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Abstract

The world’s population is growing faster than ever. As a consequence, it is challenging

to maintain a sustainable food production to satisfy all needs. In recent years, krill has

emerged as a viable and effective supplement, especially for fish- and animal feed. In an

industry characterized by increasing demand and harvesting limitations, it is particularly

interesting to investigate whether time series forecasting can be a useful tool to aid effective

decision making and long-term strategic planning. Demand forecasting in the krill market

is an area in which little previous research is attributed. However, research within related

areas such as fisheries harvesting and food production have shown positive results from

applying ARIMA and exponential smoothing models. This thesis therefore considers

univariate demand forecasting of krill meal for twelve months ahead, applying both of

these methods, as well as a combination of decomposition and exponential smoothing.

We use historical sales data over a seven-year period from Aker BioMarine as a case

study to test the accuracy of the proposed methods. This is done through an automatic

model built using R, which chooses the best model from each method based on a variety

of criteria. The performance of the models is evaluated using the mean absolute error

and the mean absolute scaled error and compared to simple benchmarks. According to

our results, the benchmarks seem to perform better than the more complex methods.

However, the chosen models from the automatic modeling procedure generally yield a

high forecasting error. The provided forecasts should therefore be interpreted by someone

with expert knowledge about the krill market and the specific customer, in order to be

useful for resource allocation and strategic planning purposes. Since the chosen models do

not give satisfying results in terms of forecast error, this opens an opportunity for further

research within demand forecasting of krill meal.

Keywords – Demand forecasting, time series, krill, krill meal, ARIMA,

exponential smoothing, ETS, decomposition, STL
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1 Introduction

1.1 Motivation

Today, the world’s population is growing faster than ever. This is mainly due to medical

advancements and increased agricultural productivity, and by 2050 the population will

most likely have reached 10 billion (United Nations, 2019). This means that, in order to

meet all needs, we need to significantly increase our food production. At the same time,

food production imposes serious environmental consequences for our planet. Depletion

and contamination of natural resources occur throughout the agricultural food chain

(Baldwin, 2015).

Krill has high nutritional value and positive effects on both the growth and health of fish.

This implies that krill may be invaluable as the demands on food production continue to

increase. Krill fishery is the only reduction fishery in the world with a biomass rated as

in very good condition (Aker BioMarine, 2018). Krill has an estimated biomass of 379

million tons (Atkinson, Siegel, Pakhomov, Jessopp & Loeb, 2009), which makes it one

of the species with the largest total biomass. The massive biomass makes it possible to

harvest a large amount of krill while still ensuring sustainable utilization of this resource.

The krill industry is relatively young, and demand has been increasing the past decade

(Bender, 2006). Since demand forecasting is an important tool for effective decision making,

it is especially interesting to investigate whether it could be applied to the krill industry.

This is reinforced by the fact that krill is a sustainable alternative to fish meal in feed

production for aquaculture. This is mainly due to the large biomass, in combination with

early implementation of harvesting regulations that ensure that commercial harvesting

does not have a negative impact on either krill as a species, or other parts of the Antarctic

marine ecosystem.

The krill market has been developed by Aker BioMarine the past ten years. This makes it

challenging to forecast demand, as the market is rising and developing in line with the

company. This is especially emphasized in Aker BioMarine’s customers, as they offer a

premium product in a global aquaculture industry, and are thus able to sell everything

they produce in the long run. Aker BioMarine wants to take part in solving the problems



2 1.1 Motivation

that follow increased food production and has a mission to improve human and planetary

health. They are continuously working to lower their CO2 emissions and act as an

environmentally responsible producer of marine ingredients (Aker BioMarine, 2018). In

order to keep supplying krill in a sustainable manner, demand forecasting can therefore

be a useful tool.

Considering their global position, it is especially interesting to forecast demand at a

disaggregated customer level, as the various customers may have different demand patterns.

Aker BioMarine has a variety of customers, all from sole proprietorships to large global

companies all over the world, which can result in different purchasing patterns that

may interfere with patterns at an aggregated level. In addition, demand forecasting

can contribute to higher quality on sales- and financial forecasts and can be used as

supplementary guidance to the sales force. This emphasizes the need for forecasts at

a disaggregated customer level. Knowledge and information about future demand per

customer are useful and important for allocation of resources and harvested volumes,

as well as for both tactical and strategic planning. The global spread in the customer

portfolio also motivates our choice of building an automatic forecasting model, as this

makes it easy to extract forecasts for a certain customer and use this information to

make better and effective decisions, both with regards to the respective customer and the

company in question.

Another challenge is that the krill population is very variable from year to year (Atkinson

et al., 2009), and there is scientific uncertainty about the size of the biomass and also the

effect of krill harvesting on the biomass (Bender, 2006). Considering the critical role of

krill in the Antarctic ecosystem, this makes the development of good forecasting tools

important for this industry. Krill meal is an attractive product because it can contribute

to more efficient utilization of food resources, hence improving the productivity and

environmental performance of aquaculture. Thus, krill meal is a sustainable, nutritional

solution for the aquaculture industry. Aquaculture has had an impressive growth rate

for the past decades (Msangi et al., 2013), which makes the use of time series relevant,

as trend is a time series feature that can be extracted through time series forecasting

methods.
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1.2 Research Question

Based on the above discussion of the need for demand forecasting in the krill meal market,

we have formulated the following research question:

To what extent can common time series forecasting methods, implemented in an

automatic model, produce accurate forecasts of future demand for krill meal at a

disaggregated customer level?

In order to answer this research question, we will explore some common methods for time

series demand forecasting, hereunder exponential smoothing, a combination method

of decomposition and exponential smoothing, and ARIMA. These methods will be

implemented in an automatic model in order to produce forecasts of future demand

for krill meal per customer for Aker BioMarine. We will use data from Aker BioMarine as

a case to discuss the performance of these methods in the krill market. With this data as

a basis, we will try to determine to what extent the different methods are able to produce

reasonable forecasts for Aker BioMarine and the industry.

First, we will give a brief introduction on krill harvesting and the krill industry, followed

by motivation for the choice of forecasting methods based on previous research relevant to

the industry. Following this, we choose to elaborate on literature relevant to the chosen

forecasting methods. Thereafter we will explain the automatic modeling procedure where

these methods are applied, for then to present the results. Finally, we will discuss the

findings and limitations of the modeling procedure, before we provide our conclusion.

There is, to our knowledge, no previous research on demand forecasting of krill meal,

which amplifies the relevance of this thesis.
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2 Background

2.1 Krill and Krill Harvesting

Krill are small shrimp-like crustaceans found in all the oceans. Krill is near the bottom

of the food chain and is hence an important trophic level connection. They feed on

phytoplankton and some zooplankton and are a suitable form of nourishment for many

larger species. This makes it all the more important to ensure sustainable utilization of

this biological resource. There are different Arctic and Antarctic species of krill. Antarctic

krill is among the species with the largest total biomass and is an important part of the

Antarctic marine food chains. Antarctic krill is mostly eaten by whales, seals, penguins,

squid, birds and fish (Støp−Bowitz & Sømme, 2017). Krill are packed full of the essential

fatty acids omega-3 EPA and DHA (eicosapentaenoic acid and docosahexaenoic acid,

respectively). These fatty acids are some of the most researched nutrients and provide

health benefits for the heart, eyes, liver and brain, to name a few. The omega-3s in krill

are mainly bound to phospholipids which helps the fatty acids integrate into the cell

membranes; an advantage compared to e.g. fish oil, where the omega-3s are bound to

triglycerides (Burri, Hoem, Banni & Berge, 2012). Further, krill is packed with protein

and works as a growth accelerator for shrimp and fish (Aker BioMarine, 2016).

In the last decade, almost 60 percent of total catch has been done by Norway, followed

by Korea and China with 17 and 12 percent, respectively. Since the start of commercial

krill fishery in the early 1960s, the location of fishing has moved from being mainly in

the Indian Ocean to being almost entirely in the Southern Ocean. The last decade, the

fishery has become focused in the areas around the South Antarctic (CCAMLR, 2018).

In order to prevent fishing that will negatively impact krill or other species in the ecosystem,

all catches of Antarctic krill must be reported to the Commission on the Conservation of

Antarctic Marine Living Resources (CCAMLR). The catch and effort reporting occurs on

a monthly basis until 80% of the permitted seasonal catch is harvested. Upon reaching

this limit, the reporting occurs more frequently for the remainder of the triggered season

(CCAMLR, 2018). The management of krill fishery is very robust; the consensus of 25

governments is needed to change any of the fishery regulations in the Antarctic (Aker
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BioMarine, 2016).

Krill harvesting is currently concentrated in the South Antarctic where the estimated

krill biomass is approximately 60 million metric tons. The total allowable catch is 620,000

metric tons annually, which corresponds to around 1 percent of the stock biomass in this

area. For the past years, the annual amount of harvested krill has been around 300,000

metric tons. For 2018/2019 (until September 2019), the total catch reported was 380,000

(CCAMLR, 2018, 2019). This leaves over 99 percent of the biomass for other predators.

Harvesting far below the precautionary limits is one of many important measures to make

krill harvesting a sustainable alternative to meet the present and future environmental

challenges. This makes it all the more interesting to investigate the possibilities of demand

forecasting within this industry, in order to ensure a sustainable harvest and preserve

stock biomass.

2.1.1 The Krill Industry

Krill is a much used ingredient for aquaculture and animal feed, among others. A large

part of the krill industry is therefore included in the aquaculture industry, also comprising

products made from fish for reduction caught in the sea, as well as fish waste from the

fish industry (Nielsen & Olesen, 2003). Both fish meal and fish oil suffer from price

issues along with sustainability concerns. Krill meal and oil can therefore be a good

supplement and substitution, as a study shows improved fish growth when krill is added

to the feed (Dalsegg, 2018). Further, only a small part of the harvested krill is used in

products for human consumption. The majority is therefore used in aquaculture, and krill

is just a minor part of all the ingredients used to produce various types of feed. Feeds

containing krill give many health benefits for fish and other pets and solve challenges

faced in aquaculture. For example, studies have shown that fish develop stronger heart

muscles and healthier circulatory systems by eating krill. This can again result in lower

mortality and less disease, in addition to improved fillet quality (Aker BioMarine, 2016),

which increases the demand for krill. The krill industry is relatively young and small, and

there is uncertainty regarding the biomass and the environmental effects of krill harvesting

(Bender, 2006). Further, krill is a biological resource, which makes the amount of krill

harvested constrained by the amount of krill in the ocean at the time of harvest. However,

the future prospects of demand are positive (United Nations, 2019), which emphasizes
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the importance of developing good models to forecast future demand, in order to allocate

the available resources and thus increase profit.

2.1.2 Aker Biomarine

Aker BioMarine, hereafter denoted ABM, was established as an independent enterprise in

2006 on the basis of Aker ASA’s krill and fishing operations (Aker ASA, 2018). ABM’s core

business involves harvesting, production, sales and marketing of krill-based products for

aquaculture, animal feed applications, dietary supplements and pharmaceutical markets

(Aker BioMarine, 2018). This places them in the fish meal market, where they offer a

premium product and hold a small piece of total market share. Therefore, it can be

assumed that all harvested krill are sold in the long-term. At the same time, they have

always been concerned with protecting the krill biomass as well as the many species

that ultimately depend on krill as a food source (Aker BioMarine, 2016). Due to this,

they always harvest within precautionary limits. Krill harvesting has traditionally relied

on trawl nets, which has resulted in unwanted by-catch of other species. This is and

has been a significant challenge for a fragile marine ecosystem in the Antarctic. Over

the last decade, ABM has therefore made major investments in order to develop their

Eco-Harvesting technology. This is a trawl system that conveys krill onboard the vessels

for processing while a submerged trawl module minimizes by-catches (Aker BioMarine,

2018). As discussed in section 1.1, demand forecasting of krill meal can be a useful tool

for ABM, and similar actors, in allocation of harvested volumes as well as allocation

of company resources in order to maintain a stable supply and adhere to sustainability

targets.

2.2 Literature Review

There is a tremendous amount of research conducted within the field of demand forecasting.

We will therefore use this section to present a brief overview of literature with focus

on demand forecasting particularly relevant to the krill industry. In section 3.1 we will

elaborate on literature relevant to the different forecasting methods used in this thesis.

A quick search for "demand forecasting" on Google Scholar gives more than two million

search results and the same search term gives more than one hundred thousand research
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articles at ScienceDirect. The energy sector, emergency resources, tourism and the food

industry are just some of the areas where studies on demand forecasting have successfully

been applied. Several different forecasting techniques have been used, where ARIMA and

exponential smoothing models are very popular in many different areas. In the energy

market, there has for example been done a substantial amount of research on several

forecasting techniques in order to forecast future energy needs. Among these are time

series regression, ARIMA and neural networks. For example, research shows that ARIMA

models can contribute to improved accuracy of both short- and long-term energy demand

forecasting (Suganthi & Samuel, 2012).

Holguín-Veras & Jaller (2012) also show that it is possible to estimate robust ARIMA

models to forecast resource needs after disasters. In the work by Da Veiga, Da Veiga,

Catapan, Tortato & Da Silva (2014), the performance of ARIMA and Holt-Winters models

are compared when forecasting demand for dairy products. Their research concludes

that the preferred method is the Holt-Winters method, which is a popular exponential

smoothing method. However, for this method, they recommend to not exceed the seasonal

cycle of the series for the forecast horizon. Further, Barbosa, Christo & Costa (2015) used

some versions of exponential smoothing methods for demand forecasting for production

planning in a food company. They concluded that the Holt-Winters method was effective

for forecasting demand for products that present trend and seasonality patterns in sales

history. In addition, they highlighted the method’s simplicity and accessibility due to its

low cost and easiness. Another research in the food industry was conducted by Tirkes,

Güray & Celebi (2017), who compared performance between trend analysis, decomposition

and Holt-Winters models to forecast demand for jam and sherbet products. Holt-Winters

models obtained good results in this case as well. The decomposition models performed

satisfactorily.

If a forecasting method’s performance is not better than a simpler alternative, the method

is not worth considering (Hyndman & Athanasopoulos, 2018). Simple forecasting methods

are therefore often used as benchmarks when using more complex methods like ARIMA

and exponential smoothing. The research of Athiyaman & Robertson (1992) is one

example where simple forecasting methods outperformed the more complex ones. They

used the simple forecasting method, naïve, as well as moving average and some versions
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of exponential smoothing, to forecast international tourist arrivals from Thailand to Hong

Kong. They concluded that simple forecasting techniques often outperform more complex

ones in terms of accuracy, time- and cost-effectiveness.

The krill industry is a quite unique industry which is hard to compare to other, larger

industries. Krill is harvested and processed and then used as an ingredient in several

products like fish food, dietary supplements and various animal foods. Therefore, it might

seem suitable to investigate previous research done on forecasting demand within fields like

dietary supplements, animal foods and aquaculture, hereunder especially salmon farming,

to see if demand forecasting methods have successfully been applied as a tool within

these. There has been attributed a lot of research on forecasting to the fish industry,

especially fisheries forecasting, i.e. forecast of fish harvesting. For example, Stergiou

(1991) forecast catches of Trachurus from the eastern Mediterranean (Greek waters) by

using the Winters seasonal exponential smoothing method, ARIMA and monthly averages

corrected for linear trend. He used the naïve method as a benchmark. The study resulted

in the conclusion that ARIMA was far superior compared to both the benchmark and

the other more complex forecasting methods. However, Stergiou (1991) pointed out that,

in the short-term, Winters seasonal exponential smoothing method may be of potential

in fisheries forecasting. Stergiou (1989) also performed a study on ARIMA models for

forecasting the fishery for pilchard in Greek waters, and came to the same conclusion:

ARIMA models result in good forecasts for this industry. In addition, the work by Saila,

Wigbout & Lermit (1980) showed that the ARIMA method is preferable when forecasting

monthly average catch per day fished for rock lobster. Here, ARIMA was compared to

the monthly averages method and harmonic regression analysis.

