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Abstract:

An important and poorly understood question when communities consider

wind power investments is whether the local population will benefit financially.

I examine the effect of wind power investment on wages in rural counties in the

US. I combine quarterly panel data on wages with data on all wind power plant

investments larger than 1 megawatt (MW). Using a Bayesian multilevel model

estimated by MCMC, I estimate a significant positive effect, with a magnitude

consistent with a 2% permanent increase in wages following an investment

in a large wind farm of 400 MW. However, this effect has large geographic

and socioeconomic variation. Counties with low employment tend to see little

impact on wages from wind power, potentially because slack in the labor market

prevents wages from rising. From a policy perspective, these results are most

relevant for local regulators and planners, who seek to balance the benefits and

costs of wind farms to the community. This research indicates that wind farms

can provide, on average, a modest boost to local wages, with some areas seeing

an out-sized effect.
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1 Introduction

Wind turbines and wind farms have in the last decade become a significant source of

economic investment in rural and small-metro counties. The cost of wind power fell by 75

percent between 1984 and 2015 and is cost competitive in many locations in the US without

subsidies (Trancik, 2015). Wind power has moved from being a niche and highly subsidized

generation found mostly in rich states, to a competitive form of power generation that now

makes up a significant portion of generation in states with substantial rural areas such as

Iowa, South Dakota, Texas, and Wyoming. Decreasing costs and wider penetration has

also meant that the wind power industry is playing a growing role in the US labor market

as a whole. The US Department of Energy (DOE) estimates that as of 2015, the wind

power industry supported approximately 100,000 jobs. The DOE further extrapolates that

if wind power penetration continues to grow, the industry could support up to 600,000 jobs

by 2050.1

The effects of wind power, and more generally renewable energy on economic growth and

labor markets has been an active topic of research, especially in northern Europe where

generous subsidies led to early and sustained investment in renewable energy (Lehr et al.,

2008, 2012). Studies of the US have been more sparse (Haerer and Pratson, 2015; Brown

et al., 2012; Wei et al., 2010). A common element of these studies is that they tend to be

aggregated to the regional or national level, without considering the geographic and spatial

distribution of economic effects. The results are often based on large scale, computational

input-output models calibrated to aggregated data on investments and penetration, but

highly dependent on modeling assumptions. To my knowledge, nation-wide empirical

studies of the local economic effects of wind power investments are largely absent from

the literature.

Comparisons can be made to the local economic effects of another recent energy boom.

The shale oil and gas boom, driven by technological advances in “fracking” (Gold, 2014)

also primarily affected rural areas in the major petroleum-containing formations in the

US.2 Komarek (2016); Weber (2012) and Brown (2014) all find substantial increases in

employment and wages in counties that experienced a boom in oil and gas extraction.

Importantly though, these economic and labor market effects often retreat or disappear as
1https://www.energy.gov/downloads/2017-us-energy-and-employment-report.
2The Bakken formation in North Dakota and Montana, The Marcellus in the north-east, and the Barnett
in Texas

2

https://www.energy.gov/downloads/2017-us-energy-and-employment-report.


oil and gas wells run dry.

Wind turbines, on the other hand, tend to have a mechanical life of over 20 years. More

so, older wind power sites tend to get re-powered–that is the turbines get replaced by

newer, more efficient turbines–as the wind resources and transmission infrastructure make

such sites ideal for continued investment (Mauritzen, 2014). Thus, even though we might

hypothesize that the local economic effects of wind power are less than that of exploiting oil

and gas deposits, there is good reason to believe that the effects may be more permanent

in nature.

A related literature analyses the effect of natural resources on the geography of industri-

alization. Michielsen (2013) finds that the existence of coal and gas deposits tends to have

a significant effect on the geographical location of energy-intensive industry. This suggests

a potentially long-term mechanism for the economic effects of wind power on economic

development. If the geographic concentration of wind power in a certain area leads to

locally cheaper electricity prices, this could attract energy intensive industry. However,

in this article I focus on a time scale of years, rather than decades, and such a long-term

mechanism is unlikely to be at play in the results I present.

Instead, the hypothesis that I wish to test in this article is whether investments in wind

power farms, which happen primarily in rural communities, have a direct, permanent and

measurable impact on the economic well-being of the local residents of that community, as

measured by average wages.

In order to test this hypothesis, I use data from the Energy Information Agency form

860 on all wind power installations over 1 MW in the United States and match it with

quarterly wage and employment data from the Bureau of Labor Statistics Quarterly Census

to estimate the effect of wind power investments on wages.

In trying to estimate the effect of wind power on local wages, I need to take into account

a high degree of heterogeneity among counties. I wish to estimate separate wage trend

curves for each county, and allow for varying ("random") effects for wind power invest-

ment. This allows for both disaggregation of results, as well as making the model robust

to outliers and improving predictive performance of the model–a property called regular-

ization or "partial pooling" (Gelman et al., 2013). Such a multilevel (alternatively called

a hierarchical or mixed-effects model) can be estimated by maximum likelihood (Bates

et al., 2015). However, this can become computationally cumbersome with multiple hier-

3



archies, which I make use of in this article. In addition, under maximum likelihood the

data are often assumed to be normally distributed for computational reasons, which may

not always be a realistic assumption. Instead, I estimate the model using Bayesian Markov

Chain Monte-Carlo (MCMC). A full technical description of Bayesian methods, multilevel

models and MCMC is well beyond the scope of this article. Instead I refer to McElreath

(2015) and Kruschke (2014), which provide good introductions to Bayesian methods and

multilevel models, while a more technical treatment can be found in Gelman et al. (2013).

