 

a conditional double sort on MAX, then on β5Y. We subsequently conduct a univariate portfolio 

analysis on portfolios sorted on the component of β5Y that is orthogonal to MAX. Lastly, we construct 

a lottery demand factor and assess the factor’s ability to explain the abnormal returns associated with 

the beta anomaly.  

5.2.1 Bivariate Portfolio Analysis 

We conduct the bivariate portfolio analysis following Bali et al. (2017) by performing a conditional 

double sort. At the end of each month t, we sort all stocks into quintile portfolios based on ascending 

values of MAX. For each MAX quintile, we then sort the stocks into quintile portfolios based on an 

 
20 We only deviate by not performing Fama and MacBeth (1973) regressions as we do not have the data to estimate the 
control variables used by Bali et al. (2017) on our Norwegian data sample.  
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ascending ordering of β5Y. We only include monthly stock observations with estimates of both β5Y and 

MAX for the given month. 

Bali et al. (2017) divide their stock sample into decile portfolios and end up with a matrix of 10x10 

portfolios. However, as our Norwegian stock sample is far too narrow in the cross-section to generate 

one hundred well-diversified portfolios, we are forced to deviate from the paper we replicate. 

Henceforward, we use a 5x5 sort in our bivariate portfolio analyses. A 5x5 sort resulting in 25 portfolios 

will arguably result in undiversified portfolios given our sample.21 However, we find that a 5x5 sort is 

preferred as it makes the generated results directly comparable with our univariate portfolio analyses. 

To see why, consider a 4x4 sort whose results indicate that controlling for MAX neutralizes the beta 

anomaly. In isolation, such a result would constitute evidence in favor of the lottery-demand based 

explanation of the beta anomaly. However, since we have not documented the beta anomaly with a 

quartile portfolio sort, such a result could either indicate that MAX neutralizes the anomaly, or that 

the beta anomaly is not detected when performing the univariate analysis with quartile portfolios. This 

ambiguity would make it impossible to draw precise conclusions from our results. The discussion on 

why we use quintile portfolios in the univariate analyses can be found in section 5.1.1.  

To account for our narrow cross-section of stocks and ensure comparable results with the univariate 

portfolio analysis, we focus our analysis on the average MAX quintile portfolio, withing each beta 

quintile. We create the average MAX quintile by first performing the conditional double sort on MAX, 

then on β5Y to generate a 5x5 portfolio matrix. We subsequently sum the stocks across the MAX 

quintiles for each beta quintile to create five beta sorted portfolios that should be neutralized to MAX 

by construction. Solely focusing on the averages will not allow us to explore potential non-linear 

relations between beta and returns when controlling for MAX, but we argue that the individual 

portfolios resulting from the double-sort are not sufficiently diversified to provide valuable 

information regarding potential non-linear relations.22 As such, we find it to be most constructive to 

limit our analysis to the averages.   

  

 
21 Dividing our sample into 25 portfolios would result in portfolios containing as few as 4 stocks during the early 1990s.  
22 We argue that undiversified portfolios cannot be used to assess the relation between beta and returns while controlling 
for MAX as we believe the idiosyncratic risk of the portfolios would distort the observed relation.  
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5.2.2 Univariate Portfolio Analysis of Beta Orthogonal to MAX 

To test the robustness of our results, we also construct beta-sorted portfolios that are neutralized to 

MAX by sorting stocks on the component of β5Y that is orthogonal to MAX (β5Y⊥M). We estimate β5Y⊥M 

for each stock at the end of month t as the sum of the residual and the intercept from a cross-sectional 

regression of β5Y on MAX. Only stocks with both an estimate of β5Y and MAX for the given month 

are included in the regression. At the end of each month t, we sort stocks into quintile portfolios based 

on an ascending order of β5Y⊥M.  

5.2.3 FMAX Factor 

Following Bali et al. (2017), we construct a MAX factor (FMAX) using the methodology of Fama and 

French (1993). At the end of each month t, we sort all stocks into two groups based on market 

capitalization23 and independently sort all stocks into three groups based on an ascending ordering of 

MAX using the 30th and 70th percentile as breakpoints. The intersections create six portfolios, and 

the return of the FMAX factor in month t +1 equals the average return of the two VW low-MAX 

portfolios less the average return of the two VW high-MAX portfolios.24  

5.3 Portfolio Evaluation 

The focus of our analyses lies on the one-month-ahead (month t+1) portfolio excess returns. To test 

the relation between one-month-ahead returns and our sorting characteristics we calculate the average 

excess returns (R), Sharpe Ratios (SR) and alphas for each of our quintile portfolios and the zero-cost 

portfolio (low-high portfolio)25 with a long position in quintile portfolio 1 and a short position in 

quintile portfolio 5. Alphas are estimated relative to four different asset pricing models: The CAPM 

(CAPM), The Fama and French (1993) three-factor model (FF3), the FF3 model including the 

momentum factor by Carhart (1997) (FFC4), and lastly, the FFC4 model augmented with the liquidity 

factor by Næs, Skjeltorp and Ødegaard (2009) (FFC4 + LIQ).26 We use the VW market index as the 

market factor when regressing the VW portfolio returns, and we use the EW market index as the 

market factor when regressing the EW portfolio returns.  

To formally test for the presence of the beta anomaly, the lottery demand phenomenon, and test 

whether the beta anomaly persists after controlling for MAX, we follow the methodology of Bali et al. 

 
23 Using median market capitalization as the breakpoint. 
24 The factor is constructed to have a neutral exposure to market capitalization. 
25 Sharpe ratios and its components are not reported for bivariate sorts or univariate sorts on orthogonal variables. 
26 Only CAPM alphas and FFC4 + LIQ alphas are reported for bivariate sorts and univariate sorts on orthogonal variables. 
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(2017) and test the null hypothesis of portfolio alphas equal to zero using t-statistics adjusted following 

Newey and West (1987) using four lags.27 We are particularly interested in the alpha of the low-high 

portfolio, which should be statistically significant28 and positive in the presence of a beta anomaly or a 

lottery demand phenomenon. Lastly, to assess the FMAX factor’s ability to explain the returns 

associated with the beta anomaly, we augment the FFC4 + LIQ model with the FMAX factor and test 

the null hypothesis of portfolio alpha for the low-high β5Y-sorted portfolio equal to zero. 

6 Analysis 

This section presents the results of our analyses. The structure of this section closely resembles the 

logic put forth in Bali et al. (2017) to make the replication as accurate as possible. Specifically, the 

structure follows the hypotheses as presented in section 2.4 in a way that each section is dedicated to 

one hypothesis. The section begins with an assessment of whether the beta anomaly is present in our 

Norwegian sample. Then we assess whether MAX is a good proxy of the amount of lottery demand 

for a stock before we test the relation between MAX and one-month-ahead returns. Ultimately, we 

test whether controlling for lottery demand, as measured by MAX, neutralizes the beta anomaly. Each 

section first presents the results obtained relative to the hypotheses, followed by a brief review of the 

findings of Bali et al. (2017) and a comparison between our results and those of Bali et al. (2017) from 

the US market.  

6.1 Hypothesis 1 – The Existence of a Beta Anomaly in Norway  

6.1.1 Cumulative Portfolio Returns 

We begin or analysis on the relation between beta and excess stock returns by examining the historical 

performance of quintile portfolios sorted by beta. Figure 3 presents the historical cumulative excess 

return on an investment of NOK 1 in each of the β5Y-sorted quintile portfolios, starting in January 

1990.29 The results are striking. The VW low-beta portfolio (portfolio 1) generated cumulative excess 

returns of 1241% from January 1990 through December 2018, while the VW high-beta portfolio 

(portfolio 5) generated cumulative excess returns of 6.3% over the same time period. The returns of 

 
27 We use the function NeweyWest() from the sandwich package in R for the HAC variance-covariance estimator proposed 
by Newey and West (1987). We do not use a prewhitened estimation function and set the argument prewhite = FALSE and 
use finite sample adjustments by setting adjust = TRUE. Bali et al. (2017) use six lags, but as our sample covers a shorter 
time period, the same number of lags is not necessarily optimal. Following Hanck, Arnold, Gerber and Schmelzer (2019) 
Introduction to Econometrics in R, we estimate the number of lags following: 

𝑙𝑎𝑔𝑠 = (0.75 ∗ 𝑇
1

3) − 1.  
28 Statistical significance refers to a p-value below 5% throughout the rest of the thesis. 
29 The cumulative excess returns of quintile portfolios sorted by β1Y are presented in Figure B.1 in the appendix. 
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the EW portfolios exhibit the same pattern; the cumulative excess returns were 692% and 22.3% for 

the EW low-beta portfolio and the EW high-beta portfolio, respectively.30 In terms of performance 

rankings among the five portfolios, we note that the low-beta portfolio has been the best performer 

across both portfolio weighting schemes, while the opposite is true for the high-beta portfolio. The 

results are thus in stark contrast to the beta-return relation suggested by the CAPM. 

6.1.2 Univariate Portfolio Analyses 

To formally test for the presence of the beta anomaly on the OSE, we conduct a univariate portfolio 

analysis on the quintile portfolios sorted on β5Y. Table 4 presents portfolio characteristics, Sharpe 

ratios, and monthly factor model alphas for VW and EW β5Y-sorted quintile portfolios. First, we note 

that both ex-ante and ex-post portfolio betas increase monotonically from the low-beta portfolio 

(quintile 1) to the high-beta portfolio (quintile 5) for both portfolio formation schemes. The ex-ante 

VW (EW) portfolio betas increase (by construction) from 0.284 (0.226) for quintile 1 to 1.631 (1.707) 

for quintile 5. Ex-post VW (EW) portfolio betas represent the slope coefficient from a regression of 

VW (EW) excess portfolio returns on VW (EW) excess market returns. Monotonically increasing ex-

post betas hence validate our model by illustrating that the low-beta (high-beta) portfolio formed using 

ex-ante betas tends to have a low (high) beta ex-post.   

The average one-month-ahead VW (EW) excess returns decrease from 0.85% (0.69%) for the low-

beta portfolio to 0.38% (0.22%) for the high-beta portfolio, albeit not monotonically. The VW (EW) 

low-beta portfolio achieved an annualized Sharpe ratio of 0.645 (0.544), while the VW (EW) high-beta 

portfolio generated an annualized Sharpe ratio of 0.158 (0.181). The portfolio Sharpe ratios illustrate 

that the low-beta quintile portfolio has been the superior investment in our sample period for an 

undiversified investor focused on maximizing excess returns relative to total volatility. 

  

 
30 The trading costs associated with replicating the beta-sorted quintile portfolios are assessed in section F in the appendix. 
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Figure 3: Cumulative Excess Returns of Quintile Portfolios Sorted on β5Y 

At the end of each month t, all stocks are sorted into quintile portfolios based on an ascending ordering of β5Y and the 
portfolio excess returns are calculated for month t +1. The figure presents the historical cumulative excess returns (in 
NOK) of a NOK 1 investment in each of the quintile portfolios from Jan. 1990 through Dec. 2018. The quintile 
portfolios are rebalanced monthly, all dividends and cash payouts are assumed to be reinvested and the return calculation 
assumes no transaction costs. The Portfolio i in the figure correspond to the β5Y-sorted quintile portfolio i, while Market 
VW (EW) illustrates the value-weighted (equal-weighted) excess return of a portfolio consisting of all the stocks in our 
filtered dataset. Panel A presents the cumulative excess returns of the value-weighted β5Y quintile portfolios and panel 
B presents the cumulative excess returns of the equal-weighted β5Y quintile portfolios.    
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To formally test for the presence of the beta anomaly in our sample, we evaluate the beta-sorted 

portfolio alphas relative to four different factor models, presented in Table 4. Our discussion will 

primarily focus on the alphas relative to the CAPM and the FFC4 + LIQ model, and we are particularly 

interested in the abnormal returns of the zero-cost, low minus high beta portfolio (“low-high 

portfolio” hereafter”). We find that CAPM alphas decline monotonically from quintile 1 to quintile 5 

and that the CAPM alpha for the VW (EW) low-high portfolio is both economically large and 

statistically significant with a magnitude of 0.87% (0.79%). The low-beta portfolio has thus 

outperformed the high-beta portfolio in our model when systematic risk is measured according to the 

CAPM. 

The abnormal returns of the VW (EW) quintile portfolios relative to the FFC4 + LIQ model decline 

from 0.37% (0.11%) for quintile 1 to -0.28% (-0.24%) for quintile 5, albeit not monotonically. Neither 

of the quintile portfolios generates statistically significant alphas relative to the FFC4 + LIQ model, 

but the VW (EW) low-high portfolio achieves a FFC4 + LIQ alpha of 0.65% (0.35%) with a 

corresponding t-statistic of 2.245 (1.401). The FFC4 + LIQ alpha for the VW low-high portfolio is 

both economically large and statistically significant, and we find that both the long side (quintile 1) and 

the short side (quintile 5) of the trade contributes to the alpha. Although not statistically significant, 

we note that the reported FFC4 + LIQ alpha of the EW low-high portfolio implies a 4.3% annual 

alpha and should still be considered economically large. Hence, the results from our main model 

indicate that the low-beta portfolio has outperformed the high-beta portfolio on a risk-adjusted basis 

when risk is measured relative to conventional asset pricing models. However, the lack of statistical 

significance for the FFC4 + LIQ alpha of the EW low-high portfolio moderates our confidence in our 

conclusion. 
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Table 4: Univariate Portfolio Analysis Sorting on β5Y 
The table presents the results of a univariate portfolio analysis on the relation between excess and abnormal returns in 
month t+1 and the variable β5Y in month t. At the end of each month t, all stocks are sorted into quintile portfolios based 
on an ascending ordering of β5Y. The table consists of two panels (A and B) and each panel is divided into three sections. 
Explanation of sections: “Portfolio Characteristics” presents the time-series mean number of stocks in each quintile 
portfolio (Portfolio length), the time-series mean portfolio market share (calculated as the sum of the market capitalization 
within each portfolio divided by total market capitalization) for each month t (Market share), the time-series mean of the 
monthly average β5Y for the stocks in each quintile portfolio (β ex-ante), and the slope coefficient from a regression of 
VW (EW) portfolio excess returns on the VW (EW) market excess returns (β ex-post). “Portfolio Sharpe Ratio” presents 
the time-series mean monthly portfolio excess returns in month t+1 (R), the standard deviation of monthly portfolio 
excess returns in month t+1 (SD), and an annualized portfolio Sharpe ratio (SR). “Factor Model Alphas” presents monthly 
portfolio alphas relative to the CAPM (CAPM), the Fama-French 3-Factor model (FF3), the Fama-French-Carhart 4-
Factor model (FFC4) and the FFC4 model augmented with the liquidity factor of Næs, Skjeltorp and Ødegaard (2009) 
(FFC4 + LIQ). We use the VW (EW) market portfolio as the market factor in the factor models when estimating alphas 
for VW (EW) portfolios. The numbers in parentheses are t-statistics adjusted following Newey and West (1987) using four 
lags.  
Explanation of panels: All reported numbers in panel A are calculated using value-weighted portfolios, while all numbers 
in panel B are calculated using equal-weighted portfolios.  
General: The column labeled Low-High β5Y refers to a zero-cost, long-short portfolio with a long position in quintile 
portfolio 1 and a short position in quintile portfolio 5. Our sample contains portfolio returns from Jan. 1990 through Dec. 
2018. Portfolios are rebalanced monthly. 

 

Panel A: Value-Weighted Portfolios 

Value β5Y 1 (Low) β5Y 2 β5Y 3 β5Y 4 β5Y 5 (High) Low-High β5Y 

Portfolio Characteristics 

Portfolio length 25 25 26 25 25  
Market share 3 % 14 % 28 % 32 % 23 %  
β ex-ante 0.284 0.602 0.848 1.135 1.631 -1.347 

β ex-post 0.493 0.844 0.966 1.003 1.297 -0.804 

Portfolio Sharpe Ratio 

R 0.85 % 0.46 % 0.54 % 0.51 % 0.38 % 0.47 % 

SD 4.58 % 6.07 % 6.37 % 6.51 % 8.34 % 7.03 % 

SR 0.645 0.263 0.293 0.271 0.158 0.233 

Factor Model Alphas 

CAPM 0.61 % 0.05 % 0.07 % 0.02 % -0.25 % 0.87 % 

 (3.214) (0.214) (0.383) (0.109) -(1.187) (3.027) 

FF3 0.39 % 0.08 % 0.07 % 0.06 % -0.35 % 0.74 % 

 (1.979) (0.337) (0.370) (0.319) -(1.544) (2.405) 

FFC4 0.37 % 0.02 % 0.11 % 0.10 % -0.24 % 0.61 % 

 (1.838) (0.083) (0.631) (0.603) -(1.071) (1.995) 

FFC4 + LIQ 0.37 % 0.01 % 0.11 % 0.09 % -0.28 % 0.65 % 

 (1.813) (0.028) (0.631) (0.541) -(1.363) (2.245) 
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Panel B: Equal-Weighted Portfolios 

Value β5Y 1 (Low) β5Y 2 β5Y 3 β5Y 4 β5Y 5 (High) Low-High β5Y 

Portfolio Characteristics 

Portfolio length 25 25 26 25 25  
Market share 3 % 14 % 28 % 32 % 23 %  
β ex-ante 0.226 0.586 0.846 1.134 1.707 -1.481 

β ex-post 0.572 0.762 0.872 1.102 1.365 -0.793 

Portfolio Sharpe Ratio 

R 0.69 % 0.70 % 0.73 % 0.81 % 0.47 % 0.22 % 

SD 4.40 % 5.22 % 5.81 % 7.25 % 8.97 % 7.06 % 

SR 0.544 0.461 0.437 0.386 0.181 0.109 

Factor Model Alphas 

CAPM 0.28 % 0.15 % 0.10 % 0.01 % -0.52 % 0.79 % 

 (1.696) (1.094) (0.715) (0.068) -(2.520) (2.655) 

FF3 0.12 % 0.16 % 0.15 % 0.07 % -0.29 % 0.41 % 

 (0.835) (1.184) (1.028) (0.436) -(1.376) (1.410) 

FFC4 0.07 % 0.10 % 0.11 % 0.07 % -0.16 % 0.23 % 

 (0.451) (0.748) (0.671) (0.442) -(0.755) (0.776) 

FFC4 + LIQ 0.11 % 0.12 % 0.10 % 0.03 % -0.24 % 0.35 % 

 (0.777) (0.895) (0.606) (0.219) -(1.300) (1.401) 

 

6.1.3. Comparison of Results with the US Market  

The results from our univariate portfolio analysis sorting on β5Y are generally in line with the results 

Bali et al. (2017) obtain when they perform a similar analysis on the US market. However, our methods 

differ slightly as they use decile portfolios to account for the larger cross-section of stocks in their 

sample, and as they sort stocks on β1Y in their primary model. In their US sample, the ex-ante EW 

portfolio betas increase from -0.00 for decile 1 to 2.02 for decile 10. The spread in their EW ex-ante 

portfolio betas is somewhat larger than what we find on Norwegian data, but this is to be expected as 

they use decile breakpoints while we use quintile breakpoints. In line with our results, they find that 

the FFC4 + PS31 alphas decrease from decile 1 to decile 10, albeit not monotonically. However, in 

contrast to our results, the FFC4 + PS alphas of decile portfolio 1 and 10 are statistically significant in 

their sample, with a magnitude of 0.23% and -0.26%, respectively. Furthermore, Bali et al. (2017) report 

the performance of a high-low decile portfolio (in contrast to our low-high quintile portfolio) and 

present a FFC4 + PS alpha equal to -0.49% with a t-statistic of -2.26 for the high-low decile portfolio. 

Similar to our results, they find that both the long side and the short side of their high-low portfolio 

has contributed to the abnormal returns. The paper also reports results using VW decile portfolios 

 
31 “PS” refers to Pastor and Stambaugh’s (2003) liquidity factor. 
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sorted on β5Y for an extended sample period. They find that in the period 1931-2012, the high-low β5Y 

portfolio has generated an economically large and statistically significant FFC4 alpha of -0.48% per 

month. 

The main difference between our results and those of Bali et al. (2017) is the increased statistical power 

of their estimates. We largely attribute this discrepancy to their use of a data sample with a longer time 

series (1963-2012) and a larger cross-section of stocks. The larger cross-section increases the precision 

of their estimates, and it also allows for the use of decile portfolios. The use of decile portfolios results 

in a larger spread between the portfolio averages of the sorting variable and, given the existence of a 

relation between the sorting variable and returns, the use of decile portfolios should contribute to 

increased statistical significance in the results.  

6.1.4 Robustness Tests of the Beta Anomaly 

As the beta anomaly is not as well documented in Norway as it is in the US, and as the results from 

our univariate analysis on β5Y are not unambiguous, we conduct several robustness tests to validate our 

results. Table 5 reports the CAPM alphas and the FFC4 + LIQ alphas for the low-high beta portfolios 

over five different time periods. The VW portfolio delivers a statistically significant CAPM alpha across 

all tested periods, while the FFC4 + LIQ alpha is statistically significant at the 5% level for all periods 

except the period spanning from 1990 to 2013. The EW portfolios produce statistically significant 

CAPM alphas in all tested periods, and the FFC4 + LIQ alpha becomes statistically significant at the 

5% level in the period 2000-2018.   

We argue that a lower alpha for the VW low-high portfolio in the period 1990 to 2013 may be a result 

of the period ending near the peak of the oil price cycle. As presented in Table A.4 in the appendix, a 

significant portion of the companies in the top 20 list of the most frequent companies in quintile 

portfolio 5 has direct exposure to the oil price. Quintile portfolio 1, on the other hand, is in most 

periods comprised of stocks with no direct oil-price exposure. Ending the period near the peak of the 

oil price cycle will, therefore, result in a biased estimate of the relative performance between quintile 

portfolios 1 and 5. In general, the OSE is heavily tilted towards stocks with significant exposure to the 

oil price, and we argue it is essential to be aware of the cyclical nature of the oil price when evaluating 

portfolio performance on the OSE. In our full sample from 1990 to 2018, oil-price-sensitive 

companies have been through several cycles, and with 2018 not representing a clear cyclical peak or 

trough, we argue that our full sample period should provide fair estimates of the long-term 

performance of stocks with a high degree of oil-price exposure. Therefore, we do not consider the 
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reduced alpha of the VW low-high portfolio from 1990-2013 as a major point of concern for the 

robustness of our results.  

Table 5: Low-High β5Y Portfolio Alphas for Different Sample Time Periods 
The table presents the results from several univariate portfolio analyses on β5Y using different time periods. At the end 
of each month t, all stocks are sorted into quintile portfolios based on an ascending ordering of β5Y. The table presents 
the monthly alphas of a zero-cost, long-short portfolio with a long position in quintile 1 (low-beta) and short position 
in quintile 5 (high-beta) relative to the CAPM (CAPM) and the Fama-French-Carhart 4-Factor model augmented with 
the liquidity factor of Næs, Skjeltorp and Ødegaard (2009) (FFC4 + LIQ). We use the VW (EW) market portfolio as 
the market factor in the factor models when estimating alphas for VW (EW) portfolios. The numbers in parentheses 
are t-statistics adjusted following Newey and West (1987) using four lags. The columns refer to the use of different time 
periods of our data sample. Panel A reports the results for value-weighted portfolios, while panel B reports the results 
for equal-weighted portfolios. 

 
Panel A: Value-Weighted Portfolios 

Value 1990-2018 1995-2018 2000-2018 1990-2013 1990-2007 

Factor Model Alphas 

CAPM  0.87 % 0.88 % 1.03 % 0.74 % 0.97 % 

 (3.027) (2.920) (3.059) (2.341) (2.474) 

FFC4 + LIQ 0.65 % 0.60 % 0.76 % 0.59 % 0.84 % 

 (2.245) (1.959) (2.190) (1.873) (2.122) 

      

Panel B: Equal-Weighted Portfolios 

Value 1990-2018 1995-2018 2000-2018 1990-2013 1990-2007 

Factor Model Alphas 

CAPM 0.79 % 0.83 % 0.88 % 0.69 % 0.99 % 

 (2.655) (2.560) (2.764) (2.024) (2.319) 

FFC4 + LIQ 0.35 % 0.42 % 0.53 % 0.30 % 0.39 % 

 (1.401) (1.526) (1.951) (1.078) (1.082) 

 

We also examine the sensitivity of our results with regard to our data filters. Table 6 presents CAPM 

alphas and FFC4 + LIQ alphas for the low-high β5Y portfolio given some select variations in our data 

filters. We find that the CAPM alphas of the low-high VW and EW portfolios remains statistically 

significant at the 5% level for all tested variations in data filters. For the VW portfolios, the FFC4 + 

LIQ alpha is statistically significant for all variations in data filters, except when we impose a stricter 

filter on market capitalization and remove stocks in months when their market capitalization has been 

observed below NOK 1bn. Interestingly, we find that the FFC4 + LIQ alpha is statistically significant 

for EW portfolios when including the minimum NOK 1bn filter on market capitalization or removing 

the minimum NOK 1 filter on share price. 
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Table 6: Low-High β5Y Portfolio Alphas for Variations in Data Filters 
The table presents the results from several univariate portfolio analyses on β5Y for varying data filters. At the end of 
each month t, all stocks are sorted into quintile portfolios based on an ascending ordering of β5Y. The table presents the 
monthly alphas of a zero-cost, long-short portfolio with a long position in quintile 1 (low-beta) and short position in 
quintile 5 (high-beta) relative to the CAPM (CAPM) and the Fama-French-Carhart 4-Factor model augmented with the 
liquidity factor of Næs, Skjeltorp and Ødegaard (2009) (FFC4 + LIQ). We use the VW (EW) market portfolio as the 
market factor in the factor models when estimating alphas for VW (EW) portfolios. The numbers in parentheses are t-
statistics adjusted following Newey and West (1987) using four lags. The columns refer to different variations in data 
filters. “Primary Model” refers to the data filters applied to the main model as discussed in section 3.1.1. “Primary Capital 
Certificates” reports the zero-cost portfolio alphas when primary capital certificates are excluded from the sample. 
“Share Price” presents the zero-cost portfolio alphas when there is no restriction on stock price in the sample. “Large 
Stocks” presents the zero-cost portfolio alphas when stocks are removed for the months their market capitalization is 
observed below NOK 1bn. “Turnover” presents the zero-cost portfolio alphas when there is no restriction on stock 
turnover in the data sample. All results reported in panel A are calculated using value-weighted portfolios, while all 
results in panel B are calculated using equal-weighted portfolios. Our sample contains portfolio returns from Jan. 1990 
through Dec. 2018. 

      

Panel A: Value-Weighted Portfolios 

Value Primary Model 
Primary Capital 

Certificates Share Price (0) 
Large Stocks 

(1bn) Turnover (0%) 

Factor Model Alphas 

CAPM 0.87 % 0.97 % 0.95 % 0.69 % 0.84 % 

 (3.027) (3.088) (3.226) (1.983) (2.873) 

FFC4 + LIQ 0.65 % 0.71 % 0.75 % 0.56 % 0.62 % 

 (2.245) (2.266) (2.510) (1.549) (2.123) 

      

Panel B: Equal-Weighted Portfolios 

Value Primary Model 
Primary Capital 

Certificates Share Price (0) 
Large Stocks 

(1bn) Turnover (0%) 

Factor Model Alphas 

CAPM 0.79 % 0.82 % 1.11 % 1.04 % 0.82 % 

 (2.655) (2.599) (3.627) (3.372) (2.713) 

FFC4 + LIQ 0.35 % 0.37 % 0.69 % 0.74 % 0.39 % 

 (1.401) (1.382) (2.684) (2.353) (1.564) 

 

Lastly, we report the results from using β1Y as the sorting variable in a univariate portfolio analysis in 

Table B.1 in the appendix.32 The results from sorting on β1Y are generally in line with the results from 

sorting on β5Y as the VW (EW) low-high β1Y portfolio generates an economically large CAPM alpha of 

0.47% (0.92%) and FFC4 + LIQ alpha of 0.33% (0.76%). The results do, however, differ in that the 

source of the FFC4 + LIQ alpha is mostly generated by shorting quintile portfolio 5 in the β1Y model, 

while it is more evenly distributed between the long side and the short side of the trade in the β5Y 

model. We also note that the CAPM alpha and the FFC4 + LIQ alpha for the low-high portfolio is 

statistically significant for the EW portfolios, but not for the VW portfolios, which is opposite of the 

 
32 We also report the results from univariate portfolio analysis sorting on βMSCI in table B.2 in the appendix. 
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results from the β5Y model. Despite differences in statistical significance between the two models, we 

find the results from sorting on β1Y to be supportive of the existence of a beta anomaly as all tests 

indicate that the low-beta portfolio has outperformed the high-beta portfolio on a risk-adjusted basis.  

6.1.5 Comparison of Results with Other Studies in the Norwegian Market 

As mentioned in the literature review (section 2.2), there are, to the best of our knowledge, three other 

studies commenting on the beta anomaly in a Norwegian sample. Frazzini and Pedersen (2014) report 

the abnormal returns of their Betting-Against-Beta (BAB) factor in Norway in the period of 1984 to 

2009. Surprisingly, the factor, which is long low-beta stocks and short high-beta stocks, generates a 

statistically insignificant, negative alpha of -0.06% relative to the FFC4 model. The finding is not 

commented further in the paper.  

The updated performance of the BAB factor constructed by Frazzini and Pedersen (2014) for the 

period 1990-2018 is reported on AQR’s website. In Table B.3 in the appendix, we report the CAPM 

alpha and the FFC4 + LIQ alpha for the Norwegian BAB factor in the period 1990-2018. We find 

that the BAB factor has generated a statistically significant CAPM alpha of 1.06% and FFC4 + LIQ 

alpha of 0.63%. The results are arguably in line with the documented abnormal returns of our low-

high β5Y portfolios. As such, we do not find the results of Frazzini and Pedersen (2014) to contradict 

our findings.  

Christensen (2019) documents a beta anomaly on the OSE as a part of his master thesis investigating 

the suitability of various mispricing models on the OSE in a sample from 1998 to 2018, which excludes 

financial firms. He presents statistically significant monthly abnormal returns of 1.26% relative to the 

FF3 model of a VW zero-cost portfolio with a long position in the low-beta quintile portfolio and a 

short position in the high-beta quintile portfolio. As can be seen from Table 5 and Table 6, we obtain 

a statistically significant monthly VW FFC4 + LIQ alpha of 0.76% in the period 2000-2018 and a 

statistically significant monthly VW FFC4 + LIQ alpha of 0.71% in the full sample period when we 

exclude primary capital certificates. Our results are thus fairly in line with those of Christensen (2019), 

given the differing sample.  

In their master thesis, Juneja and Bordvik (2017) report of a statistically insignificant monthly VW 

(EW) FF3 model alpha of -0.27% (-0.57%) for a zero-cost portfolio with a long position in the high-

beta quintile portfolio and a short-position in the low-beta quintile portfolio from July 1986 to June 

2014. Based on these results, they argue that the beta anomaly is not present in the Oslo Stock 



41 
 

Exchange. However, as their documented alphas are both negative and large in magnitude, we argue 

that their findings do not contradict our results. Moreover, their study is not directly comparable to 

ours as they rebalance the portfolios on a yearly basis while we use a monthly interval. Consequently, 

we find no critical deviations from our results in previously conducted research on the beta anomaly 

with a Norwegian sample. 

6.1.6 Conclusion on the Beta Anomaly 

All tests considered, we find strong evidence of a beta anomaly in our sample. When systematic risk is 

measured according to the CAPM, we document that the low-high β5Y portfolios generate both 

economically large and statistically significant alpha across all tested variations in model specifications 

and data filters. However, when we expand our factor model and measure portfolio returns relative to 

the FFC4 + LIQ model, our results are not unambiguous. We find that the FFC4 + LIQ alpha is both 

economically large and statistically significant for the VW low-high β5Y portfolio, but only economically 

large for the EW low-high portfolio. Although the lack of statistical significance makes our results 

more uncertain, we find it to be excessively strict to require statistical significance across all model 

specifications in order to infer the presence of a beta anomaly when using Norwegian data. As 

discussed in the comparison of our results with those of Bali et al. (2017), the small Norwegian sample 

and the use of quintile portfolios reduces the precision of our results. Even though our portfolios 

fulfill the diversification requirements of Ødegaard, we do not believe that our portfolios are 

adequately diversified to provide robust results across all variations of model specifications. At the 

beginning of the 1990s, our portfolios comprise close to 10 stocks, and minor variations in portfolio 

composition due to changes in model specifications or data filters could alter portfolio returns in non-

trivial ways. Hence, we argue that the results from several models and robustness tests must be 

considered collectively to evaluate the presence of a beta anomaly on the OSE.  

Considering that we find positive and economically large FFC4 + LIQ alphas for the low-high beta 

portfolio across all tested model specifications, and that the FFC4 + LIQ alpha is statistically significant 

for the VW portfolio from 1990-2018 and the EW portfolio from 2000-2018, we argue that our results 

suggest that we can disregard the null hypothesis of FFC4 + LIQ alpha equal to zero for the low-high 

β5Y portfolio with a reasonably high degree of certainty. We hence infer that there has been a beta 
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anomaly on the Oslo Stock Exchange in the period 1990-2018, which cannot be explained by the 

FFC4 + LIQ factor model.33   

6.2 Hypothesis 2 – The Existence of a Lottery Demand Phenomenon in Norway  

Having demonstrated the beta anomaly on the OSE, we proceed to examine the existence of the lottery 

demand phenomenon. In short, the lottery demand phenomenon refers to the low (high) abnormal 

returns of stocks that experience a disproportionately high (low) demand from investors with lottery-

preferences. Kumar (2009) argues that stocks with high IVOL, high ISKEW, and a low share price are 

particularly attractive to lottery-investors, and Bali et al. (2011) find that the variable MAX successfully 

captures these lottery traits. Consequently, to assess the presence of a lottery demand phenomenon on 

the OSE, we first evaluate whether MAX effectively captures the lottery characteristics defined by 

Kumar (2009) on the OSE, and subsequently analyze the relation between MAX and one-month-ahead 

returns.  

6.2.1 MAX as a Proxy for Lottery Demand 

To evaluate whether MAX is a good proxy for lottery demand, we follow the methodology of Bali et 

al. (2017) and examine the relation between MAX and the three lottery traits put forth by Kumar 

(2009) in our sample. Table 7 reports the time-series average MAX, stock price, IVOL, and ISKEW 

for the MAX-sorted EW quintile portfolios. The average MAX values increase monotonically (by 

construction) from quintile 1 to quintile 5, and the difference between the average MAX value of the 

high portfolio and the average MAX value of the low portfolio of 5.7% is highly statistically significant 

with a corresponding t-statistic of -55.4. Average IVOL and average ISKEW exhibit a similar pattern 

across the portfolios; both variables increase monotonically across the MAX-sorted portfolios and the 

difference in the average values between the two extreme portfolios is highly statistically significant for 

both variables. The average stock price decreases monotonically from portfolio 1 (111) to portfolio 5 

(41), and the average difference of NOK 71 is both economically large and statistically significant. The 

only discrepancy between our results and those of Bali et al. (2017) is that we observe a somewhat 

larger difference in the average IVOL and ISKEW between the low and high portfolios, while they 

find a larger spread in average stock prices and values of MAX. Nevertheless, the results presented in 

 
33 It is important to note that we document the anomaly relative to asset pricing models. The estimated factor model alphas 

can hence either be interpreted to be “true” in the sense that they illustrate the potential for riskless returns, or to be the 
result of a model error where the market correctly prices risk that is not reflected in the factor model.  
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Table 7 firmly indicate that MAX is successful in sorting stocks along the lottery-traits identified by 

Kumar (2009) in our sample.  

Table 7: Lottery Characteristics of MAX-Sorted Quintile Portfolios   

All stocks in our sample are sorted into quintile portfolios based on an ascending ordering of MAX at the end of each 
month t. The table presents the time-series means of the monthly average values of MAX, Share Price, idiosyncratic 
volatility (IVOL) and idiosyncratic skewness (ISKEW) for the stocks in each of the MAX-sorted quintile portfolios. 
The column labeled Low-High MAX presents the time-series mean difference in average characteristics between the 
low-MAX portfolio (quintile 1) and the high-MAX portfolio (quintile 5). The numbers in parentheses are t-statistics 
testing the null hypothesis of the average difference equal to zero. Our sample contains monthly observations of stock 
characteristics from Jan. 1990 through Dec. 2018. 

       

 MAX 1 (Low) MAX 2 MAX 3 MAX 4 MAX 5 (High) Low-High MAX 

Stock Characteristics 

MAX 0.015 0.024 0.031 0.042 0.072 -0.057 

      -(55.4) 

Stock Price 111 97 80 62 41 71 

      (39.6) 

IVOL 0.013 0.017 0.021 0.027 0.046 -0.033 

      -(53.6) 

ISKEW -0.048 0.080 0.183 0.273 0.546 -0.594 

      -(59.4) 

 

6.2.2 Cumulative Portfolio Returns 

Having confirmed that MAX captures the lottery characteristics defined by Kumar (2009), we proceed 

to examine the relation between the variable MAX and one-month-ahead excess stock returns. Parallel 

to our approach on the beta anomaly, we begin our analysis by examining the historical performance 

of quintile portfolios sorted on MAX. Figure 4 presents the historical cumulative excess returns of a 

NOK 1 initial investment in each MAX-sorted quintile portfolio from January 1990 through 

December 2018. The figure contains two charts to illustrate the performance of both VW and EW 

portfolios. 

Figure 4 illustrates that an investment of NOK 1 in the low-MAX portfolio has generated substantially 

higher absolute returns than a corresponding investment in the high-MAX portfolio. The VW (EW) 

low-MAX portfolio has generated a cumulative excess return of 207% (530%) compared to the -15.4% 

(79%) cumulative excess return of the VW (EW) high-MAX portfolio.34 However, in contrast to our 

 
34 The trading costs associated with replicating the MAX-sorted quintile portfolios are assessed in section F in the 
appendix. 
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analysis of the β5Y-sorted quintile portfolios, we note that the low-MAX (high-MAX) portfolio does 

not distinguish itself as the best (worst) performer.  

Figure 4: Cumulative Excess Returns of Quintile Portfolios Sorted on MAX  
At the end of each month t, all stocks are sorted into quintile portfolios based on an ascending ordering of MAX and 
the portfolio excess returns are calculated for month t +1. The figure presents the historical cumulative excess returns 
(in NOK) of a NOK 1 investment in each of the quintile portfolios from Jan. 1990 through Dec. 2018. The quintile 
portfolios are rebalanced monthly, all dividends and cash payouts are assumed to be reinvested and the return calculation 
assumes no transaction costs. The portfolio i in the figure correspond to the MAX-sorted quintile portfolio i, while 
Market VW (EW) illustrates the value-weighted (equal-weighted) excess returns of a portfolio consisting of all the stocks 
in our filtered dataset. Panel A presents the cumulative excess returns of the value-weighted MAX quintile portfolios 
and panel B presents the cumulative excess returns of the equal-weighted MAX quintile portfolios.    

 

Panel A: Value-Weighted Portfolios Sorted on MAX 

 

           

          

          

          

          

          

          

          

          

          

          

          

          
          

          

          

          
Panel B: Equal-Weighted Portfolios Sorted on MAX 
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6.2.3 Univariate Portfolio Analyses  

Analogous to our analysis on the beta anomaly, we formally analyze the relation between MAX and 

one-month-ahead returns by conducting a univariate portfolio analysis, this time on portfolios sorted 

by MAX instead of beta. Table 8 reports portfolio characteristics, Sharpe ratios, and monthly factor 

model alphas for VW and EW quintile portfolios sorted by MAX. The results in Table 8 show that the 

average MAX values for the VW (EW) quintile portfolios increase monotonically (by construction) 

from 1.6% (1.5%) for quintile 1 to 6.6% (7.2%) for quintile 5. Interestingly, we do not find a strong 

negative relation between MAX and one-moth-ahead excess returns, as documented by Bali et al. 

(2017). There is no indication of a monotonically decreasing relation between one-month-ahead excess 

returns and MAX, and the mean excess return of the EW low-high portfolio is both negative and very 

small in magnitude (-0.03%) in our sample. However, we note that ex-ante and ex-post portfolio betas 

increase monotonically from quintile 1 to quintile 5, consistent with the positive MAX-beta relation 

observed by Bali et al. (2017).  

The CAPM alphas of the MAX-sorted quintile portfolios exhibit an overall negative relation to MAX, 

although they are not monotonically decreasing for either EW or VW portfolios. The low-high MAX 

portfolio generates a CAPM alpha of 0.71% for the VW portfolio and 0.53% for the EW portfolio. 

The alphas are economically large, but only statistically significant at the 10% level for both portfolio 

formation schemes.  

