
BY

ISSN:

DISCUSSION PAPER

Software vulnerabilities and bug
bounty programs

Carsten Bienz and Steffen Juranek

Institutt for foretaksøkonomi
Department of Business and Management Science

FOR 04/2020

1500-4066

May 2020

Software vulnerabilities and bug bounty programs

Carsten Bienza,1, Steffen Juraneka,2

aNorwegian School of Economics (NHH)

Abstract

Many software developers employ bug bounty programs that award a prize for the de-

tection of bugs in their software. We analyze, in a model with asymmetric information,

under which conditions a bug bounty program is beneficial for a software developer. In

our model, a bug bounty program allows developers to perfectly discriminate between

different types of bugs, and help to avoid reputation costs of exploited bugs. We find that

the benefits of bounty program do not only depend on the characteristics of the under-

lying software but also that a bounty program crucially interacts with other elements of

the security strategy.

This version: May 11, 2020

1Norwegian School of Economics (NHH), Department of Finance, Helleveien 30, 5045 Bergen, Norway,
Phone: +47 5595 9374, Email: carsten.bienz@nhh.no

2Norwegian School of Economics (NHH), Department of Business and Management Science, Helleveien
30, 5045 Bergen, Norway, Phone: +47 5595 9863, Email: steffen.juranek@nhh.no

1

1. Introduction

In spring 2019 Apple introduced a bug bounty program that offers up to $1mn to any-

one who is able to hack one of their products (Apple, 2019). This is part of their strategy

to secure their software against intruders. Protection against being hacked gains more and

more importance in an organizations’ list of issues. Attacks on software systems constitute

a significant threat to corporations, consumers and governments around the globe. For

example, the WannaCry malware managed to infect more than 230 000 computers within

a day and was estimated to have caused economic losses in excess of $4bn (Cooper, 2018).

The threat is especially pronounced for software developers. Their risk is highlighted

by the observation that vulnerability announcements have a significantly negative effect

on a software developer’s market value (Telang and Wattal, 2007). The problem is fur-

ther exemplified by the emergence of an active (black) market for zero-day vulnerabilities,

i.e., software vulnerabilities that are unknown to, or at least unaddressed by the software

developer. Prices on the market show an increasing willingness to pay for software vul-

nerabilities. For example, market prices for hacks that allow an attacker controlling any

of Apple’s iOS devices have risen to at least $1.5mn (Goodin, 2016).

The aim of our study is to analyze the role that bug bounty programs play in the

overall protection strategy of software developers against exploits. In particular, we study

under which circumstances it is beneficial for software developers to offer a bug bounty

program, and how a bug bounty program interacts with other elements of the protection

strategy.

In order to deal with the problem of cybersecurity, software developers traditionally

answered technologically. First, they increase their efforts to improve the coding. Sec-

ond, they employ “fuzzing” methods, i.e., they use random codes to detect anomalies of

their programs. Finally, they answer with easier upgrades and increased security features.

Microsoft, for example, has begun to force users of its Windows 10 operating system to

upgrade in order to immunize their customer’s systems once a security breach has been

detected and resolved (Kelley, 2015).

2

However, technological mechanism are not sufficient to fully prevent hacks because

“it is virtually impossible to design software that is free of vulnerabilities” (Choi et al.,

2010, p. 869). Economic incentives can, therefore, be helpful to reduce the damage. One

frequently encountered idea is to operate bug bounty programs and offer rewards for

the disclosure of security vulnerabilities. Many software developers, not just Apple, offer

indeed either monetary rewards themselves or cooperate with a service provider that

administers a similar program.

Bug bounty programs appear to be a cost effective way to increase security. Finifter

et al. (2013) analyze two existing vulnerability reward programs for the Firefox and

Chrome browsers. They find that about 25% of the detected bugs stem from vulnera-

bilities disclosed via the program. The total amount of premium paid is by far below the

wage costs of full time researchers.

Offering ex-ante prizes for the detection of vulnerabilities in a bug bounty program

implies a commitment to pay. That solves an important problem of hackers when trying

to sell a vulnerability to the software developer. Without disclosure the software developer

cannot assess the bug. However, after disclosure the software developer may use the in-

formation to close the vulnerability without paying - a hacker may therefore refrain from

offering the information to the software developer. Bug bounty programs introduce the

legal basis for a commitment to pay for a pre-defined vulnerability. This commitment to

pay allows the software developer to perfectly discriminate between type of vulnerabilities,

and helps the software developer to avoid reputation costs of exploited bugs. We show

that this effect is especially important the more likely and severe high value vulnerabilities

are.

Furthermore, we show that the benefits of a bug bounty program crucially depend on

the characteristics of the software and the possibilities of the vulnerability. A bug bounty

program crucially interacts with other security activities such as an ex-post exploitation

detection system and improved coding. Hence, it is crucial for software developers to

follow an integrated approach that takes these interaction into account.