Most of the research within the fishery industry has been applied to fisheries with long

data sets. However, Prista, Diawara, Costa & Jones (2011) did a study on the use of

seasonal ARIMA models to assess data-poor fisheries. They only had a sample size of

60 observations and found that seasonal ARIMA models may provide better forecasts

than many multivariate models. They therefore suggest that seasonal ARIMA models

"should be more widely considered to extend the coverage of monitoring to all exploited

marine resources" (Prista et al., 2011, p. 171). On the other hand, when Czerwinski,

Gutiérrez-Estrada & Hernando-Casal (2007) evaluated short-term catch per unit effort
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capacity forecast for Pacific halibut, the ARIMA model’s performance was insufficient,

while the neural network model provided far superior forecasts. In addition, the work

by Tsai & Chai (1992) showed that other methods performed better than ARIMA when

forecasting striped bass commercial harvest in the Maryland portion of Chesapeake Bay.

However, none of the methods in this study were satisfying in terms of forecast error.

The above research of fishery forecasting is not quite comparable with demand forecasting

of krill meal. However, they are somehow related because of their aquaculture similarities.

In ABM’s supply chain, krill harvesting is the step prior to sales of krill products. Even

though ABM is restricted by catch limitations, accurate demand forecasting is interesting

and important for resource allocation and strategic planning, as well as financial planning

and risk reduction. It could therefore be interesting to see if some of the models above

can also be successfully implemented in demand forecasting of krill meal. So far, there

are, to our knowledge, little research on demand forecasting within these fields, which

makes the contribution of this thesis all the more relevant.

Today, the importance of handling a great amount of data for accurate analysis has

become more significant in terms of survival in a global market. Estimating models for

forecasting can be a time consuming and complex procedure. More automatic forecasting

procedures can therefore lead to lower costs in a company that faces such challenges.

Anvari, Tuna, Canci & Turkay (2016) have developed a framework that has shown to be

both effective and accurate in forecasting time series regardless of the application sector.

This framework is automated and uses a number of statistical tests to substitute human

judgment and applies comprehensive tests to select an accurate model. Their research

finds that their proposed framework gives higher accuracy than many other models. There

have also been done a large amount of research on the demand structure for fish and

seafood products (Asche, Bjørndal & Gordon, 2007). This does however not extend to

forecasting demand for such. Within seafood production, seasonal forecasting has proven

useful, and Hobday, Spillman, Paige Eveson & Hartog (2016) also argues that the use of

seasonal forecasting can be extended to other areas. This makes it especially interesting

to investigate the possibilities for automatic demand forecasting within the krill industry.
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3 Methodological Framework

Forecasting can be defined as "predicting the future as accurately as possible, given all of

the information available, including historical data and knowledge of any future events that

might impact the forecasts" (Hyndman & Athanasopoulos, 2018, Ch. 1.2). Forecasting

is used to help inform decisions and can be useful in long-term strategic planning. The

time horizons could be anything between a few seconds and decades ahead. Forecasting

can be extremely difficult in many cases and several factors affect the predictability of

an event or quantity. Among these are how well we understand the factors that affect it,

the amount of data available and whether the forecasts can affect what we are trying to

forecast (Hyndman & Athanasopoulos, 2018).

Good forecasts are those who can capture the essence of historical data in terms of genuine

patterns and relationships, while not replicating past events that are unlikely to occur

again (Hyndman & Athanasopoulos, 2018). There are a variety of different forecasting

methods that can be used. Choice of method depends on the purpose of the forecast

and the importance of forecast accuracy. Some methods are simple, such as using the

most recent observation as a forecast for the next period. Others are highly complex, like

neural networks that capture patterns that may be hard or impossible to detect for the

human eye. Sometimes there are plenty of historical data, while other times there are no

data at all.

For demand forecasting of krill meal, time series data will be used, since the ordering of

the observations conveys important information, and patterns over time may be important

to forecast what is going to happen next. In this thesis, we will therefore look further

into some time series forecasting methods. Throughout this thesis, we will denote the

forecast by ŷ, while y will denote realized demand. In section 3.1 we will take a closer

look at some common forecasting methods. Further, we will discuss some important data

features in section 3.2, and then elaborate on a selection of evaluation criteria that can be

used to compare alternative models and how the most appropriate one can be chosen in

section 3.3.



3.1 Forecasting Methods 11

3.1 Forecasting Methods

Forecasting methods can be divided into two main categories: qualitative and quantitative.

Qualitative forecasting is used when there are no data available or the available data is

not relevant. Qualitative forecasting often implies judgmental forecasts, which can be

both useful and accurate when the forecaster has important domain knowledge and a lot

of available information. On the other hand, quantitative forecasting can be used when

there exists numerical information about the past, at the same time as it is reasonable to

assume that some aspects of the past patterns will continue into the future. Quantitative

forecasting implies statistical methods based on historical data, e.g. time series data.

When data are available, it is preferable to use quantitative and statistical methods, as

these are generally superior to generating forecasts using only human judgment (Hyndman

& Athanasopoulos, 2018). Statistical methods will therefore be the focus of this thesis.

Time series refers to observations on a variable that is observed sequentially over time

(Pankratz, 1983). When forecasting time series we aim to estimate how the sequence of

observations will continue into the future (Hyndman & Athanasopoulos, 2018). There are

simple and more complex forecasting methods. Some methods only use information on

the variable to be forecast, and disregard factors that affect its behavior. These methods

extrapolate trend and seasonal patterns, but ignore other information about surrounding

factors (Hyndman & Athanasopoulos, 2018). In the following sections, we will describe

simple forecasting methods, exponential smoothing methods, a combination method of

decomposition and exponential smoothing and the ARIMA method.

3.1.1 Simple Forecasting Methods

Some forecasting methods are simple, but effective, and are often used as benchmarks.

Among these are the average method, the naïve method and the seasonal naïve method.

The average method produces forecasts that, as the name indicates, are equal to the

average or mean of the historical data. The naïve method sets all forecasts to be equal to

the value of the last observation. An extension of the naïve method is the seasonal naïve

method, which is useful for highly seasonal data. Since we denote the forecast by ŷ, the

forecast for time T + h can be written as
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ŷT+h|T = yT+h−m(k+1), (3.1)

where m is the frequency of the seasonal period, k is the number of complete years in the

forecast period prior to time T + h, and h is the forecast horizon. Each forecast is set to

be equal to the last observed value from the same season of the year. For monthly data

this could for example mean that the forecast for all future February values is equal to

the last observed February value (Hyndman & Athanasopoulos, 2018).

One of these three methods will often be the best forecasting method available. However,

in many cases, they will serve as benchmarks rather than the method of choice. The more

advanced forecasting methods will therefore be compared to these simple methods to

ensure that the new method is better than the simple alternatives. If the more complex

methods are not better, they are not worth considering (Hyndman & Athanasopoulos,

2018).

3.1.2 Exponential Smoothing

As discussed in section 2.2, several exponential smoothing methods have successfully

been applied in e.g. the food industry, for tourist arrival and to some extent in fisheries

forecasting. In this section, we will therefore elaborate on how such methods work.

Exponential smoothing methods use weighted averages of past observations to forecast

new values. The weights decrease exponentially as the observations get older, which means

that more recent observations are assigned higher weight. The advantage of exponential

smoothing is that it generates reliable forecasts quickly and for a wide range of time series

(Hyndman & Athanasopoulos, 2018). Exponential smoothing is especially useful when

long-term forecasting is desired and it is unlikely to be worthwhile to fit a complicated

model (Chan, 2002).

The simplest of the exponential smoothing methods is called simple exponential smoothing

and is suitable for forecasting data with no clear trend or seasonal pattern. To illustrate

how the forecasts are calculated using weighted averages, we look at the following equation

ŷT+1|T = αyT + α(1− α)yT−1 + α(1− α)2yT−2 + ..., (3.2)
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where α is the smoothing parameter and has a value between 0 and 1. The forecast for

the next period, T + 1, is a weighted average of all previous observations in the time series.

α controls the rate at which the weights decrease, where a small value gives more weight

to observations from the distant past. If α is close to 1, more weight is given to more

recent observations (Hyndman & Athanasopoulos, 2018).

There are two equivalent forms of simple exponential smoothing: weighted average form

and component form. Both lead to forecast equation (3.2). We will continue with the

component form, which can be written as follows for simple exponential smoothing,

Forecast equation ŷt+h|t = `t

Level equation `t = αyt + (1− α)`t−1,
(3.3)

where `t is the level of the series at time t. The level component is the only component

included in simple exponential smoothing. However, more complex models can also

include a trend component and/or a seasonal component. When looking at the forecast

equation, we see that the forecast value at time t+ h is the estimated level at time t. The

estimated level of the series at each period t is given by the level equation (Hyndman &

Athanasopoulos, 2018).

When applying exponential smoothing methods, the smoothing parameters and the initial

values must be chosen. The most reliable and objective way to obtain these is to estimate

them from the observed data. For any exponential smoothing method, this can be done by

minimizing the sum of squared residuals. Alternatively, the parameters can be estimated

by maximizing the likelihood. The likelihood is the probability of the data arising from the

specified model (Hyndman & Athanasopoulos, 2018). Maximum likelihood estimation can

therefore be defined as estimating parameters from sample data such that the probability

of obtaining the observed data is maximized. It is common to work with the logarithm of

the likelihood function. As a general principle, the maximum of the log-likelihood function

can be found with pretty much any valid approach for identifying the arguments of the

maximum, as this is an unconstrained non-linear optimization problem (Harvey, 1993).
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3.1.2.1 ETS

Exponential smoothing models combine error, trend and seasonal components in a

smoothing calculation, and are therefore often referred to as ETS models. An ETS model is

a state space model, which means that it "consists of a measurement equation that describes

the observed data, and some state equations that describe how the unobserved components

or states (level, trend, seasonal) change over time" (Hyndman & Athanasopoulos, 2018,

Ch. 7.5). This means that an ETS model includes both a forecast equation and some

smoothing equations for each component.

Each component in an ETS model has different possibilities. There can be no trend(N),

an additive trend(A) or a damped additive trend(Ad), no seasonality(N), additive

seasonality(A) or multiplicative seasonality(M). An additive trend indicates an increasing

or decreasing trend, while a damped additive trend "dampens" the trend so that

it diminishes in the long-run forecasts. The errors can either be additive(A) or

multiplicative(M). Models with multiplicative errors are not numerically stable when the

data is not strictly positive. This means that when the data contains zeros or negative

values, multiplicative models should not be considered.

For a model with additive seasonality, the seasonal component is expressed in absolute

terms in the scale of the observed series. The series is seasonally adjusted by subtracting

the seasonal component in the level equation, which causes the seasonal component to add

up to approximately zero each year. However, for a model with multiplicative seasonality

the seasonal component is expressed in relative terms. The series is seasonally adjusted by

dividing through by the seasonal component. This results in a seasonal component that

adds up to the frequency of the seasonality m each year (Hyndman & Athanasopoulos,

2018). The following model illustrates an ETS-model including all the components

yt = (`t−1 + bt−1)st−m(1 + εt)

`t = (`t−1 + bt−1)(1 + αεt)

bt = bt−1 + β(`t−1 + bt−1)εt

st = st−m(1 + γεt),

(3.4)

where `t is the level of the series, bt is the slope, st is the seasonal component of the series,
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and εt is the residual, all at time t. α, β and γ are the smoothing parameters (Hyndman

& Athanasopoulos, 2018). This is an ETS(MAM) model, which includes multiplicative

error, additive trend and multiplicative seasonality.

3.1.2.2 Combination Method: STL + ETS

ETS can also be combined with other methods. For example, Hyndman & Athanasopoulos

(2018) states that a combination of STL decomposition and ETS, usually produce quite

good forecasts for seasonal time series. Some advantages of STL are that it can handle

any type of seasonality, not just monthly and quarterly. It can also be robust to outliers

so that occasional unusual observations will not affect the estimates of the trend-cycle

and seasonal components. We have therefore chosen to investigate this method as well.

STL is a decomposition method, and is an acronym for "Seasonal and Trend decomposition

using Loess" (Hyndman & Athanasopoulos, 2018). Loess is a modeling method for

estimating flexible nonlinear relationships, which is done by utilizing the simplicity of

linear least squares regression. The method was originally proposed by Cleveland (1979),

who gives a detailed explanation of this method in his paper "Robust Locally Weighted

Regression and Smoothing Scatterplots". Loess fits simple models to localized subsets of

the data to build a function that describes the deterministic part of the variation in the

data. This is done for each point in the data by using explanatory variable values near

the point whose response is being estimated, and fitting a low-degree polynomial to a

subset of the data (Guthrie, Filliben & Heckert, 2003).

Since STL is a decomposition method, we will do a brief explanation of classical

decomposition. When decomposing a time series, we divide it into three components: a

trend-cycle component, a seasonal component and a remainder component containing

anything else in the times series. After decomposition, there should be no pattern in

the error term. A trend exists if there is a long-term increase or decrease in the data.

Seasonality is present when a time series is affected by seasonal factors like the time of the

year or day of the week. Seasonality is always of a known and fixed frequency (Hyndman

& Athanasopoulos, 2018).

There are two forms of decomposition: additive and multiplicative, which can be written

as follows
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Additive yt = St + Tt +Rt

Multiplicative yt = St × Tt ×Rt,
(3.5)

where yt is the time series, St is the seasonal component, Tt is the trend-cycle component,

and Rt is the remainder component, all at time t. The variation in the seasonal pattern and

around the trend-cycle determines whether to use additive or multiplicative decomposition

(Hyndman & Athanasopoulos, 2018).

Additive decomposition consists of computing the trend-cycle component T̂t by averaging

the values within the frequency of the time series. For monthly series, the series is divided

into subsets that each includes 12 observations, e.g. one observation for each month. Then

the average of each subset is calculated. This eliminates some of the randomness in the

data because observations nearby in time are likely to be close in value (Hyndman &

Athanasopoulos, 2018).

After computing the trend-cycle component, you must calculate the detrended series

yt−T̂t. The third step is to estimate the seasonal component Ŝt by averaging the detrended

values for that season. These seasonal component values are then adjusted to add to

zero. Then the monthly values are stringed together, and this sequence replicated for each

year of data to obtain the seasonal component. Lastly, the remainder component, R̂t, is

calculated by subtracting the estimated seasonal and trend-cycle components: yt− T̂t− Ŝt.

