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Abstract

Reward systems based on balanced scorecards typically connect pay

to an index, i.e. a weighted sum of multiple performance measures.

However, there is no formal incentive model that actually describe

this kind of index contracts as an optimal solution. In this paper, we

show that an index contract may indeed be optimal if performance

measures are non-veri�able so that the contracting parties must rely

on self-enforcement. Under standard assumptions, the optimal self-

enforcing (relational) contract between a principal and a multitasking

agent is an index contract where the agent gets a bonus if a weighted

sum of performance outcomes on the various tasks (the index) exceeds

a hurdle. For a parametric (multinormal) speci�cation, the e¢ ciency of

the contract improves with higher precision of the index measure, since

this strengthens incentives. Correlations between measurements may

for this reason be bene�cial. For a similar reason, the principal may

also want to include veri�able performance measures in the relational

index contract in order to improve incentives.
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1 Introduction

Very few jobs can be measured along one single dimension; employees usually

multitask. This creates challenges for incentive providers: If the �rm only

rewards a subset of dimensions or tasks, agents will have incentives to exert

e¤orts only on those tasks that are rewarded, and ignore others. A solution

for the �rm is to add more metrics to the compensation scheme, but this

usually implies some form of measurement problem, leading either to more

noise or distortions, or to the use of non-veri�able (subjective) performance

measures.

The latter is often implemented by the use of a balanced scorecard (BSC).

Kaplan and Norton�s (1992, 1996) highly in�uential concept began with a

premise that exclusive reliance on veri�able �nancial performance measures

was not su¢ cient, as it could distort behavior and promote e¤ort that is not

compatible with long-term value creation. Their main ideas were indebted

to the canonical multitasking models of Holmström and Milgrom (1991) and

Baker (1992). However, their approach was more practical, guiding �rms

in how to design performance measurement systems that focus not only on

short-term �nancial objectives, but also on long-term strategic goals (Kaplan

and Norton, 2001).

While measuring performance is one issue, the question of how to reward per-

formance is a di¤erent one. As noted by Budde (2007), there is a general un-

derstanding that e¢ cient incentives must be based on multiple performance

measures. Still, the implementation is a matter of controversy. Reward

systems based on BSC typically connect pay to an index, i.e. a weighted

sum of multiple performance measures. However, there is no formal incen-

tive model that actually derive this kind of index contracts as an optimal

solution. In fact, Kaplan and Norton (1996) were sceptical to compensa-

tion formulas that calculated incentive compensation directly via a sum of

weighted metrics. Rather they proposed to establish di¤erent bonuses for

a whole set of critical performance measures, more in line with the original

ideas of Holmström and Milgrom (1991) and Feltham and Xie (1994).

Despite the large literature following the introduction of BSC (see Hoque,

2014, for a review), and the massive use of scorecards in practice, the index
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contracts that BSC-�rms often prescribe, lacks a formal contract theoretic

justi�cation.1 This paper aims to �ll the gap. Our starting point is that the

performance measures are non-veri�able. This means that the incentive con-

tract cannot be enforced by a third party and thus needs to be self-enforcing

- or what is commonly termed �relational�. In the now large literature on

self-enforcing relational contracts, relatively few papers have considered rela-

tional contracts with multitasking agents (prominent papers include Baker,

Gibbons and Murphy, 2002; Budde, 2007, Schottner, 2008; Mukerjee and

Vasconcelos, 2011; and Ishihara, 2016). We on the one hand generalize this

literature in some dimensions (to an arbitrary number of tasks with stochas-

tic measurements that are possibly correlated and/or distorted), and on the

other hand invoke assumptions (normally distributed measurements) that

make the model quite tractable.2

We �rst show that the optimal relational contract between a principal and

a multitasking agent turns out to be an index contract, or what one may

call a balanced scorecard. That is, the agent gets a bonus if a weighted sum

of performance outcomes on the various tasks (an index) exceeds a hurdle.

This in contrast to the optimal contract in e.g. Holmström and Milgrom

(1991), where the agent gets a bonus on each task. The important di¤erence

from Holmström and Milgrom is that we consider a relational contracting

setting where the size of the bonus is limited by the principal�s temptation

to renege (rather than risk considerations). In such a setting the marginal

incentives to exert e¤ort on each task is higher with index contracts than

with bonuses awarded on each task.

The following example yields some intuition for the index result in a very

simple setting. Consider an agent working on two tasks with outcomes that

are, for each task, either a success or a failure for the principal. The agent

controls the probability (ai) of success on each task, and the outcomes are

1According to Hoque (2014), among the more than 100 papers published on BCS
theory, only a handful have used principal agent theory to analyze BSC. See also Hesford
et al (2009) for a review.

2Our paper is indebted to the seminal literature on relational contracts. The concept
of relational contracts was �rst de�ned and explored by legal sholars (Macaulay, 1963,
Macneil, 1978), while the formal literature started with Klein and Le­ er (1981). MacLeod
and Malcomson (1989) provides a general treatment of the symmetric information case,
while Levin (2003) generalizes the case of asymmetric information. The relevance of the
relational contract approach to management accounting and performance measurement is
discussed in Glover (2012) and Baldenius et al. (2016).
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(for algebraic simplicity here) stochastically independent. Suppose, and this

is critical, that there is an upper limit (B) on total bonus payments, and

compare two schemes: (i) a bonus with a hurdle (1 success) on each task,

and (ii) a bonus based on an index that counts the number of successes.

Suppose the tasks are equally valuable for the principal, so she wants to

treat them symmetrically. In Scheme 1, the bonus on each task can then

at most be 1
2B, yielding the agent expected revenue

1
2Ba1 +

1
2Ba2, and

marginal revenue on each task 1
2B. In Scheme 2, and with a hurdle set at 2

successes, the agent�s expected income is Ba1a2, and his marginal revenue

on task i is Baj . This exceeds the incentive in Scheme 1 if aj > 1
2 . With a

hurdle set at 1 success, we similarly �nd the agent�s marginal revenue to be

B(1� aj), which exceeds the incentive in Scheme 1 if aj < 1
2 . Scheme 2 can

thus always be arranged so as to yield stronger incentives than Scheme 1.

In other words, since there are upper bounds on the size of the bonuses that

can be implemented in relational contracts, a bonus on each task puts more

restrictions on the incentive problem than what is necessary. The index

contract is more "�exible" and alleviates the problems caused by bonus

limitations.

The performance measures within a scorecard may well be correlated. We

point out that such correlations will a¤ect the e¢ ciency of the contract

and we show, for a parametric (multinormal) speci�cation, that the e¢ -

ciency of the index contract depends on how correlations a¤ect the preci-

sion of the overall scorecard measure. In particular, an index contract with

non-negative weights on all relevant measures will work even better if the

measures are negatively correlated. The reason is that negative correlation

reduces the variance of the overall performance measure (the index) in such

cases. This is bene�cial in our setting not because a more precise measure

reduces risk �since the agent is assumed to be risk neutral �but because it

strengthens, for any given bonus level, the incentives for the agent to provide

e¤ort.3

We also consider the case where some measures are veri�able, and some

are not. We show that the principal will include veri�able measures in the

3Similar e¤ects are shown in Kvaløy and Olsen (2019), which analyzes relational con-
tracts and correlated performances in a model with multiple agents, but single tasks.
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relational index contract in order to strengthen incentives.4 This resembles

balanced scorecards seen in practice, which often include both veri�able

measures such as sales or �nancial accounting data, and non-veri�able (sub-

jective) measures, such as customer satisfaction, product quality, or other

non-�nancial measures that are not subject to law enforcement (see e.g.