The results indicate that wind power investments have a modest but significant effect

on wages. A large 400-megawatt (MW) wind farm–approximately the capacity of 100-150

modern turbines–leads to a median permanent increase in wages of 2.0% in rural counties.

However, this median figure masks large variation across geographies, with a few states

with large penetrations of wind power showing significantly higher local effects on wages.

In addition, I show that the effect of wind power investments on wages varies based on the

socioeconomic status of counties. Wages in counties that are designated as having low levels

of employment appear to benefit little from wind power investments. This is consistent

with economic theory, which would suggest that the increased economic activity from

investments would push up wages in areas where there is little slack in the labor market.

I also estimate state-by-state coefficients, and these also show out-sized effects in states

where wind power investments happen in counties with particularly low unemployment.

These results are not ex-ante obvious. Investments in wind power will of course have an

impact on economic growth and lead to job creation in the manufacturing, installation and

maintenance of the turbines. They will also generate revenues for land-owners who either

lease land for wind turbines or own the turbines directly, sometimes through a cooperative

structure. However, it is not immediately clear how and to what extent these economic

effects influence the local labor market and wages.

Unlike investments in typically labor-intensive industry, like a manufacturing plant, fully

built out wind power plants employ few people. For many locations, it may make sense

to employ skilled labor from outside the county hosting a wind power plant for both the

initial build-out as well as subsequent maintenance and repair. Because wind turbine

maintenance and repair is a skilled occupation, even if an in-county job is created, it is

not clear to what extent this would lead to a net-increase in employment as opposed to a

skilled worker moving from one position to another. In this article, I therefore start out
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with the assumption that the effect of a wind power plant on net employment is negligible.

This is supported by a preliminary analysis, as well as results from the main analysis.

Without a significant employment effect, wind power investments’ impact on wages are

likely indirect; through the flow of income accumulating to land-owners, local ownership

stakes in the plant or through extra tax revenue to the local governments. But the role that

this flow of income will have on local wages is ex-ante unclear. Ownership of agricultural

land is to a growing extent concentrated and held by corporations or individuals who are

not located in the same county or even state (Nickerson et al., 2012). The income from

wind turbines may, in many cases, end up flowing completely out of the county.

Importantly, wind power investments are not necessarily perceived as net positive by

local communities. Wind farms can impose significant non-financial costs such as altered

views, noise, and disruption of local wildlife. These costs can lead to conflicts around

planned investments, which have been analyzed extensively in the planning and environ-

mental policy literature (Fast, 2015; Fast et al., 2016; Walker et al., 2014). In particular,

Christidis et al. (2017) and Wolsink (2007) emphasize the role of inequality and fairness in

the distribution of benefits as sources of conflict. Conflict and opposition tend to happen in

communities where the benefits of wind power are seen to be concentrated or flow mainly

to outsiders. In this context, establishing the local wage effects of investments becomes an

important part of the planning process. If wind power investments are known to have a

broad-based effect on local wages in a county, this could be an important factor in gaining

local acceptance.

This article informs renewable energy policy and planning by suggesting a distributive

effect of wind power investments. Wind power investments appear to modestly press up

wages in rural counties. This should inform local planning decisions on whether and to

what degree to allow wind power investments in a local community. This article should

also encourage discussion and future research on how more of the benefits of wind power

can flow to the local communities that host the investments. For example, ownership

structures such as co-operatives, which are widely used in Denmark as well as in some US

states, could lead to both a more direct flow of benefits to host communities as well as a

way of gaining local acceptance for wind power.
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2 Identifying the effects of wind power investments

Establishing a causal treatment effect of industrial investments on labor markets has typi-

cally been difficult. Industrial investments are generally endogenous to local labor markets–

that is, firms take into account the local labor market when making an investment decision.

Industrial investments are also heterogeneous in nature–they differ substantially by size,

character and labor-intensity. Comparing different investments in different locations is

challenging. Finally, industrial investments are often made in large labor markets where

the total effects are difficult to estimate in aggregated data.

For the purposes of measuring the effect of industrial investments on labor markets,

wind power has three attractive properties. First, wind power is largely standardized,

and scale is straight-forward to measure. A wind farm is measured in terms of capacity

(Megawatts (MW)). Second, out of spatial necessity, investments in wind turbines tend to

happen away from large population centers. Modern land-based wind turbines are often

over 80 meters tall with blade-lengths of over 100 meters.3 The majority of wind power

in the United States is built in rural counties, making it plausible to measure aggregated

effects on labor markets. Finally, wind power investments are largely exogenous to labor

market conditions. The reason is that the most important factor in the profitability of a

wind farm is the average wind speed of a location, something that tends to be unrelated

to the labor market.

Despite the importance of wind speed in wind power investment decisions, labor market

outcomes and investment in wind power could plausibly be partly endogenously deter-

mined. On the margin, counties more likely to attract wind power projects could, for ex-

ample, have the necessary transmission infrastructure in place, or have local governments

that are more investment friendly, with stream-lined processes for permits and approvals.

These unobserved variables could also be correlated with labor market outcomes, biasing

the estimates.