3

Within the small economic literature on cybersecurity, the patching strategy of soft-

ware bugs has received particular attention (see, e.g., Arora et al., 2008; August and

Tunca, 2011; August et al., 2019; Choi et al., 2010). This is because the optimal patching

strategy is non-trivial because not all users update their software in a timely manner and

a disclosure allows hackers to reverse-engineer the vulnerability. In other words, an update

reveals the vulnerability and may lead to exploitation of non-updated versions.

Our analysis focuses on the discovery of the vulnerability itself rather than its technical

resolution. Thereby, we abstract from the optimal patching strategy and the implemen-

tation of the patches. We build on the argument, that software security needs more than

just a technological approach and that an economic approach can contribute to software

security (Choi et al., 2010; August and Tunca, 2011).

2. Institutional background

2.1. General

Detecting a bug in a licensed software is in principle legal as long as it is not violating

the End User License Agreement (EULA). However, accessing someone’s computer with-

out consent is almost always an illegal action.3 Therefore, someone profiting financially

from a vulnerability that allows others to access a third-party’s computer operates at

least in a grey zone. For this reason, the market for vulnerabilities is relatively opaque.

In the following, we aim to shed some light into it with the limited information that are

available.

There seems to exist an active market for exploits. Hackers are on the selling side

of this market. A buyer can be anyone who benefits from the access to a vulnerability.

That includes the developers of security software, the software developers themselves,

prosecutors or intelligence services but also criminals. Intermediaries, such as brokers,

operate between the sell and the buy sides. One example for a broker is Zerodium. Ze-

rodium buys and sells information on vulnerabilities along with security recommendations

3In the US, for example, most forms of unauthorized access are considered as a crime under the
Computer Fraud and Abuse Act.

4

to their clients. For example, Zerodium’s predecessor VUPEN supplied the NSA with a

vulnerability subscription service in 2012.4

Given the nature of the product being sold, market participants are particularly con-

cerned about secrecy. However, the hack of the software security firm “Hacking Team”

offers a unique opportunity to gain insight into the business practices on the market.5

Hacking Team is a producer of software that allows the surveillance of and access to com-

puter systems, for example, by criminal prosecutors and intelligence services. Hacking

Team itself actively solicited the purchase of vulnerabilities and paid hackers for them.

Ironically, this company was hacked itself in 2015, and 400GB of its internal data was

released publicly.6

Part of this release are information on the arrangement between a hacker and Hacking

Team. The hacker Vitaliy Toropov offered information about a vulnerability in Adobe

Flash Player. The arrangement, fixed in an email, specifies the payments and its timing:7

1) The price is US$45,000.00 for the non-exclusive sale of (...) any special discount for the
”first” deal together will be greatly appreciated :)

2) information about vulnerability in Adobe Flash Player 9.x/10.x/11.x with the RCE
exploit for the current Flash Player 11.9.x for Windows 32/64-bit and OS X 64-bit.
The exploit code executes custom payloads with the privileges of the target process (it
doesn’t give any privilege escalation or a sandbox escape).

3) I send you sources (today or on next Monday, on your choice). I guess our guys can test
it starting from Tuesday 29th.

4) The first payment is $20,000.00 which should be done by you in October 2013 via bank
wire transfer.

5) The second payment is $15,000.00 in November 2013.

6) The final payment is $10,000.00 in December 2013.

7) The payment process can be stopped by you in case if this 0day is patched by vendor.

8) You promise to not report this 0day to vendor or disclosure it before the patch. obviously
it is not our interest!

4The website Muckrock was able to get hold of this contract via a Freedom of Information Act
(FIOA) request. The document and the request are available here: https://www.muckrock.com/foi/
united-states-of-america-10/vupen-contracts-with-nsa-6593/#comms.

5A nice non-technical write-up can be found here: https://tsyrklevich.net/2015/07/22/

hacking-team-0day-market/.
6The emails related to this hack can be directly accessed on Wikileaks; https://wikileaks.org/

hackingteam/emails/.
7https://wikileaks.org/hackingteam/emails/emailid/62010.

5

This exemplary arrangement shows that even though the contracting parties struggle

with enforceability, the arrangement seems to be incentive compatible. Hacking Team

had the option to test part of the exploits, and if the hack would turn out not to be

as valuable as promised for Hacking Team, they could stop the payments. On the other

hand, Hacking Team could not simply take the information without paying because then

the hacker could punish the company by reporting the vulnerability to the vendor. Note

that the same incentives are not present in a deal between a hacker and the developer of

the underlying software, i.e., the vendor. In that case, the developer has the incentive to

patch the software without paying. Hence, a hacker would only offer a hack to the vendor

for an upfront payment, prohibiting a detailed analysis of the hack by the vendor before

the transaction.