Kaplan and Norton, 2001). By including a veri�able task in the relational

contract, the variance of the performance index may be reduced, which again

strengthens incentives. We also show that performance on the veri�able task

is taken into the index as a benchmark, to which the other performances are

compared. Moreover, the principal will still o¤er an explicit bonus contract

on the veri�able task, but this bonus is generally a¤ected by the optimal

relational index contract.5

A paper that is closely related to ours is Budde (2007). It investigates

the incentive e¤ects of a balanced scorecard scheme under both formal (ex-

plicit) and relational contracts. First, in a setting with veri�able, but dis-

torted, performance measures, it derives conditions under which a �rst-best

allocation can be implemented by an explicit BSC-type of contract. The

paper then extends the analysis to include non-veri�able measures and in-

vestigates when a relational contract can help to provide undistorted in-

centives. The paper is important, as it shows that BSC-types of contracts

can provide undistorted incentives in settings with no noise and su¢ cient

congruity/alignment between performance measures and the "true" value

added.

In contrast to Budde, who takes the BSC-contract as given, we show that

BSC-contracts can emerge as an optimal contract in a second-best world

where noisy and potentially distorted measurements plus the limitations of

self-enforcement preclude implementation of the �rst-best. The logic behind

combining non-veri�able and veri�able measures in the relational contract

4Our analysis of this issue presumes short-term explicit (court enforced) contracts.
Watson, Miller and Olsen (2020) presents a general theory for interactions between rela-
tonal and court enforced contracts when the latter are long term and renegotiable, and
show that optimal contracts are then non-stationary. Implications of this for the contract-
ing problems considered in the current paper are left for future research.

5Our model thus complement the in�uential papers by Baker, Gibbons and Murphy
(1994) and Schmidt and Schnitzer (1995) on the interaction between relational and ex-
plicit contracts. While their results are driven by di¤erences in fallback options created
by the explicit contracts, our results stem from correlation between the tasks and (or)
misalignment between measurements and true values.
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is also di¤erent in the model in this paper relative to Budde�s, mainly since

our model includes noise in the measurements. While Budde focuses on

how non-veri�able measures can help remove distortions, we focus on how

veri�able measures - used in relational contracts - can improve the precision

of the BSC performance measure.

The rest of the paper is organized as follows: In section 2 we present the

basic model and a preliminary result. In Section 3 we introduce distorted

performance measures and present our main result, which shows that an

optimal relational contract takes the form of a BSC (index) contract. The

result relies on some assumptions, including validity of the "�rst-order ap-

proach"; and we discuss this assumption in two subsections. The discussion

reveals that the approach is not valid if measurements are very precise, and a

characterization of optimal contracts is thus lacking for such environments.

We show that index contracts will nevertheless perform well under such con-

ditions, and in fact become asymptotically optimal when measurement noise

vanishes. In Section 4 we extend the model to include both veri�able and

non-ver�able performance measures. Section 5 concludes.

2 Model

First we present the basic model between a principal and a multitasking

agent. Consider an ongoing economic relationship between a risk neutral

principal and a risk neutral agent. Each period the agent takes an n-

dimensional action a = (a1; :::; an)
0, generating a gross value v(a) for the

principal, a private cost c(a) for the agent, and a set of m � n stochastic

performance measurements x = (x1; :::; xm)
0. These measurements are ob-

servable, but not veri�able, with joint density, conditional on action f(x; a).

Only the agent observes the action. We assume v(a) to be increasing in each

ai and concave, and c(a) to be increasing in a each ai and strictly convex

with c(0) = 0 and gradient vector (marginal costs) rc(0) = 0. The total

surplus (per period) in the relationship is v(a)� c(a).

Given observable (but not veri�able) measurements, the agent is each period

promised a bonus �(x) from the principal. Speci�cally, the stage game

proceeds as follows: 1. The principal o¤ers the agent a contract consisting
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of a �xed payment w and a bonus �(x). 2. If the agent accepts, he chooses

some action a, generating performance measure x. If the agent declines,

nothing happens until the next period. 3. The parties observe performance

x, the principal pays w and chooses whether or not to honor the full contract

and pay the speci�ed bonus. 4. The agent chooses whether or not to accept

the bonus he is o¤ered. 5. The parties decide whether to continue or break

o¤ the relationship. Outside options are normalized to zero.

As shown by Levin (2002, 2003), we may assume trigger strategies and sta-

tionary contracts. The parties honor the contract only if both parties hon-

ored the contract in the previous period, and they break o¤ the relationship

and take their respective outside options otherwise. To prevent deviations,

the self-enforced discretionary bonus payments must be bounded above and

below. As is well known, the range of such self-enforceable payments is

de�ned by the future value of the relationship, hence we have a dynamic

enforceability condition given by

0 � �(x) � �

1� � (v(a)� c(a)); all feasible x: (1)

The optimal relational contract maximizes the surplus v(a)�c(a) subject to
this constraint and the agent�s incentive compatibility (IC) constraint. The

latter is

a 2 argmax
a0

E(�(x)j a0)� c(a0);

with �rst-order conditions (subscripts denote partials)

0 =
@

@ai
E(�(x)j a)� ci(a) =

Z
�(x)fai(x; a)� ci(a); i = 1; :::n:

A standard approach to solve this problem is to replace the global incentive

constraint for the agent with the local �rst-order conditions. It is well known

that this may or may not be valid, depending on the circumstances (see e.g.

Hwang 2016 and Chi-Olsen 2018). We will in this paper mostly assume that

it is valid, and subsequently state conditions for which this is true. So we

invoke the following

Assumption A. The �rst order approach (FOA) is valid.
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Unless explicitly noted otherwise, we will take this assumption for granted

in the following. We then have an optimization problem that is linear in the

bonuses �(x). The optimal bonuses will then have a bang-bang structure,

and hence be either maximal or minimal, depending on the outcome x.

Introducing the likelihood ratios

lai(x; a) = fai(x; a)=f(x; a);

we obtain the following:

Lemma 1 There is a vector of multipliers � such that (at the optimal ac-
tion a = a�) the optimal bonus is maximal for those outcomes x where

�i�ilai(x; a) > 0, and it is zero otherwise, i.e.

�(x) =
�

1� � (v(a)� c(a)) if �i�ilai(x; a) > 0;

and �(x) = 0 if �i�ilai(x; a) < 0.

The lemma says that there is an index ~y(x) = �i�ilai(x; a), with a = a�

being the optimal action, such that the agent should be paid a bonus if and

only if this index is positive, and the bonus should then be maximal. This

index, which takes the form of a weighted sum of the likelihood ratios for

the various tasks, is in this sense an optimal performance measure for the

agent.

The index is basically a scorecard for the agent�s performance, and since it

is optimal, it is (more or less by de�nition) balanced. In the following we

will introduce further assumptions to analyze its properties.

3 Scorecards and distorted measures

Following Baker (1992), Feltham-Xie (1994), and the often used modelling

approach in the management accounting literature (e.g. Datar et al 2001,

Huges et al 2005, Budde, 2007, 2009), we will in the remainder of the paper

assume that the measurements x are potentially distorted and given by

x = Q0a+ ", (2)
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where Q0 is an m�n matrix of rank m � n, and " � N(0;�) is multinormal

with covariance matrix � = [sij ] (i.e. x � N(Q0a;�)). As is common in

much of this literature, we assume multinormal noise for tractability The

likelihood ratios for this distribution are linear in x, and this implies that

the optimal performance index identi�ed in the previous lemma is also linear

in x. In particular, the vector of likelihood ratios is given by the gradient

ra ln f(x; a) = Q��1(x�Q0a). Hence, de�ning vector � by � 0 = �0Q��1, the

index can be written as �i�ilai(x; a
�) = � 0(x�Q0a�); where the expression

in accordance with Lemma 1 is evaluated at a = a�. So we have:

Proposition 1 In the multinormal case, there is a vector � and a perfor-
mance index ~y = �j� jxj such that the agent is optimally paid a bonus if and

only if the index exceeds a hurdle (~y0). The hurdle is given by the agent�s

expected performance in this setting (~y0 = �j� jE(xj j a�)), and the bonus,
when paid, is maximal: �(x) = �

1�� (v(a
�)� c(a�)).

