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Abstract

Triple difference has become a widely used estimator in empirical work. A close reading

of articles in top economics journals reveals that the use of the estimator to a large

extent rests on intuition. The identifying assumptions are neither formally derived nor

generally agreed on. We give a complete presentation of the triple difference estimator,

and show that even though the estimator can be computed as the difference between two

difference-in-differences estimators, it does not require two parallel trend assumptions

to have a causal interpretation. The reason is that the difference between two biased

difference-in-differences estimators will be unbiased as long as the bias is the same in

both estimators. This requires only one parallel trend assumption to hold.
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1 Introduction

The triple difference estimator is widely used, either under the name “Triple difference” (TD)

or the name “difference-in-difference-in-differences” (DDD), or with minor variations of these

spellings. Triple difference is an extension of double differences and was introduced by Gruber

(1994). Even though Gruber’s paper is well cited, very few modern users of triple difference

credit him for his methodological contribution. One reason may be that the properties of

the triple difference estimator are considered obvious. Another reason may be that triple

difference was little more than a curiosity in the first ten years after Gruber’s paper. On

Google Scholar, the annual number of references to triple difference did not pass one hundred

until year 2007. Since then, the use of the estimator has grown rapidly and reached 928

unique works referencing it in the year 2017, see Figure 1.

Looking only at the core economics journals American Economic Review, Journal of

Political Economy and Quarterly Journal of Economics, we have found 32 articles using triple

difference between 2010 and 2017, see Table A2. A close reading of these articles reveals that

the use of the triple difference estimator to a large extent rests on intuition. The identifying

assumptions are neither formally derived nor generally agreed on. We fill this void in the

literature and give a complete presentation of the triple difference estimator.

The triple difference estimator can be computed as the difference between two difference-

in-differences estimators. Despite this, we show that the triple difference estimator does not

require two parallel trend assumptions to have a causal interpretation. The intuition is that

the difference between two biased difference-in-differences estimators will be unbiased as long

as the bias is the same in both estimators. In that case, the bias will be differenced out when

the triple difference is computed. This requires only one parallel trend assumption, in ratios,

to hold. In fact, the sole purpose of subtracting the second difference-in-differences is to

remove bias in the first. Gruber (1994) states the identification requirement verbally, but the

result has not been formalized in the econometric literature, and it is overlooked in most of

the recent applications.
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The rest of the paper is organized as follows: Section 2 gives a short overview of the use

of the triple difference estimator. Section 3 derives the triple difference estimator. Section

4 shows that the triple difference estimator can be viewed as the difference between two

difference-in-differences estimators. Section 5 derives the identifying assumptions. Section 6

shows that the triple difference estimator can also be viewed as a difference-in-differences

using a ratio between two outcome variables. Section 7 discusses the naming of the estimator

and provides a short overview of common naming practices. Section 8 provides concluding

remarks.

Figure 1: Historical development of the use of the triple difference estimator

Note: T denotes triple, D denotes difference, and s denotes a plural s. Any top 6 is created by an OR-
statement with the six most common ways to reference the model, making it the most accurate estimate of
number of works using the estimator.
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2 The triple difference literature

The most authoritative and formal treatment of the triple difference estimator seems to be

an NBER summer institute lecture note on difference-in-differences estimation by Imbens

and Wooldridge (2007). In the introductory “Review of Basic Methodology” chapter they

include a simple triple difference estimator. We expand and complement their note in two

important and related ways. First, we discuss the assumptions needed to identify a causal

effect, while they only present an estimator. Second, we present a fully general estimator

allowing for eight different conditional outcomes, while their estimator represents a special

case with only six conditional outcomes.1

Other authoriative sources treat the topic only in passing. In their famous text book,

Mostly Harmless Econometrics, Angrist and Pischke (2008, p. 242) write that “A modification

of the two-by-two DD setup with possibly improved control groups uses higher-order contrast

to draw causal inference”. The authors then go on to explain the basic setup using Yelowitz

(1995) as an example. They do not discuss or present the estimator, nor the identifying

assumption. They simply conclude that “This triple-difference model may generate a more

convincing set of results than a traditional DD analysis”.

Lechner (2011, p. 3) follows a similar avenue in his monograph The estimation of causal

effects by difference-in-difference methods. He uses Yelowitz (1995) as an example of triple

difference, and states that “the basic ideas of the approach of taking multiple differences

are already apparent with two dimensions. Thus, we refrain from addressing these higher

dimensions to keep the discussion as focused as possible.”