In order to control for such potential sources of bias, I use a panel of data with 30 quar-

terly observations on labor market outcomes for rural counties in the United States. Making

use of the flexibility of the Bayesian multilevel model, intercepts and trends for wages are

allowed to vary by county, taking into account local variation. I then compare outcomes

before and after a wind power investment. In addition, I control for several county-level
3The wingspan of a 747 jumbo-jet is approximately 60 meters
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County Rural-Urban Continuum Codes (RUCC)

1 Counties in metro areas of 1 million population or more
2 Counties in metro areas of 250,000 to 1 million population
3 Counties in metro areas of fewer than 250,000 population
4 Urban population of 20,000 or more, adjacent to a metro area
5 Urban population of 20,000 or more, not adjacent to a metro area
6 Urban population of 2,500 to 19,999, adjacent to a metro area
7 Urban population of 2,500 to 19,999, not adjacent to a metro area
8 Completely rural or less than 2,500 urban population, adjacent to a metro area
9 Completely rural or less than 2,500 urban population, not adjacent to a metro area

Aggregated categories

1 Metro counties (1,2,3)
2 Non-metro with urban population, adjacent to a metro area (4,6)
3 Completely rural, or small urban population not adjacent to metro area. (5, 7, 8, 9)

Table 1: Rural Urban Continuum Codes obtained from the Department of Agriculture
Economic Research Service (ERS) are aggregated into three broader categories.

variables such as agricultural land values and total electric generating capacity, that may

have a confounding effect. From this multilevel model I can estimate an average treatment

effect of wind power investment across counties while allowing for varying intercepts and

trends by county.

3 Data

I combine data from three sources. Data on investments in wind energy plants are from the

US Energy Information Agency (EIA) form 860.4 This data provides yearly information

on every power plant and planned power plant with capacity of over 1 MW in the United

States. Data are at the generator level. Variables include the date of first operation, size

of generator, county of generator, ownership, and grid connection.

Data on quarterly county-level labor market outcomes are from the Bureau of Labor

Statistics (BLS) Quarterly Census of Employment and Wages.5 Variables include average

weekly wages and employment for each of the 3223 US counties.

I classify the counties based on the US Department of Agriculture’s Economic Research

Service (ERS) Rural-Urban Continuum Codes (RUCC)6 from 2013. County designations

are updated every 10 years based on decennial Census data. RUCC codes go from 1-9, as

4https://www.eia.gov/electricity/data/eia860/
5https://www.bls.gov/cew/
6https://www.ers.usda.gov/data-products/rural-urban-continuum-codes/
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defined in table 1. In order to simplify the analysis, I aggregate the designations into three

broader categories, which are also shown in the lower pane of the table. The aggregated

categories are meant to separate out metro areas and counties adjacent to metro areas

from those that consist of rural areas and small towns not directly connected to a big city

economy. From now on I will simply refer to these three categories as “Metro”, “Adjacent

metro” and “Rural”.

Many recent analyses of the US labor market have used Commuting Zones, as developed

by Tolbert and Sizer (1996), as the geographic unit. Commuting Zones approximate the

labor markets associated with metro areas which often stretch across metropolitan and

suburban counties. I do not, however, make use of Commuting Zones as I am explicitly

concerned with rural and small-town counties not adjacent to metro areas.

Additional data on county population and agricultural land values was obtained from

the ERS.7 These variables can clearly change over time; however, they are only available

at 10-year intervals, with the most recent year being 2013. In the analysis, these variables

then appear as time-invariant county-level variables.

The upper pane of figure 1 shows the distribution of counties by rural-urban indicator.

The lower pane of the figure shows the distribution of operating wind power plants. Rural

counties have clearly seen a large share of wind power investments. Figure 3 shows that

rural counties have been the location of nearly half the total wind power capacity and that

capacity additions in rural areas more than doubled in the period studied.

Comparing the distribution of wind power in figure 1 to a map of average wind resources

produced by the US National Renewable Energy Laboratory (NREL) in figure 2 gives a

visual impression of the high correlation between wind resources and the geographic invest-

ment decision. As mentioned, the most important factor in determining the profitability of

a wind turbine is the average wind speed of the turbine location. The physical relationship

between power generation and average wind speed is approximately cubic8. Average wind

speed is then a dominating factor in the geographic investment decision and, arguably,

exogenous to economic and labor market variables.

The upper pane of figure 4 shows that employment in non-metro areas has been largely

stagnant since 2009 compared to metro areas. As the lower panel shows, however, wage
7https://www.ers.usda.gov/topics/farm-economy/land-use-land-value-tenure/farmland-value/
8A simplified equation for wind power output can be written P = kCp

1
2
ρAV 3, where P = Power output

(kW), Cp = Maximum power coefficient, ρ = Air density (kg/m3), A = Rotor swept area (m2) V =
wind speed (m/s), k = a constant. (MacKay, 2016)
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Figure 1: The upper pane of the figure shows the distribution of counties by the rural-urban
indicator. The lower pane shows the distribution of wind power plants across the
US. Wind power plants tend to be concentrated in rural counties.
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Figure 2: The National Renewable Energy Laboratory’s wind resources map. Wind power
investments, as shown in figure 1, are concentrated in the wind-rich spine of
the US running from Texas up through North Dakota. Wind power investment
decisions can to a certain extent be seen as exogenous

growth has been similar in both rural and metro areas, though rural wages fell more during

the preceding recession.