This result parallels Levin�s (2003) characterization of the single-task case,

where the agent optimally gets a bonus if his performance on the single

task exceeds a hurdle.. Here, in the multitask case, the principal o¤ers an

index ~y = �j� jxj , i.e. a �weighted sum�of performance outcomes on the

various tasks, such that the agent gets a bonus if and only if this index

exceeds a hurdle ~y0. The optimal hurdle is given as the similar weighted

sum of optimal expected performances. Hence, performance xi is compared

to expected performance, given (equilibrium) actions. If the weighted sum of

performances exceeds what is expected, then the agent obtains the bonus.6

Figure 1 below illustrates the structure of the optimal bonus scheme. The

index and its hurdle de�nes a hyperplane delineating outcomes "above" the

plane from those "below", where the former are rewarded with full and

maximal bonus while the latter yield no bonus at all. This is clearly di¤erent

from a structure with separate bonuses and hurdles on each task. Such a

structure is illustrated by the blue lines in the �gure. In the two-dimensional

6The characterization given in the proposition relies on our maintained assumption that
the �rst-order approach is valid. This is not innocous in the multinormal case. It is known
that in such a setting with a single action (n = 1) the approach is not valid if measurements
are very precise, i.e. if the variance of the performance measure is su¢ ciently small. On
the other hand, it is valid in that setting if the variance is not too small; and as we will
justify below, this is true also in the present multi-action setting.
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case this structure de�nes four regions in the space of outcomes; where either

zero, one or two bonuses are paid, respectively. The analysis shows that the

structure de�ned by the index is better, and in fact optimal.

Figure 1. Structure of the optimal index contract.

Proposition 1 characterizes the type of bonus scheme that will be optimal.

The next step is to characterize the parameters of the scheme, i.e. the

weights � and the hurdle ~y0 that will generate optimal actions. To this we

now turn.

Given the index ~y with hurdle ~y0, and the bonus � = b being paid for ~y > ~y0,

the agent�s performance related payo¤ is

bPr( ~y > ~y0j a)� c(a) = bPr(� 0x > ~y0
�� a)� c(a)

Using the normal distribution we �nd that the agent�s �rst order conditions

for actions at their equilibrium levels (a = a�), then satisfy

b�0
1

~�
Q� = rc(a�) (3)
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where �0 = 1=
p
2� is a parameter of the distribution, and ~� is the standard

deviation of the performance index:

~� = SD(~y) = (� 0��)1=2:

Note that incentives, given by the marginal revenues on the left hand side of

(3), are inversely proportional to the standard deviation ~�. All else equal, a

more precise performance index (lower ~�) will thus enhance the e¤ectiveness

of a given bonus in providing incentives to the agent. This indicates that

more precise measurements will be bene�cial in this setting, and that this

will occur not because of reduced risk costs (there are none, by assumption)

but because of enhanced incentives. The monetary bonus is constrained by

self enforcement, and other factors that enhance its e¤ectiveness will then

be bene�cial. We return to this below.

The optimal bonus paid for qualifying performance is the maximal one, so

b =
�

1� � (v(a
�)� c(a�))

For given actions a� the elements b and � of the optimal incentive scheme

will be given by these relations.

On the other hand, optimal actions must maximize the surplus v(a)� c(a)

subject to these conditions. To characterize the associated optimization

program for actions, it is convenient to introduce modi�ed weights in the

performance index, namely a weight vector � given by

� = b�0
1

~�
�

Since � is just a scaling of � , i.e. � = k�; k > 0, the performance index can

be expressed in terms of � as y = �0x, and the agent is then given a bonus

if this index exceeds its expected value y0 = �0E(xj a�).

Note from the de�nitions of � and ~� that �0�� = (b�0=~�)
2� 0�� = �20b

2, so

we have: �
�0��

�1=2
=�0 = b =

�

1� � (v(a
�)� c(a�)) (4)
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Optimal actions a� must thus satisfy (4) and the agent�s �rst-order condi-

tion (3), which now takes the form Q� = rc(a�). As noted, the optimal
action vector must solve the problem of maximizing v(a) � c(a) subject to

these constraints. In fact, since the last equality in (4) re�ects the dynamic

enforcement constraint, we can replace it by weak inequality, and thus state

the following result

Proposition 2 In the multinormal case, optimal actions a� are solutions
to the following problem:

max
a;�
(v(a)� c(a))

subject to Q� = rc(a) and

�

1� � (v(a)� c(a)) �
�
�0��

�1=2
=�0 (5)

The optimal solution yields actions a� and associated weight parameters ��

for the performance index. These weights are (from Q� = rc(a�)) given by�

�� = (Q0Q)�1Q0rc(a�):

As noted above, the optimal actions can be implemented by rewarding the

agent with the largest dynamically enforceable bonus (as given in (4)) if and

only if performance measured by the index y = ��0x exceeds its expected

value y0 = ��0E(xj a�).

There are two sources for deviations from �rst-best actions in this setting,

and they are re�ected in the two constraints in the optimization problem.

The �rst is due to distorted primary measures x, and will be relevant when

the vector of marginal costs at the �rst-best actions (aFB) cannot be written

as rc(aFB) = Q�, for any �; i.e. when this vector doesn�t belong to the

space spanned by (the column vectors of) Q.

Distorted measures have been studied extensively for the case when these

measures are veri�able, see e.g. Feltham-Xie (1994), Baker (1992), Budde

(2007); and particularly in settings where value- and cost-functions are linear
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and quadratic, respectively:

v(a) = p0a+ v0 and c(a) =
1

2
a0a: (6)

Here rc(a) = a and �rst-best actions, characterized by marginal cost be-

ing equal to marginal value, are given by aFB = p. If we now neglect

the dynamic enforceability constraint (5) in the last proposition, we are

lead to maximize the surplus p0a � a0a=2 subject to a = Q�. This max-

imization yields � = (Q0Q)�1Q0p and action, here denoted a�0 given by

a�0 = Q(Q0Q)�1Q0p. The best action, subject only to the agent�s IC con-

straint a = Q�, is thus generally distorted relative to the �rst-best action.

It may be noted that the solution a�0 just derived is also the optimal solu-

tion in a setting where the measurements x are veri�able and the agent is

rewarded with a linear incentive scheme �0x+�. This is the setting studied

in several papers on distorted measures, and the literature has introduced

indicators to measure the degree of distortion. One such indicator is the

ratio of second-best to �rst-best surplus (as in Budde 2007), which for the

the second-best solution just derived (and with v0 = 0) amounts to

a�00 a
�
0

p0p
=
p0Q(Q0Q)�1Q0p

p0p

In particular, when the measure x is one-dimensional, so Q is a vector, say

Q = q 2 Rn, the ratio is (p0q= jpj jqj)2 and is thus a measure of the alignment
between vectors p and q. Then the �rst-best can be attained only if the two

vectors are perfectly aligned (q = kp; k 6= 0).

In the case of non-ver�able measurements x, which is the case analyzed in

this paper, the solution must also respect the dynamic enforcement con-

straint, represented by (5) in the last proposition. When this constraint

binds, the action a�0 is generally no longer feasible. Moreover, since the

stochastic properties of the measurements, represented by the covariance

matrix �, a¤ects the constraint, they will also a¤ect the solution.

The expression (�0��)1=2 on the RHS of the constraint represents the stan-

dard deviation of the performance index y = �0x. It can be written as

(�i�jsij�i�j)
1=2, where sij = cov(xi; xj). It is clear that any variation in �

that increases this expression will tighten the constraint, and hence reduce

13



the total surplus. In particular, any increase of a variance in � will have this

e¤ect and, provided � has no negative elements, any increase of a covariance

in � will also have this e¤ect. This substantiates the intuition discussed

above about less precise measurements (larger variances) being detrimen-

tal in this setting. It is also noteworthy that positive correlations among

elements in the measurement vector x will then be detrimental for the sur-

plus, while negative correlations will be bene�cial. This follows because, all

else equal, the former increases and the latter reduces the variance of the

performance index (when � has no negative elements).

