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No man ever steps in the same river twice, for it is not the same river and he
is not the same man.

Heraclitus of Ephesus, ca. 540-480 BCE
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Introduction

The purpose of this thesis is to investigate various game theoretic aspects of fisheries
management. Game theory is the study of strategic interaction among rational decision
makers. It employs mathematics to describe, explain and predict outcomes in situations
where a conflict of interest exists. A game theoretic model consists of a set of interact-
ing players, a set of strategies available to those players, and a specification of a reward
function, also known as payoff, for each player and all combinations of strategies. Game
theory dates back to 1944, the year when John von Neumann and Oskar Morgenstern
published the classic book titled: Theory of Games and Economic Behavior. However,
it was the fundamental work of John Nash on non-cooperative (Nash, 1951) and coop-
erative (Nash, 1953) games that made game theory more popular and acceptable among
economists.1 Since then, it has become a standard tool of economic analysis in many
subfields, including fisheries economics and management.

The integration of game theory in the economics of the management of fisheries re-
sources became more apparent with the advent of the 1982 United Nations Convention
on the Law of the Sea (UNCLOS) and the establishment of the exclusive economic zone
(EEZ) regime, despite the fact that fisheries economics have received attention almost
thirty years earlier with the publication of H. Scott Gordon’s seminal article in 1954,
“The economic theory of a common property resource: the fishery”. As Grønbæk et al.
(2020, p.2) put it: “The evolution of the relevance and application of game theory to the
economics of capture fisheries management follows the evolution, although not precisely,
of the economic management of capture fisheries.” And it was not until the latter part
of the last century that game theory became an indispensable part of fisheries research.

Until the early twentieth-century, there was the belief that the best course of action
regarding fisheries management was unrestricted management as resources were thought
to be inexhaustible. This behaviour can be attributed to the state of fishing technology
at that time, which made it very costly to significantly deplete the resources. As fishing
technology improved, costs declined and fishing increased, and by the late 1930s what
was once seen as inexhaustible it turned out to be exhaustible. The early literature on
fisheries economics (Gordon, 1954; Schaefer, 1957; Smith, 1969; Clark 1973; Clark and
Munro, 1975) explored the economic consequences of fisheries exploitation characterised
by perfectly competitive fishing agents, also known as open-access, and the exact opposite
where the fishery is managed by a single agent, referred as a sole-owner.

The collapse of many commercial fisheries, e.g., the North Atlantic herring fisheries
in the 1960s and 1970s, has signalled the need to regulate fishing activity. It took three
UN conventions in 1956-58, 1960, and 1973-82 before fundamentally changing the man-
agement of world marine captured fisheries by recognizing property rights through the
establishment of EEZs (Hannesson, 2004). This regime change has placed overnight al-

1John Nash was awarded the Nobel Prize in economics in 1994 for his work on game theory.
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most 90% of the marine resources worldwide in the control of coastal states (Bjørndal
and Munro, 2012).

It was during the last UN convention, when the first article unifying fisheries man-
agement and game theory was written by Gordon R. Munro in 1979. As Bailey et al.
(2010, p.2) write: “The author was motivated to write his seminal paper by the in-
creasing acceptance of extended fisheries jurisdiction which he believed would, and in
fact did, lead to increased management of fisheries by individual coastal states.” In the
article titled “The optimal management of transboundary renewable resources”, Munro
(1979) investigated the optimal outcome in a fishery jointly owned by two coastal states
with different preferences and fishing costs. The purpose of his study was to address
the requirements needed for a cooperative fisheries agreement to be stable in time. A
year after, Levhari and Mirman (1980) and Clark (1980) published two more influential
game theoretic papers on fisheries management. Both papers delved on the consequences
of sharing a fishery resource without cooperating in its management. The four authors
have paved the way for two major strands of the literature, one dealing with cooperative
solutions and the other with competitive, Nash-Cournot outcomes (Hannesson, 2011).

It has been four decades since then, and the literature on game theory and fisheries
management has seen a considerable growth. Many types and variations of fishery games
have been explored both on a theoretical and applied basis (see Bailey et al., 2010 and
Hannesson, 2011 for comprehensive reviews). From the early two-player fishery games
(Sumaila, 1999 and references therein) to multi-player coalitional fishery games (Kaitala
and Lindroos, 2007 and references therein). From games with a single stage structure to
multi-stage and sequential games (Hannesson, 1995; Kronbak and Lindroos, 2006).

This thesis is organised into three self contained chapters that fit well under the re-
search umbrella of game theory and fisheries management. A fishery game with unique
characteristics and structure is presented in each chapter. In chapter 1, coalition forma-
tion in the mackerel fishery is investigated. In chapter 2, a dynamic multi-stage game
with two types of players where the stock dynamics follow a seasonal pattern is analysed.
In chapter 3, a framework for quantifying the basis upon which fisheries agreements are
being drawn up is proposed based on a static three-stage game with four interacting
agents. Although the setting and structure of the three games differ and are not directly
comparable, the underlying bioeconomic models develop progressively mainly in terms of
the market structure. In the first chapter, the selling price of the resource is exogenous.
In the second chapter, an endogenous and non-linear price specification is assumed. Both
models assume the existence of a single resource market. This assumption is relaxed in
the last chapter, where players have the option to choose between two markets. The
assumption of endogenous prices is retained but the functional relationship is assumed
linear. A brief description of each chapter follows.

In the first chapter, we draw from the literature on coalitional games and in particular
on the ones with externalities also known as partition function games (Thrall and Lucas,
1963; Yi, 1997; Pintassilgo, 2003). This class of games is based on the notion of coalition
structure, i.e., the partition of players in coalitions where the economic performance of a
coalition is affected by the collective behaviour of all other coalitions. This means that
the payoff of a coalition depends on the coalition structures, which gives rise to free-riding
incentives.

The partition function approach is applied to the Northeast Atlantic mackerel fishery.
The motivation is to study the degree of cooperation before and after Brexit between the
European Union (EU), the United Kingdom (UK), Norway, the Faroe Islands and Iceland.
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We find that in the absence of Brexit, the current management regime at that time is
a stable outcome in all scenarios tested, whereas after Brexit, only in one. This implies
that it is very highly, post-Brexit, that the UK will set its mackerel quota unilaterally, in
the same spirit as Iceland has been doing. This will further increase the pressure on the
mackerel stock. However, it will most likely not go unpunished, since both the EU and
Norway can respond harshly by introducing trade sanctions, as they have already done
to Icelandic and Faroese catches in 2013.

The bioeconomic model applied in the first chapter is a generalisation of the annual
stock-recruitment model introduced by Clark (1973). The model is in discrete time
between periods but continuous within them. In addition, it is linear in the control
variable, i.e., harvest, which follows from the assumption that the demand for fish is
infinitely elastic, i.e., price is fixed, and the specification of fishing costs.

In the second chapter, we apply a more detailed bioeconomic model to address the
consequences of non-cooperation in fisheries that exhibit periodic or seasonal variations,
like Arctic Cod, Atlantic Mackerel, Norwegian spring-spawning Herring, etc. Seasonality
is an important feature of many commercial fisheries since both biological processes and
human activities occur on a seasonal instead of an annual basis, as is often assumed. Be-
sides the inclusion of multiple seasons of differing length and biomass dynamics, demand
functions in each season are endogenous and non-linear.

Our approach expands the seasonal model of Ni and Sandal (2019) by allowing for
non-cooperative behaviour between two types of players: i) an incumbent leader, and ii)
multiple asymmetric potential entrants (followers). The game is dynamic and sequential
in the sense that the leader acts first. The feedback Nash equilibrium for the n-follower
game is derived analytically and used as input into the optimisation process of the leader.
A numerical scheme based on recursion is then applied to derive the dynamic feedback
policies of the leader. The results are compared to the benchmark case without strategic
interaction. In presence of multiple followers, the leader adopts a more aggressive fishing
strategy in all seasons. As a consequence, entry for some followers is delayed or not even
realised. This increases the pressure on the stock and therefore the long-term biomass
is reduced. In addition, there is an almost 50% value reduction for the leader along the
state space, implying rent dissipation.

In the third and last chapter, an attempt to better understand and quantify the basis
upon which fisheries agreements are being drawn up is made. Since the establishment
of the EEZ regime, a number of nations have entered into bilateral agreements over
access to fishing stocks that occurred beyond their sovereignty. Today the most known,
perhaps, agreements of such type are the so-called sustainable fisheries partnership agree-
ments (SFPAs) between the EU and non-EU coastal states, like Mauritania, Maroco, etc.
SFPAs, which were introduced during the latest common fisheries policy (CFP) reform
in 2013, allow EU vessels to fish in the signatory countries’ EEZs, and in exchange, the
EU provides both financial and sectoral support towards the partner countries.

A game theoretic model is proposed where a country with some sort of property
right over a fishing resource is faced with the following dilemma: freely grant fishing
quotas to a domestic firm or sell them to a foreign agent in return for an endogenously
determined price. All purchased quotas are granted to the foreign firm. Both firms exploit
the resource according to their quotas and have the option to sell their harvest in two
markets, one at home and one abroad. To focus on the strategic interaction between the
players, we disregard the problem of optimal fishing, and assume that for any fixed period
of time the total allowable catch (TAC) is exogenous. This means that the problems of
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how much to fish and who should fish can be dealt and analysed separately. Once all
strategic outcomes are identified, it is possible to determine the optimal fishing policy by
optimising over them. This is illustrated at the end of the chapter by allowing the TAC
to be endogenous. Besides the sequential structure of the game, which consists of three
stages when the TAC is exogenous and four otherwise, the complexity of the model stems
from the inclusion of a second market where the resource can be sold and the fact that
prices in both markets are endogenously determined.
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Abstract

The partition function approach is applied to study coalition formation in the Northeast
Atlantic mackerel fishery in the presence of externalities. Atlantic mackerel is mainly
exploited by the European Union (EU), the United Kingdom (UK), Norway, the Faroe
Islands and Iceland. Two games are considered. First, a four-player game where the
UK is still a member of the EU. Second, a five-player game where the UK is no longer
a member of the union. Each game is modelled in two stages. In the first stage, play-
ers form coalitions following a predefined set of rules. In the second stage, given the
coalition structure that has been formed, each coalition chooses the economic strategy
that maximises its own net present value of the fishery given the behaviour of the other
coalitions. The game is solved using backward induction to obtain the set of Nash equi-
libria coalition structures in pure strategies, if any. We find that the current management
regime is among the stable coalition structures in all eight scenarios of the four-player
game but in only one case of the five-player game. In addition, stability in the five-player
game is sensitive to the growth function applied and the magnitude of the stock elasticity
parameter.

Keywords: Mackerel dispute; straddling fish stock; brexit; game theory; externalities;
coalition formation; coalition structure stability.
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1.1 Introduction

The 1982 United Nations Convention on the Law of the Sea (UNCLOS) recognized a 200
nautical-mile Exclusive Economic Zone (EEZ) stretching from the baseline of a coastal
state (United Nations, 1982). The establishment of the EEZ has fundamentally changed
the management of world marine captured fisheries by recognizing property rights. Thus,
allowing coastal states to manage their stocks for their own benefit. However, such regime
has inadequately addressed issues arising from internationally shared fishery resources,1

e.g., unregulated fishing, over-capitalization, excessive fleet size and etc. (United Nations,
1995; Munro, 2008). Therefore, if the harvesting activities of one coastal state have a
significant negative effect on the harvesting opportunities of the other coastal state(s), a
coordinated plan for sustainable management from all parties is required.

This need for cooperation has led to the adoption of the 1995 United Nations Fish
Stocks Agreement (UNFSA), which supplements and strengthens the 1982 UNCLOS by
addressing the problems related to the conservation and management of internationally
shared fishery resources (United Nations, 1995). According to UNFSA, exploitation of a
shared fish stock within its spatial distribution should be coordinated by a coalition of all
interest parties through a UN sanctioned Regional Fisheries Management Organisation
(RFMO), e.g., the Northeast Atlantic Fisheries Commission (NEAFC). Membership into
an RFMO is open both to nations in the region, i.e., coastal states, and distant nations
with interest in the fisheries concerned, as long as they agree to abide by the RFMO’s
conservation and management measures.

Although UNFSA has established robust international principles and standards for
the conservation and management of shared fish stocks (Balton and Koehler, 2006), the
fact that RFMOs lack the necessary coercive enforcement power, either to exclude non-
members from harvesting or to set the terms of entry for new members, has caused doubts
over the long-term viability of such regional management mechanisms (McKelvey et al.,
2002). These two inter-related problems, namely the “interloper problem” (Bjørndal
and Munro, 2003) and the “new member problem” (Kaitala and Munro, 1993), merge
when a nation with no past interest in a particular shared fishery starts exploiting the
resource. In this case, the interests of the traditional fishing nations (incumbents) and
the new entrant(s) are strongly opposed. On the one hand, incumbents face the prospect
of having to give up a share of their quotas to the new entrant(s) in order to join their
coalition and exploit the resource sustainably; whereas on the other hand, it might be
more profitable for the new entrant(s) not to join and therefore harvest without having
to abide by the coalition’s conservation measures.

The aforementioned situation gives rise to the free-rider problem due to stock external-
ities, i.e., the effect of this period’s harvest on next period’s stock level (Bjørndal, 1987).
Stock externalities, which occur when the cost of fishing changes as the population of fish
is altered, are negative externalities (Smith, 1969; Agnello and Donnelley, 1976). That is,
a nation’s harvesting activities lead to less fishing opportunities for another nation and
therefore increase the other’s nation fishing cost. As nations start cooperating, the ex-
ternality is internalised and thus the external cost is reduced. The externality disappears
if all nations cooperate together. Because the reduction of the negative externality leads
to higher benefits for all nations, not only the ones cooperating, some authors within the
fishery literature refer to it as positive.

The intuition is as follows. Assume that a cooperative agreement, which aims to

1See FAO (2003) and Gulland (1980) for a categorization of shared fish stocks.
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preserve a fish stock by limiting the number of catches and thus increasing its population,
is signed by a group of nations. A nation who is not part of such agreement can still
enjoy the positive effects that the agreement has on the fish stock level without having to
reduce its fishing activities. Therefore, a free-rider (non-cooperating nation or coalition of
nations)2 can enjoy a lower cost of fishing without having to mitigate its fishing strategy.
Because of the free-rider problem, cooperative agreements among all interest parties in a
fishery have not always been possible to achieve.

The importance of externalities emanating from coalition formation where the eco-
nomic performance of a coalition, including singletons,3 is affected by the structure of
other distinct coalitions has been studied both within game theoretic and fisheries litera-
ture. Bloch (1996), Yi (1997), and Ray and Vohra (1999), among others, have established
the theoretical framework to analyse coalition formation in the presence of externalities,
also referred as endogenous coalition formation, using the partition function approach
introduced by Thrall and Lucas (1963). The advantage of those models to the ones using
the traditional characteristic function approach is that they consider all possible coali-
tion structures and compute coalition values for every one of them, instead of fixating
on some. Thus, stability of different coalition structures, i.e., partial cooperation, can be
tested and externalities across coalitions can be captured.

Within the fisheries literature, Pintassilgo (2003), and Pham Do and Folmer (2003)
have introduced the partition function approach to fishery games. Pintassilgo (2003)
applies this method to the Northern Atlantic bluefin tuna. Pham Do and Folmer (2003)
study feasibility of coalitions smaller than the grand coalition. Kronbak and Lindroos
(2007) apply different sharing rules to study the stability of a cooperative agreement
for the Baltic cod in the presence of externalities. They state that even though the
benefit from cooperation is high enough for a cooperative agreement to be reached, its
stability is very sensitive to the sharing rule applied due to free-riding effects. For more
comprehensive reviews on coalition games and fisheries, as well as game theory and
fisheries, see Kaitala and Lindroos (2007), Lindroos et al. (207), Bailey et al. (2010) and
Hannesson (2011).

In this article, we implement the partition function approach to study coalition forma-
tion in the Northeast Atlantic mackerel fishery. Atlantic mackerel is a highly migratory
and straddling stock making extensive annual migrations in the Northeast Atlantic. The
stock consist of three spawning components, namely, the southern, the western and the
North Sea component, which mix together during its annual migration pattern. As a
result, exploitation of mackerel in different areas cannot be separated. Thus, all three
spawning components are evaluated as one stock by the International Council for the
Exploration of the Sea (ICES) since 1995 (ICES CM, 1996).

Because of the wide geographic range that mackerel is distributed, it is exploited by
several nations both in their EEZs and the high seas. Traditionally, mackerel has been

2It is possible, although not usual, that a shared fishery is managed by more than one cooperative
agreements, where the signatories of one agreement differ from the signatories of the other agreement.
An example presented in Munro (2003) consists of the fourteen independent Pacific Island Nations, which
were coalesced into two sub-coalitions. If this is the case, then a coalition of nations can free-ride on
another coalition.

3A coalition consisting of one member.
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cooperatively exploited by the European Union4 (EU), Norway and the Faroe Islands,
with the latter taking only a small proportion of the overall catch until 2010 (2%5 on
average). Also, the NEAFC, of which the three nations are members, allocates a share
of the mackerel quota to Russia (7% on average), which can fish mackerel in the high
seas. In the last decade, however, mackerel has extended its distribution and migration
pattern starting to appear in the Icelandic and Greenlandic economic zones. Although
the causes of such northward expansion are not fully understood, increased sea surface
temperatures in the northeast Atlantic (Pavlov et al., 2013) and high population size of
the mackerel stock (Hannesson, 2012) are mostly referred in the literature.

Due to mackerel’s distributional shifting, Iceland, which in the past had requested and
been denied to be recognised as a coastal state for the management of mackerel, has begun
fishing mackerel at increasingly large quantities in 2008 (approximately 18% of the total
catch). In 2009, the Faroese, having observed the quantities that Iceland was harvesting,
withdrew from the cooperative agreement with the EU and Norway on the grounds that
their quota was very low. A bilateral agreement between the EU and Norway was not
reached until 2010. Since then, and despite many rounds of consultations, no consensus
agreement by all four nations has been reached. However, in 2014, the Faroe Islands
together with Norway and the EU signed a 5-year arrangement, which is still in place,
determining the total allowable catch (TAC) and the relative share for each participant.

In the past, several authors have closely examined the so-called mackerel dispute
between the EU, Norway, Iceland and the Faroe Islands. Ellefsen (2013) applied the
partition function approach to study the effects of Iceland’s entry into the fishery. He
considered two games, a three-player game between the EU, Norway and the Faroe Is-
lands, and a four-player game where he included Iceland. His results indicated that the
grand coalition is potentially stable, i.e., it is stable for some but not all sharing rules,
in the three-player but not in the four-player game. Hannesson (2012, 2013) studied the
outcome of cooperation assuming different migratory scenarios of the mackerel stock. He
found out that if the migrations are stock dependent, then minor players, like Iceland
and the Faroe Islands, are in a weak position to bargain. The opposite is true if the
migrations are purely random or fixed. Jensen et al. (2015) tried to empirically explain
the outcome of the mackerel crisis after Iceland’s entry into the fishery. They considered
two strategies for all nations, namely, cooperation and non-cooperation. They concluded
that non-cooperation is a dominant strategy for each player.

The purpose of this article is to investigate how the UK’s decision to withdraw from
the EU is likely to affect the current management regime in the mackerel fishery. The
UK, which has been a member of the EU since 1973, voted on 26 June 2016 to leave the
Union. Nine months later, on 29 March 2017, the British government officially initiated
Brexit by invoking Article 50 of the European Union’s Lisbon Treaty. This will lead to the
conclusion of an international agreement between the two parties by the 29th of March
2019 unless the European Council extends this period. Such agreement will define the
terms of the UK’s disengagement from the European legal system, internal market and

4It is assumed that the European Union acts as a nation in this context due to the fact that all of its
members abide by the Common Fisheries Policy (CFP). The CFP gives the EU exclusive competence
when it comes to negotiating and signing fisheries agreements with non-EU nations. Therefore, EU
member states are no longer able to negotiate fisheries agreements by themselves. This is a common
assumption when analysing fishery games that include the EU as a player, see Kennedy (2003), Hannesson
(2012), Ellefsen (2013) and Jensen et al. (2015).

5Unless otherwise stated, all computations in this article are based on ICES (2016a) advice report
9.3.39, tables 9.3.39.12 and 9.3.39.14.
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other policies, including the Common Fisheries Policy (Sobrino Heredia, 2017). Being
a member state of the EU, the UK has not been directly involved in the negotiations
for the mackerel quota but represented by the EU, which allocates fishing opportunities
to member states based on the principle of relative stability, i.e., a fixed percentage of
the quota based on historical catch levels. Thus, after Brexit is concluded, the UK will
have to negotiate on its behalf with the remaining coastal states regarding its share of
the mackerel quota, which will most likely be based on the principle of zonal attachment,
i.e., each party’s share of the quota should be proportional to the catchable stock found
in its EEZ (Churchill and Owen, 2010).

In what follows, we focus on two games: (i) a four-player game where the UK is still
part of the EU, and (ii) a five-player game where the UK is allowed to make its own
decisions. The remaining players/nations considered are Norway, Iceland and the Faroe
Islands. Both games are analysed using the partition function approach. That is, we
investigate how players are likely to organise themselves in coalitions, which result in
the formation of a coalition structure. The objective of a coalition is to maximise its
own net present value of the fishery given the behaviour of the other coalitions in the
coalition structure. The optimal strategies and payoffs of the games are derived as pure
Nash equilibria between coalitions in a coalition structure. Finally, stability of a coalition
structure is tested and the set of the Nash equilibria coalition structures is obtained.

The article is structured as follows. In sections 1.2 and 1.3 we lay out the bioeconomic
and game theoretic models employed in the article. The empirical model specification is
presented in section 1.4. In section 1.5, we report the solution of both games, evaluate the
stability of the coalition structures and discuss the results. Finally, section 1.6 summarises
our main findings and concludes the article.

1.2 Bioeconomic Model

The bioeconomic model we expand on is a deterministic stock-recruitment model intro-
duced by Clark (1973).6 The model is in discrete time between seasons but continuous
within them. Also, it is linear in the control variable, i.e., harvest.

The spawning stock biomass of a fishery at the beginning of a period t, for t =
0, 1, 2, . . . ,∞, is referred to as the recruitment Rt. The harvested biomass in a period
t is denoted by Ht and must be between zero and the recruitment, 0 ≤ Ht ≤ Rt. The
spawning stock biomass at the end of a period is the difference between the recruitment
and the harvest and is called the escapement St, St = Rt − Ht. The spawning stock
biomass at the beginning of the next period Rt+1 is a function of the spawning stock
biomass at the end of the current period St, Rt+1 = F (St). The schema below illustrates
the stock dynamics between time periods.

Rt Ht St Rt+1 = F (St) . . . .

The function F (S), which is usually referred to as the stock-recruitment relationship,
is assumed to be continuous, increasing, concave and differentiable in [0, K] with F (0) = 0
and F (K) = K, where K > 0 is the carrying capacity of the fishery.

6Important contributors towards the development of stock-recruitment models have also been Reed
(1974) and Jaquette (1974) who analysed stochastic stock-recruitment models in discrete time.
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Note that only harvest mortality occurs during a period t. Natural mortality is
accounted for within the stock-recruitment relationship, which can be viewed as the
net recruitment function or the “natural” production function (Clark and Munro, 1975).

1.2.1 Cooperative management

Suppose now that a shared fishery, like the Northeast Atlantic mackerel, is cooperatively
managed by a coalition whose members are all the relevant coastal states, also referred to
as grand coalition. The goal of the grand coalition is to maximise the net present value of
the fishery over an infinite horizon subject to the biological constraint. The maximisation
problem can be expressed as follows:

maximise
St

∞∑
t=0

γtΠ(Rt, St)

subject to Rt+1 = F (St),

0 ≤ St ≤ Rt,

where Π(Rt, St) is the joint profit from the fishery for each period, which is defined as
the difference between gross revenue and total cost. Two assumptions are made when
specifying the net revenue function. First, the demand curve is assumed to be infinitely
elastic, i.e., each harvested unit of fish can be sold at a fixed price p. Thereafter, the
gross revenue from the fishery is expressed as TR(Rt, St) = p(Rt − St). Second, the unit
cost of harvest is assumed to be density dependent, i.e., it increases as the size of the
stock decreases. Thus, for a given stock size x the unit cost of harvest is equal to c(x),
which is a continuous and decreasing function. Consequently, the total cost of harvest
within one period is defined as TC(Rt, St) =

∫ Rt

St
c(x)dx. To sum up, the joint profit in

period t can be written as:

Π(Rt, St) = p(Rt − St)−
∫ Rt

St

c(x)dx.

Clark (1973) showed that, if the profit function is specified as above, then the optimal
harvest strategy that maximises the net present value of the fishery is given by a “bang-
bang” strategy with equilibrium escapement S∗

Ht =

{
R0 − S∗, t = 0,

F (S∗)− S∗, t ≥ 1,

i.e., for the initial period the stock should be depleted to the equilibrium escapement
level and then harvest the difference between optimal recruitment and escapement. The
optimal escapement level is independent of t and must satisfy the so-called “golden rule”

π(S∗) = γF ′(S∗)π[F (S∗)], (1.1)

where π(x) is the marginal profit defined as π(x) = p − c(x). The interpretation of the
“golden rule” is straightforward, a cooperatively managed fishery is exploited until the
marginal profit of harvesting the last unit of the stock is equivalent to the marginal profit
of letting that unit grow and be harvested in the next period.
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1.2.2 Non-cooperative management

Although cooperative management is the desired outcome from the perspective of stock
conservation, it is often the case that shared fisheries are non-cooperatively managed.
In this subsection, we generalise the above model in order to allow for non-cooperative
behaviour among nations. First, we describe how the mackerel stock is exploited in the
presence of two or more distinct coalitions. Then, we specify coalition’s i maximization
problem and derive the non-cooperative “golden rule”.

If the mackerel fishery is non-cooperatively managed, then a number of coalitions7

interacting with each other must exist. Each coalition acts on its own, aiming to maximise
its own net present value of the fishery, which is potentially detrimental to other coalitions.
Coalitions are assumed to harvest mackerel in the EEZs of their members. Furthermore,
we ignore mackerel exploitation on international waters for the following reasons. First,
the size of the high seas territory where mackerel potentially exists is relatively small
and remote, compared to the rest of its habitat. Second, mackerel is mainly exploited on
the high seas by Russia, which receives a small proportion of the total quota and is not
directly involved in the management of the stock.

Let θl be the share of the mackerel stock that only appears in the EEZ of nation l for
a whole year. The share of the mackerel stock that coalition i enjoys is simply the sum of
its members’ shares, i.e., θi =

∑
l∈i θl. For example, if EU and NO form a coalition, then

θ(EU,NO) = θEU + θNO. Parameter θ is assumed to be stationary, i.e., constant through
all time periods. For details on the specification of the share parameter see section 1.4.

Although each coalition exploits mackerel in its own zone, the stock-recruitment rela-
tionship specified in the beginning of this section still holds for the aggregated population
level, i.e., Rt+1 = F (St). Let m be the number of coalitions that non-cooperatively man-
age the mackerel fishery. The share parameter θi, where i = 1, 2, . . . ,m, enables us to
work out the share of recruitment Rit for each coalition in a time period, i.e., Rit = θiRt.
After mackerel harvesting activities Hit are performed by all coalitions, the escapement
from the zone of each coalition is Sit = Rit−Hit. The total recruitment for the next time
period is determined by the total escapement of the current period through the stock-
recruitment relationship on the aggregated escapement level St, where St =

∑m
i=1 Sit.

The schema below illustrates such process when three coalitions exist, m = 3.

Rt

R1t = θ1Rt

R2t = θ2Rt

R3t = θ3Rt

H1t

H2t

H3t

S1t

S2t

S3t

St =
∑3

i=1 Sit Rt+1 = F (St) . . . .

Based on the above setting, a coalition i maximises its own net present value of
the fishery subject to its recruitment share Ri, the escapement strategies of the other
coalitions Sj and the stock-recruitment relationship. Such maximisation problem can be

7The term coalition is typically used to refer to situations where two or more entities, e.g., companies,
political parties, nations etc., cooperate together to achieve a goal. However, within the game theory
literature the term is used as follows: given a set of players, any subset of the given set can be a coalition.
Thus, according to game theorists, an individual player acting on its behalf can be a coalition. Coalitions
consisting of only one player are usually referred to as singletons.
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expressed as follows:

maximise
Sit

∞∑
t=0

γtΠi(Rit, Sit)

subject to Rit = θiRt,

Rt+1 = F (St),

St = Sit +
m−1∑
j=1

Sjt i 6= j,

0 ≤ Sit ≤ Rit.

(1.2)

Πi(Rit, Sit) is the profit for coalition i for each period and is specified as in the cooperative
case, i.e.,

Πi(Rit, Sit) = p(Rit − Sit)−
∫ Rit

Sit

ci(x)dx.

The optimal harvest strategy that maximises the net present value for coalition i is given
by a target escapement strategy with equilibrium escapement S∗i

Hit =


Ri0 − S∗i = θiR0 − S∗i , t = 0,

Ri − S∗i = θiF

(
S∗i +

m−1∑
j=1

Sj

)
− S∗i , t ≥ 1,

i.e., for the first period the initial recruitment of coalition i should be depleted to its
equilibrium escapement level, and then harvest the difference between its recruitment
share and its optimal escapement. The recruitment share of coalition i is determined by
its share and the stock-recruitment relationship, which depends on the optimal escape-
ment of coalition i and the escapement strategies of the other coalitions j. The optimal
escapement level is independent of t and must satisfy the following “golden-rule” (see
appendix A.1 for the proof):

πi(S
∗
i ) = γθiF

′(S)πi[θi(F (S)], (1.3)

where πi(x) is the marginal profit for coalition i defined as πi(x) = p− ci(x) and S is the
aggregated escapement defined as S = S∗i +

∑m−1
j=1 Sj.

It is evident from the non-cooperative golden rule (1.3) that the optimal escapement
strategy S∗i of coalition i depends on the escapement strategies of the other coalitions j.
Therefore, in order for coalition i to be able to determine its optimal escapement strategy
S∗i , it has to have some information regarding the escapement strategies of the remaining
coalitions j.

Suppose that coalition i makes an educated guess about the escapement strategies
of all the remaining coalitions j based on the information it possesses. Coalition i is
now able to compute its optimal escapement strategy S∗i by substituting its educated
guess in (1.3). If all coalitions act in the same manner, i.e., they make an educated
guess for the strategies of their counterparts, substitute in (1.3), and compute their
escapement strategies, then all educated guesses that have been made will probably differ
from the escapement strategies that have been computed. Suppose now that some sort of
updating based on the newly computed escapement strategies takes place and updates the
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information set of the coalitions allowing them to adjust their escapement strategies on the
new information. Then, all coalitions will have to recompute their escapement strategies
based on the new information. This process will keep repeating until no coalition can
further gain by adjusting its escapement strategy, then the Nash equilibrium is reached.

Since this article intention is to compute the Nash equilibrium escapement strategies
for the coalitions formed and not to derive the optimal escapement paths for these coali-
tions, there is no need to make any further specification upon the information coalitions
have and how this information is updated. The Nash equilibrium escapement strategies
can be obtained by solving a system of equations as will be shown in the next section.

Finally, the non-cooperative “golden-rule” is a generalisation of the cooperative one.
To see this, assume that all nations cooperate and the grand coalition is formed. The
stock share of the grand coalition is equal to one, θi = 1, and since no other coalition
exist the aggregated escapement is equivalent to the optimal escapement of the grand
coalition, S = S∗i . Thus, the two rules are equivalent under full cooperation.

1.3 Game Theoretic Model

A coalition game with externalities is modelled in two stages. In the first stage, players,
i.e., nations, form coalitions following a predefined set of rules. For our fishery game, we
adopt the simultaneous-move “Open Membership” game described in Yi and Shin (1995).
According to this rule, players can freely form coalitions as long as no player is excluded
from joining a coalition. This type of coalition game is in line with how membership is
established within an RFMO according to Article 8(3) of the UNFSA. Also, it is the de
facto framework used so far to analyse coalition games in fisheries.

Let N = {1, 2, . . . , n} be the set of players. A coalition C is a subset of N , i.e., C ⊆ N ,
with 2n being the number of coalitions that can be formed, including the empty set. The
coalition(s) formed in the first stage lead to a coalition structure CS = {C1, C2, . . . , Cm},
where 1 ≤ m ≤ n. A coalition structure has at least one coalition, i.e., full cooperation,
and at most n coalitions, i.e., full non-cooperation. The formal definition of a coalition
structure as provided in Yi (1997) states that a coalition structure is a partition of the
players N into disjoint, non-empty and exhaustive coalitions, i.e., Ci ∩ Cj = ∅ for all
i, j = 1, 2, . . . ,m and i 6= j, and

⋃m
i=1Ci = N . This means that within a coalition

structure each player belongs only to one coalition and some players may be alone in
their coalitions.

Given the coalition structure that has been formed in the first stage, in the second
stage, each coalition chooses the economic strategy that maximises its own net present
value of the fishery given the behaviour of the other coalitions. If the grand coalition
is formed then the total net present value of the fishery is maximised. The economic
strategies in the second stage game, as well as the respective payoffs, are pure strategy
Nash equilibria8. Given the optimal strategies in the second stage of the game, the Nash
equilibria coalition structures in pure strategies are the ones that satisfy the stability
criteria.

The game is solved using backward induction to obtain the set of stable coalition
structures, if any. First, we fix all coalition structures. Then, we compute optimal
strategies and payoffs for all coalitions in every coalition structure. Finally, we check
which coalition structures satisfy the stability criteria.

8No mixed strategies are considered when solving this game.
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1.3.1 Second stage of coalition formation

Let K = {CS1, CS2, . . . , CSκ} be the set of coalition structures and κ the number of
coalition structures that can be formed.9 From the κ coalition structures, the κ−1 consist
of two or more coalitions, which non-cooperatively manage the fishing resource. The κ-
th coalition structure contains only one coalition the grand coalition that cooperatively
manages the stock.

For a given coalition structure CSk = {C1, C2, . . . , Cm}, where k = 1, 2, . . . , κ, we
denote the payoff of coalition Ci, where i = 1, 2, . . . ,m, as vi(Si, S). The coalitional
payoff depends on the escapement strategy of the coalition, Si, and the overall escapement
strategy profile of the coalition structure, S = Si +

∑m−1
j=1 Sj.

10 Also, the set of feasible
escapement strategies for any coalition i is between zero, i.e., harvest everything, and its
recruitment, i.e., harvest nothing, Si ∈ [0, Ri].