A summary of the variables used in the models is presented table 2. Variables for county

average weekly wage, employment and cumulative installed wind power varies both by

county and quarterly observation with a total of approximately 32,000 observations. The

four county-level variables are fixed over time with a total of 1,049 observations consisting

of the rural counties in our sample.

Notably, the mean cumulative installed wind power is shown to have a mean of approx-

imately 15 MW, while the standard deviation is approximately 91 MW. This reflects the

fact that most counties have no wind power capacity throughout the period studied, while

a few have large build-outs of capacity, sometimes of several hundred mega-watts, leading

to a large standard deviation.

4 A hierarchical model of wages and wind power investment

In the model the response variable is wages in county c at time t, wagec,t. This variable

is transformed by subtracting the overall mean of the series and dividing the standard
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Figure 3: Almost half of all wind turbine
capacity is located in rural areas.
Wind power capacity more than
doubled in the period studied.

Figure 4: Employment growth in non-
metro counties has lagged
significantly behind employment
in metro counties. Average wage
growth, has, however been similar
between metro and non-metro
counties, through from a lower
absolute level.

Variable Symbol N Mean St. Dev.

Observation level
Average Weekly Wage wages 32,807 644.51 147.27
Quarterly Employment employment 32,807 12,145.17 12,303.72
Cumulative installed wind power capacity 32,807 15.21 91.11

County level
Low Employment County (1/0) low_employment 1,049 0.36 0.48
County Population (2010 Census) population 1,049 12,205.95 10,124.27
Average Agricultural Land Value agg_land_value 1,049 2,432.94 1,818.58
Total Electric Generating Capacity gen_cap 1,049 129.98 382.89

Table 2: Summary of variables used in the analysis
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deviation. All other continuous variables are transformed in a similar manner. This

transformation allows for the interpretation of results free from units. Dividing by the

standard deviation also maintains coherence when comparing coefficients to binary vari-

ables (Gelman and Hill, 2006). These transformations have the added benefit of aiding

the convergence of the MCMC algorithm (Gelman et al., 2013). Binary variables are not

transformed.

ˆwagec,t =
wagec,t −mean(wagec,t)

std(wagec,t)
(1)

The likelihood of each response is modelled as a normal random variable with mean ŷc,t

and standard deviation σy as shown in equation 2.

ˆwagec,t ∼ N(ŷc,t, σ
y) (2)

Equation 3 describes the model at the observation level. The fitted values for wages are

modeled as an intercept term, αc, and a trend or slope term β0c . The covariates include

an indicator for the period, periodc,t in quarterly intervals. The estimated parameter β0c

then represents a linear time trend on the wages. As the c indexing indicates, these terms

are allowed to vary by county. This leads to the estimation of over 1000 intercept and

slope parameters–one for each rural county. However, each of the αc and β0c parameters

are modeled as coming from a higher-level (or "meta") distribution as shown in equations

4.

The hierarchical form of the model then allows each of the county-level coefficients and

intercepts to be decomposed into a pooled average effect, as well as an idiosyncratic county-

level random-effect. In a traditional model, a single average intercept and trend term might

be estimated across all counties - a so called fully pooled estimation. With a multilevel

model, we can allow intercept and trend terms to vary at the county level, while still

being "partially" pooled by way of modeling each county-level parameter as coming from

a higher-level distribution (Gelman and Hill, 2006).

This structure allows for inference on average effects, while controlling for geographic

variation and naturally taking into account issues of multiple comparisons through pa-

rameter shrinkage. In practical terms, this leads to a compromise between the aims of

modeling and controlling for the variation in each county that could otherwise bias the co-
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efficient on the wind power term, and avoiding over-fitting the data, which tends to lead to

poor out-of-sample inference and prediction. For more in-depth discussions of hierarchical

models9 and partial pooling I refer to Gelman and Hill (2006) and McElreath (2015).

A vector of quarterly dummy variables, quartert are included to control for seasonality,

as rural counties tend to have a high proportion of seasonal workers, which in turn leads

to seasonality in the wage data.

The variable capacityc,t indicates the total wind power capacity in a county c in period

t. The parameter β1 is then the coefficient of interest, representing the permanent average

employment effects of a wind power investment. Figure 5 shows a simplified illustrative

diagram of the model for wages over time with a wind power investment at time t.

Plausibly, the build-out stage of a wind farm could drive up wages temporarily, with

wage-levels thereafter falling back to trend. I therefore tested specifications that included

a term for the size of the installation in the quarters of the build-out. This term was

consistently estimated to be centered around zero, and I therefore dropped it from the

final specification presented here.

Finally, Xc represents a matrix of county-level covariates that do not vary with time.

ŷc,t = αc + β0cperiodc,t + β1capacityc,t + qtr+ ζXc (3)

αc ∼ N(µα, σα) (4)

β0c ∼ N(µβ
0
, σβ

0
)

5 Model fitting with Bayesian MCMC

I use Bayesian Markov Chain Monte-Carlo (MCMC) simulation to fit the model using the

Stan probabilistic programming language (Stan Development Team, 2014), which utilizes

Hamiltonian MCMC (see MacKay (2003, ch. 30)) and a No-U-Turn Sampler (Homan and

Gelman, 2014) for efficient sampling in high-dimensional probability space.

9Hierarchical models are also referred to as random effects models, multilevel models, and in the case of
linear models: linear mixed models.
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Figure 5: The diagram illustrates the observation level equations for each county.