2.2. Bug bounty programs

Bug bounty programs are a relative recent innovation. Mozilla, the foundation behind

the Firefox web-browser was among the first to implement one in 2005 (Finifter et al.,

2013). In recent years, many major software developers followed and introduced bug-

bounty programs. Apple was one of the last software developers to introduce a program

that covers all of their products. We summarize the programs of some major software

developers in Table 1.

Firm Product Date Monetary Reward Max Amount
Adobe 4/2015 no NA
Apple iOS 8/2016 yes $200k
Apple All 12/2019 yes $1mn
Facebook 10/2011 yes unknown
Google Chrome 1/2010 yes $1,337
Google Android 9/2018 yes $20k
Mozilla Firefox 2004 yes $500
Microsoft Windows 6/2013 yes $100k

This table shows adoption dates for major software developers bug bounty programs
(BBP) or vulnerability disclosure programs (VDP), as announced by press reports.
Maximum amounts are for the announcement date. In a BBP a monetary reward is
paid whereas a VDP only hands out non-monetray rewards, whith Adobe an example
for the latter approach.

Table 1: Adoption of selected vulnerability reward programs or bug bounty programs

6

Bug Bounty programs offer a prize to hackers, denoted as researchers in that context,

for identifying vulnerabilities with a specified ability. The software developer commits to

paying the prize, and the hackers can take legal actions if the software developer refrains

from doing so. Hence, the bug bounty programs commit software developers not only to

pay for a vulnerability, they also legally indemnify hackers by explicitly allowing hackers

to test computer system, as can be seen from Apple’s Terms and Conditions (Apple,

2019).

Almost all programs we looked at distinguish payouts according to their severity.

Apple’s current program, for example, starts with payouts from $25,000 but pays up to

$1mn for the most severe one (Apple, 2019).

3. The model

We include particular features of this institutional background into a theoretical frame-

work aiming to analyze the benefits of a bug bounty program. The main elements are the

commitment problem of software developer, the market for exploits and search efforts by

the software developer after an exploit is detected.

3.1. The set-up

We start by introducing the players, their actions and other security procedures im-

plemented by the developers.

Players: A hacker (H) works on detecting security gaps in a software manufactured by

a software developer (S). If the hacker detects a vulnerability, she can exploit the gap for

up to two periods. There exist two types of security vulnerabilities, L-type and H-type

vulnerabilities. Both types differ in the damage they cause per period for the software

developer, i.e., DH > DL. The value of exploiting a vulnerability equals αDH or αDL per

period, with α > 0. Note that α 6= 1 implies an asymmetry between the damage that

is caused and the value that is created for an intruder. One can easily imagine that the

exploitation of a vulnerability leads to a reputation damage of the software developer,

implying that α < 1. In contrast, α > 1 resembles a case where the information that can

7

be acquired with the vulnerability by an intruder is much more valuable than the damage

to the software developer. This can be for example vulnerabilities that are used by law

enforcement agencies against potential terrorists.8

Actions: The hacker searches for security gaps, and finds a gap of type L with probability

p and a gap of type H with probability 1− p. The parameter p can be interpreted as the

ex-ante security level of the software.

Once the hacker detects a security gap, she observes its type. The hacker can monetize

the vulnerability by either exploiting it herself, by selling it on the market, or by offering

it to the software developer for sale. However, in the latter case, the software developer

does not observe the type because the hacker can not easily disclose the information. If

she would do so, the software developer would receive all the necessary information to

close the gap immediately.9

The software developer also employs an ex-post detection system. After a vulnerability

is exploited, the software developer observes the type, and invests resources in trying to

close it. Furthermore, the software developer can implement a bounty program at fixed

costs F . With a bounty program the software developer defines different prizes for the

two types of vulnerabilities, and it commits to pay this prize if the required criteria are

met.10

Timing: If the software developer implements a bounty program, it defines prizes in

t = 0. In t = 1, the hacker searches and finds a security gap. If the hacker accepts the

respective prize, the game ends. Otherwise, the hacker approaches the software developer

notifying her of having found a security gap in t = 2. Then, the software developer makes

8One example is the famous San Bernadino Case where the FBI wanted Apple to unlock an en-
crypted iPhone. Apple refused but the FBI eventually managed to access the phone with the help
of another party. A summary is provided by Wikipedia: https://en.wikipedia.org/wiki/FBIApple\
_encryption_dispute

9In principle, this commitment problem may be solved by repeated interaction. However, because
of the large number of individual hackers, there rarely exists repeated interaction between a software
developer and a particular hacker. That argument also explains the emergence of intermediaries, such as
“HackerOne”, which provide an alternative solution to the commitment problem.

10In order to credibly commit, the software developer can predefine the ability of a vulnerability and
cover this by a contract. Additionally, it can also outsource the decision authority to an external com-
mittee.