The equilibrium escapement strategies S∗i for all coalitions Ci in a coalition structure
CSk are derived as a Nash equilibrium between coalition Ci and coalitions Cj where
j = 1, 2 . . . ,m−1, i 6= j and Ci∪Cj = CSk, and must satisfy the following m inequalities:

vi

(
S∗i , S

∗
i +

m−1∑
j=1

S∗j

)
≥ vi

(
Si, Si +

m−1∑
j=1

S∗j

)
,

∀ Ci ∈ CSk; Si, S
∗
i ∈ [0, Ri]; S∗j ∈ [0, Rj]; i, j = 1, 2, . . . ,m; i 6= j,

i.e., for every coalition Ci the optimal escapement strategy S∗i must maximise the coali-
tional payoff given the optimal escapement strategies of the other coalitions S∗j . In other
words, the equilibrium escapement strategy profile of a coalition structure requires that
no coalition can get better-off by deviating from its escapement strategy, i.e., optimal
escapement strategies are best responses. If the grand coalition is formed, the above
decision rule reduces to a single inequality:

v(S∗) ≥ v(S), S, S∗ ∈ [0, R],

i.e., the optimal escapement level must maximise the grand coalition’s payoff.
In order to determine the equilibrium escapement strategy profile of a coalition struc-

ture CSk the maximisation problem (1.2) as specified in subsection 1.2.2 must be re-
peatedly solved for every coalition Ci within a coalition structure CSk until no coalition
can further increase its net present value by adjusting its escapement strategy given the
escapement strategies of the other coalitions. However, as described in the same sub-
section, such maximisation problem boils down to a single expression, the “golden-rule”,
specified in (1.3). Therefore, in order to determine the equilibrium escapement strategy
profile of a coalition structure, we solve the following system of m equations:

πi(Si) = γθiF
′(S)πi[θi(F (S)], ∀Ci ∈ CSk; i = 1, 2, . . . ,m,

where S =
m∑
i=1

Si, i = 1, 2, . . . ,m.
(1.4)

9The number of coalition structures κ depends on the number of players and is referred to as the Bell
number within combinatorial mathematics.

10Games where a player’s or a coalition’s payoff depend only upon its own strategy (Si in our setting),
and a linear aggregate of the full strategy profile (S in our setting) are also called aggregate games, see
Martimort and Stole (2012) for additional details and applications.
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These equations refer to the “golden-rules” that coalitions within a coalition structure
apply in order to determine their escapement strategies. The overall escapement, S, is a
linear aggregate of the full strategy profile and captures how coalitions interact with each
other through their escapement strategies. Note that in the case of the grand coalition
the above system of equations consists of only one equation, which is equivalent to the
cooperative “golden-rule” (1.1).

It should be obvious by now that the equilibrium escapement strategies depend on
the coalition structure that is formed and on the parameters of the model. The coalitions
formed are assumed to be asymmetric. They are differentiated by parameter θi, the
share of mackerel stock that occurs in the EEZ(s) of a coalition, and their marginal cost
of harvest, ci(x). Some coalitions may have equivalent shares, if their members are of
the same type, see section 1.4 for additional details. These asymmetries ensure that
escapement strategies across coalitions are different and depend upon the form of the
coalition structure. Thus, a unique payoff, which depends on the coalition structure, can
be computed for every coalition in a coalition structure.

The coalitional payoff, which is equivalent to the net present value of the fishery over
an infinite time horizon and depends on the escapement strategy profile of the coalition
structure formed, can be written as follows:

vi(S
∗
i , S

∗) =
∞∑
t=0

γtΠi(Rit, Sit) = Πi(θiR0, S
∗
i ) +

γ

1− γΠi[θiF (S∗), S∗i ], (1.5)

where R0 is the initial recruitment and S∗ = S∗i +
∑m−1

j=1 S
∗
j is the optimal escape-

ment strategy profile of a coalition structure. While specifying the coalitional payoff,
it is important to remember that two things are assumed. First, the initial recruit-
ment is high enough to allow for the prescribed harvest strategy in the first period, i.e.,
S∗i ≤ θiR0 ∀Ci ∈ CSk. If this is not the case, the stock should not be harvested but
allowed to grow until recruitment exceeds escapement. For our mackerel case, the initial
recruitment is high enough to sustain all escapement strategies as feasible. Second, the
fishing fleet capacity required to implement such harvest strategies (initial depletion and
steady state harvest) exists. If the necessary capacity does not exist, the following situa-
tions arise: (i) there exist sufficient capacity to harvest the steady state quantity but not
to deplete the stock to the steady state in one period, and (ii) no sufficient capacity exists
to harvest the steady state quantity.11,12 If case (i) occurs, then the initial depletion of
the stock to the steady state escapement level would take a couple of periods depending
on the capacity of the current fishing fleet. On the other hand, if case (ii) occurs, we
will never reach the “true” steady state prescribed by the optimal escapement strategy.
In the long run, however, a nation would increase its fishing fleet capacity to meet the
optimal escapement strategy, either by investing in more fishing vessels or by shifting
vessels that operate in less profitable stocks. Since mackerel is one of the most valuable
stocks in the Northeast Atlantic region and in order not to complicate things by endoge-
nously determining the fishing fleet capacity, we assume that the necessary capacity for
implementing the prescribed strategies exists for all nations.

11For a formal analysis of these two cases see Clark (1972).
12If a capacity constraint is to be included, then instead of harvesting max(R − S, 0) our sequence of

harvest strategies should satisfy the following: max
[
min(R−S,Cap), 0

]
, i.e., if S < R then harvest their

difference if it is below the fishing fleet capacity Cap or harvest the capacity, otherwise do not harvest
and let the stock grow.
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1.3.2 First stage of coalition formation

Our analysis is in line with the internal and external stability concepts of d’Aspremont
et al. (1983) and what is defined as potential internal stability by Eyckmans and Finus
(2004). These concepts have been used to test a coalition’s stability in both characteristic
and partition function games.13

We start by introducing the notion of an embedded coalition, which is extensively
used throughout this subsection. An embedded coalition is a pair (Ci, CSk) consisting
of a coalition and a coalition structure which contains that coalition, Ci ∈ CSk. Let
V (Ci, CSk) denote the payoff of an embedded coalition14 and Vx(Ci, CSk) denote the
payoff received by subcoalition x of the embedded coalition (Ci, CSk), x ⊂ Ci. The
subscript x may refer to an individual player (see internal stability condition below) or
a coalition of players (see external stability condition below). The following relationship
holds:

∑
x∈Ci

Vx(Ci, CSk) = V (Ci, CSk).
An embedded coalition (Ci, CSk) is internal stable if none of its members l, l ∈ Ci,

has incentives to leave and form a singleton coalition C l, where C l = {l}. Such condition
can be written as follows:

Vl(Ci, CSk) ≥ V (C l, CSlk), ∀l ∈ Ci, (1.6)

where CSlk = {(CSk\Ci), (Ci\l), (C l)} stands for a coalition structure formed from the
original coalition structure CSk in which coalition Ci is split into two coalitions: (Ci\l)
and (C l). In other words, given an embedded coalition (Ci, CSk), the payoff a member
l receives as a member of coalition Ci must be higher or equal to the payoff that l can
receive if it leaves the coalition in order to form a singleton coalition. If this is true
for all the members, then the embedded coalition (Ci, CSk) is internal stable. Notice
that the remaining form of the coalition structure is assumed to be unaffected by l’s
deviation, i.e., the remaining members of the said coalition do not leave after l leaves and
the remaining coalitions in the coalition structure, if any, do not merge or split. This
assumption is equivalent to the ceteris paribus assumption. By definition all embedded
coalitions which are singletons are always internal stable.

In an open membership game, where membership into a coalition is free for all players,
a second condition ensuring that outsiders do not have incentives to join a coalition
is needed. Such condition is referred to as external stability. An embedded coalition
(Ci, CSk) is external stable if no other embedded coalition (Cj, CSk), singleton or not,
in the coalition structure CSk has incentives to join coalition (Ci, CSk). Such condition
can be written as follows:

V (Cj, CSk) ≥ Vj(C
i
j, CS

j
k), ∀Cj ∈ CSk; Cj 6= Ci, (1.7)

where Ci
j = Cj ∪ Ci stands for a coalition formed if coalitions Ci and Cj merge, and

CSjk = {(CSk\(Cj, Ci)), (Ci
j)} stands for a coalition structure formed from the original

coalition structure CSk in which coalitions Ci and Cj are merged into one coalition:
(Cj

i ). That is to say, given a coalition structure CSk, the payoff an embedded coalition
(Cj, CSk) receives must be higher or equal to the payoff Cj can receive if it joins coalition

13See, among others, Pintassilgo et al. (2010) and Liu et al. (2016) for applications of these concepts
on fishery games in partition function form.

14Note that the payoff of an embedded coalition is equivalent to the coalitional payoff specified in
subsection 1.3.2 given that the coalition structure in which the coalitional payoff refers to is the same,
i.e., V (Ci, CSk) ≡ vi(S∗i , S∗) if the coalition structure that vi refers to is equivalent to CSk.
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Ci and form a larger coalition. If this is true for all coalitions other than Ci within
coalition structure CSk, then the embedded coalition (Ci, CSk) is external stable. Again,
the remaining form of the coalition structure is assumed to be unaffected by the mergence.
By definition the grand coalition is always external stable.

So far our analysis has been within the context of d’Aspremont et al. (1983) applied
for embedded coalitions. Testing stability within this context requires the division of
the coalitional payoff among coalition members. For instance, it is impossible to test for
internal stability without knowledge of the individual payoff a coalition member receives
(LHS of (1.6)). Likewise, external stability requires information regarding the payoff
the merging coalition will receive after the merger takes place (RHS of (1.7)). Hence, a
sharing rule is needed in order to split the coalitional payoff. Consequently, the stability
of a coalition is going to depend upon such sharing rule.

The existing literature on sharing rules that can be applied to partition function games
is not so extensive compared to the one for characteristic function games.15 Specifying
a sharing rule for games in partition form is not an easy undertaking because of the
complexity of the partition function. A common issue is that for a given coalition the
coalitional payoff is not unique since the same coalition can belong to more than one
coalition structures.16 Some authors have proposed different weighted rules in order to
determine a unique coalitional payoff.17 However, these approaches do not provide a
unique solution unless the weight parameters are fully specified.

In order to avoid these issues and since the main objective of this article is to determine
the set of stable coalition structures and not to distribute the gains of cooperation among
cooperating nations, we adopt Eyckmans and Finus (2004) concept of potential internal
stability. An embedded coalition (Ci, CSk) is potentially internal stable if the sum of the
free-riding payoffs of its members l, l ∈ Ci, does not exceed its coalitional payoff, i.e.,

V (Ci, CSk) ≥
∑
l∈Ci

V (C l, CSlk), (1.8)

where C l = {l} is a singleton coalition and CSlk = {(CSk\Ci), (Ci\l), (C l)} stands for a
coalition structure formed from the original coalition structure CSk in which coalition Ci
is split into two coalitions: (Ci\l) and (C l). V (C l, CSlk) is the free-riding payoff that a
coalition member l can receive if it leaves coalition Ci and form the singleton coalition C l,
ceteris paribus. By definition a singleton embedded coalition is always potential internal
stable.

A clear advantage of condition (1.8) over (1.6) is that it can test for internal stability
in the absence of a sharing rule. If an embedded coalition is potentially internal stable,
then there exist some allocation schemes which can ensure internal stability. On the
other hand, if potential internal stability does not hold, then no sharing rule can make
an embedded coalition internal stable (Pintassilgo et al., 2010).

Clearly, potential internal stability is a necessary condition for internal stability. By
the same token, a necessary condition for external stability is needed in order to be able

15The coalitional payoff of a game in characteristic form is independent of the coalition structure.
16To see this point consider a four player game and the following two coalition structures: CS1 =
{12, 3, 4} and CS2 = {12, 34}. In both coalition structures players 1 and 2 form a coalition. Players 3
and 4 act as singletons in CS1 and also form a coalition in CS2. The payoff of coalition (12) depends
on the coalition structure that it belongs, and the coalition structure that contains coalition (12) is not
unique.

17See Macho-Stadler et al. (2007), Pham Do and Norde (2007) and De Clippel and Serrano (2008) for
examples.
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to determine stability in the absence of a sharing rule. An embedded coalition (Ci, CSk)
is potentially external stable if for all other embedded coalitions (Cj, CSk) the following
inequality holds:

V (Cj, CSk) ≥ V (Ci
j, CS

j
k)−

∑
l∈Ci

V (C l, CSjlk ), ∀Cj ∈ CSk; Cj 6= Ci, (1.9)

where Ci
j = Cj∪Ci stands for a coalition formed if coalitions Ci and Cj merge, and CSjk =

{(CSk\(Cj, Ci)), (Ci
j)} stands for a coalition structure formed from the original coalition

structure CSk in which coalitions Ci and Cj are merged into one coalition: (Cj
i ). In

addition, C l = {l} is a singleton coalition and CSjlk = {(CSjk\Ci
j), (C

i
j\l), (C l)} stands

for a coalition structure formed from coalition structure CSjk in which coalition Ci
j is

split into two coalitions: (Ci
j\l) and (C l). V (Ci

j, CS
j
k) is the payoff coalition Ci

j receives

after the merger occurs, ceteris paribus (hereinafter the joint payoff). And, V (C l, CSjlk )
is the free-riding payoff that a member l of coalition Ci receives if it leaves coalition Ci

j,
ceteris paribus. Thus, given a coalition structure CSk, an embedded coalition (Ci, CSk) is
potentially external stable if and only if the payoff of all other embedded coalitions Cj in
CSk is greater than the joint payoff minus the sum of the free-riding payoffs of coalition’s
Ci members. In other words, in order for coalition Cj not to be willing to merge with
coalition Ci, its potential share of the joint payoff must be lower than its current payoff.
The potential share of the joint payoff that coalition Cj is entitled to is the remainder of
the joint payoff after all members of coalition Ci have received their free-riding payoffs.
By definition the grand coalition is always potentially external stable.

Having defined the necessary conditions for an embedded coalition to be internal
and external stable in the absence of a sharing rule we can now proceed in defining the
necessary conditions for a coalition structure to be stable. As in the case of a coalition,
stability of a coalition structure in an open membership game requires that the coalition
structure is both internal and external stable.

Before we start analysing the two conditions, let us take a step back and visualise what
internal and external stability of a coalition structure is. Figure 1.1 depicts the coalition
structures for a four-player game. The nodes represent coalition structures. The arcs
represent mergers of two coalitions when followed upward and split of a coalition into
two subcoalitions when followed downward. In a four-player game there exist four levels
in total. A coalition structure level is a subset of the coalition structure set that consists
of coalition structures with equal number of coalitions. In our example, the third level
subset is composed of coalition structures that have only two coalitions. A stable coalition
structure should not move upwards or downwards in the graph but remain in its position.
This occurs if all embedded coalitions in a coalition structure do not have incentives to
merge or split.

The split part is the easiest to test as it merely requires all embedded coalitions of
a coalition structure to be internal stable. If this is true, then the coalition structure
cannot be downgraded, i.e., move downwards in the graph. Using the notion of potential
internal stability such condition can be written as follows:

V (Ci, CSk) ≥
∑
l∈Ci

V (C l, CSlk), ∀Ci ∈ CSk. (1.10)

Therefore, if all embedded coalitions of a coalition structure are potentially internal stable,
then the coalition structure is potentially internal stable, which is a necessary condition
for internal stability to hold.
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{1,2,3,4}
(1)

{12,3,4} {13,2,4} {14,2,3} {23,1,4} {24,1,3} {34,1,2}
(2)

{12,34} {13,24} {14,23} {123,4} {124,3} {134,2} {234,1}
(3)

{1234}
(4)

Figure 1.1. Coalition structure graph for a four player game.

On the other hand, the merge part of our argument is not so straightforward to
test. This is because it is not equivalent as saying that all embedded coalitions of a
coalition structure should be external stable. If we say so, then some externally stable
coalition structures will fail to pass the test and considered as externally unstable. To
see this point, suppose that external stability of a coalition structure requires all of its
embedded coalitions to be external stable. Consider the following coalition structure:
CS11 = {123, 4}. According to the aforementioned definition, CS11 is external stable if
coalitions (123) and (4) are external stable. That is to say that coalition (123) does not
want to merge with (4) and coalition (4) does not want to merge with (123). This sounds
like a valid definition for a coalition structure to be external stable, and, as a matter of
fact, it is. If all embedded coalitions of a coalition structure are external stable, then the
coalition structure cannot be upgraded, i.e., move upwards in the graph.

Suppose now that one of the two embedded coalitions of CS11 is not external stable.
Is this assumption going to upgrade CS11 permanently and therefore making it “truly”
external unstable? Let coalition (123) be the only external stable coalition. In other
words, (4) does not want to merge with (123) but (123) wants to merge with (4). Since
not all embedded coalitions are external stable, by definition coalition structure CS11 is
not external stable. Therefore, upgrade into coalition structure CS15 = {1234} occurs.
But we know that only coalition (123) is better off under the new coalition structure since
by assumption it is the only coalition that wants to merge. Thus, coalition (4) deviates
and coalition structure CS11 = {123, 4} forms again.

The question now becomes: is it possible, given a pair of embedded coalitions, that
only one has incentives to join the other? The short answer is yes. Typically, games with
positive externalities are superadditive, i.e., V (Ci∪Cj, CSk) ≥ V (Ci, CS

i
k)+V (Cj, CS

j
k),

where CSik = CSjk = {(CSk\(Ci ∪ Cj)), ((Ci ∪ Cj)\Ci)}. Superadditivity means that a
merger between two embedded coalitions generates a payoff at least equal to the sum
of the individual payoffs. The superadditivity property may or may not hold across the
entire game but it holds for at least some embedded coalitions, at least it does in the
game analysed in this article.

Back to our question. Suppose that the superadditive property holds between the em-
bedded coalitions of CS11 and CS15, i.e., V (1234, {1234}) ≥ V (123, {123, 4})
+ V (4, {123, 4}). If this is true, then coalition (123) is better off under the mergence
(strict inequality) or indifferent (equality). This is because the individual payoff of coali-
tion (4) under CS11 is also its free-riding payoff. That is, after the mergence occurs, if
coalition (4) deviates, it cannot receive a payoff greater than the payoff it already receives.
Therefore, after mergence, coalition (123) receives at least its individual payoff. However,
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after mergence, coalition (4) may not necessarily receive its individual payoff. This is be-
cause, coalition (123) must receive a payoff which is at least as high as the sum of the
free-riding payoffs of its members, i.e., V123(1234, {1234}) ≥∑l∈(123) V (l, {(1234\l), (l)}).
Therefore the potential payoff that coalition (4) can receive cannot exceed the difference
between the joint payoff and the sum of the free-riding payoffs of coalition (123), i.e.,
V4(1234, {1234}) ≤ V (1234, {1234}) −∑l∈(123) V (l, {(1234\l), (l)}). If V4(1234, {1234})
is greater than V (4, {123, 4}) then coalition (4) has incentives to merge otherwise it does
not. It should be clear by now, that given a pair of coalitions, (C1, C2), the fact that
C1 wants to merge with C2 does not imply that C2 also wants to merge with C1. In
order for C2 to be willing to merge, its payoff under the mergence should be greater than
its individual payoff and this depends on the magnitude of the free-riding payoffs of C1

members.
Even if the entire game is superadditive, i.e., at least some coalitions want to merge,

the free-riding effects of these coalitions may be so strong they make it impossible for mer-
gence to occur. And, it is because of strong free-riding effects that superadditive games
with externalities cannot necessarily sustain the grand coalition as a stable outcome.

So far we have argued that requiring all embedded coalitions of a coalition structure
to be external stable does not necessarily provide us with the set of all external stable
coalition structures. So, is there a rule that when applied can give us the set of all external
stable coalition structures? The answer is yes. Such condition requires that, given a
coalition structure CSk, all possible embedded coalitions pairs

[
(Ci, CSk), (Cj, CSk)

]
,

∀Ci, Cj ∈ CSk and Ci 6= Cj, are not willing to merge. An embedded coalition pair is not
willing to merge if at least one of its embedded coalitions do not want to merge. Such
conditions can be written as follows:

A: V (Ci, CSk) ≥ V (Cj
i , CS

i
k)−

∑
l∈Cj

V (C l, CSilk ), Ci 6= Cj; Ci, Cj ∈ CSk, (1.11)

B: V (Cj, CSk) ≥ V (Ci
j, CS

j
k)−

∑
l∈Ci

V (C l, CSjlk ), Cj 6= Ci; Cj, Ci ∈ CSk. (1.12)

Condition A (B) is equivalent to the potential external stability condition (1.9) but only
with respect to coalition Ci (Cj). That is, if A is true, then Ci does not want to merge
with Cj, i.e., Cj is potentially external stable with respect to Ci. Similarly if B is true,
then Cj does not want to merge with Ci, i.e., Ci is potentially external stable with respect
to Cj. If one of the two conditions holds, i.e., A ∨ B, then the pair

[
(Ci, CSk), (Cj, CSk)

]
will not merge and therefore is considered external stable. If this is true for all possible
pairs within a coalition structure, i.e.,

A ∨ B, ∀Ci, Cj ∈ CSk; Ci 6= Cj, (1.13)

then the coalition structure is potentially external stable, which is a necessary condition
for external stability to hold. A coalition structure is stable if it is both internal and
external stable, i.e., stability of a coalition structure requires conditions (1.10) and (1.13)
to hold simultaneously. An illustration of the stability concepts applied in this article is
provided through a small numerical example in appendix A.2.

1.4 Empirical Model

Before proceeding with the specification of functional forms and parameters we first
identify the different coalition structures in the four- and five-player games. The four-
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Table 1.1. List of all coalitions for the four player game.

No. Coalition No. Coalition No. Coalition

1 (EU) 6 (EU,FO) 11 (EU,NO,FO)
2 (NO) 7 (EU,IS) 12 (EU,NO,IS)
3 (FO) 8 (NO,FO) 13 (EU,FO,IS)
4 (IS) 9 (NO,IS) 14 (NO,FO,IS)
5 (EU,NO) 10 (FO,IS) 15 (EU,NO,FO,IS)

Table 1.2. List of all possible coalition structures for the four player game.

No. Coalition structure No. Coalition structure No. Coalition structure

1 (EU),(NO),(FO),(IS) 6 (NO,IS),(EU),(FO) 11 (EU,NO,FO),(IS)
2 (EU,NO),(FO),(IS) 7 (FO,IS),(EU),(NO) 12 (EU,NO,IS),(FO)
3 (EU,FO),(NO),(IS) 8 (EU,NO),(FO,IS) 13 (EU,FO,IS),(NO)
4 (EU,IS),(NO),(FO) 9 (EU,FO),(NO,IS) 14 (NO,FO,IS),(EU)
5 (NO,FO),(EU),(IS) 10 (EU,IS),(NO,FO) 15 (EU,NO,FO,IS)

player game consists of the following nations: the EU, Norway, the Faroe Islands and
Iceland. The total number of coalitions and coalition structures that are likely to occur
in a four-player game are 15 and are depicted in tables 1.1 and 1.2. The five-player game
consists of the following nations: the EU, the UK, Norway, the Faroe Islands and Iceland.
The total number of coalitions and coalition structures that are likely to occur in this
game are 31 and 52 and are shown in tables 1.3 and 1.4.

The singleton coalition of EU in the four-player game is treated to be equivalent to
the coalition of EU and UK in the five-player game. As a consequence, all of the coalition
structures that are likely to occur in the four-player game are also likely to reoccur in the
five-player game. For example, CS1 in the four-player game is equivalent to CS2 in the
five-player game and etc. However, the set of stable coalition structures is not necessarily
equivalent between the two games. This is due to the fact that in the five-player game
we allow for the UK to make its own decisions and these decisions may not necessarily
be aligned to the ones EU and UK as cooperators may implement. For the remaining of
the article and unless explicitly stated all figures related to EU refer to the five-player
game and do not take into consideration UK. Table 1.5 provides a concrete list of all the
symbols we use in this article.

1.4.1 Stock-recruitment relationship

In order to capture the relationship between a period’s escapement St and next period’s
recruitment Rt+1 a function F (S) is needed where Rt+1 = F (St). One functional form,
introduced by Ricker (1954) is: F (S) = aSe−bS. This function has the property of
overcompensation, i.e., it reaches a peak and then descends asymptotically towardsR = 0,
limS→∞ F (S) = 0. Another functional form, proposed by Beverton and Holt (1957) is:
F (S) = aS

b+S
. This one does not decrease but instead increases asymptotically towards

R = a, limS→∞ F (S) = a. Both functions are well known among the models that have
been developed to fit stock-recruitment curves to data sets.18 We estimate and make use

18See Iles (1994) for a review.
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Table 1.5. List of symbols and abbreviations.

Symbol Description Value Unit

Sets
N Players
K Coalition structures
Subscripts
n Number of players 4, 5
m Number of coalitions in a CS 1, 2, . . . , n
κ Number of CSs 15, 52
t Time index 0, 1, 2, . . . ,∞
l Player index 1, 2, . . . , n
i, j Coalition index 1, 2, . . . ,m
k CS index 1, 2, . . . , κ
Variables
Si Escapement of coalition i in a CS 103 tonnes
S Total escapement 103 tonnes
R Total recruitment 103 tonnes
H Total harvest 103 tonnes
Vi NPV of coalition i in a CS (embedded coalition)a 106 NOK
VCS Total NPV of a CSb 106 NOK
Parameters
p Price 10 NOK/kg
r Discount rate 5%
θl Share of mackerel stock in player’s l EEZ cf. table 1.7
a Stock – Recruitment parameter cf. table 1.6
b Stock – Recruitment parameter cf. table 1.6
ci Cost parameter of coalition i cf. tables 1.9-1.10
β Stock elasticity parameter 1.0, 0.6, 0.3
R̄ Base year recruitment 4887 103 tonnes
H̄l Base year harvest of player l cf. table 1.8
ψ Cost – Revenue ratio 0.78
Abbreviations
CS Coalition structure
EU European Union
UK United Kingdom
NO Norway
FO Faroe Islands
IS Iceland
NPV Net present value

a Vi is equivalent to V (Ci, CSk) and should not be confused with Vx(Ci, CSk). We make use of compact notation
in order to convenience ourselves in the presentation of the results.
b VCS =

∑
i∈CSk

V (Ci, CSk).

of both when running our model. By doing so, we are able to test how sensitive the set
of stable coalition structures is to the biological constraint of our model.

Both functions are non-linear, thus before proceeding with the regressions we linearise
them. The Ricker stock-recruitment relationship becomes:

Rt = aSt−1e
−bSt−1 ⇔ ln(Rt)

= ln(a) + ln(St−1)− bSt−1 ⇔ ln

(
Rt

St−1

)
= ln(a)− bSt−1. (1.14)
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Figure 1.2. Actual and fitted development of the mackerel stock 1981–2015.

Table 1.6. Results from fitting recruitment and escapement
data on the Ricker and Beverton-Holt functions.

Parameters

Functional form a b Adjusted R2

Ricker
1.6784 9.73× 10−5 0.35
(0.000) (0.000)

Beverton-Holt
10,977 5,965 0.88
(0.000) (0.000)

Note: p-values of the transformed regression in parentheses.

Similarly, the Beverton-Holt function becomes:

Rt =
aSt−1
b+ St−1

⇔ 1

Rt

=
1

a
+
b

a

1

St−1
. (1.15)

We fit Eq. (1.14) and (1.15) using Ordinary Least Squares on recruitment and es-
capement data. The data used are obtained from ICES (2016a) advice report 9.3.39 table
9.3.39.14. In particular, the following columns covering the period between 1980 and 2015
are used: (i) SSB (Spawning time), and (ii) Landings. According to ICES (2014), SSB
means the estimate of the spawning stock biomass at spawning time in the year in which
the TAC applies, taking into account of the expected catch (Annex 9.3.17.1 Management
plan harvest control rule). In the beginning of section 1.2 of this article, we define the
recruitment of a fishery as the unexploited spawning stock biomass at the beginning of a
period. If we identify that the beginning of a period occurs when spawning takes place,
then the terms recruitment and SSB are equivalent. Moreover, landings refer to the
mackerel biomass landed in all ports in the Northeast Atlantic area in a respective year,
which is equivalent to the total harvested biomass. Therefore, the difference between SSB
and landings represents the escapement of the stock in a particular period/year.

The parameters a and b in Eq. (1.14) and (1.15) are estimated after the time lag
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Table 1.7. Shares of mackerel stock in player’s l EEZ.

EUa UK NO FO IS

Mackerel share in %, θl 25.0 25.0 25.0 12.5 12.5

Note: See table 1.5 for abbreviations.
a Mackerel share for EU refers to the five player game, which does
not include UK. Mackerel share for EU in the four player game is
equivalent to the sum of EU and UK mackerel shares, i.e., 50%.

as well as transformation for variables R and S have been taken into account. The
results of the regression are shown in table 1.6. Figure 1.2 shows the actual development
of the mackerel stock and the fitted curves for both stock-recruitment functions on the
escapement data. Both functions can trace the actual mackerel stock reasonably well.

1.4.2 Share of mackerel stock

As we have already mentioned in subsection 1.2.2, θl denotes the share of the mackerel
stock that only appears in the EEZ of nation l during the whole year. We believe that
the share parameters consists of two dimensions, namely, time and space. Time refers to
the percentage of months in a year that mackerel appears in the EEZ of a nation. And,
space refers to the percentage of the mackerel stock that appears in the EEZ of a nation.
Multiplication of the two percentages for nation l yields parameter θl.

For the dimension of time, we base our analysis on the annual migration pattern of the
mackerel stock and the time it spends on the respective EEZs of the nations concerned
in this article. The migration pattern of mackerel is divided into two elements, namely,
a pre-spawning migration and a post-spawning one (ICES, 2016b). From late summer to
autumn, the pre-spawning migration starts from the feeding grounds in the North and
Nordic seas. This migration phase includes shorter or longer halts in deep waters along
the edge of the continental shelf where mackerel shoals overwinter until they reach the
spawning grounds south down the west coast of Scotland and Ireland, and along the shelf
break waters between Spain and Portugal. The stock is targeted by Norwegian, British
and European vessels when it overwinters (fourth quarter) and by European and British
vessels afterwards (first quarter). After spawning occurs, the post-spawning migration
towards the feeding grounds begins. No significant catches occur during this migration,
which takes place in spring (second quarter). During summer the stock is more spread
as it feeds in Northern waters. At this time Norwegian, Icelandic and Faroese vessels are
active (third quarter).

According to the mackerel migration pattern, we conclude that the stock occurs 50%
of the time in the Norwegian EEZ (third and fourth quarters), 50% of the time in the
European and British EEZs (fourth and first quarters), and 25% of the time in the
Icelandic and Faroese EEZs (third quarter).

For the spatial distribution, unfortunately, no data exist that measures the amount
of mackerel that appears in a specific geographical area within the Northeast Atlantic.
Therefore, we make the simplifying assumption that approximately half of the stock
appears in the EEZ of a nation during mackerel’s annual migration pattern. That is, the
space percentage that appears in the EEZ of a nation is constant and equal to 50% for
all nations. Table 1.7 shows the share of the mackerel stock that appears in the EEZ of
the nations we consider in this article, calculated as the product of the two dimensions
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analysed here. As already mentioned in subsection 1.2.2, the share of the mackerel stock
of coalition i is computed as the sum of the individual shares of its members.

1.4.3 Unit cost of harvest

As we discuss in section 1.2, the coalitional unit cost of harvest ci(x) is a continuous
and decreasing function with respect to stock size and the total cost within one period
is specified as TCi(Rit, Sit) =

∫ Rit

Sit
ci(x)dx. Total costs can be also expressed to be

proportionate with fishing effort Ei, that is TCi(Ei) = ciEi, where ci is a cost parameter.
Furthermore, we define the harvest production function of a coalition to be Hi = Eix

β,
where β is the stock elasticity and is assumed to be the same for all coalitions. Solving
the harvest production function with respect to fishing effort and substituting in the
total cost function yields: TCi(Hi, x) = ciHix

−β. Dividing with harvest, the unit cost
of harvest can be expressed as ci(x) = cix

−β. Substituting for the unit cost of harvest
in the initial total cost expression and solving the integral provides us with an analytic
expression for the total cost of harvest of coalition i. Notice that for values of β = 1 and
β ∈ (0, 1) the integral yields different solutions.19 Thus,

TCi(Rit, Sit) =


ciln

(
Rit

Sit

)
, β = 1,

ci
1

1− β (R1−β
it − S1−β

it ), 0 < β < 1.

(1.16)

Due to lack of uniformly reported cost data across the nations considered in this
article as well as the short-length of some of these series, the cost parameters cannot be
estimated through statistical procedures. Instead, the cost coefficients ci for all coalitions
are calibrated at the level which ensures that for base year harvest, H̄i =

∑
l∈Ci

H̄l, and

base year recruitment, R̄i = θiR̄, total cost is the estimated base year proportion of total
revenue ψ, i.e.,

ci =


ψpH̄iln

(
R̄i

R̄i − H̄i

)−1
, β = 1,

ψpH̄i(1− β)
[
R̄i

1−β − (R̄i − H̄i)
1−β]−1, 0 < β < 1 .

(1.17)

The cost-revenue ratio ψ is equal to 0.78 and is assumed to be equal for all nations. Its
computation is based on operating expenses and operating revenues of licensed Norwegian
purse seiners for the year 2015 obtained from the report: Profitability survey on the
Norwegian fishing fleet, table G 20 (Norwegian Directorate of Fisheries, 2015).

Base year harvest for all nations, H̄l, and base year recruitment for the entire mackerel
fishery, R̄, are obtained from ICES (2016a) advice report 9.3.39. Recruitment for year
2015 is provided from table 9.3.39.14 of the report and is equivalent to 4,887 thousand
tonnes for the entire mackerel fishery. Individual harvest levels for year 2015 are provided
from table 9.3.39.12 of the ICES report and are depicted in table 1.8. Base year harvest

19For β = 0 total cost becomes proportional to harvest and the unit cost of harvest is no longer stock
dependent. Constant stock density (β = 0) implies that the equilibrium escapement strategy profile of a
coalition structure as specified in subsection 1.3.2 (system of equations (1.4)) cannot be obtained. This
is because marginal profit at the beginning and the end of a harvesting period is no longer different and
the non-cooperative golden rule becomes 1 = γθiF

′(S).
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Table 1.8. Base year (2015) harvest for European Union,
United Kingdom, Norway, Faroe Islands and Iceland. Units:
Thousand tonnes.

EUa UK NO FO IS

Base year harvest,
H̄l 269.929 247.986 242.231 108.412 169.333

Note: See table 1.5 for abbreviations.
a Base year harvest for EU refers to the five player game, which does
not include UK. Base year harvest for EU in the four player game is
equivalent to the sum of EU and UK base year harvests, i.e., 517.915
thousand tonnes.

Table 1.9. Cost parameters for coalitions i in the four player game for different
stock elasticity levels.

Cost parameter, ci

Coalition, Ci β = 1 β = 0.6 β = 0.3 β = 0.1

(EU) 17,032.48 788.13 78.59 16.90
(NO) 8,587.07 522.52 63.99 15.78
(FO) 4,346.93 347.26 52.16 14.74
(IS) 4,086.31 334.84 51.24 14.65
(EU,NO) 25,619.69 1,006.85 88.83 17.60
(EU,FO) 21,379.94 903.27 84.14 17.28
(EU,IS) 21,120.84 896.80 83.84 17.26
(NO,FO) 12,934.16 668.07 72.35 16.44
(NO,IS) 12,675.85 660.17 71.93 16.40
(FO,IS) 8,436.17 517.08 63.66 15.75
(EU,NO,FO) 29,967.05 1,106.10 93.10 17.88
(EU,NO,IS) 29,708.49 1,100.46 92.87 17.86
(EU,FO,IS) 25,468.83 1,003.35 88.68 17.59
(NO,FO,IS) 17,023.72 787.89 78.58 16.90
(EU,NO,FO,IS) 34,056.20 1,194.40 96.75 18.11

Note: See table 1.5 for abbreviations.

for coalition i, H̄i, is defined as the sum of the base year quantities of its members l, i.e.,
H̄i =

∑
l∈Ci

H̄l. Base year recruitment for coalition i, R̄i, is defined as the product of the

coalition’s share of mackerel stock θi and overall base year recruitment, i.e., R̄i = θiR̄.
The price p is equivalent to 10 NOK/kg. The stock elasticity β is not estimated

empirically and is therefore varied when running our model in order to capture a range of
possibilities. We set β equal to 1, 0.6, 0.3 and 0.1.20 Tables 1.9 and 1.10 in the appendix
show the cost parameters for all coalitions in both the four and five player games for all
realisations of the stock elasticity.