For multiplicative decomposition, the process is similar, except that all subtractions are

replaced by divisions. Also, for the seasonal component, the monthly indexes are stringed

together to add to m. The remainder component for multiplicative decomposition is

calculated by dividing out the estimated seasonal and trend-cycle components: R̂t =

yt/(T̂t × Ŝt). The decomposed time series for the additive and multiplicative time series

can therefore be written as

yt = Ŝt + Ât (3.6)

yt = Ŝt × Ât, (3.7)

where Ŝt is the seasonal component and Ât = T̂t × R̂t the seasonally adjusted component

for multiplicative decomposition, and Ât = T̂t + R̂t for additive decomposition. When
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forecasting a decomposed time series, we forecast the seasonal component and the seasonally

adjusted component separately. Usually, we assume that the seasonal component is either

unchanging or changing extremely slowly. The seasonal component is therefore forecast

using the seasonal naïve method (ŷT+h|T = yT+h−m(k+1)), where each forecast is equal to

the last observed value from the same season of the year. The remaining components, trend

and error, constitute the seasonally adjusted component. This component is used to fit and

forecast a non-seasonal ETS model. Finally, the forecasts from the seasonal component

and the seasonally adjusted component are combined (Hyndman & Athanasopoulos, 2018).

3.1.3 ARIMA

The ARIMA method aims to describe the autocorrelations in the data (Hyndman &

Athanasopoulos, 2018). A good ARIMA model therefore describes how observations in a

single time series are statistically related to past observations in the same series (Hyndman

& Athanasopoulos, 2018). In section 2.2, we argued that ARIMA models perform well in

several cases of fisheries forecasting, even in some cases of poor data, and that ARIMA

models also can contribute to improved accuracy of energy demand forecasting. We will

therefore elaborate on non-seasonal and seasonal ARIMA models in this section.

ARIMA models are another name for "Univariate Box-Jenkins" or UBJ models. Univariate

means "one variable" and refers to that UBJ or ARIMA forecasts are based on only one

variable: past values of the variable being forecast. ARIMA models are more suitable for

short-term forecasting because they place more emphasis on observations in the recent

past rather than the distant past. When building ARIMA models, it is necessary to have

an adequate sample size. This will be further discussed in section 3.2.2.

3.1.3.1 Stationarity and Differencing

The first step when applying the ARIMA method is to check for stationarity in the data.

If the data are non-stationary, differencing is applied to make it stationary. A stationary

time series can be defined as "one whose properties does not depend on the time at which

the series is observed" (Hyndman & Athanasopoulos, 2018, Ch. 8.1). This means that

the time series has a mean, variance and autocorrelation that are constant through time

(Pankratz, 1983). A stationary time series should look pretty much the same at any point
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in time and have no predictable patterns in the long-term (Hyndman & Athanasopoulos,

2018).

An example of a non-stationary time series is a random walk process, where the slope

coefficient φ equals 1 and yt is a function of the previous values yt−1. A random walk can

be written as

yt = c+ φyt−1 + εt = c+ yt−1 + εt, (3.8)

where c is some constant and εt is the error term at time t. This implies uncertainty

because of non-constant variance, hence the series is non-stationary. One common and

simple transformation that can render a non-stationary series stationary, is differencing.

Differencing involves calculating the successive changes in the values of a time series.

Differencing can therefore stabilize the mean of a series by removing changes in the level

of the times series, and in that way remove or reduce trend and seasonality (Hyndman &

Athanasopoulos, 2018). A differenced time series can be written as

y
′

t = yt − yt−1. (3.9)

Since it is not possible to calculate a difference for the first observation, the differenced

time series will have T − 1 observations (Hyndman & Athanasopoulos, 2018). This series

is called the first differences of yt. If the series does not have a constant mean, we redefine

y
′
t as the first differences of the first differences. The series y′

t is now referred to as the

second differences of yt. Often it is sufficient with one difference to get a constant mean

(Pankratz, 1983). In practice, it is rarely necessary with more than second differences

(Hyndman & Athanasopoulos, 2018).

Another method is seasonal differencing, which works in a similar way as first- and

second-order differencing. However, a seasonal difference is between an observation and

the previous observation from the same season, and not between successive observations.

Seasonal differencing can be written as

y
′

t = yt − yt−m, (3.10)

where m is the number of seasons. Sometimes, a combination of first differences and
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seasonal differences are necessary to achieve stationary data. There is some subjectivity

in selecting which differences to apply, but if both differences first are applied, it does

not matter which is done first. However, if the data have a strong seasonal pattern, it

is recommended to do seasonal differencing first. This is since the resulting time series

after seasonal differencing will sometimes be stationary and thus there will be no need for

further first differencing (Hyndman & Athanasopoulos, 2018).

Whether differencing is required can either be determined by visual inspection of the

estimated autocorrelation function (ACF) and partial autocorrelation function (PACF)

or objectively through a unit root test. The estimated ACF and PACF measure the

correlation between the observations within a single time series and are graphical tools

used to identify patterns in the underlying data. They are used as guides when choosing

one or more ARIMA models that seem appropriate as a starting point (Hyndman &

Athanasopoulos, 2018).

3.1.3.2 Unit Root Tests

A unit root test checks if a time series is non-stationary and possesses a unit root, hence

the name (Zivot & Want, 2006). The Dickey-Fuller (DF) test and the Augmented Dickey-

Fuller (ADF) test are commonly used unit root tests. If we consider equation 3.8, the data

are stationary as long as |φ| < 1. However, if |φ| = 1, the data are a random walk, hence

there is a unit root, no pattern and the data are non-stationary. The null-hypothesis is

therefore H0 : |φ| = 1, which is tested against the alternative hypothesis H1 : |φ| < 1. The

regression model for the DF test can for example be written as

yt − yt−1 = c− (1− φ)yt−1 + εt

4yt = c+ δyt−1 + εt.
(3.11)

If δ = 0, there is a unit root and the data are non-stationary. The hypotheses are therefore

as follows

H0 : δ = 0

H1 : δ < 0.
(3.12)
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The DF test then applies the ordinary least squares (OLS) method to find the estimator

for φ, and the test statistic is given by (Maddala & Kim, 1998)

tφ=1 =
φ̂− 1

SE(φ̂)
. (3.13)

The ADF test has the same basis as the DF test, but can also test for unit root for higher

order processes. The regression model for the ADF test is defined by

4yt = c+ δyt−1 +

p∑
i=1

βi4yt−i + et, (3.14)

where β is the lagged delta terms. The hypothesis is the same as for the DF test (3.12).

The question is how many lags should be added? The more complicated the process, the

more lags are needed. We therefore continue adding lags until we have no serial correlation

in our error term εt (Maddala & Kim, 1998). We can use the same distribution as for the

DF test; if the absolute value of the test statistic is lower than the DF critical value, we

reject the null-hypothesis and differencing is necessary to make the time series stationary.

Another commonly used test for stationarity is the Kwiatkowski-Phillips–Schmidt–Shin

(KPSS) test. It is worth noting that the KPSS test is in fact a stationarity test, opposed

to unit root tests (Zivot & Want, 2006). In a stationarity test, the null hypothesis is that

the data are stationary (Maddala & Kim, 1998). A small p-value therefore suggests that

differencing is required (Hyndman & Athanasopoulos, 2018).

For seasonal time series, seasonal differencing might be necessary. For this purpose, there

are some generalizations of the DF and KPSS framework from zero frequency to seasonal

frequencies: The Hylleberg-Engle-Granger-Yoo (HEGY) test and the Canova Hansen

(CH) test, respectively.

3.1.3.3 Non-Seasonal ARIMA

When the time series has been transformed to be stationary, we can proceed to fit an

ARIMA model. ARIMA is an acronym for Autoregressive Integrated Moving Average

(Hyndman & Athanasopoulos, 2018). Autoregression indicates regression of the variable

against the variable itself. An autoregressive model of order p can be written as
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yt = c+ φ1yt−1 + φ2yt−2 + ...+ φpyt−p + εt. (3.15)

We refer to this as an AR(p) model. This model is like multiple regression, except that

the predictors are lagged values of yt. εt represents white noise. Changing the parameters

φ1, ..., φp will result in different time series patterns, while the variance for the error term

εt will only change the scale of the time series. Autoregressive models are very flexible and

can handle a wide range of different time series patterns (Hyndman & Athanasopoulos,

2018).

A non-seasonal ARIMA model is the combination of differencing, an autoregressive model

and a moving average model. Moving average models are linear regressions on the current

value of the time series and previously observed white noise error terms (Cowpertwait &

Metcalfe, 2009). A moving average model of order q can be written as

yt = c+ εt + θ1εt−1 + θ2εt−2 + ...+ θqεt−q. (3.16)

We refer to this as an MA(q) model. Each value of yt can be seen as a "weighted moving

average of the past few forecast errors" (Hyndman & Athanasopoulos, 2018, Ch. 8.4). As

with autoregressive models, changing the parameters will result in different time series

patterns, while the variance in the error term only changes the scale of the series. Since

the lagged error terms in MA models are not observable, parameter estimation for an MA

model is more difficult than for an AR model (Maddala & Kim, 1998).

The full ARIMA model can be written as a combination of an autoregressive model and a

moving average model,

y
′

t = c+ φ1y
′

t−1 + ...+ φpy
′

t−p + θ1εt−1 + ...+ θqεt−q + εt, (3.17)

where y′
t is the differenced time series, which can have been differenced more than once.

The right-hand side consists of both lagged values of yt and lagged errors. This model is

called an ARIMA(p,d,q) model where p represents the order of the autoregressive part, d

represents the degree of first differencing and q the order of the moving average part.
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Autoregression and moving average are actually just special cases of ARIMA models

and can be written as ARIMA(p,0,0) and ARIMA(0,0,q), respectively (Hyndman &

Athanasopoulos, 2018). To choose appropriate values for p,d and q is a difficult task. An

important aspect when searching for a good model is however that we want a model with

"the smallest number of estimated parameters needed to adequately fit the patterns in

the available data" (Pankratz, 1983, p. 17). This means that if we have two models that

perform equally well in terms of error, we prefer the simpler model with fewer parameters.

The simpler ARIMA model is expected to be better because "it seems to be closer to the

truth, has less probability of parameter redundancy, and is easier to fit and understand"

(Anvari et al., 2016, p. 39).

The estimated coefficients of the model must satisfy certain mathematical inequality

conditions, or else the model is rejected. The AR coefficients must satisfy some stationarity

conditions: If p = 1, then |φ1| < 1. While if p = 2, then three conditions must be satisfied

for the model to be stationary. First, |φ2| < 1, second φ2 + φ1 < 1 and lastly φ2 − φ1 < 1.

Since we do not know φ1 and φ2 in practice, these conditions are applied to the estimates

φ̂1 and φ̂2. Further, the MA coefficients must satisfy similar conditions of invertibility.

Where |θ1| < 1 if q = 1. While if q = 2, then |θ2| < 1 and θ2 + θ1 < 1 and θ2 − θ1 < 1.

The reason for the invertibility condition is that larger weights should be attached to more

recent observations, while a non-invertible ARIMA model implies that weights put on

past observations do not decline as we move further into the past (Pankratz, 1983).

3.1.3.4 Seasonal ARIMA

ARIMA models can also be useful in modeling seasonal data. The ARIMA method is

based on the idea that by fitting an ARMA model to differenced observations, one can

implicitly capture the non-stationary trend movements. This idea can be extended by

supposing that evolving seasonality can be handled by the use of seasonal differencing,

thus seasonal ARIMA models can be used to model seasonal data (Harvey, 1993). A

seasonal ARIMA model is formed by including additional seasonal terms and can therefore

be written as ARIMA(p,d,q)(P,D,Q)m, where m is the number of time steps per seasonal

period. The first parenthesis represents the non-seasonal part, while the last represents the

seasonal part of the model. The seasonal part consists of similar terms as the non-seasonal

part, but involves backshifts of the non-seasonal part (Hyndman & Athanasopoulos, 2018).
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To remove additive seasonal effects, a seasonal ARIMA model includes differencing at

a lag equal to the number of seasons (Cowpertwait & Metcalfe, 2009). In the same

manner as lag one differencing is applied to remove trend, lag s differencing introduces

a moving average term to the seasonal model. The modeling procedure for a seasonal

ARIMA model is similar to the one for a non-seasonal ARIMA model, but we must also

determine seasonal AR and MA terms, as well as the non-seasonal components of the

model. If we consider a quarterly time series (m = 4) without a constant, a seasonal

ARIMA(1, 1, 1)(1, 1, 1)4 model can be written using backshift notation as

(1− φ1B)(1− φ1B
4)(1−B)(1−B4)yt = (1 + θ1B)(1 + ΘB4)et, (3.18)

where Byt = yy−1 and B4yt = yt−4. The non-seasonal difference is represented in the

third parenthesis in the equation and the seasonal difference is represented by the fourth.

Further, the non-seasonal AR(1) is represented in the first part of the equation and the

seasonal AR(1) by the second parenthesis. The MA(1) part is on the right-hand side of

the equation, where the non-seasonal part is in the first parenthesis and the seasonal part

in the other.

Since the AR- and MA components and the order of differencing all operate across multiple

lags of s (number of seasons), seasonal ARIMA models can potentially have a large number

of parameters. This makes it especially important to try out a wide range of models, and

use an appropriate criterion to choose the best model (Cowpertwait & Metcalfe, 2009).

3.2 Data Features

The features of input data to any forecasting method can be crucial for the performance

and accuracy of that method on given data. In the following two sections we will therefore

discuss possible transformations of the data that can make the forecasting task simpler,

as well as the importance of an adequate sample size.

3.2.1 Data Transformation

In many cases, adjustment of the historical data can lead to a simpler forecasting task.

There are several types of possible adjustments, and the purpose of them all is to remove
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known sources of variation or making the pattern more consistent across the whole data

set. This is useful since simpler patterns usually lead to more accurate forecasts (Hyndman

& Athanasopoulos, 2018). For example, if the variation in the data increases or decreases

with the level of the series, a mathematical transformation may be useful.

Box-Cox transformation is a commonly used transformation method, which includes both

logarithmic transformations and power transformations. Type of transformation to use is

determined by the value of λ. To compute the appropriate λ for the data, one can use

different methods. One possibility is Guerrero’s method, which is "a model-independent

method that is useful to select a power transformation that best stabilizes the variance of

a time series variable" (Guerrero & Perera, 2004, p. 357). The Box-Cox transformation is

defined as

wt =

 log(yt) if λ = 0;

(yλt − 1)/λ otherwise
(3.19)

Hyndman & Athanasopoulos (2018, Ch. 3.2) states that "If λ = 1, then wt = yt − 1, so

the transformed data is shifted downwards, but there is no change in the shape of the

time series. But for all other values of λ, the time series will change shape". This means

that there is no need for a transformation of the data if λ is close to 1.

3.2.2 Sample Size

As mentioned in section 3.1.3, sufficient training data is essential for constructing good

models. This is even more important when a large number of parameters must be

estimated. Box and Jenkins (1976), referred in Pankratz (1983), suggests a minimum of

50 observations. However, Hyndman & Athanasopoulos (2018) argues that there is no

"magic number" of minimum observations, and that number of observations required to fit

a model depends on factors like the number of parameters to be estimated and the amount

of randomness in the data. However, the fewer observations we have in the training

data, the more likely we are to encounter overfitting. When the number of parameters

to be estimated is high, overfitting is more likely (Quinn, McEachen, Fullan, Gardner &

Drummy, 2019). Overfitting means that "the model performs well on the training data,

but it does not generalize well" (Géron, 2019, p. 27). This happens when the model is too
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complex for the data, in which a simpler model might be better.