8

a take-it-or-leave-it offer B to the hacker in exchange for the information. If the hacker

accepts the offer, the game ends. If she rejects the offer, she monetizes the gap by selling

it on the market or exploiting it herself. The software developer incurs the damage Di

once.

In t = 3, the software developer invests in detection in order to avoid further damage.

In particular, the software developer decides upon the detection probability q. This choice

is costly as the software developer incurs costs of 1
2k
q2. If the software developer is unable

to detect the gap, it incurs an additional damage of Di.

An exploitation of the gap leads to revenues for the hacker of Di in t = 2, and the

same amount in t = 3 if the software developer is unable to close the gap with its ex-post

detection system. Figure 1 summarizes the timing.

-

t=0

S sets prizes for

gaps

Bounty program

t=1

Hacker

finds a gap

t=2

H demands the prize or

H approaches S, S makes

a take-it-or leave-it-offer

t=3

If H denies the

offer, S performs

detection

t

Figure 1: Timing

Our aim is to analyze the benefits of a bounty program. Therefore, we compare the

equilibria with and without a bounty program, i.e., settings that start in period t = 1 and

t = 0, respectively.

3.2. No bounty program

We start our analysis with the benchmark cases of no bounty program. In this case,

the game starts in period t = 1. We solve the respective game by backward induction.

In case of a failure of negotiations, the software developer observes the type of the gap

and invests in period t = 3 in detection. The software developer maximizes its expected

payoff:

max
qi

ΠS,t=3 = −Di(1− qi)−
1

2k
q2
i −Di.

9

Consequently, the software developer invests q∗i = kDi, the software developer’s ex-

pected payoff equals ΠS = −Di(2 − kDi

2
), whereas the hacker expects a payoff of ΠH =

αDi(2− kDi).

Both players take this decision into account in period t = 2. The software developer

makes the hacker an offer B. The hacker can either accept or reject the offer. If she rejects

the offer, both proceed to stage 3. Because the software developer does not observe the

type of vulnerability, it cannot discriminate with different offers. Therefore, the software

developer has three options. First, the pooling option P , the software developer makes an

offer that the hacker accepts for both types of vulnerabilities. The minimal offer that a

hacker accepts for both types of vulnerabilities equals αDH (2− kDH). Second, option L,

the software developer makes an offer that only hackers with an L-type hacks accept. In

this case, the offer equals αDL (2− kDL). Third, option 0, the developer makes no offer.

The developer’s payoff for the three cases follow as (the subscript P stands for pooling of

H- and L-type hacks at the same price).

ΠS,t=2
P = −αDH (2− kDH) , (1)

ΠS,t=2
L = −(1− p)DH

(
2− kDH

2

)
− pαDL (2− kDL) , (2)

ΠS,t=2
0 = −(1− p)DH

(
2− kDH

2

)
− pDL

(
2− kDL

2

)
. (3)

It becomes obvious that the optimal offer depends on the different parameters. There-

fore, we define critical levels of α for which the software developer is indifferent between

the three options. Parameter α denotes the market value of the vulnerability relative to

the damage of the developer. Hence, the smaller α, the more it pays off for the developer

to pay for a hack rather than accepting exploitation. However, if α is high, the developer

may not be willing to pay for the hack because the demanded price will be higher than

the expected damage.

We denote the critical α for which the software developer is indifferent between options

P and L by αLP , between option P and 0 by α0P , and between option L and 0 by α0L.

10

Solving for these critical values gives

αLP =
(1− p)DH

(
2− kDH

2

)
DH(2− kDH)− pDL(2− kDL)

, (4)

α0P =
(1− p)DH

(
2− kDH

2

)
+ pDL

(
2− kDL

2

)
DH(2− kDH)

, (5)

α0L =
2− kDL

2

2− kDL

= 1 +
kDL

2

2− kDL

> 1. (6)

Whereas paying off both types is only optimal if α < αLP and α < α0P , paying only

for L-type hacks requires α > αLP and α < α0L. Furthermore, not paying at all can only

be optimal if α > α0L and α > α0P .

Note that α0L is larger than one. The intuition behind this observation is that the

developer is in principle willing to pay the amount that equals the damage he would incur

otherwise. However, the developer also has to bear the ex-post detection costs. Whereas

the ex-post detection system affects the price that the hacker demands via the detection

probability, the realized detection costs do not. This increases the developer’s willingness

to pay for the hack; for k = 0, it holds that α0L = 1.

In order to characterize the optimal offer, the order of the critical values matter.

Comparing Eq. (4) to (6) allows us to state Lemma 1.

Lemma 1.

1. For p > p̃ ≡ 1− α0L
∆1

∆2
, it holds that αLP < α0P < α0L,

with ∆1 ≡ DH(2− kDH)−DL(2− kDL) and ∆2 ≡ DH

(
2− kDH

2

)
−DL

(
2− kDL

2

)
2. For p ≤ p̃, it holds that αLP ≥ α0P ≥ α0L

Proof. See the Appendix.