20For models which empirically estimate the stock elasticity see Nøstbakken (2006) and Ekerhovd and
Steinshamn (2016).
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Table 1.10. Cost parameters for coalitions i in the five player game for different
stock elasticity levels.

Cost parameter, ci

Coalition, Ci β = 1 β = 0.6 β = 0.3 β = 0.1

(EU) 8,469.55 518.29 63.73 15.76
(UK) 8,562.75 521.65 63.94 15.77
(NO) 8,587.07 522.52 63.99 15.78
(FO) 4,346.93 347.26 52.16 14.74
(IS) 4,086.31 334.84 51.24 14.65
(EU,UK) 17,032.48 788.13 78.59 16.90
(EU,NO) 17,056.91 788.80 78.62 16.90
(EU,FO) 12,817.18 664.50 72.16 16.42
(EU,IS) 12,557.15 656.52 71.73 16.39
(UK,NO) 17,149.83 791.33 78.75 16.91
(UK,FO) 12,909.92 667.33 72.32 16.43
(UK,IS) 12,651.26 659.41 71.89 16.40
(NO,IS) 12,934.16 668.07 72.35 16.44
(NO,FO) 12,675.85 660.17 71.93 16.40
(FO,IS) 8,436.17 517.08 63.66 15.75
(EU,UK,NO) 25,619.69 1,006.85 88.83 17.60
(EU,UK,FO) 21,379.94 903.27 84.14 17.28
(EU,UK,IS) 21,120.84 896.80 83.84 17.26
(EU,NO,FO) 21,404.30 903.88 84.16 17.29
(EU,NO,IS) 21,145.41 897.41 83.87 17.27
(EU,FO,IS) 16,905.74 784.67 78.42 16.88
(UK,NO,FO) 21,497.00 906.19 84.27 17.29
(UK,NO,IS) 21,238.92 899.75 83.97 17.27
(UK,FO,IS) 16,999.26 787.22 78.55 16.89
(NO,FO,IS) 17,023.72 787.89 78.58 16.90
(EU,UK,NO,FO) 29,967.05 1,106.10 93.10 17.88
(EU,UK,NO,IS) 29,708.49 1,100.46 92.87 17.86
(EU,UK,FO,IS) 25,468.83 1,003.35 88.68 17.59
(EU,NO,FO,IS) 25,493.32 1,003.92 88.70 17.59
(UK,NO,FO,IS) 25,586.54 1,006.08 88.79 17.60
(EU,UK,NO,FO,IS) 34,056.20 1,194.40 96.75 18.11

Note: See table 1.5 for abbreviations.

1.5 Numerical Results and Discussion

Having defined all parameters and functional forms, the solution process of the game is
as follows. First, optimal escapement strategies for all coalitions in a coalition structure
are computed by solving the system of equations presented in (1.4). The sum of the op-
timal escapement strategies determines the optimal recruitment through the Ricker (Eq.
(1.14)) or the Beverton-Holt (Eq. (1.15)) stock-recruitment function. Then, recruitment
and harvest levels for all coalitions in a coalition structure are calculated following the
framework described in the beginning of subsection 1.2.2. The coalitional payoff of all
coalitions in a coalition structure is determined through Eq. (1.5). This process is re-
peated for all coalition structures in both games. Finally, internal and external stability
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of a coalition structure is tested using conditions (1.10) and (1.13).
Both games are solved eight times in total, two times for each stock-recruitment

function (Ricker and Beverton-Holt) and four times for all the different variations of
the stock elasticity parameter. All result tables are placed in the appendix. For the
four-player game, tables A.2-A.5 show the results for all stock elasticity levels when the
Ricker functional form is applied, and tables A.6-A.9 show the results for the Beverton-
Holt functional form. Similarly, tables A.10-A.13 depict the respective results for the
five-player game when the Ricker function is used, and tables A.14-A.17 the results for
the Beverton-Holt function. The tables are structured as follows: (i) the two first columns
represent the coalition structure and its index, (ii) the next four (five) columns show the
escapement strategies of the coalitions in a coalition structure, (iii) the next three columns
display the aggregate escapement, recruitment and harvest of a coalition structure, (iv)
the next four (five) columns show the coalitional payoffs, and (v) the last column is the
aggregate value a coalition structure generates.

Before proceeding with the discussion of stable coalition structures, we point out
three facts regarding the overall results of these games. First and foremost, our results
indicate that positive externalities occur in the mackerel fishery since when coalitions
merge to form a larger coalition, outside coalitions not affected by the merger are better
off. According to Yi (1997) this result is the defining feature of coalition games with
positive externalities. The members of merging coalitions increase the stock level and
hence reduce their cost of fishing in order to internalise the positive externality which
affects them. Non-cooperating coalitions benefit from the merger by free-riding on the
merging coalitions’ stock increase.

Second, because of this internalisation, aggregate escapement and recruitment increase
as the degree of cooperation between coalition structures increases. Figures 1.3a, 1.3b, 1.5
and 1.6 show the escapement and recruitment development across coalition structures in
the four- and five-player games for both stock-recruitment functions and all realisations
of the stock elasticity. Escapement and recruitment levels are almost the same for both
stock-recruitment functions. For stock elasticities equal to 0.3, 0.6 and 1.0 the Ricker
function gives slightly higher levels of escapement and recruitment. The opposite is true
when stock elasticity is equal to 0.1 for most coalition structures. Furthermore, the lower
the stock elasticity the higher the depletion of the stock and thus its growth. This effect
is mitigated as the number of coalitions within a coalition structure decreases.

Harvest, which is defined as the difference between recruitment and escapement, is
depicted in Figures 1.3c and 1.7. It is not clear whether it increases or not as we move
to more cooperative behaviours. For stock elasticities equal to 0.6 and 1.0 it decreases
and for stock elasticities equal to 0.1 and 0.3 it increases. This is due to the fact that
in stock-recruitment models, as escapement increases, harvest increases from zero to a
maximum, i.e., the maximum sustainable yield (MSY) point, and afterwards decreases
back to zero, i.e., the carrying capacity point. The MSY points in our model occur at
approximately 2,482 and 2,162 thousand tonnes for the Ricker and the Beverton-Holt
functions respectively. Thus, all escapement levels before (after) these points lead to an
increased (decreased) growth rate and therefore harvest, which explains the change in
harvest.

Third, the aggregated value of a coalition structure increases as the number of coali-
tions within decreases. Figures 1.4a, 1.4b, 1.8 and 1.9 show this increase for both stock-
recruitment functions and all realisations of the stock elasticity for both the four- and
five-player games. The fact that cooperative behaviours generate more value indicates
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Figure 1.3. Aggregate escapement, recruitment and harvest of a coalition structure for
the four player game; Ricker (black) and Beverton-Holt (red) function; and different
realisations of the stock elasticity parameter, β.

that incentives for cooperation among nations exist. However, these incentives must
exceed the free-riding benefits in order for cooperation to succeed.

In the four-player game, the grand coalition structure is not a stable outcome in all
eight cases. That is, the sum of the free-riding payoffs of the players exceeds the payoff of
the grand coalition, thus, making it impossible for any sharing rule to stabilise it. Table
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Figure 1.4. Aggregate NPV of a coalition structure for the four player game; Ricker (a)
and Beverton-Holt (b); and different realisations of stock elasticity, β.

1.11 shows the set of stable coalition structures in the four-player game for all eight cases.
The set of stable coalition structures, which is the same for all cases but the Beverton-
Holt with β = 1, consists of all coalition structures that consist of two coalitions, where
one of them is a singleton. In addition, the coalition structure representing the current
management regime, i.e., CS11={(EU,NO,FO),(IS)}, is among the stable ones. Recall,
that by stability we mean that in the presence of some but not all sharing rules the
coalitions within a coalition structure do not have incentives to merge or split.

In the five-player game, again, the grand coalition structure cannot be sustained as
an optimal outcome. The set of stable coalition structures is depicted in table 1.12 for
all eight cases. For both stock-recruitment functions and for stock elasticity levels equal
to 0.6 and 0.3, all coalition structures consisting of two coalitions, where none of them is
a singleton, are stable, namely, CS37 to CS46.

For the two extreme stock elasticities, the set of stable coalition structures differs
across the stock-recruitment functions as well as between the middle elasticities. For
β = 1, CS37={(EU,UK,NO),(FO,IS)} is no longer stable for both stock-recruitment
functions, but CS27={(EU,UK,NO),(FO),(IS)} becomes stable. Thus, according to our
results, if the mackerel fishery is uniformly distributed, then Iceland and the Faroe Islands
do not have incentives to cooperate with each other any more, given that the remaining
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Table 1.11. Nash equilibria coalition structures for the four player game for the Ricker
and Beverton-Holt stock-recruitment relationships, and different realisations of stock
elasticity.

Ricker Beverton-Holt

β = 1 β = 0.6 β = 0.3 β = 0.1 β = 1 β = 0.6 β = 0.3 β = 0.1

11 11 11 11 11 11 11 11
12 12 12 12 12 12 12 12
13 13 13 13 13 13 13 13
14 14 14 14 14 14 14

Note: See table 1.2 for which coalition structures the indices refer to.

Table 1.12. Nash equilibria coalition structures for the five player game for the Ricker
and Beverton-Holt stock-recruitment relationships, and different realisations of stock
elasticity.

Ricker Beverton Holt

β = 1 β = 0.6 β = 0.3 β = 0.1 β = 1 β = 0.6 β = 0.3 β = 0.1

27 37 37 37 27 37 37 37
38 38 38 38 38 38 38 38
39 39 39 39 39 39 39 39
40 40 40 40 40 40 40 40
41 41 41 41 41 41 41 41
42 42 42 42 43 42 42 42
43 43 43 43 44 43 43 43
44 44 44 44 44 44 44
45 45 45 45 45 45 45
46 46 46 46 46 46 46

47 49
48 50
49 51
50
51

Note: See table 1.4 for which coalition structures the indices refer to.

nations cooperate. In addition to CS37, coalition structures 42, 45 and 46 are no longer
stable when β = 1 for the Beverton-Holt case. These coalition structures consist of two
coalitions where in one coalition a major player (EU, UK or NO) cooperate with the two
minors (FO and IS) and in the other the remaining major players cooperate together.

For β = 0.1, coalitions structures 47 to 51 also become stable for the Ricker case,
but only coalition structures 49, 50 and 51 for the Beverton-Holt case. These coalition
structures consist of two coalitions, where one of them is a singleton.

Compared to the four-player game, where the set of stable coalition structures re-
mains the same in almost all the cases, in the five-player game stability of some coalition
structures is sensitive to the stock-recruitment function and the stock elasticity param-
eter. Interesting enough, the stable coalition structures in the four-player game are no
longer stable for most of the cases in the five-player game. Recall that the singleton
coalition of (EU) in the four-player game is equivalent to the coalition of (EU,UK) in the
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five-player game. The five-player game coalition structures, which are equivalent to the
stables ones in the four-player game are: CS11 ≡ CS47, CS12 ≡ CS48, CS13 ≡ CS49 and
CS14 ≡ CS46.

The current management regime, i.e. CS11 and CS47 in the four- and five-player
games respectively, is stable only in one case in the five-player game (Ricker; β =
0.1), in contrast to the four-player game, where it is stable in all eight cases. This
is also true for CS12 or CS48={(EU,UK,NO,IS),(FO)}. Coalition structure 13, i.e.,
CS49={(EU,UK,FO,IS),(NO)} in the five-player game, occurs only when β = 0.1 irre-
spective of the stock-recruitment function. The only four-player game coalition structure
that remains stable in all but one (Beverton-Holt; β = 1) of the five-player game cases is
CS14, i.e., CS46={(NO,FO,IS),(EU,UK)}.

On the other hand, some stable coalition structures in the five-player game are not
stable in the four-player game, namely, CS27, CS37, CS38 and CS39. The common prop-
erty of these coalition structures is that the EU and the UK belong to the same coalition.
This change in stability between the two games is due to the relative magnitude of the
free-riding payoff of the EU in the four-player game and the sum of the free-riding pay-
offs of the EU and the UK together in the five-player game. In general, the smaller the
free-riding payoff, the higher the chance that the external stability condition will not be
satisfied, i.e., a coalition will have incentives to merge with another coalition. In the
four-player game, the free-riding payoff of the EU is low enough to make it profitable for
other coalitions to want to merge with the coalition that it belongs, thus the external
stability condition does not hold and therefore the respective coalition structures in the
four-player game, i.e., CS2, CS8, CS9 and CS10, are not stable. In the five-player game,
however, the free-riding payoffs of the EU and the UK together are high enough that is
no longer profitable for other coalitions to merge with the coalition that they belong, and
therefore making these coalition structures stable.

Having determined the set of stable coalition structures, we now ask ourselves how
likely are to form in reality. From the four stable coalition structures of the four-player
game, we know that only CS12 has been formed in the mackerel fishery. So, from the
stable coalition structures of the five-player game, which ones are likely to occur in reality?
Or, to put it another way, which ones are unlikely to occur? In what follows, we discuss
which coalitions we believe are likely or not to occur post-Brexit based on our intuition
of the relations between all five parties.

First, is the cooperation between the EU, the UK, Norway and the Faroe Islands as
defined by the current 5-year management plan, likely to continue after the conclusion of
the Brexit’s negotiations? The agreement itself will cease to exist since the UK will no
longer be represented by the EU and therefore must sign its own agreements. In general,
after Brexit, the UK will have to negotiate fisheries agreements with other coastal states
as well as with the EU. Regarding, straddling and highly migratory fish stocks, such as
mackerel, international law requires that all interest parties must cooperate, directly or
through RFMOs, that is, the NEAFC in case of Atlantic mackerel. Thus, one possibility
is that post-Brexit relationships in the mackerel fishery will be similar or close to existing
ones. Of course, the relative TAC shares of the EU, the UK and the other parties, may
change depending on the outcome of the negotiations.

After the conclusion of Brexit, the UK will have sovereign control over the resources
in its EEZ, and therefore, the principle of equal access21 will cease to apply in British

21Fishing vessels registered in the EU fishing fleet register have equal access to all European waters
and resources that are managed under the CFP.
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waters and access will now be determined by the criteria set out in UNCLOS. In other
words, access in British fisheries will no longer be regulated by European law but by
international law. At the moment, EU vessels harvesting in UK’s EEZ catch more fish
inside British waters than UK vessels catch in the Union’s EEZ. Particularly, in 2015, EU
vessels caught 683,000 tonnes, i.e., 484 million GBP in revenue, in UK waters, whereas
UK vessels caught 111,000 tonnes, i.e., 114 million GBP in revenue, in European waters
(Brexit White Paper, 2017).22 Regarding mackerel, the vast majority of catches taken by
the EU occurs within the UK EEZ (Doering et al., 2017). According to a recent study
by Le Gallic et al. (2017), if the UK prohibits the EU fleet from accessing fishing stocks
within its EEZ, it will cause great loss of revenues for these vessels. Even if the EU
redistributes quotas inside its EEZ, it is unlikely that it will compensate for the loss of
such important fishing grounds.

From the above, it seems like the UK has all the bargaining power when it comes to
negotiating a post-Brexit agreement with the EU. However, this is not true. The UK
depends primarily on the EU market for its fishery exports. For the period 2001-2016,
68% on average of the total value generated by fishery exports came from the EU, i.e.,
1,204 million EUR. As far as mackerel is concerned, since 2010, on average, more than
60% of UK’s annual mackerel exports go to the EU market, generating on average 70
million EUR.23 Thus, the EU, which is an important trading partner of the UK when it
comes to fishery products, might introduce trade barriers, if its access to British waters
is limited or denied.

Furthermore, is it possible that cooperation between the EU and Norway will fall
apart post-Brexit? Europe and Norway have a long tradition of positive relations, not
only in fisheries but across many sectors, and it is doubtful that Norway will act unilat-
erally, especially if EU and UK agree to cooperate after UK’s withdrawal. The bilateral
agreement between the EU and Norway covering the North Sea and the Atlantic is the
Union’s most important international fisheries agreement in terms of both the exchange
of fishing opportunities and joint fisheries management measures (Doering et al., 2017).24

Although this agreement is not related to the management of the mackerel stock,25 a pos-
sible conflict between the EU and Norway regarding the management of mackerel could
undermine it. In addition, access of Norwegian fishery products to EU’s internal market
may also be undermined. As far as Norway is concerned, Brexit is going to make fishery
resources in EU waters less attractive, given that when it comes to quota exchanges,
stocks in UK waters are more important for Norway than those in EU waters (Sobrino
Heredia, 2017). Still, the fact that the EU is a very important trading partner for Norway
gives both players more or less equal bargaining power when it comes to negotiating their
post-Brexit relationship. The value of Norwegian mackerel exports to the EU excluding
the UK were on average 475 million NOK for the period 2007-2016, whereas to the UK

22Provisional Statistics – UK Fleet Landings from other EU Member States waters: 2015, Marine
Management Organisation, February 2017. These figures do not include fish caught by third country
vessels, for example Norway, in UK waters, or fish caught by UK fisherman in third country waters.

23The data is obtained from the European Market Observatory for Fisheries and Aquaculture Products
(EUMOFA).

24The agreement was first enforced on 16 June 1981 for a 10-year period, after that has been tacitly
renewed for successive 6-year periods. The last renewal tool place in 2015.

25The stocks that this agreement refers to are: cod, plaice and haddock.
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for the same period were valued at 62 million NOK on average.26,27 Thus, making the
EU a more significant trading partner for Norway regarding mackerel.

Finally, how are Iceland and the Faroe Islands likely to behave post-Brexit? There has
been no indication so far that Iceland is willing to cooperate with the remaining states to
jointly determine the mackerel quota. Given its history of disputes, it is highly unlikely
that it will cooperate unless it is allowed to maintain its quota or offered something
else in exchange for reducing it. However, Iceland may be interested to strengthen its
relations with an independent UK and perhaps willing to compromise in the prospect of
a future agreement with the UK. As far as the Faroe Islands are concerned, they will
most probably keep cooperating with the EU and Norway given that their post-Brexit
quota is close to the current one. Like Iceland, they may also be interested to strengthen
their relations with the UK. In general, the UK will have to work closely with Norway,
Iceland and the Faroe Islands in order to ensure access in one another’s waters.

1.6 Conclusion

In this article, we analyse how cooperation is likely to occur in the Northeast Atlantic
mackerel fishery after the Brexit negotiations are concluded. To do so, we have consid-
ered two games: a four-player game, which treats the EU and the UK as one coalition
acting together, and a five-player game where the UK is a distinct player acting on its be-
half. For our bioeconomic model of the mackerel fishery, we assume a density-dependent
stock-recruitment relationship. Both games are solved multiple times for different stock-
recruitment functions and levels of the stock elasticity.

We find that positive stock externalities are indeed present in both games since out-
siders are better off when a merger between coalitions occurs. The members of a coalition
are able to reduce their fishing cost by internalising the positive externality, thus increas-
ing the stock level. This allows outsiders to free-ride on them by benefiting from the
increase in the stock. As expected, escapement and recruitment as well as the aggregated
value a coalition structure generates increase as the number of coalitions within a coalition
structure decreases. That is, cooperation leads to higher profits as well as higher stock
preservation. However, in order for cooperation to be achieved the free-riding payoffs of
the cooperating nations must not exceed their aggregate coalitional payoff.

In both games, the grand coalition cannot be sustained as an optimal outcome for all
scenarios evaluated. The current management regime, however, is found to be a stable
outcome in all eight cases of the four-player game, but only in one case of the five-player
game. This is also true for all the remaining, but one, stable coalition structures of the
four-player game. In addition, some non-stable coalition structures in the four-player
game become stable in the five-player game. This occurs because the free-riding payoff of
the EU in the four-player game is less than the sum of the free-riding payoffs of the EU
and the UK in the five-player game, and therefore making the external stability condition
for those coalition structures to only hold in the five-player game. Moreover, in the four-
player game, the set of stable coalition structures remains the same in almost all cases,

26The data is obtained from Statistics Norway, table: 09283: Exports of fish, by country/trade re-
gion/continent.

27Value of Norwegian fish, crustaceous animals and mollusc exported to the EU excluding the UK
were on average 34,637 million NOK. That is, 90% higher compared to the respective exports in the UK,
which were amounted to 3,073 million NOK on average.

41



whereas in the five-player game stability depends on the stock-recruitment function as
well as the magnitude of the stock elasticity.

As far as the future of the mackerel fishery is concerned, we believe that the EU and
Norway will keep cooperating post-Brexit. In the event that the UK restricts access to
the EU’s fleet within its waters, then perhaps Norway will have to give a percentage of
its quota to the EU in order to maintain access to the European market. In case of a
“hard” Brexit, i.e., no compromises between the EU and the UK during the negotiations,
the UK will most likely set its mackerel quota unilaterally. It goes without saying that if
this happens, then the pressure on the mackerel stock will increase even more, especially
if Iceland continues not to cooperate. However, both the EU and Norway could respond
harshly by introducing trade sanctions, as they have already done to Icelandic and Faroese
catches in 2013. If a “soft” Brexit occurs, then relationships in the mackerel fishery may
be similar or close to existing ones, but the relative shares of the TAC may change
depending on the outcome of the negotiations.

A natural extension of the current research is to consider issue-linkage, i.e., link the
current cooperative arrangement (exploitation of the mackerel fishery) with a second
one, for example, cooperation over the mackerel trade. Then, perhaps, the set of stable
coalition structures could indicate that cooperation in the mackerel fishery in presence of
externalities is strengthened due to the threat of sanctions in the mackerel trade.
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Appendix

A.1 Proof of non-cooperative “golden-rule”

The logic of the proof is similar to the one presented by Clark [2010, p. 91]. The profit
of coalition i in period t is:

Πi(Rit, Sit) = p(Rit − Sit)−
∫ Rit

Sit

ci(x)dx =

∫ Rit

Sit

[p− ci(x)]dx,

where πi(x) = p−ci(x) is the marginal profit of coalition i. Let φi(x) be the antiderivative
of πi(x), then we can express the profit of coalition i as:

Πi(Rit, Sit) = φi(Rit)− φi(Sit).

Therefore, the net present value of coalition i becomes:

Vi =
∞∑
t=0

γt[φi(Rit)− φi(Sit)].

Substituting for the recruitment share of coalition i, Rit = θiRt, and for the stock-
recruitment relationship, Rt = F (St−1) for t ≥ 1, the first term of the net present value

42



expression yields:
∞∑
t=0

γtφi(Rit) = φi(Ri0) +
∞∑
t=1

γtφi[θiF (St−1)]

= φi(Ri0) +
∞∑
t=0

γt+1φi[θiF (St)].

Finally, substituting the above term in the net present value of coalition i, we obtain:

Vi = φi(Ri0) +
∞∑
t=0

γt+1φi[θiF (St)]−
∞∑
t=0

γtφi(Sit)

= φi(Ri0) +
∞∑
t=0

γt
[
γφi[θiF (St)]− φi(Sit)

]
.

Now coalition i is enabled to set out the optimal escapement strategy given the es-
capement strategies of the other coalitions, namely, coalition i to choose the escapement
level Sit for each time period t = 0, 1, 2, . . . ,∞ by solving the following maximisation
problem:

maximise
Sit

γφi[θiF (St)]− φi(Sit)

subject to St = Sit +
m−1∑
j=1

Sjt, i 6= j.

Substituting for St in the objective function and taking the first order condition we get:[
γφi

[
θiF

(
Sit +

m−1∑
j=1

Sjt

)]
− φi(Sit)

]′

= γφ′i

[
θiF

(
Sit +

m−1∑
j=1

Sjt

)]
θi
dF (Sit +

∑m−1
j=1 Sjt)

dSit
− φ′i(Sit)

= γπi

[
θiF

(
Sit +

m−1∑
j=1

Sjt

)]
θi
dF (Sit +

∑m−1
j=1 Sjt)

dSit
− πi(Sit) = 0. (A.1)

It can be shown that the derivative of the stock-recruitment function F (S) with
respect to coalition’s i escapement Si is equivalent to the derivative of F (S) with respect
to the aggregate escapement S. The proof makes use of the chain rule and the fact that
the derivative of the aggregate escapement with respect to coalition’s i escapement is
one, i.e.,

dS

dSi
=
d(Si +

∑m−1
j=1 Sj)

dSi
= 1.

Thus,

dF (Si +
∑m−1

j=1 Sj)

dSi
=
dF (Si +

∑m−1
j=1 Sj)

d(Si +
∑m−1

j=1 Sj)

d(Si +
∑m−1

j=1 Sj)

dSi
=
dF (S)

dS
= F ′(S).

Let Sit = S∗i solve (A.1), then we can re-write it as follows:

πi(S
∗
i ) = γθiF

′(S)πi[θiF (S)],

where S = S∗i +
∑m−1

j=1 Sj is the aggregate escapement and it depends on the optimal
escapement strategy of coalition i and the escapement strategies of other coalitions j.
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A.2 Illustration of coalition structure stability concepts

Consider a three-player coalition formation game of the class studied in this article. Let
N = {a, b, c} be the set of players. Table A.1 depicts the payoffs of all embedded coalitions
in this game. The property of superadditivity holds for the entire game, i.e., the joint
payoff of two embedded coalitions belonging in the same coalition structure is at least as
high as their individual payoffs.

Table A.1. Embedded coalition payoffs

CSk V (C1, CSk) V (C2, CSk) V (C3, CSk)

{a, b, c} 2 4 1
{ab, c} 7 2
{ac, b} 4 5
{bc, a} 6 4
{abc} 10

Suppose we want to test if coalition structure {ab, c} is stable. According to subsection
1.3.2 a coalition structure is stable if all of its embedded coalitions are potentially internal
and external stable. The tested coalition structure consist of two coalitions: (ab) and (c).

Let us test for potential internal stability first. Coalition (c) is a singleton and there-
fore is always internal stable. In order for coalition (ab) to be potentially internal stable
the payoff of (ab) given coalition structure {ab, c} must be greater or equal to the free-
riding payoffs of its members, ceteris paribus. The free-riding payoffs are determined as
follows. Consider player a first, if player a leaves coalition (ab) then the new coalition
structure, ceteris paribus, is {a, b, c}. Similarly, if player b leaves coalition (ab), then
the new coalition structure, ceteris paribus, is {a, b, c}. Notice that the new coalition
structures are the same in both deviations; this is not always the case as we will see in
the next case. Having determined the new coalition structures, we can now compare the
payoffs and test if coalition (ab) is potentially internal stable.

V (ab, {ab, c}) ≥ V (a, {a, b, c}) + V (b, {a, b, c})⇒ 7 ≥ 2 + 4 = 6.

Since the above inequality holds we can conclude that coalition (ab) is potentially internal
stable. Seeing that both coalitions (ab) and (c) are potentially internal stable we can
conclude that coalition structure {ab, c} is potentially internal stable. We move on to
test for potential internal stability.

Coalition structure {ab, c} consist of only one pair of embedded coalitions, i.e,[
(ab, {ab, c}), (c, {ab, c})

]
. In order for {ab, c} to be external stable at least one of the two

embedded coalitions should not have incentives to merge. Let us start with (ab), if (ab)
merges with (c) then the new coalition structure, ceteris paribus, will be {abc} but player
c must receive at least her free-riding payoff which occurs if she deviates from the new
coalition (abc). If player c leaves (abc) the new coalition structure, ceteris paribus, will
be {ab, c}. Thus, the potential external stability condition for coalition (ab) with respect
to coalition (c) requires the following:

V (ab, {ab, c}) ≥ V (abc, {abc})− V (c, {ab, c})⇒ 7 ≥ 10− 2 = 8.

Since the above inequality does not hold we can conclude that coalition (ab) does have
incentives to merge with coalition (c) and therefore (c) is not potentially external stable
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with respect to (ab). However, coalition structure {ab, c} may still be external stable as
long as coalition (c) is better off without the mergence. If (c) merges with (ab) then the
new coalition structure, ceteris paribus, will be {abc} but players a and b must receive at
least their free-riding payoffs. If player a leaves (abc) the new coalition structure, ceteris
paribus, will be {bc, a}. Similarly, if player b leaves (abc) the new coalition structure, ce-
teris paribus, will be {ac, b}. Thus, the potential external stability condition for coalition
(c) with respect to coalition (ab) requires the following:

V (c, {ab, c}) ≥ V (abc, {abc})− V (a, {bc, a})− V (b, {ac, b})⇒ 2 ≥ 10− 4− 5 = 1.

Since the above inequality holds, coalition (c) does not have incentives to merge with
coalition (ab) and therefore (ab) is potentially external stable with respect to coalition
(c). Since

[
(ab, {ab, c}), (c, {ab, c})

]
is the only embedded coalition pair of coalition struc-

ture {ab, c} and (c, {ab, c}) is not willing to merge, we can conclude that coalition struc-
ture {ab, c} is potentially external stable. Because coalition structure {ab, c} is both
potentially internal and external stable we can conclude that {ab, c} is a stable coalition
structure.

Following the same procedure, it can be showed that coalition structures {ac, b} and
{bc, a} are also stable. The singleton coalition structure {a, b, c} is not potentially external
stable since all the players have incentives to form a coalition with at least one more player.
The grand coalition structure {abc} is not potentially internal stable since the sum of the
free-riding payoffs of its members exceeds the payoff of the grand coalition, i.e.,

V (abc, {abc}) ≥ V (a, {bc, a}) + V (b, {ac, b}) + V (c, {ab, c})⇒ 10 ≥ 4 + 5 + 2 = 11.

This also verifies the fact that superadditive games with externalities cannot necessarily
sustain the grand coalition as a stable outcome.

A.3 Result tables for the four- and five-player games

Table A.2. Optimal solution for the four player game; Ricker function; stock elasticity: β = 1. The unit for all
escapement, recruitment and harvest is thousand tonnes; and for NPV is million NOK.

No. Coalition Structure S1 S2 S3 S4 S R H V1 V2 V3 V4 VCS

Four coalitions:
1 (EU),(NO),(FO),(IS) 1,837 890 442 417 3,586 4,247 661 9,133 4,640 2,127 3,418 19,317
Three coalitions:
2 (EU,NO),(FO),(IS) 2,898 443 418 3,758 4,377 618 14,725 2,753 4,201 21,679
3 (EU,FO),(NO),(IS) 2,356 891 418 3,665 4,307 642 11,616 5,224 3,772 20,612
4 (EU,IS),(NO),(FO) 2,340 891 442 3,673 4,313 640 12,891 5,286 2,437 20,615
5 (NO,FO),(EU),(IS) 1,365 1,839 418 3,622 4,274 652 6,880 9,648 3,578 20,105
6 (NO,IS),(EU),(FO) 1,344 1,839 442 3,626 4,277 651 8,115 9,706 2,267 20,089
7 (FO,IS),(EU),(NO) 877 1,838 890 3,605 4,261 656 5,495 9,405 4,779 19,679
Two coalitions:
8 (EU,NO),(FO,IS) 2,900 879 3,780 4,392 613 15,181 6,918 22,099
9 (EU,FO),(NO,IS) 2,360 1,347 3,708 4,339 631 12,366 9,078 21,444
10 (EU,IS),(NO,FO) 2,343 1,369 3,712 4,342 630 13,608 7,858 21,466
11 (EU,NO,FO),(IS) 3,484 418 3,903 4,481 579 18,357 4,885 23,243
12 (EU,NO,IS),(FO) 3,472 443 3,915 4,490 575 19,780 3,363 23,143
13 (EU,FO,IS),(NO) 2,892 893 3,785 4,396 611 15,942 6,149 22,091
14 (NO,FO,IS),(EU) 1,843 1,843 3,686 4,323 637 10,627 10,586 21,212
One coalition:
15 (EU,NO,FO,IS) 4,100 4,100 4,619 518 24,479 24,479

Note: See table 1.5 for abbreviations.
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Table A.3. Optimal solution for the four player game; Ricker function; stock elasticity: β = 0.6. The unit for all
escapement, recruitment and harvest is thousand tonnes; and for NPV is million NOK.

No. Coalition Structure S1 S2 S3 S4 S R H V1 V2 V3 V4 VCS

Four coalitions:
1 (EU),(NO),(FO),(IS) 1,622 771 379 359 3,131 3,876 744 8,733 4,608 2,185 3,092 18,618
Three coalitions:
2 (EU,NO),(FO),(IS) 2,630 380 360 3,370 4,075 706 14,536 2,993 4,049 21,578
3 (EU,FO),(NO),(IS) 2,108 773 359 3,240 3,968 728 11,372 5,342 3,520 20,234
4 (EU,IS),(NO),(FO) 2,095 773 380 3,248 3,975 727 12,279 5,397 2,570 20,246
5 (NO,FO),(EU),(IS) 1,195 1,627 359 3,180 3,918 737 6,943 9,358 3,283 19,583
6 (NO,IS),(EU),(FO) 1,178 1,627 380 3,184 3,921 737 7,826 9,406 2,356 19,588
7 (FO,IS),(EU),(NO) 760 1,625 771 3,156 3,897 741 5,281 9,050 4,773 19,105
Two coalitions:
8 (EU,NO),(FO,IS) 2,634 764 3,398 4,098 700 15,082 7,065 22,146
9 (EU,FO),(NO,IS) 2,115 1,182 3,297 4,015 719 12,269 9,023 21,292
10 (EU,IS),(NO,FO) 2,101 1,200 3,301 4,019 718 13,154 8,148 21,301
11 (EU,NO,FO),(IS) 3,213 360 3,573 4,237 663 18,653 4,910 23,563
12 (EU,NO,IS),(FO) 3,204 381 3,585 4,246 661 19,698 3,778 23,476
13 (EU,FO,IS),(NO) 2,628 776 3,403 4,102 699 15,631 6,504 22,136
14 (NO,FO,IS),(EU) 1,632 1,633 3,265 3,989 724 10,513 10,484 20,997
One coalition:
15 (EU,NO,FO,IS) 3,840 3,840 4,436 596 25,160 25,160

Note: See table 1.5 for abbreviations.

Table A.4. Optimal solution for the four player game; Ricker function; stock elasticity: β = 0.3. The unit for all
escapement, recruitment and harvest is thousand tonnes; and for NPV is million NOK.

No. Coalition Structure S1 S2 S3 S4 S R H V1 V2 V3 V4 VCS

Four coalitions:
1 (EU),(NO),(FO),(IS) 1,201 541 259 246 2,247 3,031 784 8,148 4,579 2,258 2,777 17,762
Three coalitions:
2 (EU,NO),(FO),(IS) 2,129 261 247 2,638 3,425 788 14,606 3,608 4,279 22,492
3 (EU,FO),(NO),(IS) 1,627 545 247 2,419 3,209 790 11,100 5,726 3,418 20,244
4 (EU,IS),(NO),(FO) 1,620 545 260 2,426 3,216 790 11,631 5,771 2,852 20,255
5 (NO,FO),(EU),(IS) 864 1,211 246 2,320 3,108 787 7,085 9,020 3,046 19,151
6 (NO,IS),(EU),(FO) 853 1,211 260 2,323 3,111 787 7,604 9,056 2,506 19,166
7 (FO,IS),(EU),(NO) 535 1,206 542 2,282 3,068 786 5,102 8,564 4,807 18,473
Two coalitions:
8 (EU,NO),(FO,IS) 2,137 543 2,679 3,465 786 15,382 7,987 23,369
9 (EU,FO),(NO,IS) 1,642 862 2,504 3,294 790 12,375 9,464 21,839
10 (EU,IS),(NO,FO) 1,634 874 2,508 3,298 790 12,898 8,940 21,838
11 (EU,NO,FO),(IS) 2,732 248 2,980 3,743 763 20,025 5,701 25,725
12 (EU,NO,IS),(FO) 2,726 262 2,988 3,751 762 20,682 4,942 25,624
13 (EU,FO,IS),(NO) 2,133 550 2,683 3,469 786 15,718 7,633 23,351
14 (NO,FO,IS),(EU) 1,225 1,225 2,450 3,240 790 10,666 10,649 21,314
One coalition:
15 (EU,NO,FO,IS) 3,390 3,390 4,092 702 28,247 28,247

Note: See table 1.5 for abbreviations.
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Table A.5. Optimal solution for the four player game; Ricker function; stock elasticity: β = 0.1. The unit for all
escapement, recruitment and harvest is thousand tonnes; and for NPV is million NOK.