A look at Yelowitz (1995) reveals that he does not go into depth on the estimator and

1A general triple difference setup has two groups (A and B), two states (treatment and control), and two
time periods (pre and post). This gives eight conditional outcomes. Even though Imbens and Wooldridge
(2007) start out with a setup that is identical to ours in all respects except notation (compare their Equation
1.3 to our Equation 1), the estimator presented in their Equation 1.4, lacks the term (ȲC,A,Post − ȲC,A,Pre),
which is the last term in our Equation 4. Hence, they implicitly assume that this term is zero, i.e they
assume that there are no time trends or shocks that are specific either to group A or to the control state,
C. Note also that their parameter of interest, δ3, cannot be calculated using the triple difference regression
framework specified in their equation 1.3 as they have eight parameters, but only six identifying groups
(lacking C,A, Pre and C,A, Post).
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the identifying assumptions. Instead, he cites Gruber (1994) and Gruber and Poterba (1994).

Gruber and Poterba (1994), however, refer back to Gruber (1994).

In his single-authored 1994 article, Gruber analyzes the labour market effects of mandated

maternity benefits. Gruber explains the setup as follows:

I compare the treatment individuals in the experimental states to a set of control

individuals in those same states and measure the change in the treatments’ relative

outcomes, relative to states that did not pass maternity mandates. The identifying

assumption of this “differences-in-differences-in-differences” (DDD) estimator are

fairly weak: it simply requires that there be no contemporaneous shock that

affects the relative outcomes of the treatment group in the same state-years as

the law”.

We have also looked at all articles applying triple difference (using one of the six most

common ways of referencing the estimator) in American Economic Review, Journal of Political

Economy, and Quarterly Journal of Economics between 2010 and 2017. As seen in Table

A2, we found a total of 32 articles, 16 articles in AER, five in JPE and 11 in QJE. Of these

articles Muehlenbachs et al. (2015), Hornbeck (2010), and Shayo and Zussman (2011) show

some version of the estimator itself, indicating that it is not entirely obvious. In a similar

spirit, Walker (2013) shows the error term of the triple difference estimator and uses it for

discussion of robustness. Only Nilsson (2017) cites Gruber (1994).

We will later show formally that a parallel trend assumption very similar to the difference-

in-differences approach is needed for the estimated effect to have a causal interpretation.

The parallel trend in DDD is, however, on a differential between two categories. In some

applications this is stated verbally. Walker (2013, p. 1805) writes e.g. that “[t]he identifying

assumption in this class of models is that there are no other factors generating a difference in

differential trends between production decisions in regulated and unregulated manufacturing

firms.” 2

2 Some other articles in our sample have similar formulations. Hoynes et al. (2016, p. 925-926) write that
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Most of the other 32 top journal articles present some intuition of what the estimator is

robust against, but otherwise the information presented varies considerably. Only a few of

the authors discuss a common trend or parallel trend assumption, and as the triple difference

is based on a strong parallel trend assumption, it is also disturbing to see that a large part of

the articles do not include unconditional plots of the outcome series they are studying. This

makes it impossible to visually assess potential trends.

In tables A3a and A3b in the appendix, we present the 50 most cited articles referencing

the estimator, numbered and ordered by number of citations. There has been almost 5000

papers referencing the estimator since 1994, and it is natural to think that some of the most

cited triple difference articles are methodological or represent early use of the methodology.

Seven of the 50 most cited articles list Gruber as a co-author.3 Six articles are covered in the

review of articles in AER/QJE/JPE.4 Among the rest, seven have methodological-sounding

names.5 A close reading of the articles with methodological-sounding names reveals that

they do not give a formal exposition of the triple difference estimator, nor its identifying

assumption. However, Ravallion (2007) cites Ravallion et al. (2005) which shows a very

special case of the triple difference estimator and the identifying assumptions for that special

case. 6

“[i]n this triple-difference model, the maintained assumption is that there are no differential trends for high
participation versus low participation groups within early versus late implementing counties”. Deschênes et al.
(2017, p. 2970) state that “[o]ur identifying assumption is that such policies did not change differentially
in NBP versus non-NBP states, in winter versus summer, over this period”. Finally, Kleven et al. (2013,
p. 1908) write that “[i]n that case, the identifying assumption would be that there is no contemporaneous
change in the differential trend between Spain and the synthetic control country”.

3 These are the articles 4, 9, 17, 25, 31, 34, and 39, in which 4 is Gruber (1994) and 31 is Gruber and
Poterba (1994). Note also that number 30 is Yelowitz (1995).

4These are the articles 7, 11, 21, 35, 42 and 46.
5These are the articles 1, 5, 6, 10, 12, 24, and 40. Note that number 24 is Lechner (2011) which is covered

previously.
6This scenario does not have pre-periods, only post-periods, and two treatment groups that are treated

with differential intensity. This requires a set of identifying assumptions that in general are not needed in the
triple difference estimator.
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3 The triple difference estimator

For the sake of exposition let us assume that we are talking about two American states, and

that the Treatment state (T) introduces a health-care measure, while the Control state (C)

does not. Further, the population of the states can be subdivided into two groups, group A

and group B. The health-care measure we intend to study is only introduced to group B, i.e.

group B is the group that can Benefit from the measure. Finally, there are two time periods,

namely Pre- and Post-implementation of the health-care measure.