Weakly informative Cauchy priors10 are assigned to the parameters of the higher-level

distributions as shown in equations 5. The mean terms, µ, for the distribution of the αc

and β0c parameters are assigned Cauchy priors with a location parameter of 0 and a scale

parameter of 2.5. The corresponding variance terms, σ, are assigned half-Cauchy priors11

with location parameter 0, and scale parameter of 5. Weakly informative priors have the

effect of focusing the initial draws of the MCMC algorithm to reasonable values of the

parameters, with the fatter tails of the Cauchy distribution, as opposed to a normal dis-

tribution, allowing for a non-negligible probability of outliers. The priors do not, however,

impose any strong assumption of prior information on the model results. Use of the Cauchy

prior distribution also allows for inference in the case of complete separation by covariates

(Gelman, 2006).

µα ∼ Cauchy(0, 2.5) (5)

µβ
0 ∼ Cauchy(0, 2.5)

σα ∼ half-Cauchy(0, 5)

σβ
0 ∼ half-Cauchy(0, 5)

10The Cauchy distribution is a t-distribution with 1 degree of freedom.
11Cauchy priors with support over the positive range
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The Hamiltonian MCMC routine was run with four chains and 3000 iterations. Gelman-

Rubin convergence statistics (R̂) of close to 1 indicated convergence of the simulation to

the target probability (Gelman et al., 2013).

6 The effect of wind power investment on wages

In this section I present results from four specifications of the hierarchical model of wind

power investments on wages. In table 3 I present an overview of the symbols used in the

specifications.

Symbol Description Specification

ŷc,t Mean of the response variable, wages in quarter (t) and county (c) 1-4
σy Standard deviation of response variable, wages 1-4
ac Intercept term, varies by county (c) 1-4
β0c Slope parameter on wage trend, varies by county 1-4
qtr Vector of quarterly dummy variables 1-4
β1 Parameter on wind power capacity 1
β1lemp Parameter on wind power capacity, varies by low employment status 2-3
β1state Parameter on wind power capacity, varies by state 4
β2 Parameter on county employment 3-4
ζ0 Parameter on county population 1-4
ζ1 Parameter on county agricultural land value 2-4
ζ2 Parameter on county total power generation capacity 2-4
µα Location parameter on distribution of αc parameters 1-4
µβ

0 Location parameter on distribution of β0c parameters 1-4
µβ

1 Location parameter on distribution of β1state 4
σα Scale parameter on distribution of αc parameters 1-4
σβ

0 Scale parameter on distribution of β0c parameters 1-4
σβ

1 Scale parameter on distribution of β1state 4

Table 3: Definitions and descriptions of model symbols.

The first and simplest specification can be written as in equation 6. αc and β0c are the

intercept and slope terms for the wage trend for each county and are given higher-level

distributions as discussed above. The distribution of β1 represents the effect of wind power

capacity additions, capacityi over all counties. In this specification I include county popu-

lation, populationc, where ζ0 is the coefficient, as the only county-level controlling variable.

Population is an important controlling variable since it may confound the estimated coef-

ficient on capacity. Higher populations may be a sign of a stronger overall economy with

higher wages at the same time as a county with a higher population may also attract more

wind power investments both because of larger demand for power and because of the larger
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labor market pool.

ŷc,t = αc + qtr+ β0c ∗ periodc,t + β1capacityc,t + ζ0populationc (6)

The summary of results for the specification are shown in table 4. Including summaries

for all of the county level αc and β0c parameters is impractical, so instead I show the esti-

mated mean and standard deviation values of the higher-level distributions: µα, σα, µβ0 ,

σβ
0 . The parameter distribution of interest however is β1. The distribution is estimated

with a mean of 0.020, with 95% of the probability mass lying between 0.012 and 0.029.

The probability density of the parameter is shown in figure 6.

Interpreted at the median value of the distribution, a one standard deviation increase in

wind power capacity in a county will tend to increase wages by 0.02 standard deviations.

This is an economically modest estimate. Interpreting this for a county with mean wages,

even the building of a relatively large wind farm with a capacity of 400 MW (about 100-150

modern wind turbines) would be expected to raise average weekly wages by roughly 2%.

Yet, as we will see, this overall estimate masks significant underlying variation.

mean se_mean sd 2.5% 97.5%
µα -0.088 0.003 0.026 -0.143 -0.040
µβ

0 0.248 0.000 0.005 0.238 0.257
σα 0.869 0.002 0.020 0.829 0.910
σβ

0 0.150 0.000 0.004 0.143 0.158
β1 0.020 0.000 0.004 0.012 0.029
qtr[1] 0.294 0.000 0.005 0.284 0.304
qtr[2] -0.002 0.000 0.005 -0.012 0.008
qtr[3] 0.014 0.000 0.005 0.004 0.025
ζ0 0.099 0.003 0.026 0.049 0.150
σy 0.336 0.000 0.001 0.334 0.339

Table 4: Summary of results for specification 1.

ˆyc,t = αc + qtr+ β0c ∗ periodc,t + β1lempcapacityc,t

+ ζ0c populationc + ζ1aggLandV aluec + ζ2genCapc

(7)

For the second specification, as shown in equation 7, I make a few small but important

changes. First, I add two additional county-level control variables. In addition to the

county population, I add the variable for agricultural land value, aggLandV aluec with
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coefficient ζ1, which may affect both the decision to invest in a wind farm and the wages

in a county and could therefore potentially confound the results. In addition, I include

an indicator for the total amount of power generation capacity in the county, excluding

wind power, genCapc with coefficient ζ2. The reason for including this variable is that

wind power siting decisions are likely related to the availability of transmission and other

electric power infrastructure. This could plausibly also be correlated to wages in a county

and could confound the results on the wind power capacity variable. Large amounts of

electric power infrastructure could both be a sign that a county is economically prosperous

as well as attractive to wind power investors.