No. Coalition Structure S1 S2 S3 S4 S R H V1 V2 V3 V4 VCS

Four coalitions:

1 (EU),(NO),(FO),(IS) 362 131 56 54 603 954 351 5,312 3,136 1,594 1,702 11,745
Three coalitions:
2 (EU,NO),(FO),(IS) 1,295 61 58 1,414 2,068 654 12,133 5,059 5,312 22,504
3 (EU,FO),(NO),(IS) 685 144 56 884 1,362 478 7,930 5,171 2,801 15,901
4 (EU,IS),(NO),(FO) 684 144 59 887 1,366 479 8,051 5,193 2,649 15,894
5 (NO,FO),(EU),(IS) 244 389 55 687 1,079 392 5,141 6,109 2,002 13,252
6 (NO,IS),(EU),(FO) 242 389 57 688 1,080 392 5,258 6,116 1,880 13,254
7 (FO,IS),(EU),(NO) 131 373 133 638 1,006 368 3,420 5,627 3,356 12,403
Two coalitions:
8 (EU,NO),(FO,IS) 1,305 153 1,458 2,123 665 13,119 10,547 23,666
9 (EU,FO),(NO,IS) 731 274 1,005 1,529 525 9,537 8,784 18,321
10 (EU,IS),(NO,FO) 730 277 1,007 1,532 525 9,675 8,641 18,315
11 (EU,NO,FO),(IS) 2,047 58 2,105 2,879 774 20,960 8,836 29,796
12 (EU,NO,IS),(FO) 2,045 61 2,106 2,880 774 21,151 8,487 29,638
13 (EU,FO,IS),(NO) 1,304 155 1,459 2,125 666 13,215 10,412 23,627
14 (NO,FO,IS),(EU) 436 436 872 1,344 472 8,278 8,274 16,552
One coalition:
15 (EU,NO,FO,IS) 2,741 2,741 3,523 783 34,170 34,170

Note: See table 1.5 for abbreviations.

Table A.6. Optimal solution for the four player game; Beverton-Holt function; stock elasticity: β = 1. The unit for
all escapement, recruitment and harvest is thousand tonnes; and for NPV is million NOK.

No. Coalition Structure S1 S2 S3 S4 S R H V1 V2 V3 V4 VCS

Four coalitions:
1 (EU),(NO),(FO),(IS) 1,808 883 440 416 3,547 4,093 546 6,725 3,335 1,496 2,597 14,153
Three coalitions:
2 (EU,NO),(FO),(IS) 2,824 441 416 3,681 4,189 508 10,651 1,878 3,098 15,627
3 (EU,FO),(NO),(IS) 2,308 884 416 3,608 4,137 529 8,437 3,691 2,822 14,951
4 (EU,IS),(NO),(FO) 2,291 884 441 3,617 4,143 527 9,517 3,741 1,689 14,947
5 (NO,FO),(EU),(IS) 1,349 1,810 416 3,575 4,114 538 4,899 7,043 2,699 14,641
6 (NO,IS),(EU),(FO) 1,329 1,810 441 3,579 4,117 537 5,942 7,090 1,584 14,616
7 (FO,IS),(EU),(NO) 870 1,809 883 3,563 4,105 542 4,029 6,899 3,423 14,351
Two coalitions:
8 (EU,NO),(FO,IS) 2,827 872 3,699 4,202 503 10,945 4,924 15,869
9 (EU,FO),(NO,IS) 2,312 1,331 3,643 4,162 519 8,915 6,542 15,458
10 (EU,IS),(NO,FO) 2,295 1,352 3,647 4,165 518 9,967 5,514 15,482
11 (EU,NO,FO),(IS) 3,379 417 3,796 4,269 473 13,082 3,550 16,633
12 (EU,NO,IS),(FO) 3,368 441 3,809 4,278 469 14,278 2,273 16,551
13 (EU,FO,IS),(NO) 2,818 886 3,704 4,205 501 11,587 4,279 15,866
14 (NO,FO,IS),(EU) 1,813 1,813 3,626 4,150 524 7,672 7,638 15,310
One coalition:
15 (EU,NO,FO,IS) 3,965 3,965 4,383 418 17,435 17,435

Note: See table 1.5 for abbreviations.
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Table A.7. Optimal solution for the four player game; Beverton-Holt function; stock elasticity: β = 0.6. The unit for
all escapement, recruitment and harvest is thousand tonnes; and for NPV is million NOK.

No. Coalition Structure S1 S2 S3 S4 S R H V1 V2 V3 V4 VCS

Four coalitions:
1 (EU),(NO),(FO),(IS) 1,590 764 377 357 3,088 3,744 656 7,148 3,684 1,726 2,533 15,091
Three coalitions:
2 (EU,NO),(FO),(IS) 2,541 378 358 3,277 3,892 615 11,618 2,250 3,171 17,039
3 (EU,FO),(NO),(IS) 2,052 765 357 3,174 3,813 638 9,171 4,163 2,818 16,152
4 (EU,IS),(NO),(FO) 2,039 765 378 3,182 3,818 637 9,974 4,206 1,979 16,159
5 (NO,FO),(EU),(IS) 1,177 1,593 357 3,127 3,775 648 5,507 7,563 2,661 15,732
6 (NO,IS),(EU),(FO) 1,160 1,593 378 3,131 3,778 648 6,287 7,602 1,840 15,729
7 (FO,IS),(EU),(NO) 753 1,592 764 3,108 3,761 652 4,245 7,363 3,795 15,404
Two coalitions:
8 (EU,NO),(FO,IS) 2,545 756 3,301 3,911 610 11,989 5,423 17,412
9 (EU,FO),(NO,IS) 2,057 1,163 3,221 3,849 628 9,776 7,077 16,853
10 (EU,IS),(NO,FO) 2,043 1,181 3,224 3,852 627 10,558 6,306 16,864
11 (EU,NO,FO),(IS) 3,084 358 3,442 4,017 574 14,620 3,760 18,380
12 (EU,NO,IS),(FO) 3,075 379 3,454 4,025 571 15,531 2,782 18,313
13 (EU,FO,IS),(NO) 2,538 767 3,306 3,914 608 12,472 4,934 17,406
14 (NO,FO,IS),(EU) 1,598 1,598 3,196 3,830 634 8,343 8,317 16,660
One coalition:
15 (EU,NO,FO,IS) 3,674 3,674 4,184 510 19,491 19,491

Note: See table 1.5 for abbreviations.

Table A.8. Optimal solution for the four player game; Beverton-Holt function; stock elasticity: β = 0.3. The unit for
all escapement, recruitment and harvest is thousand tonnes; and for NPV is million NOK.

No. Coalition Structure S1 S2 S3 S4 S R H V1 V2 V3 V4 VCS

Four coalitions:
1 (EU),(NO),(FO),(IS) 1,171 534 258 244 2,207 2,965 758 7,709 4,217 2,067 2,561 16,553
Three coalitions:
2 (EU,NO),(FO),(IS) 2,018 259 245 2,523 3,263 740 13,273 3,017 3,627 19,918
3 (EU,FO),(NO),(IS) 1,566 537 245 2,348 3,101 752 10,280 5,045 3,025 18,350
4 (EU,IS),(NO),(FO) 1,558 537 258 2,354 3,106 752 10,780 5,081 2,495 18,356
5 (NO,FO),(EU),(IS) 846 1,178 244 2,269 3,024 756 6,458 8,369 2,760 17,587
6 (NO,IS),(EU),(FO) 835 1,178 258 2,271 3,027 756 6,948 8,398 2,250 17,595
7 (FO,IS),(EU),(NO) 528 1,174 535 2,237 2,994 757 4,669 8,028 4,389 17,086
Two coalitions:
8 (EU,NO),(FO,IS) 2,024 533 2,558 3,294 737 13,849 6,711 20,559
9 (EU,FO),(NO,IS) 1,576 842 2,418 3,167 748 11,226 8,286 19,512
10 (EU,IS),(NO,FO) 1,568 854 2,422 3,170 748 11,718 7,793 19,511
11 (EU,NO,FO),(IS) 2,557 246 2,803 3,509 706 17,592 4,642 22,235
12 (EU,NO,IS),(FO) 2,551 260 2,811 3,516 705 18,192 3,966 22,158
13 (EU,FO,IS),(NO) 2,020 541 2,561 3,298 736 14,159 6,386 20,545
14 (NO,FO,IS),(EU) 1,187 1,188 2,375 3,126 751 9,585 9,569 19,154
One coalition:
15 (EU,NO,FO,IS) 3,164 3,164 3,805 640 24,118 24,118

Note: See table 1.5 for abbreviations.
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Table A.9. Optimal solution for the four player game; Beverton-Holt function; stock elasticity: β = 0.1. The unit
for all escapement, recruitment and harvest is thousand tonnes; and for NPV is million NOK.

No. Coalition Structure S1 S2 S3 S4 S R H V1 V2 V3 V4 VCS

Four coalitions:
1 (EU),(NO),(FO),(IS) 392 136 58 55 640 1,064 424 5,917 3,610 1,842 1,965 13,335
Three coalitions:
2 (EU,NO),(FO),(IS) 1,208 61 57 1,326 1,997 670 12,973 4,789 5,033 22,795
3 (EU,FO),(NO),(IS) 709 146 57 911 1,454 543 8,823 5,718 3,090 17,631
4 (EU,IS),(NO),(FO) 708 146 59 913 1,457 544 8,952 5,734 2,924 17,610
5 (NO,FO),(EU),(IS) 256 415 55 726 1,192 465 5,875 6,881 2,302 15,058
6 (NO,IS),(EU),(FO) 254 415 58 727 1,192 465 6,004 6,887 2,164 15,055
7 (FO,IS),(EU),(NO) 136 402 138 676 1,118 442 3,936 6,301 3,864 14,101
Two coalitions:
8 (EU,NO),(FO,IS) 1,212 149 1,362 2,040 678 13,855 9,926 23,781
9 (EU,FO),(NO,IS) 735 275 1,010 1,590 580 10,430 9,374 19,804
10 (EU,IS),(NO,FO) 734 278 1,012 1,592 580 10,574 9,216 19,790
11 (EU,NO,FO),(IS) 1,815 57 1,872 2,622 750 20,747 7,664 28,412
12 (EU,NO,IS),(FO) 1,812 60 1,873 2,623 750 20,933 7,347 28,280
13 (EU,FO,IS),(NO) 1,211 151 1,363 2,041 679 13,951 9,793 23,744
14 (NO,FO,IS),(EU) 449 449 897 1,435 538 9,168 9,163 18,331
One coalition:
15 (EU,NO,FO,IS) 2,428 2,428 3,176 747 32,006 32,006

Note: See table 1.5 for abbreviations.
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Table A.10. Optimal solution for the five player game; Ricker function; stock elasticity: β = 1. The unit for all escapement, recruitment
and harvest is thousand tonnes; and for NPV is million NOK.

No. Coalition Structure S1 S2 S3 S4 S5 S R H V1 V2 V3 V4 V5 VCS

Five coalitions:
1 (EU),(UK),(NO),(FO),(IS) 878 887 889 442 417 3,512 4,189 677 4,630 4,220 4,117 1,876 3,096 17,939
Four coalitions:
2 (EU,UK),(NO),(FO),(IS) 1,837 890 442 417 3,586 4,247 661 9,133 4,640 2,127 3,418 19,317
3 (EU,NO),(UK),(FO),(IS) 1,838 888 442 417 3,586 4,246 661 9,022 4,747 2,126 3,416 19,311
4 (EU,FO),(UK),(NO),(IS) 1,353 887 889 417 3,547 4,216 669 6,587 4,463 4,357 3,244 18,652
5 (EU,IS),(UK),(NO),(FO) 1,332 887 889 442 3,550 4,219 669 7,806 4,491 4,384 2,004 18,685
6 (UK,NO),(EU),(FO),(IS) 1,845 880 442 417 3,584 4,245 661 8,609 5,170 2,120 3,409 19,308
7 (UK,FO),(EU),(NO),(IS) 1,360 879 889 417 3,546 4,215 670 6,187 4,879 4,351 3,241 18,658
8 (UK,IS),(EU),(NO),(FO) 1,340 879 889 442 3,550 4,219 669 7,361 4,909 4,380 2,002 18,652
9 (NO,IS),(EU),(UK),(FO) 1,362 879 887 417 3,546 4,215 670 6,084 4,877 4,456 3,240 18,658
10 (NO,FO),(EU),(UK),(IS) 1,342 879 887 442 3,550 4,218 669 7,247 4,908 4,486 2,002 18,642
11 (FO,IS),(EU),(UK),(NO) 876 879 887 889 3,530 4,203 673 4,916 4,762 4,346 4,241 18,265
Three coalitions:
12 (EU,UK),(NO,FO),(IS) 1,839 1,365 418 3,622 4,274 652 9,648 6,880 3,578 20,105
13 (EU,NO),(UK,FO),(IS) 1,841 1,363 418 3,622 4,274 652 9,537 6,985 3,577 20,099
14 (EU,FO),(UK,NO),(IS) 1,356 1,848 418 3,621 4,274 652 7,395 9,122 3,574 20,091
15 (EU,UK),(NO,IS),(FO) 1,839 1,344 442 3,626 4,277 651 9,706 8,115 2,267 20,089
16 (EU,NO),(UK,IS),(FO) 1,841 1,342 442 3,626 4,277 651 9,595 8,232 2,267 20,093
17 (EU,IS),(UK,NO),(FO) 1,335 1,848 442 3,625 4,276 651 8,685 9,175 2,263 20,124
18 (EU,UK),(FO,IS),(NO) 1,838 877 890 3,605 4,261 656 9,405 5,495 4,779 19,679
19 (EU,FO),(UK,IS),(NO) 1,354 1,341 890 3,585 4,246 661 7,004 7,764 4,635 19,402
20 (EU,IS),(UK,FO),(NO) 1,333 1,362 890 3,585 4,246 661 8,212 6,596 4,634 19,441
21 (EU,NO),(FO,IS),(UK) 1,840 877 888 3,605 4,261 656 9,293 5,492 4,888 19,674
22 (EU,FO),(NO,IS),(UK) 1,354 1,343 888 3,585 4,246 661 7,002 7,647 4,744 19,393
23 (EU,IS),(NO,FO),(UK) 1,333 1,364 888 3,585 4,246 661 8,210 6,490 4,742 19,442
24 (UK,NO),(FO,IS),(EU) 1,847 877 880 3,603 4,260 657 8,873 5,480 5,317 19,671
25 (UK,FO),(NO,IS),(EU) 1,362 1,343 880 3,585 4,245 661 6,588 7,638 5,172 19,398
26 (UK,IS),(NO,FO),(EU) 1,341 1,364 880 3,584 4,245 661 7,753 6,484 5,172 19,408
27 (EU,UK,NO),(FO),(IS) 2,898 443 418 3,758 4,377 618 14,725 2,753 4,201 21,679
28 (EU,UK,FO),(NO),(IS) 2,356 891 418 3,665 4,307 642 11,616 5,224 3,772 20,612
29 (EU,UK,IS),(NO),(FO) 2,340 891 442 3,673 4,313 640 12,891 5,286 2,437 20,615
30 (EU,NO,FO),(UK),(IS) 2,358 889 418 3,665 4,307 642 11,503 5,336 3,769 20,609
31 (EU,NO,IS),(UK),(FO) 2,341 889 442 3,673 4,313 640 12,771 5,400 2,435 20,606
32 (EU,FO,IS),(UK),(NO) 1,829 888 890 3,607 4,263 656 9,998 4,905 4,794 19,697
33 (UK,NO,FO),(EU),(IS) 2,364 881 418 3,662 4,305 643 11,077 5,778 3,758 20,614
34 (UK,NO,IS),(EU),(FO) 2,347 881 442 3,671 4,311 641 12,318 5,846 2,427 20,591
35 (UK,FO,IS),(EU),(NO) 1,836 880 890 3,606 4,262 656 9,559 5,336 4,783 19,678
36 (NO,FO,IS),(EU),(UK) 1,837 880 888 3,605 4,261 656 9,446 5,333 4,892 19,672
Two coalitions:
37 (EU,UK,NO),(FO,IS) 2,900 879 3,780 4,392 613 15,181 6,918 22,099
38 (EU,UK,FO),(NO,IS) 2,360 1,347 3,708 4,339 631 12,366 9,078 21,444
39 (EU,UK,IS),(NO,FO) 2,343 1,369 3,712 4,342 630 13,608 7,858 21,466
40 (EU,NO,FO),(UK,IS) 2,362 1,345 3,707 4,339 631 12,252 9,199 21,451
41 (EU,NO,IS),(UK,FO) 2,345 1,367 3,711 4,342 630 13,488 7,969 21,457
42 (EU,FO,IS),(UK,NO) 1,834 1,852 3,686 4,322 637 11,185 10,045 21,230
43 (UK,NO,FO),(EU,IS) 2,368 1,337 3,705 4,337 632 11,822 9,668 21,490
44 (UK,NO,IS),(EU,FO) 2,351 1,359 3,710 4,341 631 13,036 8,399 21,435
45 (UK,FO,IS),(EU,NO) 1,841 1,845 3,686 4,323 637 10,741 10,472 21,213
46 (NO,FO,IS),(EU,UK) 1,843 1,843 3,686 4,323 637 10,627 10,586 21,212
47 (EU,UK,NO,FO),(IS) 3,484 418 3,903 4,481 579 18,357 4,885 23,243
48 (EU,UK,NO,IS),(FO) 3,472 443 3,915 4,490 575 19,780 3,363 23,143
49 (EU,UK,FO,IS),(NO) 2,892 893 3,785 4,396 611 15,942 6,149 22,091
50 (EU,NO,FO,IS),(UK) 2,893 891 3,784 4,395 612 15,818 6,270 22,088
51 (UK,NO,FO,IS),(EU) 2,899 882 3,781 4,393 612 15,347 6,744 22,091
One coalition:
52 (EU,UK,NO,FO,IS) 4,100 4,100 4,619 518 24,479 24,479

Note: See table 1.5 for abbreviations.
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Table A.11. Optimal solution for the five player game; Ricker function; stock elasticity: β = 0.6. The unit for all escapement, recruitment
and harvest is thousand tonnes; and for NPV is million NOK.

No. Coalition Structure S1 S2 S3 S4 S5 S R H V1 V2 V3 V4 V5 VCS

Five coalitions:
1 (EU),(UK),(NO),(FO),(IS) 760 767 769 379 358 3,033 3,790 757 4,336 4,052 3,980 1,879 2,720 16,967
Four coalitions:
2 (EU,UK),(NO),(FO),(IS) 1,622 771 379 359 3,131 3,876 744 8,733 4,608 2,185 3,092 18,618
3 (EU,NO),(UK),(FO),(IS) 1,624 769 379 359 3,131 3,876 744 8,656 4,684 2,184 3,090 18,614
4 (EU,FO),(UK),(NO),(IS) 1,182 768 770 359 3,079 3,830 751 6,329 4,341 4,266 2,890 17,826
5 (EU,IS),(UK),(NO),(FO) 1,165 768 770 379 3,082 3,833 751 7,175 4,365 4,289 2,030 17,859
6 (UK,NO),(EU),(FO),(IS) 1,629 762 379 359 3,130 3,874 745 8,365 4,981 2,179 3,085 18,610
7 (UK,FO),(EU),(NO),(IS) 1,188 761 770 359 3,078 3,830 752 6,047 4,631 4,261 2,887 17,827
8 (UK,IS),(EU),(NO),(FO) 1,171 761 770 379 3,082 3,833 751 6,869 4,656 4,285 2,028 17,839
9 (NO,IS),(EU),(UK),(FO) 1,190 761 768 359 3,078 3,829 752 5,975 4,630 4,335 2,887 17,826
10 (NO,FO),(EU),(UK),(IS) 1,173 761 768 379 3,082 3,833 751 6,790 4,655 4,360 2,028 17,833
11 (FO,IS),(EU),(UK),(NO) 758 761 768 769 3,056 3,811 754 4,593 4,486 4,197 4,123 17,398
Three coalitions:
12 (EU,UK),(NO,FO),(IS) 1,627 1,195 359 3,180 3,918 737 9,358 6,943 3,283 19,583
13 (EU,NO),(UK,FO),(IS) 1,628 1,193 359 3,180 3,918 737 9,280 7,018 3,282 19,580
14 (EU,FO),(UK,NO),(IS) 1,187 1,633 359 3,179 3,917 738 7,309 8,986 3,279 19,575
15 (EU,UK),(NO,IS),(FO) 1,627 1,178 380 3,184 3,921 737 9,406 7,826 2,356 19,588
16 (EU,NO),(UK,IS),(FO) 1,628 1,176 380 3,184 3,921 737 9,327 7,907 2,356 19,590
17 (EU,IS),(UK,NO),(FO) 1,170 1,634 380 3,183 3,920 737 8,222 9,031 2,353 19,606
18 (EU,UK),(FO,IS),(NO) 1,625 760 771 3,156 3,897 741 9,050 5,281 4,773 19,105
19 (EU,FO),(UK,IS),(NO) 1,185 1,174 771 3,129 3,874 745 6,815 7,346 4,594 18,754
20 (EU,IS),(UK,FO),(NO) 1,167 1,191 771 3,129 3,874 745 7,656 6,526 4,593 18,775
21 (EU,NO),(FO,IS),(UK) 1,626 760 770 3,156 3,897 741 8,971 5,279 4,851 19,101
22 (EU,FO),(NO,IS),(UK) 1,185 1,175 769 3,129 3,874 745 6,813 7,264 4,671 18,748
23 (EU,IS),(NO,FO),(UK) 1,167 1,192 769 3,129 3,874 745 7,654 6,451 4,670 18,775
24 (UK,NO),(FO,IS),(EU) 1,631 760 763 3,155 3,896 741 8,674 5,269 5,154 19,097
25 (UK,FO),(NO,IS),(EU) 1,191 1,175 762 3,128 3,873 745 6,520 7,257 4,973 18,749
26 (UK,IS),(NO,FO),(EU) 1,174 1,192 762 3,128 3,873 745 7,336 6,445 4,973 18,755
27 (EU,UK,NO),(FO),(IS) 2,630 380 360 3,370 4,075 706 14,536 2,993 4,049 21,578
28 (EU,UK,FO),(NO),(IS) 2,108 773 359 3,240 3,968 728 11,372 5,342 3,520 20,234
29 (EU,UK,IS),(NO),(FO) 2,095 773 380 3,248 3,975 727 12,279 5,397 2,570 20,246
30 (EU,NO,FO),(UK),(IS) 2,109 771 359 3,240 3,968 728 11,291 5,423 3,518 20,232
31 (EU,NO,IS),(UK),(FO) 2,096 771 380 3,248 3,974 727 12,195 5,478 2,568 20,241
32 (EU,FO,IS),(UK),(NO) 1,617 770 772 3,158 3,899 741 9,466 4,866 4,786 19,118
33 (UK,NO,FO),(EU),(IS) 2,114 764 359 3,237 3,966 729 10,986 5,739 3,509 20,234
34 (UK,NO,IS),(EU),(FO) 2,101 764 380 3,245 3,973 727 11,875 5,797 2,561 20,232
35 (UK,FO,IS),(EU),(NO) 1,623 763 771 3,157 3,898 741 9,158 5,170 4,777 19,105
36 (NO,FO,IS),(EU),(UK) 1,624 763 770 3,157 3,897 741 9,079 5,168 4,854 19,101
Two coalitions:
37 (EU,UK,NO),(FO,IS) 2,634 764 3,398 4,098 700 15,082 7,065 22,146
38 (EU,UK,FO),(NO,IS) 2,115 1,182 3,297 4,015 719 12,269 9,023 21,292
39 (EU,UK,IS),(NO,FO) 2,101 1,200 3,301 4,019 718 13,154 8,148 21,301
40 (EU,NO,FO),(UK,IS) 2,116 1,180 3,296 4,015 719 12,188 9,108 21,296
41 (EU,NO,IS),(UK,FO) 2,102 1,198 3,301 4,019 718 13,069 8,228 21,297
42 (EU,FO,IS),(UK,NO) 1,625 1,640 3,265 3,989 724 10,908 10,098 21,006
43 (UK,NO,FO),(EU,IS) 2,121 1,174 3,295 4,014 719 11,878 9,440 21,318
44 (UK,NO,IS),(EU,FO) 2,107 1,192 3,299 4,017 718 12,748 8,538 21,286
45 (UK,FO,IS),(EU,NO) 1,631 1,635 3,265 3,989 724 10,594 10,403 20,997
46 (NO,FO,IS),(EU,UK) 1,632 1,633 3,265 3,989 724 10,513 10,484 20,997
47 (EU,UK,NO,FO),(IS) 3,213 360 3,573 4,237 663 18,653 4,910 23,563
48 (EU,UK,NO,IS),(FO) 3,204 381 3,585 4,246 661 19,698 3,778 23,476
49 (EU,UK,FO,IS),(NO) 2,628 776 3,403 4,102 699 15,631 6,504 22,136
50 (EU,NO,FO,IS),(UK) 2,629 774 3,402 4,102 699 15,542 6,593 22,135
51 (UK,NO,FO,IS),(EU) 2,633 767 3,399 4,099 700 15,202 6,939 22,141
One coalition:
52 (EU,UK,NO,FO,IS) 3,840 3,840 4,436 596 25,160 25,160

Note: See table 1.5 for abbreviations.
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Table A.12. Optimal solution for the five player game; Ricker function; stock elasticity: β = 0.3. The unit for all escapement, recruitment
and harvest is thousand tonnes; and for NPV is million NOK.

No. Coalition Structure S1 S2 S3 S4 S5 S R H V1 V2 V3 V4 V5 VCS

Five coalitions:
1 (EU),(UK),(NO),(FO),(IS) 531 535 536 258 245 2,104 2,878 774 3,905 3,750 3,710 1,824 2,283 15,472
Four coalitions:
2 (EU,UK),(NO),(FO),(IS) 1,201 541 259 246 2,247 3,031 784 8,148 4,579 2,258 2,777 17,762
3 (EU,NO),(UK),(FO),(IS) 1,202 540 259 246 2,246 3,030 784 8,105 4,622 2,257 2,776 17,760
4 (EU,FO),(UK),(NO),(IS) 848 537 538 245 2,168 2,947 779 5,903 4,133 4,091 2,501 16,627
5 (EU,IS),(UK),(NO),(FO) 837 537 538 259 2,171 2,950 779 6,371 4,151 4,109 2,023 16,654
6 (UK,NO),(EU),(FO),(IS) 1,205 535 259 246 2,245 3,029 784 7,940 4,791 2,253 2,772 17,755
7 (UK,FO),(EU),(NO),(IS) 851 533 538 245 2,168 2,947 779 5,745 4,294 4,087 2,499 16,625
8 (UK,IS),(EU),(NO),(FO) 841 533 538 259 2,171 2,950 779 6,204 4,313 4,105 2,022 16,645
9 (NO,IS),(EU),(UK),(FO) 852 533 537 245 2,167 2,946 779 5,704 4,293 4,128 2,498 16,624
10 (NO,FO),(EU),(UK),(IS) 842 533 537 259 2,171 2,950 779 6,161 4,313 4,147 2,021 16,642
11 (FO,IS),(EU),(UK),(NO) 530 532 536 537 2,135 2,911 776 4,150 4,091 3,931 3,890 16,063
Three coalitions:
12 (EU,UK),(NO,FO),(IS) 1,211 864 246 2,320 3,108 787 9,020 7,085 3,046 19,151
13 (EU,NO),(UK,FO),(IS) 1,212 863 246 2,320 3,108 787 8,976 7,129 3,045 19,149
14 (EU,FO),(UK,NO),(IS) 859 1,215 246 2,320 3,107 787 7,297 8,807 3,043 19,146
15 (EU,UK),(NO,IS),(FO) 1,211 853 260 2,323 3,111 787 9,056 7,604 2,506 19,166
16 (EU,NO),(UK,IS),(FO) 1,212 852 260 2,323 3,111 787 9,011 7,650 2,505 19,166
17 (EU,IS),(UK,NO),(FO) 847 1,215 260 2,322 3,110 787 7,828 8,841 2,503 19,171
18 (EU,UK),(FO,IS),(NO) 1,206 535 542 2,282 3,068 786 8,564 5,102 4,807 18,473
19 (EU,FO),(UK,IS),(NO) 853 846 541 2,240 3,023 784 6,545 6,843 4,534 17,921
20 (EU,IS),(UK,FO),(NO) 842 857 541 2,240 3,023 784 7,015 6,381 4,534 17,929
21 (EU,NO),(FO,IS),(UK) 1,207 535 541 2,282 3,068 786 8,519 5,100 4,852 18,471
22 (EU,FO),(NO,IS),(UK) 853 847 539 2,240 3,023 784 6,543 6,797 4,579 17,919
23 (EU,IS),(NO,FO),(UK) 842 858 539 2,239 3,023 784 7,013 6,338 4,578 17,928
24 (UK,NO),(FO,IS),(EU) 1,210 535 536 2,281 3,066 786 8,349 5,092 5,026 18,466
25 (UK,FO),(NO,IS),(EU) 857 847 535 2,239 3,023 784 6,375 6,791 4,750 17,917
26 (UK,IS),(NO,FO),(EU) 846 858 535 2,239 3,023 784 6,835 6,333 4,750 17,919
27 (EU,UK,NO),(FO),(IS) 2,129 261 247 2,638 3,425 788 14,606 3,608 4,279 22,492
28 (EU,UK,FO),(NO),(IS) 1,627 545 247 2,419 3,209 790 11,100 5,726 3,418 20,244
29 (EU,UK,IS),(NO),(FO) 1,620 545 260 2,426 3,216 790 11,631 5,771 2,852 20,255
30 (EU,NO,FO),(UK),(IS) 1,628 544 247 2,419 3,209 790 11,053 5,774 3,416 20,243
31 (EU,NO,IS),(UK),(FO) 1,621 544 260 2,425 3,215 790 11,582 5,820 2,850 20,253
32 (EU,FO,IS),(UK),(NO) 1,201 541 542 2,284 3,070 786 8,799 4,865 4,818 18,482
33 (UK,NO,FO),(EU),(IS) 1,631 540 247 2,417 3,207 790 10,873 5,962 3,408 20,243
34 (UK,NO,IS),(EU),(FO) 1,624 540 260 2,423 3,213 790 11,396 6,009 2,844 20,249
35 (UK,FO,IS),(EU),(NO) 1,205 536 542 2,283 3,069 786 8,625 5,039 4,810 18,475
36 (NO,FO,IS),(EU),(UK) 1,206 536 541 2,282 3,068 786 8,580 5,037 4,855 18,472
Two coalitions:
37 (EU,UK,NO),(FO,IS) 2,137 543 2,679 3,465 786 15,382 7,987 23,369
38 (EU,UK,FO),(NO,IS) 1,642 862 2,504 3,294 790 12,375 9,464 21,839
39 (EU,UK,IS),(NO,FO) 1,634 874 2,508 3,298 790 12,898 8,940 21,838
40 (EU,NO,FO),(UK,IS) 1,642 861 2,504 3,294 790 12,326 9,515 21,841
41 (EU,NO,IS),(UK,FO) 1,634 873 2,507 3,298 790 12,848 8,988 21,837
42 (EU,FO,IS),(UK,NO) 1,220 1,230 2,450 3,240 790 10,896 10,422 21,318
43 (UK,NO,FO),(EU,IS) 1,645 857 2,502 3,293 790 12,141 9,710 21,852
44 (UK,NO,IS),(EU,FO) 1,637 869 2,506 3,296 790 12,659 9,175 21,834
45 (UK,FO,IS),(EU,NO) 1,224 1,226 2,450 3,240 790 10,713 10,601 21,314
46 (NO,FO,IS),(EU,UK) 1,225 1,225 2,450 3,240 790 10,666 10,649 21,314
47 (EU,UK,NO,FO),(IS) 2,732 248 2,980 3,743 763 20,025 5,701 25,725
48 (EU,UK,NO,IS),(FO) 2,726 262 2,988 3,751 762 20,682 4,942 25,624
49 (EU,UK,FO,IS),(NO) 2,133 550 2,683 3,469 786 15,718 7,633 23,351
50 (EU,NO,FO,IS),(UK) 2,134 549 2,683 3,469 786 15,663 7,689 23,353
51 (UK,NO,FO,IS),(EU) 2,136 544 2,680 3,466 786 15,456 7,908 23,364
One coalition:
52 (EU,UK,NO,FO,IS) 3,390 3,390 4,092 702 28,247 28,247

Note: See table 1.5 for abbreviations.
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Table A.13. Optimal solution for the five player game; Ricker function; stock elasticity: β = 0.1. The unit for all escapement,
recruitment and harvest is thousand tonnes; and for NPV is million NOK.