To establish a counterfactual it might seem convenient to compare group A and group B

within the treatment state. This will not be valid if the health-care reform has within-state

spillovers from group B to group A. Another option is to compare group B in the treatment

state with group B in the control state. This will not be valid if different states have different

economic conditions, so that group B in the treatment state would have trended differently

from group B in the control state, regardless of the health-care measure. However, we may

reasonably assume that the general economic differences will not affect the relative outcomes

of group A and group B. In that case, we can use the relative difference to estimate what

would have happened to the relative outcomes of group A and group B in the treatment state

in the absence of treatment.

Equation 1 is a basic triple difference specification in accordance with the above exposition.

All variables in this basic setup are dummy variables.

Ysit = β0 + β1T + β2B + β3Post+ β4T ∗B + β5T ∗ Post+ β6B ∗ Post+ β7T ∗B ∗ Post+ εsit

(1)

The conditional mean function of Equation 1 is E[Ysit|T,C, Post], which can take on

eight values. Since the model has eight values and eight coefficients, the model is saturated

(Angrist and Pischke, 2008). Under standard OLS assumptions and an additive effect, we
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can use E[εsit|T,C, Post] = 0 to show the eight expected values as in Equations 2.

E[Y |T = 0, B = 0, Post = 0] = β0

E[Y |T = 1, B = 0, Post = 0] = β0 + β1

E[Y |T = 0, B = 1, Post = 0] = β0 + β2

E[Y |T = 0, B = 0, Post = 1] = β0 + β3

E[Y |T = 1, B = 1, Post = 0] = β0 + β1 + β2 + β4

E[Y |T = 1, B = 0, Post = 1] = β0 + β1 + β3 + β5

E[Y |T = 0, B = 1, Post = 1] = β0 + β2 + β3 + β6

E[Y |T = 1, B = 1, Post = 1] = β0 + β1 + β2 + β3 + β4 + β5 + β6 + β7 (2)

Starting at the top of equation set 2, we can solve for the β′s.
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β0 = E[Y |T = 0, B = 0, Post = 0]

β1 = E[Y |T = 1, B = 0, Post = 0]− E[Y |T = 0, B = 0, Post = 0]

β2 = E[Y |T = 0, B = 1, Post = 0]− E[Y |T = 0, B = 0, Post = 0]

β3 = E[Y |T = 0, B = 0, Post = 1]− E[Y |T = 0, B = 0, Post = 0]

β4 = E[Y |T = 1, B = 1, Post = 0] + E[Y |T = 0, B = 0, Post = 0]−

E[Y |T = 1, B = 0, Post = 0]− E[Y |T = 0, B = 1, Post = 0]

β5 = E[Y |T = 1, B = 0, Post = 1] + E[Y |T = 0, B = 0, Post = 0]−

E[Y |T = 1, B = 0, Post = 0]− E[Y |T = 0, B = 0, Post = 1]

β6 = E[Y |T = 0, B = 1, Post = 1] + E[Y |T = 0, B = 0, Post = 0]−

E[Y |T = 0, B = 1, Post = 0]− E[Y |T = 0, B = 0, Post = 1]

β7 =
(
E[Y |T = 1, B = 1, Post = 1]− E[Y |T = 1, B = 1, Post = 0]

)
−(

E[Y |T = 1, B = 0, Post = 1]− E[Y |T = 1, B = 0, Post = 0]
)
−(

E[Y |T = 0, B = 1, Post = 1]− E[Y |T = 0, B = 1, Post = 0]
)
+(

E[Y |T = 0, B = 0, Post = 1]− E[Y |T = 0, B = 0, Post = 0]
)

(3)

By rearranging the expression for β7 and substituting the expected values with their

sample equivalents (the mean values), we get Equation 4. This is the triple difference

estimator for the effect of the treatment for group B.

β̂7 = [(ȲT,B,Post − ȲT,B,Pre)− (ȲC,B,Post − ȲC,B,Pre)]− [(ȲT,A,Post − ȲT,A,Pre)− (ȲC,A,Post − ȲC,A,Pre)]

(4)
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4 The difference between two difference-in-differences

The classical difference-in-differences estimator is presented in Equation 5.

δ̂ = [(ȲT,Post − ȲT,Pre)− (ȲC,Post − ȲC,Pre)] (5)

Clearly, the triple difference estimator of Equation 4 is equivalent to the difference between

two difference-in-differences. The first difference-in-differences is for group B, and is given by

the first square brackets, while the second difference-in-differences is for group A, given by

the second square brackets. It is also worth mentioning that due to the additive nature of

the triple difference estimator of Equation 4, we could alternatively have presented it as a

difference-in-differences for the treatment state, comparing the eligible group B and group A,

minus a difference-in-differences in the control state, comparing group B and group A there.

Mathematically this is equivalent, though when thinking about a specific application one is

often preferred over the other.