First of all, statistically speaking, one should always have more observations than

parameters to be estimated. Secondly, when estimating a model with data containing a

lot of random variation, it is necessary to have a lot of data, while if the data have little

variation, fewer observations may be sufficient (Hyndman & Kostenko, 2007). Further,

Hyndman & Kostenko (2007) argues that exponential smoothing models require estimation

of up to three parameters (smoothing parameters) for the level, trend and seasonal

components of the data, as well as starting values for these. When dealing with seasonal

data, there are also two parameters associated with the initial level and trend values

and eleven parameters associated with the initial seasonal components. This means that

with monthly data the theoretical minimum of observations is 17. With m seasons, one

could therefore say that there are m+ 1 initial values and three smoothing parameters,

which means that there are a minimum of m + 4 parameters to be estimated. Thus,

m+5 observations are the theoretical minimum of observations to estimate an exponential

smoothing model. However, this is only sufficient when there is almost no randomness in

the data, and realistically it is therefore necessary with substantially more data for most

problems. For ARIMA models, the reasoning is similar; to estimate a seasonal ARIMA

model, at least p + q + P + Q + d + mD + 1 observations are required (Hyndman &

Kostenko, 2007).

3.3 Evaluation Criteria and Selection

When determining which model, within the same forecasting method, that is most

appropriate for forecasting a given time series, several information criteria can be used.

These criteria are used to compare models before forecasting and do not evaluate the

actual forecasts. The information criteria can also not be used to compare models from

different forecasting methods. To determine which of the above methods that produce

the best forecasts, we must therefore evaluate forecast accuracy. Forecast accuracy must

be calculated by evaluating model performance on new, unseen data. This means that

the data that were used when fitting the model can not be used when evaluating forecast

accuracy (Hyndman & Athanasopoulos, 2018). The time series is therefore divided into

training and test data. The training data is used to estimate the model, while the test
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data is used to measure the model’s accuracy after forecasting.

3.3.1 Information Criteria

There are several information criteria that can be used to identify which model that

performs best on a given time series. Three popular criteria are AIC, AICc and BIC.

Hyndman & Athanasopoulos (2018) defines AIC, or Akaike’s Information Criterion, as

AIC = T × log
(
SSE

T

)
+ 2(k + 2). (3.20)

Here, T is the number of observations used for estimation and SSE is the fit of the model.

The k + 2 part of the equation represents the number of parameters in the model. k

is the number of predictors, while the other two parameters are the intercept and the

variance of the residuals. The idea is to penalize the fit of the model with the number of

parameters that need to be estimated (Hyndman & Athanasopoulos, 2018). When the

sample size is small, i.e. T is small, AIC tends to select too many predictors and thus

overfit. Therefore, the bias-corrected version, AICc has been developed. Minimizing one

of these measures allows both the number of parameters and the amount of noise to be

be taken into account. Hyndman & Athanasopoulos (2018) defines AICc as

AICc = AIC +
2(k + 2)(k + 3)

T − k − 3
. (3.21)

AICc is particularly useful for short time series and often leads to simpler models being

chosen, since more than one or two parameters will produce poor forecasts due to estimation

error (Hyndman & Athanasopoulos, 2018).

The third information criterion, BIC or Schwarz’s Bayesian Information Criterion,

imposes a stronger penalty for each additional parameter added to the model, than AIC

and AICc. Further, BIC is a consistent criterion, which means that it determines the

true model asymptotically. This means that BIC will select the true underlying model

if the true underlying model is among the candidate models considered. AIC is not

consistent under those circumstances. AIC is however efficient if the true model is not

among the candidate models considered, in that it will asymptotically choose the model
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which minimizes the error. Likewise, BIC is not consistent under those circumstances

(Vrieze, 2012). Hyndman & Athanasopoulos (2018) defines BIC as

BIC = T × log(
SSE

T
) + (k + 2)log(T ). (3.22)

Choice of evaluation criterion is not always obvious and one could argue for one or the

other. Several evaluation criteria can even be used simultaneously.

When the order of differencing is decided, the values of p and q are chosen by minimizing

AIC, AICc or BIC, since all these have forecasting as their objective (Hyndman &

Athanasopoulos, 2018). No one criterion will always outperform the others, and selection

of evaluation criterion will therefore affect the final choice of model, as the different criteria

may select different models. Box, Jenkins & Reinsel (1994) therefore suggested to only use

the information criterion as supplementary guidance in addition to the visual inspection

of the ACFs and PACFs.

When comparing different ARIMA models using AIC, AICc or BIC, all models must

have the same order of differencing. Also, when selecting between models from the same

method, AICc can be used to select an ARIMA model between candidate ARIMA models,

but not to e.g. compare ARIMA and ETS models.

3.3.2 Time Series Cross-Validation

A commonly used split between the training and test data is to use 80% of the total data

for training and 20% for testing. However, which distribution to use depends on the data

and the number of observations. Since the test data is used to evaluate forecast accuracy,

its size should be at least as large as the forecast horizon (Hyndman & Athanasopoulos,

2018).

However, when evaluating forecast accuracy, time series cross-validation can be useful for

more accurate evaluation. This is another, more complex method for splitting the data

into training- and test data. The estimated model can then be tested on several different

distributions of training- and test data. However, when working with time series, the

data can not be divided by random choice. The training data must include sequential

observations, and the test data must include the consecutive observations or observations
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several steps ahead. Many general cross-validation techniques, like k-fold, shuffles the

data, which is not applicable to time series. One way of splitting the time series using

cross-validation is the expanding window method. This method is illustrated in figure 3.1.

Figure 3.1: Illustration of expanding window method for time series cross-validation

Cross-validation can either be used when fitting the model or when evaluating forecast

accuracy. The blue lines in figure 3.1 represent the training data, which is expanded by

one or more observations every time. It is not possible to obtain a reliable forecast based

on short training data, which is why the first training set must contain a sufficient amount

of data. The red lines represent the test data, which always have the same length, but

take one step forward each time. The test data can consist of one or more observations.

For multi-step forecasts, the test set is not the consecutive observations from the train set,

but n-steps ahead. For the 12-step-ahead forecast, the test set will be the 12th observation

following the train set. When used for fitting the model, the model is fitted for all the

different lengths of training data. With short series, this may not be appropriate because

there is not enough data to hold out for testing purposes (Hyndman & Athanasopoulos,

2018). When cross-validation is used for evaluating forecast accuracy, the same model

is used to estimate the coefficients for every length of training data. The forecasts are

then computed for all models and compared to the following test data. The forecast

accuracy can then be computed by averaging over all the different test sets. If doing

one-step-ahead forecasts, only one accuracy measure is computed for each training and

test split. However, if for example doing 12-step forecasts, the accuracy is computed for

12 horizons for every training and test split. It is then possible to see how good the model

performs for different forecast horizons.
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3.3.3 Performance Measures

Since the information criteria discussed in section 3.3.1, can not be used to compare

different forecasting methods, we must use some measure of forecast performance. The

difference between an observed value and its forecast is called a forecast error. Forecast

errors can be calculated in many different ways, and different methods are suitable in

different situations. Several performance measures can also be used simultaneously.

Among the most common performance measures we find Mean Error(ME), Mean Absolute

Error(MAE) and Root Mean Squared Error(RMSE), as well as percentage versions of

these. There are also different kinds of scaled versions of these performance measures,

that are supposed to account for differences in scale when comparing forecast accuracy

across series with different units (Diebold, 2004).

ME measures average model bias, which is one component of accuracy. ME can be

calculated by taking the mean of the difference between the observed value, yT+h, and the

forecast value, ŷT+h|T , for all t,

ME =
1

T

T∑
t=1

(yt+h − ŷt+h|t) =
1

T

T∑
t=1

et+h|t. (3.23)

We generally prefer a forecast with a small bias (Diebold, 2004). A positive bias indicates

that the forecasts are underestimated, as the actual values are mostly higher than

the forecasts. Vice versa, a negative bias indicates that the forecasts are generally

overestimated. The ME should however be interpreted with caution, since positive and

negative errors cancel each other out, and this measure is therefore often just used to

decide if any measures must be taken to reduce the model bias. However, the MAE takes

the absolute value of the errors and is therefore indifferent to whether the error is negative

or positive. MAE can be calculated by taking the mean of the absolute value of the

difference between the observed value and the forecast value (Diebold, 2004),

MAE =
1

T

T∑
t=1

∣∣et+h|t∣∣ . (3.24)

RMSE also measures the average magnitude of the errors, without considering their
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directions. It is calculated by taking the square root of the squared errors (Diebold, 2004),

RMSE =

√∑T
t=1 e

2
t+h|t

T
. (3.25)

For both MAE and RMSE low values are better. MAE gives all individual errors equal

weight, while since the errors are squared before they are averaged for RMSE, higher

weight is given to larger errors. RMSE is therefore especially useful when large errors

are undesirable, while MAE is not that sensitive to outliers. A disadvantage of RMSE is

that if we have noisy and random data, a single very bad forecast may skew the metric to

overestimating how bad the model is. On the other hand, if all the errors are small, this

measure may underestimate the model’s badness. Further, minimizing MAE will lead to

forecasts of the median value, while minimizing RMSE will lead to forecasts of the mean

(Hyndman & Athanasopoulos, 2018).

MAE and RMSE are scale-dependent error measures. This does not entail any issues

when comparing the different methods for the same time series. However, it causes

some complications when comparing the forecast error between different time series. An

alternative could therefore be the Mean Absolute Percentage Error (MAPE), which is a

percentage version of MAE and can be calculated as

MAPE =
1

T

T∑
t=1

∣∣∣∣yt+h − ŷt+h|tyt+h

∣∣∣∣ (3.26)

The problem of MAPE is however that when the actual observation yt+h, which is the

denominator, is zero, MAPE can not be calculated (Gilliland, Sglavo & Tashman, 2015).

Hyndman & Koehler (2006) therefore proposes an alternative to replace MAPE: the

Mean Absolute Scaled Error (MASE). MASE overcomes many problems related to other

measures. This method scales the error based on the in-sample, or training, MAE from

the naïve forecast method. MASE can be computed as follows

MASE =
1

J

J∑
j=1

|qj| =

∣∣∣∣∣ yt+h − ŷt+h|t
1

T−1
∑T

t=2 |yt − yt−1|

∣∣∣∣∣ , (3.27)

where J is the number of forecasts. If the scaled error is less than one, it arises from a
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better forecast than the average naïve forecast computed on the training data. Conversely,

it is greater than one if the forecast is worse than the average naïve forecast computed

on the training data (Hyndman, 2006). MASE will only be infinite or undefined if all

historical observations are equal, e.g. zero.
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4 Data Analysis and Modelling

To assess the potential of demand forecasting in the krill industry, we have built an

automatic forecasting model using the statistical programming language R. This model

will (1) fit a model to the data by using three different forecasting methods, and (2) select

the best method for 12-step forecasting. The automatic model takes several factors into

account, and through a series of tests checks for stationarity, as well as autocorrelation

and other factors that may have a decisive impact on the forecasting model selected. In

this chapter, we will explain how we have built the first part of this modeling procedure,

which tests we have chosen to include and why we have made these choices. This part of

the model is illustrated in figure A1.1 in Appendix (7), with yellow boxes.

4.1 Data

For the purpose of this thesis, ABM have provided us with internal data of sales volume of

krill meal from January 2012 to August 2019. We aim to use this data to provide forecasts

for one year ahead, i.e. 12-step-ahead forecasts. Forecasts are desired at a 12-month

horizon, mainly since the harvesting season is 12 months; from December 1 to November

30 the following year (CCAMLR, 2010). But also since 12 months is a common tactical

planning horizon and is the desired forecast horizon for ABM.

4.1.1 Descriptive Statistics

Our initial data includes information about sales volume of four different products for

almost 200 customers. The products are QRILLTM Aqua, QRILLTM High Protein,

QRILLTM Pet and QRILLTM Astaxanthin Oil. The sales are registered on the dates

the sales occur, hence dates with no sale are not included. Some of the customers often or

regularly buy one or several products from ABM, while others buy less frequently. For

some customers, no sales are registered for several months, while others have only made

purchases the most recent months (see examples in figure 4.5).

The data consist of 8 variables and 3775 observations. The variables include Year, Quarter,

Month, MT (sales volume in metric tons), Date, ProductType, Invoiced (invoiced customer

name) and Company.
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The data are quite clean and only need some simple adjustments before further analysis.

All sales with a volume below ten metric tons are set equal to zero in our data, since these

do not represent real sales. We also remove the product type QRILLTM Astaxanthin

Oil, mainly because of its relatively low sales volume, but also because this product is

produced, used and distributed in quite a different manner than the other product types.

The other products, which are all different types of krill meal, will be summarized and

forecast as total sales volume together. Further, since we want to forecast monthly sales,

the time series should be on a monthly basis. Therefore, we combine the Year variable

and the Month variable and exclude all other variables except MT and Company. This

leaves us with a data set that contains 3 variables. In order to get complete monthly data,

we add new rows for each month a given customer has not made any purchases, with

sales volume equal to zero. With this data we can make separate time series for all 183

customers; 16 836 observations in total.

Before investigating the data per customer, we compute some descriptive statistics for

total sales volume, see table 4.1. We observe that the maximum sales volume of 1,667

metric tons is much higher than the mean. This indicates that most of the observations

are very low. In addition, we notice that the median equals zero sale. When we investigate

this further, we find that 15,038 observations are zero, which means that only 1,798

observations have positive values. This indicates that there are far more months without

a sale per customer than months with sales. Lastly, the standard deviation is somewhat

high, which indicates a high dispersion in the observations.

Mean SD Min Max Median
11 71 0 1667 0

Table 4.1: Descriptive statistics

In general, the data contains a substantial amount of zeros, with several periods of zero

sale. When a sale first occurs it is often small, and can also be highly variable in size.

These are characteristics of what is often referred to as intermittent demand. Forecasting

intermittent demand entails several challenges, one of which is that many zero values

may render usual forecasting methods difficult to apply (Croston, 1972). The simple

exponential smoothing method will for example give an upward forecast bias in periods

directly after non-zero demand. Further, sparse data with periods with positive values



34 4.1 Data

separated by a number of periods with zero values makes it difficult to identify trends

and patterns. It also makes it difficult to estimate which periods in the future that will

register activity, and which will not.

The monthly time series for every customer consists of 92 observations. For practical

reasons, this thesis will focus on the 20 customers with the highest total sales volume

for the rest of this thesis. As displayed in figure 4.1, the two customers with the highest

sales volume account for a majority of total sales volume. Thereafter, the sales volumes

decrease steadily for the remaining 18 customers.

Figure 4.1: Total MT per customer (Company 1-20)

For illustrative purposes, figure 4.2 shows the time series of summarized total MT for all

customers from January 2012 to August 2019.
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Figure 4.2: Summarized MT for all customers

We observe an increasing trend, which indicates that the sales volume has been increasing

steadily since 2012. There also seems to be a spike around the middle of each year with a

higher sales volume than the rest of the year.

4.1.2 Initial Plots

This thesis concerns forecasts of demand per customer. In this section, we will therefore

investigate the time series of the four customers with the highest total sales volume. For

practical reasons, we will only show the plotted time series of these customers and carefully

investigate their patterns.