No. Coalition Structure S1 S2 S3 S4 S5 S R H V1 V2 V3 V4 V5 VCS

Five coalitions:
1 (EU),(UK),(NO),(FO),(IS) 121 122 122 54 52 470 754 284 2,454 2,426 2,419 1,220 1,301 9,820
Four coalitions:
2 (EU,UK),(NO),(FO),(IS) 362 131 56 54 603 954 351 5,312 3,136 1,594 1,702 11,745
3 (EU,NO),(UK),(FO),(IS) 362 131 56 54 603 954 351 5,304 3,145 1,593 1,702 11,744
4 (EU,FO),(UK),(NO),(IS) 216 125 125 53 519 828 309 3,810 2,668 2,660 1,437 10,574
5 (EU,IS),(UK),(NO),(FO) 214 125 126 55 520 830 310 3,896 2,673 2,665 1,349 10,582
6 (UK,NO),(EU),(FO),(IS) 362 130 56 54 602 953 351 5,271 3,178 1,592 1,700 11,741
7 (UK,FO),(EU),(NO),(IS) 216 124 125 53 519 828 309 3,781 2,697 2,658 1,437 10,573
8 (UK,IS),(EU),(NO),(FO) 215 124 126 55 520 829 310 3,866 2,703 2,664 1,348 10,580
9 (NO,IS),(EU),(UK),(FO) 217 124 125 53 519 828 309 3,773 2,697 2,666 1,436 10,573
10 (NO,FO),(EU),(UK),(IS) 215 124 125 55 520 829 310 3,858 2,702 2,671 1,348 10,580
11 (FO,IS),(EU),(UK),(NO) 122 122 123 123 491 785 295 2,564 2,553 2,524 2,517 10,158
Three coalitions:
12 (EU,UK),(NO,FO),(IS) 389 244 55 687 1,079 392 6,109 5,141 2,002 13,252
13 (EU,NO),(UK,FO),(IS) 389 244 55 687 1,079 392 6,099 5,150 2,002 13,252
14 (EU,FO),(UK,NO),(IS) 243 389 55 687 1,078 391 5,186 6,063 2,001 13,250
15 (EU,UK),(NO,IS),(FO) 389 242 57 688 1,080 392 6,116 5,258 1,880 13,254
16 (EU,NO),(UK,IS),(FO) 389 241 57 688 1,080 392 6,107 5,267 1,880 13,254
17 (EU,IS),(UK,NO),(FO) 240 390 57 687 1,079 392 5,305 6,070 1,878 13,253
18 (EU,UK),(FO,IS),(NO) 373 131 133 638 1,006 368 5,627 3,420 3,356 12,403
19 (EU,FO),(UK,IS),(NO) 227 226 130 582 923 341 4,279 4,337 3,012 11,628
20 (EU,IS),(UK,FO),(NO) 225 228 130 582 923 341 4,370 4,247 3,012 11,628
21 (EU,NO),(FO,IS),(UK) 373 131 133 638 1,006 368 5,617 3,419 3,365 12,402
22 (EU,FO),(NO,IS),(UK) 227 226 129 582 923 341 4,278 4,328 3,021 11,627
23 (EU,IS),(NO,FO),(UK) 225 228 129 582 923 341 4,370 4,238 3,021 11,628
24 (UK,NO),(FO,IS),(EU) 374 131 132 637 1,005 368 5,582 3,415 3,401 12,399
25 (UK,FO),(NO,IS),(EU) 228 226 129 582 923 341 4,245 4,326 3,055 11,626
26 (UK,IS),(NO,FO),(EU) 225 228 129 582 923 341 4,335 4,236 3,055 11,626
27 (EU,UK,NO),(FO),(IS) 1,295 61 58 1,414 2,068 654 12,133 5,059 5,312 22,504
28 (EU,UK,FO),(NO),(IS) 685 144 56 884 1,362 478 7,930 5,171 2,801 15,901
29 (EU,UK,IS),(NO),(FO) 684 144 59 887 1,366 479 8,051 5,193 2,649 15,894
30 (EU,NO,FO),(UK),(IS) 685 143 56 884 1,362 478 7,918 5,183 2,800 15,902
31 (EU,NO,IS),(UK),(FO) 684 144 59 887 1,366 479 8,040 5,206 2,648 15,894
32 (EU,FO,IS),(UK),(NO) 373 133 133 638 1,007 369 5,675 3,371 3,361 12,407
33 (UK,NO,FO),(EU),(IS) 685 142 56 883 1,360 477 7,875 5,232 2,796 15,902
34 (UK,NO,IS),(EU),(FO) 684 142 59 886 1,364 478 7,996 5,254 2,644 15,894
35 (UK,FO,IS),(EU),(NO) 373 132 133 638 1,006 368 5,639 3,407 3,357 12,404
36 (NO,FO,IS),(EU),(UK) 373 132 133 638 1,006 368 5,630 3,406 3,367 12,403
Two coalitions:
37 (EU,UK,NO),(FO,IS) 1,305 153 1,458 2,123 665 13,119 10,547 23,666
38 (EU,UK,FO),(NO,IS) 731 274 1,005 1,529 525 9,537 8,784 18,321
39 (EU,UK,IS),(NO,FO) 730 277 1,007 1,532 525 9,675 8,641 18,315
40 (EU,NO,FO),(UK,IS) 731 274 1,004 1,529 525 9,524 8,798 18,322
41 (EU,NO,IS),(UK,FO) 730 277 1,006 1,532 525 9,662 8,654 18,316
42 (EU,FO,IS),(UK,NO) 435 437 872 1,344 472 8,335 8,217 16,552
43 (UK,NO,FO),(EU,IS) 731 273 1,004 1,528 524 9,475 8,851 18,326
44 (UK,NO,IS),(EU,FO) 730 276 1,006 1,531 525 9,612 8,705 18,318
45 (UK,FO,IS),(EU,NO) 436 436 872 1,344 472 8,290 8,262 16,552
46 (NO,FO,IS),(EU,UK) 436 436 872 1,344 472 8,278 8,274 16,552
47 (EU,UK,NO,FO),(IS) 2,047 58 2,105 2,879 774 20,960 8,836 29,796
48 (EU,UK,NO,IS),(FO) 2,045 61 2,106 2,880 774 21,151 8,487 29,638
49 (EU,UK,FO,IS),(NO) 1,304 155 1,459 2,125 666 13,215 10,412 23,627
50 (EU,NO,FO,IS),(UK) 1,304 154 1,459 2,124 666 13,200 10,433 23,633
51 (UK,NO,FO,IS),(EU) 1,305 153 1,458 2,123 666 13,140 10,517 23,657
One coalition:
52 (EU,UK,NO,FO,IS) 2,741 2,741 3,523 783 34,170 34,170

Note: See table 1.5 for abbreviations.
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Table A.14. Optimal solution for the five player game; Beverton-Holt function; stock elasticity: β = 1. The unit for all escapement,
recruitment and harvest is thousand tonnes; and for NPV is million NOK.

No Coalition Structure S1 S2 S3 S4 S5 S R H V1 V2 V3 V4 V5 VCS

Five coalitions:
1 (EU),(UK),(NO),(FO),(IS) 872 880 882 440 416 3,490 4,052 562 3,450 3,101 3,013 1,344 2,391 13,300
Four coalitions:
2 (EU,UK),(NO),(FO),(IS) 1,808 883 440 416 3,547 4,093 546 6,725 3,335 1,496 2,597 14,153
3 (EU,NO),(UK),(FO),(IS) 1,810 881 440 416 3,547 4,093 546 6,631 3,425 1,495 2,596 14,148
4 (EU,FO),(UK),(NO),(IS) 1,338 881 883 416 3,516 4,071 555 4,837 3,250 3,160 2,486 13,734
5 (EU,IS),(UK),(NO),(FO) 1,317 881 883 440 3,520 4,074 554 5,879 3,272 3,182 1,424 13,757
6 (UK,NO),(EU),(FO),(IS) 1,816 873 440 416 3,545 4,092 547 6,281 3,784 1,491 2,590 14,147
7 (UK,FO),(EU),(NO),(IS) 1,345 872 883 416 3,516 4,071 555 4,498 3,604 3,156 2,483 13,741
8 (UK,IS),(EU),(NO),(FO) 1,324 872 883 440 3,520 4,073 554 5,496 3,628 3,178 1,422 13,725
9 (NO,IS),(EU),(UK),(FO) 1,347 872 880 416 3,515 4,070 555 4,411 3,603 3,245 2,482 13,742
10 (NO,FO),(EU),(UK),(IS) 1,326 872 881 440 3,519 4,073 554 5,398 3,627 3,268 1,422 13,715
11 (FO,IS),(EU),(UK),(NO) 869 872 880 882 3,504 4,062 558 3,666 3,534 3,180 3,091 13,473
Three coalitions:
12 (EU,UK),(NO,FO),(IS) 1,810 1,349 416 3,575 4,114 538 7,043 4,899 2,699 14,641
13 (EU,NO),(UK,FO),(IS) 1,812 1,347 416 3,575 4,114 538 6,949 4,988 2,699 14,635
14 (EU,FO),(UK,NO),(IS) 1,340 1,818 416 3,574 4,113 539 5,334 6,598 2,696 14,627
15 (EU,UK),(NO,IS),(FO) 1,810 1,329 441 3,579 4,117 537 7,090 5,942 1,584 14,616
16 (EU,NO),(UK,IS),(FO) 1,812 1,327 441 3,579 4,116 537 6,995 6,041 1,584 14,620
17 (EU,IS),(UK,NO),(FO) 1,319 1,819 441 3,578 4,116 538 6,430 6,640 1,581 14,651
18 (EU,UK),(FO,IS),(NO) 1,809 870 883 3,563 4,105 542 6,899 4,029 3,423 14,351
19 (EU,FO),(UK,IS),(NO) 1,339 1,325 883 3,547 4,094 546 5,100 5,748 3,336 14,184
20 (EU,IS),(UK,FO),(NO) 1,318 1,346 883 3,547 4,093 546 6,133 4,755 3,334 14,223
21 (EU,NO),(FO,IS),(UK) 1,811 870 881 3,562 4,104 542 6,804 4,027 3,515 14,345
22 (EU,FO),(NO,IS),(UK) 1,339 1,327 881 3,547 4,093 546 5,099 5,648 3,427 14,174
23 (EU,IS),(NO,FO),(UK) 1,318 1,348 881 3,547 4,093 546 6,132 4,666 3,426 14,224
24 (UK,NO),(FO,IS),(EU) 1,817 870 873 3,561 4,103 542 6,448 4,017 3,879 14,345
25 (UK,FO),(NO,IS),(EU) 1,346 1,327 873 3,546 4,093 546 4,749 5,641 3,791 14,181
26 (UK,IS),(NO,FO),(EU) 1,325 1,348 873 3,546 4,093 546 5,739 4,661 3,791 14,191
27 (EU,UK,NO),(FO),(IS) 2,824 441 416 3,681 4,189 508 10,651 1,878 3,098 15,627
28 (EU,UK,FO),(NO),(IS) 2,308 884 416 3,608 4,137 529 8,437 3,691 2,822 14,951
29 (EU,UK,IS),(NO),(FO) 2,291 884 441 3,617 4,143 527 9,517 3,741 1,689 14,947
30 (EU,NO,FO),(UK),(IS) 2,310 882 416 3,608 4,137 529 8,342 3,786 2,820 14,947
31 (EU,NO,IS),(UK),(FO) 2,293 882 441 3,616 4,143 527 9,415 3,836 1,688 14,939
32 (EU,FO,IS),(UK),(NO) 1,800 881 883 3,565 4,106 541 7,404 3,528 3,434 14,366
33 (UK,NO,FO),(EU),(IS) 2,315 874 416 3,605 4,135 530 7,984 4,159 2,811 14,954
34 (UK,NO,IS),(EU),(FO) 2,299 874 441 3,614 4,141 528 9,030 4,212 1,681 14,924
35 (UK,FO,IS),(EU),(NO) 1,806 873 883 3,563 4,105 542 7,030 3,894 3,426 14,349
36 (NO,FO,IS),(EU),(UK) 1,808 873 881 3,563 4,105 542 6,933 3,891 3,518 14,343
Two coalitions:
37 (EU,UK,NO),(FO,IS) 2,827 872 3,699 4,202 503 10,945 4,924 15,869
38 (EU,UK,FO),(NO,IS) 2,312 1,331 3,643 4,162 519 8,915 6,542 15,458
39 (EU,UK,IS),(NO,FO) 2,295 1,352 3,647 4,165 518 9,967 5,514 15,482
40 (EU,NO,FO),(UK,IS) 2,313 1,329 3,642 4,162 519 8,819 6,645 15,464
41 (EU,NO,IS),(UK,FO) 2,296 1,350 3,647 4,165 518 9,865 5,607 15,472
42 (EU,FO,IS),(UK,NO) 1,804 1,822 3,626 4,150 524 8,146 7,181 15,327
43 (UK,NO,FO),(EU,IS) 2,319 1,321 3,640 4,160 520 8,458 7,045 15,503
44 (UK,NO,IS),(EU,FO) 2,303 1,343 3,645 4,164 518 9,481 5,969 15,450
45 (UK,FO,IS),(EU,NO) 1,811 1,815 3,626 4,150 524 7,770 7,542 15,311
46 (NO,FO,IS),(EU,UK) 1,813 1,813 3,626 4,150 524 7,672 7,638 15,310
47 (EU,UK,NO,FO),(IS) 3,379 417 3,796 4,269 473 13,082 3,550 16,633
48 (EU,UK,NO,IS),(FO) 3,368 441 3,809 4,278 469 14,278 2,273 16,551
49 (EU,UK,FO,IS),(NO) 2,818 886 3,704 4,205 501 11,587 4,279 15,866
50 (EU,NO,FO,IS),(UK) 2,820 884 3,703 4,204 501 11,482 4,380 15,862
51 (UK,NO,FO,IS),(EU) 2,825 875 3,700 4,202 502 11,085 4,777 15,862
One coalition:
52 (EU,UK,NO,FO,IS) 3,965 3,965 4,383 418 17,435 17,435

Note: See table 1.5 for abbreviations.
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Table A.15. Optimal solution for the five player game; Beverton-Holt function; stock elasticity: β = 0.6. The unit for all escapement,
recruitment and harvest is thousand tonnes; and for NPV is million NOK.

No. Coalition Structure S1 S2 S3 S4 S5 S R H V1 V2 V3 V4 V5 VCS

Five coalitions:
1 (EU),(UK),(NO),(FO),(IS) 753 760 762 377 357 3,009 3,681 672 3,588 3,332 3,267 1,525 2,282 13,994
Four coalitions:
2 (EU,UK),(NO),(FO),(IS) 1,590 764 377 357 3,088 3,744 656 7,148 3,684 1,726 2,533 15,091
3 (EU,NO),(UK),(FO),(IS) 1,591 762 377 357 3,088 3,744 656 7,079 3,751 1,725 2,532 15,088
4 (EU,FO),(UK),(NO),(IS) 1,165 761 763 357 3,046 3,710 665 5,184 3,525 3,458 2,397 14,565
5 (EU,IS),(UK),(NO),(FO) 1,148 761 763 377 3,049 3,713 664 5,943 3,544 3,476 1,626 14,589
6 (UK,NO),(EU),(FO),(IS) 1,597 755 377 357 3,086 3,743 657 6,820 4,017 1,722 2,527 15,085
7 (UK,FO),(EU),(NO),(IS) 1,171 754 763 357 3,045 3,710 665 4,932 3,785 3,455 2,395 14,567
8 (UK,IS),(EU),(NO),(FO) 1,154 754 763 377 3,049 3,713 664 5,667 3,805 3,474 1,624 14,570
9 (NO,IS),(EU),(UK),(FO) 1,173 754 761 357 3,045 3,710 665 4,868 3,784 3,521 2,394 14,567
10 (NO,FO),(EU),(UK),(IS) 1,156 754 761 377 3,048 3,713 664 5,596 3,804 3,540 1,624 14,565
11 (FO,IS),(EU),(UK),(NO) 751 754 761 762 3,028 3,696 668 3,786 3,690 3,430 3,365 14,271
Three coalitions:
12 (EU,UK),(NO,FO),(IS) 1,593 1,177 357 3,127 3,775 648 7,563 5,507 2,661 15,732
13 (EU,NO),(UK,FO),(IS) 1,595 1,175 357 3,127 3,775 648 7,494 5,574 2,661 15,729
14 (EU,FO),(UK,NO),(IS) 1,169 1,600 357 3,126 3,775 648 5,833 7,233 2,658 15,724
15 (EU,UK),(NO,IS),(FO) 1,593 1,160 378 3,131 3,778 648 7,602 6,287 1,840 15,729
16 (EU,NO),(UK,IS),(FO) 1,595 1,158 378 3,131 3,778 648 7,532 6,360 1,840 15,731
17 (EU,IS),(UK,NO),(FO) 1,152 1,600 378 3,130 3,777 648 6,642 7,268 1,837 15,748
18 (EU,UK),(FO,IS),(NO) 1,592 753 764 3,108 3,761 652 7,363 4,245 3,795 15,404
19 (EU,FO),(UK,IS),(NO) 1,167 1,156 763 3,087 3,743 656 5,512 5,987 3,678 15,177
20 (EU,IS),(UK,FO),(NO) 1,150 1,173 763 3,087 3,743 657 6,265 5,255 3,678 15,198
21 (EU,NO),(FO,IS),(UK) 1,593 753 762 3,108 3,760 652 7,293 4,243 3,864 15,400
22 (EU,FO),(NO,IS),(UK) 1,167 1,158 762 3,087 3,743 657 5,510 5,914 3,747 15,171
23 (EU,IS),(NO,FO),(UK) 1,150 1,175 762 3,087 3,743 657 6,264 5,188 3,746 15,198
24 (UK,NO),(FO,IS),(EU) 1,598 753 755 3,107 3,759 653 7,029 4,235 4,133 15,398
25 (UK,FO),(NO,IS),(EU) 1,173 1,158 755 3,086 3,743 657 5,250 5,908 4,016 15,173
26 (UK,IS),(NO,FO),(EU) 1,156 1,175 755 3,086 3,743 657 5,980 5,184 4,016 15,179
27 (EU,UK,NO),(FO),(IS) 2,541 378 358 3,277 3,892 615 11,618 2,250 3,171 17,039
28 (EU,UK,FO),(NO),(IS) 2,052 765 357 3,174 3,813 638 9,171 4,163 2,818 16,152
29 (EU,UK,IS),(NO),(FO) 2,039 765 378 3,182 3,818 637 9,974 4,206 1,979 16,159
30 (EU,NO,FO),(UK),(IS) 2,053 763 357 3,174 3,812 638 9,100 4,234 2,816 16,150
31 (EU,NO,IS),(UK),(FO) 2,040 763 378 3,181 3,818 637 9,899 4,278 1,978 16,154
32 (EU,FO,IS),(UK),(NO) 1,584 762 764 3,110 3,762 652 7,734 3,876 3,805 15,415
33 (UK,NO,FO),(EU),(IS) 2,058 756 357 3,172 3,810 639 8,831 4,513 2,809 16,153
34 (UK,NO,IS),(EU),(FO) 2,045 757 378 3,179 3,816 637 9,615 4,559 1,972 16,146
35 (UK,FO,IS),(EU),(NO) 1,590 755 764 3,109 3,761 652 7,460 4,146 3,798 15,404
36 (NO,FO,IS),(EU),(UK) 1,591 755 762 3,109 3,761 652 7,389 4,144 3,867 15,400
Two coalitions:
37 (EU,UK,NO),(FO,IS) 2,545 756 3,301 3,911 610 11,989 5,423 17,412
38 (EU,UK,FO),(NO,IS) 2,057 1,163 3,221 3,849 628 9,776 7,077 16,853
39 (EU,UK,IS),(NO,FO) 2,043 1,181 3,224 3,852 627 10,558 6,306 16,864
40 (EU,NO,FO),(UK,IS) 2,059 1,162 3,220 3,848 628 9,704 7,153 16,856
41 (EU,NO,IS),(UK,FO) 2,045 1,179 3,224 3,851 627 10,483 6,376 16,859
42 (EU,FO,IS),(UK,NO) 1,591 1,606 3,196 3,830 634 8,693 7,976 16,669
43 (UK,NO,FO),(EU,IS) 2,063 1,155 3,219 3,847 629 9,431 7,447 16,878
44 (UK,NO,IS),(EU,FO) 2,050 1,173 3,223 3,850 628 10,198 6,649 16,848
45 (UK,FO,IS),(EU,NO) 1,596 1,600 3,196 3,830 634 8,415 8,245 16,660
46 (NO,FO,IS),(EU,UK) 1,598 1,598 3,196 3,830 634 8,343 8,317 16,660
47 (EU,UK,NO,FO),(IS) 3,084 358 3,442 4,017 574 14,620 3,760 18,380
48 (EU,UK,NO,IS),(FO) 3,075 379 3,454 4,025 571 15,531 2,782 18,313
49 (EU,UK,FO,IS),(NO) 2,538 767 3,306 3,914 608 12,472 4,934 17,406
50 (EU,NO,FO,IS),(UK) 2,539 765 3,305 3,914 609 12,393 5,011 17,404
51 (UK,NO,FO,IS),(EU) 2,544 759 3,302 3,911 609 12,095 5,313 17,407
One coalition:
52 (EU,UK,NO,FO,IS) 3,674 3,674 4,184 510 19,491 19,491

Note: See table 1.5 for abbreviations.
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Table A.16. Optimal solution for the five player game; Beverton-Holt function; stock elasticity: β = 0.3. The unit for all escapement,
recruitment and harvest is thousand tonnes; and for NPV is million NOK.

No. Coalition Structure S1 S2 S3 S4 S5 S R H V1 V2 V3 V4 V5 VCS

Five coalitions:
1 (EU),(UK),(NO),(FO),(IS) 525 530 531 257 243 2,086 2,844 758 3,746 3,594 3,555 1,738 2,185 14,819
Four coalitions:
2 (EU,UK),(NO),(FO),(IS) 1,171 534 258 244 2,207 2,965 758 7,709 4,217 2,067 2,561 16,553
3 (EU,NO),(UK),(FO),(IS) 1,172 533 258 244 2,207 2,964 758 7,667 4,259 2,066 2,560 16,551
4 (EU,FO),(UK),(NO),(IS) 834 531 532 244 2,141 2,900 758 5,613 3,892 3,851 2,354 15,710
5 (EU,IS),(UK),(NO),(FO) 823 531 533 257 2,144 2,902 758 6,066 3,907 3,866 1,892 15,731
6 (UK,NO),(EU),(FO),(IS) 1,175 529 258 244 2,206 2,963 758 7,508 4,421 2,063 2,556 16,548
7 (UK,FO),(EU),(NO),(IS) 838 527 532 244 2,141 2,899 758 5,460 4,049 3,848 2,352 15,709
8 (UK,IS),(EU),(NO),(FO) 827 527 533 257 2,144 2,902 758 5,904 4,064 3,863 1,891 15,722
9 (NO,IS),(EU),(UK),(FO) 839 527 531 244 2,141 2,899 758 5,421 4,048 3,888 2,351 15,708
10 (NO,FO),(EU),(UK),(IS) 828 527 531 257 2,143 2,902 758 5,862 4,063 3,904 1,891 15,719
11 (FO,IS),(EU),(UK),(NO) 525 526 531 532 2,113 2,871 758 3,950 3,893 3,737 3,697 15,277
Three coalitions:
12 (EU,UK),(NO,FO),(IS) 1,178 846 244 2,269 3,024 756 8,369 6,458 2,760 17,587
13 (EU,NO),(UK,FO),(IS) 1,179 845 244 2,268 3,024 756 8,326 6,500 2,760 17,585
14 (EU,FO),(UK,NO),(IS) 841 1,182 244 2,268 3,024 756 6,661 8,165 2,758 17,583
15 (EU,UK),(NO,IS),(FO) 1,178 835 258 2,271 3,027 756 8,398 6,948 2,250 17,595
16 (EU,NO),(UK,IS),(FO) 1,179 834 258 2,271 3,027 756 8,355 6,992 2,250 17,596
17 (EU,IS),(UK,NO),(FO) 830 1,182 258 2,270 3,026 756 7,163 8,192 2,248 17,602
18 (EU,UK),(FO,IS),(NO) 1,174 528 535 2,237 2,994 757 8,028 4,669 4,389 17,086
19 (EU,FO),(UK,IS),(NO) 838 830 534 2,202 2,960 758 6,106 6,393 4,189 16,688
20 (EU,IS),(UK,FO),(NO) 826 842 534 2,202 2,960 758 6,559 5,948 4,188 16,696
21 (EU,NO),(FO,IS),(UK) 1,175 528 534 2,237 2,994 757 7,985 4,667 4,432 17,084
22 (EU,FO),(NO,IS),(UK) 838 831 533 2,202 2,960 758 6,105 6,349 4,231 16,685
23 (EU,IS),(NO,FO),(UK) 826 843 533 2,202 2,959 758 6,558 5,907 4,231 16,695
24 (UK,NO),(FO,IS),(EU) 1,179 528 529 2,236 2,993 757 7,822 4,661 4,598 17,081
25 (UK,FO),(NO,IS),(EU) 841 831 528 2,201 2,959 758 5,944 6,345 4,396 16,684
26 (UK,IS),(NO,FO),(EU) 830 843 528 2,201 2,959 758 6,388 5,903 4,396 16,687
27 (EU,UK,NO),(FO),(IS) 2,018 259 245 2,523 3,263 740 13,273 3,017 3,627 19,918
28 (EU,UK,FO),(NO),(IS) 1,566 537 245 2,348 3,101 752 10,280 5,045 3,025 18,350
29 (EU,UK,IS),(NO),(FO) 1,558 537 258 2,354 3,106 752 10,780 5,081 2,495 18,356
30 (EU,NO,FO),(UK),(IS) 1,567 536 245 2,348 3,100 752 10,235 5,091 3,023 18,349
31 (EU,NO,IS),(UK),(FO) 1,559 536 258 2,354 3,106 752 10,733 5,127 2,494 18,354
32 (EU,FO,IS),(UK),(NO) 1,170 534 535 2,239 2,995 757 8,254 4,442 4,397 17,092
33 (UK,NO,FO),(EU),(IS) 1,570 532 245 2,346 3,099 753 10,065 5,268 3,017 18,350
34 (UK,NO,IS),(EU),(FO) 1,562 532 258 2,352 3,104 752 10,558 5,305 2,489 18,351
35 (UK,FO,IS),(EU),(NO) 1,173 529 535 2,237 2,994 757 8,087 4,608 4,391 17,086
36 (NO,FO,IS),(EU),(UK) 1,174 529 534 2,237 2,994 757 8,044 4,607 4,434 17,084
Two coalitions:
37 (EU,UK,NO),(FO,IS) 2,024 533 2,558 3,294 737 13,849 6,711 20,559
38 (EU,UK,FO),(NO,IS) 1,576 842 2,418 3,167 748 11,226 8,286 19,512
39 (EU,UK,IS),(NO,FO) 1,568 854 2,422 3,170 748 11,718 7,793 19,511
40 (EU,NO,FO),(UK,IS) 1,577 841 2,418 3,166 748 11,180 8,334 19,514
41 (EU,NO,IS),(UK,FO) 1,568 853 2,421 3,169 748 11,671 7,839 19,510
42 (EU,FO,IS),(UK,NO) 1,183 1,192 2,375 3,126 751 9,803 9,354 19,158
43 (UK,NO,FO),(EU,IS) 1,580 837 2,417 3,165 748 11,007 8,518 19,524
44 (UK,NO,IS),(EU,FO) 1,572 849 2,420 3,168 748 11,493 8,014 19,507
45 (UK,FO,IS),(EU,NO) 1,186 1,189 2,375 3,126 751 9,630 9,524 19,154
46 (NO,FO,IS),(EU,UK) 1,187 1,188 2,375 3,126 751 9,585 9,569 19,154
47 (EU,UK,NO,FO),(IS) 2,557 246 2,803 3,509 706 17,592 4,642 22,235
48 (EU,UK,NO,IS),(FO) 2,551 260 2,811 3,516 705 18,192 3,966 22,158
49 (EU,UK,FO,IS),(NO) 2,020 541 2,561 3,298 736 14,159 6,386 20,545
50 (EU,NO,FO,IS),(UK) 2,021 540 2,561 3,297 736 14,108 6,438 20,547
51 (UK,NO,FO,IS),(EU) 2,023 535 2,559 3,295 736 13,917 6,638 20,555
One coalition:
52 (EU,UK,NO,FO,IS) 3,164 3,164 3,805 640 24,118 24,118

Note: See table 1.5 for abbreviations.
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Table A.17. Optimal solution for the five player game; Beverton-Holt function; stock elasticity: β = 0.1. The unit for all escapement,
recruitment and harvest is thousand tonnes; and for NPV is million NOK.

No. Coalition Structure S1 S2 S3 S4 S5 S R H V1 V2 V3 V4 V5 VCS

Five coalitions:
1 (EU),(UK),(NO),(FO),(IS) 126 127 127 56 53 488 830 342 2,696 2,665 2,657 1,348 1,439 10,804
Four coalitions:
2 (EU,UK),(NO),(FO),(IS) 392 136 58 55 640 1,064 424 5,917 3,610 1,842 1,965 13,335
3 (EU,NO),(UK),(FO),(IS) 392 136 58 55 640 1,064 424 5,907 3,620 1,842 1,965 13,334
4 (EU,FO),(UK),(NO),(IS) 230 131 131 54 545 919 374 4,222 2,995 2,986 1,623 11,827
5 (EU,IS),(UK),(NO),(FO) 228 131 131 56 546 920 374 4,319 3,001 2,991 1,522 11,833
6 (UK,NO),(EU),(FO),(IS) 393 135 58 55 640 1,063 424 5,870 3,659 1,840 1,963 13,332
7 (UK,FO),(EU),(NO),(IS) 231 130 131 54 545 918 374 4,189 3,029 2,985 1,622 11,826
8 (UK,IS),(EU),(NO),(FO) 229 130 131 56 546 920 374 4,285 3,035 2,990 1,522 11,831
9 (NO,IS),(EU),(UK),(FO) 231 130 131 54 545 918 374 4,180 3,029 2,994 1,622 11,825
10 (NO,FO),(EU),(UK),(IS) 229 130 131 56 545 920 374 4,276 3,034 2,999 1,521 11,831
11 (FO,IS),(EU),(UK),(NO) 127 127 128 129 512 867 355 2,843 2,831 2,798 2,790 11,261
Three coalitions:
12 (EU,UK),(NO,FO),(IS) 415 256 55 726 1,192 465 6,881 5,875 2,302 15,058
13 (EU,NO),(UK,FO),(IS) 415 256 55 726 1,192 465 6,870 5,886 2,302 15,058
14 (EU,FO),(UK,NO),(IS) 255 416 55 726 1,191 465 5,927 6,829 2,301 15,057
15 (EU,UK),(NO,IS),(FO) 415 254 58 727 1,192 465 6,887 6,004 2,164 15,055
16 (EU,NO),(UK,IS),(FO) 415 253 58 727 1,192 465 6,876 6,015 2,164 15,055
17 (EU,IS),(UK,NO),(FO) 252 416 58 727 1,192 465 6,058 6,835 2,162 15,055
18 (EU,UK),(FO,IS),(NO) 402 136 138 676 1,118 442 6,301 3,936 3,864 14,101
19 (EU,FO),(UK,IS),(NO) 241 239 135 615 1,026 411 4,830 4,896 3,437 13,163
20 (EU,IS),(UK,FO),(NO) 239 242 135 615 1,026 411 4,934 4,794 3,437 13,164
21 (EU,NO),(FO,IS),(UK) 402 136 138 676 1,118 441 6,291 3,935 3,875 14,101
22 (EU,FO),(NO,IS),(UK) 241 240 135 615 1,026 411 4,830 4,886 3,447 13,162
23 (EU,IS),(NO,FO),(UK) 239 242 135 615 1,026 411 4,933 4,784 3,447 13,163
24 (UK,NO),(FO,IS),(EU) 403 136 137 676 1,117 441 6,252 3,932 3,916 14,100
25 (UK,FO),(NO,IS),(EU) 242 240 134 615 1,026 411 4,792 4,884 3,486 13,162
26 (UK,IS),(NO,FO),(EU) 239 242 134 615 1,026 411 4,894 4,782 3,486 13,162
27 (EU,UK,NO),(FO),(IS) 1,208 61 57 1,326 1,997 670 12,973 4,789 5,033 22,795
28 (EU,UK,FO),(NO),(IS) 709 146 57 911 1,454 543 8,823 5,718 3,090 17,631
29 (EU,UK,IS),(NO),(FO) 708 146 59 913 1,457 544 8,952 5,734 2,924 17,610
30 (EU,NO,FO),(UK),(IS) 709 145 57 911 1,454 543 8,811 5,732 3,089 17,632
31 (EU,NO,IS),(UK),(FO) 708 145 59 913 1,457 544 8,940 5,748 2,923 17,611
32 (EU,FO,IS),(UK),(NO) 401 138 138 677 1,119 442 6,355 3,880 3,868 14,103
33 (UK,NO,FO),(EU),(IS) 709 144 57 910 1,453 543 8,764 5,786 3,086 17,637
34 (UK,NO,IS),(EU),(FO) 708 144 59 912 1,456 544 8,893 5,803 2,920 17,616
35 (UK,FO,IS),(EU),(NO) 402 137 138 676 1,118 442 6,315 3,921 3,865 14,102
36 (NO,FO,IS),(EU),(UK) 402 137 138 676 1,118 442 6,305 3,920 3,876 14,101
Two coalitions:
37 (EU,UK,NO),(FO,IS) 1,212 149 1,362 2,040 678 13,855 9,926 23,781
38 (EU,UK,FO),(NO,IS) 735 275 1,010 1,590 580 10,430 9,374 19,804
39 (EU,UK,IS),(NO,FO) 734 278 1,012 1,592 580 10,574 9,216 19,790
40 (EU,NO,FO),(UK,IS) 735 275 1,010 1,590 580 10,416 9,389 19,805
41 (EU,NO,IS),(UK,FO) 734 278 1,012 1,592 580 10,561 9,231 19,791
42 (EU,FO,IS),(UK,NO) 447 450 897 1,435 538 9,230 9,102 18,332
43 (UK,NO,FO),(EU,IS) 736 274 1,010 1,589 579 10,364 9,447 19,811
44 (UK,NO,IS),(EU,FO) 734 277 1,011 1,591 580 10,509 9,287 19,796
45 (UK,FO,IS),(EU,NO) 448 449 897 1,435 538 9,181 9,151 18,331
46 (NO,FO,IS),(EU,UK) 449 449 897 1,435 538 9,168 9,163 18,331
47 (EU,UK,NO,FO),(IS) 1,815 57 1,872 2,622 750 20,747 7,664 28,412
48 (EU,UK,NO,IS),(FO) 1,812 60 1,873 2,623 750 20,933 7,347 28,280
49 (EU,UK,FO,IS),(NO) 1,211 151 1,363 2,041 679 13,951 9,793 23,744
50 (EU,NO,FO,IS),(UK) 1,212 151 1,362 2,041 679 13,935 9,814 23,750
51 (UK,NO,FO,IS),(EU) 1,212 150 1,362 2,040 678 13,876 9,896 23,772
One coalition:
52 (EU,UK,NO,FO,IS) 2,428 2,428 3,176 747 32,006 32,006

Note: See table 1.5 for abbreviations.
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Abstract

The focus of this paper is on the study of optimal fishing strategies for infinitely repeated
seasonal fisheries games within a Stackelberg framework. Seasonality is an important
feature of many commercial fisheries since both biological processes and human activities
occur on a seasonal instead of an annual basis, as is often assumed. This work expands
on the seasonal model of Ni and Sandal (2019), who consider a single agent exploiting
a fishery with seasonal dynamics, by introducing strategic interaction between an in-
cumbent leader and multiple potential entrants (followers). The game consists of two
subgames: a simultaneous game played by n followers, and a sequential game played by
all players. The leader maximises the net present value of the fishery given the behaviour
of the followers and the seasonal stock dynamics. The followers, on the other hand, be-
have myopically and maximise current profits. The feedback Nash equilibrium for the
n-follower game is derived analytically and used as input into the optimisation process of
the leader. A numerical scheme based on recursion is used to derive the dynamic feedback
policies of the leader. The results are compared to the benchmark case without strategic
interaction. In presence of multiple followers, the leader adopts a more aggressive fishing
strategy in all seasons. As a consequence, entry for some followers is delayed or not even
realised. However, this increases the pressure on the stock and therefore the long-term
biomass equilibrium is reduced. In addition, there is an almost 50% value reduction for
the leader along the state space, implying rent dissipation.

Keywords: Dynamic games; feedback Nash equilibrium; feedback Stackelberg equilib-
rium; bioeconomics; seasonal fisheries management.

Subject Classification: C72, C73, Q22, Q57.
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2.1 Introduction

Most fishing stocks worldwide are managed on an annual basis despite the fact they
exhibit periodic or seasonal variations with respect to their biological, environmental and
economic characteristics. These include, but are not limited to, reproducing, feeding,
migrating, and harvesting (Clark, 2010; Bjørndal and Munro, 2012). For example, many
commercial species undergo extensive annual migrations between their spawning and
feeding grounds, which make them more vulnerable to being captured on a seasonal
basis. Some of those species include Arctic Cod (Hannesson et al., 2010; Hermansen and
Dreyer, 2010), Atlantic Mackerel (Hannesson, 2013), and Norwegian spring-spawning
Herring (Liu et al., 2016). On top of that, most governments regulate fishing activity by
setting annual total allowable catches (TACs), which they allot to different vessel groups
without limiting the seasons of the year they can fish. This allocation, which is usually
based on political rather than bioeconomic criteria (Armstrong and Sumaila, 2001), can
become very problematic for fisheries with strong seasonal variability, especially when
no clear comprehension of the within-season biomass dynamics exists (Ben-Hasan et al.,
2019). Therefore, seasonality or periodicity has to be incorporated to a larger and deeper
extent within our studies in order to acquire a better understanding of ecological and
fisheries systems.