From the enforcement constraint (5) it may appear that any action a will

satisfy this constraint if the standard deviation of the performance index

on the RHS is su¢ ciently small; and hence that the constraint becomes ir-

relevant (non-binding) if measurements are su¢ ciently precise. The result

in Proposition 2 builds, however, on the assumption that the frst-order ap-

proach is valid; and as we will demonstrate below, this is generally not the

case for su¢ ciently precise measurements.

The approach replaces global IC constraints for the agent with a local one,

and is only valid if the action (a�) derived this way is in fact a global optimum

for him under the given incentive scheme. Observe that, by choosing action

a� the agent gets a bonus if the index y = ��0x exceeds its expected value,

an event which occurs with probability 1
2 . The agent�s expected revenue is

then b=2, with the bonus b given by (4), and this must strictly exceed the

cost c(a�) in order for the agent to be willing to choose action a�. This

is so because by alternatively choosing action a = 0, the agent incurs zero

costs but still obtains the bonus with some (small) positive probability. The

following condition is thus necessary:

�

1� � (v(a
�)� c(a�)) > 2c(a�) (7)

If a solution identi�ed by the program in Proposition 2 doesn�t satisfy this

condition, it is not a valid solution. The reason is that the identi�ed action

is not a global optimum for the agent under the associated incentive scheme.

A su¢ cient condition will be given below in Section 3.1.

We now present two examples to illustrate applications of Proposition 2.
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Example 1. Suppose n = 3 and that we have m = 2 measurements, given

by

x1 = a1 + "1; x2 = k � (a2 + a3) + "2; k > 0;

Then Q0 has rows (1; 0; 0) and (0; k; k), and we have Q0Q = I (the identity

matrix) if k = 1=
p
2. To simplify the algebra we will invoke this assumption

regarding k. Assume also value- and cost-functions as in (6), with v0 = 0.

Substituting from the agent�s IC condition a = Q� into the objective and the

enforcement constraint in Proposition 2, we are lead to choose � to maximize

p0Q� � 1
2�
0� subject to

�

1� � (p
0Q� � 1

2
�0�) � (�0��)1=2=�0

Given our assumptions about the measurements, we have p0Q = (p1; (p2 +

p3)k). To simplify further, assume p1 = (p2+ p3)k and var("1) = var("2) =

s2, which implies that the objective and the constraint is entirely symmetric

in �1 and �2. The optimal solution is then also symmetric, i.e. �1 = �2,

and the (binding) enforcement constraint for the common value �1 takes the

form
�

1� � (2p1�1 � �
2
1) = s�1(2 + 2�)

1=2=�0

where � = corr("1; "2). The optimal action is then a� = Q� = (1; k; k)0�1,

and the associated surplus per period is 2p1�1 � �21. We see that a higher

variance (s2) or a higher correlation (�) for the observations will reduce �1
and reduce the surplus.

Given our assumptions about measurements in this example, we can promote

action a1 via incentives on x1, and we can promote the sum a2 + a3 via

incentives on x2. As we have seen, the optimal incentive scheme rewards

the agent with a �xed bonus (b) if performance measured by an index �a

scorecard ��1x1+�2x2 exceeds a hurdle. The agent will then clearly choose

a2 = a3, since the marginal revenues on these two action elements are equal.

This will entail a distortion from the �rst-best if the marginal values of these

two elements for the principal are not equal (p2 6= p3). The �rst best action

is here aFB = (p1; p2; p3)0.

If this were the only distortion, the weight vector � would be chosen to

maximize the surplus, subject to the IC constraints, which would constrain
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actions such that a2 = a3. In our setting the enforcement constraint puts

further bounds on these weights. We have in this example invoked an addi-

tional assumption (p1 = (p2 + p3)k) that ensures equal weights �1 = �2 in

the optimal index. The magnitude of this common weight, and therefore the

strength of the agent�s incentives, is bounded by the dynamic enforcement

constraint. And as we have seen, the noise parameters s and � have negative

in�uences in this respect.

Example 2. This example illustrates that distorted measurements may
imply negative incentives on some measures, and that this has implications

for comparative statics. Suppose again that there are n = 3 action elements

and n = 2 measurements, but now given by

x1 = a1 + "1; x2 = a1 +
1

2
a2 + "2:

Suppose further that p = (1; 1; 1)0, so the �rst-best action under quadratic

costs is aFB = p = (1; 1; 1)0 with surplus 3(1 � 1
2): For the given measure-

ments we cannot provide incentives for a3, and it follows that the second-best

action that can be implemented via the IC constraint a = Q� is a�0 = (1; 1; 0),

with surplus 2(1 � 1
2) = 1. Geometrically this action is the projection

of aFB = p on the plane spanned by Q, and it is achieved by setting

�1 = �1; �2 = 2. Figure 2 below illustrates this. The positive incentive

�2 on x2 promotes a1 and a2, but with twice as strong incentives on a1 as

on a2. The negative incentive �1 on x1 dampens net incentives on a1, and

achieves in combination with �2 the desired balance between a1 and a2. As

discussed above, this would be the optimal solution if measurements were

veri�able.
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Figure 2. Illustration for Example 2.

When measures are non-veri�able, however, this solution would not be fea-

sible if the enforcement constraint is violated, i.e. if

�0
�

1� �1 < (var(�1x1 + �2x2))
1=2 = (s11 � 4s12 + 4s22)1=2;

where sij are the elements of �, and the last equality follows from �1 =

�1; �2 = 2. The action a and the weights � must then be modi�ed to

yield the highest surplus while satisfying both constraints. Observe that a

larger covariance s12 will here reduce the variance of the performance index,

and hence (at least locally) relax the enforcement constraint and thus allow

for a larger surplus. In a case like this, where the weight elements have

opposite signs, positive correlations between the measurements may thus be

bene�cial, and negative correlations detrimental.

Remark. It is of some interest to compare the result in Proposition 2

above to the Holmstrom-Milgrom (1991) and Feltham-Xie (1994) multitask

models for veri�able measurements. In those models the agent is o¤ered a

linear incentive scheme �0x + �, and for E(xj a) = Q0a the IC constraint

takes the form Q� = rc(a). With a risk averse (CARA) agent the total
surplus (in certainty equivalents) is then v(a) � c(a) � r

2�
0��, where the

last term captures risk costs, given by r
2var(�

0x). Letting M = (Q0Q)�1Q0

we have � = Mrc(a) and surplus v(a) � c(a) � r
2(Mrc(a))

0�(Mrc(a)),
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which is to be maximized by choice of a. In the maximization problem in

Proposition 2 we have similarly from IC that � = Mrc(a), and the La-
grangian for the problem can then be written as (v(a) � c(a))(1 + �) �
�1����0

((Mrc(a))0�(Mrc(a)))1=2, where � is the shadow price on the en-

forcement constraint. Hence the optimal solution maximizes v(a) � c(a) �
 ((Mrc(a))0�(Mrc(a)))1=2, where  = �

1+�
1��
��0

can be seen as an (endoge-

nous) cost factor.

There is thus a formal similarity between the models for the two contractual

settings. But the mechanisms behind the trade-o¤s are di¤erent. When

performance measures are veri�able, bonuses can in principle be arbitrarily

large, but are optimally constrained due to the risk costs they generate for

a risk averse agent. More precise measurements lowers the risk costs and

consequently make bonuses in a sense more e¤ective instruments to achieve

higher surplus. With non-veri�able measures bonuses are constrained by

self-enforcement at the outset, but are more e¤ective in providing incentives

if measurements are more precise. More precise measurements are thus

bene�cial in both settings, but for quite di¤erent reasons.

3.1 Validity of the �rst-order approach

We have throughout assumed FOA to be valid. Here we give su¢ cient

conditions for this to be the case.

Let a�; �� be a solution to the optimization problem in Proposition 2. The

agent then gets a bonus (b) if the index y = x0�� exceeds the hurdle y0 =

E(yj a�) = a�0Q��. By construction, a� satis�es the �rst-order conditions

for the agent�s optimization problem. These conditions are given by Q�� =

rc(a�). We will �nd conditions guaranteeing that a� is indeed an optimal
choice for the agent. Observe that when the enforcement constraint binds,

the necessary condition (7) implies a lower bound for the standard deviation

of the performance index: (��0���)1=2 > 2c(a�)�0.