5 Identifying assumptions

The triple difference estimator requires a parallel trend assumption for the estimated effect to

have a causal interpretation. Even though the triple difference is the difference between two

difference-in-differences, it does not need two parallel trend assumptions. Rather, it requires

the relative outcome of group B and group A in the treatment state to trend in the same

way as the relative outcome of group B and group A in the control state, in the absence of

treatment. To see this, first take the β7 in Equations 3 and rearrange it to create Equation 6.
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β7 =

[(
E[Y |T = 1, B = 1, Post = 1]− E[Y |T = 1, B = 1, Post = 0]

)
−(

E[Y |T = 1, B = 0, Post = 1]− E[Y |T = 1, B = 0, Post = 0]

)]
−[(

E[Y |T = 0, B = 1, Post = 1]− E[Y |T = 0, B = 1, Post = 0]

)
−(

E[Y |T = 0, B = 0, Post = 1]− E[Y |T = 0, B = 0, Post = 0]
)]

(6)

Now, introduce the potential outcomes framework (see for instance Angrist and Pischke

(2008)). In this framework E[Y1,sit] is the expected outcome of a state, group, and time if

treated, while E[Y0,sit] is the expected outcome of a state, group, and time if not treated.

Potential outcomes mean that we either observe Y 1,sit or Y 0,sit, but never both. Expressions

like E[Y0,T=1,B=1,Post=1] are the expectation of non-observed potential outcomes; in our case

the outcome of group B in the treatment state (T), in the treatment period (Post), had it

not been treated.

We can use the potential outcome framework to define δ, the true causal effect of treatment

in the treatment state (T), on the treatment group B, in the treatment period (Post) as:

δ = E[Y1 − Y0|T = 1, B = 1, Post = 1] (7)

Equation 7 states that the true treatment effect is the difference between the outcome of

state T, group B in period 2 as treated, and the outcome of state T, group B in period 2,

had it not been treated.

To show which parallel trend assumption that identifies δ, we may rewrite Equation 6

using the notation from the potential outcome framework.
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β7 =

[(
E[Y1|T = 1, B = 1, Post = 1]− E[Y0|T = 1, B = 1, Post = 0]

)
−(

E[Y0|T = 1, B = 0, Post = 1]− E[Y0|T = 1, B = 0, Post = 0]

)]
−[(

E[Y0|T = 0, B = 1, Post = 1]− E[Y0|T = 0, B = 1, Post = 0]

)
−(

E[Y0|T = 0, B = 0, Post = 1]− E[Y0|T = 0, B = 0, Post = 0]
)]

(8)

For β7 to equal δ, we need the differential in the outcomes of group A and group B in the

treatment state to trend similarly to the differential in the outcomes of group A and group

B in the control state, in the absence of treatment. This is the parallel trend assumption.

A formal exposition of this statement is given in Equation 9. The first line is the change

between the two periods in the outcomes of group B in the treatment state had it not been

treated. The second line is the same change for group A. The difference between these two

expressions is equated with an expression that is equivalent, except that it gives realized

outcomes in the control state.

(
E[Y0|T = 1, B = 1, Post = 1]− E[Y0|T = 1, B = 1, Post = 0]

)
−(

E[Y0|T = 1, B = 0, Post = 1]− E[Y0|T = 1, B = 0, Post = 0]

)
=(

E[Y0|T = 0, B = 1, Post = 1]− E[Y0|T = 0, B = 1, Post = 0]

)
−(

E[Y0|T = 0, B = 0, Post = 1]− E[Y0|T = 0, B = 0, Post = 0]

)
(9)

To show that this parallel trend assumption identifies δ, the causal effect, we can substitute

Equation 9 into Equation 8.
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β7 =

[(
E[Y1|T = 1, B = 1, Post = 1]− E[Y0|T = 1, B = 1, Post = 0]

)
−(

E[Y0|T = 1, B = 0, Post = 1]− E[Y0|T = 1, B = 0, Post = 0]

)]
−[(

E[Y0|T = 1, B = 1, Post = 1]− E[Y0|T = 1, B = 1, Post = 0]

)
−(

E[Y0|T = 1, B = 0, Post = 1]− E[Y0|T = 1, B = 0, Post = 0]

)]
(10)

Rearranging and rewriting Equation 10 we get

β7 = E[Y1 − Y0|T = 1, B = 1, Post = 1]

+ E[Y0|T = 1, B = 0, Post = 1]− E[Y0|T = 1, B = 0, Post = 1]

+ E[Y0|T = 1, B = 1, Post = 0]− E[Y0|T = 1, B = 1, Post = 0]

+ E[Y0|T = 1, B = 0, Post = 0]− E[Y0|T = 1, B = 0, Post = 0] (11)

By canceling out the redundant terms of Equation 11 we find that

β7 = (E[Y1 − Y0|T = 1, B = 1, Post = 1] = δ qed. (12)

6 Triple difference as difference-in-differences

Take the difference-in-differences estimator of Equation 5 and define the outcome variable, Ȳ ,

as:

Ȳij = Ȳaij − Ȳbij (13)
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Substituting this definition into Equation 5 gives us

δ̂ =

[(Ȳa,pre,treat − Ȳb,pre,treat)− (Ȳa,post,treat − Ȳb,post,treat)]−

[(Ȳa,pre,cont − Ȳb,pre,cont)− (Ȳa,post,cont − Ȳb,post,cont)]

= δ̂triple (14)

This shows clearly that a basic difference-in-differences with a differential as the outcome

and a symmetric structure, is a triple difference, and the other way around. This implies that

all procedures for difference-in-differences can be applied to a transformed triple difference.