However, most researchers and policy makers in fisheries management do not consider
it explicitly; not because they are not aware of it, its importance and implications, but
because of the complexities and difficulties associated with its nature. Perhaps the most
practical issue in incorporating seasonality in the management of real fisheries is the lack
of season-specific data. Although economic information, like harvested quantities and
market prices, for some commercial species exist on a sub-annual basis, biological data
are typically collected and analysed on an annual basis. Agencies like the International
Council for the Exploration of the Sea (ICES) provide annual advices regarding the status
of fishing stocks and recommend reference points, like fishing mortalities, that are based
on annual projections. Thus, addressing seasonality in a systematic way, when managing
real fisheries, would imply increased managerial costs due to more frequent occurrence of
the various routines, like monitoring of the stocks.

Even if all the required data were available, modelling periodicity explicitly is not
an easy undertaking, since it entails modifying existing bioeconomic models in order to
account for it in the parameters, variables and functional forms. Furthermore, it renders
the problem as non-autonomous, which is more difficult to solve. Not to mention the curse
of dimensionality associated with the increase of control and state variables. Therefore,
in many applications periodicity is frequently treated in some specially appointed way or
skipped at all (Kvamsdal et al., 2016).

In their general form, non-autonomous problems in fisheries management date back
to 1975 and the influential paper of Clark and Munro. Since then, many authors have ap-
proached the topic, however, most of them have not dealt with periodicity in a systematic
and explicit way. Using time-varying parameters in the stock-recruitment relationship,
Parma (1990) concluded that optimal escapement strategies should be adjusted according
to the anticipated environmental conditions these parameters reflect. In the same spirit,
Carson, Granger, Jackson and Schlenker (2009) replaced the constant growth rate in the
Gordon-Schaefer fishing model with a cyclical growth rate. They showed that the opti-
mal harvest rate is periodic and it follows the fluctuations of the biological parameters.
Similar studies include Arnason (1991), Hannesson and Steinshamn (1991), Walters and
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Parma (1996), and Castilho and Srinivasu (2007).
Another branch of the literature, which goes back to Smith (1969), has approached

seasonality by studying within-season behaviour of fishermen while disregarding intra-
seasonal biological growth. Clark (1980) demonstrated that annual fishing quotas are
suboptimal in the presence of seasonal variability in the stock and argued that the prob-
lem could be solved if the quota allocations follow the variations. Boyce (1992) showed
that an individual transferable quota (ITQ) scheme is incapable of solving production ex-
ternalities, like within-season stock effects. Extending this framework to a game theoretic
setting, Costello and Deacon (2007) argued that, in the presence of seasonality, harvesters
in an ITQ managed fishery will no longer be indifferent to when or where they exercise
their quotas. Similar game theoretic studies include Fell (2009), who modelled within-
season fishing as a differential game with open-loop information structure, and Valcu and
Wenginger (2003), who used Markov-perfect strategies in a dynamic intra-seasonal game.
For a more comprehensive review of intra-seasonal effects on fisheries management see
Smith (2012).

The implications of seasonality have also been investigated in several applied and
empirical studies. Önal et al. (1991) modelled the annual life cycle of the Texas shrimp
fishery as a one-year equilibrium model. They determined an optimal seasonal harvesting
pattern, compared it with actual fishing effort and concluded that there was excess fishing
pressure in spring and early summer. Larkin and Sylvia (2004) investigated the effect
of within-season fluctuations on resource rent generation in the Pacific whiting fishery.
Pelletier et al. (2009) developed a generic multi-species, multi-fleet bioeconomic model,
which, among other things, allowed for spatial and seasonal fluctuations. Their purpose
was to assess and compare alternative fisheries management scenarios through the use
of extensive what-if analyses. With the integration of game theory in the management
of migratory and straddling fish stocks, harvest patterns of highly mobile species that
exhibit strong seasonal migrations are also been studied (Bailey et al. 2010; Hannesson
2011).

Although many researchers have tried to integrate periodicity to the standard fishery
management framework (Clark, 2010), most of the studies that approached the topic have
done so under very special circumstances and settings. However, in a relatively recent
series of papers, Kvamsdal, Maroto, Morán and Sandal (2016, 2017, 2020) have proposed
a new theoretical framework that internalises periodicity in discrete-time infinite-horizon
optimal control problems. Their idea, which is simple although not trivial, is to model
the fishery as repeated cycles of multiple intervals with differing characteristics. They
extended the classical Bellman problem (Bellman, 1957; Bertsekas, 2001) to periodic
problems, which they modelled as a system of coupled Bellman equations and showed
that such extension is both feasible and practical. Their approach, although developed
with fisheries in mind, can be applied to many infinite-horizon optimization problems
characterised by cyclical variations (see Kvamsdal et al., 2020, and references therein).

The modelling of the seasonal fishery in this work most closely resembles that of
Ni and Sandal (2019). Their method provides a useful framework for the regulation
of seasonal fisheries; some of their proposed measures include periodic moratoriums as
well as seasonal and fleet-specific TACs. A key finding of theirs is the existence of an
equilibrium cycle during which a naturally occurring seasonal closure of the fishery takes
place. What this means is that without imposing any restrictions on the harvest activity,
letting the stock to recover in one season and harvest it in another emerges as an optimal
equilibrium strategy for the managing authority.
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Compared to this paper, both models assume a two-state two-season bioeconomic
model in an attempt to explicitly address periodicity and derive optimal feedback policies
for each season. However, the model assumptions and respective goals of the research
are quite different. Ni and Sandal assume that harvesting activities are coordinated in
the sense that the fishery is exploited by a single agent. In contrast, this work applies a
game-theoretic setting with one leader and multiple potential followers, where the focus
is on the strategic interaction among them and its effect on the long-term state of the
resource.

The organisation of the paper is as follows. The next section introduces the conceptual
seasonal and game-theoretic model. In section 3, the Nash solution for the followers’
subgame is analytically derived. The numerical solution for the leader’s subgame and
discussion of the results are presented in section 4. Finally, section 5 summarises the
main findings and concludes the paper.

2.2 Bioeconomic model

2.2.1 Seasonal dynamics

The seasonal bioeconomic model employed here is an extension of the annual stock-
recruitment model introduced by Clark (1973). In contrast to annual models, where
biological and human processes, like growth and fishing, occur only once a year, this
seasonal model considers multiple seasons with different characteristics, where the stock
undergoes changes in all of them. In order to put this into context, it seems relevant to
start by discussing the biological traits of the fishery considered here.

Suppose that there exist a species of fish that migrates between its spawning and
feeding grounds on an annual basis, like Arctic cod or Atlantic mackerel. To depart
from the standard framework, where the stock biomass is aggregated and described by
a single variable, in this study the stock biomass consists of two cohorts or groups, a
mature and an immature one, denoted by x and y respectively. This makes the model
more informative, while at the same time remains tractable and convenient to work with.1

Moreover, there exist time periods, e.g. a year, where one period consists of two seasons of
different length: a spawning season (S1) during which the stock reproduces and a feeding
season (S2) where the stock feeds and further grows. In line with many real fisheries,
where spawning seasons are typically of shorter duration, S1 is considered to be smaller
than S2. The two seasons follow each other and this pattern repeats itself indefinitely.
The schema below illustrates the stock dynamics between seasons.

t− 1 t t+ 1

S2 S1S1 S2

[
x1,t
y1,t

] [
x2,t
y2,t

] [
x1,t+1

y1,t+1

]
. . . . . .

F1(x1,t, y1,t, h1,t) F2(x2,t, y2,t, h2,t, ut)

1The traditional single-state biomass approach, although convenient to analyse, is considered by some
as an oversimplification of the species population structure (see Tahvonen, 2010, and references therein).
Its critics favour age-structured models that group the species population into age-classes and track their
development. These models can be more informative, however, the accuracy of their results depends on
the availability and quality of necessary information.
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Figure 2.1. Spatial distribution of the seasonal fishery studied in the paper.
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Figure 2.2. Sequence of biological processes and human activities within a periodic cycle.

For a given period t = 0, . . . ,∞, the stock biomass is represented by (x1,t, y1,t) at
the beginning of S1, and by (x2,t, y2,t) at the beginning of S2. Vector functions F1(·)
and F2(·) describe the transition dynamics of the states between seasons. Because this
seasonal pattern repeats itself indefinitely, we ease on the notation and skip the time
argument when this is obvious. Thus, xi ≡ xi,t and yi ≡ yi,t, i = 1, 2, will represent the
current period’s states, and X1 ≡ x1,t+1 and Y1 ≡ y1,t+1 the next period’s states before
spawning. Variables h1,t, h2,t and ut represent fishing activities, and are introduced below.

The spatial distribution of the fishery is as follows: the spawning grounds are confined
within the exclusive economic zone (EEZ) of a coastal state, hereinafter the leader of the
game. The feeding grounds, on the other hand, are distributed over a vast area that
overlaps the leader’s EEZ, the high seas and the EEZs of other nations, thus making it
possible for distant water fleets (DWFS) and other coastal states, hereinafter the followers
of the game, to harvest the resource when it moves to the feeding grounds. Real fisheries
that exhibit similar distributional characteristics are Arctic cod and Norwegian spring-
spawning Herring, both of which spawn alongside the Norwegian coast before their annual
feeding migration. Figure 2.1 depicts such spatial setting.

Based on this, the leader can target the resource in both seasons, whereas the followers
can do so only during the feeding season. In addition, players can only target the mature
biomass. This reflects fisheries managers attempts to regulate fishing effort in order to
conserve juvenile and immature populations. The economic objectives, timing of decisions
and information structure of the players are discussed in the next subsection. For the
moment, let h1 and h2 denote the leader’s harvest strategies in S1 and S2 respectively, and
u the aggregate harvest of the followers during S2. Finally, the biological processes precede
human activities, i.e., in each season the stock biomass first changes due to growth and
spawning, and then gets harvested because of fishing. This sequential process of events
is depicted in figure 2.2.
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Having provided some context about the type of the fishery investigated here, it
is time to move on and introduce the state transition functions F1(·) and F2(·). The
specification follows that of Ni and Sandal (2019). The biomass change in S1 is described
by the following system:[

x2
y2

]
= F1(x1, y1, h1) =

[
x1 − h1

min(a1x1 + (a2 + a3x1)y1, ymax)

]
. (2.1)

During S1, which is the shorter season, the net growth of the mature cohort is assumed
to be very small and thus ignored. The loss in mature biomass is only attributed to the
leader’s harvest pattern, h1. The spawning dynamics of the immature group is linear in y1
and bounded from above at ymax. Both the slope and the intercept depend on the mature
population. The intercept, a1x1, reflects the biomass gain through spawning, whereas
the slope, a2 + a3x1, the biomass growth of the existent immature population. The
biomass growth includes weight gained through growth and weight loss due to natural
mortality. This structure implies that a larger mature population gives birth to more
offspring, which creates a larger immature density and allows for faster growth rate of
the immature population according to the Allee effect (Allee and Warder, 1931).

The biomass change in S2 is described by the following system:

[
X1

Y1

]
= F2(x2, y2, h2, u) =

 αx2 + βy2 − h2 − u
φ1y2

1 + φ2y2
− βy2 − γx2y2

 . (2.2)

During S2, the mature biomass changes because of net growth, maturity and harvest. The
mature group exhibits a linear net growth, αx2, is strengthened by a fixed percentage of
the immature group, βy2, and is depleted by the fishing activities of all players, h2 + u.
On the other hand, the immature biomass changes because of net growth, maturity and
cannibalism. The net growth of the immature group follows a non-linear relationship
that resembles the Beverton-Holt recruitment function (Beverton and Holt, 1957). In
addition, its biomass is depleted by the equivalent percentage that is transited to the
mature group. Finally, when both groups coexist in the feeding grounds, there is some
biomass loss due to cannibalistic behaviour, γx2y2.

Figure 2.3 shows the state transition of the immature group in S1 (left) and S2 (right).
In S1, the biomass change of the immature is higher for most of the state-space and is
bounded by the ecosystem’s carrying capacity for high states. Moreover, as can be seen
from the isocurves, the mature group plays a more crucial role in the biomass change of
the immature during spawning. That is, higher mature states in the beginning of S1 lead
to higher immature biomass in the beginning of S2 for all immature states. Figure 2.4
depicts the seasonal biomass development in the absence of fishing for the next 150 years
or 300 seasons. As in Ni and Sandal (2019), the stock biomass moves towards a cycli-
cal equilibrium state, namely (x∗1, y

∗
1) = (5596, 4980) and (x∗2, y

∗
2) = (5596, 6995), which

occurs within the state-space. The numerical specification of the transition functions is
given in Table 2.1. The parameters of the model do not describe a particular fishery,
instead they are stylised representations of a hypothetical, but still possible, fishery with
meaningful characteristics. Having discussed the biological traits and specified the sea-
sonal dynamics, it is time to move on with the economic specification and description of
the players’ behaviour.
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Figure 2.3. Immature biomass at the end of S1 (left) and S2 (right): (a) and (b) state-
space surfaces; (c) and (d) isocurves for x1 = x2 = 0, 2000, 4000, 8000.
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Figure 2.4. Biomass development in the absence of fishing. Time horizon 150 years.
Initial (x, y) states: (500,0), (2500,0), (8000,0), (0,5000) and (8000,8000).
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Table 2.1. List of symbols and parameter values used in the study.

Symbol Description Value Unit

Variables
x, y Mature and Immature stock biomass 103 tonnes
x1, y1 Stock biomass at the start of S1 103 tonnes
x2, y2 Stock biomass at the start of S2 103 tonnes
X1, Y1 Stock biomass at the end (start) of S2 (next S1) 103 tonnes
h1, h2 Leader’s harvest strategy in each season 103 tonnes
ui Follower i’s harvest strategy in S2, i = 1, . . . , n 103 tonnes
θi Follower i’s harvest share
ΠL

1 ,Π
L
2 Leader’s profit in each season 106 NOK

ΠF
i Follower i’s profit in S1 106 NOK

V1, V2 Leader’s value function in each season 106 NOK
Parameters
xmax, ymax Maximum stock biomass 8000, 8000 103 tonnes
a1, a2, a3 Growth parameters for immature group in S1 0.9, 0.2, 0.5× 10−5

φ1, φ2 Growth parameters for immature group in S2 1.645, 1× 10−4

α Growth parameter for mature group in S2 0.75
β Biomass transition between groups in S2 0.2
γ Cannibalistic behaviour between groups in S2 1× 10−5

p1, p2 Maximum prices in each season 15, 19 NOK/kg
η Price sensitivity parameter 0.0016
cL1 , c

L
2 Leader’s cost parameters in each season 6, 21000

n Number of potential followers 3
cFi Follower i’s cost parameters in S2, i = 1, 2, 3 [17, 19, 21]× 103

δ1, δ2 Discount factors in each season 0.951/3, 0.952/3

2.2.2 Economic model

As already mentioned, the resource can be targeted in S1 by the leader, and in S2 by
both the leader and the followers with the leader having a first-mover advantage. The
leader is interested in the long-term preservation of the fishery, and thus its objective
is to maximise the present value of all future benefits, while considering the effect of
both its actions and those of the followers on the state of the stock. The followers,
who are assumed to target the resource simultaneously, behave myopically, i.e., they
maximise their individual current profit. The game analysed here has two subgames: a
simultaneous game played by n followers, and a sequential game played by all players.
The relevant solution concepts are the Nash and Stackelberg equilibrium. Before moving
to the optimisation problems, the market for the resource and cost structure of the players
are discussed.

In each season, demand for fish is described by the following downward and non-linear
inverse demand relations:

P1(h1) = p1e
−ηh1 ,

P2(h2 + u) = p2e
−η(h2+u),

where parameters p1 and p2 are the respective seasonal maximum prices, and η > 0 is
a sensitivity parameter that describes the rate at which market price drops as quantity
increases, i.e., P ′i/Pi = −η, i = 1, 2.2 Here it is assumed that η is equivalent for both

2The inverse demand elasticities of P1(h1) and P2(h2 + u) are given by −ηh1 and −η(h2 + u).
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seasons, whereas the maximum prices differ. In particular, it is assumed that prices are
higher in feeding season, i.e., p2 > p1, which can be attributed either to higher demand,
e.g., taste preferences and sustainability consciousness,3 limited supply, e.g., less intensive
fishing during the longer season, or both.

With regard to fishing costs, it has been a common practice in the literature to differ-
entiate between density dependent and independent costs of harvest. This distinction is
due to the underlying assumptions about the production activity of fishing vessels, which
is typically specified as a Cobb-Douglas production function with two inputs: fishing
effort and available stock biomass.4 Effort elasticity of fishing is often considered equal
to one, implying constant returns of scale with respect to it. The stock elasticity, on the
other hand, ranges between zero and one, and serves as a proxy for fish density within
a geographical area. A fishery is said to be uniformly distributed, if the stock elasticity
is equal to one. As the stock elasticity decreases, a fishery becomes more concentrated,
with zero implying pure schooling behaviour. Because the more dense the fish are within
an area, the easier it is to target them, it is only natural to assume that fishing costs de-
pend on both stock size and stock elasticity. Therefore, in many studies, fishing costs are
assumed to be density dependent for positive stock elasticities, and density independent
for zero. Density dependent costs represent trawling fishing technology and imply that
the resource is economically protected since at low stock levels fishing costs become very
high (Maroto et al., 2012). On the other hand, density independent costs represent purse
seine fishing technology and signify constant unit costs, which is a common assumption
for fisheries that exhibit some sort of schooling behaviour (Tahvonen et al., 2013). For a
comprehensive analysis on stock and effort elasticities in bioeconomic models see Stein-
shamn (2011). Some empirical studies that deal with estimation of output elasticities
include Bjørndal and Conrad (1987) and Nøstbakken (2006).

In this study, stock elasticities are assumed to vary between seasons, with the fishery
being more concentrated when in the spawning grounds. For simplicity, it is assumed
that the stock elasticity is zero in S1 and one in S2. It should be mentioned, however,
that using any in between value does not pose any challenge with respect to both the
leader’s and the followers’ optimisation problems, and thus can easily be incorporated
into the model. Having said that, the unit cost of fishing for the leader is constant and
equal to cL1 in S1, and a function of the stock biomass in S2, i.e.,

C(x2, y2) =
cL2

G(x2, y2)
,

where G(x2, y2) = αx2 + βy2 describes the state of mature biomass in S2 before any
harvesting takes place. Since the followers are active only in S2, their respective fishing
costs are also stock dependent; unit cost for follower i is specified as:

ψi(z) =
cFi
z
,

3Some consumers may develop negative preferences towards fish consumption during spawning sea-
sons. This may result from either fish tasting different due to chemical changes in their bodies, or an
effort to reduce the pressure on the stock at this critical time. In an empirical study, Asche, Chen and
Smith (2015) found evidence that Norwegian cod prices are higher between May and December, i.e., the
post-spawning months.

4Schaefer (1957) was the first to introduce this production function in the fisheries literature, and
thus it is often referred to as the Schaefer harvest or production function. Its specification is given by
h = eb1xb2 , where e is fishing effort, x stock biomass, and b1 and b2 non-negative output elasticities.
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where z is a temporary variable that represents the state of the mature stock right before
the followers harvest. Notice, that in both cases, the computation of unit costs is based
on the state of the stock prior to harvest. This implies that fishing effort remains con-
stant during fishing. And although this underestimates costs, especially when harvest is
significant, it provides some convenience in deriving analytical solutions for the followers’
subgame.5

Finally, for all players, net profit from fishing activity is defined as the difference
between gross revenue and total fishing costs. The respective profit functions for the
leader in S1 and S2, and follower i are given by

ΠL
1 (h1) = [P1(h1)− cL1 ]h1,

ΠL
2 (x, y, h2, u) = [P2(h2 + u)− C(x, y)]h2,

ΠF
i (z, h2, ui,u−i) = [P2(h2 + u)− ψi(z)]ui,

where ui is follower i’s harvest and u−i the harvest vector of all other followers except i.
Hereinafter all variables or sets with the −i subscript refer to all other folowers except i.
Notice that follower i’s net profit does not depend on the state of the immature group.
This is because followers are myopic and only need to observe the state of the mature
group right before they harvest. In contrast, the leader has to keep track of both states,
since a higher immature state at the beginning of S2 will, ceteris paribus, lead to a higher
mature state right before the leader harvests.

2.2.2.1 Follower i’s optimisation problem

Before deciding how much to harvest, follower i has at its disposal the following informa-
tion: the leader’s harvest strategy, h2, the remaining mature biomass, z, and the fact that
all other followers determine their strategies simultaneously and have access to the same
information. Therefore, follower i chooses a myopic harvest strategy, ui, that maximises
its net profit function, ΠF

i , given the harvest strategies of the other followers and the
resource availability constraint. Such maximisation problem is time-independent and can
be expressed as follows:

max
ui

JFi = ΠF
i (z, h2, ui,u−i)

s.t.
n∑
i=1

ui ≤ z, ui ≥ 0.
(2.3)

For any stock level and harvest choice of the leader in S2, let ũi(z, h2) be a myopic feedback
strategy, Ũi the set of all feedback strategies for follower i, and Ũ = Ũ1 × · · · × Ũn the
Cartesian product of all such sets. Hereinafter all variables with the tilde icon refer to
their corresponding feedback rules. A feedback strategy vector ũ∗ = (ũ∗1, . . . , ũ

∗
n) ∈ Ũ is

a feedback Nash equilibrium if and only if

JFi (z, h2, ũ
∗
i (z, h2), ũ

∗
−i(z, h2)) ≥ JFi (z, h2, ũi(z, h2), ũ

∗
−i(z, h2)),

∀ũi ∈ Ũi, ∀(z, h2) ∈ R2
+, ∀i = 1, . . . , n.

5The alternative would have been to allow for changes in effort during fishing and specify total costs
as a function of the stock before and after harvest. This would mean to keep tract of unit costs as the

stock gets depleted, i.e.,
∫ R

S
c(x)dx, where c(x) is the density-dependent unit cost of fishing, and R and

S the respective states before and after fishing. However, doing so adds unnecessary complexity to the
analysis. For a study with such cost specification see Ekerhovd and Steinshamn (2016).
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Finally, let the aggregate harvest of all followers at Nash equilibrium be given by ũ∗(z, h2) =∑n
i=1 ũ

∗
i (z, h2). Additional details regarding the followers’ subgame including the deriva-

tion of the feedback Nash equilibrium are given in section 2.3.

2.2.2.2 Leader’s optimisation problem

The leader is perfectly aware of the biomass states of the fishery in both S1 and S2,
and possesses perfect information regarding the followers’ information set and behaviour.
That is, the leader anticipates that in S2 the followers will act both simultaneously and
myopically. Based on this information structure, the leader chooses seasonal harvest
strategies, h1,t and h2,t for t = 0, . . . ,∞, that maximise its net present value. Such
maximisation problem is time-dependent and can be expressed as follows:

max
h1,t,h2,t

JL =
∞∑
t=0

δt[δ1Π
L
1,t(h1,t) + δ1δ2Π

L
2,t(x2,t, y2,t, h2,t, ũ

∗(z2,t, h2,t))]

s.t. [x2,t y2,t]
T = F1(x1,t, y1,t, h1,t)

[x1,t+1 y1,t+1]
T = F2(x2,t, y2,t, h2,t, ũ

∗(z2,t, h2,t))

z2,t = G(x2,t, y2,t)− h2,t
xi,t ≥ 0, yi,t ≥ 0, hi,t ≥ 0, ∀i = 1, 2,

(2.4)

where T stands for transpose, δ, δ1 and δ2 are the respective annual and seasonal discount
factors with δ = δ1δ2, and z2,t is a temporary variable that describes the state of the
mature biomass in S2 following the leader’s but preceding the followers’ harvest activities.
Keep in mind that although variables z and z2,t look like they are referring to the same
state, they are not. Variable z is used in the followers’ optimisation and refers to all states
that can possible occur. In contrast, variable z2,t is used in the leader’s optimisation and
refers to specific states that follow from the states in the beginning of S2.

Kvamsdal et al. (2016, 2020) showed that the solution of a class of problems like the
one specified above can be obtained by solving an equivalent system of coupled Bellman
equations using standard dynamic programming techniques. Such system is specified as
follows:

V1(x1, y1) = max
h1
{δ1ΠL

1 (h1) + δ1V2(F1(x1, y1, h1))},

V2(x2, y2) = max
h2
{δ2ΠL

2 (x2, y2, h2, ũ
∗(z2, h2)) + δ2V1(F2(x2, y2, h2, ũ

∗(z, h2)))},
(2.5)

with z2 = G(x2, y2) − h2. The value functions V1 and V2 represent the largest possible
value the leader can derive from this infinite-horizon optimisation process, when the initial
state starts at S1 and S2 respectively. What is important to understand here is that V1
(or V2 for that matter) does not represent the maximum net present value the leader
obtains from its S1 (S2) fishing activity, but the aggregate maximum net present value
from both seasons starting at S1 (S2).

For any state of the mature and immature biomass, let h̃1(x, y) and h̃2(x, y) be feed-
back harvest strategies for the leader in S1 and S2, and let H̃1 and H̃2 be the respective
sets. Moreover, the realised harvest for follower i is given by ũ∗i (z̃2(x, y), h̃2(x, y)), where
z̃2(x, y) = G(x, y)−h̃2(x, y). The feedback strategies (h̃∗1, h̃

∗
2, ũ

∗) ∈ H̃1×H̃2×Ũ constitute
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a feedback Stackelberg equilibrium if and only if

JL(·, h̃∗1(·), h̃∗2(·), ũ∗(z̃∗2(·), h̃∗2(·))) ≥ JL(·, h̃1(·), h̃2(·), ũ∗(z̃2(·), h̃2(·))),
∀(h̃1, h̃2) ∈ H̃1 × H̃2, ∀(x, y) ∈ ×R2

+,

JFi (z̃∗2(·), h̃∗2(·), ũ∗i (z̃∗2(·), h̃∗2(·)), ũ∗−i(z̃∗2(·), h̃∗2(·))) ≥
JFi (z̃∗2(·), h̃∗2(·), ũi(z̃∗2(·), h̃∗2(·)), ũ∗−i(z̃∗2(·), h̃∗2(·))), ∀ũi ∈ Ũi, ∀(x, y) ∈ R2

+, ∀i = 1, . . . ,m,

where (·) refers to the mature and immature states (x, y). For a description of the dynamic
programming algorithm used to solve problem (2.5) see appendix A.1.

2.3 Myopic followers’ game

In this section, the feedback Nash equilibrium for the n-follower game is derived. From
the n potential followers, let m ≤ n be the number of active ones. An active follower is
defined as one who has a positive harvest strategy, i.e., ui > 0. Moreover, let ψ1(z) ≤
ψ2(z) ≤ · · · ≤ ψn(z) be the ranking of unit fishing costs for all n followers, which remains
constant for all stock levels. This implies that the first follower is the most efficient
cost-wise whereas the n-th one is the least efficient. This setting is similar to Sandal and
Steinshamn (2004), where the authors investigated myopic behaviour of multiple Cournot
competing fishing agents. To proceed, we split problem (2.3) in two subproblems, where
in the first the resource constraint is slack and in the second it is binding.

Let u =
∑m

i=1 ui < z, then if follower i is active, its optimal harvest is given by the
first order condition of its profit function:

∂ΠF
i

∂ui
= 0⇔ (1− ηui) = ψi(z)keηu, ∀i = 1, . . . ,m, (2.6)

with k = eηh2/p2 and ui < 1/η.6 This corresponds to a system of m equations and
m unknowns for all active followers. Summing (2.6) over all active followers yields an
implicit expression in terms of u and m for all (z, h2) ∈ R2

+:

(m− ηu) =
m∑
i=1

ψi(z)keηu, (2.7)

with u < m/η. Using (2.7), expression (2.6) can be re-written as follows:

(1− ηui) =
ψi∑m
i=1 ψi

(m− ηu), ∀i = 1, . . . ,m. (2.8)

For convenience, the z argument in the unit cost term is dropped for the moment. Because
followers are ordered according to their fishing costs, it follows from (2.8) that u1 ≥ u2 ≥
· · · ≥ um > 0. It is thus enough to find the aggregate quantity u that satisfies um > 0 on
the threshold. That is follower m is active but follower m+ 1, if exists, is inactive.

To determine the number of active followers, m, and solve (2.7) for their aggregate
harvest, u, the following procedure is recommended. Let w = ηu and wi = ηui be scaled
variables, and w̄ = w/m and Ψ̄ =

∑m
i=1 ψi/m be the means of the total harvest and the

6In order for the solution to represent a global maximum, the profit function has to be strictly concave.
This is equivalent to ui < 2/η, which is always true when follower i is active, since ui < 1/η.
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Figure 2.5. Graphical representation of the solution to equations (2.9) and (2.10). (a)
Function B(v) in the feasible region. The total harvest for m active followers is given
when B(v) = 0 if and only if v∗ < v̄; the blue and red lines show the relative position
of the B(v) function when follower m is active and inactive, respectively. (b) Activity
function A(m), the last active follower, m, is the maximum integer value that satisfies
A(m) > 0.

cumulative sum of costs, respectively. Moreover, let v = 1− w̄ and vi = 1−wi, then (2.7)
and (2.8) can be re-written as follows:

v = kΨ̄em(1−v), (2.9)

vi =
ψi
Ψ̄
v, ∀i = 1, . . . ,m. (2.10)

By definition variables w and v are bounded in the open interval (0, 1). Next, let B(v) ≡
v − kΨ̄em(1−v), which is a strictly increasing function. If at least one follower is active,
i.e., m ≥ 1, then the optimal total harvest, u = m(1− v)/η, can be determined from the
solution of B(v) = 0 for the correct number of active followers.

To figure out the proper m, expression (2.10) is utilised. The m-th follower is active if
um > 0 or by (2.10) when vm < 1. Let v̄ : vm = 1 denote the threshold that follower m is
indifferent between being active or inactive, i.e., v̄ = Ψ̄/ψm.7 In order for follower m to
be active, the solution of B(v) = 0 must lie on the left of the v̄ threshold (figure 2.5 left).
Since B(v) is strictly increasing the previous statement holds true whenever B(v̄) > 0 or

A(m) = 1− kψmexp

{
m

(
1− Ψ̄

ψm

)}
> 0. (2.11)

The activity function A(m) is strictly decreasing with respect to the number of followers
(figure 2.5 right). The maximum integer value that satisfies A(m) > 0, determines the
number of active followers. If the activity function evaluated at one is negative, then
all followers are inactive. This means that the harvest quantity of the most efficient
follower is negative and thus infeasible to implement. The process after determining m is
straightforward: solve for the root of B(v) and substitute the solution to (2.8) or (2.10)
depending on whether v is rescaled back to u or not.

7It follows from the cost ordering assumption that v̄ < 1.
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(a) (b)

Figure 2.6. (a) Myopic feedback rules for all active followers. (b) The number of active
followers as a function of the stock biomass and the leader’s harvest in S2. The parameters
used in plotting are: m = 20, p2 = 19, η = 0.0016, and cFi = 18000 + 2000(i− 1).

Moving on to the case where the resource constraint is binding, i.e.,
∑m

i=1 ui = z, any
combination of strategies that satisfy it can be a potential equilibrium. This is because no
follower can unilaterally improve its position by changing its strategy. Therefore, unless
the rules of interaction among the followers are more clear, an infinite number of equilibria
can occur when the resource constraint binds. To deal with this, the following assumption
is made: at any point in time the active followers deplete the resource simultaneously and
the rate of depletion is proportional to their first-best harvest strategies. This means that
at the point in time where the stock is depleted, each follower will have already harvested
a percentage of it, which is proportional to what they would have harvested if there
had been sufficient biomass available. Thus, follower i’s harvest is given by θiz, where
θi = ui/u is its first-best share. This concludes the solution of the followers’ subgame.
Follower i’s feedback Nash equilibrium harvest strategy can be specified as follows:

ũ∗i (z, h2) =


ui if i ≤ m ∧ u < z,

zθi if i ≤ m ∧ u ≥ z,

0 if i > m,

∀(z, h2) ∈ R2
+, ∀i = 1, . . . , n, (2.12)

where m = 0, . . . , n is the maximum integer value that satisfies inequality (2.11), and u
and ui are the scaled solutions of (2.9) and (2.10), respectively.

Figure 2.6 illustrates the number of active followers and their respective feedback
harvest strategies for all biomass states and possible harvest strategies of the leader in
S2. For a given set of parameters, from the twenty potential followers, at most seven
can be active. The more efficient a follower is, the smaller the stock biomass is where it
becomes active and the higher the quantity it harvests, ceteris paribus. As the leader’s
harvest increases, the stock biomass threshold of entry follows a convex curve.

2.4 Numerical results and discussion

In this section, the leader’s infinite horizon repeated game is solved numerically. A
number of results are presented to demonstrate the kind of insights that can be obtained
using the model and evaluate the impact of economic parameters on long-term harvest
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strategies. The analysis is done in two steps. First, optimal feedback harvest policies are
computed using the procedure described in appendix A.1. Second, stock development
and fishing behaviour are simulated for a time horizon of 150 years, i.e., 300 seasons.

Two main cases are considered. In the first one, there are no potential followers,
n = 0, which translates to the leader being the sole participant in the fishery. This case
will serve as benchmark and be referred to as first-best because it yields the best possible
outcome both economically and biologically, i.e., higher net present value for the leader
and lower pressure on the long-term stock biomass. In the second case, also referred to
as second-best, three potential followers are considered, where some of them have a cost
advantage over the leader. The model is solved and simulated multiple times for a variety
of parameter values and initial biomass scenarios. The parameter values used for the base
runs are presented in Table 2.1.

2.4.1 Seasonal feedback strategies

Figure 2.7 shows the seasonal feedback fishing strategies for the leader in the presence
and absence of followers. A feedback strategy takes as input the states of the system, in
this context the mature and immature stock biomass, and in return prescribes courses of
action, i.e., fishing policies. In both cases, optimal harvest in S1 follows more or less the
same pattern: a sharp increase for low mature states, followed by a decrease that creates
a valley, which eventually starts increasing at a very slow rate. On the other hand,
the optimal harvest pattern in S2 differs considerably between cases. In the absence
of followers, there is a gradual increase in harvest along the entire state space. In the
presence of followers, however, there is a sharp increase followed by a gradual increase and
then again a sharp increase until a plateau is reached. Compared to S1, it is optimal not
to harvest for low stock levels in S2 in both cases. This follows from the cost structure,
which is density dependent in S2 and thus very high when stock abundance is low.

The optimal harvest for the three followers when the leader acts optimally is depicted
in figures 2.8.a to 2.8.c. The harvest pattern of the more efficient followers is characterised
by no fishing for low states, a gradual increase followed by a decrease, and an increase
again for higher states. The biomass states where harvest decreases correspond to the
ones where the leader starts fishing. Positive amounts of harvest for the least efficient
follower are confined to high biomass states.