Interestingly, we document stronger abnormal returns for the low-high MAX portfolio relative to the 

FFC4 + LIQ model than the CAPM.35 The FFC4 + LIQ alphas for the VW (EW) portfolios decrease 

from 0.05% (0.28%) for quintile 1 to -0.90% (-0.38%) for quintile 5. In contrast to our results on the 

beta anomaly, we observe that several of the quintile portfolios generate statistically significant 

abnormal returns relative to the FFC4 + LIQ model. The VW (EW) low-high MAX portfolio generates 

a FFC4 + LIQ alpha of 0.94% (0.66%) with corresponding t-statistics of 2.431 (2.110), which is both 

 
35 Factor model alphas in multifactor models equals the intercept term from a regression of excess portfolio returns on 

factor returns and is estimated using ∝̂ =  �̅� − ∑ 𝛽�̂�𝑋�̅�
𝑛
𝑖=1  , where ∝̂ equals the estimated intercept, �̅� equals the average 

excess returns of the portfolio, 𝛽�̂� equals the estimated slope coefficient for factor i, and 𝑋�̅� equals the average returns 
associated with factor i. The inclusion of additional factors that the portfolio loads negatively in can thus result in estimates 

of alpha with a greater magnitude, despite the additional factors increasing the explanatory power of the model (𝑅2). We 
note that the increased factor model alpha for the low-high MAX portfolio in the FFC4 + LIQ factor model relative to 
the CAPM can largely be attributed to the low-high MAX portfolio’s negative loading in the HML factor. 
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economically large and statistically significant. We note that the FFC4 + LIQ alpha for the low-high 

MAX portfolio stems mostly from the short side of the trade (shorting portfolio 5).  

6.2.4 Comparison of the Results with the US Market  

The results from our univariate portfolio analysis sorting on MAX are, for the most part, in line with 

the results of Bali et al. (2017). We have constructed MAX according to the methodology of Bali et al. 

(2017) and our analysis only differs with regards to our use of quintile breakpoints instead of decile 

breakpoints. On the US sample, Bali et al. (2017) report ex-ante EW portfolio MAX values increasing 

from 0.66% for decile 1 to 7.62% for decile 10. Parallel to our analysis of the beta-sorted portfolios, 

we find that Bali et al. (2017) report a somewhat larger spread in the sorting variable between their low 

and high portfolio, which we again attribute to their use of decile breakpoints.  

 In line with our results, they find that the FFC4 + PS alphas decrease from decile 1 (0.24%) to decile 

10 (-1.15%). We note that the FFC4 + PS alphas experience a large drop from decile 9 (-0.37%) to 

decile 10 (-1.15%) in the US sample. This is similar to what we find for our VW portfolios, but the 

FFC4 + LIQ alpha actually increases from quintile 4 (-0.46%) to quintile 5 (-0.38%) for our EW 

portfolios. Bali et al. (2017) report that the high-low portfolio achieved a FFC4 + PS alpha of -1.38% 

with a corresponding t-statistic of (-8.09), which is both economically large and highly statistically 

significant.36  

Although our results are generally in line with the results of Bali et al. (2017), we note that, in addition 

to increased statistical significance, they also find a significantly higher FFC4 + PS alpha in absolute 

terms for their high-low MAX portfolio. This stands in contrast to the findings in our comparison of 

the beta anomaly, where the magnitude of our FFC4 + PS alpha for the low-high β5Y portfolio lined 

up closely with the corresponding results of Bali et al. (2017).37  

  

  

 
36 Bali et al. (2017) find that the FFC4 + PS alpha of the high-low portfolio is mostly attributable to shorting decile 10 
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Table 8: Univariate Portfolio Analysis Sorting on MAX  
The table presents the results of a univariate portfolio analysis on the relation between excess and abnormal returns in 
month t+1 and the variable MAX in month t. At the end of each month t, all stocks are sorted into quintile portfolios 
based on an ascending ordering of MAX. The table consists of two panels (A and B) and each panel is divided into three 
sections. 
Explanation of sections: “Portfolio Characteristics” presents the time-series mean number of stocks in each quintile 
portfolio (Portfolio length), the time-series mean portfolio market share (calculated as the sum of the market 
capitalization within each portfolio divided by the total market capitalization) for each month t (Market share), the time-
series mean of the monthly average value of MAX for the stocks in each quintile portfolio (MAX ex-ante), the time-
series mean of the monthly average β5Y for the stocks in each quintile portfolio (β ex-ante), and the slope coefficient 
from a regression of VW (EW) portfolio excess returns on the VW (EW) market excess returns (β ex-post). “Portfolio 
Sharpe Ratio” presents the time-series mean monthly portfolio excess returns in month t+1 (R), the standard deviation 
of monthly portfolio excess returns in month t+1 (SD), and the annualized portfolio Sharpe ratio (SR). “Factor Model 
Alphas” presents monthly portfolio alphas relative to the CAPM (CAPM), the Fama-French 3-Factor model (FF3), the 
Fama-French-Carhart 4-Factor model (FFC4) and the FFC4 model augmented with the liquidity factor of Næs, Skjeltorp 
and Ødegaard (2009) (FFC4 + LIQ). We use the VW (EW) market portfolio as the market factor in the factor models 
when estimating alphas for VW (EW) portfolios. The numbers in parentheses are t-statistics adjusted following Newey 
and West (1987) using four lags.  
Explanation of panels: All reported numbers in panel A are calculated using value-weighted portfolios, while all 
numbers in panel B are calculated using equal-weighted portfolios.  
General: The column labeled Low-High MAX refers to a zero-cost, long-short portfolio with a long position in quintile 
portfolio 1 and a short position in quintile portfolio 5. Our sample contains portfolio returns from Jan. 1990 through 
Dec. 2018. Portfolios are rebalanced monthly. 

       
Panel A: Value-Weighted Portfolios 

Value MAX 1 (Low) MAX 2 MAX 3 MAX 4 
MAX 5 
(High) 

Low-High 
MAX 

Portfolio Characteristics 

Portfolio length 25 25 25 25 25  

Market share 31% 30% 21% 13% 6%  

MAX ex-ante 0.016 0.024 0.031 0.041 0.066 -0.050 

β ex-ante  0.841 0.894 0.928 0.942 0.951 -0.109 

β ex-post  0.922 0.954 1.055 1.280 1.463 -0.541 

Portfolio Sharpe Ratio 

R 0.51 % 0.55 % 0.60 % 0.43 % 0.07 % 0.44 % 

SD 5.98 % 6.11 % 6.85 % 8.55 % 10.98 % 8.73 % 

SR 0.294 0.313 0.305 0.174 0.021 0.175 

Factor Model Alphas 

CAPM 0.06 % 0.09 % 0.09 % -0.20 % -0.65 % 0.71 % 

 (0.390) (0.606) (0.540) -(0.873) -(1.796) (1.673) 

FF3 0.06 % 0.12 % 0.08 % -0.31 % -1.08 % 1.14 % 

 (0.385) (0.820) (0.460) -(1.285) -(3.051) (2.760) 

FFC4 0.04 % 0.09 % 0.20 % -0.27 % -0.86 % 0.89 % 

 (0.240) (0.584) (1.188) -(1.146) -(2.471) (2.169) 

FFC4 + LIQ 0.05 % 0.08 % 0.18 % -0.29 % -0.90 % 0.94 % 

 (0.310) (0.536) (1.118) -(1.334) -(2.719) (2.431) 
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Panel B: Equal-Weighted Portfolios 

Value MAX 1 (Low) MAX 2 MAX 3 MAX 4 
MAX 5 
(High) 

Low-High 
MAX 

Portfolio Characteristics 

Portfolio length 25 25 25 25 25  

Market share 31 % 30 % 21 % 12 % 6 %  

MAX ex-ante 0.015 0.024 0.031 0.042 0.072 -0.057 

β ex-ante 0.849 0.992 1.084 1.156 1.205 -0.356 

β ex-post 0.782 0.966 1.094 1.286 1.552 -0.771 

Portfolio Sharpe Ratio 

R 0.68 % 0.74 % 0.79 % 0.43 % 0.71 % -0.03 % 

SD 5.40 % 6.43 % 7.08 % 8.39 % 10.48 % 7.77 % 

SR 0.437 0.401 0.384 0.179 0.234 -0.012 

Factor Model Alphas 

CAPM 0.12 % 0.05 % 0.00 % -0.49 % -0.41 % 0.53 % 

 (0.769) (0.303) -(0.023) -(2.496) -(1.672) (1.608) 

FF3 0.33 % 0.31 % 0.17 % -0.39 % -0.44 % 0.77 % 

 (2.545) (2.206) (1.260) -(2.060) -(1.742) (2.490) 

FFC4 0.29 % 0.33 % 0.21 % -0.39 % -0.35 % 0.64 % 

 (2.246) (2.235) (1.512) -(2.038) -(1.324) (2.029) 

FFC4 + LIQ 0.28 % 0.29 % 0.15 % -0.46 % -0.38 % 0.66 % 

 (2.108) (2.036) (1.181) -(2.709) -(1.479) (2.110) 

 

6.2.5 Robustness Tests of the Lottery Demand Phenomenon 

We conduct several additional tests to examine whether our results are robust. Table C.1 in the 

appendix reports the abnormal returns of the low-high MAX portfolio relative to the CAPM and the 

FFC4 + LIQ model over five different time periods, while Table C.2 in the appendix reports the 

corresponding measures for different variations in our data filters. We find that the abnormal returns 

of the low-high MAX portfolio relative to both the CAPM and FFC4 + LIQ are large in magnitude 

across all time periods for both EW and VW portfolios. However, the CAPM alphas are not statistically 

significant for any of the tested periods, and the FFC4 + LIQ alpha is only statistically significant for 

the period 1990-2018. Table C.2 shows that the results are robust to all variations in data filters except 

for the exclusion of small stocks (market cap below NOK 1bn). Our robustness tests indicate that the 

results from our main model are generally robust to the data filters we have applied, but not for varying 

time periods. All test considered, we find that the low-high MAX portfolio generates economically 

large abnormal returns relative to CAPM and the FFC4 + LIQ factor model for all tested variations 

in model specifications. The CAPM alpha of the low-high MAX portfolio is, however, in most cases 

not statistically significant, and while the FFC4 + LIQ alpha is statistically significant for both EW and 
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VW portfolios in our main model, the results are not robust to varying time periods. Consequently, 

we find our results to strongly indicate that there is a negative relation between MAX and future 

abnormal returns in our sample, but the ambiguous results from our robustness tests prevent us from 

concluding with great certainty. 

Our analysis demonstrates that MAX effectively captures the lottery-traits defined by Kumar (2009) 

on the Oslo Stock Exchange, and that there is a negative relation between MAX and returns in our 

sample. However, it is important to note that although these results are in line with those of Bali et al. 

(2017) and Bali et al. (2011), the results do not, in isolation, prove that the observed negative relation 

between MAX and abnormal returns can solely be attributed to investor demand for lottery-like 

assets.38  

6.3 Hypothesis 3 – Lottery Demand as an Explanation of the Beta Anomaly 

In the previous section of the report, we demonstrated the presence of the beta anomaly and that there 

is a negative correlation between MAX and abnormal returns on the OSE. In this section, we proceed 

to examine whether lottery demand, as measured by MAX, can explain the documented beta anomaly. 

The rationale of Bali et al. (2017) is that MAX should correlate positively with market beta as up-moves 

in stock prices are partially explained by the stock’s sensitivity to the market. Lottery investors should 

therefore exert a disproportionately high price pressure on high-beta stocks relative to low-beta stocks 

and thus contribute to generating the beta anomaly.  

6.3.1 The Cross-Sectional Relation between MAX and Beta 

The lottery demand-based explanation of the beta anomaly is contingent on MAX being correlated 

with beta in the cross-section. As such, we begin our analysis by assessing the cross-sectional relation 

between MAX and beta in our sample. Table 9 presents the time-series average of the monthly cross-

sectional Pearson product-moment correlation (“Pearson correlation” hereafter) between MAX and 

our estimates of beta. We find that that the Pearson correlation between MAX and β5Y (β1Y) is 0.20 

(0.28) on average in our sample, illustrating that in most months, lottery stocks are also high-beta 

stocks. In the US sample, Bali et al. (2017) report that the Person moment correlation between MAX 

and β1Y is 0.30 on average. Although our estimates of the correlation between β1Y and MAX are 

remarkably similar, we note that we estimate a weaker correlation between MAX and β5Y compared to 

 
38 There could be other factors correlated with both MAX and future stock returns explaining the observed negative 
relation. 
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Bali et al. (2017). However, the methodology used to estimate MAX more closely resembles the 

methodology used to estimate β1Y than β5Y, and we hence argue that β1Y by construction should exhibit 

a stronger correlation with MAX. As such, we find our results to be in line with what Bali et al. (2017) 

find in the US. 

Table 9: Average Monthly Cross-Sectional Correlation between Variables 
The table presents the time-series average of the monthly cross-sectional Pearson product-moment correlation 
between the variables. The data sample runs from Jan. 1990 through Dec. 2018.  

       

  β5Y β1Y βMSCI MAX IVOL ISKEW 

β5Y 1.00 0.56 0.70 0.20 0.13 0.04 

β1Y 0.56 1.00 0.37 0.28 0.17 0.03 

βMSCI 0.70 0.37 1.00 0.11 0.05 0.02 

MAX 0.20 0.28 0.11 1.00 0.87 0.30 

IVOL 0.13 0.17 0.05 0.87 1.00 0.19 

ISKEW 0.04 0.03 0.02 0.30 0.19 1.00 

 

6.3.2 Clarification of the Data Sample  

Having demonstrated that MAX is positively correlated with beta in our sample, we proceed to 

formally test whether the beta anomaly persists after controlling for MAX. However, before we embark 

on the analyses, we must make a clarifying comment on the differing data samples used in the following 

analysis.  

In the previous sections (6.1 and 6.2) of the report, we demonstrated the relation between our sorting 

variables and one-month-ahead excess returns. To maximize the precision of our results given our 

limited dataset, we utilized all observations of the sorting variable of interest in the univariate portfolio 

analysis. As discussed in section 4 of the report, the data requirements for estimating the different 

sorting variables vary, which implies that we have used different data samples for the univariate 

portfolio analysis depending on the sorting variable of interest.  

In the following section of the report, we examine whether the low-high beta (MAX) portfolio 

generates statistically abnormal returns when the portfolio is constructed to be neutral to MAX (beta). 

This form of bivariate portfolio analysis requires a data sample with stock observations that contain 

estimates of both MAX and beta, and the dataset used will therefore differ from the ones originally 

employed to document the beta anomaly and the lottery demand phenomenon. The results from the 

bivariate portfolio analysis will therefore include both the effect from adding a control variable and 

the use of a differing sample. As the Norwegian dataset is small, the use of a differing sample could 
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alter our results in non-trivial ways. To isolate the effect of adding a control variable, we therefore 

report the results for both the beta anomaly and lottery demand phenomenon using a common sample 

in Table 14 and Table D.1 and D.2 in the appendix.39  

6.3.3 The Beta Anomaly When Controlling for MAX 

Bivariate Portfolio Analysis 

To assess the relation between market beta and future excess returns after controlling for MAX, we 

first explore the performance of the quintile portfolios generated by performing a conditional double 

sort on MAX, then on β5Y. Table 10 reports portfolio characteristics and factor model alphas for the 

average MAX quintile portfolios, within each β5Y quintile. We first note that our conditional double 

sort is successful in creating β5Y -sorted portfolios that are neutralized to MAX. The ex-ante average 

MAX values are almost identical across the β5Y quintiles and the ex-ante and ex-post portfolio betas 

increase monotonically.  

The results in Table 10 illustrate that the zero-cost portfolio with a long position in the average MAX 

portfolio in the low β5Y quintile and a short position in the average MAX portfolio in the high β5Y 

quintile (low-high portfolio), generates economically large and statistically significant abnormal returns 

for both VW and EW portfolios relative to the CAPM and the FFC4 + LIQ factor model. 

Interestingly, we also note that both the CAPM alpha and the FFC4 + LIQ alpha for the EW low-

high portfolio are greater in magnitude when controlling for MAX. The bivariate portfolio analysis 

thus indicates that the beta anomaly remains statistically significant after controlling for MAX. 

  

 
39 Using a common sample, we find that both the low-high β5Y portfolio and the low-high MAX portfolio generates 
statistically significant CAPM alpha and a FFC4 + PS alpha for both the EW and VW portfolios.  
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Table 10: Bivariate Portfolio Analysis Sorting on MAX, Then on β5Y          
The table presents the results from a bivariate portfolio analysis on the relation between the abnormal returns in month 
t+1 and the variable β5Y in month t while controlling for MAX. The table presents portfolio characteristics and factor 
model alphas for the average MAX quintile portfolio within each β5Y quintile. We create the average MAX quintile by 
performing a conditional double sort first on MAX, then on β5Y to generate a 5x5 portfolio matrix at the end of each 
month t. We subsequently sum the stocks across the MAX quintiles for each β5Y quintile to create five β5Y-sorted 
portfolios that by construction should be neutralized to MAX. We only include monthly stock observations with 
estimates of both β5Y and MAX for the given month. The table consists of two panels (A and B) and each panel is 
divided into two sections. 
Explanation of sections: “Portfolio Characteristics” presents the time-series mean of the average values of MAX for 
the stocks in each of the β5Y-sorted portfolios (MAX ex-ante), the time-series mean of the average values of β5Y for the 
stocks in each of the β5Y-sorted portfolios (β ex-ante), and the slope coefficient from a regression of VW (EW) portfolio 
excess returns on the VW (EW) market excess returns (β ex-post). “Factor Model Alphas” presents monthly portfolio 
alphas relative to the CAPM (CAPM) and the Fama-French-Carhart 4-Factor model augmented with the liquidity factor 
of Næs, Skjeltorp and Ødegaard (2009) (FFC4 + LIQ). We use the VW (EW) market portfolio as the market factor in 
the factor models when estimating alphas for the VW (EW) portfolios. The numbers in parentheses are t-statistics 
adjusted following Newey and West (1987) using four lags. Our sample contains portfolio returns from Jan. 1990 
through Dec. 2018. Portfolios are rebalanced monthly. 
Explanation of panels: All reported numbers in Panel A are calculated using value-weighted portfolios, while all 
numbers in Panel B are calculated using equal-weighted portfolios.  
General: The column labeled Low-High β5Y refers to a zero-cost, long-short portfolio with a long position in the average 
MAX portfolio in β5Y quintile 1 and a short position in the average MAX portfolio in β5Y quintile 5. 

 
Panel A: Value-Weighted Portfolios 

Value β5Y 1 (Low) β5Y 2 β5Y 3 β5Y 4 β5Y 5 (High) Low-High β5Y 

Portfolio Characteristics 
MAX ex-ante 0.029 0.028 0.027 0.026 0.028 0.001 
β ex-ante 0.520 0.794 0.973 1.169 1.559 -1.039 
β ex-post 0.819 1.004 1.036 1.083 1.227 -0.408 

Factor Model Alphas 
CAPM 0.23 % 0.35 % 0.06 % -0.14 % -0.37 % 0.59 % 

 (0.989) (1.481) (0.311) -(0.802) -(1.823) (1.993) 
FFC4 + LIQ 0.17 % 0.42 % 0.18 % -0.02 % -0.42 % 0.59 % 

 (0.768) (1.894) (0.834) -(0.132) -(2.045) (2.034)        
 

Panel B: Equal-Weighted Portfolios 
Value β5Y 1 (Low) β5Y 2 β5Y 3 β5Y 4 β5Y 5 (High) Low-High β5Y 

Portfolio Characteristics 
MAX ex-ante 0.035 0.035 0.035 0.035 0.036 -0.001 
β ex-ante 0.461 0.782 1.009 1.261 1.717 -1.256 
β ex-post 0.841 0.944 1.025 1.184 1.276 -0.434 

Factor Model Alphas 
CAPM 0.42 % 0.09 % -0.07 % -0.31 % -0.79 % 1.21 % 

 (2.238) (0.446) -(0.350) -(1.453) -(3.471) (4.007) 
FFC4 + LIQ 0.47 % 0.16 % 0.09 % -0.07 % -0.48 % 0.95 % 

 (2.355) (0.725) (0.551) -(0.400) -(2.304) (3.090) 

 

Univariate Portfolio Analysis Sorting on β5Y⊥M 

To test the robustness of our results, we also construct beta-sorted portfolios that are neutralized to 

MAX by sorting stocks into quintile portfolios based on the portion of β5Y that is orthogonal to MAX 

(β5Y⊥M). Table 11 reports the portfolio characteristics and the factor model alphas for the β5Y⊥M-sorted 

portfolios. We note that the methodology successfully sorts stocks into quintile portfolios with low 
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variation in average MAX values and monotonically increasing betas, similar to our bivariate portfolio 

analysis. 

The EW low-high β5Y⊥M portfolio generates a statistically significant CAPM alpha and FFC4 + LIQ 

alpha, but the CAPM alpha and the FFC4 + LIQ alpha is only statistically significant at the 10% level 

for the VW low-high β5Y⊥M portfolio. Comparing the results with the abnormal returns of the VW 

(EW) low-high β5Y portfolio constructed using the same sample (Table 14), we find that controlling 

for MAX resulted in a 21% (19%) reduction in CAPM alpha and a 24% (20%) reduction in FFC4 + 

LIQ alpha. Although controlling for MAX resulted in reduced alphas for the low-high portfolio, we 

note that the abnormal returns of the VW (EW) low-high β5Y⊥M remains statistically significant at the 

10% (5%) level and is not statistically different from the abnormal returns of the VW (EW) low-high 

β5Y portfolio.  As such, we find the results to be consistent with the findings of the bivariate portfolio 

analysis.  

Evaluating the results from our univariate portfolio analysis on β5Y⊥M-sorted portfolios in conjunction 

with the results from the bivariate portfolio analysis, we find that the beta anomaly remains statistically 

significant after controlling for MAX in three out of the four tests we have conducted. We therefore 

conclude that our analysis does not provide strong evidence in support of the theory that lottery 

demand measured by MAX, plays an important role in generating the beta anomaly in our sample.  

Our results deviate substantially from what Bali et al. (2017) find when they conduct the same analyses 

on their US sample. They find no evidence of a beta anomaly after controlling for MAX and report a 

FFC4 + PS alpha for the EW high-low β1Y⊥M portfolio of 0.08% percent, which is both economically 

small and statistically indistinguishable from zero. 
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Table 11: Univariate Portfolio Analysis Sorting on the Orthogonal of β5Y on MAX (β5Y⊥M) 
The table presents the results from a univariate portfolio analysis on the relation between the excess and abnormal 
returns in month t+1 and the portion of β5Y that is orthogonal to MAX in month t.  
The table consists of two panels (A and B) and each panel is divided into two sections. 
Explanation of sections: “Portfolio Characteristics” presents the time-series mean of the average values of MAX for 

the tocks in each of the β5Y⊥M -sorted portfolios (MAX ex-ante), the time-series mean of the average values of β5Y for 

the stocks in each of the β5Y⊥M -sorted portfolios (β ex-ante), and the slope coefficient from a regression of VW (EW) 
portfolio excess returns on the VW (EW) market excess returns (β ex-post). “Factor Model Alphas” presents monthly 
portfolio alphas relative to the CAPM (CAPM) and the FFC4 model augmented with the liquidity factor of Næs, 
Skjeltorp and Ødegaard (2009) (FFC4 + LIQ). We use the VW (EW) market portfolio as the market factor in the factor 
models when estimating alphas for the VW (EW) portfolios. The numbers in parentheses are t-statistics adjusted 
following Newey and West (1987) using four lags. 
Our sample contains portfolio returns from Jan. 1990 through Dec. 2018.  Portfolios are rebalanced monthly. 
Explanation of panels: All reported numbers in Panel A are calculated using value-weighted portfolios, while all 
numbers in Panel B are calculated using equal-weighted portfolios.  

General: The column labeled Low-High β5Y⊥M refers to a zero-cost, long-short portfolio with a long position in quintile 
portfolio 1 and a short position in quintile portfolio 5.        
 

Panel A: Value-Weighted Portfolios 

Value β5Y⊥M 1 (Low) β5Y⊥M 2 β5Y⊥M 3 β5Y⊥M 4 β5Y⊥M 5 (High) Low-High β5Y⊥M 

Portfolio Characteristics 
MAX ex-ante 0.030 0.027 0.025 0.027 0.032 -0.002 
β ex-ante 0.466 0.751 0.947 1.215 1.690 -1.223 
β ex-post 0.756 1.044 1.000 1.118 1.320 -0.564 

Factor Model Alphas 
CAPM 0.26 % 0.28 % 0.09 % -0.04 % -0.37 % 0.63 % 

 (1.096) (1.215) (0.513) -(0.181) -(1.604) (1.865) 
FFC4 + LIQ 0.23 % 0.40 % 0.09 % -0.05 % -0.34 % 0.57 % 

 (1.042) (1.678) (0.484) -(0.202) -(1.402) (1.692)        
 

Panel B: Equal-Weighted Portfolios 

Value β5Y⊥M 1 (Low) β5Y⊥M 2 β5Y⊥M 3 β5Y⊥M 4 β5Y⊥M 5 (High) Low-High β5Y⊥M 

Portfolio Characteristics 
MAX ex-ante 0.038 0.034 0.032 0.034 0.037 0.001 
β ex-ante 0.446 0.763 0.982 1.257 1.782 -1.336 
β ex-post 0.825 0.944 1.023 1.137 1.355 -0.530 

Factor Model Alphas 
CAPM 0.22 % 0.13 % -0.03 % -0.44 % -0.64 % 0.86 % 

 (1.271) (0.764) -(0.154) -(1.962) -(2.790) (2.839) 
FFC4 + LIQ 0.27 % 0.17 % 0.12 % -0.19 % -0.34 % 0.61 % 

 (1.523) (0.981) (0.681) -(0.926) -(1.578) (1.970) 

 

Alternative Measures of Beta 

Bali et al. (2017) use β1Y as their estimate of market beta in their focal analyses. In section 6.3.1, we 

report results demonstrating a weaker correlation between MAX and β5Y (0.20) in our sample than 

what Bali et al. (2017) document between MAX and β1Y (0.30) in their US sample.40 The correlation 

between the variable of interest and the control variable is one of the factors which will determine the 

portfolio composition resulting from a conditional double-sort or a univariate portfolio sort using 

 
40 The monthly Pearson moment correlation between β1Y and MAX has been 0.28 on average in our sample. 
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orthogonal components. To examine whether our deviating findings can be attributed to our use of 

β5Y, we redo our analysis with β1Y as the estimate of beta. 

We report the results of a univariate portfolio analysis on β1Y using only observations that contain 

estimates of both β1Y and MAX in Table D.1 in the appendix. We find that the VW (EW) low-high β1Y 

portfolio generates a FFC4 + LIQ alpha of 0.24% (0.73%) with a corresponding t-statistic of 0.658 

(1.979) and note that the beta anomaly is only statistically significant for the EW portfolio. The results 

of a bivariate analysis on portfolios sorted first on MAX, then on β1Y, are reported in Table D.3 in the 

appendix. We find that after controlling for MAX, the FFC4 + LIQ alpha of the EW low-high 

portfolio is reduced to 0.56% and is only statistically significant at the 10% level. In line with our 

previous results, we find that controlling for MAX does not result in a significant reduction in FFC4 

+ LIQ alpha for the EW low-high portfolio. When also considering that the beta anomaly remains 

economically large and statistically significant at the 10% level for the EW low-high portfolio after 

controlling for MAX, we find the results from the robustness test to be in line with the results from 

our main model. As such, we conclude that our deviating findings are not likely to be a result of 

differing methodologies used to estimate beta.4142  

6.3.4 The Lottery Demand Phenomenon When Controlling for β5Y 

Bivariate Portfolio Analysis 

In the previous section of the report, we demonstrated that the beta anomaly persists after controlling 

for MAX. To further explore the relation between the two variables, we reverse the roles, and proceed 

to assess the relation between MAX and one-month-ahead excess returns, while controlling for beta. 

We begin by performing a bivariate portfolio analysis sorting first on β5Y, then on MAX, and we report 

the results in Table 12 below. A zero-cost portfolio with a long position in the average β5Y portfolio in 

MAX quintile 1 and short position in the average β5Y portfolio in MAX quintile 5 (low-high portfolio) 

does not generate a statistically significant CAPM alpha or FFC4 + LIQ alpha for either the EW or 

VW portfolios. Our results indicate that there is not a statistically significant negative relation between 

MAX and one-month ahead abnormal returns when we control for β5Y. 

 
41 Bali et al. (2017) also conduct a robustness test using an extended sample and find that the high-low β5Y sorted portfolio 
no longer generates statistically significant FFC4 + PS alpha when the portfolio is neutralized to MAX.   
42 In table D.4 in the appendix we report the results from a univariate portfolio analysis sorting on the component of β1Y 
that is orthogonal to MAX. We find the results to be in line with the results from the bivariate portfolio analysis on β1Y 
controlling for MAX.  
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Table 12: Bivariate Portfolio Analysis Sorting on β5Y, Then on MAX 
The table presents the results from a bivariate portfolio analysis on the relation between the abnormal returns in month 
t+1 and the variable MAX in month t while controlling for β5Y. The table presents portfolio characteristics and factor 
model alphas for the average β5Y quintile portfolio within each MAX quintile. We create the average β5Y quintile by 
performing a conditional double sort first on β5Y, then on MAX to generate a 5x5 portfolio matrix at the end of each 
month t. We subsequently sum the stocks across the β5Y quintiles for each MAX quintile to create five MAX-sorted 
portfolios that by construction should be neutralized to β5Y. We only include monthly stock observations with estimates 
of both β5Y and MAX for the given month. The table consists of two panels (A and B) and each panel is divided into 
two sections. 
Explanation of sections: “Portfolio Characteristics” presents the time-series mean of the average values of MAX for 
the stocks in each of the MAX-sorted portfolios (MAX ex-ante), the time-series mean of the average values of β5Y for 
the stocks in each of the MAX-sorted portfolios (β ex-ante), and the slope coefficient from a regression of VW (EW) 
portfolio excess returns on the VW (EW) market excess returns (β ex-post). “Factor Model Alphas” presents monthly 
portfolio alphas relative to the CAPM (CAPM) and the Fama-French-Carhart 4-Factor model augmented with the 
liquidity factor of Næs, Skjeltorp and Ødegaard (2009) (FFC4 + LIQ). We use the VW (EW) market portfolio as the 
market factor in the factor models when estimating alphas for the VW (EW) portfolios. The numbers in parentheses 
are t-statistics adjusted following Newey and West (1987) using four lags. Our sample contains portfolio returns from 
Jan. 1990 through Dec. 2018. Portfolios are rebalanced monthly. 
Explanation of panels: All reported numbers in Panel A are calculated using value-weighted portfolios, while all 
numbers in Panel B are calculated using equal-weighted portfolios.  
General: The column labeled Low-High MAX refers to a zero-cost, long-short portfolio with a long position in the 
average β5Y portfolio in MAX quintile 1 and a short position in the average β5Y portfolio in MAX quintile 5.        
 

Panel A: Value-Weighted Portfolios 
Value MAX 1 (Low) MAX 2 MAX 3 MAX 4 MAX 5 (High) Low-High MAX 

Portfolio Characteristics 
MAX ex-ante 0.017 0.023 0.030 0.038 0.058 -0.042 
β ex-ante 1.046 1.050 1.076 1.078 1.192 -0.146 
β ex-post 0.937 1.011 1.083 1.084 1.296 -0.359 

Factor Model Alphas 
CAPM -0.02 % 0.07 % 0.26 % -0.26 % -0.51 % 0.49 % 

 -(0.137) (0.358) (1.374) -(1.236) -(1.675) (1.370) 
FFC4 + LIQ 0.00 % 0.22 % 0.27 % -0.29 % -0.69 % 0.69 % 

 (0.016) (1.140) (1.309) -(1.359) -(2.145) (1.769)        
 

Panel B: Equal-Weighted Portfolios 
Value MAX 1 (Low) MAX 2 MAX 3 MAX 4 MAX 5 (High) Low-High MAX 

Portfolio Characteristics 
MAX ex-ante 0.016 0.024 0.030 0.039 0.066 -0.050 
β ex-ante 0.999 1.030 1.049 1.064 1.091 -0.092 
β ex-post 0.805 0.942 1.030 1.149 1.362 -0.557 

Factor Model Alphas 
CAPM -0.07 % 0.07 % -0.09 % -0.06 % -0.60 % 0.53 % 

 -(0.442) (0.422) -(0.460) -(0.311) -(2.430) (1.716) 
FFC4 + LIQ 0.10 % 0.29 % 0.16 % 0.00 % -0.49 % 0.60 % 

 (0.725) (2.096) (0.941) -(0.022) -(1.960) (1.907) 
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Univariate Portfolio Analysis Sorting on MAX⊥β  

Analogous to our bivariate portfolio analysis controlling for MAX, we test the robustness of our results 

by also performing a univariate portfolio analysis on the portion of MAX that is orthogonal to β5Y 

(MAX⊥β). The results are presented in Table 13 below. In line with the results from the bivariate 

portfolio analysis, we find that the low-high MAX⊥β portfolio does not generate a statistically 

significant CAPM alpha or FFC4 + LIQ alpha for VW or EW portfolios. The univariate portfolio 

analysis on MAX⊥β hence provides additional evidence suggesting that the lottery demand 

phenomenon as measured by MAX is not statistically significant in our sample after controlling for 

beta.  

The results from our analyses of the relation between MAX and abnormal returns when controlling 

for beta also deviate significantly from the results obtained by Bali et al. (2017) as they document that 

the abnormal returns of the high-low MAX portfolio remain economically large and highly statistically 

significant after controlling for beta. 

6.3.5 Interpretation of the Results from Univariate and Bivariate Portfolio Sorts 

The results from the bivariate portfolio analysis and univariate portfolio analysis sorting on the portion 

of beta that is orthogonal to MAX do not provide evidence in support of the theory that lottery 

demand as measured by MAX plays an important role in generating the documented beta anomaly on 

the OSE for the period 1990-2018. Our results demonstrate that a portfolio that has been long low-

beta stocks and short high-beta stocks, while maintaining a neutral exposure to MAX, has generated 

statistically significant abnormal returns in three out of the four tests conducted using our main model 

sorting on β5Y.  

Furthermore, we demonstrate that the low-high MAX portfolio no longer generates statistically 

significant abnormal returns when the portfolio is constructed to be neutral to beta. We argue that the 

results illustrate that the negative relation observed between MAX and abnormal returns in our sample, 

cannot necessarily solely be attributed to investor demand for lottery-like assets. Moreover, since the 

abnormal returns of the low-high MAX portfolio are not statistically significant after controlling for 

beta, we find that the negative relation between MAX and abnormal returns documented in section 

6.2 of the thesis, cannot be interpreted to illustrate the presence of a statistically significant lottery 

demand phenomenon on the Oslo Stock Exchange. 
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Table 13: Univariate Portfolio Analysis Sorting on the Orthogonal of MAX on β5Y (MAX⊥β) 
The table presents the results from a univariate portfolio analysis on the relation between the excess and abnormal returns 
in month t+1 and the portion of MAX that is orthogonal to β5Y in month t.  
The table consists of two panels (A and B) and each panel is divided into two sections. 
Explanation of sections: “Portfolio Characteristics” presents the time-series mean of the average values of MAX for the 

stocks in each of the MAX⊥β -sorted portfolios (MAX ex-ante), the time-series mean of the average values of β5Y for the 

stocks in each of the MAX⊥β -sorted portfolios (β ex-ante), and the slope coefficient from a regression of VW (EW) 
portfolio excess returns on the VW (EW) market excess returns (β ex-post). “Factor Model Alphas” presents monthly 
portfolio alphas relative to the CAPM (CAPM) and the FFC4 model augmented with the liquidity factor of Næs, Skjeltorp 
and Ødegaard (2009) (FFC4 + LIQ). We use the VW (EW) market portfolio as the market factor in the factor models 
when estimating alphas for the VW (EW) portfolios. The numbers in parentheses are t-statistics adjusted following Newey 
and West (1987) using four lags. Our sample contains portfolio returns from Jan. 1990 through Dec. 2018.  Portfolios are 
rebalanced monthly. 
Explanation of panels: All reported numbers in Panel A are calculated using value-weighted portfolios, while all numbers 
in Panel B are calculated using equal-weighted portfolios.  

General: The column labeled Low-High MAX⊥β refers to a zero-cost, long-short portfolio with a long position in quintile 
portfolio 1 and a short position in quintile portfolio 5.        
 

Panel A: Value-Weighted Portfolios 

Value MAX⊥β 1 (Low) MAX⊥β 2 MAX⊥β 3 MAX⊥β 4 MAX⊥β 5 (High) Low-High MAX⊥β 

Portfolio Characteristics 
MAX ex-ante 0.017 0.023 0.029 0.038 0.062 -0.045 
β ex-ante 1.088 1.030 1.042 1.057 1.190 -0.102 
β ex-post 0.957 1.029 1.037 1.146 1.298 -0.341 

Factor Model Alphas 
CAPM -0.04 % 0.18 % 0.13 % -0.39 % -0.58 % 0.53 % 

 -(0.290) (1.009) (0.666) -(1.521) -(1.691) (1.339) 
FFC4 + LIQ -0.02 % 0.22 % 0.22 % -0.44 % -0.77 % 0.75 % 

 -(0.140) (1.126) (1.097) -(1.701) -(2.127) (1.777)        
 

Panel B: Equal-Weighted Portfolios 

Value MAX⊥β 1 (Low) MAX⊥β 2 MAX⊥β 3 MAX⊥β 4 MAX⊥β 5 (High) Low-High MAX⊥β 

Portfolio Characteristics 
MAX ex-ante 0.017 0.023 0.030 0.038 0.068 -0.051 
β ex-ante 1.095 1.010 1.024 1.033 1.068 0.027 
β ex-post 0.871 0.930 0.972 1.155 1.354 -0.483 

Factor Model Alphas 
CAPM -0.08 % 0.19 % 0.09 % -0.40 % -0.55 % 0.47 % 

 -(0.497) (1.058) (0.486) -(1.820) -(2.146) (1.387) 
FFC4 + LIQ 0.12 % 0.37 % 0.34 % -0.29 % -0.51 % 0.64 % 

 (0.812) (2.333) (1.993) -(1.264) -(1.962) (1.922) 

  

Our results deviate substantially from what Bali et al. (2017) document in the US, but we still find them 

to be reasonable. As discussed in section 2.3, there are many competing explanations for the beta 

anomaly. Given that some other factor than lottery demand measured by MAX generates the anomaly 

in Norway, we would expect the same factor to impact the relation between MAX and returns, given 

that MAX by construction should exhibit some correlation with β5Y.43
  

 
43 The results from a bivariate portfolio analysis using a conditional double sort, or a univariate portfolio analysis on 
orthogonal components cannot be used to determine the “true” causal relation between the sorting variables and returns. 
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6.3.6 FMAX Factor  

The results from section 6.3 illustrate that the abnormal returns of the low-high beta portfolio remain 

statistically significant when portfolios are constructed to have a neutral exposure to MAX. In this 

section, we continue our analysis on the beta anomaly controlling for MAX, but instead controlling 

for portfolio exposure to MAX, we include a MAX factor (FMAX) designed to capture the returns 

associated with lottery demand in our factor models. We proceed to assess to what degree the FMAX 

factor can explain the abnormal returns of the low-high beta portfolio. In Table 14 we present the 

abnormal returns of the β5Y-sorted quintile portfolios, relative to the CAPM, the FFC4 + LIQ, the 

FFC4 + LIQ + FMAX, and the FFC4 + LIQ + FIVOL factor models. 

We find that when we augment the FFC4 + LIQ factor model with the FMAX factor, the abnormal 

returns for the VW and EW low-high β5Y portfolios are no longer statistically significant. The VW 

(EW) low-high β5Y portfolio generates a statistically significant FFC4 + LIQ alpha of 0.76% (0.73%) 

with a corresponding t-statistic of 2.045 (2.416). When we add the FMAX factor to the model, we find 

that the VW (EW) low-high β5Y portfolio generates a FFC4 + LIQ + FMAX alpha of 0.48% (0.45%) 

with a corresponding t-statistic of 1.160 (1.374), which is not statistically significant.  

We evaluate the robustness of our results and report the abnormal returns of the β1Y-sorted quintile 

portfolios in Table D.1 in the appendix. In line with our main model, we find that the EW low-high 

β1Y portfolio has not generated statistically significant alpha when returns are evaluated using the FFC4 

+ LIQ + FMAX model.   

Bali et al. (2017) find that the returns associated with the beta anomaly are no longer economically 

large or statistically significant when measured against the FFC4 + PS model augmented with the 

FMAX factor. They report FFC4 + PS + FMAX alpha of 0.06% for the EW high-low β1Y portfolio. 

Although our results are in line with regards to reduced statistical significance, we note the abnormal 

returns of the low-high portfolio remain economically large in our sample. Augmenting the FFC4 + 

LIQ model with the FMAX factor, we find that alphas decline from 0.73% to 0.49% for our EW low-

high β5Y portfolio, which illustrates a much weaker effect than what Bali et al. (2017) report. In their 

sample, augmenting the FFC4 + PS model with the FMAX factor results in alphas increasing from -

0.49% to 0.06% for the high-low β1Y portfolio.   