The consequences of Lemma 1 can be best illustrated by Figures 2 and 3. If p > p̃

there exists a parameter region for which all three candidate offers can be optimal. If

α is small, it is optimal to pay off both types of hacks at the high price. This strategy

becomes more costly with a higher α, and eventually, it becomes optimal to discriminate

between the two types. Because the developer does not observe the type, she can only

rely on self-selection and pay only for L-type hacks. The more α increases the more these

11

payments increase, and at one point the developer prefers not paying and to incur the

damage.

-

αLP α0P α0L

offer to both types offer to L only no offer

p > p̃
α

Figure 2: Optimal offers for p > p̃

If p is sufficiently low, i.e., if p ≤ p̃, the high type hacks are relatively dominant among

the hacks. In this case, the middle case of paying of only L-type gaps vanishes, and the

developer pays off both types of hacks for small α or pays for none for high α. This is

because by moving from the P -case to the L-case, the software developer profits from

separating the two types but loses on the H-types if α is relatively large. Hence, if the

share of H-types is sufficiently high, moving from P to L is not profitable. For the limit

case of p = p̃, all critical values of α are equal to each other. We consider the case p ≤ p̃

to be the less interesting case because it implies that the share of H-type hacks is so high

that the software developer is willing to never differentiate between the two types.

-

α0L α0P αLP

offer to both types no offer

p ≤ p̃
α

Figure 3: Optimal offers for p ≤ p̃

This reasoning allows us to derive the equilibrium if the software developer does not

employ a bounty program:

Lemma 2.

1. For p > p̃ the software developer

(a) pays an uniform price for both types of hacks if α ≤ αLP ,
(b) pays only for L-type hacks if αL,P < α ≤ α0L,
(c) pays for none of the hacks if α > α0L.

2. For p ≤ p̃, the software developer

(a) pays an uniform price for both types of hacks if α ≤ α0P ,
(b) pays for none of the hacks if α > α0P .

12

3.3. Bounty program

For simplicity, we concentrate from now on only on the more relevant case p > p̃.

With a bounty program the games starts already in t = 0. In the bounty program, the

developer commits to pay a pre-defined prize for the two types, PH and PL. After finding

a gap in t = 1, the hacker can demand the respective prize. In case the hacker rejects

the prize, she may approach the developer again in t = 2, and we are back in the game

presented in section 3.2.

In essence, the bounty program allows the software developer to discriminate between

the hackers at the fixed costs F . Therefore, the software developer has in principle four

options for the design of the prizes of the bounty program. First, option S she defines

separate prizes that will be accepted by both types of hacks. Second, option H, she defines

a prize that will be accepted by H-type hacks only. Third, option L, she defines a prize

that will be accepted by L-type hacks only. Fourth, option 0, she defines no prize.

For the separation option S the prizes have to be designed such that hackers with

both types of hacks will accept it. The lowest possible prizes that ensure this are PH =

αDH (2− kDH) for H-type hacks and PL = αDL (2− kDL) for the L-type hacks. The

prizes ensure that a hacker with an H-type vulnerability has no incentive to reject the

prize as she will not be able to gain more in a later stage. Neither has a hacker with

an L-type hack an incentive to reject the offer. If the hacker would do so, the software

developer can identify the hack right away because it knows that all hackers with a H-type

hack accepted the prize. Consequently, it would also offer PL in stage 2, which the hacker

would accept. Hence, hackers with a L-type hack cannot improve. We denote the profit

in this alternative as ΠS,t=0
S .

The prize for option H follows as PH = αDH (2− kDH). A hacker with a H-type hack

would never accept a lower payment. As there are only L-type hackers left in t = 2, this

case is only different from the first if the software developer has no incentive to buy the

vulnerability in t = 2.

Unfortunately, option L is not a viable one. Defining a prize of PL < αDH (2− kDH)

13

cannot be part of a pure strategy equilibrium as it would not be accepted by L-type

hackers. This is because hackers with L-type hacks profit from being pooled with H-type

hacks in t = 2. Hence, this case as well as option 0, i.e., offering no prize, leads to the

result described in Lemma 2.