For Company 1, we observe an increasing trend. A weak positive trend can also be seen

for Company 2.
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Figure 4.3: Time series of total MT (Company 1-4)

In addition, we notice that for Company 1, there may be a seasonal pattern with an

increase in sales in the middle of each year and decrease at the end of each year, similar

to the summarized MT seen in figure 4.2. This is confirmed in the seasonal subseries

plot in figure 4.4. Company 2 might have a similar pattern. However, the time series for

Company 3 and 4 appear random and do not indicate the same seasonal pattern. This

concurs with our initial thoughts of quite different characteristics between the customers,

which implies that it may be difficult to find a general model that will be suitable for all

customers.
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Figure 4.4: Seasonal subseries plot (Company 1-4)

For additional illustration, figure 4.5 shows the time series for some customers with many

zero values.

Figure 4.5: Time series of total MT (Company 7, 9, 27 and 46)
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Company 7 has not purchased anything since 2015. Conversely, Company 9 has not

purchased anything before 2016. In addition, Company 27 combines both of the above

cases, while Company 46 only has 4 positive values. For the majority of the remaining

customers, the time series appear quite random. There are also few customers with an

apparent trend.

4.1.3 Data Transformation

As discussed in section 3.2.1, mathematical transformations of historical data can be

useful to get more accurate forecasts. If transformation is suitable, it will be applied

before fitting a model to the data. However, Box-Cox and other transformation methods

are most useful if the variation in the data increases or decreases with the level of the

series, as discussed in section 3.2.1. Such patterns do not seem prominent in our data,

as can be seen in section 4.1.2, and data transformations are therefore not likely to be

useful. We still do some experiments with Box-Cox transformation for some customers,

but find that it generally gives worse results. We will therefore not apply transformations

to our time series, or go further into the procedures of doing such transformations. In the

following sections of this chapter, we will elaborate on how we have fitted the different

models and built an automatic model without transformations of the data.

4.1.4 Training and Test Data

The automatic model takes a customer name as input. It then extracts the respective

time series for this customer to initiate the modeling procedure. The first step is to divide

the time series into training and test data. Here, the user can specify how many months

to include in the training and test data. For our data, we set the last 24 observations as

test data. These will be used to validate the forecasts. The test data is subtracted from

the total data, 92 observations for our time series, which gives training data consisting of

68 observations. This satisfies the minimum sample size discussed in section 3.2.2. Since

the forecast-horizon is 12 months, a 12-month test data is the minimum we should have,

with reference to section 3.3. We choose to have 24 months in our test data in order to

have sufficient data to validate the models, while still having enough training data.
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4.2 Selection of Information Criterion

When fitting models for the different forecasting methods, we need a measure of predictive

accuracy in order to select the best predictors and compare the different models. As

mentioned in paragraph 3.3.1, there is a range of different measures that can be used to

find the most suitable model, and no one criterion will always outperform the others. We

have chosen to minimize AICc as measure of predictive accuracy for all the forecasting

methods. This is mainly because AICc is a bias-corrected version of AIC, since AIC

tends to select too many predictors for short data. Considering that we have relative

short data, AICc seems more suitable. Further, BIC is a popular alternative among

statisticians, as this will select the true underlying model if it exists. However, the true

underlying model rarely exists, and even if it does, selecting that model will not necessarily

give the best forecasts because the parameter estimates may not be accurate (Hyndman

& Athanasopoulos, 2018).

Box et al. (1994) suggests that information criteria should only be used as supplementary

guidance to the visual inspection of the ACF and PACF plots for ARIMA modeling,

discussed in section 3.3.1. However, visual inspection is comprehensive to implement in

an automatic modeling procedure and we have therefore chosen to exclude this part of

the modeling process.

4.3 ETS Modeling

When fitting an ETS model, we use the ets() function from the "forecast" package

(Hyndman et al., 2019), which includes methods and tools that are useful when doing

exponential smoothing and ARIMA modeling. As mentioned in section 4.1.1, some

customers only first purchased krill after 2016, and thus have few to no positive values

in the training data - i.e. little or no observations to train the model on. To handle this

issue, we set a limit of 20 sales (minimum 20 sales above zero) in the training data for

estimating all models in this thesis.
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4.3.1 ETS

The ets() function returns the model with highest predictive accuracy for the training

data. The possible inputs to the ets() function are "N" for none, "A" for additive and "M"

for multiplicative. The model also include a damped or non-damped trend. As discussed

in section 3.1.2.1, when the data contain zeros or negative values, multiplicative error

models should not be considered. Since our data contain zeros, only the fully additive

models will be considered in the modeling procedure.

For illustrative purposes, we show the output when fitting an ETS-model for ABM’s

customer with the highest sales volume in the output seen in figure 4.6.

Figure 4.6: Chosen ETS model (Company 1)

The model selected is ETS(ANA). This model has additive errors, no trend and additive

seasonality:

yt = lt−1 + st−m + εt

lt = lt−1 + αεt

st = st−m + γεt,

(4.1)

where the smoothing parameters are α = 0.2654, γ = 0.0001. α controls how much weight
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is given to old observations. Here, α is low, which means that more weight is given to old

observations. γ is very low which means that the seasonal pattern change very little over

time (Hyndman & Athanasopoulos, 2018). This can also be seen by looking at the graph

of the seasonal component, figure 4.7.

Figure 4.7: Components of ETS model (Company 1)

4.3.2 STL + ETS

As mentioned in section 3.1.2.2, the combination of STL decomposition and ETS modeling

can handle any type of seasonality and is robust to outliers. We will therefore consider this

combination in addition to regular ETS modeling. This can be done by using the stlm()

function (also from the "forecast" package) (Hyndman et al., 2019), which first applies

STL decomposition, then forecasts the seasonally adjusted series and finally returns the

reseasonalized forecasts. When fitting the model, the desired method, in our case ETS, is

specified in the function. The ETS method will then be applied to the seasonally adjusted

series. Since the seasonal component already has been forecast from STL, as explained in

section 3.1.2.2, only ETS models without a seasonal component is considered. In addition,

multiplicative errors will not be considered because of zero values in the data (see section
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3.1.2.1). The only models that can be considered are therefore fully additive models

without a seasonal component: (ANN), (AAN), (AAdN).

When applying the STL+ETS method to the time series of ABM’s customer with the

highest sales volume, the model selected is ETS(ANN):

yt = lt−1 + εt

lt = lt−1 + αεt.
(4.2)

Figure 4.8 below shows the components of STL decomposition and of the chosen ETS

model. Here we clearly see a positive trend until 2017. We also see a clear seasonal pattern

in the seasonal component. Unlike the ETS model in figure 4.7, we see that the chosen

ETS model, ETS(ANN), does not include a seasonal component.

Figure 4.8: Components of STL+ETS model (Company 1)
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4.4 ARIMA Modeling

When fitting an ARIMA model, we use the Arima() function from the “forecast” package

(Hyndman et al., 2019). Another function, arima(), could also be used, but it does

not return everything required for other functions in the “forecast” package to work. In

addition, it does not allow the estimated model to be applied to new data (Hyndman &

Athanasopoulos, 2018).

In section 3.1.3.4, we discussed how a seasonal ARIMA model contains a non-seasonal

and a seasonal part. These are (p,d,q) and (P,D,Q)m, respectively. When fitting an

ARIMA model, we set restrictions for the value of all these components. First of all, if

the non-seasonal and seasonal terms contain too many parameters, it is likely that the

model is prone to over-parameterization, and as discussed in section 3.1.3.3, we often

prefer a simpler model with fewer parameters. In addition, in section 3.2.2, we argued

that when the training data is short and the number of parameters to be estimated is

high, the models are prone to overfitting. Further, if there are too many parameters the

model crashes. We therefore set the following restrictions, see table 4.2.

Non-seasonal term 0 ≤ p ≤ 2 0 ≤ d ≤ 2 0 ≤ q ≤ 2
Seasonal term 0 ≤ P ≤ 2 0 ≤ D ≤ 2 0 ≤ Q ≤ 2

Table 4.2: Component restrictions for ARIMA

The autoregressive (AR) component of both the non-seasonal and seasonal term is

restricted to maximum 2 since a higher value does not occur often in practice (Pankratz,

1983). The differencing component is restricted to 2 for both the non-seasonal and seasonal

term since according to Hyndman & Athanasopoulos (2018), more than second differences

is rarely necessary, also discussed in section 3.1.3.1. Lastly, the moving-average (MA)

component for both terms is restricted to 2, since according to Pankratz (1983) ARIMA

models with an MA-component higher than 2 rarely occur.

4.4.1 Fitting Method

The Arima() function gives three alternatives when choosing fitting method. The CSS-

method minimizes the conditional sum of squares, while the ML-method maximizes the
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log-likelihood function of the ARIMA-model. The CSS-ML-method is the third and

default method, which mixes both methods by first using CSS to find the starting values

and then ML to fit the model (Hyndman et al., 2019). We have tested all the methods and

choose to use the CSS-method because it is the only method that works in our modeling

procedure.

To illustrate how the CSS-method works, we consider an MA(1) model

yt = εt + θεt−1. (4.3)

yt conditional on the error term in the previous time period is normally distributed with

mean θεt−1 and variance σ2. When computing εt, we need to set ε0 equal to zero because

εt−1 is not directly observable (Harvey, 1993). All the errors can then be computed by

re-arranging the above equation,

εt = yt − θεt−1. (4.4)

When minimizing the conditional sum of squares function, we therefore use the following

formula

S(θ) =
T∑
t=1

(yt − θεt−1)2 =
T∑
t=1

ε2t . (4.5)

4.4.2 Differencing

As discussed in section 3.1.3.1, the data must be made stationary when applying the

ARIMA method. This is done by differencing the data. We use statistical tests to

determine how many differences that are required and apply the respective number of

differences to the data. This can include both seasonal differencing and first differencing.

An important aspect of this way of checking for stationarity is that there is no visual

inspection of neither the data nor ACF and PACF. We therefore assume that the statistical

tests will accurately determine this.

The functions we use to determine the required number of differences include several

alternatives for choice of stationarity tests or unit root tests. One thing worth noting
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when applying several different tests is that these "are based on different assumptions

and may lead to conflicting answers” (Hyndman & Athanasopoulos, 2018, Ch. 8.1). We

will therefore give a brief explanation of our choice of tests for stationarity.

We will start by explaining our choice of tests for first differencing, but in the automatic

model we have chosen to apply seasonal differencing first. This is based on the

argumentation in section 3.1.3.1, where we discussed how seasonal differencing should be

applied first if strong seasonal patterns are present. This may not be the case for our

data, as argued in section 4.1.2. However, since we in section 3.1.3.1 also argued that it is

indifferent whether first or seasonal differencing is applied first when both differences are

applied, we find it reasonable to start with seasonal differencing.

4.4.2.1 First Differencing

The ndiffs() function from the "forecast“ package "estimates the number of first differences

necessary” (Hyndman et al., 2019, p. 95). The output "1" implies that the data have a

unit root, thus are non-stationary. Conversely, the output "0" implies no unit root in

the data. When using this function, one can choose between three different tests; The

Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test, the Augmented Dickey-Fuller (ADF)

test, and the Phillips-Perron (PP) test. The function uses the KPSS test as default.

As discussed in section 3.1.3.2, the ADF test is a unit root test where the null hypothesis

is that a unit root is present in the data. The PP test has the same null hypothesis.

For these types of tests ndiffs() "returns the least number of differences required to fail

the test at the level alpha" (Hyndman et al., 2019, p. 95). Generally, this means that if

the absolute value of the test-statistic is higher than the absolute critical value for the

significance level set as alpha, the null hypothesis is rejected, thus the data are stationary.

Vice versa, the data are non-stationary if the test-statistic is lower than the critical value.

Unlike the ADF and the PP test, the KPSS test is a stationarity test where the null

hypothesis is that the data are stationary. In practice, when using the ndiffs() function,

the KPSS test “returns the least number of differences required to pass the test at the

level alpha” (Hyndman et al., 2019, p. 95).

For stationarity tests like KPSS, it is less likely to conclude that the data are non-stationary

than for unit root tests. When doing stationarity tests, it is more likely that the data
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are truly non-stationary if the null hypothesis is rejected. However, a nonrejected unit

root test can not exclude that the data are stationary. We therefore argue that the risk of

over-differencing is higher when using unit root tests, while the risk of under-differencing

is higher when using stationarity tests. The question is therefore which of these scenarios

are worse? If a stationary time series is differenced, MA unit roots can occur and there is

over-differencing. It then becomes a non-invertible MA process, which is not desired, as

discussed in section 3.1.3.3. It is possible to test for an MA unit root with MA unit root as

the null-hypothesis. However, "tests for the MA unit root as null and tests for stationarity

as null are related" (Maddala & Kim, 1998, p. 120). The KPSS test can therefore be used

as a complementary test when testing for unit roots. Furthermore, Arltová & Fedorová

(2016) have investigated which test to choose based on the length of the time series and

the value of the AR(1) parameter. They found that the ADF and PP tests have the

highest power for shorter time series, while the KPSS test is suitable for very small values

of the AR(1) parameter. However, they do not recommend to only use the KPSS test,

but in combination with a unit root test. Arltová & Fedorová (2016) argued that "the

ADF test is and will be one of the most commonly used unit root test since its crucial

advantage lies in its simple construction and feasibility". Therefore, we choose to use the

ADF test, as well as the KPSS test. We will first consider the ADF test. If the ADF test

rejects the null-hypothesis, we can be quite sure that the data are truly stationary and do

not run the KPSS test in addition. However, if the ADF test keeps the null-hypothesis, we

also consider the KPSS test. If the KPSS test rejects the null-hypothesis, it matches the

ADF test and thus differencing is necessary. In the special case where both the ADF and

the KPSS test keep the null-hypothesis, the time series do not provide enough information.

However, in such cases we choose to difference because of Arltová & Fedorová (2016)’s

conclusion that it is better to over-difference than to under-difference.

4.4.2.2 Seasonal Differencing

The nsdiffs() function from the "forecast" package “estimates the number of seasonal

differences necessary” (Hyndman et al., 2019, p. 98), and outputs "1" and "0" for seasonal

unit root and no seasonal unit root, respectively. Similar to the ndiffs() function, one

can choose between several different tests: measure of seasonal strength (SEAS), the

Canova-Hansen (CH) test, the Hylleberg-Engle-Granger-Yoo (HEGY) test and the Osborn-
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Chui-Smith-Birchenhall (OCSB) test. Measure of seasonal strength is the default test.

As discussed in section 3.1.3.2, the CH test is a generalization of the KPSS framework, while

the HEGY test is a generalization of the Dickey-Fuller framework from zero frequency to

seasonal frequencies. We therefore use these tests when determining the order of seasonal

differences to be consistent with the tests we use for first differencing.

The CH test has the null hypothesis that the seasonal pattern is deterministic, i.e. that

the data are stationary. This means that the null hypothesis is rejected if the time series’

seasonality is not constant, i.e. non-stationary. The HEGY test is a seasonal unit root test

with the null hypothesis that the data are non-stationary. Since these tests are similar to

the ones described in section 4.4.2.1, we will not go into further details of these tests.

4.4.3 Including Deterministic Trend or Drift

When fitting an ARIMA model, one option is to include trend or drift. As mentioned in

section 2.1.2, ABM’s sales volume is mostly determined by how much krill it is possible

to harvest. We therefore do not believe that a deterministic trend is present in our data.