 
Our model only controls for MAX and our measure of beta, and there could be omitted variables that would alter the 
observed relation if included in the analysis.  
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Table 14: Univariate Portfolio Analysis Sorting on β5Y (Common Sample) 
The table presents the results of a univariate portfolio analysis on the relation between excess and abnormal returns in 
month t+1 and the variable β5Y in month t. At the end of each month t, all stocks with an estimate of both β5Y and MAX 
are sorted into quintile portfolios based on an ascending ordering of β5Y. The table consists of two panels (A and B) and 
each panel is divided into three sections. Explanation of sections: “Portfolio Characteristics” presents the time-series 
mean of the monthly average MAX for the stocks in each quintile portfolio (MAX ex-ante), the time-series mean of the 
monthly average β5Y for the stocks in each quintile portfolio (β ex-ante), and the slope coefficient from a regression of 
VW (EW) portfolio excess returns on the VW (EW) market excess returns (β ex-post). Factor Model Alphas” presents 
portfolio alphas relative to the CAPM (CAPM), the Fama-French-Carhart four-factor model (FFC4) model augmented 
with the liquidity factor of Næs, Skjeltorp and Ødegaard (2009) (FFC4 + LIQ), the FFC4 + LIQ model augmented with 
a lottery demand factor FMAX and the FFC4 + LIQ model augmented with an IVOL factor FIVOL. We use the VW 
(EW) market portfolio as the market factor in the factor models when estimating alphas for VW (EW) portfolios. The 
numbers in parentheses are t-statistics adjusted following Newey and West (1987) using four lags. See section 5.2.4 for 
the construction of the FMAX and FIVOL factors. Explanation of panels: All reported numbers in Panel A are 
calculated using value-weighted portfolios, while all numbers in Panel B are calculated using equal-weighted portfolios.  
General: The column labeled Low-High β5Y refers to a zero-cost, long-short portfolio with a long position in quintile 
portfolio 1 and a short position in quintile portfolio 5. Our sample contains portfolio returns from Jan. 1990 through 
Dec. 2018. Portfolios are rebalanced monthly. 

       

Panel A: Value-Weighted Portfolios 

Value β5Y 1 (Low) β5Y 2 β5Y 3 β5Y 4 β5Y 5 (High) Low-High β5Y  

Portfolio Characteristics 

MAX ex-ante 0.025 0.025 0.025 0.029 0.036 -0.011 

β ex-ante 0.460 0.773 0.979 1.269 1.740 -1.280 

β ex-post 0.728 1.030 0.975 1.136 1.430 -0.702 

Factor Model Alphas  

CAPM 0.40 % -0.02 % 0.23 % -0.18 % -0.40 % 0.80 % 

 (1.848) -(0.090) (1.284) -(0.803) -(1.509) (2.187) 

FFC4 + LIQ 0.33 % 0.08 % 0.36 % -0.15 % -0.43 % 0.76 % 

 (1.634) (0.368) (1.962) -(0.716) -(1.524) (2.045) 

FFC4 + LIQ + FMAX 0.25 % 0.06 % 0.44 % -0.05 % -0.22 % 0.48 % 

 (1.248) (0.257) (2.154) -(0.239) -(0.719) (1.160) 

FFC4 + LIQ + FIVOL 0.21 % 0.16 % 0.38 % -0.04 % -0.13 % 0.34 % 

 (1.098) (0.701) (1.715) -(0.200) -(0.497) (0.976) 

       
Panel B: Equal-Weighted Portfolios 

Value β5Y 1 (Low) β5Y 2 β5Y 3 β5Y 4 β5Y 5 (High) Low-High β5Y  

Portfolio Characteristics 

MAX ex-ante 0.031 0.033 0.033 0.037 0.043 -0.013 

β ex-ante 0.412 0.760 0.986 1.267 1.804 -1.392 

β ex-post 0.714 0.936 1.014 1.216 1.405 -0.691 

Factor Model Alphas 

CAPM 0.30 % -0.04 % 0.14 % -0.41 % -0.76 % 1.07 % 

 (1.941) -(0.243) (0.778) -(1.619) -(3.175) (3.544) 

FFC4 + LIQ 0.30 % 0.07 % 0.32 % -0.23 % -0.43 % 0.73 % 

 (1.943) (0.431) (1.812) -(0.979) -(1.930) (2.416) 

FFC4 + LIQ + FMAX 0.22 % 0.03 % 0.33 % -0.11 % -0.23 % 0.45 % 

 (1.423) (0.155) (1.802) -(0.459) -(0.893) (1.374) 

FFC4 + LIQ + FIVOL 0.28 % -0.04 % 0.31 % -0.04 % -0.21 % 0.49 % 

 (1.731) -(0.256) (1.663) -(0.198) -(0.845) (1.516) 
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Bali et al. (2017) use the explanatory power of the FMAX factor on the abnormal returns of the beta-

sorted portfolios as evidence in support of their theory that lottery demand for stocks generates the 

beta anomaly. Although we also find that the low-high beta portfolio has not generated statistically 

significant abnormal returns when we augment the FFC4 + LIQ model with the FMAX factor, we do 

not interpret the results as illustrating a causal relation between lottery demand and the beta anomaly. 

Firstly, we note that the observed effect of including the FMAX factor in the model has a much smaller 

effect on the magnitude of the abnormal returns in our sample, relative to their study. Furthermore, 

augmenting factor models with a FMAX factor provides information regarding the correlation of 

returns associated with lottery demand and returns associated with the beta anomaly. As we, in contrast 

to Bali et al. (2017), find no evidence in support of the theory that lottery demand generates the beta 

anomaly when we analyze the performance of beta-sorted portfolios with neutral exposure to MAX, 

we argue that we do not have a basis for interpreting the observed correlation in returns as illustrating 

a causal relation.  

By construction, MAX should correlate positively with risk measures such as total volatility, beta and 

idiosyncratic volatility as it measures extreme movements in stock prices (although only positive). Risky 

stocks tend to be risky on several measures, and we would hence expect some correlation in the returns 

of low-high portfolios constructed using different risk measures. To test our hypothesis, we construct 

an IVOL factor (FIVOL) analogous to the FMAX factor. We report the results from augmenting the 

FFC4 + LIQ factor model with the FIVOL factor in Table 14, above. We find that neither the VW 

nor the EW low-high β5Y portfolio generates statistically significant abnormal returns when returns are 

measured against the FFC4 + LIQ + FIVOL model, and we find that the FIVOL factor is equally 

capable of explaining the abnormal returns associated with the beta anomaly as the FMAX factor.4445 

As such, the documented correlation between FMAX and the abnormal returns associated with the 

beta anomaly cannot, by itself, be used to infer that lottery demand plays an important role in 

generating the beta anomaly. Hence, we find that our conclusion from the bivariate portfolio analysis 

remains valid, and we argue that our analyses do not provide any conclusive evidence in support of 

 
44 The monthly Person correlation between MAX and IVOL has been 0.87 on average in our sample. This implies that the 
portfolios constructed using IVOL and MAX will be very similar with regards to stock composition, and portfolio returns 
will consequently exhibit a strong correlation. 
45 Due to the explanatory power of the FIVOL factor on the abnormal returns associated with the beta anomaly, we also 
conduct a bivariate portfolio analysis sorting first on IVOL then β5Y and a univariate portfolio analysis on the portion of 
β5Y that is orthogonal to IVOL. The results are presented in appendix E. In short, the results indicate that the beta anomaly 
persists after controlling for IVOL. 
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the theory that lottery demand as measured by MAX plays an important role in generating the beta 

anomaly on the Oslo Stock Exchange 

7 Limitations and Further Research  

In this section, we briefly review the most apparent limitations of our thesis and suggest areas for 

further research. In our view, the most obvious candidate for interesting further research is an analysis 

of the trading costs associated with exploiting the beta anomaly on the OSE. In Appendix F, we 

provide a short discussion on the topic and assess the portfolio turnover for the beta-sorted and MAX-

sorted quintile portfolios. We believe that the portfolio turnover can serve as a very rough estimate of 

the trading costs, but a more comprehensive analysis is needed to reveal the actual trading costs 

associated with such a strategy.  

Controlling for Additional Factors 

An important limitation of our thesis is that we have not replicated all the analyses presented in Bali et 

al. (2017). Most notably, Bali et al. (2017) conduct multiple bivariate portfolio sorts to control for other 

variables documented to have explanatory power in predicting future stock returns. They use these to 

strengthen their lottery demand-based explanation of the beta anomaly as the beta anomaly remains 

statistically significant when controlling all variables, except for MAX. They also document that the 

inclusion of MAX in a Fama-MacBeth (1973) regression controlling for the other variables results in 

a significant positive relation between beta and stock returns. Performing a similar analysis on the 

Norwegian data sample would be interesting. However, we have not had the capacity, nor the required 

data on the Norwegian stock market to estimate the numerous variables documented to predict future 

stock returns in the literature. As such, we emphasize that our results should be considered in 

conjunction with the work of Bali et al. (2017) as an out-of-sample robustness test evaluating the 

applicability of their findings to the Oslo Stock Exchange.  

Degree of Institutional Ownership 

Another limitation of our paper is that we do not examine the beta anomaly or the lottery demand 

phenomenon among stocks with a varying degree of institutional ownership.46 Bali et al. (2017) find 

that both the beta anomaly and the lottery demand phenomenon is strong (weak) among stocks with 

a low (high) degree of institutional ownership and argue that this is due to individuals being more 

 
46 The analysis was omitted due to the lack of available data on the degree of institutional ownership of the stocks listed on 
the OSE. 
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prone to exhibit lottery-behavior than institutions. In that regard, it would be interesting to examine 

whether the same is true on the OSE as it perhaps could provide increased clarity as to why MAX fails 

to explain the beta anomaly in our sample. Even though it would not solve the challenge of MAX 

being correlated with other measures known to predict future returns, a result indicating that the lottery 

demand phenomenon is stronger among stocks with a low degree of institutional ownership on the 

OSE would support the theory that MAX is a good proxy of investors demand for lottery-like assets. 

New Proxies for Lottery Demand 

As we have discovered throughout the process of writing this thesis, interpreting our results in a 

statistically correct manner when MAX is used as a proxy for lottery demand is challenging as MAX 

correlates with other factors which themselves correlate with future stock returns. For example, Bruno 

and Haug (2018) prove mathematically that equity IVOL should be negatively correlated with expected 

equity returns in the cross-section. In our sample, the Pearson correlation between MAX and IVOL 

has been 0.87 on average, illustrating that the variables are highly correlated. Consequently, an observed 

negative relation between MAX and future returns cannot conclusively be attributed to lottery demand 

from investors. However, we still find the lottery demand-based explanation of the beta anomaly to 

be intriguing, and further research on the subject using new and possibly creative measures of lottery 

demand would, in our view, be very interesting. In particular, measures that do not exhibit a strong 

correlation with variables known to have explanatory power in predicting future stock returns would 

be of high interest. 

8 Conclusion 

The high (low) abnormal returns of stocks with low (high) beta – the beta anomaly – is the oldest 

and one of the most robust stock market anomalies documented in empirical asset pricing research. 

From the 1970s to present, there have been numerous efforts to explain the phenomenon. In this 

thesis, we test the lottery demand-based explanation proposed by Bali et al. (2017) by replicating 

their paper on a Norwegian data sample. We examine the presence of both the beta anomaly and the 

lottery demand phenomenon before we assess whether lottery demand plays an important role in 

generating the beta anomaly in our sample. 

By examining the performance of monthly quintile portfolios sorted on an ascending ordering of beta, 

we find strong evidence suggesting that there has been a beta anomaly on the Oslo Stock Exchange in 

the period 1990-2018. A value-weighted (equal-weighted) portfolio comprised of the twenty percent 
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of the stocks on the OSE with the lowest beta each month would have produced cumulative excess 

returns of 1241% (692%) from 1990 to 2018. A corresponding portfolio comprised of the twenty 

percent of the stocks on the Oslo Stock Exchange with the highest beta would only have generated 

cumulative excess returns of 6% (22%) over the same period. 

To examine the beta anomaly, we sort the stocks in our sample into quintile portfolios based on an 

ascending ordering of market beta. We find that a zero-cost portfolio with a long position in the low-

beta quintile portfolio and a short position in the high-beta quintile portfolio (low-high beta portfolio) 

generates economically large and statistically significant positive abnormal returns relative to the 

CAPM. The results are robust across various time periods, data filter variations, and portfolio 

weighting schemes. We also demonstrate that a value-weighted, low-high beta portfolio generates 

economically large and statistically significant abnormal returns relative to the Fama and French (1993) 

and Carhart (1997) four-factor model (FFC4) augmented with the liquidity factor of Næs, Skjeltorp 

and Ødegaard (2009) (FFC4 + LIQ). The abnormal returns are, however, statistically insignificant for 

the corresponding equal-weighted portfolio, and our robustness tests illustrate that the statistical 

significance of the beta anomaly relative to the FFC4 + LIQ factor model is sensitive to our choice of 

time period and data filters. Even though we are not able to demonstrate the beta anomaly relative to 

the FFC4 + LIQ model in an entirely uncontestable manner, our combined results strongly indicate 

that there is a beta anomaly on the Oslo Stock Exchange. 

Following Bali et al. (2017), we use a variable MAX, defined as the average of the five highest daily 

returns over the past month, as a proxy for a stock’s lottery demand. We validate that MAX is an 

accurate proxy of lottery demand on the Oslo Stock Exchange relative to Kumar’s (2009) definition 

by demonstrating that quintile portfolios constructed to be monotonically increasing in MAX are also 

monotonically increasing in idiosyncratic volatility and idiosyncratic skewness, and monotonically 

decreasing in average stock price. 

The lottery demand phenomenon refers to the high (low) abnormal returns of stocks that experience 

a low (high) amount of lottery demand-price pressure. To analyze the relation between MAX and one-

month-ahead excess returns, we sort the stocks in our sample into quintile portfolios based on an 

ascending ordering of MAX. We find that a zero-cost portfolio with a long position in the low-MAX 

quintile portfolio and a short position in the high-MAX quintile portfolio (low-high MAX portfolio) 

generates positive and economically large abnormal returns relative to the CAPM. The abnormal 

returns are only statistically significant at the 10% level. However, we find that both a value-weighted 
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and an equal-weighted low-high MAX portfolio generates economically large and statistically 

significant alphas relative to the FFC4 + LIQ model. The results are generally robust to variations in 

data filters, but not across time periods. We therefore argue that our results strongly indicate that there 

is a negative relation between MAX and future abnormal returns in our sample, but the ambiguous 

results from our robustness tests prevent us from concluding with great certainty.  

We test the lottery demand-based explanation of the beta anomaly by analyzing the returns of the beta 

sorted portfolios while controlling for MAX using three different methodologies. In short, we find 

very limited evidence suggesting that lottery demand measured by MAX plays an important role in 

generating the beta anomaly in our sample. A bivariate portfolio analysis demonstrates that controlling 

for MAX has a limited impact on the abnormal returns of the low-high beta portfolio, and a univariate 

portfolio analysis on the portion of beta that is orthogonal to MAX yields similar results. We find that 

in three out of the four tests conducted in the univariate and bivariate portfolio analyses, the abnormal 

returns of the low-high beta portfolio remain statistically significant despite the portfolio being 

neutralized to MAX.  

When we augment the FFC4 + LIQ factor model with a lottery demand factor FMAX, we find that 

the abnormal returns of the low-high beta portfolio are no longer statistically significant. However, the 

abnormal returns remain economically large, and we demonstrate that an IVOL factor constructed 

analogously to the FMAX factor is equally capable of explaining the abnormal returns associated with 

the beta anomaly as FMAX. Seen in conjunction with the results from the bivariate portfolio analysis 

and the univariate portfolio analysis sorting on the component of beta that is orthogonal to MAX, we 

find that our analyses do not provide any conclusive evidence in favor of the lottery-demand 

explanation of the beta anomaly. 

When we reverse the roles of MAX and beta, we find that the low-high MAX portfolio no longer 

generates statistically significant abnormal returns when the portfolio is constructed to be neutral to 

beta. The results hold for all four conducted tests and suggest that the negative relation between MAX 

and abnormal returns documented in our sample not necessarily can be attributed to investor demand 

for lottery-like assets. As such, we believe our analyses illustrate a potential challenge concerning MAX 

as a measure of lottery demand. Moreover, since the abnormal returns of the low-high MAX portfolio 

are statistically insignificant after controlling for beta, we argue that the negative relation documented 

between MAX and abnormal returns in our thesis cannot be interpreted to demonstrate a statistically 

significant lottery demand phenomenon on the Oslo Stock Exchange.  
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In conclusion, our thesis documents the presence of a statistically significant beta anomaly on the Oslo 

Stock Exchange. However, we do not find conclusive evidence of a lottery demand phenomenon in 

Norway, and the documented beta anomaly in our sample does not appear to be a manifestation of 

investors’ demand for lottery-like assets as measured by MAX. As such, the anomaly remains largely 

unexplained, and the most interesting finding in this thesis is, perhaps, that the moral of the legendary 

fable, The Tortoise and the Hare, appears to also apply to investments on the Oslo Stock Exchange: 

 

 Slow but steady wins the race 
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Appendices 

Appendix A: Descriptive Statistics  

Table A.1: Summary Statistics of Filtered Data    

The table presents summary statistics for the observations in our filtered dataset. The data sample was retrieved from 

NHH’s Børsprosjektet and covers the period from Jan. 1985 through Dec. 2018. Panel A presents summary statistics for 

the daily data while Panel B presents summary statistics for the monthly data. Generic is a collective variable equal to the 

last available daily closing price. ReturnAdjGeneric computes the nominal simple returns adjusted for dividends, stock 

splits and reverse splits. MCAP equals the securities’ market capitalization computed as the product of SharesIssued and 

Generic. ShareIssued represents the number of outstanding shares, while OffShareTurnover equals the number of officially 

traded shares for the given day (month) in the daily (monthly) dataset.  

      
Panel A: Daily Data 

Variable N Mean SD Min Max 

Generic 1,447,685 97.44 181.47 1.00 4,900.00 

ReturnAdjGeneric 1,447,685 0.00 0.04 -0.97 4.48 

SharesIssued 1,447,685 96,145,093 273,865,647 40,500 8,899,016,805 

MCAP 1,447,685 5,361,859,792 24,181,700,485 1,238,328 682,689,344,752 

OffShareTurnover 1,123,321 515,893 3,262,448 1 469,322,211 

      
Panel B: Monthly Data 

Variable N Mean SD Min Max 

Generic 70,071 97.56 182.41 1.00 3,960.00 

ReturnAdjGeneric 70,071 0.01 0.16 -0.97 8.24 

SharesIssued 70,071 95,533,950 271,484,096 40,500 8,899,016,805 

MCAP 70,071 5,334,997,041 24,118,812,261 1,793,082 631,352,126,394 

OffShareTurnover 69,260 8,129,068 47,955,585 -1,946,722,005 J 1,989,745,188 
J There are four monthly stock observations in the monthly dataset with a negative value of OffShareTurnover. We do not, 

however, rely on the monthly values of OffShareTurnover for any calculations, as all turnover calculations in this paper are 

based on the daily observations of OffShareTurnover which we find to be correct. As the corresponding monthly 

observations of Generic, ReturnAdjGeneric and SharesIssued are also correct for the stocks with the negative monthly values 

of OffShareTurnover, we do not remove the observations. 
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Table A.2: Summary Statistics of Variables 
The table presents summary statistics for all the estimated variables used in this thesis. The data sample runs from Jan. 
1990 through Dec. 2018. β5Y, β1Y and βMSCI are estimates of beta, MAX is a proxy for lottery demand, IVOL refers to 

idiosyncratic volatility and ISKEW refers to idiosyncratic skewness. β5Y⊥M is the component of β5Y orthogonal to MAX, 

β1Y⊥M is the component of β1Y orthogonal to MAX, β5Y⊥IVOL is the component of β5Y orthogonal to IVOL and MAX⊥β 
is the component of MAX orthogonal to β5Y. 

 
Variable N Mean SD Min Max 

β5Y 44354 0.895 0.581 -2.277 6.322 

β1Y 35731 0.866 0.504 -2.177 4.902 

βMSCI 44344 0.775 0.732 -4.947 5.497 

MAX 43528 0.037 0.028 -0.003 1.147 

IVOL 43528 0.025 0.019 0.000 0.812 

ISKEW 43528 0.218 0.726 -3.736 4.310 

β5Y⊥M 32132 0.839 0.574 -2.677 5.945 

β1Y⊥M 34675 0.639 0.487 -2.842 4.229 

β5Y⊥IVOL 32132 0.832 0.590 -3.249 6.105 

MAX⊥β5 32132 0.026 0.027 -0.069 1.138 

 

 

Table A.3: Average Monthly Cross-Sectional Correlation Between Variables 
The table presents the time-series average of the monthly cross-sectional Person product-moment correlation between 
the variables. The data sample runs from Jan. 1990 through Dec. 2018. 
β5Y, β1Y and βMSCI are estimates of market beta, MAX is a proxy for lottery demand, IVOL refers to idiosyncratic volatility 

and ISKEW refers to idiosyncratic skewness. β5Y⊥M is the component of β5Y orthogonal to MAX, β1Y⊥M is the 

component of β1Y orthogonal to MAX, β5Y⊥IVOL is the component of β5Y orthogonal to IVOL and MAX⊥β is the 
component of MAX orthogonal to β5Y. 

   β5Y β1Y βMSCI MAX IVOL ISKEW β5Y⊥M β1Y⊥M β5Y⊥IVOL MAX⊥β 

β5Y 1.00 0.56 0.70 0.20 0.13 0.04 0.96 0.51 0.95 0.00 

β1Y 0.56 1.00 0.37 0.28 0.17 0.03 0.51 0.94 0.50 0.18 

βMSCI 0.70 0.37 1.00 0.11 0.05 0.02 0.63 0.35 0.62 -0.03 

MAX 0.20 0.28 0.11 1.00 0.87 0.30 0.00 0.00 0.00 0.96 

IVOL 0.13 0.17 0.05 0.87 1.00 0.19 -0.04 -0.08 -0.04 0.85 

ISKEW 0.04 0.03 0.02 0.30 0.19 1.00 -0.02 -0.06 -0.02 0.29 

β5Y⊥M 0.96 0.51 0.63 0.00 -0.04 -0.02 1.00 0.53 0.99 -0.20 

β1Y⊥M 0.51 0.94 0.35 0.00 -0.08 -0.06 0.53 1.00 0.52 -0.09 

β5Y⊥IVO

L 0.95 0.50 0.62 0.00 -0.04 -0.02 0.99 0.52 1.00 -0.20 

MAX⊥β 0.00 0.18 -0.03 0.96 0.85 0.29 -0.20 -0.09 -0.20 1.00 
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Table A.4: Top 20 most frequent companies in portfolios by sort variable 
The table presents the company names of the top 20 most frequent stocks in quintile portfolio 1 (Panel A) and quintile portfolio 5 (Panel B) in the different univariate 
analyses. Our sample contains portfolio returns from Jan. 1990 through Dec. 2018.  The columns refer to the different sorting variables used in the univariate portfolio 
sorts. 

     

Panel A: Quintile Portfolio 1 

  β5Y β1Y βMSCI MAX 

1 Arendals Fossekompani Sparebanken Møre Sparebanken Øst Sparebanken Møre 

2 Voss Veksel- og Landmandsbank Hafslund ser. B Arendals Fossekompani Orkla 

3 Indre Sogn Sparebank Hafslund ser. A SpareBank 1 BV SpareBank 1 SMN 

4 Sparebanken Sør SpareBank 1 Nord-Norge Sandsvær Sparebank SpareBank 1 Nord-Norge 

5 SpareBank 1 BV SpareBank 1 SR-Bank Totens Sparebank Hafslund ser. B 

6 SpareBank 1 Ringerike Hadeland Sparebanken Øst Aurskog Sparebank SpareBank 1 SR-Bank 

7 Byggma SpareBank 1 SMN Norwegian Car Carriers Sparebanken Vest 

8 Aurskog Sparebank Sandnes Sparebank TTS Group Norsk Hydro 

9 Sandsvær Sparebank Sparebanken Vest Voss Veksel- og Landmandsbank Sparebanken Øst 

10 Melhus Sparebank Olav Thon Eiendomsselskap Indre Sogn Sparebank Hafslund ser. A 

11 Sparebanken Øst Ekornes Byggma DNB 

12 Rieber & Søn Totens Sparebank SpareBank 1 Ringerike Hadeland Olav Thon Eiendomsselskap 

13 Gyldendal Gjensidige NOR Sparebank Skue Sparebank Sandnes Sparebank 

14 Skue Sparebank Bolig- og Næringsbanken Gyldendal Kongsberg Gruppen 

15 Sparebanken Vest Kverneland Hol Sparebank Veidekke 

16 Hol Sparebank AF Gruppen NRC Group Odfjell ser. A 

17 Totens Sparebank Odfjell ser. A Rieber & Søn Totens Sparebank 

18 AF Gruppen Kongsberg Gruppen DNO Bonheur 

19 Tide NextGenTel Holding AF Gruppen Bolig- og Næringsbanken 

20 SpareBank 1 Østfold Akershus Goodtech Sparebanken Sør Telenor 
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Panel B: Quintile Portfolio 5 

  β5Y β1Y βMSCI MAX 

1 Petroleum Geo-Services Petroleum Geo-Services Norske Skogindustrier DNO 

2 Subsea 7 Subsea 7 Petroleum Geo-Services Jinhui Shipping and Transportation 

3 Storebrand TGS-NOPEC Geophysical Company Atea Techstep 

4 DNO Norsk Hydro Eltek Solon Eiendom 

5 Jinhui Shipping and Transportation DNO Storebrand NRC Group 

6 Eltek Dolphin Drilling Schibsted ser. A Apptix 

7 NCL Holding Akastor SAS Norge B Hexagon Composites 

8 Akastor Frontline Royal Caribbean Cruises Reach Subsea 

9 Tandberg Data Storebrand Nordic Semiconductor Petroleum Geo-Services 

10 Kongsberg Automotive Prosafe Jinhui Shipping and Transportation Hiddn Solutions 

11 Questerre Energy Corporation Tandberg Subsea 7 Frontline 

12 Atea DNB Elkem Navamedic 

13 TGS-NOPEC Geophysical Company Equinor SAS AB Funcom 

14 Norsk Hydro Questerre Energy Corporation Kongsberg Automotive Petrolia 

15 Yara International Atea Frontline REC Silicon 

16 SAS Norge B Seadrill Norsk Hydro Rocksource 

17 Elkem NCL Holding Hiddn Solutions Opticom 

18 Dolphin Drilling REC Silicon Tandberg EMS Seven Seas 

19 Ocean Rig Golden Ocean Group Tandberg Data Questerre Energy Corporation 

20 Songa Offshore Royal Caribbean Cruises BW Offshore Limited Incus Investor 
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Appendix B: The Beta Anomaly 

Figure B.1: Cumulative Excess Returns of Quintile Portfolios Sorted on β1Y 
At the end of each month t, all stocks are sorted into quintile portfolios based on an ascending ordering of β1Y and the 
portfolio excess returns are calculated for month t +1. The figure presents the historical cumulative excess returns (in 
NOK) of a NOK 1 investment in each of the quintile portfolios from Jan. 1990 through Dec. 2018. The quintile 
portfolios are rebalanced monthly, all dividends and cash payouts are assumed to be reinvested and the return calculation 
assumes no transaction costs. The Portfolio i in the figure correspond to the β1Y-sorted quintile portfolio i, while Market 
VW (EW) illustrates the value-weighted (equal-weighted) excess return of a portfolio consisting of all the stocks in our 
filtered dataset. Panel A presents the cumulative excess returns of the value-weighted β1Y quintile portfolios and panel 
B presents the cumulative excess returns of the equal-weighted β1Y quintile portfolios.  
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Table B.1: Univariate Portfolio Analysis Sorting on β1Y 
The table presents the results of a univariate portfolio analysis on the relation between excess and abnormal returns in 
month t+1 and the variable β1Y in month t. At the end of each month t, all stocks are sorted into quintile portfolios 
based on an ascending ordering of β1Y. The table consists of two panels (A and B) and each panel is divided into three 
sections. 
Explanation of sections: “Portfolio Characteristics” presents the time-series mean number of stocks in each quintile 
portfolio (Portfolio length), the time-series mean portfolio market share (calculated as the sum of the market 
capitalization within each portfolio divided by total market capitalization) for each month t (Market share), the time-
series mean of the monthly average β1Y for the stocks in each quintile portfolio (β ex-ante), and the slope coefficient 
from a regression of VW (EW) portfolio excess returns on the VW (EW) market excess returns (β ex-post). “Portfolio 
Sharpe Ratio” presents the time-series mean monthly portfolio excess returns in month t+1 (R), the standard deviation 
of monthly portfolio excess returns in month t+1 (SD), and an annualized portfolio Sharpe ratio (SR). “Factor Model 
Alphas” presents monthly portfolio alphas relative to the CAPM (CAPM), the Fama-French 3-Factor model (FF3), the 
Fama-French-Carhart 4-Factor model (FFC4) and the FFC4 model augmented with the liquidity factor of Næs, Skjeltorp 
and Ødegaard (2009) (FFC4 + LIQ). We use the VW (EW) market portfolio as the market factor in the factor models 
when estimating alphas for VW (EW) portfolios. The numbers in parentheses are t-statistics adjusted following Newey 
and West (1987) using four lags.  
Explanation of panels: All reported numbers in panel A are calculated using value-weighted portfolios, while all 
numbers in panel B are calculated using equal-weighted portfolios.  
General: The column labeled Low-High β1Y refers to a zero-cost, long-short portfolio with a long position in quintile 
portfolio 1 and a short position in quintile portfolio 5. Our sample contains portfolio returns from Jan. 1990 through 
Dec. 2018. Portfolios are rebalanced monthly. 

       
Panel A: Value-Weighted Portfolios 

Value β1Y 1 (Low) β1Y 2 β1Y 3 β1Y 4 β1Y 5 (High) 
Low-High 

β1Y  

Portfolio Characteristics 

Portfolio length 21 21 20 21 21  

Market share 5% 10% 17% 32% 36%  

β ex-ante 0.360 0.660 0.873 1.117 1.548 -1.188 

β ex-post 0.666 0.901 0.954 1.061 1.433 -0.768 

Portfolio Sharpe Ratio 

R 0.50% 0.43% 0.63% 0.33% 0.40% 0.10% 

SD 4.91% 6.26% 6.51% 7.16% 9.52% 7.47% 

SR 0.354 0.238 0.335 0.161 0.147 0.046 

Factor Model Alphas 

CAPM 0.18% -0.01% 0.16% -0.19% -0.30% 0.47% 

 (0.922) -(0.057) (0.846) -(1.013) -(1.013) (1.258) 

FF3 0.08% -0.11% 0.18% -0.18% -0.36% 0.44% 

 (0.441) -(0.588) (0.907) -(0.893) -(1.120) (1.096) 

FFC4 0.08% -0.10% 0.15% -0.07% -0.20% 0.29% 

 (0.444) -(0.508) (0.773) -(0.373) -(0.607) (0.705) 

FFC4 + LIQ 0.08% -0.10% 0.13% -0.07% -0.25% 0.33% 

 (0.431) -(0.502) (0.674) -(0.367) -(0.807) (0.879) 
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Panel B: Equal-Weighted Portfolios 

Value β1Y 1 (Low) β1Y 2 β1Y 3 β1Y 4 β1Y 5 (High) 
Low-High 

β1Y 

Portfolio Characteristics 

Portfolio length 21 21 20 21 21  

Market share 5% 10% 17% 32% 36%  

β ex-ante 0.343 0.649 0.869 1.117 1.607 -1.263 

β ex-post 0.732 0.960 1.072 1.206 1.579 -0.847 

Portfolio Sharpe Ratio 

R 0.65% 0.64% 0.59% 0.67% 0.14% 0.51% 

SD 5.30% 6.54% 7.27% 8.13% 10.83% 8.22% 

SR 0.424 0.340 0.280 0.286 0.044 0.215 

Factor Model Alphas 

CAPM 0.12% -0.05% -0.19% -0.20% -1.00% 1.12% 

 (0.603) -(0.284) -(0.981) -(0.973) -(3.296) (2.831) 

FF3 0.23% 0.09% 0.03% 0.01% -0.69% 0.92% 

 (1.346) (0.536) (0.185) (0.065) -(2.296) (2.312) 

FFC4 0.16% 0.05% 0.03% 0.07% -0.49% 0.65% 

 (0.934) (0.307) (0.141) (0.344) -(1.530) (1.597) 

FFC4 + LIQ 0.16% 0.03% -0.04% 0.00% -0.60% 0.76% 

 (0.936) (0.158) -(0.210) (0.020) -(2.100) (2.063) 
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Univariate Portfolio Analysis Sorting on βMSCI 

In Table B.2 we report the results from a univariate portfolio analysis sorting on βMSCI and using the 

MSCI World Index in NOK as the market factor in the factor models. We do not require the low-high 

βMSCI portfolio to generate statistically significant abnormal returns to establish the presence of a beta 

anomaly in Norway, as we are mostly interested in confirming the anomaly relative to a country specific 

index, which is common practice in the literature. We report the results as we find it interesting to 

assess beta-sorted portfolios from an international perspective. With the development of online 

trading, even retail investors now have easy access to international capital markets and according to 

the Norwegian Government, 39.3% of company shares listed on the Oslo Stock Exchange were owned 

by foreign investors (Oslo Børs, 2019). Without diving into a comprehensive discussion on 

benchmarking, we argue that the choice of benchmark to use as a proxy for the market portfolio is not 

obvious. 

We find that when sorting our stocks into quintile portfolios based on βMSCI, we find no evidence of a 

beta anomaly. The CAPM alpha of the VW (EW) low-high βMSCI portfolio is economically large but 

not statistically significant, while the FFC4 + LIQ alpha is neither economically large nor statistically 

significant. Although we find the results to be interesting, a more comprehensive analysis on the 

potential causes of the results lies beyond the scope of this thesis.  

Table B.2: Univariate Portfolio Analysis Sorting on βMSCI  
The table presents the results of a univariate portfolio analysis on the relation between excess and abnormal returns in 
month t+1 and the variable βMSCI in month t. At the end of each month t, all stocks are sorted into quintile portfolios 
based on an ascending ordering of βMSCI. The table consists of two panels (A and B) and each panel is divided into three 
sections. 
Explanation of sections: “Portfolio Characteristics” presents the time-series mean number of stocks in each quintile 
portfolio (Portfolio length), the time-series mean portfolio market share (calculated as the sum of the market capitalization 
within each portfolio divided by total market capitalization) for each month t (Market share), the time-series mean of the 
monthly average βMSCI for the stocks in each quintile portfolio (β ex-ante MSCI), the time-series mean of the monthly 
average β5Y for the stocks in each quintile portfolio (β ex-ante OSE), and the slope coefficient from a regression of 
portfolio excess returns on the excess returns of the MSCI World Index in NOK in excess of the Norwegian risk-free 
rate (β ex-post). “Portfolio Sharpe Ratio” presents the time-series mean monthly portfolio excess returns in month t+1 
(R), the standard deviation of monthly portfolio excess returns in month t+1 (SD), and an annualized portfolio Sharpe 
ratio (SR). “Factor Model Alphas” presents monthly portfolio alphas relative to the CAPM (CAPM), the Fama-French 3-
Factor model (FF3), the Fama-French-Carhart 4-Factor model (FFC4) and the FFC4 model augmented with the liquidity 
factor of Næs, Skjeltorp and Ødegaard (2009) (FFC4 + LIQ). We use the MSCI World Index as the market factor in the 
factor models, while the remaining factors are estimated on the Oslo Stock Exchange. The numbers in parentheses are t-
statistics adjusted following Newey and West (1987) using four lags.  
Explanation of panels: All reported numbers in Panel A are calculated using value-weighted portfolios, while all numbers 
in Panel B are calculated using equal-weighted portfolios.  
General: The column labeled Low-High βMSCI refers to a zero-cost, long-short portfolio with a long position in quintile 
portfolio 1 and a short position in quintile portfolio 5. Our sample contains portfolio returns from Jan. 1990 through 
Dec. 2018. Portfolios are rebalanced monthly.   
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Panel A: Value-Weighted Portfolios 

Value βMSCI 1 (Low) βMSCI 2 βMSCI 3 βMSCI 4 βMSCI 5 (High) Low-High βMSCI  

Portfolio Characteristics 

Portfolio length 25 25 26 25 25  

Market share 0.079 0.238 0.198 0.268 0.217  

β ex-ante MSCI 0.069 0.436 0.727 1.052 1.605 -1.536 

β ex-ante OSE 0.591 0.772 0.909 1.114 1.451 -0.860 

β ex-post MSCI 0.716 0.753 0.980 1.027 1.236 -0.519 

Portfolio Sharpe Ratio 

R 0.66% 0.62% 0.45% 0.61% 0.46% 0.20% 

SD 6.29% 5.31% 6.39% 6.64% 8.18% 7.40% 

SR 0.362 0.405 0.244 0.317 0.193 0.094 

Factor Model Alpha  

CAPM 0.31% 0.25% -0.03% 0.11% -0.15% 0.46% 

 (1.216) (1.569) -(0.172) (0.693) -(0.681) (1.276) 

FF3 -0.11% 0.22% 0.05% 0.18% -0.27% 0.16% 

 -(0.463) (1.330) (0.292) (1.089) -(1.123) (0.429) 

FFC4 -0.10% 0.13% 0.01% 0.27% -0.12% 0.02% 

 -(0.390) (0.730) (0.064) (1.774) -(0.531) (0.068) 

FFC4 + LIQ -0.08% 0.13% 0.01% 0.26% -0.16% 0.09% 

 -(0.312) (0.724) (0.041) (1.682) -(0.762) (0.255) 

       
Panel B: Equal-Weighted Portfolios 

Value βMSCI 1 (Low) βMSCI 2 βMSCI 3 βMSCI 4 βMSCI 5 (High) Low-High βMSCI  

Portfolio Characteristics 

Portfolio length 25 25 26 25 25  

Market Share 8% 24% 20% 27% 22%  

β ex-ante MSCI -0.018 0.439 0.713 1.045 1.684 -1.702 

β ex-ante OSE 0.417 0.663 0.867 1.088 1.463 -1.045 

β ex-post MSCI 0.718 0.796 0.874 1.022 1.258 -0.540 

Portfolio Sharpe Ratio 

R 0.82% 0.79% 0.69% 0.40% 0.68% 0.14% 

SD 5.72% 5.47% 5.91% 6.74% 8.38% 7.01% 

SR 0.497 0.499 0.403 0.207 0.280 0.071 

Factor Model Alphas  

CAPM 0.30% 0.21% 0.06% -0.33% -0.23% 0.53% 

 (1.637) (1.469) (0.416) -(2.387) -(1.123) (1.653) 

FF3 0.04% 0.21% 0.13% -0.20% 0.02% 0.02% 

 (0.269) (1.375) (1.022) -(1.390) (0.086) (0.085) 

FFC4 0.01% 0.15% 0.03% -0.18% 0.15% -0.14% 

 (0.076) (0.987) (0.282) -(1.202) (0.795) -(0.502) 

FFC4 + LIQ 0.06% 0.15% 0.04% -0.22% 0.08% -0.02% 

 (0.350) (0.993) (0.322) -(1.499) (0.436) -(0.082) 
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Table B.3: Factor Model Alphas for the Norwegian BAB Factor in the Period 1990-2018 
The table presents monthly alphas and corresponding t-statistics for the returns associated with Norwegian BAB 
factor relative to the CAPM (CAPM), the Fama-French-Carhart four-factor model (FFC4) model augmented with the 
liquidity factor of Næs, Skjeltorp and Ødegaard (2009) (FFC4 + LIQ), the FFC4 + LIQ model augmented with a lottery 
demand factor FMAX and the FFC4 + LIQ model augmented with an IVOL factor FIVOL. We use the value-weighted 
market portfolio as the market factor in the factor models. The t-statistics are adjusted following Newey and West (1987) 
using four lags. The sample contains monthly data on the BAB factor in Norway for the period 1990-2018. Data on the 
BAB factor is downloaded from AQR’s website, and the factor is constructed following the methodology of Frazzini 
and Pedersen (2014).  

 
Factor Model Alpha t-statistics 

   
CAPM 1.06 % 2.92 

FFC4 + LIQ 0.63 % 1.78 

FFC4 + LIQ + FMAX 0.52 % 1.43 

FFC4 + LIQ + FIVOL 0.48 % 1.33 
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Appendix C: Lottery Demand Phenomenon 

Table C.1: Low-High MAX Portfolio Alphas for Different Sample Time Periods 
The table presents the results from several univariate portfolio analyses on MAX using different  time periods. At the 
end of each month t, all stocks are sorted into quintile portfolios based on an ascending ordering of MAX. The table 
presents the monthly alphas of a zero-cost, long-short portfolio with a long position in quintile 1 (low-MAX) and short 
position in quintile 5 (high-MAX) relative to the CAPM (CAPM) and the Fama-French-Carhart 4-Factor model 
augmented with the liquidity factor of Næs, Skjeltorp and Ødegaard (2009) (FFC4 + LIQ). We use the VW (EW) market 
portfolio as the market factor in the factor models when estimating alphas for VW (EW) portfolios. The numbers in 
parentheses are t-statistics adjusted following Newey and West (1987) using four lags. The columns refer to the use of 
different time periods of our data sample. Panel A reports the results for value-weighted portfolios, while Panel B reports 
the results for equal-weighted portfolios. 