To get a better understanding of the leader’s feedback rules, the harvest isocurves
across the diagonal states together with the development of unit profits for both seasons
and cases are displayed in figure 2.9. In both cases, the decline in harvest during S1
coincides with the start of fishing in S2, implying a trade-off between seasonal profits.
Seasonal unit profits are higher in the first-best scenario, with the unit profit in S2 to
surpass the one in S1 for states above 2000, which is an indication of the more intense
fishing in S2. Although such indication is absent in the presence of followers, since, for
high states, harvest in S2 exceeds that of S1 but the respective unit profit is significantly
lower. This can be explained by the following. First, rent dissipation attributed to their
existence, which leads to what is often referred to as “the race to fish”. Second, trade-
off between current and future seasonal profits. This means that although it seems more
profitable to exploit the resource in S1, it will lead to less long-term benefits for the leader.
The reason is that increased fishing in S1, will further decrease the stock biomass, which
will lead to a weaker seasonal growth, and thus higher costs and less fishing opportunities
in S2.
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(a) h̃∗1(x, y) when n = 0 (b) h̃∗2(x, y) when n = 0

(c) h̃∗1(x, y) when n = 3 (d) h̃∗2(x, y) when n = 3

Figure 2.7. Leader’s first- and second-best feedback harvest strategies in S1 and S2. The
white circles and squares point out the respective S1 and S2 equilibrium states and policy
levels. The units for all states and policies are in thousand tonnes.

Without any followers, the leader is the sole participant in the fishery and therefore
can strike a balance between exploitation and sustainability. This balance implies that
the marginal benefit from harvesting an additional unit is equivalent to the marginal
benefit of letting it grow in order to be harvested in the future. However, in the threat of
potential followers, who can also target the resource, any additional unit of fish left by the
leader is one more unit for the followers to harvest. This creates distortions with regard to
the leader’s harvest activity, and thus its optimal harvest becomes substantially different
between the two cases. By adopting a more aggressive fishing strategy, the leader is able
to delay entry or even exclude some followers from the fishery. This is because the cost of
fishing in S2 depends on the magnitude of the mature biomass, which the leader reduces
first and as a consequence increases the fishing cost of the followers.8

Figure 2.10 illustrates this point for the diagonal states in S2. In the case where
the leader does not engage into fishing in S2, the three followers enter the fishery at the
following biomass states: 925, 1166 and 1528. After entry, their harvest increases at a
decreasing rate with the stock biomass (dashed lines in figure 2.10 left). However, when
the leader is active, it utilises its first mover advantage to delay the entry of the third
follower, who now enters when the stock biomass is at 4261, and to reduce the overall

8The inverse relationship between stock biomass and fishing costs is a type of negative production
externalities, also known as stock externalities (Smith, 1969; Bjørndal, 1987).
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(a) ũ∗1(x, y) (b) ũ∗2(x, y)

(c) ũ∗3(x, y) (d) ũi(h2, z)

Figure 2.8. (a)-(c) Followers’ realised harvest strategies based on leader’s optimal harvest.
The white squares point out the equilibrium states and policies in S2. (d) Followers’
potential harvest strategies. The units for all states and policies are in thousand tonnes.
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Figure 2.9. Harvest isocurves and realised unit profits for the leader in the absence and
presence of followers across the diagonal of the state space.
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Figure 2.10. (a) Harvest strategies in S2 for the diagonal of the state space in the presence
of three followers. The dashed lines represent the respective followers’ strategies when
the leader’s does not enter the fishery in S2. (b) Development of prices and unit costs of
fishing for all players in S2 along the diagonal of the state space.

amount of catches all followers take.
To further investigate such behaviour, the right part of figure 2.10 displays the price

and cost development for all players along the diagonal. For low stock levels, unit costs
of fishing exceed the seasonal maximum price, p2 = 19, and thus no player is active. As
the stock biomass increases, the unit costs decrease and players begin to enter the fishery.
Follower one enters first followed by follower two. Their harvest pattern is equivalent as
if the leader was inactive. When the leader enters, the stock biomass is reduced and the
unit cost for all followers increases. This is reflected upon the decrease in harvest for the
already active followers and the delay of entry for the last follower. Depending on the
relative cost efficiency between the leader and a follower, it is possible that the leader
drives a follower out of the fishery despite the fact that it was already active. Notice how
the realised fishing strategy for the second follower almost touches zero (black line).

As the stock biomass increases, followers one and two harvest slowly increases, until
it flattens out, and then increases again. Meanwhile, the leader’s harvest increases slowly
and then fast, until it reaches a plateau. Notice that the unit cost of fishing for the least
efficient follower (cyan dashed line in figure 2.10 right) becomes equivalent to the realised
price (blue line) right before the leader’s second rapid increase in harvest, and remains so
until the plateau is reached. This indicates that the leader increases its harvest quantity
such that it becomes unprofitable for the least efficient follower to enter the fishery.
Moreover, the remaining followers are confined to harvest a relatively steady quantity. In
other words, as the stock biomass increases, and cost decreases, the leader harvests what
the followers would have, nevertheless, harvested. Eventually there is a point where it is
no longer beneficial to keep increasing the pressure in the stock. This is characterised by
the entry of the last follower, a slight decrease in the leader’s harvest, and an increase in
the followers’ harvest.

A final remark concerns the comparison of the leader’s net present value between
cases. Figure 2.11 shows the total value from the solution of problem (2.4) for all initial
states starting at S1. In the presence of followers, the value has reached almost 50%
reduction for most initial states, suggesting rent dissipation due to multiple competing
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(a) n = 0 (b) n = 3

Figure 2.11. Leader’s net present value with and without followers for all biomass states
starting at S1. The units for all states are in thousand tonnes. The monetary units are
in million NOK.

agents and myopic behaviour.

2.4.2 Long-term biomass development

To see the development of the stock biomass in time and test its sensitivity to initial
conditions, the transition systems (2.1) and (2.2) are simulated for a time horizon of
150 years (300 seasons). Figure 2.12 shows the seasonal biomass development for the
two cases analysed here. Only several initial states are presented, however, the results
remain robust for all initial states tested. The long-term status of the stock is given by
an annual equilibrium cycle where the stock is targeted by the leader in both seasons,
and, if present, followers one and two in S2.

In the absence of followers, the cyclical equilibrium occurs at (x∗1, y
∗
1) = (2841, 4453)

and (x∗2, y
∗
2) = (2664, 5209), with the leader harvesting 177 and 199 thousand tonnes in

S1 and S2, respectively. With three potential followers, on the other hand, the long-term
seasonal biomass states are lower and occur at (x∗1, y

∗
1) = (1511, 3937) and (x∗2, y

∗
2) =

(1282, 4143). The leader harvest 229 and 176 thousand tonnes in S1 and S2, respectively.
Followers one and two harvest 83 and 20 thousand tonnes, respectively, in S2, and follower
three is inactive. The white circles and squares in figures 2.7 and 2.8 point out the
respective S1 and S2 equilibrium states and policy levels within the feedback surfaces.

In both cases, there seems to be some undershooting towards the equilibrium cycle
for low mature and immature states. That is, there is a reduction in the biomass devel-
opment of the mature group, which becomes more evident the lower its initial biomass
is, for example, see initial states (500,0) and (2500,0) in figure 2.12. This undershoot-
ing phenomenon becomes less significant for higher immature states or as the immature
biomass recovers through time.

To determine how many years are needed for the stock biomass to approach the equi-
librium cycle, three circles with a radius that represents a 10%, 15% and 20% deviation
from its mean distance are drawn.9 Then, for all grid squares A1, . . . ,D4 (see figure 2.12),
2500 uniformly spaced nodes are generated and used as initial states in the simulation
runs. The minimum, maximum and average number of years before the stock biomass

9The radius of a circle with center (x, y) =
(x∗

1+x∗
2

2 ,
y∗
1+y∗

2

2

)
and 10% deviation is

√
(0.1x)2 + (0.1y)2).
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Figure 2.12. Biomass development with fishing: without (left) and with followers (right).
Time horizon 150 years. Initial (x, y) states: (500,0), (2500,0), (8000,0), (0,5000) and
(8000,8000). The circles around the equilibrium cycle represent a 10%, 15% and 20%
deviation from its mean distance. The A1, . . . ,D4 combinations are grid square references.

approaches the equilibrium circles are depicted in figure 2.13 for both cases. For very low
mature and immature biomass levels (grid square A1), the resource would need, in the
presence of followers, up to 35 years before getting in the vicinity of the equilibrium cycle
at 10% tolerance. This number is higher and equal to 43 years, when the leader is in
by itself, but the equilibrium cycle is also higher in this scenario. As the initial biomass
increases the number of years required to get closer to the equilibrium cycle are signif-
icantly reduced. For example, the next grid square that takes the longest to approach
the equilibrium cycle is B1, which needs 11 and 15 years, with and without followers,
respectively. This is a considerable drop from 35 and 43. From all initial states in the
state-space, it would require on average around 8 years to approach it when follower
are present and 12 years when they are not. All years reported are based on the 10%
deviation scenario. Clearly, as the circle radius around the equilibrium cycle is relaxed,
the number of years required to reach it are reduced.

2.4.3 Sensitivity analysis

Moving on, the impact of the maximum price parameters, p1 and p2, and the sensitivity
parameter, η, on the long-term harvest strategies and biomass states is identified. The
analysis here is focused on how varying parameter values affects the equilibrium steady
states, while the value of all other parameters remains the same as in the base cases
(ceteris paribus). The model is repeatedly solved and simulated with changes in one
parameter at a time.

2.4.3.1 Impact of maximum price parameters

The maximum price parameters reflect upon the attractiveness of harvesting and selling
the resource in a particular season. From the leader’s point of view, a higher maximum
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Figure 2.14. Long-term harvest levels for different values of the maximum price param-
eters, p1 and p2, for both cases, ceteris paribus. The black vertical lines reflect the base
run values p1 = 15 and p2 = 19. For all other parameter values see table 2.1.

price in S1, or S2, implies a higher seasonal marginal profit, and a stronger trade-off
between seasonal fishing. For example, a ceteris paribus increase in p1, increases the
marginal profit the leader receives from an additional unit of fish sold in S1, and therefore
creates a preference towards harvesting more in S1 relatively to S2.

Figures 2.14 and 2.15 show the effect of ceteris paribus changes in p1 and p2 on steady
state harvest and stock biomass for the first- and second-best cases. The reference values
are p1 = 15 and p2 = 19, and are represented by the black vertical lines. The respective
ranges for p1 and p2 are calculated as a varying ratio, between 0.5 and 1.5, relative to the
other season’s fixed maximum price. For example, the lower and upper limits for p1 are
given by 0.5× 19 = 9.5 and 1.5× 19 = 28.5.

As expected, an increase in p1 (p2), increases the respective seasonal harvest of the
leader and decreases its harvest in the subsequent season for both cases, i.e., h1 (h2)
increases whereas h2 (h1) decreases. It is interesting, however, that in the presence of
followers, the rate of decrease in h1 as p2 increases (blue curve in 2.14.d) is significantly
lower than the rate of decrease in h2 as p1 increases (red curve in 2.14.c), whereas the
respective h2 and h1 (red and blue curves in 2.14.d and 2.14.c) are increasing at almost
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Figure 2.15. Long-term stock biomass levels for different values of the maximum price
parameters, p1 and p2, for both cases, ceteris paribus. The black vertical lines reflect the
base run values p1 = 15 and p2 = 19. For all other parameter values see table 2.1.

the same rate. It can be seen from figures 2.14.a and 2.14.b, that without followers, the
rates of increase and decrease in seasonal fishing associated with the increase of seasonal
maximum prices are more or less equivalent.

The reason for this difference lies in the steady state size of the stock biomass in
S2 (curves with square marks in figure 2.15), which is always higher in the first-best
case (vertical comparison). Remember that the mature stock biomass right before the
leader harvests in S2 is given by G(x2, y2), which is a non-decreasing function. Because
in the presence of followers the steady state stock biomass in S2 is lower, G(x2, y2) is
also lower, and therefore the leader’s steady state fishing cost is higher since costs in S2
are inversely proportional to the available mature biomass. Moreover, as the seasonal
maximum prices increase this effect becomes more significant and consequently increases
the leader’s preference to harvest in S1 where its fishing cost is independent of stock
biomass. In other words, there is an indirect effect on seasonal marginal profits associated
with higher seasonal maximum prices, which becomes more evident in the presence of
followers, where the leader faces a higher steady state fishing cost in S2. This explains
why, compared to the case without followers, the rate of decrease in h1 is lower when p2
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increases, and similarly the rate of decrease in h2 is higher when p1 increases.
The impact of maximum prices on the followers’ steady state harvest can be inferred

from the direct effect, which occurs only when p2 varies, and the indirect effects on
leader’s harvest and available stock biomass. In general, the higher h2, the lower the
true maximum price the followers face, i.e., p−ηh22 , and thus the lower their profit margin,
ceteris paribus. Similarly, the higher the available stock biomass before they harvest, i.e.,
z2, the lower their fishing cost, and thus the higher their profit margin, ceteris paribus.

The sensitivity results suggest that as p1 increases, the steady state harvest of the
most efficient followers increases, although there is a very small decrease for low p1 values
(green and black curves in figure 2.14.c). In addition, the least efficient follower remains
inactive for all situations tested. Because p2 remains constant, the change in active
followers harvest is caused only by indirect effects. As p1 increases, h2 decreases, and
the followers’ profit margins increase. At the same time, z2 decreases implying that their
margins decrease. For high p1 values the net effect must be positive since the harvest
of the active ones increases. That is, the benefits from the reduction in leader’s harvest
outweigh the losses from the decrease in available biomass. Although this is true for all
followers including the least efficient one, the fact that it remains inactive simply implies
that its initial marginal profit remains negative despite the positive change.

If p1 is constant, the steady state harvest of the followers increases for low p2 values,
but decreases as p2 increases. The decrease coincides with the leader’s entry in the fishery.
When the leader is inactive, the positive direct effect from higher maximum price in S2
offsets the negative indirect effect from the reduction in available stock biomass, and thus
increases the active followers’ harvest. Once the leader becomes active, the positive effect
from higher prices no longer outweighs the aggregate negative effects from higher h2 and
less z2, which eventually makes the second follower inactive.

2.4.3.2 Impact of price sensitivity parameter

The price sensitivity parameter, η, describes the rate at which the market price drops as
quantity supplied increases. The higher η is, the faster the price will drop, and thus the
less profitable will be for all players to supply additional units in the market. In other
words, the market is cleared at smaller quantities because marginal profits diminish faster,
which leads to less intensive fishing. Although this is observed when the leader is alone,
in the presence of followers there seems to be an inverse effect on their fishing strategies,
which is counterintuitive.

Figure 2.16 shows the effect on steady state harvest and stock biomass for different η
values, ceteris paribus. The reference value is η = 0.0016 and the range varies from 0.001
to 0.004. In the absence of followers there is a gradually decline in leader’s harvest in both
seasons, which is expected since price drops faster as η increases making it unprofitable
to harvest more in both seasons. A direct consequence of this is the strengthen of stock
biomass overall. But what is interesting is the development of all fishing strategies when
followers are present. For low η values the leader is better off targeting the resource only
in S1, which is not true in the first-best scenario. This is because it is no longer the
sole participant in the market in S2, and therefore has to consider the trade-off between
participating and lowering the price even further, or take everything during S1 where in
addition its fishing cost is independent of the biomass size. The latter appears to be true
when η is small. As η increases, this trade-off shifts towards harvesting in both seasons.
For values left of the reference point, the second follower becomes inactive in steady state,
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Figure 2.16. Long-term harvest levels (a)-(b) and stock biomass (c)-(d) for different
values of the price sensitivity parameter, η, for both cases, ceteris paribus. The black
vertical lines reflect the base run value η = 0.0016. For all other parameter values see
table 2.1.

but as η keeps increasing it becomes active again. Surprisingly, for high η values all three
followers are active. This is because the market saturates at a much lower quantity that
allows the stock biomass to increase, which reduces fishing costs in S2 and allows the
least efficient follower to remain active in steady state.

2.5 Conclusion

This paper expands on the recent seasonal model of Ni and Sandal (2019) by introduc-
ing strategic interaction between multiple fishing agents. The behaviour of the seasonal
fishery modelled here resembles that of straddling species, which undergo seasonal mi-
grations between feeding and spawning grounds, and are targeted in a seasonal basis.
Some examples include Atlantic mackerel, Arctic cod, and Norwegian spring-spawning
herring. Two seasons are considered with distinct dynamics where biological processes
precede human activities. The fishing agents include an incumbent leader and multiple
myopic followers. The model is solved and simulated multiple times to illustrate the kind
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of insights that can be obtained when applied to the management of seasonal fisheries
where non-cooperation is the norm. The solution comprises of a set of optimal feedback
strategies for the leader, which take as input the state of the stock biomass, and pre-
scribe optimal courses of action, i.e., fishing policies. The induced myopic strategies of
all followers can also be inferred, among other things, from the leader’s feedback rules.

Compared to the benchmark case where followers are not present, the leader’s optimal
feedback strategies call for more intense fishing in both seasons. This is attributed to the
devaluation of the fishery because of the followers’ myopic behaviour, which leads to a
race to fish. In the absence of followers, the leader is the sole participant and therefore
achieves a balance between exploitation and sustainability. However, when they are
present, this balance is distorted because the leader has no longer incentives to preserve
a relatively higher stock biomass when knowing that it will be harvested down by the
followers. By fishing more aggressively the leader is able to delay entry or even exclude
some followers from the fishery. As a consequence, its net present value from the fishery
is reduced by almost 50% for most initial biomass states, suggesting that, indeed, rents
are dissipated due to multiple competing agents and myopic behaviour. In this context,
the presence of followers can be perceived as posing a negative externality for both the
leader, who no longer exploits the resource according to its first-best strategy, and the
stock biomass, which, compared to the benchmark case, is less in the long-term as shown
in the simulations.

The long-term status of the stock is described by an annual equilibrium cycle where
the stock is targeted by the leader in both seasons, and, if present, a subset of followers
in S2, which is comprised of the most efficient ones. To get an understanding of how long
long-term is, the time needed to approach the steady-state equilibrium cycle starting from
almost all initial states within the defined state space is computed. For very low biomass
levels the recovery of the fish population and its approach towards the equilibrium cycle
can take up to 35 and 43 years, with and without followers, respectively. However, for
slightly higher biomass levels the time needed drops significantly to 11 and 15 years,
respectively. For all initial states tested, it would on average require around 8 years when
followers are present and 12 years when not. So, unless the fishery is initially at risk,
these are reasonable time horizons for reaching a biomass level, which is both profitable
to exploit and at the same time self-sustainable.

From a strategic perspective, the current analysis can be enriched by considering fixed
or sunk costs associated with followers entering into the fishery. In the current structure,
followers become active from the first NOK they earn, however, fishing trips are often
associated with sunk costs, like crew wages, fuel costs, etc. Taking these into account
would require followers to enter only if they can at least break even these additional
costs. This makes the analysis more realistic, but it does not come free of challenges
since ranking followers according to their fishing efficiencies is no longer helpful. For
example, an efficient follower with high fixed costs may become inactive whereas an
inefficient follower with low fixed costs may become active. This induces multiple feasible
equilibria for the followers’ Nash game.
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Appendix

A.1 Dynamic programming algorithm

A numerical solution to the dynamic problem (2.5) requires the discretisation of the
two-dimensional state space and a recursive approach to solve the system of Bellman
equations. The numerical scheme applied here includes a combination of policy and value
iterations while taking advantage of interpolation. The algorithm steps are as follows:

1. Define all necessary parameters and functional forms, initialise the grid and create all
storing objects. Let X = [0, xmax] and Y = [0, ymax], with step s1, be the set admissible
values for the state variables x and y. Let V k

1 , V k
2 , hk1, hk2, uki , and uk be matrices

mapped on the state space X × Y , superscript k refers to the k-th iteration.

2. At policy iteration k, for all xi, yj ∈ X ×Y , let H1 = [0, xi], with grid step s2,
10 be the

set of admissible values for hk1. Evaluate {δ1ΠL
1 (H1) + δ1V

k
2 (F1(xi, yj,H1))} and store

the max in V k
1 (xi, yi) and the respective control in hk1(xi, yi).

3. For all xi, yi ∈ X ×Y , let H2 = [0, G(xi, yi)], with grid step s2, be the set of admissible
values for hk2, Z2 = [0, G(xi, yi) − H2] be the set of admissible values for z2, and
Ui = ũi(Z2,H2) be the set of admissible values for uki , with U =

∑n
i Ui. Evaluate

{δ2ΠL
2 (xi, yj,H2,U) + δ2V

k
2 (F2(xi, yj,H2,U))} and store the max in V k

2 (xi, yj), the
leader’s policy in hk2(xi, yj), and the realised follower i’s policy in uki (xi, yi).

4. Let W l
1 = V k

1 and W l
2 = V k

2 , and consider the operators T1 and T2 that evaluate the
RHS of the Bellman equations in (2.5) at the k-th feedback rules and map them back
to themselves, i.e., TiW

l
j = W l

j |hk1 ,hk2 ,uk for i, j = 1, 2 : i 6= j. Update the value functions

by applying the simultaneous mapping: W l+1
1 = T1W

l
2, W

l+1
2 = T2W

l
1. Do so until

||(W l+1
1 −W l

1|| ≤ ε1 and ||W l+1
2 −W l

2|| ≤ ε1, where ε1 is a predefined tolerance level.11

After convergence, store the new value matrices back to V k
1 and V k

2 . If ||hk1−hk−11 || ≤ ε2
and ||hk2 − hk−12 || ≤ ε2 stop. Otherwise, set k = k + 1 and return to step 2.

Upon convergence, the functions V k
1 , V k

2 , hk1, hk2, and uki are approximations to the re-
spective value function and feedback rules. The quality of the approximation depends on
the grid sizes, the tolerance level, and the interpolation scheme applied.
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Chapter 3

Keep it in house or sell it abroad?
Fishery rent maximisation in a
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Abstract

The motivation for this research is to understand and quantify on what basis fisheries
agreements are drawn up. For example, the European Union (EU) with the so-called sus-
tainable fisheries partnership agreements (SFPAs) gives financial and technical support
in exchange for fishing rights in non-EU countries, like Mauritania. For that purpose, a
game theoretic model is proposed where a country with some sort of property right over
a fishing resource is faced with the following dilemma: freely grant fishing quotas to a
domestic firm or sell them to a foreign agent in return for an endogenously determined
price. To keep our analysis general, the foreign agent can act either on behalf of a foreign
country, union of countries, or a firm. Either way, all purchasing quotas are freely trans-
ferred to the foreign firm. Both firms exploit the resource according to their quotas and
have the option to sell their harvest in two markets, one at home and one abroad. The
game where the total allowable catch (TAC) is exogenous consists of three sequential sub-
games: a quota pricing subgame, a quota purchasing subgame, and a sales subgame. In a
symmetric equilibrium, both firms are active when the foreign agent is welfare-maximiser,
but only the home firm is active when the foreign agent is profit-maximiser. Under cost
asymmetry, the home country has a pool of mutually exclusive price strategies depending
on the market parameters and the firms’ fishing costs. For the case of endogenous TAC,
an additional subgame is introduced on top of the initial game. This affects the shape of
the optimal price areas and increases the home country’s flexibility in terms of its pricing
options.

Keywords: International fisheries agreements; resource rent maximisation; sequential
games; Nash equilibrium; Stackelberg equilibrium; two-market Cournot duopoly.

Subject Classification: C72, Q22, Q28, Q38.
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3.1 Introduction

The 1982 United Nations Convention on the Law of the Sea (UNCLOS) has given coastal
states sovereign rights to explore, exploit, conserve and manage natural resources found
within 200 nautical-miles of their baselines, i.e., in their exclusive economic zones (EEZ)
(United Nations, 1982). This regime change has placed almost 90% of the marine re-
sources worldwide in the control of coastal states and thus has excluded fishing vessels
that had traditionally engaged into fishing activities within foreign EEZs (Gorez, 2006).
As a consequence, a number of nations have entered into bilateral agreements over access
to fishing stocks that occurred beyond their sovereignty.

Today the most known, perhaps, agreements of such type are the so-called sustainable
fisheries partnership agreements (SFPAs) between the European Union (EU) and non-
EU coastal states, like Mauritania, Maroco, and Guinea-Bissau, among others. SFPAs,
which were introduced during the latest common fisheries policy (CFP) reform in 2013,
allow EU vessels to fish in the signatory countries’ EEZs, and in exchange, the EU
provides both financial and sectoral support, including employment opportunities and
food security, towards the partner countries. The estimated annual financial contribution
in 2014 was around 180 million Euro, of which 30 million Euro went to the development
and governance of the partner states fisheries sectors (European Commission, 2017).

The SFPAs were not the EU’s first attempt to access fishery resources in other coun-
tries. Since the adoption of UNCLOS, the EU has concluded more than 30 bilateral
agreements mainly with developing nations in Africa, the Caribbean and the Pacific (ACP
countries). Historically, the evolution of international fisheries agreements conducted by
the EU has been categorised from “pay, fish and go” agreements to fisheries partnership
agreements (FPAs) introduced in 2003, and from FPAs to SFPAs introduced in 2014.
For a comprehensive examination of the different types of agreements and relevant legal
information see Heredia and Oanta (2015).

Prior to FPAs, the EU fishing agreements with developing countries have extensively
been criticized on the grounds that they were unfair towards the partner states (Nagel and
Gray, 2012). Kaczynski and Fluharty (2002) argued that these early agreements secured
employment for the EU fleet and processing industry and a steady stream of supply
to the EU market while overfishing the partner countries’ fisheries resources. Criticism
has continued even after the introduction of FPAs. Cullberg and Lövin (2009) stated
that although these new partnerships sounded good in theory, sustainable exploitation
of the partner countries’ fisheries and enhancement of the their fisheries sectors were
questionable in practice. Despite the EU’s efforts to promote sustainable and responsible
fisheries partnerships internationally with SFPAs, Okafor-Yarwood and Belhabib (2019)
advocate that subsidies towards third countries under the framework of SFPAs contradict
the provisions of the CFP, as the exploitation of fully exploited or overexploited species
in the partner regions continues.

The purpose of this study is not to criticize the nature of international fisheries agree-
ments or debate the EU code of conduct with regard to them, but rather to introduce
a framework from which to better understand and quantify the basis upon which these
agreements are being drawn up. In this spirit, we propose a model of strategic interaction
that captures, among other things, how much it is worth for a coastal state to give access
to its fishery resources to foreign fleets. To the best of our knowledge, this paper is the
first to provide a tool for evaluating the outcome of international fisheries agreements.

Our game theoretic model consists of four players. A coastal state with some sort of
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property right over a fishing resource, hereinafter the home country or resource owner. A
foreign agent who wants to gain access to the home country’s resource. And two firms:
a home one and a foreign one, which fish the resource on behalf of the home country and
the foreign agent, respectively. In the context of SFPAs, the foreign agent is the EU, the
home country is the signatory partner, and the firms represent the fleets of the respective
parties harvesting the resource.

The home country is faced with the following dilemma: freely grant fishing quotas
to the domestic firm or sell them to the foreign agent in return for an endogenously
determined price. In the context of SFPAs, the quota price is the equivalent of the
financial cost the EU has to bear in order for its fleet to access and fish in a coastal
state’s EEZ. To keep our analysis general and also applicable to other situations, e.g.,
when firms enter into bilateral agreements with governments, we assume that the foreign
agent can act either on behalf of a foreign country or a firm. The difference will lie in the
objective function of the foreign agent as we shall see in the next section. In the case of
the EU the foreign agent is a country, which is a common assumption in the literature
and stems from the fact that all of its members abide by the CFP.

Irrespective of the foreign agent’s incentives, all purchasing quotas are freely trans-
ferred to the foreign firm. The remaining total allowable catch (TAC) is then freely given
to the domestic firm. In our model both firms are assumed to harvest according to their
quotas despite the fact that this may imply suboptimal or even negative profits, i.e., they
may earn more by not fishing their entire quota. However, for the firms to fish accordingly
will always be optimal for the home country and the foreign agent. In case of negative
profits, the firms can be compensated internally through redistribution of the benefits.

Although firms are forced to harvest as instructed, they are free to choose in which
market to sell. In this setting we consider two markets, one at home and one abroad,
where consumers willingness to pay differ between them. In addition, home and foreign
inverse demand functions are endogenously determined and depend on aggregate home
and foreign supply, which is defined as the sum of fish sold in each market by both firms.
If both firms are active, then they compete à la Cournot. If only one firm is active, then
it enjoys a monopoly position. Being active in this context depends on whether a firm
receives a positive amount of quotas or not. Firms are asymmetric with respect to fishing
costs and fixed costs are assumed to be zero. Moreover, they do not incur any transport
or transaction cost in supplying either market.

To focus on the strategic interaction between the players, we start by disregarding
the problem of optimal fishing, which has been analysed in detail within the literature
(Clark, 1973; Clark and Munro, 1975; Hannesson, 1983; Sandal and Steinshamn, 1997),
and assume that for any fixed period of time, e.g., a year, the TAC is exogenous. This
means that the problems of how much to fish and who should fish can now be dealt and
analysed separately. Once all possible strategic outcomes are identified, it is possible
to determine the optimal fishing policy by optimising over them. This is illustrated at
the end of the paper by allowing the TAC to be endogenous for the optimal sustainable
exploitation level of a single-species fishery.

The remaining of the paper is organised as follows. The basic model and the objectives
of all players are introduced in the next section. In sections 3, 4 and 5, we derive analytical
solutions for each subgame when the TAC is exogenous and provide some numerical
insights. The case of endogenous TAC is described in section 6. Finally, section 7
summarises our findings and concludes the paper.
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3.2 The basic model

3.2.1 Preliminaries

Let U denote the TAC and Ui firm i’s, i = 1, 2, individual quotas such that U = U1 +U2.
Moreover, let Qi be the quantity firm i sells on its own market and Ui−Qi the quantity it
sells on the other market. Aggregate supply in market i is then given by Si = Qi+Uj−Qj

for all i, j = 1, 2 : i 6= j. Hereinafter and unless otherwise stated, i = 1 will be associated
with the home entities and i = 2 with the foreign entities. Inverse demand functions,
i.e., market prices, are given by Pi(Si). They depend on total supply in each market and
are downward slopping. To keep the analysis tractable and derive analytical solutions we
assume the following linear specification:

Pi(Si) = ai

(
1− Si

bi

)
, ∀i = 1, 2,

where ai > 0 is the maximum price or willingness to pay parameter in market i, and
bi > 0 is the maximum quantity market i can absorb before the price becomes negative
also referred to as the market saturation quantity. In addition, both markets together
are able to at least absorb the entire quota, i.e., b1 + b2 ≥ U .

Firm i’s total variable cost is denoted by Ci(Ui), is increasing in production, and
defined as:

Ci(Ui) = ciUi, ∀i = 1, 2,

where ci > 0 is the unit cost of fishing for firm i. It has been a common practice in the lit-
erature to assume that the unit cost of production associated with fishing activity is stock
dependent and decreasing, i.e., ci(x) with c′i(x) < 0 where x denotes the stock or state
variable (Clark and Munro, 1975). This implies that the fishery is economically protected
because production costs escalate at low biomass levels, which makes it unprofitable to
operate (Maroto et al., 2012). In our model parameter ci is seemingly constant and this
emanates from the fact that the TAC is exogenous. If the TAC is to be endogenous, then
it will typically be given by a feedback rule of the form U(x) meaning that the optimal
policy will depend on the state of the stock biomass. In this paper, what we really mean
when we assume that the TAC is exogenous is that the optimal TAC is exogenous and
therefore both U and x are fixed. Thus, when the TAC is exogenous, the cost parameter
is constant, which is not to be confused with the case of schooling fisheries where fishing
costs are constant because they are stock independent.

3.2.2 Players’ objectives

Firms Total profit for firm i is defined as the sum of sales revenue in the two markets
minus the cost of production as follows:

Πi = Pi(Si)Qi + Pj(Sj)(Ui −Qi)− Ci(Ui), ∀i, j = 1, 2 : i 6= j.

However, the cost of production is sunk and does not affect the firms’ selling decisions.
This is because when firms choose in which markets to sell, individual quotas are already
decided. Thus, firms determine optimal sales by maximising the total revenue, Ri. Firm’s
i maximisation problem is defined as follows:

max
Qi∈[0,Ui]

Ri = Pi(Si)Qi + Pj(Sj)(Ui −Qi), ∀i, j = 1, 2 : i 6= j. (3.1)

A corner solution, i.e., Qi = 0 or Qi = Ui, implies that firm i sells everything in the
foreign or domestic market, whereas an inner one means that firm i serves both markets.
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Home country The home country decides on the price of quotas, p, by maximising
total welfare defined as the sum of consumer and producer surplus and the revenue from
selling fishing quotas. The consumer surplus for country i is defined as the difference
between the gross benefit of consumers, i.e., the area under the inverse demand curve,
and the value of the total quantity sold in the market as follows:

CSi =

∫ Si

0
Pi(v)dv − Pi(Si)Si, ∀i = 1, 2.

Since no fixed costs exist, producer surplus for country i is equivalent to the firm’s profit,
that is PSi = Πi for all i = 1, 2. In the case where the TAC is exogenous, the home
country’s maximisation problem can be expressed as follows:

max
p∈R

V1 = CS1 + PS1 + pU2. (3.2)

Details regarding the maximisation problem of the home country for the case of endoge-
nous TAC are provided in section 3.6.

Foreign agent As mentioned in the introduction, the foreign agent can act either on
behalf of a foreign country or a firm. The difference lies in the objective functions and
particular in the consumer surplus, which is not considered if the foreign agent represents
a firm. Let ξ be a binary variable that takes the value of zero if the foreign agent represents
a firm and one if not. The foreign agent decides how many quotas to buy by solving the
following optimisation problem:

max
U2∈[0,U ]

V2 = ξCS2 + PS2 − pU2. (3.3)

3.2.3 Sequence of events

The game with exogenous TAC consists of three subgames the timing and information
structure of each are as follows. First, given the TAC, the home country decides on the
price of quotas by solving (3.2) while taking into consideration the responses of all other
players in the game, namely, how the foreign agent is going to react to the quota price,
and how the firms are going to react to their individual quotas. This is a Stackelberg
game in the price of quota against the foreign agent and in the quota shares against the
firms. Next, given the quota price and knowing that any unpurchased quotas will be
granted to the home firm, the foreign agent chooses to buy quotas by solving (3.3) with
the full knowledge of how this will influence the firms’ selling choices in the subsequent
stage. This is a Stackelberg game in the quota shares against the firms. Finally, given
the individual quotas, the firms harvest them and simultaneously choose how much to
supply in each market by solving (3.1). This is a Nash game in selling quantities between
the firms. In the case of endogenous TAC, the game is supplemented by an additional
subgame at the very top where the home country decides on the optimal TAC while
knowing how this will affect the quota price, the foreign agent’s purchasing quantities,
and the firms’ selling decisions. Figure 3.1 provides a schematic representation of the
different decisions when the TAC is both exogenous and endogenous.

3.2.4 Rescaling

To make the analysis more convenient, we rescale the objective functions by dividing
them with the TAC and one of the maximum prices. Changing the scale changes the
interpretation of the parameters and the decision variables as follows.
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Home country observes the TAC and decides on a quota price

Foreign agent observes the price and purchases quotas

Firms harvest their quotas and choose in which markets to sell

Home country decides on the TAC

Figure 3.1. The sequential process of decisions. The dashed node occurs only when the
TAC is endogenous.