Finally, in this specification I allow the coefficient on wind power capacity additions to

vary by an indicator for whether a county is high- or low-employment, as classified by the

US Department of Agriculture. Thus, the coefficient on wind power capacity additions is

now written β1lemp. The idea that is being tested here is that the effect of extra wind power

investment on wages in a county may be dependent on the existing economic conditions in

that county.

The summary of the results for the specification can be found in table 5. Figure 7

shows the density of the coefficients on the wind power capacity variable over low- and

high-employment counties. For high-employment counties, the coefficient is again centered

around 0.02, with 95 % of the probability between 0.012 and 0.028 standard deviations.

However, for low-employment counties, the distribution is estimated to be relatively flat

and centered around zero. In other words, little correlation can be found between wind

power investments and wages in counties designated as low employment.

These results are consistent with what economic theory might suggest. Increased eco-

nomic activity due to a wind farm investment will only tend to press up wages in counties

with little slack in their labor markets. While this article focuses on wages, it is important

to note that it is plausible that counties with high unemployment may still benefit eco-

nomically through job-creation, without this necessarily being reflected in average wages.

A notable omission of the former two specifications is a variable for employment. As

noted, the estimated wage effect of wind power could potentially be through increased

employment pressing up wages. In that case, including employment in the regression

should reduce the magnitude of the coefficient. In the third specification, as shown in

equation 8, we include quarterly data on employment, employmentc,t, for each county
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mean se_mean sd 2.5% 97.5%
µα -0.089 0.004 0.028 -0.139 -0.034

µbeta
0 0.248 0.000 0.005 0.238 0.258

σα 0.832 0.001 0.017 0.798 0.867
σβ

0 0.150 0.000 0.004 0.143 0.158
β1lemp=False 0.020 0.000 0.004 0.012 0.028
β1lemp=True -0.007 0.001 0.024 -0.054 0.040

qtr[1] 0.294 0.000 0.005 0.284 0.304
qtr[2] -0.002 0.000 0.005 -0.012 0.008
qtr[3] 0.014 0.000 0.005 0.004 0.025

ζ0 0.086 0.004 0.027 0.028 0.136
ζ1 -0.023 0.003 0.026 -0.076 0.027
ζ2 0.241 0.002 0.028 0.189 0.296
σy 0.336 0.000 0.001 0.334 0.339

Table 5: Summary of results for specification 2.

Figure 6: Distribution of β1 under specifi-
cation 1

Figure 7: Distribution of β1 distributions
varying by counties classified as
low employment and high em-
ployment from specification 2.

as a controlling variable, with a coefficient β2. Otherwise, specification 3 is identical to

specification 2.

ˆyc,t = αc + qtr+ β0c ∗ periodc,t + β1lempcapacityc,t + β2employmentc,t (8)

+ ζ0c populationc + ζ1aggLandV aluec + ζ2genCapc

A summary of the results from specification 3 can be found in table 6. The coefficient

on the employment variable, β2 is positive and economically significant. The mean of

the estimated distribution is 0.7, with 95 % of the probability falling between 0.65 and

0.74. Interpreted at the mean of the distribution, a one standard deviation change in

employment will tend to increase wage by 0.7 standard deviations. As we might expect,
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there is a strong general relationship between employment and wages. Yet, it appears that

wind power investment’s effect on wages is through another mechanism. The inclusion of

wages as a controlling variable hardly changes the distribution of the β1 parameters. In

other words, the effect of wind power investments on wages appears to be independent of

employment.

mean se_mean sd 2.5% 97.5%
µα -0.087 0.003 0.023 -0.142 -0.047
µβ

0 0.241 0.000 0.005 0.231 0.250
σα 0.780 0.001 0.017 0.750 0.815
σβ

0 0.141 0.000 0.004 0.134 0.148
β1lemp=False 0.021 0.000 0.004 0.013 0.029
β1lemp=True -0.015 0.001 0.024 -0.061 0.032

β2 0.702 0.001 0.019 0.665 0.740
qtr[1] 0.298 0.000 0.005 0.288 0.308
qtr[2] 0.019 0.000 0.005 0.009 0.029
qtr[3] 0.013 0.000 0.005 0.003 0.023

ζ0 -0.544 0.003 0.032 -0.603 -0.482
ζ1 -0.038 0.003 0.025 -0.086 0.010
ζ2 0.217 0.002 0.025 0.171 0.266
σy 0.331 0.000 0.001 0.328 0.333

Table 6: Summary of results for specification 3.

The fourth and final specification allows for a higher degree of variation in the β1 param-

eter by allowing the coefficient to vary by state. This specification accounts for variation

in the effects of a wind power investment by state, due to factors such as differences in

typical ownership structure, typical size of investments as well as the economic conditions

of the state.

Specification 4 can be written as in equation 9, where the only change from specification

3 is that the β1 parameter is now indexed with state representing the 42 states that contain

rural counties that experienced at least one wind power investment in the period studied.