      

Panel A: Value-Weighted Portfolios 

Value 1990-2018 1995-2018 2000-2018 1990-2013 1990-2007 

Factor Model Alphas 

CAPM 0.71% 0.75% 0.92% 0.43% 0.19% 

 (1.673) (1.543) (1.770) (0.930) (0.343) 

FFC4 + LIQ 0.94% 0.85% 0.96% 0.81% 0.60% 

 (2.431) (1.897) (1.921) (1.892) (1.128) 

      

Panel B: Equal-Weighted Portfolios 

Value 1990-2018 1995-2018 2000-2018 1990-2013 1990-2007 

Factor Model Alphas 

CAPM 0.53% 0.53% 0.53% 0.38% 0.27% 

 (1.608) (1.366) (1.194) (1.088) (0.664) 

FFC4 + LIQ 0.66% 0.51% 0.42% 0.59% 0.47% 

 (2.110) (1.428) (1.003) (1.757) (1.125) 
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Table C.2: Low-High MAX Portfolio Alphas for Variations in Data Filters  
The table presents the results from several univariate portfolio analyses on MAX for varying data filters. At the end of 
each month t, all stocks are sorted into quintile portfolios based on an ascending ordering of MAX. The table presents 
the monthly alphas of a zero-cost, long-short portfolio with a long position in quintile 1 (low-MAX) and short position 
in quintile 5 (high-MAX) relative to the CAPM (CAPM) and the Fama-French-Carhart 4-Factor model augmented with 
the liquidity factor of Næs, Skjeltorp and Ødegaard (2009) (FFC4 + LIQ). We use the VW (EW) market portfolio as 
the market factor in the factor models when estimating alphas for VW (EW) portfolios. The numbers in parentheses 
are t-statistics adjusted following Newey and West (1987) using four lags. The columns refer to different variations in 
data filters. “Primary Model” refers to the data filters applied to the main model as discussed in section 3.1.1. “Primary 
Capital Certificates” reports the zero-cost portfolio alphas when primary capital certificates are excluded from the 
sample. “Share Price” presents the zero-cost portfolio alphas when there is no restriction on stock price in the sample. 
“Large Stocks” presents the zero-cost portfolio alphas when stocks are removed for the months their market 
capitalization is observed below NOK 1bn. “Turnover” presents the zero-cost portfolio alphas when there is no 
restriction on stock turnover in the data sample. All results reported in panel A are calculated using value-weighted 
portfolios, while all results in Panel B are calculated using equal-weighted portfolios. Our sample contains portfolio 
returns from Jan. 1990 through Dec. 2018. 

      

Panel A: Value-Weighted Portfolios 

Value Primary Model Primary Capital Certificates Share Price Large Stocks Turnover 

Factor Model Alphas 

CAPM 0.71% 0.81% 0.98% 0.43% 0.72% 

 (1.673) (1.964) (2.249) (1.289) (1.699) 

FFC4 + LIQ 0.94% 1.07% 1.23% 0.50% 0.96% 

 (2.431) (2.845) (3.076) (1.577) (2.464) 

      

Panel B: Equal-Weighted Portfolios 

Value Primary Model Primary Capital Certificates Share Price Large Stocks Turnover 

Factor Model Alphas 

CAPM 0.53% 0.48% 0.96% 0.74% 0.54% 

 (1.608) (1.407) (2.705) (2.538) (1.639) 

FFC4 + LIQ 0.66% 0.62% 1.14% 0.80% 0.67% 

 (2.110) (1.941) (3.462) (2.945) (2.145) 
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Appendix D: Lottery-Demand Based Explanation of the Beta Anomaly 

Table D.1: Univariate Portfolio Analysis Sorting on β1Y (Common Data Sample) 
The table presents the results of a univariate portfolio analysis on the relation between excess and abnormal returns in 
month t+1 and the variable β1Y in month t. At the end of each month t, all stocks with an estimate of both β1Y and MAX 
are sorted into quintile portfolios based on an ascending ordering of β1Y. The table consists of two panels (A and B) and 
each panel is divided into three sections. 
Explanation of sections: “Portfolio Characteristics” presents the time-series mean of the monthly average MAX for 
the stocks in each quintile portfolio (MAX ex-ante), the time-series mean of the monthly average β1Y for the stocks in 
each quintile portfolio (β ex-ante), and the slope coefficient from a regression of VW (EW) portfolio excess returns on 
the VW (EW) market excess returns (β ex-post). Factor Model Alphas” presents portfolio alphas relative to the CAPM 
(CAPM), the Fama-French-Carhart four-factor model (FFC4) model augmented with the liquidity factor of Næs, 
Skjeltorp and Ødegaard (2009) (FFC4 + LIQ), the FFC4 + LIQ model augmented with a lottery demand  factor FMAX 
and the FFC4  + LIQ model augmented with an IVOL factor FIVOL. We use the VW (EW) market portfolio as the 
market factor in the factor models when estimating alphas for VW (EW) portfolios. The numbers in parentheses are t-
statistics adjusted following Newey and West (1987) using four lags. See section 5.2.4 for the construction of the FMAX 
and FIVOL factors. 
Explanation of panels: All reported numbers in Panel A are calculated using value-weighted portfolios, while all 
numbers in Panel B are calculated using equal-weighted portfolios.  
General: The column labeled Low-High β1Y refers to a zero-cost, long-short portfolio with a long position in quintile 
portfolio 1 and a short position in quintile portfolio 5. Our sample contains portfolio returns from Jan. 1990 through 
Dec. 2018. Portfolios are rebalanced monthly. 

       
Panel A: Value-Weighted Portfolios 

Value β1Y 1 (Low) β1Y 2 β1Y 3 β1Y 4 β1Y 5 (High) Low-High β1Y 

Portfolio Characteristics 

MAX ex-ante 0.024 0.024 0.026 0.028 0.035 -0.012 

β ex-ante 0.370 0.670 0.883 1.127 1.556 -1.185 

β ex-post 0.695 0.904 0.979 1.074 1.449 -0.754 

Factor Model Alphas 

CAPM 0.06% 0.06% 0.11% 0.01% -0.35% 0.41% 

 (0.309) (0.338) (0.580) (0.053) -(1.160) (1.103) 

FFC4 + LIQ -0.06% 0.01% 0.12% 0.14% -0.30% 0.24% 

 -(0.309) (0.069) (0.620) (0.658) -(0.955) (0.658) 

FFC4 + LIQ + FMAX -0.09% -0.13% 0.08% 0.17% 0.01% -0.10% 

 -(0.486) -(0.631) (0.389) (0.762) (0.018) -(0.270) 

FFC4 + LIQ + FIVOL 0.02% -0.13% 0.10% 0.21% 0.08% -0.06% 

 (0.109) -(0.674) (0.494) (0.947) (0.283) -(0.174) 
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Panel B: Equal-Weighted Portfolios 

Value β1Y 1 (Low) β1Y 2 β1Y 3 β1Y 4 β1Y 5 (High) Low-High β1Y 

Portfolio Characteristics 

MAX ex-ante 0.028 0.031 0.034 0.036 0.045 -0.017 

β ex-ante 0.352 0.659 0.878 1.127 1.614 -1.262 

β ex-post 0.752 0.966 1.070 1.208 1.591 -0.839 

Factor Model Alphas 

CAPM 0.06% 0.00% -0.20% -0.11% -1.04% 1.10% 

 (0.299) -(0.003) -(1.015) -(0.522) -(3.295) (2.738) 

FFC4 + LIQ 0.09% 0.10% -0.05% 0.11% -0.64% 0.73% 

 (0.511) (0.524) -(0.244) (0.509) -(2.139) (1.979) 

FFC4 + LIQ + FMAX -0.03% 0.06% -0.06% 0.13% -0.29% 0.27% 

 -(0.153) (0.290) -(0.289) (0.635) -(0.937) (0.717) 

FFC4 + LIQ + FIVOL 0.03% 0.01% -0.09% 0.12% -0.39% 0.42% 

 (0.193) (0.037) -(0.464) (0.592) -(1.291) (1.216) 
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Table D.2: Univariate Portfolio Analysis Sorting on MAX (Common Data Sample) 
The table presents the results of a univariate portfolio analysis on the relation between excess and abnormal returns in 
month t+1 and the variable MAX in month t. At the end of each month t, all stocks with an estimate of both β5Y and 
MAX are sorted into quintile portfolios based on an ascending ordering of MAX. The table consists of two panels (A 
and B) and each panel is divided into three sections. 
Explanation of sections: “Portfolio Characteristics” presents the time-series mean of the monthly average MAX for 
the stocks in each quintile portfolio (MAX ex-ante), the time-series mean of the monthly average β5Y for the stocks in 
each quintile portfolio (β ex-ante), and the slope coefficient from a regression of VW (EW) portfolio excess returns on 
the VW (EW) market excess returns (β ex-post). Factor Model Alphas” presents portfolio alphas relative to the CAPM 
(CAPM), the Fama-French-Carhart four-factor model (FFC4) model augmented with the liquidity factor of Næs, 
Skjeltorp and Ødegaard (2009) (FFC4 + LIQ), the FFC4 + LIQ model augmented with a lottery demand  factor FMAX 
and the FFC4 + LIQ model augmented with an IVOL factor FIVOL. We use the VW (EW) market portfolio as the 
market factor in the factor models when estimating alphas for VW (EW) portfolios. The numbers in parentheses are t-
statistics adjusted following Newey and West (1987) using four lags. See section 5.2.4 for the construction of the FMAX 
and FIVOL factors. 
Explanation of panels: All reported numbers in Panel A are calculated using value-weighted portfolios, while all 
numbers in Panel B are calculated using equal-weighted portfolios.  
General: The column labeled Low-High MAX refers to a zero-cost, long-short portfolio with a long position in quintile 
portfolio 1 and a short position in quintile portfolio 5. Our sample contains portfolio returns from Jan. 1990 through 
Dec. 2018. Portfolios are rebalanced monthly. 

       
Panel A: Value-Weighted Portfolios 

Value MAX 1 (Low) MAX 2 MAX 3 MAX 4 MAX 5 (High) Low-High MAX 

Portfolio Characteristics 

MAX ex-ante 0.015 0.023 0.030 0.039 0.062 -0.047 

β ex-ante 0.945 1.025 1.110 1.180 1.370 -0.425 

β ex-post 0.905 0.977 1.064 1.182 1.434 -0.529 

Factor Model Alpha 

CAPM -0.04% 0.32% 0.12% -0.29% -0.84% 0.80% 

 -(0.232) (1.945) (0.702) -(1.288) -(2.507) (2.075) 

FFC4 + LIQ -0.06% 0.38% 0.23% -0.35% -1.06% 1.00% 

 -(0.345) (2.072) (1.292) -(1.585) -(3.111) (2.529) 

       

Panel B: Equal-Weighted Portfolios 

Value MAX 1 (Low) MAX 2 MAX 3 MAX 4 MAX 5 (High) Low-High MAX 

Portfolio Characteristics 

MAX ex-ante 0.015 0.023 0.030 0.039 0.069 -0.054 

β ex-ante 0.835 0.976 1.070 1.135 1.213 -0.378 

β ex-post 0.713 0.916 1.019 1.196 1.446 -0.733 

Factor Model Alphas 

CAPM 0.03% 0.20% 0.10% -0.44% -0.66% 0.70% 

 (0.195) (1.243) (0.612) -(2.195) -(2.620) (2.148) 

FFC4 + LIQ 0.18% 0.44% 0.33% -0.34% -0.58% 0.76% 

 (1.188) (3.002) (2.213) -(1.843) -(2.126) (2.204) 
 

 

  



86 
 

Table D.3: Bivariate Portfolio Analysis Sorting on MAX, Then on β1Y   

The table presents the results of a bivariate portfolio analysis on the relation between the abnormal returns in month t+1 
and the variable β1Y in month t while controlling for MAX. The table presents portfolio characteristics and factor model 
alphas for the average MAX quintile portfolio within each β1Y quintile. We create the average MAX quintile by performing 
a conditional double sort first on MAX, then on β1Y to generate a 5x5 portfolio matrix at the end of each month t. We 
subsequently sum the stocks across the MAX quintiles for each β1Y quintile to create five β1Y -sorted portfolios that by 
construction should be neutralized to MAX. We only include monthly stock observations with estimates of both β1Y and 
MAX for the given month. The table consists of two panels (A and B) and each panel is divided into two sections. 
Explanation of sections: “Portfolio Characteristics” presents the time-series mean of the average values of MAX for 
stocks in each of the β1Y-sorted portfolios (MAX ex-ante), the time-series mean of the average values of β1Y for stocks in 
each of the β1Y -sorted portfolios (β ex-ante), and the slope coefficient from a regression of VW (EW) portfolio excess 
returns on the VW (EW) market excess returns (β ex-post). “Factor Model Alphas” presents monthly portfolio alphas 
relative to the CAPM (CAPM) and the Fama-French-Carhart 4-Factor model augmented with the liquidity factor of Næs, 
Skjeltorp and Ødegaard (2009) (FFC4 + LIQ). We use the VW (EW) market portfolio as the market factor in the factor 
models when estimating alphas for the VW (EW) portfolios. The numbers in parentheses are t-statistics adjusted 
following Newey and West (1987) using four lags. Our sample contains portfolio returns from Jan. 1990 through Dec. 
2018. Portfolios are rebalanced monthly. 
Explanation of panels: All reported numbers in panel A are calculated using value-weighted portfolios, while all 
numbers in panel B are calculated using equal-weighted portfolios.  
General: The column labeled Low-High β1Y refers to a zero-cost, long-short portfolio with a long position in the average 
MAX portfolio in β1Y quintile 1 and a short position in the average MAX portfolio in β1Y quintile 5. 

       
Panel A: Value-Weighted Portfolios 

Value β1Y 1 (Low) β1Y 2 β1Y 3 β1Y 4 β1Y 5 (High) Low-High β1Y 

Portfolio Characteristics 

MAX ex-ante 0.029 0.029 0.028 0.027 0.027 0.001 

β ex-ante 0.418 0.689 0.875 1.072 1.388 -0.970 

β ex-post 0.747 0.929 0.964 1.045 1.289 -0.542 

Factor Model Alphas 

CAPM -0.03% -0.16% 0.09% 0.29% -0.35% 0.33% 

 -(0.135) -(0.858) (0.360) (1.615) -(1.860) (1.133) 

FFC4 + LIQ -0.17% -0.18% 0.05% 0.44% -0.30% 0.14% 

 -(0.823) -(1.001) (0.208) (2.331) -(1.538) (0.473) 

       

Panel B: Equal-Weighted Portfolios 

Value β1Y 1 (Low) β1Y 2 β1Y 3 β1Y 4 β1Y 5 (High) Low-High β1Y 

Portfolio Characteristics 

MAX ex-ante 0.035 0.034 0.035 0.035 0.036 -0.001 

β ex-ante 0.410 0.687 0.895 1.124 1.514 -1.104 

β ex-post 0.853 0.961 1.146 1.206 1.404 -0.551 

Factor Model Alphas 

CAPM 0.12% -0.27% -0.09% -0.31% -0.81% 0.93% 

 (0.675) -(1.338) -(0.509) -(1.498) -(3.264) (3.014) 

FFC4 + LIQ 0.16% -0.17% 0.04% -0.09% -0.40% 0.56% 

 (0.897) -(0.854) (0.268) -(0.450) -(1.841) (1.840) 
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Table D.4: Univariate Portfolio Analysis Sorting on the Orthogonal of β1Y on MAX (β1Y⊥M) 
The table presents the results of a bivariate portfolio analysis on the relation between the abnormal returns in month 
t+1 and the variable β1Y in month t while controlling for MAX. The table presents portfolio characteristics and factor 
model alphas for the average MAX quintile portfolio within each β1Y quintile. We create the average MAX quintile by 
performing a conditional double sort first on MAX, then on β1Y to generate a 5x5 portfolio matrix at the end of each 
month t. We subsequently sum the stocks across the MAX quintiles for each β1Y quintile to create five β1Y -sorted 
portfolios that by construction should be neutralized to MAX. We only include monthly stock observations with 
estimates of both β1Y and MAX for the given month. The table consists of two panels (A and B) and each panel is 
divided into two sections. 
Explanation of sections: “Portfolio Characteristics” presents the time-series mean of the average values of MAX for 
stocks in each of the β1Y-sorted portfolios (MAX ex-ante), the time-series mean of the average values of β1Y for stocks 
in each of the β1Y -sorted portfolios (β ex-ante), and the slope coefficient from a regression of VW (EW) portfolio excess 
returns on the VW (EW) market excess returns (β ex-post). “Factor Model Alphas” presents monthly portfolio alphas 
relative to the CAPM (CAPM) and the Fama-French-Carhart 4-Factor model augmented with the liquidity factor of 
Næs, Skjeltorp and Ødegaard (2009) (FFC4 + LIQ). We use the VW (EW) market portfolio as the market factor in the 
factor models when estimating alphas for the VW (EW) portfolios. The numbers in parentheses are t-statistics adjusted 
following Newey and West (1987) using four lags. Our sample contains portfolio returns from Jan. 1990 through Dec. 
2018. Portfolios are rebalanced monthly. 
Explanation of panels: All reported numbers in panel A are calculated using value-weighted portfolios, while all 
numbers in panel B are calculated using equal-weighted portfolios.  
General: The column labeled Low-High β1Y refers to a zero-cost, long-short portfolio with a long position in the average 
MAX portfolio in β1Y quintile 1 and a short position in the average MAX portfolio in β1Y quintile 5. 

       
Panel A: Value-Weighted Portfolios 

Value β1Y⊥M 1 (Low) β1Y⊥M 2 β1Y⊥M 3 β1Y⊥M 4 β1Y⊥M 5 (High) Low-High β1Y⊥M 

Portfolio Characteristics 

MAX ex-ante 0.030 0.027 0.026 0.026 0.031 -0.001 

β ex-ante 0.382 0.644 0.835 1.067 1.497 -1.115 

β ex-post 0.711 0.896 0.978 1.027 1.382 -0.671 

Factor Model Alphas 

CAPM -0.12% 0.00% 0.08% -0.05% -0.29% 0.16% 

 -(0.650) (0.010) (0.457) -(0.286) -(1.169) (0.484) 

FFC4 + LIQ -0.27% -0.10% 0.01% 0.09% -0.23% -0.04% 

 -(1.381) -(0.548) (0.037) (0.495) -(0.898) -(0.129) 

       

Panel B: Equal-Weighted Portfolios 

Value β1Y⊥M 1 (Low) β1Y⊥M 2 β1Y⊥M 3 β1Y⊥M 4 β1Y⊥M 5 (High) Low-High β1Y⊥M 

Portfolio Characteristics 

MAX ex-ante 0.038 0.033 0.033 0.033 0.038 0.000 

β ex-ante 0.400 0.665 0.872 1.110 1.583 -1.183 

β ex-post 0.851 0.991 1.089 1.149 1.506 -0.655 

Factor Model Alphas 

CAPM -0.09% 0.11% -0.11% -0.20% -1.02% 0.93% 

 -(0.464) (0.547) -(0.640) -(0.897) -(3.739) (2.714) 

FFC4 + LIQ -0.07% 0.19% 0.06% 0.06% -0.65% 0.58% 

 -(0.398) (0.867) (0.412) (0.314) -(2.615) (1.767) 
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Appendix E: The Beta Anomaly while Controlling for IVOL 

Table E.1: Bivariate Portfolio Analysis Sorting on IVOL, Then on β5Y        
The table presents the results of a bivariate portfolio analysis on the relation between abnormal returns in month t+1 
and the variable β5Y in month t while controlling for IVOL. The table presents portfolio characteristics and factor model 
alphas of the average IVOL quintile portfolio within each β5Y quintile. We create the average IVOL quintile by 
performing a conditional double sort first on IVOL, then on β5Y to generate a 5x5 portfolio matrix at the end of each 
month t. We subsequently sum the stocks across the IVOL quintiles for each β5Y quintile to create five β5Y-sorted 
portfolios that by construction should be neutralized to IVOL We only include monthly stock observations with 
estimates of both β5Y and IVOL for the given month. The table consists of two panels (A and B) and each panel is 
divided into two sections. 
Explanation of sections: “Portfolio Characteristics” presents the time-series mean of the average values of MAX for 
the stocks in each of the β5Y-sorted portfolios (MAX ex-ante), the time-series mean of the average values of β5Y for the 
stocks in each of the β5Y-sorted portfolios (β ex-ante), and the slope coefficient from a regression of VW (EW) portfolio 
excess returns on the VW (EW) market excess returns (β ex-post). “Factor Model Alphas” presents monthly portfolio 
alphas relative to the CAPM (CAPM) and the Fama-French-Carhart 4-Factor model augmented with the liquidity factor 
of Næs, Skjeltorp and Ødegaard (2009) (FFC4 + LIQ). We use the VW (EW) market portfolio as the market factor in 
the factor models when estimating alphas for VW (EW) portfolios. The numbers in parentheses are t-statistics adjusted 
following Newey and West (1987) using four lags.  
Explanation of panels: All reported numbers in panel A are calculated using value-weighted portfolios, while all 
numbers in panel B are calculated using equal-weighted portfolios.  
General: The column labeled Low-High β5Y refers to a zero-cost, long-short portfolio with a long position in the 
average IVOL portfolio in β5Y quintile 1 and a short position in the average IVOL portfolio in β5Y quintile 5. Our 
sample contains portfolio returns from Jan. 1990 through Dec. 2018. Portfolios are rebalanced monthly. 

 
Panel A: Value-Weighted Portfolios 

Value β5Y 1 (Low) β5Y 2 β5Y 3 β5Y 4 β5Y 5 (High) Low-High β5Y 

Portfolio Characteristics 
MAX ex ante 0.027 0.026 0.027 0.027 0.029 -0.003 
β ex ante 0.514 0.778 0.948 1.144 1.530 -1.017 
β ex post 0.765 0.988 1.027 1.102 1.203 -0.438 

Factor Model Alpha 
CAPM 0.46 % 0.17 % 0.29 % -0.19 % -0.16 % 0.62 % 

 (2.122) (0.659) (1.613) -(1.019) -(0.864) (2.252) 
FFC4 + LIQ 0.42 % 0.23 % 0.32 % -0.13 % -0.09 % 0.51 % 

 (2.171) (0.920) (1.529) -(0.719) -(0.466) (1.854)        
 

Panel B: Equal-Weighted Portfolios 
Value β5Y 1 (Low) β5Y 2 β5Y 3 β5Y 4 β5Y 5 (High) Low-High β5Y 

Portfolio Characteristics 
MAX ex ante 0.033 0.034 0.035 0.036 0.038 -0.006 
β ex ante 0.453 0.775 1.003 1.264 1.733 -1.280 
β ex post 0.776 1.013 1.041 1.201 1.241 -0.465 

Factor Model Alpha 
CAPM 0.25 % 0.20 % -0.04 % -0.47 % -0.67 % 0.91 % 

 (1.682) (0.925) -(0.251) -(2.316) -(2.919) (3.600) 
FFC4 + LIQ 0.29 % 0.26 % 0.06 % -0.27 % -0.32 % 0.61 % 

 (1.963) (1.292) (0.360) -(1.351) -(1.618) (2.296) 
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Table E.2: Univariate Portfolio Analysis Sorting on the Orthogonal of β5Y on IVOL (β5Y⊥IVOL)        
The table presents the results of a univariate portfolio analysis on the relation between excess and abnormal returns in 
month t+1 and the portion of β5Y that is orthogonal to IVOL in month t. The table consists of two panels (A and B) 
and each panel is divided into two sections. 
Explanation of sections: “Portfolio Characteristics” presents the time-series mean of the average values of MAX for 

stocks in each of the β5Y⊥IVOL -sorted portfolios (MAX ex-ante), the time-series mean of the average values of β5Y for 

stocks in each of the β5Y⊥IVOL -sorted portfolios (β ex-ante), and the slope coefficient from a regression of VW (EW) 
portfolio excess returns on the VW (EW) market excess returns (β ex-post). “Factor Model Alphas” presents monthly 
portfolio alphas relative to the CAPM (CAPM) and the FFC4 model augmented with the liquidity factor of Næs, 
Skjeltorp and Ødegaard (2009) (FFC4 + LIQ). We use the VW (EW) market portfolio as the market factor in the factor 
models when estimating alphas for VW (EW) portfolios. The numbers in parentheses are t-statistics adjusted following 
Newey and West (1987) using four lags.  
Explanation of panels: All reported numbers in panel A are calculated using value-weighted portfolios, while all 
numbers in panel B are calculated using equal-weighted portfolios.  

General: The column labeled Low-High β5Y⊥IVOL refers to a zero-cost, long-short portfolio with a long position in 
quintile portfolio 1 and a short position in quintile portfolio 5. Our sample contains portfolio returns from Jan. 1990 
through Dec. 2018.  Portfolios are rebalanced monthly. 

 
Panel A: Value-Weighted Portfolios 

Value β5Y⊥IVOL 1 (Low) β5Y⊥IVOL 2 β5Y⊥IVOL 3 β5Y⊥IVOL 4 β5Y⊥IVOL 5 (High) 

Low-High 

β5Y⊥IVOL 

Portfolio Characteristics 
MAX ex ante 0.031 0.027 0.025 0.027 0.032 -0.001 
β ex ante 0.477 0.751 0.948 1.213 1.682 -1.205 
β ex post 0.768 1.025 0.979 1.147 1.315 -0.547 

Factor Model Alpha 
CAPM 0.55 % 0.36 % -0.04 % -0.08 % -0.49 % 1.03 % 

 (2.273) (1.564) -(0.221) -(0.373) -(2.179) (2.951) 
FFC4 + LIQ 0.56 % 0.42 % -0.03 % -0.06 % -0.49 % 1.05 % 

 (2.363) (1.760) -(0.155) -(0.293) -(2.116) (2.918)        
 

Panel B: Equal weighted portfolios 

Value β5Y⊥IVOL 1 (Low) β5Y⊥IVOL 2 β5Y⊥IVOL 3 β5Y⊥IVOL 4 β5Y⊥IVOL 5 (High) 

Low-High 

β5Y⊥IVOL 

Portfolio Characteristics 
MAX ex ante 0.038 0.033 0.032 0.034 0.038 0.001 
β ex ante 0.462 0.764 0.978 1.252 1.774 -1.312 
β ex post 0.860 0.941 0.981 1.143 1.356 -0.496 

Factor Model Alpha 
CAPM 0.53 % 0.02 % -0.15 % -0.47 % -0.68 % 1.21 % 

 (2.523) (0.101) -(0.757) -(2.067) -(3.005) (3.653) 
FFC4 + LIQ 0.60 % 0.02 % 0.09 % -0.26 % -0.40 % 1.00 % 

 (2.806) (0.112) (0.507) -(1.312) -(2.014) (3.001) 
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Appendix F: Returns and Transaction Costs 

A Word of Warning to Market Practitioners 

In this thesis we find that a portfolio long stocks with low beta and short stocks with high beta has 

generated statistically significant abnormal returns relative to the CAPM. Furthermore, we document 

that the low-beta portfolio has generated higher absolute cumulative excess returns than both the high-

beta portfolio and the market portfolio over the sample period. An important caveat to such analyses 

is that the documentation of an anomaly does not necessarily imply that it can be converted into a 

profitable trading strategy.  

Firstly, the results of our analyses are based entirely on historical observations and there is no guarantee 

that the documented relation between market beta and abnormal returns will hold in the future. 

Secondly, our analysis does not account for trading costs or the costs associated with borrowing stocks 

for short-selling, and as such, our results cannot be used to evaluate the historical profitability of 

“betting-against-beta”. As discussed in section 2.3 of the thesis Baker, Bradly and Wurgler (2011) show 

that the stocks comprising the most volatile portfolios tend to be small and illiquid, which are typically 

expensive to trade and especially short sell. Given that that trading costs prevents investors from betting 

against beta, the documented anomaly can hardly be considered irrational.  

Estimating the trading costs associated with betting against beta on the Oslo Stock Exchange lies 

beyond the scope of this paper, and further research on the topic would be interesting. We have 

nevertheless computed a few simple metrics which (we hope) will allow investors to from a more 

informed opinion regarding the trading costs associated with replicating the quintile portfolios 

constructed in our analysis. Generally, we find that the trading costs will largely be a function of the 

liquidity of the stocks in the portfolio and the portfolio turnover. We have not estimated the liquidity 

of the individual stocks in our sample, but we argue that market share of the portfolios in our analyses 

will function as a reasonable proxy for the trading costs associated with illiquidity. We report the time 

series average market share for our β5Y sorted portfolios and MAX-sorted portfolios in Table 4 and 

Table 8, respectively. We note that the stocks in the β5Y (MAX) sorted quintile portfolio 1 (5) on average 

have constituted 3% (6%) of the total market. Combined with a qualitative assessment of the most 

frequent stocks in the portfolios reported in Table A.4 in the appendix, we argue it is reasonable to 

assume that the costs of trading stocks in the β5Y quintile 1 portfolio and MAX quintile 5, will be 

relatively large.  
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We have not formally assessed the turnover of the quintile portfolios in our analysis, but in Table F.1 

below we report relevant metrics on the monthly rebalancing process of our portfolio formation 

methodology. Not surprisingly, we find that the average turnover measured by the number of stocks 

that enter and leave the portfolios, is lowest for the β5Y-sorted portfolios and highest for the MAX 

sorted portfolios47. In figure F.3, F.4 and F.5 in the appendix we also illustrate the development in 

portfolio turnover relative to portfolio size for our beta and MAX sorted portfolios over our sample 

period. All else equal, we note that the portfolio turnover suggests that the trading costs associated 

with replicating the β5Y-sorted portfolios should be significantly lower than the trading costs of 

replicating the MAX sorted portfolios.   

Lastly, we also want to specify that although our analysis has been focused on the performance of low-

high portfolios, we would by no means recommend shorting the high-beta or high-MAX portfolio 

based on the results of this thesis alone. Firstly, our analysis does not include borrowing costs, which 

could be significant. Furthermore, it is important to note that the high-beta and high-MAX portfolios 

are constructed to experience high volatility in monthly returns. This is illustrated by the standard 

deviations of the portfolio returns reported in Table 4 and Table 8 for the high-β5Y and high-MAX 

portfolios. We have also plotted the monthly excess returns of the high-β5Y and high-MAX portfolios 

in figure F.1 and F.2 in the appendix and we note that over the course of our sample period the high-

portfolios have experience several large-up moves in portfolio returns. As such, portfolios with large 

short positions in the high portfolios will have a substantial risk of experiencing margin calls or having 

their equity wiped, which would be detrimental to the long-term cumulative returns.   

  

 
47 Turnover measures the number of stocks that enter and leave the portfolio. Hence, it does not measure the number of 
trades. We rebalance our portfolios each month to construct equal- and value-weighted portfolios, and an accurate 
replication of our methodology would require significantly more trades than the reported turnover.  
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Table F.1: Portfolio Turnover 
At the end of each month t, all stocks are sorted into quintile portfolios based on an ascending ordering of the sorting 
variable. The table presents the time-series mean of the number of stocks in the portfolio prior to rebalancing each 
month (Stocks Prior to Rebalancing), number of stocks that leave the portfolio each month (Stocks Sold), number of 
stocks that enter the portfolio each month (Stocks Bought), the number of stocks in the portfolio post rebalancing 
(Stocks Post Rebalancing) and the monthly portfolio turnover equal to the sum of Stocks Bough and Stocks Sold 

(Turnover). The results are reported for portfolios sorted on β5Y, β 1Y and MAX. Panel A reports the results for Quintile 

Portfolio 1, while Panel B reports the results for Quintile Portfolio 5. The sample contains monthly observations from 
Jan. 1990 through Dec. 2018 and contains 348 monthly observations of portfolio rebalancing. 

  

Panel A: Quintile Portfolio 1 (Low) 
Sorting 
Variable 

Stocks Prior to 
Rebalancing 

Stocks Sold Stocks Bought 
Stocks Post 
Rebalancing 

Turnover 

β5Y 25.5 1.5 1.6 25.5 3.1 

β 1Y 20.6 3.1 3.1 20.6 6.1 

MAX 25.0 15.6 15.6 25.1 31.2 

      
Panel B: Quintile Portfolio 5 (High) 

Sorting 
Variable 

Stocks Prior to 
Rebalancing 

Stocks Sold Stocks Bought 
Stocks Post 
Rebalancing 

Turnover 

β5Y 25.5 1.6 1.6 25.5 3.1 

β 1Y 20.6 2.2 2.2 20.6 4.4 

MAX 25.1 15.3 15.3 25.1 30.6 

 

  

  



93 
 

Figure F.1: Monthly Excess Returns of Quintile 1 and Quintile 5 Sorted on β5Y 

At the end of each month t, all stocks are sorted into quintile portfolios based on an ascending ordering of β5Y. The 
figure plots the monthly excess returns for quintile portfolio 1 and quintile portfolio 5, from Jan. 1990 through Dec. 
2018. Panel A plots the monthly excess returns for the value-weighted portfolios, while Panel B plots monthly excess 
returns for the equal-weighted portfolios. 
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Figure F.2: Monthly Excess Returns of Quintile 1 and Quintile 5 Sorted on MAX 

At the end of each month t, all stocks are sorted into quintile portfolios based on an ascending ordering of MAX. The 
figure plots the monthly excess returns for quintile portfolio 1 and quintile portfolio 5, from Jan. 1990 through Dec. 
2018. Panel A plots the monthly excess returns for the value-weighted portfolios, while Panel B plots monthly excess 
returns for the equal-weighted portfolios. 
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Figure F.3: Transactions vs. Portfolio Size for β5Y-Sorted Quintile Portfolios 
At the end of each month t, all stocks are sorted into quintile portfolios based on an ascending ordering of β5Y. The 
figure illustrates the number of stocks in the quintile portfolios for each month t, and the sum of the number of stocks 
that enter and leave the quintile portfolios for each month t (Transactions). The dataset used contains monthly 
observations of the quintile portfolios from Jan. 1990 through Dec. 2018, resulting in a total of 348 monthly 
observations. Panel A reports the results for Quintile Portfolio 1 (low-beta), while Panel B reports the results for Quintile 
Portfolio 5 (high-beta). 
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Figure F.4: Transactions vs. Portfolio Size for β1Y-Sorted Quintile Portfolios 
At the end of each month t, all stocks are sorted into quintile portfolios based on an ascending ordering of β1Y. The 
figure illustrates the number of stocks in the quintile portfolios for each month t, and the sum of the number of stocks 
that enter and leave the quintile portfolios for each month t (Transactions). The dataset used contains monthly 
observations of the quintile portfolios from Jan. 1990 through Dec. 2018, resulting in a total of 348 monthly 
observations. Panel A reports the results for Quintile Portfolio 1 (low-beta), while Panel B reports the results for Quintile 
Portfolio 5 (high-beta). 
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Figure F.5: Transactions vs. Portfolio Size for MAX Sorted Quintile Portfolios 
At the end of each month t, all stocks are sorted into quintile portfolios based on an ascending ordering of MAX. The 
figure illustrates the number of stocks in the quintile portfolios for each month t, and the sum of the number of stocks 
that enter and leave the quintile portfolios for each month t (Transactions). The dataset used contains monthly 
observations of the quintile portfolios from Jan. 1990 through Dec. 2018, resulting in a total of 348 monthly 
observations. Panel A reports the results for Quintile Portfolio 1 (low-MAX), while Panel B reports the results for 
Quintile Portfolio 5 (high-MAX). 
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R Script 

This section presents the R-code used to generate the focal results of this thesis. Some calculations 

have been performed in excel, and we have not included the code used to generate all supportive 

calculations. The full code and the dataset will be granted upon request.   
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########## Explanation of most important variables ##########  

 

 

### General Variables ### 

 

# MCAP = Market Capitalization 

# LMCAP = Lagged Market Capitalization  

# M.VW = Estimated returns of the value-weighted market portfolio 

# M.EW = Estimated returns of the equal-weighted market portfolio  

# MSCI = Returns of the MSCI World index in NOK 

# E.M.VW = Estimated excess returns of the value-weighted market portfolio 

# E.M.EW = Estimated excess returns of the equal-weighted market portfolio  

# E.MSCI = Excess returns of the MSCI World index in NOK 

# iskew = Idosyncratic skewness 

# ReturnAdjGeneric = Stock returns (Monthly and daily) 

# E.ReturnAdjGeneric = Excess stock returns (Monthly and daily) 

 

 

### Sorting variables ### 

 

# beta.monthly = Refers to B_5Y in the main paper 

# beta.daily = Refers to B_1Y in the main paper 

# beta.msci = Refers to B_MSCI in the main paper 

# max = Refers to MAX in the main paper 

# ivol = Idosyncratic volatility 

# obeta.monthly = Component of beta.monthly orthogonal to max 

# obeta.daily = Component of beta.daily orthogonal to max 

# obmax = Component of max orthogonal to beta.monthly 

# ibeta.monthly = Component of beta.monthly orthogonal to ivol 
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##########  Section 1: Install and load packages ##########  

 

 

# Install packages 

install.packages("dplyr") 

install.packages("readxl") 

install.packages("openxlsx") 

install.packages("tidyr") 

install.packages("readr") 

install.packages("lubridate") 

install.packages("read.xlsx") 

install.packages("ggplot2") 

install.packages("stargazer") 

install.packages("sandwich") 

install.packages("lmtest") 

install.packages("moments") 

install.packages("psych") 

install.packages("markovchain") 

 

# Load packages 

library(dplyr) 

library(readxl) 

library(openxlsx) 

library(tidyr) 

library(readr) 

library(lubridate) 

library(ggplot2) 

library(stargazer) 

library(sandwich) 

library(lmtest) 

library(zoo) 

library(moments) 

library(Hmisc) 

library(psych) 

library(markovchain) 

 

 

 

########## Section 2: Import data ##########  

 

 

 

### Daily data 

# Set Working Directory to import daily data 

setwd(XXX)  

 

## Import data on stocks from Børsprosjektet at NHH 

 

# Create empty dataframe with colnames 

d <- read.csv("1980.csv", header = TRUE, sep = ";")  

df_daily <- d[0,] 

 

# Loop inn stock data for all time periods (could not download more than 50 000 rows of data at a 

time from Børsprosjektet) 

data.list <- list.files( pattern = '*.csv') 

 

for (i in 1:length(data.list)) { 

  d <- read.csv(data.list[i], header = TRUE, sep = ";") 

  df_daily <- rbind(df_daily,d)} 

 

# Delete excess variables 

rm(d, data.list) 

 

## Import remaining daily data 

 

# Import Data on Market Returns (Professor Bernt Arne Ødegaard) 

dfm_daily <- read.xlsx("market_returns.xlsx")  

# Import data on Factors (Professor Bernt Arne Ødegaard) 

df_factors_daily <- read.xlsx("Daily factors.xlsx")  

# Import data on Risk-free rate (Professor Bernt Arne Ødegaard) 

df_rf_daily <- read.xlsx("Daily rf.xlsx")  
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# Import data on USD/NOK Exchange Rate 

df_exchange_daily <- read.xlsx("USDNOK.xlsx")  

 

### Monthly data  

# Set Working Drectory to import monthly data 

setwd(XXX)  

 

## Import Stock Data for three different time periods 

df_1999 <- read.csv("Monthly data 1980-1999.csv", header = TRUE, sep =";") 

df_2009 <- read.csv("Monthly data 2000-2009.csv", header = TRUE, sep =";") 

df_2019 <- read.csv("Monthly data 2010-2019.csv", header = TRUE, sep =";") 

df_monthly <- rbind(df_1999, df_2009, df_2019)  

 

# Delete unnecessary variables 

rm(df_1999, df_2009, df_2019) 

 

## Import remaining monthly data 

 

# Import Data on Market Returns (Professor Bernt Arne Ødegaard) 

dfm_monthly <- read.xlsx("Monthly market returns.xlsx") 

# Import data on MSCI World Index Returns 

df_msci_monthly <- read.xlsx("MSCI World 1985-2019.xlsx") 

# Import data on Factors (Professor Bernt Arne Ødegaard) 

df_factors_monthly <- read.xlsx("Factors.xlsx")  

# Import data on Risk-free Rate (Professor Bernt Arne Ødegaard) 

df_rf_monthly <- read.xlsx("Risk free rate.xlsx") 

# Import data on the BAB factor from AQR 

df_bab_monthly <- read.xlsx("BAB factor clean.xlsx")  

 

### New Environment to save output 

setwd(XXX) 

 

 

 

########## Section 3: Change date format for imported data ##########  

 

 

 

# Daily stock data 

df_daily <- df_daily %>%  

  rename( TradeDate = ï..ï..ï..TradeDate) 

df_daily$TradeDate <- gsub(x = df_daily$TradeDate, pattern = "00:00:00", replacement = "", fixed 

= T )  

df_daily$TradeDate <- as.Date(df_daily$TradeDate) 

 

# Daily market data 

dfm_daily$date <- as.Date(as.character(dfm_daily$date), "%Y%m%d") 

dfm_daily <- dfm_daily %>%  

  rename(TradeDate = date) 