If the agent chooses an action a, the index y has expectation e = E(yj a) =
a0Q�� and variance �2 = vary = ��0���. Given our assumptions, the index

y is N(e; �), and thus has a probability distribution that depends on action
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a only via the (one-dimensional) expectation e = E(yj a) The agent�s ex-

pected revenue (bPr(y > y0j a)) then also depends on a only via e. In light
of this, it is natural to consider the action that induces e with minimal costs

for the agent, i.e. action â(e) given by

â(e) = argmin
a
c(a) s.t. a0Q�� = e;

and let C(e) = c(â(e)) be the minimal cost.

We can then essentially write the agent�s payo¤ as a function u(e) (see the

appendix for details), and seek conditions which guarantee that this function

has a unique maximum. To this end, let H(a) = [cij(a)] denote the Hessian

for the cost function c(�), and de�ne

h(a�) = sup
e

�
a�0rc(a)
a0rc(a�)

rc(a�)0H(a)�1rc(a�)
a�0rc(a�)

���� a = â(e), 0 < e � a�0rc(a�)
�

(8)

We may note that for a quadratic cost function7 c(a) = 1
2a
0Ka we have

h(a�) = 1. (In fact, the maximand here is the inverse of the elasticity of

the marginal cost function C 0(e), see the appendix.) We then obtain the

following result.

Proposition 3 Let a�; �� be a solution from Proposition 2 with the en-

forcement constraint binding. There is ��0 > 0 such that a� is an optimal

choice for the agent, and thus the �rst-order approach is valid, if and only

if ��0��� � ��20 . A su¢ cient condition (for strict inequality, �
�0��� > ��20 ,)

is (��0���)1=2 � a�0rc(a�)
p
h(a�)=2, which is equivalent to

�

1� � (v(a
�)� c(a�)) � a�0rc(a�)

p
h(a�)=(2�0): (9)

Observe that for a quadratic cost function the expression on the right-hand

side of (9) is c(a�)=�0 with 1=�0 =
p
2� � 2:5. A su¢ cient condition for the

approach employed in Proposition 2 to be valid in this case is thus that the

solution entails a cost for the agent that is no larger than 40% of the entire

value of the future relationship.

It can be veri�ed that for su¢ ciently imprecise measurements, a solution

7For c(a) = (a0Ka)r=2r, r � 1, we �nd h(a�) = 2r � 1.
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from Proposition 2 will indeed, under some regularity conditions, satisfy

condition (9). Speci�cally, assuming � = s�0 and lima!0 a0rc(a)
p
h(a) = 0

we can verify that if s > 0 is su¢ ciently large, a solution a� will satisfy this

condition when v(0) > 0.8 This is so because a solution a� will necessarily

become "small" (approach zero) when measurements become very imprecise

(s!1), and then (9) will be satis�ed under the given assumptions..

We conclude this section with an observation that can be helpful for char-

acterizing properties of the solution in Proposition 2:

Corollary 1 Let a�; �� is a solution to the problem in Proposition 2 with

the enforcement constraint binding, with surplus V �, and which satis�es

��0��� > ��20 . Then a�; �� solves

min
�;a

�0�� st rc(a) = Q� and v(a)� c(a) � V �

Observe that the last constraint here must bind, since otherwise a = 0 and

� = 0 would solve the minimization problem. Then, if the statement in

the corollary were not true, there is a; � satisfying the two constraints and

�0�� < ��0���. Since the enforcement constraint in Proposition 2 would

then be slack, a higher surplus than V � would be feasible.

Applying this result to the linear-quadratic case (6), we �nd that a� must

satisfy a� = Q�� = �Q(2�+�Q0Q)�1Q0p, where � > 0 is a multiplier for the

last constraint in the corollary. For the simple case of undistorted (Q = I)

and uncorrelated measures, we then have a�i = � pi
2sii+�

, i = 1:::n, where sii =

var(xi). Comparing two action elements a�i ; a
�
j with equal productivities

(pi = pj), this reveals that the optimal solution entails less of the element

that has the largest measurement variance.

3.2 Very precise measurements

We have seen that the �rst-order approach used to derive Proposition 2

may be invalid if measurements are noisy, but very precise. Speci�cally,

8This will also hold for v(0) = 0 if (v(a)� c(a))=a0rc(a)
p
h(a) is bounded away from

zero when a! 0.
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the action a�0 that maximizes surplus subject to the constraint rc(a) = Q�

will be a solution to the program in Proposition 2 if measurements are

su¢ ciently precise to make the index variance (�0��) small enough to satisfy

the enforcement constraint. This is true for any � > 0, but the action a�0 will

not satisfy the necessary condition (7) for a valid solution if � is su¢ ciently

small. Hence the �rst order approach is not valid in such a case.

We thus lack a characterization of optimal incentive schemes for settings

with noisy but very precise measurements. On the other hand , the optimal

scheme for an environment with no noise is known (Budde 2007). In this

subsection we show that if V NF is the optimal surplus in a setting with

no noise, then any surplus value V < V NF can be implemented with an

index contract if the measurements are su¢ ciently precise. Index contracts

(scorecards) are in this sense at least approximately optimal for su¢ ciently

precise measurements.

Measurements without noise. As a reference case we �rst consider measure-

ments with no noise, i.e. of the form

x = Q0a:

We have then that an action a can be implemented by some bonus scheme

�(x) if and only if

rc(a) = Q
 (10)

for some 
 2 Rm. The condition is necessary because, if a generating

measurement x = Q0a is optimal for the agent, then it must be cost-

minimizing among all actions that generate the same x. So it must solve

min~a c(~a) subject to x = Q0~a, and hence satisfy the �rst-order condition

(10) with Lagrange multiplier 
. Observe that 
 is uniquely given by


 = (Q0Q)�1Q0rc(a). On the other hand, if a satis�es (10), it is a cost-
minimizing action generating measurement x = Q0a, and will be chosen by

the agent under a bonus scheme with �(x) � c(a) and �(~x) = 0; ~x 6= x.

Being discretionary, bonuses must respect a dynamic enforcement constraint.

Since the minimal bonus to implement an action a is its cost c(a), the con-
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straint here takes the form

c(a) � �

1� � (v(a)� c(a)) (11)

The optimal contract in this setting thus maximizes the surplus v(a)� c(a)
subject to (10) and (11). Let aNF denote the optimal action and V NF the

maximal surplus in this noise-free environment. In the following we will

assume that the enforcement constraint binds and thus implies a surplus

V NF strictly less than the optimal surplus obtained without the constraint,

thus V NF < V �0 = max fv(a)� c(a)jrc(a) = Q�, � 2 Rmg

When the enforcement constraint here binds, we have c(aNF ) = �v(aNF )

We further have, from (10) that rc(aNF ) = Q
. In the linear-quadratic

case as in (6) with v0 = 0, this yields aNF = Q
 and (by optimization of

the surplus with respect to 
) 
 = k(Q0Q)�1Q0p with k = 2� when the

enforcement constraint binds, and k = 1 otherwise. The constraint binds

for � < 1
2 . The optimal surplus is then V

NF = (k � 1
2k
2)p0Q(Q0Q)�1Q0p.

This is a case considered in Budde (2007).

Measurements with noise. Consider again noisy measurements, and recall

that the approach behind Proposition 2 is valid only if the solution (action

a�) satis�es condition (7). This condition is stricter than condition (11).

This implies that, although noise-free measurements can be seen as a limiting

case of noisy measurements when all variances go to zero, a valid solution

from Proposition 2 can generally not converge to aNF .

It may be noted that Chi and Olsen (2018) have found that for settings

with a univariate action, an index contract derived form the likelihood ratio

is still optimal even when the �rst-order approach is not valid. The only

required modi�cation is that the threshold for the index must be adjusted,

taking into account not only a local IC constraint for the agent, but also

non-local ones, which will be binding. It is an open question whether a

similar property holds in settings with multivariate actions.