Hence, we have to compare profits of the software developer offering prizes for both

with offering prizes for only H-type hacks with offering no prize.The profits of the three

alternatives are given by11

ΠS,t=0
S = − (1−p)αDH (2−kDH)−pαDL (2−kDL) , (7)

ΠS,t=0
H = − (1−p)αDH (2−kDH)−pDL

(
2−kDL

2

)
, (8)

ΠS,t=0
0 =

ΠS,t=2
P = −αDH (2−kDH) if α ≤ αLP

ΠS,t=2
L = − (1−p)DH

(
2−kDH

2

)
−pαDL (2−kDL) if αLP < α ≤ α0L

ΠS,t=2
0 = − (1−p)DH

(
2−kDH

2

)
−pDL

(
2−kDL

2

)
if α > α0L

(9)

It is easy to see that ΠS,t=0
S dominates ΠS,t=2

P . Hence, we only have to compare ΠS,t=0
S ,

ΠS,t=0
H , ΠS,t=2

L and ΠS,t=2
0 . For this comparison we derive the critical values of α for which

the software developer is indifferent between the pairs of options:

ΠS,t=2
S > ΠS,t=0

H if α < αHS =
2− kDL

2

2− kDL

, (10)

ΠS,t=2
S > ΠS,t=2

L if α < αLS =
2− kDH

2

2− kDH

, (11)

ΠS,t=2
H > ΠS,t=2

0 if α < α0H =
2− kDH

2

2− kDH

, (12)

ΠS,t=2
S > ΠS,t=2

0 if α < α0S =
(1− p)DH

(
2− kDH

2

)
+ pDL

(
2− kDL

2

)
(1− p)DH (2− kDH) + pDL (2− kDL)

, (13)

ΠS,t=2
H > ΠS,t=2

L if α < αLH =
(1− p)DH

(
2− kDH

2

)
− pDL

(
2− kDL

2

)
(1− p)DH (2− kDH)− pDL (2− kDL)

, (14)

Note that Eqs. (10) - (12) imply that the profitability to offer a prize for the H-type

11Note that we implicitly assume here that with a prize for H-type vulnerabilities S does not acquire
the L-type vulnerabilities in t = 2. If it would do so, the outcome would be the same as offering two
prizes.

14

(L-type) hacks is independent of whether the bounty program also includes a prize for the

L-type (H-type) hacks, i.e., α0H = αLS and α0L = αHS. In order to identify the optimal

prizes, we characterize the order of the critical values in Lemma 3.

Lemma 3. It holds that
α0L = αHS < α0S < α0H = αLS < αLH .

Proof. See the Appendix.

-

αLP α0P α0L
= αHS

α0S α0H
= αLS

αLH

offer to
both types

offer to L only no offer

α

no bounty
program

bounty
program

prizes for both types prize for H only no prize

Figure 4: Optimal offers for p > p̃

The lower part of Figure 4 illustrates the consequences of Lemma 3 for the optimal

strategy. The upper part shows the optimal offers without a bounty program for compari-

son. For low levels of α, the software developer offers separate prizes for each type of hack.

Once α ≥ αH,S = α0,L it becomes too costly to pay for L-type hacks and the software

developer prefers the damage caused by exploitation. However, the software developer

continuous to offer a prize for H-type hacks. Only after α increases above αH,S, paying

for H-type hacks becomes too expensive. We summarize this result in Lemma 4.

Lemma 4. With a bounty program, the software developer

1. announces the prize PL = αDL (2− kDL) for L-type hacks and PH = αDH (2− kDH)
for H-type hacks if α ≤ αHS. The hacker accepts the prizes.

2. announces the prize PH for H-type hacks and no prize for L-type hacks if αHS <
α ≤ α0H . The hacker accepts the prize.

3. announces no prize if α > α0H .

3.3.1. Comparison

The bounty program allows the software developer to perfectly differentiate between

the two types of vulnerabilities. By committing to pay the pre-defined prize, the hackers

reveal the type of their vulnerability, and the information asymmetry gets resolved. Con-

sequently, the software developer can pay each type of hacker the required amount. This

15

has two advantages. First, the software developer can pay a lower amount to L-type hacks.

Second, he can offer a payment for H-type hacks only. However, the software developer

incurs the fixed costs F for maintaining the program.

Comparing the payoff following from Lemma 4 with the payoff in Lemma 2 allows us

to state Proposition 1.

Proposition 1. The incremental payoff of a bounty program is given by

πS =

pα (DH (2− kDH)−DL (2− kDL))− F if α ≤ αLP
(1− p)DH

(
(1− α) (2− kDH) + k

2
DH

)
− F if αLP < α ≤ α0H

−F if α > α0H

The advantages of the bounty program depend on the parameter setting. In the low α

case, the bounty program allows the software developer to perfectly differentiate between

the two types, rather than paying off both types with the high payment. In the interme-

diate α case, the bounty program saves the software developer the difference between its

potential damages and the market value, e.g., reputation costs, and the resources that are

spend on detection for H-type hacks. For a larger α, it would be too costly to pay for any

of the two vulnerabilities as the market values outweigh the damage costs.

Hence, the decision whether the software developer employs a bounty system depends

on the trade-off between the benefits and costs of it. We define the critical fixed costs F c

such that the incremental payoff of the system just equals zero. Analyzing the comparative

statics of F c, allows us to state Proposition 2.

Proposition 2.

• In the low α case the critical fixed costs F c increase in α, DH and p but decrease in
k and DL.

• In the intermediate α case the critical fixed costs F c increase in k and DH but
decreases in α and p.