 

# Daily factor data 

df_factors_daily$date <- as.Date(as.character(df_factors_daily$date), "%Y%m%d") 

df_factors_daily <- df_factors_daily %>%  

  rename(TradeDate = date) 

 

# Daily rf data 

 df_rf_daily$date <- as.Date(as.character(df_rf_daily$date), "%Y%m%d") 

df_rf_daily <- df_rf_daily %>%  

  rename(TradeDate = date) 

 

# Daily exchange rate data 

df_exchange_daily$Date <- as.Date(as.character(df_exchange_daily$Date), "%Y-%m-%d") 

df_exchange_daily <- df_exchange_daily %>%  

  rename(TradeDate = Date) 

 

# Monthly stock data 

df_monthly <- df_monthly %>%  

  rename( TradeDate = ï..ï..ï..TradeDate)  

df_monthly$TradeDate <- gsub(x = df_monthly$TradeDate, pattern = "00:00:00", replacement = "", 

fixed = T ) 

df_monthly$TradeDate <- as.Date(df_monthly$TradeDate) 
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# Set all dates first day of the month 

df_monthly$TradeDate <- floor_date(df_monthly$TradeDate, "month")  

 

# Monthly market data 

dfm_monthly$date <- as.Date(as.character(dfm_monthly$date), "%Y%m%d") 

dfm_monthly <- dfm_monthly %>%  

  rename(TradeDate = date) 

# Set all dates to first day of the month 

dfm_monthly$TradeDate <- floor_date(dfm_monthly$TradeDate, "month")  

 

# Monthly factor 

df_factors_monthly$date <- as.Date(as.character(df_factors_monthly$date), "%Y%m%d") 

df_factors_monthly <- df_factors_monthly %>%  

  rename(TradeDate = date) 

# Set all dates to first day of the month 

df_factors_monthly$TradeDate <- floor_date(df_factors_monthly$TradeDate, "month")  

 

# Montly rf 

df_rf_monthly$date <- as.Date(as.character(df_rf_monthly$date), "%Y%m%d") 

df_rf_monthly <- df_rf_monthly %>%  

  rename(TradeDate = date) 

# Set all dates to first day of the month 

df_rf_monthly$TradeDate <- floor_date(df_rf_monthly$TradeDate, "month")  

 

# Monthly bab factor 

df_bab_monthly$Date <- as.Date(as.character(df_bab_monthly$Date), "%m/%d/%Y") 

df_bab_monthly <- df_bab_monthly %>%  

  rename(TradeDate = Date) 

# Set all dates to first day of the month 

df_bab_monthly$TradeDate <- floor_date(df_bab_monthly$TradeDate, "month")  

 

# MSCI monthly data  

df_msci_monthly$Date <- as.Date(as.character(df_msci_monthly$Date), "%Y%m%d") 

df_msci_monthly <- df_msci_monthly %>%  

  rename(TradeDate = Date) 

# Set all dates to first day of the month 

df_msci_monthly$TradeDate <- floor_date(df_msci_monthly$TradeDate, "month")  

 

 

 

########## Section 4: Data filtering ##########  

 

 

 

### Daily data 

 

## Preparations 

 

# Compute year, month, MCAP (Market Capitalization) and LMCAP (Lagged Market Capitalization) 

variables 

df_daily <- df_daily %>% mutate(Year = year(TradeDate)) %>% mutate(Month = 

floor_date(df_daily$TradeDate, "month")) %>%  

  mutate(Turnover_adj = Generic * OffShareTurnover) %>% mutate(MCAP = Generic * SharesIssued) %>% 

group_by(SecurityId) %>%  

  arrange(TradeDate) %>% mutate(LMCAP = lag(MCAP)) %>% ungroup() 

 

# Compute yearly variables needed for filtering  

df_daily <- df_daily %>% group_by(SecurityId, Year) %>% mutate(Trading_days_year = 

sum(!is.na(OffShareTurnover))) %>%  

  mutate(Turnover_adj_year = mean(Turnover_adj, na.rm = TRUE)) %>% ungroup() 

 

# Compute monthly variables needed for filtering  

df_daily <- df_daily %>%  group_by(SecurityId, Month) %>%  mutate(Trading_days_month = 

sum(!is.na(OffShareTurnover))) %>%  

  mutate(MCAP_month_low = min(MCAP, na.rm = TRUE)) %>% mutate(Generic_month_low = min(Generic, 

na.rm = TRUE)) %>% ungroup() 

   

# Create relative liquidity limit 

k <- df_daily %>% select("Year", "SecurityId", "Turnover_adj_year") %>%  

  distinct() %>% group_by(Year) %>% mutate(Turnover_adj_limit = quantile(Turnover_adj_year, 

0.025, type = 3, na.rm = TRUE)) %>%  
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  ungroup() %>% select("Year", "Turnover_adj_limit") %>% distinct() 

df_daily <- merge(df_daily, k, by = "Year", all.x = TRUE) 

 

# Remove excess variable 

rm(k)  

 

## Filtering 

 

# Use data post 1985 with observations of ReturnAdjGeneric 

filter(!is.na(ReturnAdjGeneric)) 

df_daily <- df_daily %>% filter(TradeDate >= as.Date("1985-01-01") & TradeDate <= as.Date("2018-

12-31")) %>%  

 

# Create summary statistics of daily data prior to filters 

summary_statistics_prefilter_daily <- df_daily %>% select("Generic", 

"ReturnAdjGeneric","SharesIssued" ,"MCAP", "OffShareTurnover") %>% 

  describe( ., na.rm = TRUE, skew = FALSE, quant = c(0.25,0.75)) 

 

# Apply filters  

df_daily <- df_daily %>%    

  filter(SecurityTypeId != 7) %>%                # Remove free float shares from sample 

  filter(Market == "OSE") %>%                    # Remove stocks listed not listed on OSE from 

sample  

  filter(MCAP_month_low >= 1000000) %>%          # Remove stocks for months with less than NOK 1m 

MCAP 

  filter(Generic_month_low >= 1) %>%             # Remove stocks for months with less than NOK 1 

Generic 

  filter(Trading_days_year >= 20) %>%            # Remove stocks for years with less than 20 

trading days  

  filter(Turnover_adj_year > Turnover_adj_limit) # Remove the 2.5% of stocks for years with the 

lowest average daily turnover in NOK 

 

## Create summary statistics of daily data post filters 

summary_statistics_postfilter_daily <- df_daily %>% select("Generic", 

"ReturnAdjGeneric","SharesIssued" ,"MCAP", "OffShareTurnover") %>% 

  describe( ., na.rm = TRUE, skew = FALSE, quant = c(0.25,0.75)) 

 

### Monthly Data 

 

## Preparations 

 

# Calculate Year, Month, MCAP, and LMCAP variable 

df_monthly <- df_monthly %>% mutate(Year = year(TradeDate)) %>% mutate(MCAP = 

Generic*SharesIssued) %>%  

  group_by(SecurityId) %>% arrange(TradeDate) %>% mutate(LMCAP = lag(MCAP)) %>% ungroup() 

 

## Filtering 

 

# Use data post 1985 

df_monthly <- df_monthly %>%  

  filter(TradeDate >= as.Date("1985-01-01") & TradeDate <= as.Date("2018-12-31") ) 

 

# Create summary statistics of monthly data prior to filters 

summary_statistics_prefilter_monthly <- df_monthly %>%  

  select("Generic", "ReturnAdjGeneric","SharesIssued" ,"MCAP", "OffShareTurnover") %>% 

  describe( ., na.rm = TRUE, skew = FALSE, quant = c(0.25,0.75)) 

 

# Remove NA values for ReturnAdjGeneric. Results in only one return observation per month (Have 

checked this) 

df_monthly <- df_monthly %>% filter(!is.na(ReturnAdjGeneric))   

 

# Extract unique combinations of SecurityID and Month from daily data  

merge <- df_daily %>% select("Month","SecurityId","Trading_days_month") %>% distinct() %>% 

rename(TradeDate = Month) 

 

# Merge the unique combinations of SecurityID and Month from the daily data with the monthly 

dataset 

# This procedure effectively applies the filters applied to the daily data, to the monthly data. 

df_monthly <- merge(merge, df_monthly, by = c("TradeDate","SecurityId"), all.x = FALSE, all.y = 

FALSE) # 87 453 - 72 783 

rm(merge) # Remove excess dataframe 
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# Create summary statistics of monthly data post filters 

summary_statistics_postfilter_monthly <- df_monthly %>%  

  select("Generic", "ReturnAdjGeneric","SharesIssued" ,"MCAP", "OffShareTurnover") %>%  

  describe( ., na.rm = TRUE, skew = FALSE, quant = c(0.25,0.75)) 

 

 

 

 

########## Section 5: Compute Market Returns ##########  

 

# Note that VW returns are calculated using lagged market capitalization 

 

## 1: Calculate daily market returns using filtered data 

 

# Create LMCAP_return variable 

df_daily <- df_daily %>% mutate(LMCAP_return = ReturnAdjGeneric * LMCAP) 

 

# Create EW and VW Market Returns  

dfma_daily <- df_daily %>% filter(!is.na(LMCAP)) %>% filter(LMCAP > 0) %>%                  

  group_by(TradeDate) %>% summarise(SecurityIds = length(ReturnAdjGeneric), 

  M.EW = sum(ReturnAdjGeneric)/length(ReturnAdjGeneric),M.VW = sum(LMCAP_return)/sum(LMCAP)) 

   

## 2: Calculate monthly market returns using filtered data 

 

# Create LMCAP_Return variable 

df_monthly <- df_monthly %>% mutate(LMCAP_return = ReturnAdjGeneric * LMCAP) 

 

# Compute EW and VW Market Returns 

dfma_monthly <- df_monthly %>% filter(!is.na(LMCAP_return)) %>%            

  filter(LMCAP > 0) %>% group_by(TradeDate) %>% summarise( 

  M.EW = sum(ReturnAdjGeneric)/length(ReturnAdjGeneric), M.VW = sum(LMCAP_return)/sum(LMCAP))  

 

## 3: Calculate MSCI Index returns in NOK 

 

# Extract last daily exchange rate each month 

df_exchange_monthly <- df_exchange_daily %>% mutate(month = 

floor_date(df_exchange_daily$TradeDate, "month")) %>%  

  group_by(month) %>% arrange(TradeDate) %>%  

  mutate(RateLast = tail(Rate, 1)) %>% ungroup() %>%  

  select("month", "RateLast") %>% distinct() %>%  

  rename(TradeDate = month) 

 

# Merge exchange rate with MSCI price and compute simple MSCI World Index returns in NOK 

df_msci_monthly <- merge(df_msci_monthly, df_exchange_monthly,  by = "TradeDate", all.x = TRUE, 

all.y = FALSE) 

df_msci_monthly <- df_msci_monthly %>% mutate(Close.NOK = Close.USD*RateLast) %>%  

  arrange(TradeDate) %>% mutate(Close.NOK.L = lag(Close.NOK)) %>%  

  mutate(MSCI = Close.NOK/Close.NOK.L -1) %>% select("TradeDate", "MSCI") 

 

# Remove excess variables 

rm(df_exchange_monthly, df_exchange_daily) 

 

 

 

########## Section 6: Combine dataframes ##########  

 

 

 

# Create df_market_daily  

df_market_daily <- merge(dfma_daily, dfm_daily, by = "TradeDate", all.x = TRUE, all.y = FALSE) 

df_market_daily <- merge(df_market_daily, df_rf_daily, by = "TradeDate", all.x = TRUE, all.y = 

FALSE) 

df_market_daily <- merge(df_market_daily, df_factors_daily, by = "TradeDate", all.x = TRUE, all.y 

= FALSE) 

df_market_daily$Rf <- na.locf(df_market_daily$Rf, fromLast = TRUE ) # Replace NA rf values with 

next value 

 

# Create df_market_monthly 

df_market_monthly <- merge(dfma_monthly, dfm_monthly, by = "TradeDate", all.x = TRUE, all.y = 

FALSE)  
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df_market_monthly <- merge(df_market_monthly, df_rf_monthly, by = "TradeDate", all.x = TRUE, 

all.y = FALSE) 

df_market_monthly <- merge(df_market_monthly, df_factors_monthly, by = "TradeDate", all.x = TRUE, 

all.y = FALSE) 

df_market_monthly <- merge(df_market_monthly, df_bab_monthly, by = "TradeDate", all.x = TRUE, 

all.y = FALSE) 

df_market_monthly <- merge(df_market_monthly, df_msci_monthly, by = "TradeDate", all.x = TRUE, 

all.y = FALSE) 

df_market_monthly <- merge(df_market_monthly, df_brent_monthly, by = "TradeDate", all.x = TRUE, 

all.y = FALSE) 

 

# Merge daily stock data with daily market data  

df_daily <- merge(df_daily, df_rf_daily, by = "TradeDate", all.x = TRUE, all.y = FALSE) 

df_daily <- merge(df_daily, dfma_daily, by = "TradeDate", all.x = TRUE, all.y = FALSE) 

df_daily <- merge(df_daily, df_factors_daily, by = "TradeDate", all.x = TRUE, all.y = FALSE) 

df_daily$Rf <- na.locf(df_daily$Rf, fromLast = TRUE ) # Replace NA rf values with next value 

 

# Merge monthly stock data with monthly market data 

df_monthly <- merge(df_monthly, df_rf_monthly, by = "TradeDate", all.x = TRUE, all.y = FALSE) 

df_monthly <- merge(df_monthly, dfma_monthly, by = "TradeDate", all.x = TRUE, all.y = FALSE) 

df_monthly <- merge(df_monthly, df_msci_monthly, by = "TradeDate", all.x = TRUE, all.y = FALSE) 

df_monthly <- merge(df_monthly, df_brent_monthly, by = "TradeDate", all.x = TRUE, all.y = FALSE) 

 

# Remove excess dataframes 

rm(dfma_daily , dfm_daily, df_rf_daily, df_factors_daily) 

rm(df_factors_monthly, df_rf_monthly, dfm_monthly, dfma_monthly, df_bab_monthly, df_msci_monthly) 

 

# Extract needed variables from df_daily 

df_daily  <- df_daily %>% select("TradeDate", "Year", "Month", "SecurityId", "SecurityName", 

"SecurityTypeId",  

  "ReturnAdjGeneric", "LogReturnAdjGeneric" , "Generic" , 

  "MCAP", "LMCAP", "OffShareTurnover" , "M.EW" , "M.VW" , "Rf", "SMB", "HML") 

 

# Extract needed variables from df_monthly  

df_monthly  <- df_monthly %>% select("TradeDate", "Year","SecurityId", "SecurityName", 

"SecurityTypeId",  

  "ReturnAdjGeneric", "LogReturnAdjGeneric" ,"Generic" , 

  "MCAP", "LMCAP", "OffShareTurnover" , "Trading_days_month", "M.EW" , "M.VW", "MSCI", "Rf", 

"Brent") 

 

# Calculate Market Returns in excess of the risk-free rate 

df_daily <- df_daily %>% mutate(E.ReturnAdjGeneric = ReturnAdjGeneric - Rf) %>%  

  mutate(E.M.EW = M.EW - Rf) %>% mutate(E.M.VW = M.VW - Rf) 

df_market_daily <- df_market_daily %>% mutate(E.M.EW = M.EW - Rf) %>%  

  mutate(E.M.VW = M.VW - Rf) 

df_monthly <- df_monthly %>% mutate(E.ReturnAdjGeneric = ReturnAdjGeneric - Rf) %>%  

  mutate(E.M.EW = M.EW - Rf) %>% mutate(E.M.VW = M.VW - Rf) %>% mutate(E.MSCI = MSCI - Rf) 

df_market_monthly <- df_market_monthly %>% mutate(E.M.EW = M.EW - Rf) %>%  

  mutate(E.M.VW = M.VW - Rf) %>% mutate(E.MSCI = MSCI - Rf) 

 

# Create master dataframe 

master <- df_monthly 

 

 

 

##########  Section 7: Estimate Variables ##########  

 

 

 

# Note that all variables are estimated at the end of month t and merged with dates for the month 

t+1, hence in the master dataframe variable estimates for month t will have corresponding excess 

returns for month t+1 

 

# Create date vector (Will decide when first variables are calculated and must be specified) 

date <- seq(as.Date("1985-01-01"), as.Date("2018-12-01"), by = "months")  

 

 

### 1: beta.monthly: At the end of each month t, for each stock i, estimate market beta based on 

60 months of monthly return observations 

 

# Create empty dataframe 
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beta_monthly <- data.frame(SecurityId = integer(), beta.monthly = numeric(), Tradedate = 

as.Date(character()), stringsAsFactors = FALSE) 

 

## Model 

v <- 60 # Number of months with monthly returns used to calculate beta 

w <- 36 # Number of valid return observations needed in the estimation period for a stock to be 

included 

 

for (i in 1:(length(date)-v)) { 

  beta.tab <- df_monthly %>% filter(TradeDate >= date[i] & TradeDate < date[i+v]) %>%  

    filter(Trading_days_month > 0) %>% group_by(SecurityId) %>% filter(n() >= w) %>% 

    do(ols.model = lm(data = ., formula = E.ReturnAdjGeneric ~ E.M.VW)) %>% mutate(beta.monthly = 

coef(ols.model)[2]) %>%  

    select("SecurityId", "beta.monthly") %>% mutate(TradeDate = date[v+i]) 

  beta_monthly <- rbind(beta_monthly,beta.tab)} 

 

 

### 2: beta.daily: At the end of each month t, for each stock i, estimate market beta based on 12 

months of daily return observations 

 

# Create empty dataframe 

beta_daily <- data.frame(SecurityId = integer(), beta.daily = numeric(), Tradedate = 

as.Date(character()), stringsAsFactors = FALSE) 

 

## Model 

n <- 12  # Number of months with daily returns used to calculate beta 

m <- 200 # Number of valid return observations (observations with official turnover>0) needed in 

the estimation period for stock to be included 

 

for (i in 1:(length(date)-n)) { 

  beta.tab <- df_daily %>% filter(TradeDate >= date[i] & TradeDate < date[i+n]) %>%  

    filter(!is.na(OffShareTurnover)) %>% group_by(SecurityId) %>% filter(n() >= m) %>%  

    do(ols.model = lm(data = ., formula = E.ReturnAdjGeneric ~ E.M.VW)) %>% mutate(beta.daily = 

coef(ols.model)[2]) %>%  

    select("SecurityId", "beta.daily") %>% mutate(TradeDate = date[n+i]) 

  beta_daily <- rbind(beta_daily,beta.tab)} 

 

 

### 3: beta.msci: At the end of each month t, for each stock i, estimate market beta based on 60 

months of monthly return observations using the MSCI World Index as market factor 

 

# Create empty dataframe 

beta_msci <- data.frame(SecurityId = integer(), beta.msci = numeric(), Tradedate = 

as.Date(character()), stringsAsFactors = FALSE) 

 

## Model 

v <- 60 # Number of months with monthly returns used to calculate beta 

w <- 36 # Number of valid return observations needed in the calculation period for stock to be 

included 

 

for (i in 1:(length(date)-v)) { 

  beta.tab <- df_monthly %>% filter(TradeDate >= date[i] & TradeDate < date[i+v]) %>%  

    filter(Trading_days_month > 0) %>% filter(!is.na(E.MSCI)) %>% group_by(SecurityId) %>%  

    filter(n() >= w) %>%do(ols.model = lm(data = ., formula = E.ReturnAdjGeneric ~ E.MSCI)) %>%  

    mutate(beta.msci = coef(ols.model)[2]) %>% select("SecurityId", "beta.msci") %>%  

    mutate(TradeDate = date[v+i]) 

  beta_msci <- rbind(beta_msci,beta.tab)} 

 

 

### 4: max: At the end of each month t, for each stock i, estimate max based on 1 month of daily 

return observations  

 

# Create empty  dataframe 

max_daily <- data.frame(SecurityId = integer(), max = numeric(), Tradedate = 

as.Date(character()), stringsAsFactors = FALSE) 

 

## Model 

v <- 1  # Number of months with daily returns used to calculate max 

w <- 15 # Number of valid return observations needed in the estimation period for stock to be 

included 
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for (i in 1:(length(date)-v)) { 

  max.tab <- df_daily %>% filter(TradeDate >= date[i] & TradeDate < date[i+v]) %>%  

    group_by(SecurityId) %>% filter(sum(!is.na(OffShareTurnover)) >= w) %>% 

    summarise(max = mean(tail(sort(ReturnAdjGeneric),5))) %>% select("SecurityId", "max") %>%  

    mutate(TradeDate = date[v+i]) 

  max_daily <- rbind(max_daily,max.tab)} 

 

 

### 5: ivol and iskew: At the end of each month t, for each stock i, estimate ivol and iskew 

based on 1 month of daily return observations  

 

# Create empty dataframe 

ivol_daily <- data.frame(SecurityId = integer(), ivol = numeric(),  

  iskew = numeric(), Tradedate = as.Date(character()), stringsAsFactors = FALSE) 

 

## Model 

v <- 1 # Number of months with daily returns used to calculate ivol and iskew 

w <- 15 # Number of valid return observations needed in the calculation period for stock to be 

included 

 

for (i in 1:(length(date)-v)) { 

  ivol.tab <- df_daily %>% filter(TradeDate >= date[i] & TradeDate < date[i+v]) %>%  

    filter(!is.na(OffShareTurnover)) %>% group_by(SecurityId) %>% filter(n() >= w) %>% 

    do(ols.model = lm(data = ., formula = E.ReturnAdjGeneric ~ E.M.VW + SMB + HML)) %>%  

    mutate(ivol = sd(residuals(ols.model))) %>% mutate(iskew = skewness(residuals(ols.model))) 

%>%  

    select("SecurityId", "ivol", "iskew") %>% mutate(TradeDate = date[v+i]) 

  ivol_daily <- rbind(ivol_daily,ivol.tab)} 

 

 

### Merge variables with master dataframe 

master <- merge(master, beta_daily, by = c("TradeDate", "SecurityId"), all.x = TRUE, all.y = 

FALSE) 

master <- merge(master, beta_monthly, by = c("TradeDate", "SecurityId"), all.x = TRUE, all.y = 

FALSE) 

master <- merge(master, beta_msci, by = c("TradeDate", "SecurityId"), all.x = TRUE, all.y = 

FALSE) 

master <- merge(master, ivol_daily, by = c("TradeDate", "SecurityId"), all.x = TRUE, all.y = 

FALSE) 

master <- merge(master, max_daily, by = c("TradeDate", "SecurityId"), all.x = TRUE, all.y = 

FALSE) 

 

 

### 6: obeta.monthly: At the end of each month t, for each stock i, estimate the portion of 

beta.monthly orthogonal to max 

 

# Calculate monthly o.alfa and o.beta from crossectional regressions    

obeta.monthly.tab <- master %>% group_by(TradeDate) %>% filter(!is.na(beta.monthly)) %>%  

  filter(!is.na(max)) %>% do(ols.model = lm(data = ., formula = beta.monthly ~ max)) %>%  

  mutate(obeta.monthly.alfa = coef(ols.model)[1]) %>% mutate(obeta.monthly.beta = 

coef(ols.model)[2]) %>%  

  select("TradeDate", "obeta.monthly.alfa", "obeta.monthly.beta") 

 

# Merge with master dataframe  and calculate obeta 

master <- merge(master, obeta.monthly.tab, by = "TradeDate", all.x = TRUE) 

master <- master %>% mutate(obeta.monthly = beta.monthly - (obeta.monthly.beta * max))   

 

 

### 7: obeta.daily: At the end of each month t, for each stock i, estimate the portion of 

beta.daily orthogonal to max 

 

# Calculate monthly o.alfa and o.beta from crossectional regressions    

obeta.daily.tab <- master %>% group_by(TradeDate) %>% filter(!is.na(beta.daily)) %>%  

  filter(!is.na(max)) %>% do(ols.model = lm(data = ., formula = beta.daily ~ max)) %>%  

  mutate(obeta.daily.alfa = coef(ols.model)[1]) %>% mutate(obeta.daily.beta = coef(ols.model)[2]) 

%>%  

  select("TradeDate", "obeta.daily.alfa", "obeta.daily.beta") 

 

# Merge with master dataframe and calculate obeta   

master <- merge(master, obeta.daily.tab, by = "TradeDate", all.x = TRUE) 

master <- master %>% mutate(obeta.daily = beta.daily - (obeta.daily.beta * max))   
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### 8: obmax: At the end of each month t, for each stock i, estimate the portion of max 

orthogonal to beta.monthly 

 

# Calculate monthly o.alfa and o.beta from crossectional regressions    

obmax.tab <- master %>% group_by(TradeDate) %>% filter(!is.na(max)) %>%  

  filter(!is.na(beta.monthly)) %>% do(ols.model = lm(data = ., formula = max ~ beta.monthly)) %>%  

  mutate(obmax.alfa = coef(ols.model)[1]) %>% mutate(obmax.beta = coef(ols.model)[2]) %>%  

  select("TradeDate", "obmax.alfa", "obmax.beta") 

 

# Merge with master dataframe and calculate OBMAX  

master <- merge(master, obmax.tab, by = "TradeDate", all.x = TRUE) 

master <- master %>% mutate(obmax = max - (obmax.beta * beta.monthly))   

 

 

### 9: Ibeta.monthly: At the end of each month t, for each stock i, estimate the portion of 

beta.monthly orthogonal to ivol 

 

# Calculate monthly o.alfa and o.beta from crossectional regressions    

ibeta.monthly.tab <- master %>% group_by(TradeDate) %>% filter(!is.na(beta.monthly)) %>%  

  filter(!is.na(ivol)) %>% do(ols.model = lm(data = ., formula = beta.monthly ~ ivol)) %>%  

  mutate(ibeta.monthly.alfa = coef(ols.model)[1]) %>%mutate(ibeta.monthly.beta = 

coef(ols.model)[2]) %>%  

  select("TradeDate", "ibeta.monthly.alfa", "ibeta.monthly.beta") 

 

# Merge with master dataframe  and calculate obeta 

master <- merge(master, ibeta.monthly.tab, by = "TradeDate", all.x = TRUE) 

master <- master %>% mutate(ibeta.monthly = beta.monthly - (ibeta.monthly.beta * max))   

 

# Remove excess dataframes 

rm(beta_daily, beta_monthly, beta_msci, max_daily, ivol_daily, beta_brent, beta.tab, max.tab, 

ivol.tab ,brent.tab,  

   omax.tab, obeta.daily.tab, obeta.monthly.tab, ibeta.monthly.tab, obmax.tab) 

 

### Filter to use have estimates of all variables for same time period  

master <- master %>%  

  filter(TradeDate >= as.Date("1990-01-01") & TradeDate <= as.Date("2018-12-31") ) 

 

 

 

########## Section 8: Summary Statistics and Correlation: Variables ##########  

 

 

 

## Create summary statistics for estimated variables  

summary_statistics_variables <- master %>%  

  select("beta.monthly", "beta.daily", "beta.msci" , "max", "ivol", "iskew",  

  "obeta.monthly", "obeta.daily", "ibeta.monthly" ,"omax", "obmax") %>%  

  describe( ., na.rm = TRUE, skew = FALSE, quant = c(0.25,0.75)) 

 

## Create correlation matrix with averages of monthly cross-sectional correlations(not same as 

average correlation) 

variable_cor <- master %>%  

  select("TradeDate", "beta.monthly", "beta.daily", "beta.msci" , "max",  

  "ivol", "iskew", "obeta.monthly", "obeta.daily", "ibeta.monthly" ,"omax", "obmax")  

variable_cor <- variable_cor %>% group_by(TradeDate) %>%  

  do(cormat = cor(select(., - matches("TradeDate")), use = "pairwise.complete.obs")) 

variable_cor <- Reduce("+", variable_cor$cormat)/length(variable_cor$cormat) 

 

 

 

########## Section 9: Sort stocks into portfolios ##########  

 

# At the end of each month t, we sort all stocks into portfolios based on and ascending ordering 

of the sorting variables 

# In this section it is important to note what filters are applied to the different sorts as they 

have implications for the double-sorts and factor constructions in the following sections  

 

 

### Calculate additional variables needed to create portfolios 
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# Note that all measures using mcap are computed using LMCAP. 

master <- master %>% mutate(mcap_return = E.ReturnAdjGeneric * LMCAP) %>%  

  mutate(mcap_beta_monthly = LMCAP * beta.monthly) %>% mutate(mcap_beta_daily = LMCAP * 

beta.daily) %>% 

  mutate(mcap_beta_msci = LMCAP * beta.msci) %>% mutate(mcap_max = LMCAP * max) %>%  

  mutate(mcap_ivol = LMCAP * ivol) 

   

 

#### 1: Sort into quintile portfolios based on sorting variables to be used in univariate 

portfolio analysis  

 

### Construct quintile portfolios sorted on an ascending ordering of beta.monthly   

# Only observations with an estimate of beta.monthly are included in the sort 

sort_bm <- master %>% group_by(TradeDate) %>% filter(!is.na(beta.monthly)) %>%  

  mutate(Portfolio_b_m = ifelse(beta.monthly <= quantile(beta.monthly, 0.20, type = 3), 1, 

  ifelse(beta.monthly > quantile(beta.monthly, 0.20, type = 3)  

  & beta.monthly <= quantile(beta.monthly, 0.40, type = 3), 2, 

  ifelse(beta.monthly > quantile(beta.monthly, 0.40, type = 3)  

  & beta.monthly <= quantile(beta.monthly, 0.60, type = 3), 3, 

  ifelse(beta.monthly > quantile(beta.monthly, 0.60, type = 3)  

  & beta.monthly <= quantile(beta.monthly, 0.80, type = 3), 4, 

  5))))) %>% ungroup() %>%   select(SecurityId, TradeDate, Portfolio_b_m)  

                          

### Construct quintile portfolios sorted on an ascending ordering of beta.daily 

# Only observations with an estimate of beta.daily are included in the sort 

sort_bd <- master %>% group_by(TradeDate) %>% filter(!is.na(beta.daily)) %>%  

  mutate(Portfolio_b_d = ifelse(beta.daily <= quantile(beta.daily, 0.20, type = 3), 1, 

  ifelse(beta.daily > quantile(beta.daily, 0.20, type = 3) & beta.daily <= quantile(beta.daily, 

0.40, type = 3), 2, 

  ifelse(beta.daily > quantile(beta.daily, 0.40, type = 3) & beta.daily <= quantile(beta.daily, 

0.60, type = 3), 3, 

  ifelse(beta.daily > quantile(beta.daily, 0.60, type = 3) & beta.daily <= quantile(beta.daily, 

0.80, type = 3), 4, 

  5))))) %>% ungroup() %>% select(SecurityId, TradeDate, Portfolio_b_d) 

 

### Construct quintile portfolios sorted on an ascending ordering of beta.msci 

# Only observations with an estimate of beta.msci are included in the sort 

sort_msci <- master %>% group_by(TradeDate) %>% filter(!is.na(beta.msci)) %>%  

  mutate(Portfolio_b_msci = ifelse(beta.msci <= quantile(beta.msci, 0.20, type = 3), 1, 

  ifelse(beta.msci > quantile(beta.msci, 0.20, type = 3) & beta.msci <= quantile(beta.msci, 0.40, 

type = 3), 2, 

  ifelse(beta.msci > quantile(beta.msci, 0.40, type = 3) & beta.msci <= quantile(beta.msci, 0.60, 

type = 3), 3, 

  ifelse(beta.msci > quantile(beta.msci, 0.60, type = 3) & beta.msci <= quantile(beta.msci, 0.80, 

type = 3), 4, 

  5))))) %>% ungroup() %>% select(SecurityId, TradeDate, Portfolio_b_msci)       

 

### Construct quintile portfolios sorted on an ascending ordering of max 

# Only observations with an estimate of max are included in the sort 

sort_max <- master %>% group_by(TradeDate) %>% filter(!is.na(max)) %>%  

  mutate(Portfolio_max = ifelse(max <= quantile(max, 0.20, type = 3), 1, 

  ifelse(max > quantile(max, 0.20, type = 3) & max <= quantile(max, 0.40, type = 3), 2, 

  ifelse(max > quantile(max, 0.40, type = 3) & max <= quantile(max, 0.60, type = 3), 3, 

  ifelse(max > quantile(max, 0.60, type = 3) & max <= quantile(max, 0.80, type = 3), 4, 

  5))))) %>% ungroup() %>% select(SecurityId, TradeDate, Portfolio_max) 

 

### Construct quintile portfolios sorted on an ascending ordering of ivol 

# Only observations with an estimate of ivol are included in the sort 

sort_ivol <- master %>% group_by(TradeDate) %>% filter(!is.na(ivol)) %>%  

  mutate(Portfolio_ivol = ifelse(ivol <= quantile(ivol, 0.20, type = 3), 1, 

  ifelse(ivol > quantile(ivol, 0.20, type = 3) & ivol <= quantile(ivol, 0.40, type = 3), 2, 

  ifelse(ivol > quantile(ivol, 0.40, type = 3) & ivol <= quantile(ivol, 0.60, type = 3), 3, 

  ifelse(ivol > quantile(ivol, 0.60, type = 3) & ivol <= quantile(ivol, 0.80, type = 3), 4, 

  5))))) %>% ungroup() %>% select(SecurityId, TradeDate, Portfolio_ivol)       

 

 

#### 2: Sort stocks into quintile portfolios based on orthogonal components to be used in 

univariate portfolio analysis  

 

### Construct quintile portfolios sorted on an ascending ordering of obeta.monthly 

# Only observations with an estimate of obeta.monthly are included in the sort 
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sort_obeta_monthly <- master %>% group_by(TradeDate) %>% filter(!is.na(obeta.monthly)) %>%  

  mutate(Portfolio_obeta_monthly = ifelse(obeta.monthly <= quantile(obeta.monthly, 0.20, type = 

3), 1, 

  ifelse(obeta.monthly > quantile(obeta.monthly, 0.20, type = 3) & obeta.monthly <= 

quantile(obeta.monthly, 0.40, type = 3), 2, 

  ifelse(obeta.monthly > quantile(obeta.monthly, 0.40, type = 3) & obeta.monthly <= 

quantile(obeta.monthly, 0.60, type = 3), 3, 

  ifelse(obeta.monthly > quantile(obeta.monthly, 0.60, type = 3) & obeta.monthly <= 

quantile(obeta.monthly, 0.80, type = 3), 4, 

  5))))) %>% ungroup() %>% select(SecurityId, TradeDate, Portfolio_obeta_monthly)       

 

### Construct quintile portfolios sorted on an ascending ordering of obeta.daily 

# Only observations with an estimate of obeta.daily are included in the sort 

sort_obeta_daily <- master %>% group_by(TradeDate) %>% filter(!is.na(obeta.daily)) %>%  

  mutate(Portfolio_obeta_daily = ifelse(obeta.daily <= quantile(obeta.daily, 0.20, type = 3), 1, 

  ifelse(obeta.daily > quantile(obeta.daily, 0.20, type = 3) & obeta.daily <= 

quantile(obeta.daily, 0.40, type = 3), 2, 

  ifelse(obeta.daily > quantile(obeta.daily, 0.40, type = 3) & obeta.daily <= 

quantile(obeta.daily, 0.60, type = 3), 3, 

  ifelse(obeta.daily > quantile(obeta.daily, 0.60, type = 3) & obeta.daily <= 

quantile(obeta.daily, 0.80, type = 3), 4, 

  5))))) %>% ungroup() %>% select(SecurityId, TradeDate, Portfolio_obeta_daily)       

 

### Construct quintile portfolios sorted on an ascending ordering of obmax 

# Only observations with an estimate of obmax are included in the sort  

sort_obmax <- master %>% group_by(TradeDate) %>% filter(!is.na(obmax)) %>% 

  mutate(Portfolio_obmax = ifelse(obmax <= quantile(obmax, 0.20, type = 3), 1, 

  ifelse(obmax > quantile(obmax, 0.20, type = 3) & obmax <= quantile(obmax, 0.40, type = 3), 2, 

  ifelse(obmax > quantile(obmax, 0.40, type = 3) & obmax <= quantile(obmax, 0.60, type = 3), 3, 

  ifelse(obmax > quantile(obmax, 0.60, type = 3) & obmax <= quantile(obmax, 0.80, type = 3), 4, 

  5))))) %>% ungroup() %>% select(SecurityId, TradeDate, Portfolio_obmax) 

 

 

### Construct quintile portfolios sorted on an ascending ordering of ibeta.monthly 

# Only observations with an estimate of ibeta.monthly are included in the sort 

sort_ibeta_monthly <- master %>% group_by(TradeDate) %>% filter(!is.na(ibeta.monthly)) %>%  

  mutate(Portfolio_ibeta_monthly = ifelse(ibeta.monthly <= quantile(ibeta.monthly, 0.20, type = 

3), 1, 

  ifelse(ibeta.monthly > quantile(ibeta.monthly, 0.20, type = 3) & ibeta.monthly <= 

quantile(ibeta.monthly, 0.40, type = 3), 2, 

  ifelse(ibeta.monthly > quantile(ibeta.monthly, 0.40, type = 3) & ibeta.monthly <= 

quantile(ibeta.monthly, 0.60, type = 3), 3, 

  ifelse(ibeta.monthly > quantile(ibeta.monthly, 0.60, type = 3) & ibeta.monthly <= 

quantile(ibeta.monthly, 0.80, type = 3), 4, 

  5))))) %>% ungroup() %>% select(SecurityId, TradeDate, Portfolio_ibeta_monthly)       

 

 

#### 3: Sorts into portfolios to be part of a conditional double-sort used for bivariate 

portfolio analysis  

 

### Construct quintile portfolios sorted on an ascending ordering of max to be used in a 

conditional double sort on max then beta.monthly) 

# Only observations with an estimate of both max and beta.monthly are included in the sort 

sort_max2 <- master %>% group_by(TradeDate) %>% filter(!is.na(max)) %>% 

  filter(!is.na(beta.monthly)) %>%  

  mutate(Portfolio_max2 = ifelse(max <= quantile(max, 0.20, type = 3), 1, 

  ifelse(max > quantile(max, 0.20, type = 3) & max <= quantile(max, 0.40, type = 3), 2, 

  ifelse(max > quantile(max, 0.40, type = 3) & max <= quantile(max, 0.60, type = 3), 3, 

  ifelse(max > quantile(max, 0.60, type = 3) & max <= quantile(max, 0.80, type = 3), 4, 

  5))))) %>% ungroup() %>% select(SecurityId, TradeDate, Portfolio_max2)  

 

### Construct quintile portfolios sorted on an ascending ordering of max to be used a in 

conditional double sort on max then beta.daily) 

# Only observations with an estimate of both max and beta.daily are included in the sort 

sort_max3 <- master %>% group_by(TradeDate) %>% filter(!is.na(max)) %>%filter(!is.na(beta.daily)) 

%>%  

  mutate(Portfolio_max3 = ifelse(max <= quantile(max, 0.20, type = 3), 1, 

  ifelse(max > quantile(max, 0.20, type = 3) & max <= quantile(max, 0.40, type = 3), 2, 

  ifelse(max > quantile(max, 0.40, type = 3) & max <= quantile(max, 0.60, type = 3), 3, 

  ifelse(max > quantile(max, 0.60, type = 3) & max <= quantile(max, 0.80, type = 3), 4, 

  5))))) %>% ungroup() %>% select(SecurityId, TradeDate, Portfolio_max3)  
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### Construct quintile portfolios sorted on an ascending ordering of beta.monthly to be used in 

conditional double-sort on beta.monthly then max 

# Only observations with an estimate of both max and beta.monthly are included in the sort 

sort_mb <- master %>% group_by(TradeDate) %>% filter(!is.na(beta.monthly)) %>%filter(!is.na(max)) 

%>%  

  mutate(Portfolio_mb = ifelse(beta.monthly <= quantile(beta.monthly, 0.20, type = 3), 1, 

  ifelse(beta.monthly > quantile(beta.monthly, 0.20, type = 3) & beta.monthly <= 

quantile(beta.monthly, 0.40, type = 3), 2, 

  ifelse(beta.monthly > quantile(beta.monthly, 0.40, type = 3) & beta.monthly <= 

quantile(beta.monthly, 0.60, type = 3), 3, 

  ifelse(beta.monthly > quantile(beta.monthly, 0.60, type = 3) & beta.monthly <= quantile(max, 

0.80, type = 3), 4, 

  5))))) %>% ungroup() %>% select(SecurityId, TradeDate, Portfolio_mb)  

 

### Construct quintile portfolios sorted on an ascending ordering of ivol to be used in 

conditional double-sort on ivol then beta monthly 

# Only observations with an estimate of both ivol and beta.monthly are included in the sort 

sort_ivol2 <- master %>% group_by(TradeDate) %>% filter(!is.na(ivol)) %>% 

filter(!is.na(beta.monthly)) %>%  

  mutate(Portfolio_ivol2 = ifelse(ivol <= quantile(ivol, 0.20, type = 3), 1, 

  ifelse(ivol > quantile(ivol, 0.20, type = 3) & ivol <= quantile(ivol, 0.40, type = 3), 2, 

  ifelse(ivol > quantile(ivol, 0.40, type = 3) & ivol <= quantile(ivol, 0.60, type = 3), 3, 

  ifelse(ivol > quantile(ivol, 0.60, type = 3) & ivol <= quantile(ivol, 0.80, type = 3), 4, 