In addition, we have investigated the alternative of including drift when fitting our model.

Forecasts using the drift method is equivalent to drawing a line between the first and

last observations and extrapolating it into the future. We have compared the error when

forecasting with and without drift for the 20 customers with the highest sales volume and

found that a model without drift gives better forecasts for a majority of these customers.

Trend or drift is therefore not included in the automatic modeling procedure.

4.4.4 Ljung-Box Test

The Ljung-Box test is a test for autocorrelation where the autocorrelation for lag k, rk, is

grouped into groups of size h lags. Then "we test whether the first h autocorrelations are

significantly different from what would be expected from a white noise process" (Hyndman

& Athanasopoulos, 2018, Ch. 3.3). A white noise process is an example of a stationary

time series. The test is defined by

Q∗ = T (T + 2)
h∑
k=1

(T − k)−1r2k, (4.6)
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where h is the maximum lag being considered and T is the length of the time series.

Hyndman & Athanasopoulos (2018) suggests using h = 10 for non-seasonal data and

h = 2m for seasonal data, where m is the period of seasonality. In our model for

automatical selection of the best ARIMA-model, we use the checkresiduals() function from

the "forecast" package (Hyndman et al., 2019) when conducting the Ljung-Box test. In

this function, we use the default setting for h: For seasonal data h = min(2m,n/5), and for

non-seasonal data h = min(10, n/5). High values of Q∗ indicate that the autocorrelation

do not come from a white noise series (Hyndman & Athanasopoulos, 2018). We compute

the p-value for every possible model and remove the alternatives with p-value below 0.05.

In this way, a model that passes the Ljung-Box test is always chosen.

4.5 Modeling Results

So far in this chapter, we have presented the modeling procedure for the automatic model.

This model is, based on a series of different tests and fitting procedures, supposed to select

a good forecasting model for each customer from the three different forecasting methods:

ETS, STL+ETS and ARIMA. The input to the model is the respective time series for

the customer, and the output is the best model, in terms of lowest AICc, out of all the

candidate models from the different methods. For illustrative purposes, the chosen models

for all methods and for the 20 customers with the highest sales volume are displayed in

table A2.1 in the Appendix (7). In the following chapter, we will compare the different

forecasting methods to select the best model for each customer and evaluate the results.
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5 Forecasting and Evaluation

Evaluation is important to demonstrate the value of our modeling. Choice of performance

measure can have a significant impact on the evaluation. In this chapter, we will therefore

first discuss our choice of performance measure. Further, we will present our forecasting

results. As mentioned in section 3.1.1, new and more complex methods are not worth

considering if they do not lead to better forecasts. We will therefore present some simple

benchmarks and do a comparison between them and the results from our model presented

in chapter 4, in which time series cross-validation will be used. This part of the model is

illustrated in figure A1.1 in the Appendix (7), with orange boxes.

5.1 Choice of Performance Measure

The data per customer are on the same scale, and all models are fitted based on the

same training and test data. For our data, the most relevant alternatives for choice of

performance measure are therefore ME, MAE and RMSE. RMSE is generally a more

popular metric for statisticians than for forecasters and is a bit more challenging to

interpret (Gilliland et al., 2015). Moreover, the RMSE gives more weight to larger errors,

while the MAE gives equal weight to all errors, as discussed in section 3.3.3. For the

purpose of demand forecasting of krill meal, small errors are desirable, but larger errors

do not necessarily have more impact than smaller errors. MAE may therefore be more

suitable than RMSE for our data.

As discussed in section 3.3.3, minimizing MAE will lead to forecasts of the median value,

while minimizing RMSE will lead to forecasts of the mean. Our data contains a significant

amount of zeros. We therefore find it more reasonable to believe that a forecast of the

median will concur with a random observed value, than a forecast of the mean. We will

therefore use MAE to quantify the accuracy of the methods we use, even though this

implies that the forecasts in many cases will be zero. In section 4.1.1 we discussed that

some customers buy regularly, while others buy less frequently. For the customers with a

persistent purchasing pattern, it is unlikely that the forecasts will be zero, while for the

customers who buy less frequently, zero forecasts are more likely to occur. This is however

often consistent with reality, which is why we will minimize MAE when searching for the



50 5.2 Forecasting Results

best model for each customer.

Since we also want to compare the relative model performance across customers, and

thus across different time series, we will also compute MASE. We choose MASE as a

relative metric since it overcomes many problems related to other measures, as discussed

in section 3.3.3. In addition, Hyndman (2006) recommends this measure when dealing

with intermittent demand. A relative metric can both tell us something about how our

method improves on a certain benchmark and provide a needed perspective for situations

with bad data. When dealing with bad or little data, forecast models usually give high

forecast errors, but that does not necessarily mean that the forecast method has failed.

By comparing the errors to a benchmark, we may find that we have made progress, and

hence that the source of the high error rate is not bad forecasting but bad data (Gilliland

et al., 2015).

5.2 Forecasting Results

When forecasting, we use the forecast() function from the “forecast” package (Hyndman

et al., 2019). This function produces negative forecasts for some of the customers. Since

the demand for krill meal will never be negative, all negative forecasts are set to zero. We

will first present our benchmarks, and then the resulting forecasts from the models chosen

as the best for each method in our modeling procedure. Thereafter we will evaluate the

results by applying cross-validation to these models.

5.2.1 Benchmark

The simple forecasting methods mentioned in section 3.1.1 are often used as benchmarks

when evaluating new forecasting methods. Since we have many different time series (one

for each customer), we will look at three different methods for our benchmark. We will use

two of the simple forecasting methods: the naïve method and the seasonal naïve method.

In addition, an AR(1) model is often used as benchmark when doing ARIMA modeling.

The method with the lowest MAE for each customer will be used as benchmark for the

customer in question.

Figure 5.1 shows illustrations of all three methods for ABM’s biggest customer. The plots

show the time series from January 2016 until the end of the forecast period.
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Figure 5.1: Alternative benchmarks (Company 1)

The blue line represents the forecasts, while the red line is the test data. The blue shaded

area is the prediction interval, which expresses the uncertainty in the forecasts. The dark

shaded area is the 80% prediction interval, in which a forecast is expected to lie within

with 80% certainty. The light shaded area shows the 95% prediction interval. For the

benchmarks illustrated above, both the 80% and the 95% prediction intervals are wide.

This means that the forecasts are expected to be inaccurate. The prediction interval can

contain negative values, but all these can be interpreted as zero, i.e. no sale.

By looking at the above plots, the seasonal naïve method seems to follow the data more

closely than the other two methods. However, to determine which is the best benchmark

for this particular customer, we look at the calculated MAE for the three methods, see

table 5.1.
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Method MAE
Naïve 311.73
Seasonal Naïve 302.05
AR(1) 274.33

Table 5.1: Benchmark MAE (Company 1)

The MAE for the three methods are quite similar, but the AR(1) model actually has the

lowest value and is therefore chosen as benchmark for this customer. As shown in table

5.2, the AR(1) model is chosen for the six customers with the highest total sales volume,

but is not the most appropriate benchmark for all ABM’s customers.

Benchmark
Company 1 AR(1)
Company 2 AR(1)
Company 3 AR(1)
Company 4 AR(1)
Company 5 AR(1)
Company 6 AR(1)
Company 7 Naïve
Company 8 Seasonal naïve
Company 11 Seasonal naïve
Company 12 Naïve
Company 13 Naïve
Company 14 Seasonal naïve
Company 15 Naïve
Company 16 Seasonal naïve
Company 17 Seasonal naïve
Company 18 Seasonal naïve
Company 19 AR(1)
Company 20 Naïve

Table 5.2: Chosen benchmarks (Company 1-20)

As mentioned in section 4.3 we set a minimum limit of 20 sales (minimum of 20 sales

above zero) in the training data for any models to be estimated. Company 9 and 10 do

not satisfy these requirements and are therefore not displayed in table 5.2. They will not

be included in any further analysis.

The final benchmark for the four customers with the highest total sales volume is illustrated

in figure 5.2 below.
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Figure 5.2: Chosen benchmark (Company 1-4)

5.2.2 ETS

In this and the following two sections, we will illustrate the forecasts from all the different

methods for the four customers with the highest total sales volume. These forecasts are

for the 12 first months of the test data. For ETS, the forecasts are displayed in figure 5.3.
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Figure 5.3: Forecasts from ETS method (Company 1-4)

From these plots, we see that for Company 1, the forecasts from the fitted model follow the

test data to some extent. The seasonal pattern in the forecasts is similar to the seasonal

component of the chosen model, ETS(ANA), illustrated in figure 4.7 on page 41. For the

remaining three customers, the ETS method does not find a pattern to extrapolate into

the future, hence the forecasts flatten out. This is since the models chosen for Company

2, 3 and 4 are AAN, ANN and ANN, respectively (see table A2.1 in the Appendix). For

these models, no seasonal component is included. For Company 2, there is a small positive

trend in the forecast, which implies that the model has found some positive trend in the

historical data. This concurs with the chosen AAN-model, which contains an additive

trend component. The forecasts from the ETS models for Company 2, 3 and 4 do however

not give much value.
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5.2.3 STL + ETS

For the combination method, STL + ETS, the forecasts for the four customers with the

highest total sales volume are displayed in figure 5.4.

Figure 5.4: Forecasts from STL+ETS method (Company 1-4)

Unlike the ETS method, the models from the STL+ETS method are able to capture some

sort of pattern for all customers. This is since the ETS method is applied to the seasonally

adjusted data and reseasonalized using the last year of the seasonal component from STL

decomposition, as discussed in section 3.1.2.2. For Company 1, we see that the seasonal

pattern in the forecasts is similar to the seasonal component after STL decomposition,

seen in figure 4.8 on page 42, similar to the ETS model chosen for Company 1. For

Company 2, 3 and 4, we see that the models are not able to capture the large, random

variations in the data, thus the forecasts have less variation than the test data.
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5.2.4 ARIMA

For ARIMA, the forecasts for the four customers with the highest total sales volume are

displayed in figure 5.5.

Figure 5.5: Forecasts from ARIMA method (Company 1-4)

It seems like the ARIMA model follows the pattern in the test data to some extent for

Company 1. For Company 2 and 4, the forecasts from the ARIMA models are quite far

off from the observed values. Similar to the models chosen for Company 2, 3 and 4 for

the STL+ETS method, there is a pattern in the forecasts for these companies, but the

variation is much smaller than in the test data. For Company 3, the forecasts are similar

to the observed values at the start of the forecast period, but deviates after the beginning

of 2018.
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5.3 Time Series Cross-Validation

In order to assess which of the different methods that are best for each company, we have

applied cross-validation. The model that yields the lowest 12-step-ahead MAE is chosen

as the best model for the individual customers. This means that the MAE is calculated

for forecasts of yT+12, when the training data has T observations and averaged over all

cross-validation runs.

Cross-validation has been applied by splitting the whole data set into twelve different

training and test sets and averaged the 12-step-ahead error from all these, as explained in

section 3.3.2. We keep the test set at 12 months for all the runs (12-step cross-validation),

but increase the training set by 1 month for each run. We start with a training set of 68

months and the test set as the 12 consecutive months. The next training set will then be

the first 69 months, and the test set the 12 consecutive months after this. We do this up

until the training set consists of 80 months and the test set includes the last 12 months.

The MAE is calculated for each horizon per test set. MAE is then averaged for each

horizon over the different test sets, i.e. we get one MAE for T + 1, one for T + 2, up until

T + 12, which is the 12-step-ahead MAE. Even though our target is to forecast demand

12 months ahead, we have chosen to compute MAE for all the 12 consecutive months

after the training set. This is in order to investigate how well the chosen models perform

at other forecast horizons, e.g. short-term. The MAE computed for the 12th month ahead

is however the criterion that determines which model that is chosen for each customer.

Figure 5.6 illustrates all the 12-step MAE for the four customers with the highest total

sales volume.
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Figure 5.6: Cross-validation MAE for forecast horizon 1-12 (Company 1-4)

We see that the benchmark performs significantly worse than the other methods for

Company 1. However, the benchmark performs on an equal level as the other methods

for the three other customers. The benchmark yields the lowest MAE for a few forecast

horizons for Company 2, as well as for Company 3 together with the ETS method. In

addition, it seems like the three other methods have the lowest MAE interchangeably for

the four customers.

For Company 1, the ARIMA model gives the lowest MAE for all forecast horizons, except

for the 1- and 2-step-ahead horizon. Further, the ETS model yields the lowest MAE

for all forecast horizons after seven months for Company 2, with the lowest error for a

10-step-ahead horizon. All the methods seem to perform better at a 10-step-ahead horizon

for this customer. Thereafter, the MAE increases for the following horizons for all methods.

For Company 3, the MAE is steadily declining for longer forecast horizons, with all the

methods performing better for the 12-step-ahead horizon. An interesting aspect is that

the benchmark and the ETS model seem to have almost identical MAE for all forecast
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horizons for this customer. This is likely since the forecasts illustrated for Company 3

in figure 5.2 and 5.3, both flatten out just below 100 MT, which indicates that simpler

models are more appropriate for this time series for all forecast horizons. The model

chosen for the STL+ETS method is clearly performing better than the other methods

for Company 4. The benchmark and the ETS model perform at a similar level, while

the ARIMA model clearly performs worse than the other methods for both short-term

and long-term forecasts. This is interesting, since the ARIMA method generally performs

better in the short-term, as mentioned in section 3.1.3.

The object of this thesis is a 12-step-ahead forecast at a disaggregated customer level.

From figure 5.6, we see that the chosen models perform relatively good at this horizon for

Company 3 and 4. However, since this does not apply to Company 1 and 2, the automatic

model does not select models that are generally suitable for 12-step-ahead forecasts for all

customers.

The MAE for the 12th month represents our final cross-validation MAE per method. The

final 12-step-ahead MAE for all the methods and for the 20 customers with the highest

total sales volume are displayed in table 5.3. By doing cross-validation, we are able

to capture how the different methods perform on different parts of the data, and thus

hopefully identify the method that generalizes best to the time series for each customer.
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Benchmark ARIMA ETS STL + ETS
Company 1 448.87 265.82 291.45 276.42
Company 2 219.30 202.27 186.94 210.79
Company 3 59.83 63.63 60.28 72.56
Company 4 90.29 86.27 87.09 80.06
Company 5 155.85 166.34 156.34 156.20
Company 6 79.78 85.39 96.71 81.69
Company 7 0 32.53 0 20.18
Company 8 51.94 41.36 23.51 33.49
Company 11 54.57 51.61 41.60 40.68
Company 12 26.00 18.76 22.85 18.22
Company 13 20.02 15.20 14.00 12.86
Company 14 40.33 43.11 42.17 36.45
Company 15 31.04 42.16 40.45 44.76
Company 16 34.41 31.91 25.06 32.56
Company 17 16.82 22.09 22.70 16.40
Company 18 37.54 35.37 29.95 34.44
Company 19 20.48 14.79 16.51 15.10
Company 20 8.33 21.24 21.06 20.49

Table 5.3: 12-step-ahead MAE (Company 1-20)

First of all, we see that the MAE ranges from 0 to almost 450 for the different customers.