In the setting of this paper we can however show that for noisy but suf-

�ciently precise measurements, any surplus V < V NF can be obtained by

means of an index contract. This doesn�t mean that such a contract is op-

timal, but it will at least be approximately optimal for such measurements.

22



Speci�cally, we will consider actions that satisfy

2c(a) � �

1� � (v(a)� c(a)) > c(a); (12)

plus rc(a) = Q� for some � 2 Rn. Such an action will be feasible for

the optimization problem with noise free measurements, but not optimal in

that problem, since the enforcement constraint (11) doesn�t bind. Hence it

generates a surplus V < V NF , but the action a can be chosen such that V

is arbitrarily close to V NF .

The �rst inequality in (12) implies that the necessary condition (7) for FOA

to be valid is violated, hence a cannot be implemented by the scheme applied

in Proposition 2. Recall that this is a consequence of the scheme being

designed such that, for the desired action the agent�s expected revenue falls

short of his costs. (The hurdle for the index is set to maximize marginal

incentives, but this implies that the probability to obtain the bonus is 1/2,

and the �rst inequality in (12) then implies a negative payo¤ for the agent,

relative to choosing action a = 0.)

It seems intuitive that this problem can be alleviated by modifying the hurdle

so as to make it less demanding for the agent to qualify for the bonus. On

the other hand, such a modi�cation will also negatively a¤ect the agent�s

marginal incentives. It turns out that, if the measurements are su¢ ciently

precise, a modi�cation of the hurdle can achieve both goals: su¢ ciently

strong incentives and a non-negative payo¤ for the agent, so that the desired

action can be implemented. This is formally stated as follows.

Proposition 4 Let action a satisfy 2c(a) � �
1�� (v(a) � c(a)) > c(a) and

rc(a) = Q�, for some � 2 Rm. There is �0 > 0 with the following property:
If � satis�es �0�� � �2 < �20, then there is a hurdle �(�) < E(x0�j a)
such that the index x0� with hurdle �(�) implements a. Moreover, �(�) !
E(x0�j a) as � ! 0.

The proposition implies that any surplus V smaller than, but close to V NF ,

can be obtained by means of an index contract, provided measurements are

su¢ ciently precise. It also implies that if such a contract is optimal in this
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class (of index contracts), then FOA must necessarily be violated, and hence

some non-local incentive constraint must bind.

To make the last observation precise, let VM < V NF be the surplus de�ned

by

VM = max

�
v(a)� c(a)j 2c(a) � �

1� � (v(a)� c(a)) and rc(a) = Q�, � 2 Rm
�
;

and observe that the �rst constraint in this problem must bind. (Other-

wise we would have VM = V �0 and VM � V NF , contradicting our basic

assumption V NF < V �0 here.)

Proposition 4 implies that any surplus V 2 (VM ; V NF ) can be implemented
with a linear index contract for some set of covariance matrices � 2 �(V ). It
follows that if an optimal such contract yields a surplus V 2 (VM ; V NF ), it
must be optimal for some � in the set �(V ). It must also be the case that the

implemented optimal action, say a�, satis�es 2c(a�) > �
1�� (v(a

�) � c(a�)),

since otherwise the surplus could not exceed VM . It follows from this that

the necessary condition (7) for FOA to be valid is violated, and we can state

the following result

Corollary 2 If an index contract that implements an action a� with surplus
V 2 (VM ; V NF ) is optimal in the class of such contracts, for some �, then
non-local incentive constraint(s) will be binding in the optimization program

that de�nes the contract.

This implies that characterizing the optimal (linear) index contract can be

technically challenging in this setting. Of course this applies also for the

overall optimal contract, since it must have non-local incentive constraints

binding as well. (Otherwise it would be characterized by Proposition 2, and

thus be an index contract with only a local constraint binding.) We leave

these issues as topics for future research.
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4 Non-veri�able and veri�able measurements

We have so far focused on non-veri�able measurements. But incentive

schemes, at least for top management, will typically also include veri�able

�nancial performance measures. Consider then a situation where there are

both non-veri�able and veri�able measurements available. To simplify the

exposition we will assume that there is one veri�able measure (x0) in ad-

dition to the the non-veri�able measures (x) considered above. The latter

depends stochastically on e¤ort as in (2) and the former is assumed to have

a similar representation:

x0 = q00a+ "0;

where q0 2 Rn and "0 is normally distributed noise generally correlated with
the noise variables " in x. (More precisely, the vector ("0; ") is multinormal.)

The agent can now be incentivized by a court enforced (explicit) bonus b0x0
on the veri�able measure and a discretionary (relational) bonus �(x0; x)

depending on the entire measurement vector (x0; x). We consider a case

where only short term explicit contracts are feasible, which allows us to

con�ne attention to stationary contracts.9.

In each period, the agent will now choose actions a to maximize E(b0x0 + �(x0; x)j a)�
c(a), yielding �rst-order conditionsZ

(b0x0 + �(x0; x))fai(x0; x; a)� ci(a) = 0; i = 1; :::; n:

(Here we use f(x0; x; a) to denote the joint density of all measurements,

conditional on action.)

Returning to the assumption that FOA is valid, the principal then maximizes

the total surplus v(a) � c(a) subject to these constraints and the dynamic

enforcement constraint. We assume as before that the parties separate if the

relational contract is broken. The enforcement constraint is then the same

as (1), just with x now replaced by the entire measurement vector (x0; x).

From the same principles as before it follows that the agent should be

9Watson, Miller and Olsen (2020) analyse long term renegotiable court-enforced con-
tracts, and show that it wil generally be optimal to renegotiate these contracts each period
when in combination with relational contracts.
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given the discretionary bonus if and only if an index exceeds a hurdle, and

from the normal distribution it follows that this index is linear in the mea-

surements; y = �mi=0� ixi � �0x0 + � 0x, and moreover that the hurdle is

y0 = E(�mi=0� ixij a�), where a� is the equilibrium action. If the magnitude

of the bonus is b, this leads to the following �rst-order conditions for the

agent at the equilibrium action:

(b0 + b
�0
�
�0)q0 + b

�0
�
Q� = rc(a�)

where now �2 = var�mi=0� ixi = var(�0x0 + � 0x) is the variance of the

performance index in this setting.

As before, it is convenient to introduce modi�ed weights in the index:

�0 = b
�0
�
�0; � = b

�0
�
�:

This yields var(�mi=0�ixi)=�
2
0 = (b 1� )

2var(�mi=0� ixi) = b2, and implies that

the IC condition and the dynamic enforcement condition can be written as,

respectively; the following relations:

(b0 + �0)q0 +Q� = rc(a)

�

1� � (v(a)� c(a)) �
1

�0
(var(�0x0 + �

0x))1=2

The principal maximizes the total surplus v(a)� c(a) subject to these con-
straints.

Since the court-enforced bonus b0 can be chosen freely, while the elements

�0; � of the discretionary bonus scheme are constrained by self-enforcement,

we see that �0 should be chosen so as to minimize the variance appearing in

the enforcement constraint. (If not, then for given � we could modify b0 and

�0 so that the IC constraint holds and the enforcement constraint becomes

slack.)

The variance is minimized for �0 = �cov(x0; �0x)=s20, where s20 = var(x0),

and this implies in turn that the performance index takes the form

�0x0 + �
0x = �mi=1�i(xi �

cov(x0; xi)

s20
x0):
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This shows that for correlated measurements (cov(x0; xi) 6= 0) performance
on the veri�able measure is taken into the index as a benchmark, to which

the other performances are compared.

The hurdle for the index is the expected value �mi=1�i(e
�
i�

cov(x0;xi)
s20

e�0), where

e�i = E(xij a�); i = 0; :::;m. Since e�i +
cov(x0;xi)

s20
(x0 � e�0) is the conditional

expectation of xi, given x0 (and a�), it follows that we can write the condition

for the index to pass the hurdle as

�mi=1�i(xi � E(xijx0; a�)) > 0:

Performance xi is thus compared to expected performance, given (equilib-

rium) actions and the outcome on the veri�able measure. If the performance

exceeds what is expected, given this information, then it contributes pos-

itively to making the index exceed the hurdle, and thus for the agent to

obtain the bonus.