  5))))) %>% ungroup() %>% select(SecurityId, TradeDate, Portfolio_ivol2)  

 

 

#### 4: Sorts into portfolios to be used to be used in factor construction  

 

### Construct two equal-sized portfolios sorted on an ascending ordering of LMCAP for max and 

ivol factor calculations 

# Same data filters applied for estimates of max and ivol, implies that all estimates of max will 

have a corresponding estimate of ivol and the same sort on LMCAP can be used for both factor 

constructions 

# Only observations with an estimate of max/ivol and LMCAP are included in the sort 

sort_LMCAP <- master %>% group_by(TradeDate) %>% filter(!is.na(LMCAP)) %>% filter(LMCAP > 0) %>%  

  filter(!is.na(max)) %>% mutate(Portfolio_LMCAP = ifelse(LMCAP <= quantile(LMCAP, 0.50, type = 

3), 1,2)) %>%  

  ungroup() %>% select(SecurityId, TradeDate, Portfolio_LMCAP)  

 

### Construct two equal-sized portfolios sorted on an ascending ordering of LMCAP for 

beta.monthly factor calculations 

# Only observations with an estimate of beta.monthly and LMCAP are included in the sort 

sort_LMCAP2 <- master %>% group_by(TradeDate) %>% filter(!is.na(LMCAP)) %>% filter(LMCAP > 0) %>%  

  filter(!is.na(beta.monthly)) %>% mutate(Portfolio_LMCAP2 = ifelse(LMCAP <= quantile(LMCAP, 

0.50, type = 3), 1,2)) %>%  

  ungroup() %>% select(SecurityId, TradeDate, Portfolio_LMCAP2)  

 

 

### Merge portoflio sorts with master dataframe.  

master <- merge(master, sort_bm, by = c("TradeDate", "SecurityId"), all.x = TRUE) 

master <- merge(master, sort_bd, by = c("TradeDate", "SecurityId"), all.x = TRUE) 

master <- merge(master, sort_msci, by = c("TradeDate", "SecurityId"), all.x = TRUE) 

master <- merge(master, sort_max, by = c("TradeDate", "SecurityId"), all.x = TRUE) 

master <- merge(master, sort_ivol, by = c("TradeDate", "SecurityId"), all.x = TRUE) 

master <- merge(master, sort_obeta_daily, by = c("TradeDate", "SecurityId"), all.x = TRUE) 

master <- merge(master, sort_obeta_monthly, by = c("TradeDate", "SecurityId"), all.x = TRUE) 

master <- merge(master, sort_ibeta_monthly, by = c("TradeDate", "SecurityId"), all.x = TRUE) 

master <- merge(master, sort_LMCAP, by = c("TradeDate", "SecurityId"), all.x = TRUE) 

master <- merge(master, sort_LMCAP2, by = c("TradeDate", "SecurityId"), all.x = TRUE) 

master <- merge(master, sort_max2, by = c("TradeDate", "SecurityId"), all.x = TRUE) 

master <- merge(master, sort_max3, by = c("TradeDate", "SecurityId"), all.x = TRUE) 

master <- merge(master, sort_ivol2, by = c("TradeDate", "SecurityId"), all.x = TRUE) 

master <- merge(master, sort_omax, by = c("TradeDate", "SecurityId"), all.x = TRUE) 

master <- merge(master, sort_mb, by = c("TradeDate", "SecurityId"), all.x = TRUE) 

master <- merge(master, sort_obmax, by = c("TradeDate", "SecurityId"), all.x = TRUE) 

 

 

# Remove excess dataframes 

rm(sort_bm, sort_bd, sort_msci, sort_max, sort_ivol, sort_obeta_daily, sort_obeta_monthly, 

sort_ibeta_monthly, 
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   sort_LMCAP, sort_max2, sort_ivol2, sort_omax, sort_LMCAP2, sort_max3, sort_mb, sort_obmax) 

 

 

########## Section 9: Construct Factor Returns ########## 

 

 

#### 1: Construct FMAX factor 

 

# Sort stocks into three portfolios based on an ascending ordering of MAX 

# Only observations that have been previously sorted into an LMCAP portfolio are included  

sort_fmax_0 <- master %>% group_by(TradeDate) %>% filter(!is.na(Portfolio_LMCAP)) %>%  

  mutate(Portfolio_fmax_0 = ifelse(max <= quantile(max, 0.30, type = 3), 1, 

  ifelse(max > quantile(max, 0.30, type = 3) & max <= quantile(max, 0.70, type = 3), 2,3))) %>%  

  ungroup() %>% select(SecurityId, TradeDate, Portfolio_fmax_0)  

master <- merge(master, sort_fmax_0, by = c("TradeDate", "SecurityId"), all.x = TRUE) 

rm(sort_fmax_0) 

 

# Create the four portfolios formed by the intersections between the low and high max portfolios 

and the two LMCAP portfolios 

sort_fmax_1 <- master %>%  

  mutate(Portfolio_fmax = ifelse(Portfolio_LMCAP == 1 & Portfolio_fmax_0 == 1, 11, 

                            ifelse(Portfolio_LMCAP == 2 & Portfolio_fmax_0 == 1, 21, 

                            ifelse(Portfolio_LMCAP == 1 & Portfolio_fmax_0 == 3, 13, 

                            ifelse(Portfolio_LMCAP == 2 & Portfolio_fmax_0 == 3, 23, 

                            NA))))) %>% ungroup() %>% select(SecurityId, TradeDate, 

Portfolio_fmax) 

master <- merge(master, sort_fmax_1, by = c("TradeDate", "SecurityId"), all.x = TRUE) 

 

 

# Calculate the VW monthly returns for the 4 portfolios created by the intersections 

fmax_factor <- master %>% filter(!is.na(Portfolio_fmax)) %>% group_by(TradeDate, Portfolio_fmax) 

%>%  

  summarise(return_VW = sum(mcap_return)/sum(LMCAP)) %>% rename(portfolio = Portfolio_fmax) 

 

# Compute the monthly FMAX factor returns equal to the average returns of the two low-max 

portfolios less the average returns of the two high-max portfolios  

fmax_factor <- fmax_factor %>% spread(key = portfolio, value = return_VW) %>%  

  mutate(FMAX = (`11`+`21`)/2 - (`13`+`23`)/2 ) %>% select(TradeDate, FMAX) 

 

# Remove excess dataframes 

rm(sort_fmax_1) 

 

##### 2: Construct FIVOL factor 

 

# Sort stocks into three portfolios based on an ascending ordering of ivol 

# Only observations that have been previously sorted into an LMCAP portfolio are included  

sort_fivol_0 <- master %>% group_by(TradeDate) %>% filter(!is.na(Portfolio_LMCAP)) %>%  

  mutate(Portfolio_fivol_0 = ifelse(ivol <= quantile(ivol, 0.30, type = 3), 1, 

                             ifelse(ivol > quantile(ivol, 0.30, type = 3) & ivol <= 

quantile(ivol, 0.70, type = 3), 2, 

                             3))) %>% ungroup() %>% select(SecurityId, TradeDate, 

Portfolio_fivol_0)  

master <- merge(master, sort_fivol_0, by = c("TradeDate", "SecurityId"), all.x = TRUE) 

rm(sort_fivol_0) 

 

# Create the four portfolios formed by intersections between the low and high ivol portfolios and 

the two LMCAP portfolios 

sort_fivol_1 <- master %>%  

  mutate(Portfolio_fivol = ifelse(Portfolio_LMCAP == 1 & Portfolio_fivol_0 == 1, 11, 

                           ifelse(Portfolio_LMCAP == 2 & Portfolio_fivol_0 == 1, 21, 

                           ifelse(Portfolio_LMCAP == 1 & Portfolio_fivol_0 == 3, 13, 

                           ifelse(Portfolio_LMCAP == 2 & Portfolio_fivol_0 == 3, 23, 

                           NA))))) %>% ungroup() %>% select(SecurityId, TradeDate, 

Portfolio_fivol) 

master <- merge(master, sort_fivol_1, by = c("TradeDate", "SecurityId"), all.x = TRUE) 

 

# Calculate the VW monthly returns for the 4 portfolios created by the intersections 

fivol_factor <- master %>% filter(!is.na(Portfolio_fivol)) %>% group_by(TradeDate, 

Portfolio_fivol) %>%  

  summarise(return_VW = sum(mcap_return)/sum(LMCAP)) %>% rename(portfolio = Portfolio_fivol) 
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# Compute the monthly FIVOL factor returns equal to the average returns of the two low-ivol 

portfolios less the average returns of the two high-ivol portfolios  

fivol_factor <- fivol_factor %>% spread(key = portfolio, value = return_VW) %>%  

  mutate(FIVOL = (`11`+`21`)/2 - (`13`+`23`)/2 ) %>% select(TradeDate, FIVOL) 

 

# Remove excess dataframes 

rm(sort_fivol_1) 

 

 

##### 3: Create FBETA factor 

 

# Sort the stocks into three portfolios based on an ascending ordering of beta.monthly 

# Only observations that have been previously sorted into an LMCAP2 portfolio are included  

sort_fbeta_0 <- master %>% group_by(TradeDate) %>%  

  filter(!is.na(Portfolio_LMCAP2)) %>%  

  mutate(Portfolio_fbeta_0 = ifelse(beta.monthly <= quantile(beta.monthly, 0.30, type = 3), 1, 

                             ifelse(beta.monthly > quantile(beta.monthly, 0.30, type = 3) & 

beta.monthly <= quantile(beta.monthly, 0.70, type = 3), 2, 

                             3))) %>% ungroup() %>% select(SecurityId, TradeDate, 

Portfolio_fbeta_0)  

master <- merge(master, sort_fbeta_0, by = c("TradeDate", "SecurityId"), all.x = TRUE) 

rm(sort_fbeta_0) 

 

# Create the four portfolios formed by the intersections between the low and high beta.monthly 

portfolios and the two LMCAP2 portfolios 

sort_fbeta_1 <- master %>%  

  mutate(Portfolio_fbeta = ifelse(Portfolio_LMCAP2 == 1 & Portfolio_fbeta_0 == 1, 11, 

                           ifelse(Portfolio_LMCAP2 == 2 & Portfolio_fbeta_0 == 1, 21, 

                           ifelse(Portfolio_LMCAP2 == 1 & Portfolio_fbeta_0 == 3, 13, 

                           ifelse(Portfolio_LMCAP2 == 2 & Portfolio_fbeta_0 == 3, 23, 

                           NA))))) %>% ungroup() %>% select(SecurityId, TradeDate, 

Portfolio_fbeta) 

master <- merge(master, sort_fbeta_1, by = c("TradeDate", "SecurityId"), all.x = TRUE) 

 

 

# Calculate the VW returns for the 4 portfolios created by the intersections 

fbeta_factor <- master %>% filter(!is.na(Portfolio_fbeta)) %>% group_by(TradeDate, 

Portfolio_fbeta) %>%  

  summarise(return_VW = sum(mcap_return)/sum(LMCAP)) %>% rename(portfolio = Portfolio_fbeta) 

 

# Compute the monthly FBETA factor returns equal to the average returns of the two low-

beta.monthly portfolios less the average returns of the two high-beta.monthly portfolios  

fbeta_factor <- fbeta_factor %>% spread(key = portfolio, value = return_VW) %>%  

  mutate(FBETA = (`11`+`21`)/2 - (`13`+`23`)/2 ) %>% select(TradeDate, FBETA) 

 

# Remove excess dataframes 

rm(sort_fbeta_1) 

 

 

 

##########  Section 10: Perform Conditional Double-sorts ##########  

 

 

 

# Note that the conditional double sorts depend on correct filtering of observations in the 

primary sorts performed in section 8. 

# In this section we create 5 portfolios representing the sum of stocks in the control variable 

quintile portfolios within each quintile of the sorting variable of interest 

# When we later compute the portfolio returns, we will estimate the performance of the average 

control variable quintile portfolio within each quintile of the variable of interest 

 

 

### 1: Perform a conditional double-sort on max then beta.monthly  

## Create 5 portfolios representing the sum of stocks in the max quintile portfolios within each 

beta.monthly quintile 

 

# Create BNM portfolios  

portfolio_bnm <- master %>%filter(!is.na(Portfolio_max2)) %>%  

  group_by(Portfolio_max2, TradeDate) %>%  

    mutate(Portfolio_BNM = ifelse(beta.monthly <= quantile(beta.monthly, 0.20, type = 3), 1, 
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    ifelse(beta.monthly > quantile(beta.monthly, 0.20, type = 3) & beta.monthly <= 

quantile(beta.monthly, 0.40, type = 3), 2, 

    ifelse(beta.monthly > quantile(beta.monthly, 0.40, type = 3) & beta.monthly <= 

quantile(beta.monthly, 0.60, type = 3), 3,       

    ifelse(beta.monthly > quantile(beta.monthly, 0.60, type = 3) & beta.monthly <= 

quantile(beta.monthly, 0.80, type = 3), 4,       

    5))))) %>% ungroup() %>%select(SecurityId, TradeDate, Portfolio_BNM) 

 

# Merge with master dataframe 

master <- merge(master, portfolio_bnm, by = c("TradeDate", "SecurityId"), all.x = TRUE) 

 

# Remove excess dataframes 

rm(portfolio_bnm)   

 

 

### 2: Perform a conditional double-sort on max then beta.daily  

## Create 5 portfolios representing the sum of stocks in the max quintile portfolios within each 

beta.daily quintile 

 

# Create BNMD portfolios  

portfolio_bnmd <- master %>% 

  filter(!is.na(Portfolio_max3)) %>%  

  group_by(Portfolio_max3, TradeDate) %>%  

  mutate(Portfolio_BNMD = ifelse(beta.daily <= quantile(beta.daily, 0.20, type = 3), 1, 

  ifelse(beta.daily > quantile(beta.daily, 0.20, type = 3) & beta.daily <= quantile(beta.daily, 

0.40, type = 3), 2, 

  ifelse(beta.daily > quantile(beta.daily, 0.40, type = 3) & beta.daily <= quantile(beta.daily, 

0.60, type = 3), 3,       

  ifelse(beta.daily > quantile(beta.daily, 0.60, type = 3) & beta.daily <= quantile(beta.daily, 

0.80, type = 3), 4,       

  5))))) %>% ungroup() %>% select(SecurityId, TradeDate, Portfolio_BNMD) 

 

# Merge with master dataframe 

master <- merge(master, portfolio_bnmd, by = c("TradeDate", "SecurityId"), all.x = TRUE) 

 

# Remove excess dataframes 

rm(portfolio_bnmd)   

 

 

### 3: Perform a conditional double-sort on beta.monthly then max 

## Create 5 portfolios representing the sum of stocks in the beta.monthly quintile portfolios 

within each max quintile 

 

# Create MNB portfolios  

portfolio_mnb <- master %>% 

  filter(!is.na(Portfolio_mb)) %>%  

  group_by(Portfolio_mb, TradeDate) %>%  

  mutate(Portfolio_MNB = ifelse(max <= quantile(max, 0.20, type = 3), 1, 

  ifelse(max > quantile(max, 0.20, type = 3) & max <= quantile(max, 0.40, type = 3), 2, 

  ifelse(max > quantile(max, 0.40, type = 3) & max <= quantile(max, 0.60, type = 3), 3,       

  ifelse(max > quantile(max, 0.60, type = 3) & max <= quantile(max, 0.80, type = 3), 4,       

  5))))) %>% ungroup() %>% select(SecurityId, TradeDate, Portfolio_MNB) 

 

# Merge with master dataframe 

master <- merge(master, portfolio_mnb, by = c("TradeDate", "SecurityId"), all.x = TRUE) 

 

# Remove excess dataframes 

rm(portfolio_mnb)   

 

 

### 4: Perform a conditional double-sort on ivol then beta.monthly 

## Create 5 portfolios representing the sum of stocks in the ivol quintile portfolios withing 

each beta.monthly quintile 

 

# Create BNI portfolios  

portfolio_bni <- master %>% 

  filter(!is.na(Portfolio_ivol2 )) %>%  

  group_by(Portfolio_ivol2, TradeDate) %>%  

  mutate(Portfolio_BNI = ifelse(beta.monthly <= quantile(beta.monthly, 0.20, type = 3), 1, 

  ifelse(beta.monthly > quantile(beta.monthly, 0.20, type = 3) & beta.monthly <= 

quantile(beta.monthly, 0.40, type = 3), 2, 



115 
 

  ifelse(beta.monthly > quantile(beta.monthly, 0.40, type = 3) & beta.monthly <= 

quantile(beta.monthly, 0.60, type = 3), 3,       

  ifelse(beta.monthly > quantile(beta.monthly, 0.60, type = 3) & beta.monthly <= 

quantile(beta.monthly, 0.80, type = 3), 4,       

  5))))) %>% ungroup() %>%select(SecurityId, TradeDate, Portfolio_BNI) 

 

# Merge with master dataframe 

master <- merge(master, portfolio_bni, by = c("TradeDate", "SecurityId"), all.x = TRUE) 

 

# Remove excess dataframes 

rm(portfolio_bni)   

 

 

 

########## Section 11: Compute monthly and timer-series average portfolio excess returns, sharpe 

ratios and portfolio characteristics ########## 

 

 

 

#### 1: Quintile portfolios sorted on beta.monthly 

 

### Calculate monthly VW (EW) portfolio excess returns and portfolio characteristics 

portfolio_month <- master %>% filter(!is.na(Portfolio_b_m)) %>% group_by(TradeDate, 

Portfolio_b_m) %>%  

  summarise(length = length(E.ReturnAdjGeneric), mcap = sum(LMCAP, na.rm = TRUE), 

  er_month_ew = sum(E.ReturnAdjGeneric)/length(E.ReturnAdjGeneric), beta_monthly_ew = 

mean(beta.monthly, na.rm = TRUE), 

  beta_daily_ew = mean(beta.daily, na.rm = TRUE), max_ew = mean(max, na.rm = TRUE), er_month_vw = 

sum(mcap_return)/sum(LMCAP), 

  beta_monthly_vw = sum(mcap_beta_monthly, na.rm = TRUE)/sum(LMCAP), beta_daily_vw = 

sum(mcap_beta_daily, na.rm = TRUE)/sum(LMCAP), 

  max_vw = sum(mcap_max, na.rm = TRUE)/sum(LMCAP)) 

 

# Compute the metrics for the low-high portfolio (portfolio 6) 

portfolio_month <- portfolio_month %>% group_by(TradeDate) %>%arrange(Portfolio_b_m) %>%  

  summarise(Portfolio_b_m = 6, length = 0, mcap = first(mcap)-last(mcap), er_month_ew = 

first(er_month_ew)-last(er_month_ew), 

  beta_monthly_ew = first(beta_monthly_ew)-last(beta_monthly_ew), beta_daily_ew = 

first(beta_daily_ew)-last(beta_daily_ew), 

  max_ew = first(max_ew)-last(max_ew), er_month_vw = first(er_month_vw)-last(er_month_vw), 

  beta_monthly_vw = first(beta_monthly_vw)-last(beta_monthly_vw), beta_daily_vw = 

first(beta_daily_vw)-last(beta_daily_vw),  

  max_vw = first(max_vw)-last(max_vw)) %>% bind_rows(portfolio_month, .) %>% arrange(TradeDate) 

%>% rename(portfolio = Portfolio_b_m) 

 

# Compute time-series averages 

portfolio_month_c <- portfolio_month %>% group_by(portfolio) %>% summarise(length = 

round(mean(length)), 

  mcap = mean(mcap), beta_monthly_ew = mean(beta_monthly_ew), beta_daily_ew = mean(beta_daily_ew, 

na.rm = TRUE), 

  max_ew = mean(max_ew, na.rm = TRUE), sd_month_ew = sd(er_month_ew), 

  er_month_ew = mean(er_month_ew), sr_month_ew = er_month_ew/sd_month_ew, beta_monthly_vw = 

mean(beta_monthly_vw, na.rm = TRUE), 

  beta_daily_vw = mean(beta_daily_vw, na.rm = TRUE), max_vw = mean(max_vw), sd_month_vw = 

sd(er_month_vw, na.rm = TRUE), 

  er_month_vw = mean(er_month_vw), sr_month_vw = er_month_vw/sd_month_vw) %>% t() 

 

 

#### 2: Quintile portfolios sorted on beta.daily 

 

### Calculate monthly VW (EW) portfolio excess returns and portfolio characteristics  

portfolio_day <- master %>% filter(!is.na(Portfolio_b_d)) %>% group_by(TradeDate, Portfolio_b_d) 

%>%  

  summarise(length = length(E.ReturnAdjGeneric),mcap = sum(LMCAP, na.rm = TRUE), 

  er_day_ew = sum(E.ReturnAdjGeneric)/length(E.ReturnAdjGeneric),beta_monthly_ew = 

mean(beta.monthly, na.rm = TRUE), 

  beta_daily_ew = mean(beta.daily, na.rm = TRUE),max_ew = mean(max, na.rm = TRUE), 

  er_day_vw = sum(mcap_return)/sum(LMCAP),beta_monthly_vw = sum(mcap_beta_monthly, na.rm = 

TRUE)/sum(LMCAP), 

  beta_daily_vw = sum(mcap_beta_daily, na.rm = TRUE)/sum(LMCAP),max_vw = sum(mcap_max, na.rm = 

TRUE)/sum(LMCAP)) 
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# Compute the metrics for the low-high portfolio (portfolio 6) 

portfolio_day <- portfolio_day %>% group_by(TradeDate) %>% arrange(Portfolio_b_d) %>% 

summarise(Portfolio_b_d = 6, 

  length = 0,mcap = first(mcap)-last(mcap),er_day_ew = first(er_day_ew)-last(er_day_ew), 

  beta_monthly_ew = first(beta_monthly_ew)-last(beta_monthly_ew),beta_daily_ew = 

first(beta_daily_ew)-last(beta_daily_ew), 

  max_ew = first(max_ew)-last(max_ew),er_day_vw = first(er_day_vw)-

last(er_day_vw),beta_monthly_vw = first(beta_monthly_vw)-last(beta_monthly_vw), 

  beta_daily_vw = first(beta_daily_vw)-last(beta_daily_vw), max_vw = first(max_vw)-last(max_vw)) 

%>%  

  bind_rows(portfolio_day, .) %>% arrange(TradeDate) %>% rename(portfolio = Portfolio_b_d) 

 

# Compute time-series averages 

portfolio_day_c <- portfolio_day %>% group_by(portfolio) %>% summarise(length = 

round(mean(length)), 

  mcap = mean(mcap),beta_monthly_ew = mean(beta_monthly_ew),beta_daily_ew = mean(beta_daily_ew), 

  max_ew = mean(max_ew), sd_day_ew = sd(er_day_ew),er_day_ew = mean(er_day_ew),sr_day_ew = 

er_day_ew/sd_day_ew, 

  beta_monthly_vw = mean(beta_monthly_vw),beta_daily_vw = mean(beta_daily_vw),max_vw = 

mean(max_vw), 

  sd_day_vw = sd(er_day_vw),er_day_vw = mean(er_day_vw),sr_day_vw = er_day_vw/sd_day_vw) %>% t() 

 

 

#### 3: Quintile portfolios sorted on beta.msci 

 

### Calculate monthly VW (EW) portfolio excess returns and portfolio characteristics  

portfolio_msci <- master %>% filter(!is.na(Portfolio_b_msci)) %>% group_by(TradeDate, 

Portfolio_b_msci) %>%  

  summarise(length = length(E.ReturnAdjGeneric),mcap = sum(LMCAP, na.rm = TRUE), 

  er_msci_ew = sum(E.ReturnAdjGeneric)/length(E.ReturnAdjGeneric), beta_monthly_ew = 

mean(beta.monthly, na.rm = TRUE), 

  beta_msci_ew = mean(beta.msci, na.rm = TRUE), max_ew = mean(max, na.rm = TRUE), 

  er_msci_vw = sum(mcap_return)/sum(LMCAP), beta_monthly_vw = sum(mcap_beta_monthly, na.rm = 

TRUE)/sum(LMCAP), 

  beta_msci_vw = sum(mcap_beta_msci, na.rm = TRUE)/sum(LMCAP), max_vw = sum(mcap_max, na.rm = 

TRUE)/sum(LMCAP)) 

 

# Compute the metrics for the low-high portfolio (portfolio 6) 

portfolio_msci <- portfolio_msci %>% group_by(TradeDate) %>% arrange(Portfolio_b_msci) %>%  

  summarise(Portfolio_b_msci = 6, length = 0, mcap = first(mcap)-last(mcap),er_msci_ew = 

first(er_msci_ew)-last(er_msci_ew),  

  beta_monthly_ew = first(beta_monthly_ew)-last(beta_monthly_ew), beta_msci_ew = 

first(beta_msci_ew)-last(beta_msci_ew),  

  max_ew = first(max_ew)-last(max_ew), er_msci_vw = first(er_msci_vw)-last(er_msci_vw), 

  beta_monthly_vw = first(beta_monthly_vw)-last(beta_monthly_vw),beta_msci_vw = 

first(beta_msci_vw)-last(beta_msci_vw),  

  max_vw = first(max_vw)-last(max_vw)) %>% bind_rows(portfolio_msci, .) %>% arrange(TradeDate) 

%>% rename(portfolio = Portfolio_b_msci) 

 

# Compute time-series averages 

portfolio_msci_c <- portfolio_msci %>% group_by(portfolio) %>%  

  summarise(length = round(mean(length)), mcap = mean(mcap), beta_monthly_ew = 

mean(beta_monthly_ew), 

  beta_msci_ew = mean(beta_msci_ew), max_ew = mean(max_ew, na.rm = TRUE), 

  sd_msci_ew = sd(er_msci_ew), er_msci_ew = mean(er_msci_ew), sr_msci_ew = er_msci_ew/sd_msci_ew, 

  beta_monthly_vw = mean(beta_monthly_vw), beta_msci_vw = mean(beta_msci_vw), 

  max_vw = mean(max_vw, na.rm = TRUE), sd_msci_vw = sd(er_msci_vw), 

  er_msci_vw = mean(er_msci_vw), sr_msci_vw = er_msci_vw/sd_msci_vw) %>% t() 

 

 

#### 4: Quintile portfolios sorted on max 

 

### Calculate monthly VW (EW) portfolio excess returns and portfolio characteristics  

portfolio_max <- master %>% filter(!is.na(Portfolio_max)) %>%  

  group_by(TradeDate, Portfolio_max) %>% summarise(length = length(E.ReturnAdjGeneric), 

  mcap = sum(LMCAP, na.rm = TRUE), er_max_ew = 

sum(E.ReturnAdjGeneric)/length(E.ReturnAdjGeneric), 

  beta_monthly_ew = mean(beta.monthly, na.rm = TRUE), max_ew = mean(max, na.rm = TRUE), 

  er_max_vw = sum(mcap_return)/sum(LMCAP), beta_monthly_vw = sum(mcap_beta_monthly, na.rm = 

TRUE)/sum(LMCAP), 
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  max_vw = sum(mcap_max, na.rm = TRUE)/sum(LMCAP), price = mean(Generic, na.rm = TRUE), 

  ivol = mean(ivol, na.rm = TRUE), iskew = mean(iskew, na.rm = TRUE)) 

 

# Compute the metrics for the low-high portfolio (portfolio 6) 

portfolio_max <- portfolio_max %>% group_by(TradeDate) %>% arrange(Portfolio_max) %>%  

  summarise(Portfolio_max = 6, length = 0, mcap = first(mcap)-last(mcap), 

  er_max_ew = first(er_max_ew)-last(er_max_ew), beta_monthly_ew = first(beta_monthly_ew)-

last(beta_monthly_ew), 

  max_ew = first(max_ew)-last(max_ew), er_max_vw = first(er_max_vw)-last(er_max_vw), 

  beta_monthly_vw = first(beta_monthly_vw)-last(beta_monthly_vw), max_vw = first(max_vw)-

last(max_vw), 

  price = first(price) - last(price), ivol = first(ivol)-last(ivol), iskew = first(iskew)-

last(iskew)) %>%  

  bind_rows(portfolio_max, .) %>% arrange(TradeDate) %>% rename(portfolio = Portfolio_max) 

 

# Compute time-series averages 

portfolio_max_c <- portfolio_max %>% group_by(portfolio) %>%  

  summarise(length = round(mean(length)),mcap = mean(mcap), 

  beta_monthly_ew = mean(beta_monthly_ew), max_ew = mean(max_ew), sd_max_ew = sd(er_max_ew), 

  er_max_ew = mean(er_max_ew), sr_max_ew = er_max_ew/sd_max_ew, beta_monthly_vw = 

mean(beta_monthly_vw), 

  max_vw = mean(max_vw), sd_max_vw = sd(er_max_vw), er_max_vw = mean(er_max_vw), 

  sr_max_vw = er_max_vw/sd_max_vw, price = mean(price),ivol = mean(ivol), iskew= mean(iskew)) %>% 

t() 

   

 

#### 5. Quintile portfolios representing the sum of stocks in the quintile max portfolios within 

each beta.monthly quintile portfolio 

 

### Calculate monthly VW (EW) portfolio excess returns and portfolio characteristics  

portfolio_BNM <- master %>% filter(!is.na(Portfolio_BNM)) %>% group_by(TradeDate, Portfolio_BNM) 

%>%  

  summarise(length = length(E.ReturnAdjGeneric), mcap = sum(LMCAP, na.rm = TRUE), 

  er_BNM_monthly_ew = sum(E.ReturnAdjGeneric)/length(E.ReturnAdjGeneric),beta_monthly_ew = 

mean(beta.monthly, na.rm = TRUE), 

  max_ew = mean(max, na.rm = TRUE), er_BNM_monthly_vw = sum(mcap_return)/sum(LMCAP), 

  beta_monthly_vw = sum(mcap_beta_monthly, na.rm = TRUE)/sum(LMCAP), max_vw = sum(mcap_max, na.rm 

= TRUE)/sum(LMCAP)) 

 

# Compute the metrics for the low-high portfolio (portfolio 6) 

portfolio_BNM <- portfolio_BNM %>% group_by(TradeDate) %>% arrange(Portfolio_BNM) %>%  

  summarise(Portfolio_BNM = 6, 

  length = 0, mcap = first(mcap)-last(mcap), er_BNM_monthly_ew = first(er_BNM_monthly_ew)-

last(er_BNM_monthly_ew), 

  beta_monthly_ew = first(beta_monthly_ew)-last(beta_monthly_ew),max_ew = first(max_ew)-

last(max_ew), 

  er_BNM_monthly_vw = first(er_BNM_monthly_vw)-last(er_BNM_monthly_vw), beta_monthly_vw = 

first(beta_monthly_vw)-last(beta_monthly_vw), 

  max_vw = first(max_vw)-last(max_vw)) %>% bind_rows(portfolio_BNM, .) %>% arrange(TradeDate) %>% 

rename(portfolio = Portfolio_BNM) 

 

# Compute time-series averages 

portfolio_BNM_c <- portfolio_BNM %>% group_by(portfolio) %>% summarise(length = mean(length), 

  mcap = mean(mcap),beta_monthly_ew = mean(beta_monthly_ew),max_ew = mean(max_ew, na.rm = TRUE), 

  sd_BNM_monthly_ew = sd(er_BNM_monthly_ew), er_BNM_monthly_ew = mean(er_BNM_monthly_ew), 

  sr_BNM_monthly_ew = er_BNM_monthly_ew/sd_BNM_monthly_ew, beta_monthly_vw = 

mean(beta_monthly_vw, na.rm = TRUE), 

  max_vw = mean(max_vw),sd_BNM_monthly_vw = sd(er_BNM_monthly_vw), 

  er_BNM_monthly_vw = mean(er_BNM_monthly_vw), sr_BNM_monthly_vw = 

er_BNM_monthly_vw/sd_BNM_monthly_vw) %>% t() 

 

 

#### 6: Quintile portfolios sorted on the component of beta.monthly orthogonal to max 

 

### Calculate monthly VW (EW) portfolio excess returns and portfolio characteristics 

portfolio_obeta_monthly <- master %>% filter(!is.na(Portfolio_obeta_monthly)) %>%  

  group_by(TradeDate, Portfolio_obeta_monthly) %>% summarise(length = length(E.ReturnAdjGeneric),  

  mcap = sum(LMCAP, na.rm = TRUE), er_obeta_monthly_ew = 

sum(E.ReturnAdjGeneric)/length(E.ReturnAdjGeneric), 

  beta_monthly_ew = mean(beta.monthly, na.rm = TRUE), max_ew = mean(max, na.rm = TRUE), 



118 
 

  er_obeta_monthly_vw = sum(mcap_return)/sum(LMCAP), beta_monthly_vw = sum(mcap_beta_monthly, 

na.rm = TRUE)/sum(LMCAP), 

  max_vw = sum(mcap_max, na.rm = TRUE)/sum(LMCAP)) 

 

# Compute the metrics for the low-high portfolio (portfolio 6) 

portfolio_obeta_monthly <- portfolio_obeta_monthly %>% group_by(TradeDate) 

%>%arrange(Portfolio_obeta_monthly) %>%  

  summarise(Portfolio_obeta_monthly = 6,length = 0, 

  mcap = first(mcap)-last(mcap),er_obeta_monthly_ew = first(er_obeta_monthly_ew)-

last(er_obeta_monthly_ew), 

  beta_monthly_ew = first(beta_monthly_ew)-last(beta_monthly_ew),max_ew = first(max_ew)-

last(max_ew), 

  er_obeta_monthly_vw = first(er_obeta_monthly_vw)-last(er_obeta_monthly_vw), 

  beta_monthly_vw = first(beta_monthly_vw)-last(beta_monthly_vw), max_vw = first(max_vw)-

last(max_vw)) %>%  

  bind_rows(portfolio_obeta_monthly, .) %>% arrange(TradeDate) %>% rename(portfolio = 

Portfolio_obeta_monthly) 

 

# Compute time-series averages 

portfolio_obeta_monthly_c <- portfolio_obeta_monthly %>% group_by(portfolio) %>%  

  summarise(length = round(mean(length)),mcap = mean(mcap),beta_monthly_ew = 

mean(beta_monthly_ew), 

  max_ew = mean(max_ew, na.rm = TRUE), sd_obeta_monthly_ew = sd(er_obeta_monthly_ew), 

  er_obeta_monthly_ew = mean(er_obeta_monthly_ew),sr_obeta_monthly_ew = 

er_obeta_monthly_ew/sd_obeta_monthly_ew, 

  beta_monthly_vw = mean(beta_monthly_vw, na.rm = TRUE), max_vw = mean(max_vw), 

  sd_obeta_monthly_vw = sd(er_obeta_monthly_vw), er_obeta_monthly_vw = mean(er_obeta_monthly_vw), 

  sr_obeta_monthly_vw = er_obeta_monthly_vw/sd_obeta_monthly_vw) %>% t() 

 

 

#### 7. Quintile portfolios representing the sum of stocks in the quintile max portfolios within 

each beta.daily quintile portfolio 

 

### Calculate monthly VW (EW) portfolio excess returns and portfolio characteristics 

portfolio_BNMD <- master %>%filter(!is.na(Portfolio_BNMD)) %>% group_by(TradeDate, 

Portfolio_BNMD) %>%  

  summarise(length = length(E.ReturnAdjGeneric),mcap = sum(LMCAP, na.rm = TRUE), 

  er_BNMD_monthly_ew = sum(E.ReturnAdjGeneric)/length(E.ReturnAdjGeneric),beta_daily_ew = 

mean(beta.daily, na.rm = TRUE), 

  max_ew = mean(max, na.rm = TRUE),er_BNMD_monthly_vw = sum(mcap_return)/sum(LMCAP), 

  beta_daily_vw = sum(mcap_beta_daily, na.rm = TRUE)/sum(LMCAP),max_vw = sum(mcap_max, na.rm = 

TRUE)/sum(LMCAP)) 

 

# Compute the metrics for the low-high portfolio (portfolio 6) 

portfolio_BNMD <- portfolio_BNMD %>% group_by(TradeDate) %>% arrange(Portfolio_BNMD) %>% 

summarise(Portfolio_BNMD = 6,  

  length = 0, mcap = first(mcap)-last(mcap),er_BNMD_monthly_ew = first(er_BNMD_monthly_ew)-

last(er_BNMD_monthly_ew), 

  beta_daily_ew = first(beta_daily_ew)-last(beta_daily_ew),max_ew = first(max_ew)-last(max_ew), 

  er_BNMD_monthly_vw = first(er_BNMD_monthly_vw)-last(er_BNMD_monthly_vw), beta_daily_vw = 

first(beta_daily_vw)-last(beta_daily_vw), 

  max_vw = first(max_vw)-last(max_vw)) %>% bind_rows(portfolio_BNMD, .) %>% arrange(TradeDate) 

%>% rename(portfolio = Portfolio_BNMD) 

 

# Compute time-series averages 

portfolio_BNMD_c <- portfolio_BNMD %>% group_by(portfolio) %>% summarise(length = mean(length), 

  mcap = mean(mcap), beta_daily_ew = mean(beta_daily_ew),max_ew = mean(max_ew, na.rm = TRUE), 

  sd_BNMD_monthly_ew = sd(er_BNMD_monthly_ew), er_BNMD_monthly_ew = mean(er_BNMD_monthly_ew), 

  sr_BNMD_monthly_ew = er_BNMD_monthly_ew/sd_BNMD_monthly_ew, beta_daily_vw = mean(beta_daily_vw, 

na.rm = TRUE), 

  max_vw = mean(max_vw), sd_BNMD_monthly_vw = sd(er_BNMD_monthly_vw),er_BNMD_monthly_vw = 

mean(er_BNMD_monthly_vw), 

  sr_BNMD_monthly_vw = er_BNMD_monthly_vw/sd_BNMD_monthly_vw) %>% t() 

 

 

#### 8: Quintile portfolios sorted on the component of beta.daily orthogonal to max 

 

### Calculate monthly VW (EW) portfolio excess returns and portfolio characteristics 

portfolio_obeta_daily <- master %>% filter(!is.na(Portfolio_obeta_daily)) %>% group_by(TradeDate, 

Portfolio_obeta_daily) %>%  

  summarise(length = length(E.ReturnAdjGeneric),mcap = sum(LMCAP, na.rm = TRUE), 
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  er_obeta_daily_ew = sum(E.ReturnAdjGeneric)/length(E.ReturnAdjGeneric), beta_daily_ew = 

mean(beta.daily, na.rm = TRUE), 

  max_ew = mean(max, na.rm = TRUE), er_obeta_daily_vw = sum(mcap_return)/sum(LMCAP), 

  beta_daily_vw = sum(mcap_beta_daily, na.rm = TRUE)/sum(LMCAP), max_vw = sum(mcap_max, na.rm = 

TRUE)/sum(LMCAP)) 

 

# Compute the metrics for the low-high portfolio 

portfolio_obeta_daily <- portfolio_obeta_daily %>% group_by(TradeDate) %>% 

arrange(Portfolio_obeta_daily) %>%  

  summarise(Portfolio_obeta_daily = 6, length = 0, mcap = first(mcap)-last(mcap), 

  er_obeta_daily_ew = first(er_obeta_daily_ew)-last(er_obeta_daily_ew), beta_daily_ew = 

first(beta_daily_ew)-last(beta_daily_ew), 

  max_ew = first(max_ew)-last(max_ew), er_obeta_daily_vw = first(er_obeta_daily_vw)-

last(er_obeta_daily_vw), 

  beta_daily_vw = first(beta_daily_vw)-last(beta_daily_vw), max_vw = first(max_vw)-last(max_vw)) 

%>%  

  bind_rows(portfolio_obeta_daily, .) %>% arrange(TradeDate) %>% rename(portfolio = 

Portfolio_obeta_daily) 

 

# Compute time-series averages 

portfolio_obeta_daily_c <- portfolio_obeta_daily %>% group_by(portfolio) %>%  

  summarise(length = round(mean(length)), mcap = mean(mcap),beta_daily_ew = mean(beta_daily_ew), 

  max_ew = mean(max_ew, na.rm = TRUE), sd_obeta_daily_ew = sd(er_obeta_daily_ew), 

  er_obeta_daily_ew = mean(er_obeta_daily_ew), sr_obeta_daily_ew = 

er_obeta_daily_ew/sd_obeta_daily_ew, 

  beta_daily_vw = mean(beta_daily_vw, na.rm = TRUE), max_vw = mean(max_vw), sd_obeta_daily_vw = 

sd(er_obeta_daily_vw), 

  er_obeta_daily_vw = mean(er_obeta_daily_vw), sr_obeta_daily_vw = 

er_obeta_daily_vw/sd_obeta_daily_vw) %>% t() 

 

 

#### 9. Quintile portfolios representing the sum of stocks in the quintile beta.monthly 

portfolios within each max quintile portfolio 

 

### Calculate monthly VW (EW) poirtfolio excess returns and portfolio characteristics  

portfolio_MNB <- master %>% filter(!is.na(Portfolio_MNB)) %>% group_by(TradeDate, Portfolio_MNB) 