This is since the customers make purchases in different ranges. The lowest MAE for each

customer is highlighted in blue, where the STL+ETS method yields the lowest error most

often. Thereafter, the chosen benchmark performs better than the other methods for

several customers. The forecast error is relatively high for all methods, but the benchmarks

and the STL+ETS method seem to be the preferred methods for the majority of the

customers. An interesting aspect is that the ARIMA method rarely outperforms the other

methods. For the majority of the customers, there are however only marginal differences

between the different methods.

Regarding Company 20, the benchmark seems to perform quite a lot better than the other

methods. By looking at the data for Company 20, figure 5.7, we see that the whole test

set consists of zeros. Since the benchmark forecasts zeros for the whole forecast horizon,

the forecasts and the observations in the test set are exactly alike. From the plots, it

looks like the other methods have chosen models that give more complex forecasts, which

explains why the benchmark is superior for this customer.
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Figure 5.7: Forecasts from all methods (Company 20)

In figure 5.7, we can clearly see some of the characteristics of the different methods

explained in the subsections under section 3.1 and section 5.2.1. Firstly, the naïve method

simply forecasts zero for the whole forecast period. This is since this method sets all

forecasts to be equal to the value of the last observation. Further, the forecasts from

the ETS method flatten out at a level just above zero, which is likely since this method

use weighted averages of past observations to forecast new values. The weights decrease

exponentially as the observations get older, and the newest observations are all zero, which

is likely why the fluctuations earlier in the training data are not extrapolated into the

forecast period. For the ARIMA method and the STL+ETS method, which are more

complex methods, it looks like the chosen models try to recreate some of the fluctuations

in the forecast period, but that these are adjusted to a lower level due to the long period

of zero values at the end of the training data. This indicates that the more complex

models are too advanced for this customer and that simpler models who are easier to

compute are preferred.

Regarding Company 7, we see that both the benchmark and the ETS model are chosen as

the best model with a forecast error of zero. By looking at the plot of the time series for
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this customer, see the top-left plot in figure 4.5 on page 37, we clearly see that Company

7 has not made any purchases since the end of 2015, and thus the last three years of the

training data for this customer only consists of zero values. This explains why the chosen

models, the benchmark and the ETS model, just forecast zeros for all the different test

sets and hence yield a cross-validation error of zero. Since the first 68 months include

all the positive values for this time series, there will never occur any positive values for

any of the test sets when doing cross-validation for this customer. The benchmark or the

ETS model is therefore the best model for this time series. As discussed in section 3.1.1,

we prefer the simpler methods, and the benchmark would therefore be chosen here. This

does however not give much value for ABM, as they are probably already aware of the

fact that this is an inactive customer, and therefore do not expect a sale to this customer.

5.4 Model Evaluation

5.4.1 Overfitting

In the previous section, 5.3, we displayed the resulting forecasts for Company 1-20. The

models are chosen based on the automatic modeling procedure and do not include any

human discretion. Due to the given restrictions for the ARIMA components as well as our

choice of information criterion, the automatic model may choose more complex models

than necessary. This makes the models prone to overfitting. Therefore, we will take a

closer look at the training and test MAE for all the customers. The training MAE is

computed on the 68 observations in the training data, while the test MAE is the same

cross-validation MAE displayed in table 5.3. The training and test MAE for the chosen

models are therefore highlighted in blue in table 5.4 as well.
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Benchmark ARIMA ETS STL + ETS
Train Test Train Test Train Test Train Test

Company 1 274.08 448.87 192.94 265.82 209.97 291.45 203.67 276.42
Company 2 124.58 219.30 105.20 202.27 125.58 186.94 109.14 210.79
Company 3 75.02 59.83 31.86 63.63 74.27 60.28 57.89 72.56
Company 4 97.33 90.29 46.32 89.12 110.46 87.09 101.28 80.06
Company 5 76.09 155.85 59.68 166.34 60.03 156.34 59.16 156.20
Company 6 43.61 79.78 35.15 85.39 35.19 96.71 36.88 81.69
Company 7 54.72 0 22.42 37.39 66.26 0 68.35 20.18
Company 8 27.34 51.94 14.18 39.76 24.54 23.51 18.61 33.49
Company 11 32.41 54.57 12.21 51.61 26.62 41.60 21.11 40.68
Company 12 41.01 26.00 17.34 18.76 34.14 22.85 28.30 18.22
Company 13 17.34 20.02 4.74 15.20 15.20 14.00 11.64 12.86
Company 14 32.27 40.33 7.59 43.11 29.64 42.17 24.71 36.45
Company 15 40.12 31.04 16.69 38.65 30.67 40.45 27.04 44.76
Company 16 28.93 34.41 7.03 31.91 27.84 25.06 21.23 32.56
Company 17 26.88 16.82 6.73 22.09 19.74 22.70 17.81 16.40
Company 18 15.07 37.54 11.36 35.37 11.01 29.95 11.46 34.44
Company 19 13.48 20.48 5.28 14.79 13.24 16.51 9.60 15.10
Company 20 22.00 8.33 9.34 21.24 17.35 21.06 16.89 20.49

Table 5.4: Training MAE and 12-step-ahead test MAE (Company 1-20)

From table 5.4, we see that for many of the customers, the test MAE for the chosen

method (in blue) is much higher than the training MAE. This indicates that the model

performs well on the training data, but does not generalize well, as discussed in section

3.2.2. For Company 2 and 14, the test MAE is almost 50% higher than the training MAE,

which indicates that the models for these time series are likely overfitting, but not to

the same extent as for Company 5, 6, 11, 18 and 19. As an example, the best model for

Company 19 gives a test MAE that is almost three times as high as the training MAE.

This implies that the chosen ARIMA model will not generalize well to new data, and is

thus not a good model for forecasting this time series. These models are therefore too

complex for the data, and simpler models would likely be more appropriate. This is evident

in the chosen ARIMA model for Company 19: ARIMA(2,0,2)(1,1,0) (see table A2.1 in the

Appendix), which has a significant amount of parameters and is clearly overparameterized

for this time series.

For some of the other customers, the test MAE is however much lower than the training

MAE, especially for Company 7 and 20. For these two particular customers, this is a

result of many zeros in the data as explained in section 5.3. For other customers, it could
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be that by random chance the model chosen fits better to the test data than the training

data. Generally, it is difficult to interpret the behavior of the models when the test error

is lower than the training error.

5.4.2 Relative Model Performance

As discussed in section 5.1, we compute MASE for the same 20 customers in order to

compare the relative model performance across customers. The MASE is computed by

scaling the test MAE relative to the respective training MAE from the naïve method for

each cross-validation run. The MASE for each customer can be seen in table 5.5.

Benchmark ARIMA ETS STL + ETS
Company 1 0.885 0.580 0.625 0.589
Company 2 0.980 0.948 0.809 0.980
Company 3 0.591 0.666 0.594 0.706
Company 4 0.805 0.745 0.797 0.716
Company 5 1.109 1.306 1.323 1.222
Company 6 1.490 1.555 1.787 1.482
Company 7 0.000 0.505 0.000 0.316
Company 8 1.465 1.180 0.699 1.052
Company 11 1.874 1.642 1.222 1.259
Company 12 0.748 0.527 0.637 0.527
Company 13 1.391 1.025 0.930 0.833
Company 14 1.207 1.296 1.250 1.083
Company 15 1.008 1.262 1.290 1.339
Company 16 1.178 1.069 0.821 1.072
Company 17 0.945 1.239 1.262 0.886
Company 18 1.880 1.811 1.533 1.779
Company 19 1.163 0.808 0.876 0.793
Company 20 0.385 0.958 0.951 0.934

Table 5.5: 12-step-ahead MASE (Company 1-20)

In section 3.3.3, we discussed that a MASE lower than one indicates that the model gives

forecasts that improve on the average naïve forecast computed on the training data. From

table 5.5, we see that this applies to eleven of the customers, in addition to Company

7 and 20, which are not representative, since the naïve method is chosen as the best

model for these customers. For Company 1, 3, and 12, the MASE is around 0.5, which

is a significant improvement. This also applies to Company 4 and 8, with a MASE of

approximately 0.7. This implies that the models chosen for these customers are preferred

over the average naïve method. Company 2, 13, 16, 17 and 19 all have a MASE around
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0.8. These models therefore produce forecasts that also improve some on the average

naïve method.

As discussed in section 5.4.1, for the models that give a relatively low MASE, the one for

Company 2 and 19 seem to overfit to the data. However, this does not regard the models

chosen for Company 3, 4, 8, 12, 13, 16 and 17. Company 8, 13, 16 and 17 all have quite

similar training and test MAE, which can indicate that these models generalize well to

new data. The models chosen for Company 3, 4 and 12 have much lower test MAE than

training MAE, which makes it hard to interpret the behavior of these models. For the

models with MASE > 1, the simple naïve method would be preferred over the models

chosen through the automatic modeling procedure.

5.4.3 Model Bias

In section 3.3.3, we briefly mentioned how the mean error, or ME, can be used to measure

model bias. Since ME is computed by subtracting the forecast from the observed value

for all t, a positive ME indicates that the model in general underestimate the true value,

while a negative ME indicates a model that mostly overforecasts the observed value. An

ME of zero indicates that the model is unbiased. The calculated ME for the chosen models

are shown in table 5.6.
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Benchmark ARIMA ETS STL+ETS Mean
Company 1 308.74 -22.38 39.92 38.79 639.19
Company 2 163.86 144.26 23.74 23.74 143.74
Company 3 9.81 10.91 10.22 10.22 86.93
Company 4 3.25 18.27 4.62 4.62 87.88
Company 5 68.54 13.10 1.41 1.41 57.21
Company 6 27.15 8.85 12.42 12.42 50.04
Company 7 0.00 -19.71 0.00 0.58 69.06
Company 8 -36.20 -31.16 -18.66 -18.51 45.74
Company 11 3.70 7.53 11.74 17.42 32.28
Company 12 22.00 2.94 -5.38 14.21 39.19
Company 13 12.00 8.25 7.26 4.8 30.76
Company 14 18.33 18.49 15.72 16.96 30.11
Company 15 13.90 11.29 15.01 15.01 23.33
Company 16 -20.54 -19.00 -17.31 -18.44 28.23
Company 17 13.10 15.72 20.12 3.23 19.22
Company 18 4.21 6.16 5.79 5.45 13.12
Company 19 13.50 1.38 5.51 4.29 13.08
Company 20 -8.33 -21.22 -21.06 -20.49 21.06

Table 5.6: 12-step-ahead ME (Company 1-20)

From table 5.6 it can be seen that the ME is mostly positive for the different customers.

This means that the chosen models more often underestimates the true value. Company

7 has an ME of 0 due to the zero values in the data. Many customers have quite high

ME compared to their respective in-sample mean sales volume. In general, it also seems

like the chosen models often under- or overforecasts demand, since the majority of the

customers have an ME that deviates significantly from zero. However, the ME is averaged

over 12 cross-validation runs, and to investigate whether the models are truly biased, we

calculate a 95% confidence interval on ME for a selection of customers, see table 5.7.

ME Lower bound Upper bound
Company 1 -22.38 -239.47 194.71
Company 2 23.74 -133.33 108.81
Company 3 9.81 -35.89 55.51
Company 4 4.62 -66.29 66.80
Company 5 68.54 -96.16 233.25

Table 5.7: 95% confidence interval on ME for the chosen method (Company 1-5)

Estimates of the confidence intervals are useful since the estimate of the ME varies from

sample to sample (Filliben & Heckert, 2003), and is as discussed in section 5.3 computed
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for 12 different test sets. The narrower the interval, the more precise the estimate of ME.

For all the five customers, the confidence interval includes zero, which means that the

ME for these customers is not significantly different from zero (Coolidge, 2006). This

indicates that the models are unbiased. The confidence interval also gives an indication

of how much uncertainty there is in our estimate of ME. For the five customers whose

confidence intervals have been computed, the interval is quite wide. This means that the

estimated MEs are very uncertain.

One important note on the evaluations done in this chapter is that the test data is

relatively small, which means that the performance estimates are less reliable. This is

since the more test data, the more accurate the error estimate will be. With more test

data we would have been able to get more accurate estimates of the different performance

measures discussed.

In this chapter, we have seen that the forecasts produced for the different customers in

general give a high forecast error. As discussed in section 1.1, good demand forecasts

can contribute to higher quality on sales- and financial forecasts, and can be used as

supplementary guidance to the sales force. For ABM, the object of the forecasts produced

through this thesis was to be used for these purposes. However, since the accuracy is

quite low, the results must be interpreted with caution. This means that the sales force

could use the forecasts as a tool for visualizing potential future purchasing patterns and

get an indication of when sales are more likely to occur. The forecast values alone should

however not be used for financial and strategic planning and resource allocation.
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6 Discussion

The main target of forecasting time series is to predict an uncertain future. This can be

done by constructing a suitable model based on an analysis of the historical development

in a time series. In this thesis, we have explored three types of forecasting methods:

exponential smoothing (ETS), a combination of STL decomposition and ETS, as well

as ARIMA. These methods recreate patterns from the time series in different ways and

project these for a specified period of time into the future. The purpose of the fitted

model determines whether it is more or less appropriate than other models built for the

same data. The comparison between our candidate models in section 5.3 is an attempt to

choose the most appropriate model for demand forecasting of krill meal based on time

series data over a seven-year period. However, as circumstances alter, the choice may

change, and additional data and knowledge of the industry could therefore yield a different

conclusion.

6.1 Overall Findings

Our analysis shows that none of the investigated methods perform well on time series

data of krill meal. In section 3.2.2, we discussed how an adequate sample size is necessary

for constructing good models, especially when a large number of parameters need to be

estimated. As emphasized in section 4.1.1, the time series used in this thesis are quite

scarce, with only 92 historical observations for each customer, out of which only 68 are

used to fit the models. This is probably the main explanation as to why the common

forecasting methods yield a high forecasting error for this data. Through this thesis, we

have however found that the simple benchmarks often outperform the more advanced

methods in terms of forecast accuracy. In section 5.4.2, we also discussed how the very

simple average naïve method is preferred over the chosen models for the time series of

several customers. This indicates that simple forecasting methods may be more suitable

to model time series data of krill meal.

Even though the forecasting errors are generally quite high, the STL+ETS models and

the benchmarks seem to often produce forecasts that yield a lower forecasting error than

the other candidate models. The simple models are likely performing better due to their
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simplicity, considering the high variance in the data. The relative performance of the

STL+ETS method can be rooted in the fact that the ETS method, and thus the STL+ETS

method, generates reliable forecasts for a wide range of time series, as mentioned in section

3.1.2. Further, the STL+ETS method can handle any type of seasonality and is also

robust to outliers, as discussed in section 3.1.2.2. This can explain why the STL+ETS

models often outperform the ETS and ARIMA models in terms of forecast accuracy.

However, this is to some extent contradicting, since the ARIMA models are also supposed

to handle seasonal data, but produces quite poor forecasts for our data.

ARIMA generally performs worse than the other methods for all the customers investigated.

This could be explained by the fact that the time series investigated in this thesis in

some ways contradicts the prerequisites for building a good ARIMA model. The ARIMA

method, as the other methods, requires a sufficient amount of data, especially when

estimating many parameters. As mentioned in section 3.1.3.4, seasonal ARIMA models

can potentially have a large number of parameters, which amplifies the importance of

trying out a wide range of models when fitting to data and also of using an appropriate

criterion to choose the best model. Another information criterion, e.g BIC or AIC, could

have given different results and thus perhaps better models for the time series investigated

in this thesis. Further restrictions of the ARIMA components in order to yield smaller

models might also give better forecasts, since simpler ARIMA models may perform better

considering our short data, with reference to the discussion in section 3.1.3.3 and 3.2.2.