For instance, standard robustness checks for difference-in-differences can be applied, see for

instance Angrist and Pischke (2008). Also, semi-parametric versions of the difference-in-

differences estimator are available (Abadie, 2005), as well as non-linear models (Athey and

Imbens, 2006) can be directly applied to the transformed problem. Finally, knowing that

difference-in-differences models struggle with standard errors when there are few clusters, see

Bertrand et al. (2004), this will apply to the transformed triple difference, as well as to the

triple difference estimator, though to a smaller extent due to more degrees of freedom.

7 How to name the estimator

Using T as shorthand for triple, D for difference, and s for plural form, the six most common

ways of referencing the triple difference estimator are: TD (2911), TDs (1187), DDD (1104),

DDDs (928), DsDsDs (351), and DDsDs (332). The numbers in parenthesis are the number of

articles that use that particular way of referencing the estimator, equivalent to the cumulative

sums from Figure 1. Note that the search string includes the word economics, and excludes

all articles after 2017. The total number of articles is found through the same process as
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above, except that it uses an inclusive OR statement for the six ways of referencing the

estimator, and yields 4813 unique papers. There are an additional four possible ways to

combine D and s. These combinations, which we believe to be erroneous, have a total of 36

hits, and are excluded throughout our paper.

Going back to Figure 1, we see that most of the growth in the references to the estimator

take place after 2010. There are two main ways of referencing the estimator, TD or DDD.

Both come with variations in plural s. Of the different ways of referencing the model, TD is

the most common and also seems to be the fastest growing. 7

In Table 1 we show a frequency table of different ways to reference the estimator that

occur together. Of the 2910 works that reference the triple difference estimator as TD, 256

also reference it as DDD in the same paper and 1713 rely solely on TD8. The results in

Table 1 strongly suggest that there is a need to unify the terminology. Without taking a

strong stand on what is the most logical name, we recommend triple difference (TP) or

difference-in-difference-in-differences (DDDs). 9

8 Concluding remarks

In this paper we document the rise of the triple difference estimator. The use of the estimator

has grown exponentially, yet it lacks formal derivation and is often carelessly applied in the

literature, for instance by largely ignoring its parallel trend assumption, and by omitting

unconditional plots, making model validation difficult. We also document a need to unify the

terminology and suggest ‘triple difference’ or ‘difference-in-difference-in-differences’.

7While DDD has historically been the most common way of referencing the model when avoiding the
word triple, this has reversed for the last two years, and in 2017 DDDs was referenced 188 times, while DDD
was only referenced 143 times.

8If we look at occurrences of TD with any plural variation of DDD, only 604 out of 2910 papers also
use a DDD variation, which is only about 20 percent. This is confirmed by looking at any of the DDD
variations and the co-occurrence of TD and TDs as well, meaning that the majority of papers that reference
the estimator rely on only one of the two main ways of referencing it.

9Gruber (1994), the father of the triple difference estimator, used the terminology differences in differences
in differences or DsDsDs. This way of referencing the estimator has only 360 hits throughout time, and only
41 hits in 2017. This suggests that the 1152 citations to his paper are not primarily methodological. If they
were, we would expect his choice of terminology to be more common.
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Table 1: Combinations of triple difference referencing

TD TDs DDD DDDs DsDsDs DDsDs

TD 2910 593 256 205 69 74
TDs 593 1130 62 105 40 49

DDD 256 62 1080 97 31 23
DDDs 205 105 97 915 19 41

DsDsDs 69 40 31 19 352 29
DDsDs 74 49 23 41 29 334

Note: T denotes triple, D denotes difference, and s denotes a plural s. All
searches are from Google Scholar and require the result to contain the word
economics and to be from the period between 1994-2017. Google Scholar
treats spaces and hyphens as the same. Note also that all numbers are upper
bounds, as a single paper might use more than two ways of referencing the
estimator.

Our main contribution is to show that the triple difference estimator does not require two

parallel trend assumptions to have a causal interpretation, even though it can be computed

as the difference between two difference-in-differences estimators. We also show that the

triple difference parallel trend assumption is equivalent to the parallel trend assumption in a

difference-in-differences model based on ratios.

When choosing between a triple difference and a difference-in-differences on a ratio-variable,

there are several things to consider. The difference-in-differences estimator is much better

understood, and there is a large literature that addresses the estimator and its shortcomings.