Since the veri�able measure can be ignored (by setting �0 = b0 = 0, which is

a feasible choice), the parties are here better o¤ with this measure available

than without it. They are certainly strictly better o¤ when the optimal �0
is non-zero, which occurs when there is non-zero correlation between the

veri�able and some non-veri�able measure. This enables the variance of the

performance index to be reduced, and by that the dynamic enforcement con-

straint to be relaxed and the surplus to be increased. As we have seen, this

is achieved by benchmarking the agent�s performance on the non-veri�able

measures to her performance on the veri�able one.

The minimized index variance is

min
�0

var(�0x0 + �
0x) = var(�mi=1�i~xi) = �0 ~��;

where ~xi = xi� cov(x0xi)
s20

x0, i = 1; :::;m, and ~� is the covariance matrix for ~x.

We have cov(~xi; ~xj) = sij��0i�0jsiisjj , where �0i = corr(x0; xi), i = 1; :::;m

are the correlation coe¢ cients between the veri�able and the non-veri�able

measures. We see that if all of these have the same sign, then all elements in

the new covariance matrix ~� are reduced relative to the elements of matrix

�. Moreover, the stronger are these correlations in such a case, the smaller

are the elements of ~�, and the smaller is then the variance �0 ~�� if all elements
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of � are non-negative. This will then relax the enforcement constraint and

increase the surplus. Stronger correlations, either all positive or all negative,

between the veri�able and each non-veri�able measure, will thus increase the

surplus in such a case.

We �nally outline an approach to solve for the optimal contract in the setting

considered here, and apply this to the linear-quadratic case. First de�ne
~b0 = b0 + �0, so that the IC constraint takes the form ~b0q0 + Q� = rc(a),
and next de�ne

S(�) = max
~b0;a

fv(a)� c(a)j~b0q0 +Q� = rc(a)g:

Then S(0) would be the optimal surplus the parties could achieve if only

the veri�able measure x0 were available. The relational contract allows the

parties to achieve

max
�
S(�) s.t.

�

1� �S(�) � �0 ~��=�0

In the linear-quadratic case (v(a) = p0a and c(a) = 1
2a
0a), the IC constraint

is ~b0q0+Q� = a, and using this to substitute for a, we �nd that the surplus

to be maximized in the �rst step (with respect to ~b0) is

~b0p
0q0 �

1

2
~b20q

0
0q0 � ~b0�0Q0q0 + p0Q� �

1

2
�0Q0Q�

We see that, except if q0 is orthogonal to all the columns of Q, i.e. Q0q0 = 0,

then the optimal bonus ~b0 will depend on � and hence be di¤erent from the

optimal bonus for the veri�able measure alone.

The optimal value in this step is

S(�) =
1

2q00q0
(p0q0 � �0Q0q0)2 + p0Q� �

1

2
�0Q0Q�

The formula illustrates that, relative to a situation with only non-veri�able

measures, the veri�able one helps by (i) providing incentives that generate

value (the �rst term in S(�)), and (ii) by relaxing the enforcement constraint;

partly via the higher value, and partly by allowing for valuable benchmarking

in the performance index.

28



5 Conclusion

Employees are often evaluated along many dimensions, and at least some of

the performance measures will typically be non-veri�able to a third party.

They may also be misaligned with (distorted from) the true values for the

principal, and be stochastically dependent. The aim of this paper is to

study this environment: Optimal incentives for multitasking agents whose

performance measures are non-veri�able and potentially distorted and cor-

related. We extend and generalize the received literature in some important

dimensions (to an arbitrary number of tasks with stochastic measurements

that are possibly correlated and/or distorted), and we invoke assumptions

(normally distributed measurements) that make the model quite tractable.

Our main result is that, under standard assumptions, the optimal relational

contract is an index contract. That is, the agent gets a bonus if a weighted

sum of performance outcomes on the various tasks (an index) exceeds a

hurdle. The e¢ ciency of this contract improves with higher precision of

the index measure, since this strengthens incentives. Correlations between

measurements may for this reason be bene�cial. For a similar reason, the

principal may also want to include veri�able performance measures in the

relational index contract in order to improve incentives. These are then

included as benchmarks, to which the other performances are compared.

The index contracts that turn out to be optimal in our model bear resem-

blance to key features of the performance measurement system known as

balanced scorecards. Reward systems based on BSC typically connect pay

to an index, but to the best of our knowledge there is no formal incentive

model that actually describe this kind of index contracts as an optimal solu-

tion. In that sense, our paper provides at contract theoretic rationale for the

way BSC schemes are implemented. However, while the scheme we present is

a bonus contract with just one threshold (or �hurdle), scorecards in practice

often have several thresholds and bonus levels, where the size of the bonus

depends on the score. Future research can extend the model we present to

incorporate e.g. risk aversion or limited liability, in order to study under

which broader conditions the index contract is optimal, and what kind of

index contracts that are optimal under various model speci�cations.
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APPENDIX

Proof of Lemma 1. The lemma follows directly from the Lagrangian for

the problem, which takes the form

L = v(a)�c(a)+�i�i(
R
�(x)fai(x; a)�ci(a))+

R
�(x)( �

1�� (v(a)�c(a))��(x))

At the optimal action a = a�, the optimal bonus satis�es

@L
@�(x) = �i�ifai(x; a)� �(x) = 0 if �(x) > 0, � 0 if �(x) = 0
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Hence we have

If �i�ifai(x; a) > 0 then �(x) > 0 and hence �(x) =
�
1�� (v(a)� c(a)):

If �i�ifai(x; a) < 0 then
@L
@�(x) < 0 and hence �(x) = 0 (implying �(x) = 0).

Veri�cation of (3). Given that ~y = � 0x is nomal with expectation E( ~yj a)
and variance ~�2 = � 0�� , we have

Pr( ~y > ~y0j a) = Pr(
~y � E( ~yj a)

~�
>
~y0 � E( ~yj a)

~�

���� a) = 1� �( ~y0 � E( ~yj a)~�
)

(13)

where �(�) is the standard normal CDF. Since E( ~yj a) = � 0Q0a has gradient

raE( ~yj a) = Q� , we then obtain

ra Pr( ~y > ~y0j a) = �(
~y0 � E( ~yj a)

~�
)
1

~�
Q�

where � = �0 is the standard normal density. This veri�es (3), since ~y0 =

E( ~yj a�).

Proof of Proposition 3. For an action a the index y = x0�� has variance

�2 = ��0��� and expected value e = E(yj a) = a0Q��. For given e, let C(e)

be the minimal cost for the agent to achieve this expected value, i.e.

C(e) = min
a
c(a) s.t. a0Q�� = e: (14)

From a formula corresponding to (13) we see that the agent�s expected

revenue depends on a only via e = E(yj a), hence consider the payo¤

u(e) = b(1� �(y0 � e
�

))� C(e) = �

�0
(1� �(e

� � e
�

))� C(e);

where we have used b = �=�0 and de�ned e
� = a�0Q�� = y0. Note that for

e = e� we have C(e�) = c(a�), since a� satis�es the �rst-order condition in

the convex cost-minimization problem. Hence the agent�s payo¤ from a� is

u(e�), which equals b12 � c(a
�).

It is clear that if u(e) � u(e�) for all feasible e, then action a� is an optimal

choice for the agent. (If not, there exists an action ~a yielding a higher

payo¤. This payo¤ is u(~e), where ~e = ~a0Q��, and thus u(~e) > u(e�), a
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contradiction.) Observe that

u0(e) = �(
e� � e
�

)=�0 � C 0(e);

where � = �0 is the standard normal density.