• In the high α case there is no effect of any parameter on F c.

Figure 5 illustrates these comparative static effects. An increase of DH unambiguously

decreases F c becauseDH increases the costs for detection as well as the savings by avoiding

excess payments for L-type hacks in the intermediate α case. In the same line of reasoning,

16

the damage of the L-type gaps does not influence F c in the low α case because with and

without a system, the software developer always pays the same amount for L-type hacks.

However, in the low α case, F c decreases inDL because a higher low-type damage decreases

the benefits of differentiation between the two types. Furthermore, both damages affect

the likelihood of the two cases. An increase of DL and DH makes the low α case case more

likely.

-

F 6

α

S
S
S
S
S
S
S
S
S
S
S�

�
�
�
�
�
�
�
��@

@
@
@
@
@
@
@
@@

k1

k2

k2 > k1

-

F 6

α

S
S
S
S
S
S
S
S
S
S
S�

�
�
�
�
�
�
�
�
�
�
��A
A
A
A
A
A
A
A
A
A
A
AA

p2

p1

p2 > p1

-

F 6

α

S
S
S
S
S
S
S
S
S
S
S�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J

DH2

DH1

DH2 > DH1

-

F 6

α

S
S
S
S
S
S
S
S
S
S
S�

�
�
�
�
�
�
�
�

DL1

DL2

DL2 > DL1

Figure 5: Comparative static effects

Increasing the ex-ante security level (p) decreases the payoff of the bounty program

in the intermediate α case because avoiding the reputation and detection costs for H-

type hacks becomes less important. Furthermore, the payoff in the low α case increases

17

because differentiation becomes more important the higher the share of L-type hacks is.

Furthermore, an additional payoff decreasing effect stems from the influence of p on the

likelihood of the two cases. An increase in p makes the intermediate α case more likely.

Finally, the efficiency of the ex-post detection system affects the payoff of the bounty

program, too. The more efficient the system is (higher k), the less beneficial is the bounty

system in the low α case. This is because a more efficient ex-post detection system makes

an ex-ante differentiation of the two types less beneficial. However, the contrary is true

in the intermediate α case case. A higher k lets the software developer spend more on

detection, increasing his absolute detection costs. These costs are avoided with a bounty

program for the H-type hacks in the intermediate α case.

4. Discussion

By offering a bug bounty program software developers commit to pay for a vulnera-

bility. This commitment allows the software developer to differentiate between the types

of vulnerabilities, and the software developer can either offer individual prizes to the dif-

ferent types of vulnerabilities, or offer only prizes to a subset (e.g., only vulnerabilities of

type H). The differentiation leads to lower costs and damages for the software developer.

However, the benefits of a bug bounty program depend on the specific environment. In

general, we find that a bounty program becomes more beneficial the higher the maximal

harm from an exploit is (higher DH). For other characteristics our analysis paints a more

nuanced picture.

In principle, our model captures three possibilities for software developers to improve

protection against being exploited. First, better ex-ante code surveillance (higher p). Sec-

ond, an efficient ex-post detection system (higher k), and, third, a bug bounty program.

Our analysis reveals that these three alternatives crucially interact.

For software developers prone to particularly pronounced reputation costs relative to

the market value of the exploit (small α), a bounty program is more beneficial the better

a software is checked ex-ante (higher p). The ex-ante quality and a bounty program

complement each other because the more secure the system is ex-ante, the more the

18

developer can profit from identifying the few severe vulnerabilities, instead of paying off

all types with a relatively high amount. In contrast, having an efficient ex-post detection

system decreases the profitability of a bounty program. A bounty system and an ex-post

detection system are substitutes.

For software developers that face less pronounced reputation costs relative to the value

of an exploit (intermediate α), this observations switches. In that case, better ex-ante code

surveillance substitutes for a bounty program. The reason for that result is that the fewer

high damage vulnerabilities exist, the less important it becomes to maintain a system that

identifies them; it is cheaper to incur the reputation costs in that rare case. In contrast,

a bounty program benefits from a strong ex-post detection system, i.e., both complement

each other. This is because a better ex-post detection is more costly in absolute terms,

and the bug bounty program helps avoiding those costs.

Clearly, if the reputation costs are significantly lower than the market value of a

vulnerability (high α), a developer would never pay for the information, and rather accept

exploitation. Hence, a bounty program does not offer any benefit in that case. Examples

for such cases are vulnerabilities that are used by secret services. Even though such an

exploit may involve a significant reputation cost, the market value is so high that the

developer would not be willing to acquire the information on the vulnerability.