However, it comes at the cost of degrees of freedom, and provides less information than the

triple difference. The triple difference will for instance provide an estimate of spillover-effects

i.e. β5 in Equation 1, which is the effect on the non-treated in the treatment state in the

treatment period. This information is lost in the difference-in-differences estimator.

The triple difference estimator is often used as a heterogeneity test or as a robustness

check. When comparing it with a standard difference-in-differences, Berck and Villas-Boas

(2016) show conditions for when the triple difference estimator reduces bias relative to a

difference-in-differences approach in the presence of omitted variable bias.
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Finally, our reading of the literature points to some other key issues that demand more

awareness. Many of the articles examined spend considerable time on control variables, which

will not affect unbiasedness, only precision. This is easily shown by deducting any mean from

the estimator. Such means will cancel out, a point previously made for difference-in-differences

by Angrist and Pischke (2008, p.237). Much less time, if any, is spent on functional form. In

the triple difference estimator we make an assumption on how the outcomes of two groups

co-move relative to the co-movement in two other groups in the control state. Both a ratio

and its log-transformed counterpart can be a natural choice of functional form, depending

on the situation. This requires thought, however. Particularly since if the parallel trend

assumption holds in logs it will not hold in levels, and vice versa (Angrist and Pischke, 2008).
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Deschênes, O., Greenstone, M., and Shapiro, J. S. (2017). Defensive investments and the

demand for air quality: Evidence from the nox budget program. American Economic

Review, 107(10):2958–89.

Gruber, J. (1994). The incidence of mandated maternity benefits. American Economic

Review, 84(3):622–641.

Gruber, J. and Poterba, J. (1994). Tax incentives and the decision to purchase health insurance:

Evidence from the self-employed. Quarterly Journal of Economics, 109(3):701–733.

Hornbeck, R. (2010). Barbed wire: Property rights and agricultural development. Quarterly

Journal of Economics, 125(2):767–810.

Hoynes, H., Schanzenbach, D. W., and Almond, D. (2016). Long-run impacts of childhood

access to the safety net. American Economic Review, 106(4):903–34.

17



Imbens, G. W. and Wooldridge, J. M. (2007). What’s new in econometrics? lecture 10

difference-in-differences estimation. NBER Summer Institute, available at: www. nber.

org/WNE/Slides7–31–07/slides 10 diffindiffs. pdf, accessed April 2018, 9:2011.

Kleven, H. J., Landais, C., and Saez, E. (2013). Taxation and international migration of

superstars: Evidence from the european football market. American Economic Review,

103(5):1892–1924.

Lechner, M. (2011). The estimation of causal effects by difference-in-difference methods.

Foundations and Trends R© in Econometrics, 4(3):165–224.

Muehlenbachs, L., Spiller, E., and Timmins, C. (2015). The housing market impacts of shale

gas development. American Economic Review, 105(12):3633–59.

Nilsson, J. P. (2017). Alcohol availability, prenatal conditions, and long-term economic

outcomes. Journal of Political Economy, 125(4):1149–1207.

Olden, A. (2018). What do you buy when no one’s watching? the effect of self-service

checkouts on the composition of sales in retail. NHH FOR DP 3/18, Norwegian School of

Economics.

Ravallion, M. (2007). Evaluating anti-poverty programs. Handbook of Development Economics,

4:3787–3846.

Ravallion, M., Galasso, E., Lazo, T., and Philipp, E. (2005). What can ex-participants reveal

about a program’s impact? Journal of Human Resources, 40(1):208–230.

Shayo, M. and Zussman, A. (2011). Judicial ingroup bias in the shadow of terrorism. Quarterly

Journal of Economics, 126(3):1447–1484.

Walker, W. R. (2013). The transitional costs of sectoral reallocation: Evidence from the

clean air act and the workforce. Quarterly Journal of Economics, 128(4):1787–1835.

18



Yelowitz, A. S. (1995). The medicaid notch, labor supply, and welfare participation: Evidence

from eligibility expansions. The Quarterly Journal of Economics, 110(4):909–939.

19



A Appendix

Table A1: Title abbreviations for Tables A2-A3b

Abbreviaton Full title

AEJAE American Economic Journal: Applied Economics
AER The American Economic Review
ARS Annual Review of Sociology
EE Energy Economics
FTE Foundations and Trends R© in Econometrics
HDE Handbook of Development Economics
HE Health Economics
HEF Handbook of the Economics of Finance
HHE Handbook of HE
HLE Handbook of Labor Economics
ISR Information Systems Research
JDE Journal of Development Economics
JFE Journal of Financial Economics
JLaE Journal of Law and Economics
JLE Journal of Labor Economics
JMR Journal of Marketing Research
JPE Journal of Political Economy
JPuE Journal of Public Economics
JUE Journal of Urban Economics
MS Management Science
NBER NBER Working Paper Series
NEJM New England Journal of Medicine
NTJ National Tax Journal
QJE Quarterly Journal of Economics
RES Review of Economics and Statistics
RFS The Review of Financial Studies
SJ Stata Journal
TEJ The Economic Journal
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Table A2: Use of triple difference estimation in AER, JPE and QJE from 2010-2017