Since Q�� = rc(a�), the �rst-order conditions for the cost minimization
problem de�ning C(e) are

rc(â) = 
rc(a�) and e = â0rc(a�); (15)

where 
 is a Lagrange multiplier. Di¤erentiation wrt e yields

H(â)dâ = d
rc(a�) and rc(a�)0dâ = de;

hence dâ = H(â)�1rc(a�)d
 and so

d


de
= (rc(a�)0H(â)�1rc(a�))�1 > 0;

where the inequality follows from H being positive de�nite. From the enve-

lope property we have C 0(e) = 
 and so C 00(e) = d

de > 0.

Observe for later use that from conditions (15) we have e = â0rc(a�) and

 = a�0rc(â)=(a�0rc(a�)), and hence

�(e) � e
C 00(e)

C 0(e)
= â0rc(a�)a

�0rc(a�)
a�0rc(â)

1

rc(a�)0H(â)�1rc(a�) . (16)

Now consider u(e) for e > e�. Here we have u0(e) < u0(e�) = 0 since �( e
��e
� )

is decreasing and C 0(e) is increasing in e, where the latter property follows

from C 00(e) = d

de � 0. This veri�es u(e) < u(e�) for e > e�.

Next consider u(e) for e < e�. We will show that u(e) � u(e�) for all e � e�

i¤ � � ��0. To this end we �rst state and prove the following claim.

Claim. For � � e�
p
h(a�)=2 � �m we have u0(e) � 0 for all e < e�.

The statement obviously implies u(e) � u(e�) for all e < e�. To prove the

claim, observe �rst that u0(0) > 0 = u0(e�) (since C 0(0) = 0 due to â(0) = 0

and therefore 
 = 0 for e = 0). If u0(e) has no local minimum in (0; e�), then
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u0(e) is non-negative on this interval. So consider a local minimum, where

then u00(e) = 0. Using �0(z) = �z�(z) we have

0 = u00(e) = ��0(e
� � e
�

)
1

�0�
� C 00(e) = e� � e

�
�(
e� � e
�

)
1

�0�
� C 00(e).

This yields �( e
��e
� )=�0 =

�2

e��eC
00(e) and thus, from the de�nition of the

elasticity �(e) above:

u0(e) = �(
e� � e
�

)=�0 � C 0(e) = C 00(e)(
�2

e� � e �
e

�(e)
)

By the expression for �(e) in (16) and the de�nition of h(a�) in (8) we have

h(a�) � 1=�(e) and hence

�2

e� � e �
e

�(e)
� �2

e� � e � eh(a
�):

The last expression is non-negative if �2=h(a�) � maxe e(e� � e) = (e�=2)2,

i.e. if � � e�
p
h(a�)=2 � �m. This veri�es that u0(e) � 0 for all e � e� if

� � �m, and thus proves the claim.

So we have u0(e) � 0 for all e < e� when � � �m. Let �l be the smallest �

for which u0(e) � 0 for all e < e�. (We must have �l > 0 since otherwise the

necessary condition (7) would be violated.) So for � < �l there is e < e�

such that u0(e) < 0. Then, since u0(0) > 0 as noted above, u(e) must have a

local maximum at some e0 2 (0; e�). Since both e0 and e� are local maxima,
we have then, for � < �l

d

d�
(u(e�)� u(e0))�0 = �(

e� � e0
�

)� �(0)� ��0(e
� � e0
�

)
e� � e0
�2

> 0;

where the inequality follows from �(z) being strictly concave for z > 0, and

thus �(z)� �(0)� �0(z)z > 0.

Hence, the smaller is �, the smaller is the payo¤ di¤erence u(e�) � u(e0).

Let ��0 be the smallest � for which u(e
�)� u(e0) � 0. By the monotonicity

of u(e�) � u(e0).we have u(e�) � u(e0) i¤ � � ��0. This proves the �rst

statement in the proposition.

The second statement follows from the su¢ cient condition � � e�
p
h(a�)=2
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in the stated Claim above, taking account of e� = a�0Q�� = a�0rc(a�) and
the binding enforcement constraint in Proposition 2. This completes the

proof.

Remark. The proof uses only two properties of a� and ��; namely that
they satisfy rc(a�) = Q�� and the binding enforcement constraint (5). Its

conclusions regarding a� being implementable (an optimal choice for the

agent) with index x0�� are therefore valid for any a� and �� that satisfy

these conditions

Proof of Proposition 4. To take advantage of the notation developed

in the previous proofs, we will in this proof denote the given a and � by

a� and ��, respectively. We thus consider a� and �� that satisfy 2c(a�) �
�
1�� (v(a

�)� c(a�)) > c(a�) and rc(a�) = Q��.

We will consider the index y = x0�� with a hurdle � < E(yj a�), and with
bonus b paid for qualifying performance (y > �). The bonus is

b =
�

1� � (v(a
�)� c(a�)):

The proof will show that the hurdle � can be chosen such that this index

scheme implements a�, provided the index has a su¢ ciently low variance.

By assumption we have c(a�) < b. Choose �0 > 0 and �0 such that

c(a�) = (�(�0)� �(��0))b and �0 = b�(��0)

The index y = x0�� has variance �2 = ��0���, and assume now � < �0.

De�ne � > �0 by

� = b�(��);

and let the hurdle for the index be � = E(yj a�)� �� = ��0Q0a� � ��.

The agent�s payo¤ from an action a is then b(1 � �(��E(yja)� )) � c(a) with

gradient b 1��(
����0Q0a

� )Q�� � rc(a). It follows that action a� satis�es the
�rst-order condition for an optimum, since we have � � ��0Q0a� = ���,
b 1��(��) = 1 and Q�� = rc(a) Since � > 0, we can also verify that the

Hessian at a� is positive de�nite, hence action a� is a local optimum for the

agent under the given incentive scheme.
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It remains to show that a� is a global optimum. As in the proof of Propo-

sition 3, it su¢ ces to consider the payo¤

u(e) = b(1� �(�� e
�

))� C(e):

where e is the expected index value (e = E(yj a)), C(e) is the minimal cost
to obtain a given expected value e, see (14); and � is here the hurdle for

the index. For action a� this payo¤ is u(e�), where e� = E(yj a�) = ��0Q0a�.

The proof is complete if we show u(e) � u(e�) for all feasible e.

First note that by the de�nition of � we have ��e�
� = �� and so

u(e�) = b(1� �(��))� c(a�);

where we have used the fact that C(e�) = c(a�), by virtue of a� being the

cost-minimizing action to generate expectation e� = ��0Q0a�.

Next consider e < e�. Since u0(0) > 0 (by virtue of C 0(0) = 0, see the

previous proof), we have u(e) � u(e�) for all e 2 [0; e�] if u(�) has no
local maximum in the interior of the interval. So suppose u(�) has a local
maximum at some e0 2 (0; e�). Then u0(e0) = 0 and so b 1��(

��e0
� ) =

C 0(e0). Since C 0(e0) < C 0(e�), and e� is also a local maximum, we then

have �(��e
0

� ) < �(��e
�

� ). Since �(�) is symmetric around zero, this implies
� � e0 > e� � � and hence, by de�nition of � = e� � ��, that � � e0 > ��.

This yields

u(e0) = b(1� �(�� e
0

�
))� C(e0) � b(1� �(�));

and hence

u(e�)� u(e0) � b(1� �(��))� c(a�)� b(1� �(�)):

The last expression is increasing in � and is (by de�nition of �0) zero for

� = �0. Hence u(e
�)� u(e0) � 0, since � > �0. This veri�es u(e) � u(e�) for

all feasible e < e�.

Now consider e > e�. As in the proof of Proposition 3, we have u0(e) <

u0(e�) = 0 when e > e� This follows because C 0(e) is increasing (as shown

in the proof of Proposition 3), and because �(��e� ) is decreasing in e when
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e > e�, since e� > � and thus ��e < 0. This veri�es u(e) < u(e�) for e > e�.

We �nally verify that � ! E(yj a�) when � ! 0. From the de�nition of �

and � we have E(yj a�) � � = �� = ��(��)b, where � ! 1 when � ! 0.

The density �(�) has the property that ��(��) ! 0 when � ! 1, and this
completes the proof.
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