The 42 estimated β1 distributions are assigned a higher-level distribution with a normal

prior with mean µβ1 and standard deviation σβ1 , as shown in equation 10. As with the α

and β0 distributions, assigning a higher-level distribution allows for partial pooling of the

information in the data across states in order to avoid undue influence from outlier groups–

especially from states with few wind power investments–and to generally avoid over-fitting

the data.

A summary of results are shown in table 7, while a visual summary of the state-varying β1
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Figure 8: The map shows county-level
unemployment for 2012 in Texas.
Rural counties in the north and
north west panhandle, where
much of the wind power lies,
have particularly low unem-
ployment rates. Source: US
Bureau of Labor Statistics Local
Area Unemployment Statis-
tics, https://data.bls.gov/
lausmap/showMap.jsp

Figure 9: The map shows county-level
unemployment for 2012 in
Wyoming. Rural counties in
the east and south east, where
much of the wind power lies,
have particularly low unem-
ployment rates. Source: US
Bureau of Labor Statistics Local
Area Unemployment Statis-
tics, https://data.bls.gov/
lausmap/showMap.jsp

distributions is shown in figure 10 with accompanying table 8. The state-level coefficients

are estimated with relatively high uncertainty, but most are in the range of the overall

estimate from the previous specifications. However, there is sizeable variation. Notably,

Texas and Wyoming–both states with large amounts of wind power–have coefficients that

are centered close to 0.10. Interpreted at the median, this would imply that a medium- to

large-sized wind farm of 200 MW on average permanently increases wages by 5% in these

states. Ex-ante, it is not clear why the economic effects should be substantially higher

in these states. However, figures 8 and 9 show that county unemployment in the Texas

panhandle (north-west) and eastern Wyoming–both areas with heavy wind power invest-

ments (see figure 1)–had particularly low unemployment rates in the period studied. Thus,

the results for these states are consistent with the results from the previous specifications:

That wind power investments press up wages in counties where there is little slack in the

labor market. The results underline that the wage effects of a wind power plant will likely

vary substantially based on the socioeconomic conditions of the county as well as the size

and ownership structure of the investment.

It is worth noting that the state-level results motivate the use of the Bayesian multilevel

model in the first place. Since the priors on the meta-parameters in the aggregated model

have heavy tails, they allow for outlying observations without unduly affecting estimates
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of the central tendency (mean or median). In this way, the results from the two states are

not driving the results seen from the aggregated model.

Iowa is also a notable state, with a mean coefficient of .022 that is estimated with

relatively high precision. This is likely explained by the fact that Iowa is a heavily rural and

agricultural-based state that also has the highest wind power penetration in the country.

Every rural county in Iowa has experienced significant wind power investments over the

course of the period studied, and thus Iowa provides a high number of relevant observations.

In this way, Iowa serves as a relatively pure test case for the effects of wind power on rural

counties. Iowa’s state-level coefficient of .022 lends supports to the overall estimate on the

β1 coefficient of .02 from the previous specifications.

ŷi = αc + qtr+ β0c ∗ periodi + β1statecapacityi + β2employmenti (9)

+ ζ0c populationc + ζ1aggLandV aluec + ζ2genCapc

β1state ∼ N(µβ
1
, σβ

1
) (10)

mean se_mean sd 2.5% 97.5%
µα -0.086 0.004 0.022 -0.127 -0.044
µβ

0 0.241 0.000 0.005 0.232 0.250
σα 0.782 0.002 0.018 0.746 0.816
σβ

0 0.140 0.000 0.004 0.134 0.148
µβ

1 0.010 0.001 0.018 -0.027 0.044
σβ

1 0.060 0.001 0.014 0.037 0.094
β2 0.701 0.001 0.019 0.665 0.737

qtr[1] 0.298 0.000 0.005 0.288 0.308
qtr[2] 0.019 0.000 0.005 0.009 0.029
qtr[3] 0.013 0.000 0.005 0.003 0.023

ζ0 -0.540 0.004 0.030 -0.600 -0.478
ζ1 -0.035 0.004 0.026 -0.083 0.018
ζ2 0.227 0.002 0.024 0.181 0.273
σy 0.330 0.000 0.001 0.328 0.333

Table 7: Summary of results for specification 4.
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Figure 10: Summary of the β1 distribution varying by state. The point represents the me-
dian value of the estimated distribution. The lines represent the range between
the 10th and 90th percentile.

7 Conclusion and Policy Implications

In summary, I find that wind power investments in rural counties have a positive but modest

overall effect on wages. Interpreting from the median of the estimated distribution, a large

wind farm located in a rural county is estimated to raise wages by 2%, though this median

value masks substantial variation across US states. The effect on wages also does not

appear to translate to counties designated by the Department of Agriculture as being low

employment counties.

The effect of wind power plants on wages is unlikely to be through a net increase in em-

ployment. Instead, the effect is more plausibly explained through the flow of income to the

county that accumulates due to lease payments, ownership stakes from the wind turbines

or increased revenue to the local government. Why such a mechanism fails to materialize

in low employment counties is not directly clear from the analysis. However, economic

theory would suggest that investments in counties with slack in their labor markets will

not experience upwards pressure on wages to the same degree as a county that already has

full employment.

I argue that the model setup provides adequate identification of the causal effect of
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wind power investment on wages. This identification comes partly from the exogenous

nature of wind power investments, which are heavily dependent on the average wind speeds

of a location. In addition, a panel data set with a hierarchical model setup provides

identification in the presence of unobserved variables correlated with the probability of

wind power investment. I also control for several county-level variables that may confound

the results.