In sum, our results imply that software developers should follow an holistic approach

regarding the security of their products. One can easily imagine differences in the repu-

tation costs depending on the type of software product. For example, software developers

that deal with sensitive business information are likely to be highly negatively affected

by the negative publicity of an exploit. The same is likely to be true for developers that

deal with financial transaction, e.g., online banking. If these type of developers decide

to implement a bounty program, they should focus their other efforts on better ex-ante

coding rather then investing in an efficient ex-ante detection program. The contrary is

true for companies that are less affected by reputation costs, or for developers that deal

with vulnerabilities that have a relative high market value compared to the reputation

19

costs.

5. Conclusion

We analyze the benefits of bug bounty programs for software developers. We build a

model that is micro-founded in the specific characteristics of the market for vulnerabilities.

We find that the benefits of bounty program do not only depend on the characteristics

of the underlying software but also that a bounty program crucially interacts with other

potential elements of the security strategy.

References

Apple, 2019. Apple Security Bounty. https://developer.apple.com/

security-bounty/. Accessed: 2020-05-04.

Arora, A., Telang, R., Xu, H., 2008. Optimal Policy for Software Vulnerability Disclosure.

Management Science 54, 642–656.

August, T., Dao, D., Kim, K., 2019. Market segmentation and software security: Pricing

patching rights. Management Science 65, 4575–4597.

August, T., Tunca, T., 2011. Who Should Be Responsible for Software Security? A

Comparative Analysis of Liability Policies in Network Environments. Management

Science 57, 934–959.

Choi, J.P., Fershtman, C., Gandal, N., 2010. Network security: Vulnerabilities and dis-

closure policy. The Journal of Industrial Economics 58, 868–894.

Cooper, C., 2018. WannaCry: Lessons Learned 1 Year Later. https:

//symantec-enterprise-blogs.security.com/blogs/feature-stories/

wannacry-lessons-learned-1-year-later? Accessed: 2020-05-04.

Finifter, M., Akhawe, D., Wagner, D., 2013. An empirical study of vulnerability rewards

programs, in: Proceedings of the 22nd USENIX Security Symposium, pp. 273–288.

20

Goodin, D., 2016. iPhone xploit bounty surges to an eye-popping $1.5

million. https://arstechnica.com/information-technology/2016/09/

1-5-million-bounty-for-iphone-exploits-is-sure-to-bolster-supply-of-0days/.

Accessed: 2020-05-04.

Kelley, G., 2015. Windows 10 Upgrades Cannot Be Stopped. https://www.forbes.

com/sites/gordonkelly/2015/06/26/free-windows-10-upgrades-danger/

#63912ea75962. Accessed: 2020-05-04.

Telang, R., Wattal, S., 2007. An empirical analysis of the impact of software vulnerability

announcements on firm stock price. IEEE Transactions on Software Engineering 33,

544–557.

21

Appendix

Proof of Lemma 1

1. α0L > α0P iff

DH (2− kDH)

(
2− kDL

2

)
> (1− p)DH

(
2− kDH

2

)
(2− kDL) + pDL (2− kDL)

(
2− kDL

2

)
DH (2− kDH)α0L > (1− p)DH

(
2− kDH

2

)
+ pDL

(
2− kDL

2

)
DH (2− kDH)α0L −DL

(
2− kDL

2

)
> (1− p)DH

(
2− kDH

2

)
− (1− p)DL

(
2− kDL

2

)
∆1α0L > (1− p) ∆2

⇒ p > p̃

2. α0P > αLP iff

(
(1− p)DH

(
2− kDH

2

)
+ pDL

(
2− kDL

2

))
(DH (2− kDH)− pDL (2− kDL))

> (1− p)D2
H (2− kDH)

(
2− kDH

2

)
(

2− kDL

2

)
(DH (2− kDH)− pDL (2− kDL))− (1− p)DH

(
2− kDH

2

)
(2− kDL) > 0

α0L (DH (2− kDH)− pDL (2− kDL)) > (1− p)DH

(
2− kDH

2

)
α0L (∆1 − (p− 1)DL (2− kDL)) > (1− p)DH

(
2− kDH

2

)
α0L∆1 > (1− p) ∆2

⇒ p > p̃

Proof of Lemma 3

1. A comparison of α0H and α0L shows that α0H > α0L

2. α0L > α0S > α0L

a) For p = 1, it follows that α0S = α0L.

b) For p = 0, it follows that α0S = α0H .

c) Because ∂α0S

∂p
= DHDLk(DH−DL)

((1−p)DH(2−kDH)+pDL(2−kDL))2
< 0, a) and b) imply α0H > α0S > α0L.

3. αLH > α0H

a) For p = 1, it follows that αLH = α0H .

b) Because ∂αLH

∂p
= −DHDLk(DH−DL)

((1−p)DH(2−kDH)−pDL(2−kDL))2
>0, a) implies that αLH>α0H for p>p̃.

22

NORGES HANDELSHØYSKOLE
Norwegian School of Economics

Helleveien 30

NO-5045 Bergen

Norway

T +47 55 95 90 00

E nhh.postmottak@nhh.no

W www.nhh.no