%>%  

  summarise(length = length(E.ReturnAdjGeneric), mcap = sum(LMCAP, na.rm = TRUE), 

  er_MNB_monthly_ew = sum(E.ReturnAdjGeneric)/length(E.ReturnAdjGeneric),beta_monthly_ew = 

mean(beta.monthly, na.rm = TRUE), 

  max_ew = mean(max, na.rm = TRUE), er_MNB_monthly_vw = sum(mcap_return)/sum(LMCAP),  

  beta_monthly_vw = sum(mcap_beta_monthly, na.rm = TRUE)/sum(LMCAP), max_vw = sum(mcap_max, na.rm 

= TRUE)/sum(LMCAP)) 

 

# Compute the metrics for the low-high portfolio (portfolio 6) 

portfolio_MNB <- portfolio_MNB %>% group_by(TradeDate) %>% 

  arrange(Portfolio_MNB) %>% summarise(Portfolio_MNB = 6, length = 0,mcap = first(mcap)-

last(mcap), 

  er_MNB_monthly_ew = first(er_MNB_monthly_ew)-last(er_MNB_monthly_ew),beta_monthly_ew = 

first(beta_monthly_ew)-last(beta_monthly_ew), 

  max_ew = first(max_ew)-last(max_ew), er_MNB_monthly_vw = first(er_MNB_monthly_vw)-

last(er_MNB_monthly_vw), 

  beta_monthly_vw = first(beta_monthly_vw)-last(beta_monthly_vw), max_vw = first(max_vw)-

last(max_vw)) %>%  

  bind_rows(portfolio_MNB, .) %>% arrange(TradeDate) %>% rename(portfolio = Portfolio_MNB) 

 

# Compute time-series averages 

portfolio_MNB_c <- portfolio_MNB %>% group_by(portfolio) %>%  

  summarise(length = mean(length), mcap = mean(mcap), beta_monthly_ew = mean(beta_monthly_ew), 

  max_ew = mean(max_ew, na.rm = TRUE), sd_MNB_monthly_ew = sd(er_MNB_monthly_ew), 

er_MNB_monthly_ew = mean(er_MNB_monthly_ew), 

  sr_MNB_monthly_ew = er_MNB_monthly_ew/sd_MNB_monthly_ew, beta_monthly_vw = 

mean(beta_monthly_vw, na.rm = TRUE), 

  max_vw = mean(max_vw), sd_MNB_monthly_vw = sd(er_MNB_monthly_vw), er_MNB_monthly_vw = 

mean(er_MNB_monthly_vw), 

  sr_MNB_monthly_vw = er_MNB_monthly_vw/sd_MNB_monthly_vw) %>% t() 

 

 

#### 10: Quintile portfolios sorted on the component of max orthogonal to beta.monthly 

 

### Calculate monthly VW (EW) portfolio excess returns and portfolio characteristics  
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portfolio_obmax <- master %>% filter(!is.na(Portfolio_obmax)) %>% group_by(TradeDate, 

Portfolio_obmax) %>%  

  summarise(length = length(E.ReturnAdjGeneric),mcap = sum(LMCAP, na.rm = TRUE),  

  er_obmax_ew = sum(E.ReturnAdjGeneric)/length(E.ReturnAdjGeneric), beta_monthly_ew = 

mean(beta.monthly, na.rm = TRUE), 

  max_ew = mean(max, na.rm = TRUE), er_obmax_vw = sum(mcap_return)/sum(LMCAP), 

  beta_monthly_vw = sum(mcap_beta_monthly, na.rm = TRUE)/sum(LMCAP), max_vw = sum(mcap_max, na.rm 

= TRUE)/sum(LMCAP)) 

 

# Compute the metrics for the low-high portfolio (portfolio 6) 

portfolio_obmax <- portfolio_obmax %>% group_by(TradeDate) %>% arrange(Portfolio_obmax) %>%  

  summarise(Portfolio_obmax = 6, length = 0, mcap = first(mcap)-last(mcap), er_obmax_ew = 

first(er_obmax_ew)-last(er_obmax_ew), 

  beta_monthly_ew = first(beta_monthly_ew)-last(beta_monthly_ew), max_ew = first(max_ew)-

last(max_ew), 

  er_obmax_vw = first(er_obmax_vw)-last(er_obmax_vw), beta_monthly_vw = first(beta_monthly_vw)-

last(beta_monthly_vw), 

  max_vw = first(max_vw)-last(max_vw)) %>% bind_rows(portfolio_obmax, .) %>% arrange(TradeDate) 

%>% rename(portfolio = Portfolio_obmax) 

 

# Compute time-series averages 

portfolio_obmax_c <- portfolio_obmax %>% group_by(portfolio) %>%  

  summarise(length = mean(length), mcap = mean(mcap), beta_monthly_ew = mean(beta_monthly_ew), 

  max_ew = mean(max_ew, na.rm = TRUE), sd_obmax_ew = sd(er_obmax_ew), er_obmax_ew = 

mean(er_obmax_ew), 

  sr_obmax_ew = er_obmax_ew/sd_obmax_ew, beta_monthly_vw = mean(beta_monthly_vw, na.rm = TRUE), 

  max_vw = mean(max_vw), sd_obmax_vw = sd(er_obmax_vw), er_obmax_vw = 

mean(er_obmax_vw),sr_obmax_vw = er_obmax_vw/sd_obmax_vw) %>% t() 

 

 

#### 11. Quintile portfolios representing the sum of stocks in the quintile ivol portfolios 

within each beta.monthly quintile portfolio 

 

### Calculate monthly VW (EW) poirtfolio excess returns and portfolio characteristics  

portfolio_BNI <- master %>% filter(!is.na(Portfolio_BNI)) %>% group_by(TradeDate, Portfolio_BNI) 

%>%  

  summarise(length = length(E.ReturnAdjGeneric), mcap = sum(LMCAP, na.rm = TRUE), 

  er_BNI_monthly_ew = sum(E.ReturnAdjGeneric)/length(E.ReturnAdjGeneric),beta_monthly_ew = 

mean(beta.monthly, na.rm = TRUE),  

  max_ew = mean(max, na.rm = TRUE),er_BNI_monthly_vw = sum(mcap_return)/sum(LMCAP),  

  beta_monthly_vw = sum(mcap_beta_monthly, na.rm = TRUE)/sum(LMCAP),max_vw = sum(mcap_max, na.rm 

= TRUE)/sum(LMCAP)) 

 

# Compute the metrics for the low-high portfolio (portfolio 6) 

portfolio_BNI <- portfolio_BNI %>% group_by(TradeDate) %>%arrange(Portfolio_BNI) %>%  

  summarise(Portfolio_BNI = 6,length = 0, mcap = first(mcap)-last(mcap), 

  er_BNI_monthly_ew = first(er_BNI_monthly_ew)-last(er_BNI_monthly_ew), 

  beta_monthly_ew = first(beta_monthly_ew)-last(beta_monthly_ew), max_ew = first(max_ew)-

last(max_ew), 

  er_BNI_monthly_vw = first(er_BNI_monthly_vw)-last(er_BNI_monthly_vw), beta_monthly_vw = 

first(beta_monthly_vw)-last(beta_monthly_vw), 

  max_vw = first(max_vw)-last(max_vw)) %>% bind_rows(portfolio_BNI, .) %>%  

  arrange(TradeDate) %>% rename(portfolio = Portfolio_BNI) 

 

# Compute time-series averages 

portfolio_BNI_c <- portfolio_BNI %>% group_by(portfolio) %>%  

  summarise(length = mean(length),mcap = mean(mcap),beta_monthly_ew = mean(beta_monthly_ew), 

  max_ew = mean(max_ew, na.rm = TRUE), sd_BNI_monthly_ew = sd(er_BNI_monthly_ew), 

  er_BNI_monthly_ew = mean(er_BNI_monthly_ew), sr_BNI_monthly_ew = 

er_BNI_monthly_ew/sd_BNI_monthly_ew, 

  beta_monthly_vw = mean(beta_monthly_vw, na.rm = TRUE), max_vw = mean(max_vw), 

  sd_BNI_monthly_vw = sd(er_BNI_monthly_vw), er_BNI_monthly_vw = mean(er_BNI_monthly_vw), 

  sr_BNI_monthly_vw = er_BNI_monthly_vw/sd_BNI_monthly_vw) %>% t() 

 

 

#### 12: Quintile portfolios sorted on the component of beta.monthly orthogonal to ivol 

 

### Calculate monthly VW (EW) portfolio excess returns and portfolio characteristics  

portfolio_ibeta_monthly <- master %>% filter(!is.na(Portfolio_ibeta_monthly)) %>%  

  group_by(TradeDate, Portfolio_ibeta_monthly) %>% summarise(length = length(E.ReturnAdjGeneric), 
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  mcap = sum(LMCAP, na.rm = TRUE), er_ibeta_monthly_ew = 

sum(E.ReturnAdjGeneric)/length(E.ReturnAdjGeneric), 

  beta_monthly_ew = mean(beta.monthly, na.rm = TRUE), max_ew = mean(max, na.rm = TRUE),  

  er_ibeta_monthly_vw = sum(mcap_return)/sum(LMCAP), beta_monthly_vw = sum(mcap_beta_monthly, 

na.rm = TRUE)/sum(LMCAP), 

  max_vw = sum(mcap_max, na.rm = TRUE)/sum(LMCAP)) 

 

# Compute the metrics for the low-high portfolio (portfolio 6) 

portfolio_ibeta_monthly <- portfolio_ibeta_monthly %>%  

  group_by(TradeDate) %>% arrange(Portfolio_ibeta_monthly) %>%  

  summarise(Portfolio_ibeta_monthly = 6, length = 0, mcap = first(mcap)-last(mcap), 

  er_ibeta_monthly_ew = first(er_ibeta_monthly_ew)-last(er_ibeta_monthly_ew),  

  beta_monthly_ew = first(beta_monthly_ew)-last(beta_monthly_ew),max_ew = first(max_ew)-

last(max_ew), 

  er_ibeta_monthly_vw = first(er_ibeta_monthly_vw)-last(er_ibeta_monthly_vw),  

  beta_monthly_vw = first(beta_monthly_vw)-last(beta_monthly_vw),max_vw = first(max_vw)-

last(max_vw)) %>%  

  bind_rows(portfolio_ibeta_monthly, .) %>% arrange(TradeDate) %>% rename(portfolio = 

Portfolio_ibeta_monthly) 

 

# Compute time-series averages 

portfolio_ibeta_monthly_c <- portfolio_ibeta_monthly %>% group_by(portfolio) %>%  

  summarise(length = mean(length),mcap = mean(mcap),beta_monthly_ew = mean(beta_monthly_ew), 

  max_ew = mean(max_ew, na.rm = TRUE), sd_ibeta_monthly_ew = sd(er_ibeta_monthly_ew), 

  er_ibeta_monthly_ew = mean(er_ibeta_monthly_ew),sr_ibeta_monthly_ew = 

er_ibeta_monthly_ew/sd_ibeta_monthly_ew, 

  beta_monthly_vw = mean(beta_monthly_vw, na.rm = TRUE), max_vw = mean(max_vw), 

  sd_ibeta_monthly_vw = sd(er_ibeta_monthly_vw), er_ibeta_monthly_vw = mean(er_ibeta_monthly_vw), 

  sr_ibeta_monthly_vw = er_ibeta_monthly_vw/sd_ibeta_monthly_vw) %>% t() 

 

 

 

 

########## Section 12: Construct dataframe with all monthly portfolio excess returns ########## 

 

 

 

portfolio_returns <- merge(portfolio_month[,c("TradeDate", "portfolio", "er_month_ew", 

"er_month_vw")], 

  portfolio_day[,c("TradeDate", "portfolio", "er_day_ew", "er_day_vw")], by = 

c("TradeDate","portfolio"), all.x = TRUE, all.y = TRUE) 

portfolio_returns <- merge(portfolio_returns, 

  portfolio_msci[,c("TradeDate", "portfolio", "er_msci_ew", "er_msci_vw")], 

  by = c("TradeDate","portfolio"), all.x = TRUE, all.y = TRUE) 

portfolio_returns <- merge(portfolio_returns, 

  portfolio_max[,c("TradeDate", "portfolio", "er_max_ew", "er_max_vw")],by = 

c("TradeDate","portfolio"), all.x = TRUE, all.y = TRUE) 

portfolio_returns <- merge(portfolio_returns,  

  portfolio_obeta_daily[,c("TradeDate", "portfolio", "er_obeta_daily_ew", "er_obeta_daily_vw")], 

  by = c("TradeDate","portfolio"), all.x = TRUE, all.y = TRUE) 

portfolio_returns <- merge(portfolio_returns, 

  portfolio_obeta_monthly[,c("TradeDate", "portfolio", "er_obeta_monthly_ew", 

"er_obeta_monthly_vw")], 

  by = c("TradeDate","portfolio"), all.x = TRUE, all.y = TRUE) 

portfolio_returns <- merge(portfolio_returns, 

  portfolio_ibeta_monthly[,c("TradeDate", "portfolio", "er_ibeta_monthly_ew", 

"er_ibeta_monthly_vw")], 

  by = c("TradeDate","portfolio"), all.x = TRUE, all.y = TRUE) 

portfolio_returns <- merge(portfolio_returns, 

 portfolio_BNM[,c("TradeDate", "portfolio", "er_BNM_monthly_ew", "er_BNM_monthly_vw")], 

 by = c("TradeDate","portfolio"), all.x = TRUE, all.y = TRUE) 

portfolio_returns <- merge(portfolio_returns, 

 portfolio_BNMD[,c("TradeDate", "portfolio", "er_BNMD_monthly_ew", "er_BNMD_monthly_vw")], 

 by = c("TradeDate","portfolio"), all.x = TRUE, all.y = TRUE) 

portfolio_returns <- merge(portfolio_returns, 

 portfolio_BNI[,c("TradeDate", "portfolio", "er_BNI_monthly_ew", "er_BNI_monthly_vw")], 

 by = c("TradeDate","portfolio"), all.x = TRUE, all.y = TRUE) 

portfolio_returns <- merge(portfolio_returns, 

 portfolio_BNO[,c("TradeDate", "portfolio", "er_BNO_monthly_ew", "er_BNO_monthly_vw")], 

 by = c("TradeDate","portfolio"), all.x = TRUE, all.y = TRUE) 

portfolio_returns <- merge(portfolio_returns, 
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 portfolio_MNB[,c("TradeDate", "portfolio", "er_MNB_monthly_ew", "er_MNB_monthly_vw")], 

 by = c("TradeDate","portfolio"), all.x = TRUE, all.y = TRUE) 

portfolio_returns <- merge(portfolio_returns, 

 portfolio_obmax[,c("TradeDate", "portfolio", "er_obmax_ew", "er_obmax_vw")], 

 by = c("TradeDate","portfolio"), all.x = TRUE, all.y = TRUE) 

 

# Merge dataframe containing portfolio excess returns with market returns and factor returns to 

prepare for factor model regressions 

portfolio_returns <- merge(portfolio_returns, df_market_monthly, by = "TradeDate") 

portfolio_returns <- merge(portfolio_returns, fmax_factor, by = "TradeDate", all.x = TRUE) 

portfolio_returns <- merge(portfolio_returns, fivol_factor, by = "TradeDate", all.x = TRUE) 

portfolio_returns <- merge(portfolio_returns, fbeta_factor, by = "TradeDate", all.x = TRUE) 

 

 

 

########## Section 14: Identify most frequent companies in each portfolio ########## 

 

 

 

# Create dataframe with SecurityID and Company Names 

company_lookup <- df_daily %>% select(SecurityId, SecurityName) 

company_lookup <- distinct(company_lookup) 

 

### 1: Create overview of top 20 companies in portfolio 5 

 

# Extract top 20 companies in beta.monthly portfolio 5 

company.bm <- master %>% group_by(SecurityId, Portfolio_b_m) %>% summarise(n()) 

company.bm <- merge(company.bm, company_lookup, by = "SecurityId", all.x = TRUE) 

company.bm <- company.bm %>% filter(Portfolio_b_m == 5) %>% rename(BetaMonthly = SecurityName) 

%>%  

  arrange(-`n()`) %>% select(BetaMonthly) %>% slice(1:20) 

 

# Extract top 20 companies in beta.monthly portfolio 5 

company.bd <- master %>% group_by(SecurityId, Portfolio_b_d) %>% summarise(n()) 

company.bd <- merge(company.bd, company_lookup, by = "SecurityId", all.x = TRUE) 

company.bd <- company.bd %>% filter(Portfolio_b_d == 5) %>% rename(BetaDaily = SecurityName) %>%  

  arrange(-`n()`) %>% select(BetaDaily) %>% slice(1:20) 

 

# Extract top 20 companies in beta.msci portfolio 5 

company.msci <- master %>% group_by(SecurityId, Portfolio_b_msci) %>% summarise(n()) 

company.msci <- merge(company.msci, company_lookup, by = "SecurityId", all.x = TRUE) 

company.msci <- company.msci %>% filter(Portfolio_b_msci == 5) %>% rename(BetaMsci = 

SecurityName) %>%  

  arrange(-`n()`) %>% select(BetaMsci) %>% slice(1:20) 

 

# Extract top 20 companies in max portfolio 5 

company.max <- master %>% group_by(SecurityId, Portfolio_max) %>% summarise(n()) 

company.max <- merge(company.max, company_lookup, by = "SecurityId", all.x = TRUE) 

company.max <- company.max %>% filter(Portfolio_max == 5) %>% rename(Max = SecurityName) %>%  

  arrange(-`n()`) %>% select(Max) %>% slice(1:20) 

 

# Create combined dataframe with top 20 companies in portfolio 5 for the different sorting 

variables 

Port5_companies <- cbind(company.bm, company.bd, company.msci, company.max) 

 

 

### 2: Create overview of top 20 companies in portfolio 1 

 

## Extract top 20 companies in beta.monthly portfolio 1 

company.bm <- master %>% group_by(SecurityId, Portfolio_b_m) %>% summarise(n()) 

company.bm <- merge(company.bm, company_lookup, by = "SecurityId", all.x = TRUE) 

company.bm <- company.bm %>% filter(Portfolio_b_m == 1) %>% rename(BetaMonthly = SecurityName) 

%>%  

  arrange(-`n()`) %>% select(BetaMonthly) %>% slice(1:20) 

 

## Extract top 20 companies in beta.daily portfolio 1 

company.bd <- master %>% group_by(SecurityId, Portfolio_b_d) %>% summarise(n()) 

company.bd <- merge(company.bd, company_lookup, by = "SecurityId", all.x = TRUE) 

company.bd <- company.bd %>% filter(Portfolio_b_d == 1) %>% rename(BetaDaily = SecurityName) %>%  

  arrange(-`n()`) %>% select(BetaDaily) %>% slice(1:20) 
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## Extract top 20 companies in beta.msci portfolio 1 

company.msci <- master %>% group_by(SecurityId, Portfolio_b_msci) %>% summarise(n()) 

company.msci <- merge(company.msci, company_lookup, by = "SecurityId", all.x = TRUE) 

company.msci <- company.msci %>% filter(Portfolio_b_msci == 1) %>% rename(BetaMsci = 

SecurityName) %>%  

  arrange(-`n()`) %>% select(BetaMsci) %>% slice(1:20) 

 

## Extract top 20 companies in max portfolio 1 

company.max <- master %>% group_by(SecurityId, Portfolio_max) %>% summarise(n()) 

company.max <- merge(company.max, company_lookup, by = "SecurityId", all.x = TRUE) 

company.max <- company.max %>% filter(Portfolio_max == 1) %>% rename(Max = SecurityName) %>%  

  arrange(-`n()`) %>% select(Max) %>% slice(1:20) 

 

# Create combined dataframe with top 20 companies in portfolio 1 for the different sorting 

variables 

Port1_companies <- cbind(company.bm, company.bd, company.msci, company.max) 

 

## Delete excess dataframes 

rm(company.bm, company.bd, company.msci, company.max) 

 

 

 

########## Section 15: Examine portfolio turnover ########## 

 

 

 

### 1: Estimate turnover for portfolios sorted on beta.monthly 

 

## Compute the number of stocks that enter the portfolio each month 

buy <- master %>% select(TradeDate, SecurityId, Portfolio_b_m) %>%  

  arrange(SecurityId, TradeDate) %>% mutate(Lag_Portfolio_b_m = lag(Portfolio_b_m)) %>%  

  mutate(Trade = ifelse(is.na(Lag_Portfolio_b_m) & is.na(Portfolio_b_m), 0, 

  ifelse(is.na(Lag_Portfolio_b_m) & !is.na(Portfolio_b_m), 1, 

  ifelse(!is.na(Lag_Portfolio_b_m) & is.na(Portfolio_b_m), 1, 

  ifelse(Lag_Portfolio_b_m == Portfolio_b_m, 0, 1))))) %>%  

  group_by(TradeDate, Portfolio_b_m) %>% summarise(Buy = sum(Trade, na.rm = TRUE), 

  Stocks_Post = sum(!is.na(Portfolio_b_m))) %>% filter(!is.na(Portfolio_b_m)) %>%  

  rename(Portfolio = Portfolio_b_m) 

                   

## Compute the number of stocks that leave the portfolio each month 

sell <- master %>% select(TradeDate, SecurityId, Portfolio_b_m) %>%  

  arrange(SecurityId, TradeDate) %>% mutate(Lag_Portfolio_b_m = lag(Portfolio_b_m)) %>%  

  mutate(Trade = ifelse(is.na(Lag_Portfolio_b_m) & is.na(Portfolio_b_m), 0, 

  ifelse(is.na(Lag_Portfolio_b_m) & !is.na(Portfolio_b_m), 1, 

  ifelse(!is.na(Lag_Portfolio_b_m) & is.na(Portfolio_b_m), 1, 

  ifelse(Lag_Portfolio_b_m == Portfolio_b_m, 0, 1))))) %>%  

  group_by(TradeDate, Lag_Portfolio_b_m) %>% summarise(Sell = sum(Trade, na.rm = TRUE), 

  Stocks_Prior = sum(!is.na(Lag_Portfolio_b_m))) %>% filter(!is.na(Lag_Portfolio_b_m)) %>%  

  rename(Portfolio = Lag_Portfolio_b_m) 

 

## Compute the portfolio turnover (enter + leave) 

Turnover_B5Y <- merge(buy, sell, by = c("TradeDate", "Portfolio")) %>%  

  mutate(Transactions = Buy + Sell) %>% mutate(Turnover = Sell/Stocks_Prior) %>%  

  mutate(Turnover_Buy = Buy/Stocks_Post) 

 

 

### 2: Estimate turnover for portfolios sorted on beta.daily 

 

## Compute the number of stocks that enter the portfolio each month 

buy <- master %>% select(TradeDate, SecurityId, Portfolio_b_d) %>%  

  arrange(SecurityId, TradeDate) %>% mutate(Lag_Portfolio_b_d = lag(Portfolio_b_d)) %>%  

  mutate(Trade = ifelse(is.na(Lag_Portfolio_b_d) & is.na(Portfolio_b_d), 0, 

  ifelse(is.na(Lag_Portfolio_b_d) & !is.na(Portfolio_b_d), 1, 

  ifelse(!is.na(Lag_Portfolio_b_d) & is.na(Portfolio_b_d), 1, 

  ifelse(Lag_Portfolio_b_d == Portfolio_b_d, 0, 1))))) %>%  

  group_by(TradeDate, Portfolio_b_d) %>% summarise(Buy = sum(Trade, na.rm = TRUE), 

  Stocks_Post = sum(!is.na(Portfolio_b_d))) %>% filter(!is.na(Portfolio_b_d)) %>%  

  rename(Portfolio = Portfolio_b_d) 

 

## Compute the number of stcoks that leave the portfolio each month 

sell <- master %>% select(TradeDate, SecurityId, Portfolio_b_d) %>%  
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  arrange(SecurityId, TradeDate) %>% mutate(Lag_Portfolio_b_d = lag(Portfolio_b_d)) %>%  

  mutate(Trade = ifelse(is.na(Lag_Portfolio_b_d) & is.na(Portfolio_b_d), 0, 

  ifelse(is.na(Lag_Portfolio_b_d) & !is.na(Portfolio_b_d), 1, 

  ifelse(!is.na(Lag_Portfolio_b_d) & is.na(Portfolio_b_d), 1, 

  ifelse(Lag_Portfolio_b_d == Portfolio_b_d, 0,1))))) %>%  

  group_by(TradeDate, Lag_Portfolio_b_d) %>% summarise(Sell = sum(Trade, na.rm = TRUE), 

  Stocks_Prior = sum(!is.na(Lag_Portfolio_b_d))) %>% filter(!is.na(Lag_Portfolio_b_d)) %>%  

  rename(Portfolio = Lag_Portfolio_b_d) 

 

## Compute the portfolio turnover (enter + leave) 

Turnover_B1Y <- merge(buy, sell, by = c("TradeDate", "Portfolio")) %>%  

  mutate(Transactions = Buy + Sell) %>% mutate(Turnover_Sell = Sell/Stocks_Prior) %>% 

  mutate(Turnover_Buy = Buy/Stocks_Post) 

 

 

### 3: Estimate turnover for portfolios sorted on max 

 

## Compute the number of stocks that enter the portfolio each month 

buy <- master %>% select(TradeDate, SecurityId, Portfolio_max) %>%  

  arrange(SecurityId, TradeDate) %>% mutate(Lag_Portfolio_max = lag(Portfolio_max)) %>%  

  mutate(Trade = ifelse(is.na(Lag_Portfolio_max) & is.na(Portfolio_max), 0, 

  ifelse(is.na(Lag_Portfolio_max) & !is.na(Portfolio_max), 1, 

  ifelse(!is.na(Lag_Portfolio_max) & is.na(Portfolio_max), 1, 

  ifelse(Lag_Portfolio_max == Portfolio_max, 0,1))))) %>%  

  group_by(TradeDate, Portfolio_max) %>% summarise(Buy = sum(Trade, na.rm = TRUE), 

  Stocks_Post = sum(!is.na(Portfolio_max))) %>% filter(!is.na(Portfolio_max)) %>%  

  rename(Portfolio = Portfolio_max) 

 

## Compute the number of stocks that leave the portfolio each month 

sell <- master %>% select(TradeDate, SecurityId, Portfolio_max) %>%  

  arrange(SecurityId, TradeDate) %>% mutate(Lag_Portfolio_max = lag(Portfolio_max)) %>%  

  mutate(Trade = ifelse(is.na(Lag_Portfolio_max) & is.na(Portfolio_max), 0, 

  ifelse(is.na(Lag_Portfolio_max) & !is.na(Portfolio_max), 1, 

  ifelse(!is.na(Lag_Portfolio_max) & is.na(Portfolio_max), 1, 

  ifelse(Lag_Portfolio_max == Portfolio_max, 0,1))))) %>%  

  group_by(TradeDate, Lag_Portfolio_max) %>% summarise(Sell = sum(Trade, na.rm = TRUE), 

  Stocks_Prior = sum(!is.na(Lag_Portfolio_max))) %>% filter(!is.na(Lag_Portfolio_max)) %>%  

  rename(Portfolio = Lag_Portfolio_max) 

 

## Compute the portfolio turnover (enter + leave) 

Turnover_MAX <- merge(buy, sell, by = c("TradeDate", "Portfolio")) %>%  

  mutate(Transactions = Buy + Sell) %>% mutate(Turnover = Sell/Stocks_Prior) %>%  

  mutate(Turnover_Buy = Buy/Stocks_Post) 

 

 

 

########## Section 16: Factor model regressions ########## 

 

 

 

# Note, we have not included the regression models reporting the factor loadings. 

# The following presents the code used to generate the ex-post betas, portfolio alphas and 

corresponding t-statistics reported in the main paper 

 

# Create vector equal to the number of portfolios to be used in loop. Portfolio 6 equals the low-

high portfolio  

k = c(1,2,3,4,5,6) 

 

# Create empty dataframe to store market beta from CAPM regressions(ex-post portfolio betas), 

factor model alphas and corresponding t-statistics 

alfa <- data.frame(P1.a = numeric(), P2.a = numeric(), P3.a = numeric(), P4.a = numeric(), P5.a = 

numeric(), P6.a = numeric(), 

                   P1.t = numeric(), P2.t = numeric(), P3.t = numeric(), P4.t = numeric(), P5.t = 

numeric(), P6.t = numeric()) 

 

### Estimate the number of lags to use in Newey West Adjustment (lag=4) 

m <- portfolio_returns %>% filter(portfolio == 6) 

m <- count(m) 

m <- round(0.75*(m^(1/3))) 

lag <- m-1 
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#### 1: Portfolios sorted on beta.monthly 

 

## beta.monthly sorted VW portfolios 

for (i in 1:length(k)) { 

   

  p <- portfolio_returns %>%  

    filter(portfolio == k[i]) 

   

  # Perform factor model regressions 

  reg1 <- lm(er_month_vw ~ E.M.VW, data = p) # CAPM                               

  reg2 <- lm(er_month_vw ~ E.M.VW + SMB + HML, data = p) # FF3 

  reg3 <- lm(er_month_vw ~ E.M.VW + SMB + HML + MOM, data = p) # FF3 + MOM 

  reg4 <- lm(er_month_vw ~ E.M.VW + SMB + HML + MOM + LIQ, data = p) # FF3 + MOM + LIQ 

  reg5 <- lm(er_month_vw ~ E.M.VW + SMB + HML + MOM + LIQ + FMAX, data = p) # FF3 + MOM + LIQ + 

FMAX 

  reg6 <- lm(er_month_vw ~ E.M.VW + SMB + HML + MOM + LIQ + FIVOL, data = p) # FF3 + MOM + LIQ + 

FIVOL 

   

  # Estimate Newey West correlation Matrix 

  NW1 <- NeweyWest(reg1, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW2 <- NeweyWest(reg2, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW3 <- NeweyWest(reg3, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW4 <- NeweyWest(reg4, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW5 <- NeweyWest(reg5, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW6 <- NeweyWest(reg6, lag = 4, prewhite = FALSE, adjust = TRUE) 

   

  # Estimate coefficients using Newey West correlation matrix 

  Coef1 <- coeftest(reg1, vcov. = NW1) 

  Coef2 <- coeftest(reg2, vcov. = NW2) 

  Coef3 <- coeftest(reg3, vcov. = NW3) 

  Coef4 <- coeftest(reg4, vcov. = NW4) 

  Coef5 <- coeftest(reg5, vcov. = NW5) 

  Coef6 <- coeftest(reg6, vcov. = NW6)   

   

  # The following code was used to store data in a manner which was easy to combine with 

portfolio characteristics in excel to create the tables used in univariate and bivariate 

portfolio analysis in the main paper 

  # The code used to extract market betas, alphas and corresponding t-statistics is similar for 

all regressions, and as such, we will only report the code for beta.monthly VW portfolios 

   

  # Extract portfolio Ex-post betas and Aplhas 

  alfa[1,i] = Coef1[2,1] # Ex-post beta (Beta from CAPM regression) adj. newey west 

  alfa[2,i] = Coef1[1,1] # Alpha CAPM reg adj. newey west 

  alfa[3,i] = Coef2[1,1] # Alpha FF3 reg adj. newey west 

  alfa[4,i] = Coef3[1,1] # Alpha FF3 + MOM reg adj. newey west 

  alfa[5,i] = Coef4[1,1] # Aplha FF3 + MOM + LIQ reg adj. wewey west 

  alfa[6,i] = Coef5[1,1] # Alpha FF3 + MOM + LIQ + FMAX reg adj. newey west 

  alfa[7,i] = Coef6[1,1] # Alpha FF3 + MOM + LIQ + FIVOL reg adj. newey west 

   

  alfa[1,6+i] = Coef1[2,1] # Ex-post beta (Beta from CAPM regression) adj. newey west 

  alfa[2,6+i] = Coef1[1,3] # t-stat alpha CAPM reg adj. newey west 

  alfa[3,6+i] = Coef2[1,3] # t-stat alpha FF3 reg adj. newey west 

  alfa[4,6+i] = Coef3[1,3] # t-stat alpha FF3 + MOM reg adj. newey west 

  alfa[5,6+i] = Coef4[1,3] # t-stat aplha FF3 + MOM + LIQ reg adj. wewey west 

  alfa[6,6+i] = Coef5[1,3] # t-stat alpha FF3 + MOM + LIQ + FMAX reg adj. newey west 

  alfa[7,6+i] = Coef6[1,3] # t-stat alpha FF3 + MOM + LIQ + FIVOL reg adj. newey west 

} 

 

rownames(alfa) <- c( "Beta" ,"MKT", "FF3", "FF3 + MOM", "FF3 + MOM + LIQ",  

                     "FF3 + MOM + LIQ + FMAX", "FF3 + MOM + LIQ + FIVOL") 

alfa_b_m_VW <- alfa 

 

 

## beta.monthly sorted EW portfolios 

for (i in 1:length(k)) { 

   

  p <- portfolio_returns %>%  

    filter(portfolio == k[i]) 

   

  # Perform factor model regressions 
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  reg1 <- lm(er_month_ew ~ E.M.EW, data = p) 

  reg2 <- lm(er_month_ew ~ E.M.EW + SMB + HML, data = p) 

  reg3 <- lm(er_month_ew ~ E.M.EW + SMB + HML + MOM, data = p) 

  reg4 <- lm(er_month_ew ~ E.M.EW + SMB + HML + MOM + LIQ, data = p) 

  reg5 <- lm(er_month_ew ~ E.M.EW + SMB + HML + MOM + LIQ + FMAX, data = p) 

  reg6 <- lm(er_month_ew ~ E.M.EW + SMB + HML + MOM + LIQ + FIVOL, data = p) 

   

  # Estimate Newey West correlation Matrix 

  NW1 <- NeweyWest(reg1, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW2 <- NeweyWest(reg2, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW3 <- NeweyWest(reg3, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW4 <- NeweyWest(reg4, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW5 <- NeweyWest(reg5, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW6 <- NeweyWest(reg6, lag = 4, prewhite = FALSE, adjust = TRUE) 

   

  # Estimate coefficients using Newey West correlation matrix 

  Coef1 <- coeftest(reg1, vcov. = NW1) 

  Coef2 <- coeftest(reg2, vcov. = NW2) 

  Coef3 <- coeftest(reg3, vcov. = NW3) 

  Coef4 <- coeftest(reg4, vcov. = NW4) 

  Coef5 <- coeftest(reg5, vcov. = NW5) 

  Coef6 <- coeftest(reg6, vcov. = NW6)   

   

  # Same code used to extract ex-post betas, alphas and t-statistics 

  } 

 

rownames(alfa) <- c("Beta" ,"MKT", "FF3", "FF3 + MOM", "FF3 + MOM + LIQ",  

                    "FF3 + MOM + LIQ + FMAX", "FF3 + MOM + LIQ + FIVOL") 

alfa_b_m_EW <- alfa 

 

 

#### 2: Portfolios sorted on beta.daily 

 

## beta.daily sorted VW portfolios 

for (i in 1:length(k)) { 

   

  p <- portfolio_returns %>%  

    filter(portfolio == k[i]) 

   

  # Perform factor model regressions 

  reg1 <- lm(er_day_vw ~ E.M.VW, data = p) 

  reg2 <- lm(er_day_vw ~ E.M.VW + SMB + HML, data = p) 

  reg3 <- lm(er_day_vw ~ E.M.VW + SMB + HML + MOM, data = p) 

  reg4 <- lm(er_day_vw ~ E.M.VW + SMB + HML + MOM + LIQ, data = p) 

  reg5 <- lm(er_day_vw ~ E.M.VW + SMB + HML + MOM + LIQ + FMAX, data = p) 

  reg6 <- lm(er_day_vw ~ E.M.VW + SMB + HML + MOM + LIQ + FIVOL, data = p) 

   

  # Estimate Newey West correlation Matrix 

  NW1 <- NeweyWest(reg1, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW2 <- NeweyWest(reg2, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW3 <- NeweyWest(reg3, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW4 <- NeweyWest(reg4, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW5 <- NeweyWest(reg5, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW6 <- NeweyWest(reg6, lag = 4, prewhite = FALSE, adjust = TRUE) 

   

  # Estimate coefficients using Newey West correlation matrix 

  Coef1 <- coeftest(reg1, vcov. = NW1) 

  Coef2 <- coeftest(reg2, vcov. = NW2) 

  Coef3 <- coeftest(reg3, vcov. = NW3) 

  Coef4 <- coeftest(reg4, vcov. = NW4) 

  Coef5 <- coeftest(reg5, vcov. = NW5) 

  Coef6 <- coeftest(reg6, vcov. = NW6)   

   

  # Same code used to extract ex-post betas, alphas and t-statistics 

  } 

 

rownames(alfa) <- c("Beta", "MKT", "FF3", "FF3 + MOM", "FF3 + MOM + LIQ",  

                    "FF3 + MOM + LIQ + FMAX", "FF3 + MOM + LIQ + FIVOL") 

alfa_b_d_VW <- alfa 
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## beta.daily sorted EW portfolios 

for (i in 1:length(k)) { 

   

  p <- portfolio_returns %>%  

    filter(portfolio == k[i]) 

   

  # Perform factor model regressions 

  reg1 <- lm(er_day_ew ~ E.M.EW, data = p) 

  reg2 <- lm(er_day_ew ~ E.M.EW + SMB + HML, data = p) 

  reg3 <- lm(er_day_ew ~ E.M.EW + SMB + HML + MOM, data = p) 

  reg4 <- lm(er_day_ew ~ E.M.EW + SMB + HML + MOM + LIQ, data = p) 

  reg5 <- lm(er_day_ew ~ E.M.EW + SMB + HML + MOM + LIQ + FMAX, data = p) 

  reg6 <- lm(er_day_ew ~ E.M.EW + SMB + HML + MOM + LIQ + FIVOL, data = p) 

   

  # Estimate Newey West correlation Matrix 

  NW1 <- NeweyWest(reg1, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW2 <- NeweyWest(reg2, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW3 <- NeweyWest(reg3, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW4 <- NeweyWest(reg4, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW5 <- NeweyWest(reg5, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW6 <- NeweyWest(reg6, lag = 4, prewhite = FALSE, adjust = TRUE) 

   

  # Estimate coefficients using Newey West correlation matrix 

  Coef1 <- coeftest(reg1, vcov. = NW1) 

  Coef2 <- coeftest(reg2, vcov. = NW2) 

  Coef3 <- coeftest(reg3, vcov. = NW3) 

  Coef4 <- coeftest(reg4, vcov. = NW4) 

  Coef5 <- coeftest(reg5, vcov. = NW5) 

  Coef6 <- coeftest(reg6, vcov. = NW6)  

   

  # Same code used to extract ex-post betas, alphas and t-statistics 

  } 

 

rownames(alfa) <- c("Beta", "MKT", "FF3", "FF3 + MOM", "FF3 + MOM + LIQ",  

                    "FF3 + MOM + LIQ + FMAX", "FF3 + MOM + LIQ + FIVOL") 

alfa_b_d_EW <- alfa 

 

 

#### 3: Portfolios sorted on beta.msci 

 

## beta.msci sorted VW portfolios 

for (i in 1:length(k)) { 

   

  p <- portfolio_returns %>%  

    filter(portfolio == k[i]) 

   

  # Perform factor model regressions 

  reg1 <- lm(er_msci_vw ~ E.M.VW, data = p) 

  reg2 <- lm(er_msci_vw ~ E.M.VW + SMB + HML, data = p) 

  reg3 <- lm(er_msci_vw ~ E.M.VW + SMB + HML + MOM, data = p) 

  reg4 <- lm(er_msci_vw ~ E.M.VW + SMB + HML + MOM + LIQ, data = p) 

  reg5 <- lm(er_msci_vw ~ E.M.VW + SMB + HML + MOM + LIQ + FMAX, data = p) 

  reg6 <- lm(er_msci_vw ~ E.M.VW + SMB + HML + MOM + LIQ + FIVOL, data = p) 

   

  # Estimate Newey West correlation Matrix 

  NW1 <- NeweyWest(reg1, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW2 <- NeweyWest(reg2, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW3 <- NeweyWest(reg3, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW4 <- NeweyWest(reg4, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW5 <- NeweyWest(reg5, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW6 <- NeweyWest(reg6, lag = 4, prewhite = FALSE, adjust = TRUE) 

   

  # Estimate coefficients using Newey West correlation matrix 

  Coef1 <- coeftest(reg1, vcov. = NW1) 

  Coef2 <- coeftest(reg2, vcov. = NW2) 

  Coef3 <- coeftest(reg3, vcov. = NW3) 

  Coef4 <- coeftest(reg4, vcov. = NW4) 

  Coef5 <- coeftest(reg5, vcov. = NW5) 

  Coef6 <- coeftest(reg6, vcov. = NW6)   

   

  # Same code used to extract ex-post betas, alphas and t-statistics 
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  } 

 

rownames(alfa) <- c("Beta" ,"MKT", "FF3", "FF3 + MOM", "FF3 + MOM + LIQ",  

                    "FF3 + MOM + LIQ + FMAX", "FF3 + MOM + LIQ + FIVOL") 

alfa_b_msci_VW <- alfa 

 

 

## beta.msci sorted EW portfolios 

for (i in 1:length(k)) { 

   

  p <- portfolio_returns %>%  

    filter(portfolio == k[i]) 