Investments in energy generation and the related effects on labor markets are highly

relevant to current public policy debates. In fact, they even played a significant role in the

narrative of the US presidential election of 2016.12

For wind power in particular, this research is relevant to the local planning, approval

and regulatory process which seeks to balance the economic benefits of a wind farm to the

local community with the costs. As the planning literature reviewed earlier suggests, local

opposition to wind power plants often involves a perception that the economic benefits

do not flow broadly to the local community. This study finds evidence that wind power

plants provide a modest increase to wages in the local communities where they are sited.

This effect can vary significantly regionally, with some areas apparently experiencing an

out-sized positive effect on wages from investments. On the other hand, rural counties

that struggle the most with unemployment appear to benefit the least, at least in terms of

higher wages. Further research is required to fully understand the sources of this variation.

When making an industrial investment, most firms explicitly or implicitly take into

account the local labor market as a major factor. Skilled work force, labor costs, and

local demand for the product are important factors in the expected profitability of most

industrial investments. This article highlights how the profitability of wind power is most

strongly determined by the average wind speeds of a given location.

This provides the prospect of wind power investments serving as an exogenous shock

and setting up a type of natural experiment for important outstanding questions about

labor markets. One important topic has been the trend of labor market “polarization”

in the last four decades, where employment has increased for low-skilled work and high

skilled work, but real wage growth in these two categories has diverged, with low-skilled

work actually experiencing a sustained real wage decline (Autor, 2014; Autor and Dorn,

2013). Semi-skilled employment, such as a turbine technician, has traditionally defined
12http://www.washingtonpost.com/news/energy-environment/wp/2017/03/29/

trump-promised-to-bring-back-coal-jobs-that-promise-will-not-be-kept-experts-say
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the middle class. This category of employment has however stagnated in terms of both

number of jobs and wages. Whether this stagnation is due to trade, technology or lack

of necessary skills has been a active research topic (Autor et al., 2015; Acemoglu et al.,

2015). This article only gives hints about this larger debate, though researchers making

use of more detailed register and tax data could extract more robust insights.

8 Software and Replication Resources

For the analysis, I use the scientific computing environment for python: Numpy, Scipy,

IPython and Jupyter (Walt et al., 2011; Oliphant, 2007; Perez and Granger, 2007). The

package Pandas was used for cleaning, formatting and descriptive analysis of the data (Wes

Mckinney, 2010). Figures were created using the package matplotlib (Hunter, 2007) and

ggplot (Wickham, 2009). The Bayesian hierarchical model was coded and computed using

the Stan probabilistic programming language and engine (Stan Development Team, 2014).

Code and data used for preparation of data, descriptive analysis and models are available

upon request.
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mean se_mean sd 10% 90%
AL 0.000 0.001 0.065 -0.080 0.080
AZ 0.007 0.001 0.064 -0.071 0.084
AR 0.018 0.002 0.064 -0.060 0.099
CA 0.005 0.001 0.063 -0.072 0.084
CO -0.024 0.001 0.027 -0.059 0.010
FL 0.011 0.001 0.064 -0.069 0.089
GA 0.022 0.002 0.063 -0.057 0.101
ID 0.005 0.001 0.063 -0.076 0.082
IL 0.021 0.000 0.020 -0.005 0.047
IN 0.008 0.001 0.064 -0.070 0.087
IA 0.022 0.000 0.005 0.016 0.028
KS -0.003 0.001 0.020 -0.029 0.023
KY 0.005 0.002 0.064 -0.076 0.083
LA 0.012 0.001 0.063 -0.066 0.092
ME 0.005 0.001 0.050 -0.059 0.068
MA 0.005 0.001 0.063 -0.073 0.082
MI 0.008 0.001 0.040 -0.042 0.058
MN 0.009 0.001 0.035 -0.035 0.054
MS 0.013 0.002 0.065 -0.067 0.092
MO 0.031 0.002 0.063 -0.046 0.110
MT 0.017 0.001 0.049 -0.045 0.080
NE 0.023 0.001 0.034 -0.020 0.065
NV 0.023 0.001 0.056 -0.046 0.094
NH 0.011 0.001 0.060 -0.061 0.085
NM 0.018 0.001 0.043 -0.036 0.072
NY 0.009 0.001 0.061 -0.065 0.086
NC -0.006 0.001 0.056 -0.078 0.065
ND -0.029 0.001 0.041 -0.083 0.022
OH 0.007 0.001 0.065 -0.073 0.085
OK -0.019 0.001 0.021 -0.046 0.008
PA 0.007 0.001 0.062 -0.069 0.082
SC 0.010 0.001 0.064 -0.067 0.089
SD -0.007 0.001 0.047 -0.067 0.052
TN 0.010 0.001 0.064 -0.069 0.088
TX 0.099 0.000 0.014 0.081 0.117
UT -0.003 0.001 0.057 -0.074 0.068
VT -0.005 0.001 0.060 -0.079 0.069
VA 0.004 0.002 0.066 -0.076 0.084
WA 0.015 0.001 0.038 -0.033 0.064
WV 0.001 0.001 0.059 -0.074 0.073
WI 0.017 0.001 0.065 -0.063 0.095
WY 0.119 0.001 0.042 0.066 0.175

Table 8: Summary of the β1 distribution varying by state.
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