On the other hand, with richer data one could benefit from larger models.

As discussed in section 5.3, the different methods seem to perform relatively well for a

12-step-ahead forecast for some customers, and better for one-step-ahead forecasts for

others. It is therefore not obvious whether any of the methods work better in the short-

or long-term for our data. For the customer with the highest total sales volume, Company

1, the forecasts are better in the short-term. However, the 12-step-ahead forecasts give

the lowest MAE for both Company 3 and 4. The methods investigated in this thesis, for

the given time series, do therefore not give accurate forecasts at the desired horizon.
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6.2 Limitations

In our analysis, the forecast errors have only been calculated for a selection of the customers

(approximately 10 %). We therefore implicitly assume that the results computed for the

time series of that selection also apply to the remaining customers. In general, the MAE of

the researched customers is relatively high. This indicates that the examined models may

not give reasonable forecasts of future demand for krill meal. There are several reasons

why these models may not perform sufficiently well for this purpose.

6.2.1 Zero Values and Scarce Data

First of all, as emphasized at the end of section 4.1.1, the data contains a lot of zero values.

This may be problematic in the parameter estimation and the model selection processes.

Since the data contains a lot of sudden drops to zero, it may lead to forecasts that are

upward biased in the period directly after a non-zero demand. On the other hand, if zero

values are the main reason for the poor forecasts, the model chosen for Company 1 should

be able to produce more accurate forecasts, since this time series contains almost no zero

values. This indicates that the length of the time series could play a more significant role

in terms of poor forecasts, or that time series of sales volume of krill meal is not suitable

for demand forecasting. The data examined in this thesis are somewhat scarce and hence

observed over a relatively short time period. As a result, the data may be insufficient to

capture underlying patterns. This makes it more challenging to estimate good models

using common forecasting methods. As a result of this, the forecasts from the automatic

modeling procedure may not give an accurate picture of future demand at a disaggregated

customer level.

Short time series complicates both the development and verification of models that aim

to produce seasonal forecasts. For example, the choice of starting values becomes critical

(Hyndman & Kostenko, 2007). As some of the customers in our data may have seasonal

behavior, it is not unlikely that we have insufficient data to produce good forecasts. It

could therefore be reasonable to use other available information in addition to the data

itself. Moreover, when there is a lot of randomness in the data, the minimum statistical

requirements discussed in section 3.2.2 will be insufficient to estimate seasonal models.

As discussed in section 4.1.1 and 4.1.2, there are several customers with no clear pattern,
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and there is likely a lot of randomness in our data, which implies that many of our models

may be estimated on insufficient data. Since our data are quite scarce and also contain

random variation, we may be estimating models with too many parameters compared to

the amount of data available, as seen in the discussion in section 5.4.1. This can again

lead to overfitting, as discussed in 3.2.2, and hence models that fit well to the training

data, but do not generalize well to the test data. This could be one explanation as to why

our forecasts perform quite poorly on test data.

One measure to avoid overfitting is to apply cross-validation in the model selection

process. This could potentially have led to fewer parameters being estimated for the

chosen models. However, to maintain sufficient data for both training and testing, we

did not find it reasonable to do an additional partitioning of the data and chose to only

apply cross-validation when selecting between the candidate models from the different

forecasting methods. Another possible measure to avoid overfitting could be to use BIC

as information criterion instead of AICc. In section 3.3.1, we discussed that BIC imposes

a stronger penalty for each additional parameter added to the model, which would likely

have led to estimation of fewer parameters in the chosen models, and thus probably less

overfitting.

6.2.2 Measuring Demand Through Sales Volume

In section 1.1, we emphasized the utility of demand forecasting within the krill industry.

One important note on the modeling procedure of this thesis is that historical sales

volume is used to represent demand. This implies that there must always be inventory,

or krill available. If ABM sells all their harvest and have nothing stored, sales volume

will not necessarily represent true demand, as it will not capture if demand is higher

than what is actually sold. As a consequence, our forecasts may be underestimating true

demand. Further, our models may fail to capture underlying demand patterns like trend

or seasonality, if such patterns are not represented by the sales volume. However, even

though ABM sells all their harvest, they do store krill and distribute it between harvests,

which makes it more likely that sales volume captures the essence in the underlying

demand. On another note, the krill industry is restricted by harvesting limitations, which

makes it hard to use sales volume to represent demand, as there likely is a higher demand

than the sales volume suggests. This is especially prominent in ABM, since they offer a
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premium product in a large market and only have a small market share. Despite this,

it is still interesting to apply demand forecasting to this industry, for strategic planning

and resource allocation, e.g. allocation of a harvest between the relevant customers, as

mentioned in section 1.1. One interesting aspect for further research could be to include

qualitative forecasting with the quantitative forecasts from this thesis. In that way, one

could implement expert knowledge from e.g. highly experienced employees to provide

insights into future outcomes, and thus produce better forecasts.

6.2.3 Excluding Internal and External Factors

In this thesis, we have chosen to only use the variable itself as a predictor and excluded

external factors that may affect the demand for krill meal. One of the main reasons for

this is since statistical forecasting methods extrapolate time series features like seasonality

and trend, and use these to forecast future demand, as discussed in section 3.1. Further,

ABM operates all over the world and has customers with very different attributes. This

makes it difficult to identify the most relevant leading indicator variables for the demand

of a particular customer. However, Sagaert, Aghezzaf, Kourentzes & Desmet (2017)

successfully built a model that automatically identified the key leading indicators that

drive sales from a massive set of macro-economic indicators for the tire industry. It would

therefore be interesting to investigate the effects of building a similar model for the krill

industry. Since krill is a much used ingredient in fish farming, it would be both interesting

and relevant to include time series of e.g. demand and price of farmed salmon, or even

factors that affect the living conditions of krill like ocean temperature and other climatic

conditions. Despite this, we decided to restrict the work related to our thesis to investigate

the potential of univariate statistical methods on time series of historical sales volume.

6.3 Implications of Automatic Modeling

Another important aspect of the modeling procedure in this thesis is that the aim is to

build an automatic model that can be applied to all the different customers separately. As

a result, we let a lot of decisions be made based on certain criteria, to remove the human

judgment aspect of the procedure. This means that there is no room for discretionary

assessment. The data contains a variety of customers with different attributes and behavior.
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This makes it extremely difficult to construct a model that will be applicable to each of

the customers separately. For some customers, we find both seasonality and trend, while

others seem to buy completely arbitrary. Some have not purchased anything for several

years, while others have only recent purchases. When evaluating these differences over

the same time period and by the same evaluation criterion, it leads to generalizations of

the customers that may not be justified.

The many challenges of building an automatic forecasting model are not exclusively related

to customers with different behavior and scarce data. The very automatic aspect is causing

obstacles itself. When all choices must be based on different criteria, we must choose

which criterion that will capture the essence of the time series most accurately. One of

these choices is to check for stationarity in the data. As discussed in section 4.4.2.1 and

4.4.2.2 we choose to use the KPSS- and ADF test, as well as the CH- and the HEGY

test, when determining the number of differences to apply. The different tests may yield

different answers and are more or less suitable for different data. Our choice of such tests

can therefore affect the parameter estimation and can potentially result in exclusion of

what could have been a good model for a specific customer.

6.4 Potential Improvements

6.4.1 Clustering Customers

In section 4.1.1, it was briefly mentioned that the different customers have different

purchasing patterns, and buy in quite a different range of quantities. There are also

customers from all over the world, operating in different markets and under varying

circumstances and environments. Due to this, it would have been interesting to group

or cluster the different customers together. This could have solved some of the issues

related to building an automatic model, as it would have been possible to set different

criteria for the different clusters, to more accurately customize the modeling procedure

according to the group’s characteristics. However, as discussed in section 4.1.2, many of

the time series for the different customers seem random and there are few clear similarities

across them. This makes it hard to group similar customers. On the other hand, this

could potentially be explored through machine learning by doing clustering analysis. In
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addition, the customers could perhaps have been clustered based on external factors like

origin, market share, etc. However, this would require significant knowledge of both the

different customers and the markets they operate in. Considering the scope of this thesis,

we did not see collection of such information for almost 200 customers as reasonable. It

could however be an interesting area for further research on demand forecasting of krill

meal.

6.4.2 Inputting Richer Data

We have used time series for a seven-year period as input in our automatic model to

produce forecasts of demand for krill meal for 12 months ahead. As discussed in section

6.2.1, some of the reason for the poor results can likely be linked to the scarce data. We

also amplified in section 5.1 that when dealing with bad or little data, the source of a

high error rate could be bad data, and not necessarily bad forecasting. It would therefore

be especially interesting to investigate how our automatic model would perform on richer

data. By inputting data for a longer time period, one could be able to more accurately

determine whether the forecasting methods investigated in this thesis are not suitable

to forecast demand for krill meal, or if the data used in this thesis are too scarce to

represent the demand in the industry. On the other hand, the krill industry is a very

young industry, which results in short data in general. It is also likely that the krill

industry is characterized by random variations and changing demand. This could be

rooted in the harvesting restrictions discussed in section 2.1, as well as the possibilities to

store krill over time, which may affect the customers’ purchasing patterns. In that case,

inputting richer data to our automatic model would likely not give more valuable results

than those already provided in this thesis.

6.4.2.1 Aggregated sales volume

In section 1.1 we discussed how forecasts at a disaggregated level are desired both due to

different demand patterns for the customers, as well as for planning purposes. On the

other hand, sometimes aggregating different sources of uncertainty can result in better

forecasts. It could therefore be useful to investigate the results of implementing the

total aggregated sales volume of krill meal to the automatic model. The aggregated

sales volume does not contain any zeros, which eliminates the issues related to sparse
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data. As a result, the forecasting methods applied in this thesis might produce better

forecasts at an aggregated level. However, the time series for Company 1 contains few

zeros and has a similar time series pattern as the aggregated sales volume. Since the

chosen model for Company 1 does not produce accurate forecasts, this may indicate that

using aggregated sales volume will not give better forecasts. Considering the target of our

automatic modeling procedure; to produce forecasts at a disaggregated customer level, we

have not investigated the possibilities at an aggregated level.

6.4.3 Other Forecasting Methods

So far we have seen that the forecasting methods investigated in this thesis seem to

have trouble modeling sparse data with many zero values. This may indicate that these

methods are not suitable to forecast demand for krill meal. As discussed at the end of

section 4.1.1, forecasting intermittent demand entails several challenges, one of which

is that many zero values may render common forecasting methods difficult to apply. It

is therefore likely that forecasting methods that are specifically developed to deal with

intermittent demand, or that for other reasons are more robust to such data, will perform

better on our type of time series. An example of such a method is Croston’s method

(1972), developed to forecast products with intermittent demand, and overcome difficulties

related to forecasting intermittent demand using general forecasting methods. Further,

bootstrapping and temporal aggregation, as well as discrete- and integer-valued ARIMA

models, have also been proposed. On the other hand, as argued in section 2.2, the methods

investigated in this thesis have shown to perform well in fishery harvesting and other

industries in which we have seen similarities to the krill industry. Since these methods

are also popular forecasting methods for a variety of purposes, we found it reasonable

to initialize the research within demand forecasting of krill meal with these common

methods.
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7 Conclusion

Throughout this thesis we have investigated the effect of applying different forecasting

methods to time series of historical sales volume of krill meal. We have used exponential

smoothing (ETS), decomposition with ETS (STL+ETS) and ARIMA, and compared

these to simple benchmarks: naïve, seasonal naïve or AR(1). Our main findings are that

in general, none of these methods are able to produce accurate 12-step-ahead forecasts

for demand for krill meal. However, the STL+ETS models produce forecasts with the

lowest error more often than the other methods investigated. The benchmarks perform

well approximately equally often as the STL+ETS method, and since simpler models are

preferred, this could indicate that the benchmarks are the most appropriate for a majority

of the customers investigated. ARIMA models seem to perform poorly overall, which is

likely since the chosen models include too many parameters. There is no clear pattern as

to whether the methods work better for shorter or longer forecast horizons. Therefore, it

would be interesting to investigate shorter forecast horizons for the krill market in further

depth.

In conclusion, it therefore seems like time series data of historical sales volume can not

be used to produce reasonable forecasts of demand for krill meal for neither ABM nor

the krill industry. For ABM, this implies that the forecasts alone should not be used

for resource allocation and strategic planning. Careful interpretation by employees with

domain knowledge for a specific customer is therefore necessary, for the forecasts to be

somewhat useful. Further, the data used in the modeling procedure of this thesis may not

be representative for the krill industry, and we can therefore not conclude on an overall

industry level. We also found that there may be other forecasting methods that will

produce better forecasts with the same data as input, which would be an interesting area

for future research within demand forecasting of krill meal.

It is hard to determine whether the poor forecasting results are due to the scarce data,

a non-suitable automatic modeling procedure or if historical sales volume of krill meal

simply can not be used as input to make sensible forecasts. As discussed, none of the

classical forecasting methods, implemented in the automatic model, work well for demand

forecasting of krill meal. Through this thesis, we therefore highlight the opportunity to
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develop methods that can work for this industry. Moreover, we accentuate the fact that

there are many unexplored areas within demand forecasting of krill meal. We emphasize

that several adjustments could be done to our automatic model which could improve the

performance of the chosen forecasting methods. Among these, we consider judgmental

qualitative forecasts, investigating the possibilities of including several forecast variables,

clustering companies and experimenting with other forecasting methods as most relevant.

Considering the value krill has in handling the food production challenges, it is important

to do more research within demand forecasting of krill meal.
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Appendix

A1 Illustration of the Automatic Model

Figure A1.1: Illustration of the automatic model
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A2 Modeling Results

Company 9 and 10 have insufficient training data to estimate any models and is therefore

not displayed.

ARIMA ETS STL + ETS
Company 1 (1,0,1)(0,1,1) ANA STL + ANN
Company 2 (1,0,2)(0,1,1) AAN STL + ANN
Company 3 (2,0,2)(1,1,2) ANN STL + ANN
Company 4 (0,0,1)(2,1,0) ANN STL + ANN
Company 5 (2,0,1)(0,1,1) ANN STL + ANN
Company 6 (1,0,1)(0,1,1) ANN STL + ANN
Company 7 (2,0,2)(2,1,1) ANN STL + ANN
Company 8 (0,0,0)(1,1,0) ANN STL + ANN
Company 11 (2,0,1)(1,1,0) ANN STL + AAdN
Company 12 (2,0,0)(1,1,2) ANN STL + ANN
Company 13 (0,0,0)(2,1,0) ANN STL + AAdN
Company 14 (2,0,2)(2,1,2) ANN STL + ANN
Company 15 (0,0,0)(2,1,0) ANN STL + ANN
Company 16 (2,0,2)(2,1,0) ANN STL + ANN
Company 17 (1,0,2)(2,1,0) AAdN STL + AAN
Company 18 (1,0,0)(0,1,1) ANN STL + ANN
Company 19 (2,0,2)(1,1,0) ANN STL + ANN
Company 20 (2,0,2)(1,1,0) ANN STL + ANN

Table A2.1: Chosen models for all methods (Company 1-20)