Cit. Authors Title

829 Mian, Sufi House prices, home equity-based borrowing, and the US household leverage crisis 2011 AER
103 Moser, Voena Compulsory licensing: Evidence from the trading with the enemy act 2012 AER
293 Hornbeck The enduring impact of the American Dust Bowl: Short-and long-run adjustments to 2012 AER

environmental catastrophe
146 Simcoe Standard setting committees: Consensus governance for shared technology platforms 2012 AER
243 Kleven, Landais, Saez Taxation and international migration of superstars: Evidence from the European football market 2013 AER
320 Busso, Gregory, Kline Assessing the incidence and efficiency of a prominent place based policy 2013 AER
57 Aaronson, Lange, Mazumder Fertility transitions along the extensive and intensive margins 2014 AER
129 Yagan Capital tax reform and the real economy: The effects of the 2003 dividend tax cut 2015 AER
90 Casey Crossing party lines: The effects of information on redistributive politics 2015 AER
212 Muehlenbachs, Spiller, Timmins The housing market impacts of shale gas development 2015 AER
291 Hoynes, Schanzenbach, Almond Long-run impacts of childhood access to the safety net 2016 AER
440 Pierce, Schott The surprisingly swift decline of US manufacturing employment 2016 AER
37 Duggan, Garthwaite, Goyal The market impacts of pharmaceutical product patents in developing countries: 2016 AER

Evidence from India
65 Egan, Hortaçsu, Matvos Deposit competition and financial fragility: Evidence from the us banking sector 2017 AER
30 Deschênes, Greenstone, Shapiro Defensive investments and the demand for air quality: Evidence from the NOx budget program 2017 AER
122 Besley, Folke, Persson, Rickne Gender quotas and the crisis of the mediocre man: Theory and evidence from Sweden 2017 AER
79 Aaronson, Mazumder The impact of Rosenwald schools on black achievement 2011 JPE
50 Autor, Palmer, Pathak Housing market spillovers: Evidence from the end of rent control in Cambridge, Massachusetts 2014 JPE
163 Carneiro, Løken, Salvanes A flying start? Maternity leave benefits and long-run outcomes of children 2015 JPE
37 Casas-Arce, Saiz Women and power: unpopular, unwilling, or held back? 2015 JPE
47 Nilsson Alcohol availability, prenatal conditions, and long-term economic outcomes 2017 JPE
143 Hornbeck Barbed wire: Property rights and agricultural development 2010 QJE
179 Shayo, Zussman Judicial ingroup bias in the shadow of terrorism 2011 QJE
772 Ahern, Dittmar The changing of the boards: The impact on firm valuation of mandated female 2012 QJE

board representation
73 Cascio, Washington Valuing the vote: The redistribution of voting rights and state funds following the 2013 QJE

voting rights act of 1965
150 Walker The transitional costs of sectoral reallocation: Evidence from the clean air act and the workforce 2013 QJE
155 Garthwaite, Gross, Notowidigdo Public health insurance, labor supply, and employment lock 2014 QJE
52 Casaburi, Troiano Ghost-house busters: The electoral response to a large anti–tax evasion program 2015 QJE
16 Agan, Starr Ban the Box, Criminal Records, and Racial Discrimination: A Field Experiment 2017 QJE
25 Alsan, Wanamaker Tuskegee and the health of black men 2017 QJE
44 Bandiera, Burgess, Das, Gulesci, Labor markets and poverty in village economies 2017 QJE

Rasul, Sulaiman
20 Larcom, Rauch, Willems The benefits of forced experimentation: striking evidence from the London underground network 2017 QJE
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Table A3a: Top 50 most cited articles referencing triple difference

Cites Authors Title Year Source

1 7550 M Bertrand, E Duflo, S Mullainathan How much should we trust differences-in-differences estimates? 2004 QJE
2 1418 EA Verhoogen Trade, quality upgrading, and wage inequality 2008 QJE

in the Mexican manufacturing sector
3 1306 J Currie, D Almond Human capital development before age five 2011 HLE
4 1177 J Gruber The incidence of mandated maternity benefits 1994 AER
5 989 MR Roberts, TM Whited Endogeneity in empirical corporate finance1 2013 HEF
6 943 C Winship, SL Morgan The estimation of causal effects from observational data 1999 ARS
7 824 A Mian, A Sufi House prices, home equity-based borrowing, and the US household leverage crisis 2011 AER
8 809 CJ Ruhm The economic consequences of parental leave mandates: Lessons from Europe 1998 QJE
9 807 J Currie, J Gruber Health insurance eligibility, utilization of medical care, and child health 1996 QJE
10 774 M Ravallion Evaluating anti-poverty programs 2007 HDE
11 763 KR Ahern, AK Dittmar The changing of the boards: 2012 QJE