   

  # Perform factor model regressions 

  reg1 <- lm(er_msci_ew ~ E.M.EW, data = p) 

  reg2 <- lm(er_msci_ew ~ E.M.EW + SMB + HML, data = p) 

  reg3 <- lm(er_msci_ew ~ E.M.EW + SMB + HML + MOM, data = p) 

  reg4 <- lm(er_msci_ew ~ E.M.EW + SMB + HML + MOM + LIQ, data = p) 

  reg5 <- lm(er_msci_ew ~ E.M.EW + SMB + HML + MOM + LIQ + FMAX, data = p) 

  reg6 <- lm(er_msci_ew ~ E.M.EW + SMB + HML + MOM + LIQ + FIVOL, data = p) 

   

  # Estimate Newey West correlation Matrix 

  NW1 <- NeweyWest(reg1, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW2 <- NeweyWest(reg2, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW3 <- NeweyWest(reg3, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW4 <- NeweyWest(reg4, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW5 <- NeweyWest(reg5, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW6 <- NeweyWest(reg6, lag = 4, prewhite = FALSE, adjust = TRUE) 

   

  # Estimate coefficients using Newey West correlation matrix 

  Coef1 <- coeftest(reg1, vcov. = NW1) 

  Coef2 <- coeftest(reg2, vcov. = NW2) 

  Coef3 <- coeftest(reg3, vcov. = NW3) 

  Coef4 <- coeftest(reg4, vcov. = NW4) 

  Coef5 <- coeftest(reg5, vcov. = NW5) 

  Coef6 <- coeftest(reg6, vcov. = NW6)   

   

  # Same code used to extract ex-post betas, alphas and t-statistics 

  } 

 

rownames(alfa) <- c("Beta" ,"MKT", "FF3", "FF3 + MOM", "FF3 + MOM + LIQ",  

                    "FF3 + MOM + LIQ + FMAX", "FF3 + MOM + LIQ + FIVOL") 

alfa_b_msci_EW <- alfa 

 

 

#### 4: Portfolios sorted on max 

 

## max sorted VW portfolios 

for (i in 1:length(k)) { 

   

  p <- portfolio_returns %>%  

    filter(portfolio == k[i]) 

   

  # Perform factor model regressions 

  reg1 <- lm(er_max_vw ~ E.M.VW, data = p) 

  reg2 <- lm(er_max_vw ~ E.M.VW + SMB + HML, data = p) 

  reg3 <- lm(er_max_vw ~ E.M.VW + SMB + HML + MOM, data = p) 

  reg4 <- lm(er_max_vw ~ E.M.VW + SMB + HML + MOM + LIQ, data = p) 

  reg5 <- lm(er_max_vw ~ E.M.VW + SMB + HML + MOM + LIQ + FMAX, data = p) 

  reg6 <- lm(er_max_vw ~ E.M.VW + SMB + HML + MOM + LIQ + FIVOL, data = p) 

   

  # Estimate Newey West correlation Matrix 

  NW1 <- NeweyWest(reg1, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW2 <- NeweyWest(reg2, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW3 <- NeweyWest(reg3, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW4 <- NeweyWest(reg4, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW5 <- NeweyWest(reg5, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW6 <- NeweyWest(reg6, lag = 4, prewhite = FALSE, adjust = TRUE) 

   

  # Estimate coefficients using Newey West correlation matrix 

  Coef1 <- coeftest(reg1, vcov. = NW1) 



129 
 

  Coef2 <- coeftest(reg2, vcov. = NW2) 

  Coef3 <- coeftest(reg3, vcov. = NW3) 

  Coef4 <- coeftest(reg4, vcov. = NW4) 

  Coef5 <- coeftest(reg5, vcov. = NW5) 

  Coef6 <- coeftest(reg6, vcov. = NW6) 

   

  # Same code used to extract ex-post betas, alphas and t-statistics 

  } 

 

rownames(alfa) <- c("Beta", "MKT", "FF3", "FF3 + MOM", "FF3 + MOM + LIQ",  

                    "FF3 + MOM + LIQ + FMAX", "FF3 + MOM + LIQ + FIVOL") 

alfa_max_VW <- alfa 

 

 

## max sorted EW portfolios 

for (i in 1:length(k)) { 

   

  p <- portfolio_returns %>%  

    filter(portfolio == k[i]) 

   

  # Perform factor model regressions 

  reg1 <- lm(er_max_ew ~ E.M.EW, data = p) 

  reg2 <- lm(er_max_ew ~ E.M.EW + SMB + HML, data = p) 

  reg3 <- lm(er_max_ew ~ E.M.EW + SMB + HML + MOM, data = p) 

  reg4 <- lm(er_max_ew ~ E.M.EW + SMB + HML + MOM + LIQ, data = p) 

  reg5 <- lm(er_max_ew ~ E.M.EW + SMB + HML + MOM + LIQ + FMAX, data = p) 

  reg6 <- lm(er_max_ew ~ E.M.EW + SMB + HML + MOM + LIQ + FIVOL, data = p) 

   

  # Estimate Newey West correlation Matrix 

  NW1 <- NeweyWest(reg1, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW2 <- NeweyWest(reg2, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW3 <- NeweyWest(reg3, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW4 <- NeweyWest(reg4, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW5 <- NeweyWest(reg5, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW6 <- NeweyWest(reg6, lag = 4, prewhite = FALSE, adjust = TRUE) 

   

  # Estimate coefficients using Newey West correlation matrix 

  Coef1 <- coeftest(reg1, vcov. = NW1) 

  Coef2 <- coeftest(reg2, vcov. = NW2) 

  Coef3 <- coeftest(reg3, vcov. = NW3) 

  Coef4 <- coeftest(reg4, vcov. = NW4) 

  Coef5 <- coeftest(reg5, vcov. = NW5) 

  Coef6 <- coeftest(reg6, vcov. = NW6)   

   

  # Same code used to extract ex-post betas, alphas and t-statistics 

  } 

 

rownames(alfa) <- c("Beta", "MKT", "FF3", "FF3 + MOM", "FF3 + MOM + LIQ",  

                    "FF3 + MOM + LIQ + FMAX", "FF3 + MOM + LIQ + FIVOL") 

alfa_max_EW <- alfa 

 

 

#### 5: Portfolios representing the average max quintile portfolio within each beta.monthly 

quintile 

 

## BNM VW portfolios   

for (i in 1:length(k)) { 

   

  p <- portfolio_returns %>%  

    filter(portfolio == k[i]) 

   

  # Perform factor model regressions 

  reg1 <- lm(er_BNM_monthly_vw ~ E.M.VW, data = p) 

  reg2 <- lm(er_BNM_monthly_vw ~ E.M.VW + SMB + HML, data = p) 

  reg3 <- lm(er_BNM_monthly_vw ~ E.M.VW + SMB + HML + MOM, data = p) 

  reg4 <- lm(er_BNM_monthly_vw ~ E.M.VW + SMB + HML + MOM + LIQ, data = p) 

  reg5 <- lm(er_BNM_monthly_vw ~ E.M.VW + SMB + HML + MOM + LIQ + FMAX, data = p) 

  reg6 <- lm(er_BNM_monthly_vw ~ E.M.VW + SMB + HML + MOM + LIQ + FIVOL, data = p) 

   

  # Estimate Newey West correlation Matrix 

  NW1 <- NeweyWest(reg1, lag = 4, prewhite = FALSE, adjust = TRUE) 
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  NW2 <- NeweyWest(reg2, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW3 <- NeweyWest(reg3, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW4 <- NeweyWest(reg4, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW5 <- NeweyWest(reg5, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW6 <- NeweyWest(reg6, lag = 4, prewhite = FALSE, adjust = TRUE) 

   

  # Estimate coefficients using Newey West correlation matrix 

  Coef1 <- coeftest(reg1, vcov. = NW1) 

  Coef2 <- coeftest(reg2, vcov. = NW2) 

  Coef3 <- coeftest(reg3, vcov. = NW3) 

  Coef4 <- coeftest(reg4, vcov. = NW4) 

  Coef5 <- coeftest(reg5, vcov. = NW5) 

  Coef6 <- coeftest(reg6, vcov. = NW6)   

   

  # Same code used to extract ex-post betas, alphas and t-statistics 

  } 

 

rownames(alfa) <- c("Beta", "MKT", "FF3", "FF3 + MOM", "FF3 + MOM + LIQ",  

                    "FF3 + MOM + LIQ + FMAX", "FF3 + MOM + LIQ + FIVOL") 

alfa_BNM_VW <- alfa 

 

## BNM EW portfolios 

for (i in 1:length(k)) { 

   

  p <- portfolio_returns %>%  

    filter(portfolio == k[i]) 

   

  # Perform factor model regressions 

  reg1 <- lm(er_BNM_monthly_ew ~ E.M.EW, data = p) 

  reg2 <- lm(er_BNM_monthly_ew ~ E.M.EW + SMB + HML, data = p) 

  reg3 <- lm(er_BNM_monthly_ew ~ E.M.EW + SMB + HML + MOM, data = p) 

  reg4 <- lm(er_BNM_monthly_ew ~ E.M.EW + SMB + HML + MOM + LIQ, data = p) 

  reg5 <- lm(er_BNM_monthly_ew ~ E.M.EW + SMB + HML + MOM + LIQ + FMAX, data = p) 

  reg6 <- lm(er_BNM_monthly_ew ~ E.M.EW + SMB + HML + MOM + LIQ + FIVOL, data = p) 

   

  # Estimate Newey West correlation Matrix 

  NW1 <- NeweyWest(reg1, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW2 <- NeweyWest(reg2, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW3 <- NeweyWest(reg3, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW4 <- NeweyWest(reg4, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW5 <- NeweyWest(reg5, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW6 <- NeweyWest(reg6, lag = 4, prewhite = FALSE, adjust = TRUE) 

   

  # Estimate coefficients using Newey West correlation matrix 

  Coef1 <- coeftest(reg1, vcov. = NW1) 

  Coef2 <- coeftest(reg2, vcov. = NW2) 

  Coef3 <- coeftest(reg3, vcov. = NW3) 

  Coef4 <- coeftest(reg4, vcov. = NW4) 

  Coef5 <- coeftest(reg5, vcov. = NW5) 

  Coef6 <- coeftest(reg6, vcov. = NW6)   

   

  # Same code used to extract ex-post betas, alphas and t-statistics as used for beta.monthly VW 

  } 

 

rownames(alfa) <- c("Beta", "MKT", "FF3", "FF3 + MOM", "FF3 + MOM + LIQ",  

                    "FF3 + MOM + LIQ + FMAX", "FF3 + MOM + LIQ + FIVOL") 

alfa_BNM_EW <- alfa 

 

 

#### 6: Portfolios sorted on the component of beta.monthly orthogonal to max 

 

## obeta_monthly VW portfolios  

for (i in 1:length(k)) { 

   

  p <- portfolio_returns %>%  

    filter(portfolio == k[i]) 

   

  # Perform factor model regressions 

  reg1 <- lm(er_obeta_monthly_vw ~ E.M.VW, data = p) 

  reg2 <- lm(er_obeta_monthly_vw ~ E.M.VW + SMB + HML, data = p) 

  reg3 <- lm(er_obeta_monthly_vw ~ E.M.VW + SMB + HML + MOM, data = p) 
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  reg4 <- lm(er_obeta_monthly_vw ~ E.M.VW + SMB + HML + MOM + LIQ, data = p) 

  reg5 <- lm(er_obeta_monthly_vw ~ E.M.VW + SMB + HML + MOM + LIQ + FMAX, data = p) 

  reg6 <- lm(er_obeta_monthly_vw ~ E.M.VW + SMB + HML + MOM + LIQ + FIVOL, data = p) 

   

  # Estimate Newey West correlation Matrix 

  NW1 <- NeweyWest(reg1, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW2 <- NeweyWest(reg2, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW3 <- NeweyWest(reg3, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW4 <- NeweyWest(reg4, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW5 <- NeweyWest(reg5, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW6 <- NeweyWest(reg6, lag = 4, prewhite = FALSE, adjust = TRUE) 

   

  # Estimate coefficients using Newey West correlation matrix 

  Coef1 <- coeftest(reg1, vcov. = NW1) 

  Coef2 <- coeftest(reg2, vcov. = NW2) 

  Coef3 <- coeftest(reg3, vcov. = NW3) 

  Coef4 <- coeftest(reg4, vcov. = NW4) 

  Coef5 <- coeftest(reg5, vcov. = NW5) 

  Coef6 <- coeftest(reg6, vcov. = NW6)   

   

  # Same code used to extract ex-post betas, alphas and t-statistics 

  } 

 

rownames(alfa) <- c("Beta", "MKT", "FF3", "FF3 + MOM", "FF3 + MOM + LIQ",  

                    "FF3 + MOM + LIQ + FMAX", "FF3 + MOM + LIQ + FIVOL") 

alfa_obeta_monthly_VW <- alfa 

 

 

## obeta_monthly EW portfolios 

for (i in 1:length(k)) { 

   

  p <- portfolio_returns %>%  

    filter(portfolio == k[i]) 

   

  # Perform factor model regressions 

  reg1 <- lm(er_obeta_monthly_ew ~ E.M.EW, data = p) 

  reg2 <- lm(er_obeta_monthly_ew ~ E.M.EW + SMB + HML, data = p) 

  reg3 <- lm(er_obeta_monthly_ew ~ E.M.EW + SMB + HML + MOM, data = p) 

  reg4 <- lm(er_obeta_monthly_ew ~ E.M.EW + SMB + HML + MOM + LIQ, data = p) 

  reg5 <- lm(er_obeta_monthly_ew ~ E.M.EW + SMB + HML + MOM + LIQ + FMAX, data = p) 

  reg6 <- lm(er_obeta_monthly_ew ~ E.M.EW + SMB + HML + MOM + LIQ + FIVOL, data = p) 

   

  # Estimate Newey West correlation Matrix 

  NW1 <- NeweyWest(reg1, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW2 <- NeweyWest(reg2, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW3 <- NeweyWest(reg3, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW4 <- NeweyWest(reg4, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW5 <- NeweyWest(reg5, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW6 <- NeweyWest(reg6, lag = 4, prewhite = FALSE, adjust = TRUE) 

   

  # Estimate coefficients using Newey West correlation matrix 

  Coef1 <- coeftest(reg1, vcov. = NW1) 

  Coef2 <- coeftest(reg2, vcov. = NW2) 

  Coef3 <- coeftest(reg3, vcov. = NW3) 

  Coef4 <- coeftest(reg4, vcov. = NW4) 

  Coef5 <- coeftest(reg5, vcov. = NW5) 

  Coef6 <- coeftest(reg6, vcov. = NW6)   

   

  # Same code used to extract ex-post betas, alphas and t-statistics 

  } 

 

rownames(alfa) <- c("Beta", "MKT", "FF3", "FF3 + MOM", "FF3 + MOM + LIQ",  

                    "FF3 + MOM + LIQ + FMAX", "FF3 + MOM + LIQ + FIVOL") 

alfa_obeta_monthly_EW <- alfa 

 

 

#### 7: Portfolios representing the average max quintile portfolio within each beta.daily 

quintile  

 

## BNMD VW portfolios 

for (i in 1:length(k)) { 
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  p <- portfolio_returns %>%  

    filter(portfolio == k[i]) 

   

  # Perform factor model regressions 

  reg1 <- lm(er_BNMD_monthly_vw ~ E.M.VW, data = p) 

  reg2 <- lm(er_BNMD_monthly_vw ~ E.M.VW + SMB + HML, data = p) 

  reg3 <- lm(er_BNMD_monthly_vw ~ E.M.VW + SMB + HML + MOM, data = p) 

  reg4 <- lm(er_BNMD_monthly_vw ~ E.M.VW + SMB + HML + MOM + LIQ, data = p) 

  reg5 <- lm(er_BNMD_monthly_vw ~ E.M.VW + SMB + HML + MOM + LIQ + FMAX, data = p) 

  reg6 <- lm(er_BNMD_monthly_vw ~ E.M.VW + SMB + HML + MOM + LIQ + FIVOL, data = p) 

   

  # Estimate Newey West correlation Matrix 

  NW1 <- NeweyWest(reg1, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW2 <- NeweyWest(reg2, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW3 <- NeweyWest(reg3, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW4 <- NeweyWest(reg4, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW5 <- NeweyWest(reg5, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW6 <- NeweyWest(reg6, lag = 4, prewhite = FALSE, adjust = TRUE) 

   

  # Estimate coefficients using Newey West correlation matrix 

  Coef1 <- coeftest(reg1, vcov. = NW1) 

  Coef2 <- coeftest(reg2, vcov. = NW2) 

  Coef3 <- coeftest(reg3, vcov. = NW3) 

  Coef4 <- coeftest(reg4, vcov. = NW4) 

  Coef5 <- coeftest(reg5, vcov. = NW5) 

  Coef6 <- coeftest(reg6, vcov. = NW6)   

   

  # Same code used to extract ex-post betas, alphas and t-statistics 

} 

 

rownames(alfa) <- c("Beta", "MKT", "FF3", "FF3 + MOM", "FF3 + MOM + LIQ",  

                    "FF3 + MOM + LIQ + FMAX", "FF3 + MOM + LIQ + FIVOL") 

alfa_BNMD_VW <- alfa 

 

 

## BNMD EW portfolios 

for (i in 1:length(k)) { 

   

  p <- portfolio_returns %>%  

    filter(portfolio == k[i]) 

   

  # Perform factor model regressions 

  reg1 <- lm(er_BNMD_monthly_ew ~ E.M.EW, data = p) 

  reg2 <- lm(er_BNMD_monthly_ew ~ E.M.EW + SMB + HML, data = p) 

  reg3 <- lm(er_BNMD_monthly_ew ~ E.M.EW + SMB + HML + MOM, data = p) 

  reg4 <- lm(er_BNMD_monthly_ew ~ E.M.EW + SMB + HML + MOM + LIQ, data = p) 

  reg5 <- lm(er_BNMD_monthly_ew ~ E.M.EW + SMB + HML + MOM + LIQ + FMAX, data = p) 

  reg6 <- lm(er_BNMD_monthly_ew ~ E.M.EW + SMB + HML + MOM + LIQ + FIVOL, data = p) 

   

  # Estimate Newey West correlation Matrix 

  NW1 <- NeweyWest(reg1, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW2 <- NeweyWest(reg2, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW3 <- NeweyWest(reg3, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW4 <- NeweyWest(reg4, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW5 <- NeweyWest(reg5, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW6 <- NeweyWest(reg6, lag = 4, prewhite = FALSE, adjust = TRUE) 

   

  # Estimate coefficients using Newey West correlation matrix 

  Coef1 <- coeftest(reg1, vcov. = NW1) 

  Coef2 <- coeftest(reg2, vcov. = NW2) 

  Coef3 <- coeftest(reg3, vcov. = NW3) 

  Coef4 <- coeftest(reg4, vcov. = NW4) 

  Coef5 <- coeftest(reg5, vcov. = NW5) 

  Coef6 <- coeftest(reg6, vcov. = NW6)   

   

  # Same code used to extract ex-post betas, alphas and t-statistics 

} 

 

rownames(alfa) <- c("Beta", "MKT", "FF3", "FF3 + MOM", "FF3 + MOM + LIQ",  

                    "FF3 + MOM + LIQ + FMAX", "FF3 + MOM + LIQ + FIVOL") 
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alfa_BNMD_EW <- alfa 

 

 

#### 8: Portfolios sorted on the component of beta.daily orthogonal to max 

 

## obeta.daily VW portfolios 

for (i in 1:length(k)) { 

   

  p <- portfolio_returns %>%  

    filter(portfolio == k[i]) 

   

  # Perform factor model regressions 

  reg1 <- lm(er_obeta_daily_vw ~ E.M.VW, data = p) 

  reg2 <- lm(er_obeta_daily_vw ~ E.M.VW + SMB + HML, data = p) 

  reg3 <- lm(er_obeta_daily_vw ~ E.M.VW + SMB + HML + MOM, data = p) 

  reg4 <- lm(er_obeta_daily_vw ~ E.M.VW + SMB + HML + MOM + LIQ, data = p) 

  reg5 <- lm(er_obeta_daily_vw ~ E.M.VW + SMB + HML + MOM + LIQ + FMAX, data = p) 

  reg6 <- lm(er_obeta_daily_vw ~ E.M.VW + SMB + HML + MOM + LIQ + FIVOL, data = p) 

   

  # Estimate Newey West correlation Matrix 

  NW1 <- NeweyWest(reg1, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW2 <- NeweyWest(reg2, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW3 <- NeweyWest(reg3, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW4 <- NeweyWest(reg4, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW5 <- NeweyWest(reg5, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW6 <- NeweyWest(reg6, lag = 4, prewhite = FALSE, adjust = TRUE) 

   

  # Estimate coefficients using Newey West correlation matrix 

  Coef1 <- coeftest(reg1, vcov. = NW1) 

  Coef2 <- coeftest(reg2, vcov. = NW2) 

  Coef3 <- coeftest(reg3, vcov. = NW3) 

  Coef4 <- coeftest(reg4, vcov. = NW4) 

  Coef5 <- coeftest(reg5, vcov. = NW5) 

  Coef6 <- coeftest(reg6, vcov. = NW6) 

   

  # Same code used to extract ex-post betas, alphas and t-statistics 

} 

 

rownames(alfa) <- c("Beta", "MKT", "FF3", "FF3 + MOM", "FF3 + MOM + LIQ",  

                    "FF3 + MOM + LIQ + FMAX", "FF3 + MOM + LIQ + FIVOL") 

alfa_obeta_daily_VW <- alfa 

 

 

## obeta.daily EW portfolios 

for (i in 1:length(k)) { 

   

  p <- portfolio_returns %>%  

    filter(portfolio == k[i]) 

   

  # Perform factor model regressions 

  reg1 <- lm(er_obeta_daily_ew ~ E.M.EW, data = p) 

  reg2 <- lm(er_obeta_daily_ew ~ E.M.EW + SMB + HML, data = p) 

  reg3 <- lm(er_obeta_daily_ew ~ E.M.EW + SMB + HML + MOM, data = p) 

  reg4 <- lm(er_obeta_daily_ew ~ E.M.EW + SMB + HML + MOM + LIQ, data = p) 

  reg5 <- lm(er_obeta_daily_ew ~ E.M.EW + SMB + HML + MOM + LIQ + FMAX, data = p) 

  reg6 <- lm(er_obeta_daily_ew ~ E.M.EW + SMB + HML + MOM + LIQ + FIVOL, data = p) 

   

  # Estimate Newey West correlation Matrix 

  NW1 <- NeweyWest(reg1, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW2 <- NeweyWest(reg2, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW3 <- NeweyWest(reg3, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW4 <- NeweyWest(reg4, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW5 <- NeweyWest(reg5, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW6 <- NeweyWest(reg6, lag = 4, prewhite = FALSE, adjust = TRUE) 

   

  # Estimate coefficients using Newey West correlation matrix 

  Coef1 <- coeftest(reg1, vcov. = NW1) 

  Coef2 <- coeftest(reg2, vcov. = NW2) 

  Coef3 <- coeftest(reg3, vcov. = NW3) 

  Coef4 <- coeftest(reg4, vcov. = NW4) 

  Coef5 <- coeftest(reg5, vcov. = NW5) 
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  Coef6 <- coeftest(reg6, vcov. = NW6)   

   

  # Same code used to extract ex-post betas, alphas and t-statistics 

} 

 

rownames(alfa) <- c("Beta", "MKT", "FF3", "FF3 + MOM", "FF3 + MOM + LIQ",  

                    "FF3 + MOM + LIQ + FMAX", "FF3 + MOM + LIQ + FIVOL") 

alfa_obeta_daily_EW <- alfa 

 

 

#### 9: Portfolios representing the average beta.monthly quintile portfolio within each max 

quintile  

 

## MNB VW portfolios 

for (i in 1:length(k)) { 

   

  p <- portfolio_returns %>%  

    filter(portfolio == k[i]) 

   

  # Perform factor model regressions 

  reg1 <- lm(er_MNB_monthly_vw ~ E.M.VW, data = p) 

  reg2 <- lm(er_MNB_monthly_vw ~ E.M.VW + SMB + HML, data = p) 

  reg3 <- lm(er_MNB_monthly_vw ~ E.M.VW + SMB + HML + MOM, data = p) 

  reg4 <- lm(er_MNB_monthly_vw ~ E.M.VW + SMB + HML + MOM + LIQ, data = p) 

  reg5 <- lm(er_MNB_monthly_vw ~ E.M.VW + SMB + HML + MOM + LIQ + FMAX, data = p) 

  reg6 <- lm(er_MNB_monthly_vw ~ E.M.VW + SMB + HML + MOM + LIQ + FIVOL, data = p) 

   

  # Estimate Newey West correlation Matrix 

  NW1 <- NeweyWest(reg1, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW2 <- NeweyWest(reg2, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW3 <- NeweyWest(reg3, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW4 <- NeweyWest(reg4, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW5 <- NeweyWest(reg5, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW6 <- NeweyWest(reg6, lag = 4, prewhite = FALSE, adjust = TRUE) 

   

  # Estimate coefficients using Newey West correlation matrix 

  Coef1 <- coeftest(reg1, vcov. = NW1) 

  Coef2 <- coeftest(reg2, vcov. = NW2) 

  Coef3 <- coeftest(reg3, vcov. = NW3) 

  Coef4 <- coeftest(reg4, vcov. = NW4) 

  Coef5 <- coeftest(reg5, vcov. = NW5) 

  Coef6 <- coeftest(reg6, vcov. = NW6)  

   

  # Same code used to extract ex-post betas, alphas and t-statistics 

} 

 

rownames(alfa) <- c("Beta", "MKT", "FF3", "FF3 + MOM", "FF3 + MOM + LIQ", 

                    "FF3 + MOM + LIQ + FMAX", "FF3 + MOM + LIQ + FIVOL") 

alfa_MNB_VW <- alfa 

 

 

### MNB EW portfolios 

for (i in 1:length(k)) { 

   

  p <- portfolio_returns %>%  

    filter(portfolio == k[i]) 

   

  # Perform factor model regressions 

  reg1 <- lm(er_MNB_monthly_ew ~ E.M.EW, data = p) 

  reg2 <- lm(er_MNB_monthly_ew ~ E.M.EW + SMB + HML, data = p) 

  reg3 <- lm(er_MNB_monthly_ew ~ E.M.EW + SMB + HML + MOM, data = p) 

  reg4 <- lm(er_MNB_monthly_ew ~ E.M.EW + SMB + HML + MOM + LIQ, data = p) 

  reg5 <- lm(er_MNB_monthly_ew ~ E.M.EW + SMB + HML + MOM + LIQ + FMAX, data = p) 

  reg6 <- lm(er_MNB_monthly_ew ~ E.M.EW + SMB + HML + MOM + LIQ + FIVOL, data = p) 

   

  # Estimate Newey West correlation Matrix 

  NW1 <- NeweyWest(reg1, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW2 <- NeweyWest(reg2, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW3 <- NeweyWest(reg3, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW4 <- NeweyWest(reg4, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW5 <- NeweyWest(reg5, lag = 4, prewhite = FALSE, adjust = TRUE) 
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  NW6 <- NeweyWest(reg6, lag = 4, prewhite = FALSE, adjust = TRUE) 

   

  # Estimate coefficients using Newey West correlation matrix 

  Coef1 <- coeftest(reg1, vcov. = NW1) 

  Coef2 <- coeftest(reg2, vcov. = NW2) 

  Coef3 <- coeftest(reg3, vcov. = NW3) 

  Coef4 <- coeftest(reg4, vcov. = NW4) 

  Coef5 <- coeftest(reg5, vcov. = NW5) 

  Coef6 <- coeftest(reg6, vcov. = NW6)   

   

  # Same code used to extract ex-post betas, alphas and t-statistics 

} 

 

rownames(alfa) <- c("Beta", "MKT", "FF3", "FF3 + MOM", "FF3 + MOM + LIQ", 

                    "FF3 + MOM + LIQ + FMAX", "FF3 + MOM + LIQ + FIVOL") 

alfa_MNB_EW <- alfa 

 

 

#### 10: Portfolios sorted on the component of max orthogonal to beta.monthly 

 

### OBMAX VW 

for (i in 1:length(k)) { 

   

  p <- portfolio_returns %>%  

    filter(portfolio == k[i]) 

   

  # Perform factor model regressions 

  reg1 <- lm(er_obmax_vw ~ E.M.VW, data = p) 

  reg2 <- lm(er_obmax_vw ~ E.M.VW + SMB + HML, data = p) 

  reg3 <- lm(er_obmax_vw ~ E.M.VW + SMB + HML + MOM, data = p) 

  reg4 <- lm(er_obmax_vw ~ E.M.VW + SMB + HML + MOM + LIQ, data = p) 

  reg5 <- lm(er_obmax_vw ~ E.M.VW + SMB + HML + MOM + LIQ + FMAX, data = p) 

  reg6 <- lm(er_obmax_vw ~ E.M.VW + SMB + HML + MOM + LIQ + FIVOL, data = p) 

   

  # Estimate Newey West correlation Matrix 

  NW1 <- NeweyWest(reg1, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW2 <- NeweyWest(reg2, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW3 <- NeweyWest(reg3, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW4 <- NeweyWest(reg4, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW5 <- NeweyWest(reg5, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW6 <- NeweyWest(reg6, lag = 4, prewhite = FALSE, adjust = TRUE) 

   

  # Estimate coefficients using Newey West correlation matrix 

  Coef1 <- coeftest(reg1, vcov. = NW1) 

  Coef2 <- coeftest(reg2, vcov. = NW2) 

  Coef3 <- coeftest(reg3, vcov. = NW3) 

  Coef4 <- coeftest(reg4, vcov. = NW4) 

  Coef5 <- coeftest(reg5, vcov. = NW5) 

  Coef6 <- coeftest(reg6, vcov. = NW6)   

   

  # Same code used to extract ex-post betas, alphas and t-statistics 

} 

 

rownames(alfa) <- c("Beta", "MKT", "FF3", "FF3 + MOM", "FF3 + MOM + LIQ",  

                    "FF3 + MOM + LIQ + FMAX", "FF3 + MOM + LIQ + FIVOL") 

alfa_obmax_VW <- alfa 

 

 

### OBMAX EW 

for (i in 1:length(k)) { 

   

  p <- portfolio_returns %>%  

    filter(portfolio == k[i]) 

   

  # Perform factor model regressions 

  reg1 <- lm(er_obmax_ew ~ E.M.EW, data = p) 

  reg2 <- lm(er_obmax_ew ~ E.M.EW + SMB + HML, data = p) 

  reg3 <- lm(er_obmax_ew ~ E.M.EW + SMB + HML + MOM, data = p) 

  reg4 <- lm(er_obmax_ew ~ E.M.EW + SMB + HML + MOM + LIQ, data = p) 

  reg5 <- lm(er_obmax_ew ~ E.M.EW + SMB + HML + MOM + LIQ + FMAX, data = p) 

  reg6 <- lm(er_obmax_ew ~ E.M.EW + SMB + HML + MOM + LIQ + FIVOL, data = p) 
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  # Estimate Newey West correlation Matrix 

  NW1 <- NeweyWest(reg1, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW2 <- NeweyWest(reg2, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW3 <- NeweyWest(reg3, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW4 <- NeweyWest(reg4, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW5 <- NeweyWest(reg5, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW6 <- NeweyWest(reg6, lag = 4, prewhite = FALSE, adjust = TRUE) 

   

  # Estimate coefficients using Newey West correlation matrix 

  Coef1 <- coeftest(reg1, vcov. = NW1) 

  Coef2 <- coeftest(reg2, vcov. = NW2) 

  Coef3 <- coeftest(reg3, vcov. = NW3) 

  Coef4 <- coeftest(reg4, vcov. = NW4) 

  Coef5 <- coeftest(reg5, vcov. = NW5) 

  Coef6 <- coeftest(reg6, vcov. = NW6)   

   

  # Same code used to extract ex-post betas, alphas and t-statistics 

} 

 

rownames(alfa) <- c("Beta", "MKT", "FF3", "FF3 + MOM", "FF3 + MOM + LIQ",  

                    "FF3 + MOM + LIQ + FMAX", "FF3 + MOM + LIQ + FIVOL") 

alfa_obmax_EW <- alfa 

 

 

#### 11: Portfolios representing the average ivol quintile portfolio within each beta.monthly 

quintile  

 

## BNI VW portfolios 

for (i in 1:length(k)) { 

   

  p <- portfolio_returns %>%  

    filter(portfolio == k[i]) 

   

  # Perform factor model regressions 

  reg1 <- lm(er_BNI_monthly_vw ~ E.M.VW, data = p) 

  reg2 <- lm(er_BNI_monthly_vw ~ E.M.VW + SMB + HML, data = p) 

  reg3 <- lm(er_BNI_monthly_vw ~ E.M.VW + SMB + HML + MOM, data = p) 

  reg4 <- lm(er_BNI_monthly_vw ~ E.M.VW + SMB + HML + MOM + LIQ, data = p) 

  reg5 <- lm(er_BNI_monthly_vw ~ E.M.VW + SMB + HML + MOM + LIQ + FMAX, data = p) 

  reg6 <- lm(er_BNI_monthly_vw ~ E.M.VW + SMB + HML + MOM + LIQ + FIVOL, data = p) 

   

  # Estimate Newey West correlation Matrix 

  NW1 <- NeweyWest(reg1, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW2 <- NeweyWest(reg2, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW3 <- NeweyWest(reg3, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW4 <- NeweyWest(reg4, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW5 <- NeweyWest(reg5, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW6 <- NeweyWest(reg6, lag = 4, prewhite = FALSE, adjust = TRUE) 

   

  # Estimate coefficients using Newey West correlation matrix 

  Coef1 <- coeftest(reg1, vcov. = NW1) 

  Coef2 <- coeftest(reg2, vcov. = NW2) 

  Coef3 <- coeftest(reg3, vcov. = NW3) 

  Coef4 <- coeftest(reg4, vcov. = NW4) 

  Coef5 <- coeftest(reg5, vcov. = NW5) 

  Coef6 <- coeftest(reg6, vcov. = NW6)   

   

  # Same code used to extract ex-post betas, alphas and t-statistics 

  } 

 

rownames(alfa) <- c("Beta", "MKT", "FF3", "FF3 + MOM", "FF3 + MOM + LIQ",  

                    "FF3 + MOM + LIQ + FMAX", "FF3 + MOM + LIQ + FIVOL") 

alfa_BNI_VW <- alfa 

 

## BNI EW portfolios 

for (i in 1:length(k)) { 

   

  p <- portfolio_returns %>%  

    filter(portfolio == k[i]) 
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  # Perform factor model regressions 

  reg1 <- lm(er_BNI_monthly_ew ~ E.M.EW, data = p) 

  reg2 <- lm(er_BNI_monthly_ew ~ E.M.EW + SMB + HML, data = p) 

  reg3 <- lm(er_BNI_monthly_ew ~ E.M.EW + SMB + HML + MOM, data = p) 

  reg4 <- lm(er_BNI_monthly_ew ~ E.M.EW + SMB + HML + MOM + LIQ, data = p) 

  reg5 <- lm(er_BNI_monthly_ew ~ E.M.EW + SMB + HML + MOM + LIQ + FMAX, data = p) 

  reg6 <- lm(er_BNI_monthly_ew ~ E.M.EW + SMB + HML + MOM + LIQ + FIVOL, data = p) 

   

  # Estimate Newey West correlation Matrix 

  NW1 <- NeweyWest(reg1, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW2 <- NeweyWest(reg2, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW3 <- NeweyWest(reg3, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW4 <- NeweyWest(reg4, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW5 <- NeweyWest(reg5, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW6 <- NeweyWest(reg6, lag = 4, prewhite = FALSE, adjust = TRUE) 

   

  # Estimate coefficients using Newey West correlation matrix 

  Coef1 <- coeftest(reg1, vcov. = NW1) 

  Coef2 <- coeftest(reg2, vcov. = NW2) 

  Coef3 <- coeftest(reg3, vcov. = NW3) 

  Coef4 <- coeftest(reg4, vcov. = NW4) 

  Coef5 <- coeftest(reg5, vcov. = NW5) 

  Coef6 <- coeftest(reg6, vcov. = NW6)   

   

  # Same code used to extract ex-post betas, alphas and t-statistics 

  } 

 

rownames(alfa) <- c("Beta", "MKT", "FF3", "FF3 + MOM", "FF3 + MOM + LIQ",  

                    "FF3 + MOM + LIQ + FMAX", "FF3 + MOM + LIQ + FIVOL") 

alfa_BNI_EW <- alfa 

 

 

#### 12: Portoflios sorted on the component of beta.monthly orthogonal to ivol 

 

## ibeta VW portfolios 

for (i in 1:length(k)) { 

   

  p <- portfolio_returns %>%  

    filter(portfolio == k[i]) 

   

  # Perform factor model regressions 

  reg1 <- lm(er_ibeta_monthly_vw ~ E.M.VW, data = p) 

  reg2 <- lm(er_ibeta_monthly_vw ~ E.M.VW + SMB + HML, data = p) 

  reg3 <- lm(er_ibeta_monthly_vw ~ E.M.VW + SMB + HML + MOM, data = p) 

  reg4 <- lm(er_ibeta_monthly_vw ~ E.M.VW + SMB + HML + MOM + LIQ, data = p) 

  reg5 <- lm(er_ibeta_monthly_vw ~ E.M.VW + SMB + HML + MOM + LIQ + FMAX, data = p) 

  reg6 <- lm(er_ibeta_monthly_vw ~ E.M.VW + SMB + HML + MOM + LIQ + FIVOL, data = p) 

   

  # Estimate Newey West correlation Matrix 

  NW1 <- NeweyWest(reg1, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW2 <- NeweyWest(reg2, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW3 <- NeweyWest(reg3, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW4 <- NeweyWest(reg4, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW5 <- NeweyWest(reg5, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW6 <- NeweyWest(reg6, lag = 4, prewhite = FALSE, adjust = TRUE) 

   

  # Estimate coefficients using Newey West correlation matrix 

  Coef1 <- coeftest(reg1, vcov. = NW1) 

  Coef2 <- coeftest(reg2, vcov. = NW2) 

  Coef3 <- coeftest(reg3, vcov. = NW3) 

  Coef4 <- coeftest(reg4, vcov. = NW4) 

  Coef5 <- coeftest(reg5, vcov. = NW5) 

  Coef6 <- coeftest(reg6, vcov. = NW6)   

   

  # Same code used to extract ex-post betas, alphas and t-statistics 

  } 

 

rownames(alfa) <- c("Beta", "MKT", "FF3", "FF3 + MOM", "FF3 + MOM + LIQ",  

                    "FF3 + MOM + LIQ + FMAX", "FF3 + MOM + LIQ + FIVOL") 

alfa_ibeta_monthly_VW <- alfa 
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### Ibeta EW portfolios 

for (i in 1:length(k)) { 

   

  p <- portfolio_returns %>%  

    filter(portfolio == k[i]) 

   

  # Perform factor model regressions 

  reg1 <- lm(er_ibeta_monthly_ew ~ E.M.EW, data = p) 

  reg2 <- lm(er_ibeta_monthly_ew ~ E.M.EW + SMB + HML, data = p) 

  reg3 <- lm(er_ibeta_monthly_ew ~ E.M.EW + SMB + HML + MOM, data = p) 

  reg4 <- lm(er_ibeta_monthly_ew ~ E.M.EW + SMB + HML + MOM + LIQ, data = p) 

  reg5 <- lm(er_ibeta_monthly_ew ~ E.M.EW + SMB + HML + MOM + LIQ + FMAX, data = p) 

  reg6 <- lm(er_ibeta_monthly_ew ~ E.M.EW + SMB + HML + MOM + LIQ + FIVOL, data = p) 

   

  # Estimate Newey West correlation Matrix 

  NW1 <- NeweyWest(reg1, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW2 <- NeweyWest(reg2, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW3 <- NeweyWest(reg3, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW4 <- NeweyWest(reg4, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW5 <- NeweyWest(reg5, lag = 4, prewhite = FALSE, adjust = TRUE) 

  NW6 <- NeweyWest(reg6, lag = 4, prewhite = FALSE, adjust = TRUE) 

   

  # Estimate coefficients using Newey West correlation matrix 

  Coef1 <- coeftest(reg1, vcov. = NW1) 

  Coef2 <- coeftest(reg2, vcov. = NW2) 

  Coef3 <- coeftest(reg3, vcov. = NW3) 

  Coef4 <- coeftest(reg4, vcov. = NW4) 

  Coef5 <- coeftest(reg5, vcov. = NW5) 

  Coef6 <- coeftest(reg6, vcov. = NW6) 

   

  # Same code used to extract ex-post betas, alphas and t-statistics 

  } 

 

rownames(alfa) <- c("Beta", "MKT", "FF3", "FF3 + MOM", "FF3 + MOM + LIQ",  

                    "FF3 + MOM + LIQ + FMAX", "FF3 + MOM + LIQ + FIVOL") 

alfa_ibeta_monthly_EW <- alfa 

 

 

 

 

 

 

 

 