The impact on firm valuation of mandated female board representation
12 697 T Besley, A Case Unnatural experiments? Estimating the incidence of endogenous policies 2000 TEJ
13 690 X Giroud, HM Mueller Does corporate governance matter in competitive industries? 2010 JFE
14 659 G Zervas, D Proserpio, JW Byers The rise of the sharing economy: 2017 JMR

Estimating the impact of Airbnb on the hotel industry
15 648 S Dynarski Hope for whom? 2000 NTJ

Financial aid for the middle class and its impact on college attendance
16 552 DL Costa, ME Kahn Power couples: 2000 QJE

changes in the locational choice of the college educated, 1940–1990
17 526 J Gruber The incidence of payroll taxation: Evidence from Chile 1997 JLE
18 512 A Purnanandam Originate-to-distribute model and the subprime mortgage crisis 2010 RFS
19 505 A Low Managerial risk-taking behavior and equity-based compensation 2009 JFE
20 500 M Puri, J Rocholl, S Steffen Global retail lending in the aftermath of the US financial crisis: 2011 JFE

Distinguishing between supply and demand effects
21 436 JR Pierce, PK Schott The surprisingly swift decline of US manufacturing employment 2016 AER
22 388 LF Katz Wage subsidies for the disadvantaged 1996 NBER
23 387 BD Sommers, K Baicker, AM Epstein Mortality and access to care among adults after state Medicaid expansions 2012 NEJM
24 384 M Lechner The estimation of causal effects by difference-in-difference methods 2011 FTE
25 377 J Gruber Disability insurance benefits and labor supply 2000 JPE
26 359 A Goldfarb, CE Tucker Privacy regulation and online advertising 2011 MS
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Table A3b: Top 50 most cited articles referencing triple difference, continued

Cites Authors Title Year Source

27 354 J Strauss, D Thomas Health over the life course 2007 HDE
28 353 DA Matsa, AR Miller A female style in corporate leadership? Evidence from quotas 2013 AEJAE
29 350 A Seru Firm boundaries matter: Evidence from conglomerates and R&D activity 2014 JFE
30 343 AS Yelowitz The Medicaid notch, labor supply, and welfare participation: 1995 QJE

Evidence from eligibility expansions
31 333 J Gruber, J Poterba Tax incentives and the decision to purchase health insurance: 1994 QJE

Evidence from the self-employed
32 332 K Milligan Subsidizing the stork: New evidence on tax incentives and fertility 2005 RES
33 330 J Currie Inequality at birth: Some causes and consequences 2011 AER
34 328 J Gruber, BC Madrian Health insurance, labor supply, and job mobility: A critical review of the literature 2002 NBER
35 319 M Busso, J Gregory, P Kline Assessing the incidence and efficiency of a prominent place based policy 2013 AER
36 318 K Eggleston, L Ling, M Qingyue, Health service delivery in China: A literature review 2008 HE

M Lindelow, A Wagstaff
37 314 D Neumark, J Zhang, S Ciccarella The effects of Wal-Mart on local labor markets 2008 JUE
38 311 DN Figlio Testing, crime and punishment 2006 JPuE
39 309 J Gruber Health insurance and the labor market 2000 HHE
40 296 A Nichols Causal inference with observational data 2007 SJ
41 291 RT Jensen Do private transfers ’displace’the benefits of public transfers? 2004 JPuE

Evidence from South Africa
42 290 R Hornbeck The enduring impact of the American Dust Bowl: 2012 AER

Short-and long-run adjustments to environmental catastrophe
43 287 D Thomas, K Beegle, E Frankenberg, Education in a Crisis 2004 JDE

B Sikoki, J Strauss, G Teruel
44 286 R Rishika, A Kumar, R Janakiraman, The effect of customers’ social media participation 2013 ISR

R Bezawada on customer visit frequency and profitability: an empirical investigation
45 282 C Clotfelter, E Glennie, H Ladd, Would higher salaries keep teachers in high-poverty schools? 2008 JPuE

J Vigdor Evidence from a policy intervention in North Carolina
46 281 H Hoynes, DW Schanzenbach, D Almond Long-run impacts of childhood access to the safety net 2016 AER
47 277 A Morse Payday lenders: Heroes or villains? 2011 JFE
48 277 H Cai, Y Chen, H Fang Observational learning: Evidence from a randomized natural field experiment 2009 AER
49 273 VV Acharya, RP Baghai, KV Subramanian Labor laws and innovation 2013 JLaE
50 267 JG Weber The effects of a natural gas boom on employment and income 2012 EE

in Colorado, Texas, and Wyoming

This table is produced using the software Harzinger’s Publish or Perish 6. A search using each of the six most common ways to reference the
triple difference estimator is conducted from 1994 until October 2018, covering almost all results for the triple difference estimator. Each search
is combined with the word economics. When removing books and duplicates, this yields 3481 articles. The articles are sorted according to the
number of citations, and the top 50 most cited articles are presented here. Full journal titles are found in Table A1.
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