Dividing with U normalises total production to one and expresses individual produc-
tion strategies as percentages or shares of total production, i.e., ui = Ui/U . This also
affects the selling quantities. The scaled sales variables are qi = Qi/U and express firm i’s
domestic sales as a ratio of the total production. To reflect on these changes, the market
saturation parameters are adjusted as follows: βi = bi/U with β1 + β2 ≥ 1.

Dividing with ai reduces the number of parameters by one, namely, the maximum
price that we divide. Here we choose to divide with a2 because we are going to restrict
our attention to the cases where a2 > a1 and thus it is convenient to bound their ratio
in the zero-one interval. The following scaled parameters and variables are introduced.
The relative maximum price: α = a1/a2, with α ∈ (0, 1) when the maximum price in the
foreign market exceeds the one in the home market and α = 1 when both maximum prices
are equal. The scaled cost parameters ψi = ci/a2, and the scaled quota price variable
ρ = p/a2.

All results in the paper can be traced back to the initial parameters and units using
the above conversions. A detailed list of the most frequently used symbols is provided in
table 3.1.

3.3 Firms’ sales subgame

Turning first to the firms’ sales subgame, we wish to determine the equilibrium behaviour
of the firms while knowing the outcome in the previous subgame, i.e., the TAC shares
of the firms. Let R̄i = Ri/(a2U) be the scaled objective function,1 and u2 ∈ [0, 1] with
u1 = 1 − u2 the individual quota shares. The firms choose which markets to serve by
simultaneously solving the following maximisation problems:2

max
q1∈[0,u1]

R̄1 = α

(
1− q1 + u2 − q2

β1

)
q1 +

(
1− q2 + u1 − q1

β2

)
(u1 − q1), (3.4)

max
q2∈[0,u2]

R̄2 =

(
1− q2 + u1 − q1

β2

)
q2 + α

(
1− q1 + u2 − q2

β1

)
(u2 − q2). (3.5)

In order to be more general, we disregard the resource constraint, i.e., u1 + u2 = 1, and
solve the above problems for all possible combinations of u1 × u2 ∈ [0, 1]2. The resource

1Hereinafter all functions with the bar icon refer to their corresponding scaled forms.
2The cases where the foreign agent buys everything or nothing are degenerate cases of the problem

analysed in this section. In that case, no strategic interaction between firms exists and the sales can be
determined by straightforward optimisation of the active firm’s objective.
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Table 3.1. List of symbols used in the study.

Symbol Description Relation/Value

Subscripts
i, j Market and firm indices 1, 2
k, l The markets firm i serves, both or primary (paired only) b,p
Superscripts
k Firms’ distinct equilibrium action index 1,2,3
l Foreign agent’s distinct equilibrium index 1, . . . , 5
m Home country’s distinct equilibrium index 1, . . . , 12
Functions
Ri, R̄i Objective of firm i, level and scaled R̄i = Ri/a2
V2, V̄2 Objective of the foreign agent, level and scaled V̄2 = V2/a2
V1, V̄1 Objective of the home country, level and scaled V̄1 = V1/a2
Variables
U Total allowable catch (TAC) U = U1 + U2

Ui, ui Individual quota and share of firm i ui = Ui/U
Qi, qi Quantity firm i sells in its own market, level and scaled qi = Qi/U
p, ρ Price of quotas, level and scaled ρ = p/a2
Parameters
ai, α Maximum price in market i and relative price α = a1/a2
bi, βi Maximum quantity market i absorb, level and scaled βi = bi/U
ci, ψi Unit cost of firm i, level and scaled ψi = ci/a2
ξ Type of the foreign agent 0, 1
φi Market efficiency parameter of market i cf. Eq. (3.7)
Equilibria

iqkl, qki (u2), q∗(u2) Firms’ equilibrium sales vectora

ul2(ρ), u∗2(ρ) Foreign agent’s optimal quota strategyb

ρm, ρ∗ Home country’s optimal pricing policy when U is exogenousb

Thresholdsc

pi, ρi Price, level and scaled, i = 1, . . . , 9
Λi, λi Cost difference when ξ = 1, level and scaled, i = 1, . . . , 12
Mi, µi Cost difference when ξ = 0, level and scaled, i = 1, . . . , 7

a Subscript i refers to the primary market. The left notation describes a distinct equilibrium pair. The mid notation
groups the equilibria according to market parameters. The right notation groups all equilibria together.
b The left notation groups the equilibria according to market parameters. The right notation groups all equilibria
together.
c The thresholds are scaled lump sum parameters associated with the equilibrium solutions of the foreign agent’s quota
and the home country’s price subgames. In particular, they represent the conditions that make players indifferent
between a pair of strategies.

constraint is incorporated at the end of our analysis in order to categorise the equilibria.
Both objectives are continuous, concave and bounded in the [0, ui] interval. Their solution
is a continuous best response function given by

Bi(qj) = min(max(0, zi(qj)), ui) =


ui, qj ≥ q̄j .
zi(qj), qj ≤ qj ≤ q̄j ,
0, qj ≤ qj ,

∀i, j = 1, 2 : i 6= j, (3.6)

where zi(qj) is firm i’s inner solution as a function of firm j’s domestic sales. The bounds
qj and q̄j are the thresholds that bound the inner solution within the feasible region, and
are given by zi(qj) = 0 and zi(qj) = ui respectively. To keep the main text clear and
precise, all explicit formulas are presented in the respective appendices, see appendix A
for this section’s explicit formulas.

A pair of strategies q∗ ≡ (q∗1, q
∗
2) ∈ [0, u1] × [0, u2] constitutes a Nash equilibrium of
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φi 3φi
2

φi

3φi
2

u2

u1

iqbbiqbp

iqpbiqpp

Figure 3.2. Firms’ sales subgame distinct equilibria. Parameter φi describes the speed
of market clearing. The dashed lines represent possible positions of the quota constraint.
At φi = 0, both markets are equally preferred and the sole equilibrium is iqbb.

the firms optimisation problems (3.4) and (3.5) if and only if

R̄i(q
∗
i , q
∗
j ) ≥ R̄i(qi, q∗j ), ∀qi ∈ [0, ui], ∀i, j = 1, 2 : i 6= j.

Let iqkl = (q∗1, q
∗
2) be the distinct equilibrium strategy vector. The left subscript, i = 1, 2,

refers to the primary or preferred market, i.e., the one with the greater maximum price.
The right subscripts indicate which market(s) firms one and two respectively serve, k, l =
{b, p}, where ‘b’ stands for both and ‘p’ for primary. For example, 1qbp reads as follows:
at equilibrium the home firm serves both markets whereas the foreign firm serves only
market one, which is the primary one.

For any given initial combination of (u1, u2, α, β1, β2), there exists a unique Nash equi-
librium. All Nash equilibria are specified in Tables 3.2 and 3.3. Figure 3.2 graphically
illustrates the regions for the different equilibria on the u1 × u2 parameter space. The
dashed lines depict possible positions of the quota constraint, u1+u2 = 1, which, depend-
ing on the market conditions, is positioned distinctively within the regions giving rise to
three unique outcomes.3 The equilibrium regions depend on the market parameters, and
the firms individual quota shares. The market parameters are lumped and described
through the single parameter φi given by

φi =
βi
3

(
1− aj

ai

)
, ∀i, j = 1, 2 : i 6= j, (3.7)

which describes the circumstances under which the two markets are served. Parameter
φi is strictly positive when market i = 1, 2 is the preferred one, i.e., ai = max(a1, a2),
zero when both markets are equally preferred, and negative otherwise.

The quantity φi we shall refer to as the speed of market clearing or the market
efficiency parameter. The idea behind is that for any sales allocation of the other firm, a
firm distributes its product to the markets based on the decision rule that its marginal
revenue across them is equal. Since both firms act simultaneously, both markets are
cleared when all marginal revenues are equal. The magnitude of φi determines whether
the primary market can clear the entire production by itself or not. The higher φi is,
the larger the quantity sold in the primary market by both firms. The market efficiency

3Market parameters α, β1 and β2 affect the size but not the shape of the equilibrium regions.
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parameter is increasing in βi and ai, and decreasing in aj. The following proposition
provides a complete characterisation of the firms’ sales subgame equilibria.

Proposition 1. Let q∗(u2) denote the equilibrium solution for the firms’ sales subgame,
which is a function of the foreign firm’s share. The solution consists of three mutually
exclusive equilibria that depend on the preferred market’s efficiency parameter:

q∗(u2) = (q∗1, q
∗
2) =


qi,3(u2), φi ≥ 2/3,

qi,2(u2), 1/2 ≤ φi ≤ 2/3,

qi,1(u2), 0 < φi ≤ 1/2,

∀i = 1, 2 : ai = max(a1, a2), ∀u2 ∈ [0, 1],

where qi,k represents the exclusive equilibrium k = 1, 2, 3 and is specified as follows:

q1
i (u2) =


iqpb, 1− φi ≤ u2 ≤ 1,

iqbb, φi ≤ u2 ≤ 1− φi,
iqbp, 0 ≤ u2 ≤ φi,

q2
i (u2) =


iqpb, 3φi − 1 ≤ u2 ≤ 1,

iqpp, 2− 3φi ≤ u2 ≤ 3φi − 1,

iqbp, 0 ≤ u2 ≤ 2− 3φi,

q3
i (u2) = iqpp, ∀i = 1, 2 : ai = max(a1, a2), ∀u2 ∈ [0, 1].

At φi = 0, both markets are equally preferred and the unique equilibrium follows from

iqbb and is given by (q∗1, q
∗
2) = ((1− u2)β1/(β1 + β2), u2β2/(β1 + β2)) for all u2 ∈ [0, 1].

See appendix A.1 for the proof.

As long as φi is greater or equal to two-thirds, the primary market alone clears the
aggregate supply and the inferior market is not served. This implies that the market-
clearing price in the preferred market is greater or equal to the maximum price in the
other market, i.e., Pi(U) ≥ aj. The preferred market also clears the entire production
when φi is greater or equal to one-half and the foreign firm’s share is between 2 − 3φi
and 3φi− 1. In all other cases, both markets are required in order for the total output to
be cleared. In other words, the primary market is served at all equilibria by both firms
when active. The other market is served: a) by the firm with the higher quota share, as
long as it is sufficiently high, and b) by both firms when the market efficiency parameter
is between zero and one-half, and the foreign firm’s share is between φi and 1− φi.

This concludes the firms’ sales subgame analysis. In what follows, we restrict attention
to the cases where the foreign market is preferred, i.e., a2 > a1, which implies that
α ∈ (0, 1). The reason is twofold. First and foremost, it is the most interesting case to
analyse from a strategic point of view, i.e., a resource abundant nation responsible for
the management of its resource prefers to sell the product in the foreign market. This
diminishes somehow the advantage the home country has from being the leader in the
subsequent Stackelberg game. Second, it shortens the length of the paper.

3.4 Foreign agent’s quota subgame

After observing the quota selling price, the foreign agent buys quotas with the full knowl-
edge of how it influences the outcome in the subsequent subgame. In addition, the foreign
agent is aware that any unpurchased quotas will be granted to and harvested by the home
firm, i.e, u1 = 1 − u2. Let V̄2 = V2/(a2U) be the scaled objective function, the foreign
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agent chooses how many quotas to buy by solving the following maximisation problem:

max
u2∈[0,1]

V̄2(u2,q
∗(u2)) =


V̄2(u2,q

3
2(u2)), φ2 ≥ 2/3,

V̄2(u2,q
2
2(u2)), 1/2 ≤ φ2 ≤ 2/3,

V̄2(u2,q
1
2(u2)), 0 ≤ φ2 ≤ 1/2,

where V̄2(u2,q
k
2(u2)) = ξ

(q∗2 + 1− u2 − q∗1)2

2β2
+

(
1− q∗2 + 1− u2 − q∗1

β2

)
q∗2

+ α

(
1− q∗1 + u2 − q∗2

β1

)
(u2 − q∗2)− (ψ2 + ρ)u2, ∀k = 1, 2, 3.

(3.8)

The subscript 2 in qk2 refers to the equilibrium strategy when the foreign market is
primary and will be dropped for the remainder of the paper since it remains fixed, i.e.,
qk ≡ qk2. The superscript k refers to the firms’ sales subgame distinct equilibrium solution.
The ξ parameter reflects the type of the foreign agent, i.e., profit- or welfare-maximiser,
depending on whether its value is zero or one, respectively. The difference lies in the
consumer surplus, which is strictly positive when the foreign market is the preferred one,
and non-negative otherwise.

The strategies (u∗2,q
∗(u∗2)) ∈ [0, 1]×[0, u1]×[0, u2] constitute a Stackelberg equilibrium

of the foreign agent’s quota subgame if and only if

V̄2
(
u∗2,q

∗(u∗2)
)
≥ V̄2

(
u2,q

∗(u2)
)
, ∀u2 ∈ [0, 1],

R̄i
(
u∗2, q

∗
i (u
∗
2), q

∗
j (u
∗
2)
)
≥ R̄i

(
u∗2, qi(u

∗
2), q

∗
j (u
∗
2)
)
, ∀qi ∈ [0, ui], ∀i, j = 1, 2 : i 6= j.

For a given set of parameter values, solving problem (3.8) through enumeration is straight-
forward. However, our objective here is to provide a complete categorisation of the dif-
ferent equilibria. Therefore, we zoom into each branch of the foreign agent’s piecewise
objective and derive the respective Stackelberg equilibria together with the necessary con-
ditions for their existence. In addition, we show that all equilibria are mutually exclusive,
i.e., unique given that the conditions of existence are satisfied. Based on the magnitude
of the market efficiency parameter, we distinguish between three cases: low, medium and
high efficiency.

Because the solution procedure between cases is repetitive, we describe it in detail
only for the first case, i.e., when market efficiency is low, φ2 ≤ 1/2. For the remaining
cases, we summarise the main results and refer the reader to the appendices for more
details. The following algorithm provides a general description of the steps involved. For
every branch, based on the market efficiency parameter, do the following:

1. Determine the branches, if any, with respect to the foreign agent’s quota purchasing
variable, u2. Check for the curvature of the individual branches in order to determine
the potential equilibrium candidates.

2. Compare the payoff generated by the equilibrium candidates both within and across
branches in order to identify all possible outcomes.

At the end of this process all distinct equilibria are categorised based on the foreign
agent’s type and the foreign market efficiency parameter. A distinct equilibrium strategy
prescribes a quota purchasing plan for the foreign agent that depends on the quota price.
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V̄2(u2)
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(a) u∗2 = 1− φ2
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V̄2(u2)

0 φ2 = 1 − φ2 = 1/2 1

(f) φ2 = 1/2

Figure 3.3. Possible plottings of the foreign agent’s objective. Plots (a)-(e) give rise to
each one of the five equilibrium candidates when foreign market efficiency is low. The last
plot illustrates the boundary case, i.e., φ2 = 1/2. The plots are merely for illustration
and reflect no real parameter values.

3.4.1 Low market efficiency

In case the foreign market efficiency parameter is low, i.e., φ2 ∈ (0, 1/2],4 the equilibrium
outcome in the firms’ sales subgame is given by q1(u2), see proposition 1. This solution
implies that the foreign market cannot clear the entire quantity by itself, and thus both
markets are served. In particular, for medium quota shares, i.e., between φ2 and 1− φ2,
both firms serve both markets. Otherwise, only the firm with the majority of quotas serve
both markets. Substituting for q1(u2) in V̄2 yields the following piecewise continuous
function:

V̄2(u2,q
1(u2)) =


V̄2a = V̄2(u2, 2qpb), 1− φ2 ≤ u2 ≤ 1,

V̄2b = V̄2(u2, 2qbb), φ2 ≤ u2 ≤ 1− φ2,
V̄2c = V̄2(u2, 2qbp), 0 ≤ u2 ≤ φ2.

(3.9)

For the remainder of the paper, we shall use the compact notation when referring to the
different sub-functions, for example V̄2a or V̄2a(u2). The top branch is strictly convex,
the middle is linear, and the lower is strictly concave.5 Two remarks regarding the linear
part. First, if the slope is zero, then V̄2b becomes constant making the foreign agent
indifferent between all u2 ∈ [φ2, 1 − φ2]. However, as we shall see in the next section,
the home country is always better off in one of the corners. Second, if φ2 is one-half, the
linear function is absorbed by the other two. This creates a discontinuity when the slope
is non-zero (see subfigure 3.3 (f)).

Based on the curvature of the three branches and as long as V̄2b is not constant, there
exist five equilibrium candidates, namely, one, 1− φ2, φ2, u

in
2 (ρ), and zero. Strategy uin2

is the inner candidate of the concave function V̄2c, i.e., uin2 (ρ) = argmax V̄2c. Moreover,
it is linear on ρ and downward slopping, i.e., duin2 /dρ = k2 < 0. This implies that the
higher the quota price the lower the foreign firm’s quota share, which makes perfect sense

4The case of φ2 = 0 is of no interest because there is no market differentiation with respect to the
maximum price.

5The second order conditions are: V̄ ′′2a(u2) = (2αβ1β2 + (ξ+ 2)β2
1)/(4β2(αβ2 +β1)2) > 0, V̄ ′′2b(u2) = 0,

V̄ ′′2c(u2) = −(4αβ1β2 + (4− ξ)β2
1)(4β2(αβ2 + β1)2) < 0.
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from an economic point of view. For the explicit definition of k2 and all other explicit
formulas used in this subsection see appendix B.1.

Figure 3.3 shows some possible plottings of the objective where each one of the five
candidates is drawn as optimal. Notice that in subfigures (a), (d) and (e) strategy u2 = uin2
is outside the feasible region. Because of the piecewise nature of the objective, we need
to compare the value generated by all equilibrium candidates in order to determine the
optimal foreign policy. We start by comparing the ones that occur in the same branch,
e.g., branch V̄2c with candidates zero, uin2 and φ2. If necessary, we compare the candidates
across branches. Since the quota price ρ enters the foreign agent’s problem exogenously,
we categorise the different equilibria with respect it. In what follows we derive price
intervals that make the equilibria candidates mutually exclusive. We begin with the
concave function, V̄2c. Lemma 1 provides the optimal policy in the u2 ∈ [0, φ2] subregion.

Lemma 1. Let ρ1 and ρ2 given by uin2 (ρ) = 0 and uin2 (ρ) = φ2, respectively, be quota
price thresholds.Then, the optimal policy u∗2 in the [0, φ2] region is given by

u∗2(ρ) = min(max(0, uin2 ), φ2) =


0, ρ ≥ ρ1,
uin2 (ρ), ρ2 ≤ ρ ≤ ρ1,
φ2, ρ ≤ ρ2.

In addition, ρ1 > ρ2.
See appendix B.1 for the proof.

Lemma 1 tells us that for any price below ρ1, which is the price that induces the
zero-quota quantity, the foreign agent purchases a positive amount of quotas. If the price
exceeds ρ2, its share of quotas is determined by uin2 (ρ). Similarly, if the price falls short
of ρ2, the foreign agent buys according to φ2. Because 0 ≤ uin2 (ρ) ≤ φ2, it is implied
that lower prices increase the number of quotas purchased, which makes sense from an
economic point of view. Next, we investigate the linear branch. Lemma 2 provides the
optimal policy in the u2 ∈ [φ2, 1− φ2] subregion.

Lemma 2. Let ρ3 given by V̄ ′2b(u2) = 0 be a quota price threshold. Then, the optimal
policy u∗2 in the [φ2, 1− φ2] region is given by

u∗2(ρ) =


φ2, ρ > ρ3,

u2 ∈ [φ2, 1− φ2], ρ = ρ3,

1− φ2, ρ < ρ3.

In addition, ρ3 < ρ2 for all α ∈ (0, 1).
See appendix B.1 for the proof.

Lemma 2 tells us that the foreign agent prefers to purchase 1 − φ2 quotas when
the slope is positive, φ2 quotas when the slope is negative, and is indifferent between
any u2 ∈ [φ2, 1 − φ2] when the slope is zero. So far we have categorised four out of five
equilibrium candidates, and the fact that the thresholds are descending, i.e., ρ1 > ρ2 > ρ3,
implies that for all ρ > ρ3 the four candidates are mutually exclusive and the optimal
policy follows from lemmas 1 and 2. Next, we compare the candidates of the convex
function. Lemma 3 provides the optimal policy in the u2 ∈ [1− φ2, 1] subregion.
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Lemma 3. Let ρ4 given by V̄2a(1 − φ2) = V̄2a(1) be a quota price threshold. Then, the
optimal policy u∗2 in the [1− φ2, 1] is given by

u∗2(ρ) =

{
1− φ2, ρ ≥ ρ4,
1, ρ ≤ ρ4.

The relative position of ρ4 depends on the market parameters and ξ as follows:
a. Let ξ = 1 and φ2 ∈ (0,max(0, 2/5− θ)], where θ = β1(1− α)/(10α). Then, ρ4 ≤ ρ3.
b. Let ξ = 1 and φ2 ∈ (max(0, 2/5− θ), 1/2]. Then, ρ4 ∈ (ρ3, ρ2).
c. Let ξ = 0. Then ρ4 ∈ (ρ2, ρ1) for all α ∈ (0, 1).
See appendix B.1 for the proof.

In contrast to the previous price thresholds, the relative position of ρ4 depends on
the market efficiency parameter and the type of the foreign agent. This implies that for
every distinct position of ρ4 there exist a unique equilibrium solution, which is a function
of ρ. To determine these equilibria, we start by defining the notions of strict and weak
dominance with regard to suboptimal strategies. That is, given a pair of strategies, the
value generated by a strictly dominated strategy is always less than that of its counterpart,
whereas the value generated by a weakly dominated strategy is less or equal to that of
its counterpart.

Suppose that ρ4 ≤ ρ3. This is true when ξ = 1 and φ2 ∈ (0,max(0, 2/5 − θ)].
It then follows from lemmas 1-3 that ρ1 > ρ2 > ρ3 ≥ ρ4. This implies that that all
strategies occur in distinct ρ regions. Therefore, a complete equilibrium exists. Note that
at φ2 = 2/5− θ, price thresholds ρ4 and ρ3 are equal and strategy u2 = 1− φ2 becomes
weakly dominated by strategies u2 = 1 and u2 = φ2, this is a degeneration.

Suppose that ρ4 > ρ3. This is true when ξ = 0, or ξ = 1 and φ2 ∈ (max(0, 2/5 −
θ), 1/2]. Then, the foreign agent prefers to play u2 = φ2 instead of u2 = 1 − φ2 for
any ρ ≥ ρ4 > ρ3, see lemma 2. In addition, from lemma 3, u2 = 1 strictly dominates
u2 = 1 − φ2 for all ρ < ρ4. Thus, u2 = 1 − φ2 is a strictly dominated strategy either
by u2 = φ2 or u2 = 1 when ρ4 > ρ3, and therefore we need to compare them in order
to determine the complete equilibrium strategy. The following lemma gives the optimal
policy between u2 = φ2 and u2 = 1 when ρ4 exceeds ρ3.

Lemma 4. Suppose ρ4 > ρ3 and let ρ5 given by V̄2c(φ2) = V̄2a(1) be a quota price
threshold. Then, the optimal policy u∗2 is given by

u∗2(ρ) =

{
φ2, ρ ≥ ρ5,
1, ρ ≤ ρ5.

The relative position of ρ5 depends on the market parameters and on ξ as follows:
a. Let ξ = 1 and φ2 ∈ (max(0, 2/5− θ), 1/2]. Then ρ5 ∈ (ρ3, ρ4].
b. Let ξ = 0 and φ2 ∈ (0, 2/7]. Then ρ5 ∈ (ρ3, ρ2].
c. Let ξ = 0 and φ2 ∈ (2/7, 1/2]. Then ρ5 ∈ (ρ2, ρ1).
See appendix B.1 for the proof.

Suppose that ρ5 ≤ ρ2. It then follows from lemmas 1-4 that ρ1 > ρ2 > ρ5 when ξ = 1
and φ2 ∈ (max(0, 2/5 − θ), 1/2], and ρ1 > ρ2 ≥ ρ5 when ξ = 0 and φ2 ∈ (0, 2/7]. This
implies that the feasible equilibrium strategies, namely, zero, one, uin2 (ρ), and φ2, occur
in distinct ρ regions. This is the second complete equilibrium and occurs for different
market conditions irrespective of the foreign agent’s type. Note that when ξ = 0 and
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φ2 = 2/7, price thresholds ρ5 and ρ2 are equal and strategy u2 = φ2 is weakly dominated
by u2 = 1 and u2 = uin2 , this is a degeneration.

Suppose that ρ5 > ρ2. This is true when the foreign agent is profit-maximiser and the
market efficiency parameter is in the (2/7, 1/2] region. Then, the foreign agents prefers
to play u2 = uin2 instead of u2 = φ2 for any ρ ≥ ρ5 > ρ2, see lemma 1. In addition, from
lemma 4, u2 = 1 is the preferred strategy for all ρ < ρ5. Thus, u2 = φ2 is a strictly
dominated strategy either by u2 = uin2 or u2 = 1 when ρ5 > ρ2, and therefore we need
to compare them in order to determine the complete equilibrium strategy. Lemma 5
provides the optimal policy between u2 = uin2 and u2 = 1 when ρ5 exceeds ρ2.

Lemma 5. Suppose ρ5 > ρ2 and let and ρ6 given by V̄2c(u
in
2 ) = V̄2a(1) be a quota price

threshold. Then, the optimal policy u∗2 is given by

u∗2(ρ) =

{
uin2 , ρ ≥ ρ6,
1, ρ ≤ ρ6.

In addition, ρ6 ∈ (ρ2, ρ5) when ξ = 0 and φ2 ∈ (2/7, 1/2].
See appendix B.1 for the proof.

The third and final equilibrium for the case of low market efficiency occurs when
ρ5 > ρ2. It follows from lemma 1-5 that ρ1 > ρ6, and the feasible equilibrium strategies,
namely, zero, one, and uin2 (ρ), are mutually exclusive for different ρ levels. The following
proposition summarises the unique foreign agent’s equilibria when the foreign market
efficiency parameter is low.

Proposition 2. Let u∗2(ρ) denote the equilibrium solution for the foreign agent’s quota
purchasing subgame, which is a function of the quota price. Moreover, let φ2 ∈ (0, 1/2].
Then, there exist three mutually exclusive equilibria that depend on the type of the
foreign agent and the foreign market efficiency parameter as follows:

u∗2(ρ)|ξ=1 =

{
u12(ρ), φ2 ∈ (0,max(0, 2/5− θ)],
u22(ρ), φ2 ∈ (max(0, 2/5− θ), 1/2],

u∗2(ρ)|ξ=0 =

{
u22(ρ), φ2 ∈ (0, 2/7],

u32(ρ), φ2 ∈ (2/7, 1/2],

where θ = β1(1− α)/(10α). For the specification of the equilibria see appendix B.4.

3.4.2 Medium and high market efficiency

In case the foreign market efficiency parameter is medium, i.e., φ2 ∈ [1/2, 2/3], the
equilibrium outcome in the firms’ sales subgame is given by q2(u2), see proposition 1.
This solution implies that there are circumstances where the foreign market can clear
the entire quantity by itself. In particular, for all quota shares between 2 − 3φ2 and
3φ2− 1, both firms serve only the foreign market. Otherwise, the firm with the majority
of quotas serve both markets. Substituting for q2(u2) in V̄2 yields the following piecewise
continuous function:

V̄2(u2,q
2(u2)) =


V̄2a = V̄2(u2, 2qpb), 3φ2 − 1 ≤ u2 ≤ 1,

V̄2d = V̄2(u2, 2qpp), 2− 3φ2 ≤ u2 ≤ 3φ2 − 1,

V̄2c = V̄2(u2, 2qbp), 0 ≤ u2 ≤ 2− 3φ2.

(3.10)

The top and bottom sub-functions are the same as in the previous case, but the middle
one differs. The inner bounds are also different. The upper bound of the concave function
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is 2 − 3φ2 instead of φ2, and the lower bound of the convex function is 3φ2 − 1 instead
of 1 − φ2. The curvature remains the same since V̄2d is also linear. Again, if the slope
of V̄2d is zero, any u2 ∈ [2 − 3φ2, 3φ2 − 1] makes the foreign agent indifferent. Also, at
φ2 = 1/2, the linear function is absorbed by the other two, which creates a discontinuity if
the slope is non-zero. At φ2 = 2/3, the concave and the convex functions are absorbed by
the linear. Then, the optimal strategy becomes a bang-bang, i.e., either buy everything
or buy nothing.

This last point is also true when the foreign market efficiency parameter is high, i.e.,
φ2 ≥ 2/3. The equilibrium outcome in the firms’ sales subgame is then given by q3(u2),
see proposition 1, and it implies that only the primary market, which in analysis is the
foreign one, is served. Substituting for q3(u2) in V̄2 yields V̄2(u2, 2qpp), which is equivalent
to V̄2d. Thus, the case of high market efficiency degenerates from the medium one.

As in the low efficiency case, there exist five equilibrium candidates when V̄2d is not
constant, namely, one, 3φ2−1, 2−3φ2, u

in
2 (ρ), and zero. Because the process of identifying

the unique equilibria is very similar to the previous case, we have placed all details on
appendix B.2 and proceed with proposition 3 that summarises the solution.

Proposition 3. Let u∗2(ρ) denote the equilibrium solution for the foreign agent’s quota
purchasing subgame, which is a function of the quota price. Moreover, let φ2 ≥ 1/2.
Then, there exist three mutually exclusive equilibria that depend on the type of the
foreign agent and the foreign market efficiency parameter as follows:

u∗2(ρ)|ξ=1 =

{
u42(ρ), φ2 ∈ [1/2, 2/3),

u52(ρ), φ2 ≥ 2/3,
u∗2(ρ)|ξ=0 =

{
u32(ρ), φ2 ∈ [1/2, 2/3),

u52(ρ), φ2 ≥ 2/3.

For the specification of the equilibria see appendix B.4.

3.4.3 Complete solution

The complete solution of the foreign agent’s purchasing quota subgame follows from
propositions 2 and 3 and is given by the following piecewise continuous function:

u∗2(ρ)|ξ=1 =


u12(ρ), φ2 ∈ (0,max(0, 2/5− θ)],
u22(ρ), φ2 ∈ (max(0, 2/5− θ), 1/2],

u42(ρ), φ2 ∈ [1/2, 2/3),

u52(ρ), φ2 ≥ 2/3,

u∗2(ρ)|ξ=0 =


u22(ρ), φ2 ∈ (0, 2/7],

u32(ρ), φ2 ∈ (2/7, 2/3),

u52(ρ), φ2 ≥ 2/3,

where θ = β1(1 − α)/(10α). Figure 3.4 depicts all possible equilibria that occur in
the foreign agent’s quota purchasing subgame. The optimal policy in all equilibria is
decreasing in the quota price. Functions u12(ρ), u22(ρ), u32(ρ), and u42(ρ) are discontinuous
at ρ4, ρ5, ρ6 and ρ9 respectively. At the point of discontinuity, the foreign agent is
indifferent between the nearby options. For example, at ρ = ρ4, the foreign agent is
indifferent between buying the entire quota or the majority of it prescribed by 1 − φ2,
see subfigure (a). Moreover, in subfigures (a), (d) and (e), price thresholds ρ3 and ρ8
make the foreign agent indifferent between all nearby options. For example, when the
market efficiency parameter exceeds two-thirds (subfigure (e)), any quota share makes
the foreign agent indifferent at ρ = ρ8.

6The magnitude of the price thresholds differ between ξ = 0 and ξ = 1, however the shape of the
equilibrium policy remains the same.
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u12(ρ)

ρρ4 ρ3 ρ2 ρ1

u2 = 1

u2 = 1− φ2

u2 = φ2

u2 = 0

(a) ξ = 1 and φ2 ∈ (0,max(0, 2/5− θ)].

u22(ρ)

ρρ5 ρ2 ρ1

u2 = 1

u2 = 1− φ2

u2 = φ2

u2 = 0

(b) ξ = 1 and φ2 ∈ (max(0, 2/5− θ), 1/2],
or, ξ = 0 and φ2 ∈ (0, 2/7].6

u32(ρ)

ρρ6 ρ1

u2 = 1

u2 = 1− φ2

u2 = φ2

u2 = 0

(c) ξ = 0 and φ2 ∈ (2/7, 2/3).

u42(ρ)

ρρ9 ρ8 ρ7 ρ1

u2 = 1

u2 = 3φ2 − 1

u2 = 2− 3φ2

u2 = 0

(d) ξ = 1 and φ2 ∈ [1/2, 2/3).

u52(ρ)

ρρ8

u2 = 1

u2 = 0

(e) φ2 ≥ 2/3.

Figure 3.4. Complete characterisation of the foreign agent’s optimal quota purchasing
strategy. The type of the foreign agent and the market parameters determine the feasible
equilibrium strategy, which depends on the quota price ρ.

As a final remark, we describe how the optimal purchasing quota strategy changes as
φ2 increases for the case of a welfare-maximiser foreign agent, i.e., ξ = 1. For values of φ2

close to zero the optimal policy is given by subfigure (a). As φ2 increases price thresholds
ρ4 and ρ3 get closer, as do strategies φ2 and 1− φ2. At φ2 = 2/5− θ, price thresholds ρ3,
ρ4 and ρ5 coincide. For values of φ2 greater than 2/5 − θ the optimal policy is given by
subfigure (b), strategy 1− φ2 becomes strictly dominated and ρ5 becomes the switching
price threshold between strategies φ2 and one. Once φ2 hits one-half, strategies 2 − 3φ2

and 3φ2 − 1 become feasible. Moreover, φ2 = 1 − φ2 = 2 − 3φ2 = 3φ2 − 1 = 1/2 and
thresholds ρ5 and ρ9 coincide. For values of φ2 greater than one-half the optimal strategy
is given by subfigure (d). As φ2 keeps increasing all price thresholds ρi, i = 1, 7, 8, 9,
converge towards ρ8. In addition, strategies 2 − 3φ2 and 3φ2 − 1 move towards zero
and one, respectively. For values of φ2 greater or equal to two-thirds the optimal policy
is given by sbufigure (e). Now strategies zero and one are strictly dominant and price
threshold ρ8 becomes the sole switching price.

3.5 Home country’s price subgame

The home country sets the quota price with the full knowledge of how it influences the
outcome in all subsequent subgames, i.e., both the foreign agent’s purchasing strategy
and the firms’ selling decisions. In addition, it is perfectly informed about the foreign
agent’s incentives, i.e., it knows whether the foreign agent is profit- or welfare-maximiser.
Let V̄1 = V1/(a2U) be the scaled objective function, the home country decides on the
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quota price by solving the following maximisation problem for each foreign agent type:

max
ρ∈R

V̄1
(
ρ, u∗2(ρ),q∗(u∗2(ρ))

)∣∣∣
ξ=1

=


V̄1(ρ, u

1
2(ρ),q1(u12(ρ))), φ2 ∈ (0,max(0, 2/5− θ)],

V̄1(ρ, u
2
2(ρ),q1(u22(ρ))), φ2 ∈ (max(0, 2/5− θ), 1/2],

V̄1(ρ, u
4
2(ρ),q2(u42(ρ))), φ2 ∈ (1/2, 2/3),

V̄1(ρ, u
5
2(ρ),q3(u52(ρ))), φ2 ≥ 2/3,

max
ρ∈R

V̄1
(
ρ, u∗2(ρ),q∗(u∗2(ρ))

)∣∣∣
ξ=0

=


V̄1(ρ, u

2
2(ρ),q1(u22(ρ))), φ2 ∈ (0, 2/7],

V̄1(ρ, u
3
2(ρ),q1(u32(ρ))), φ2 ∈ (2/7, 2/3),

V̄1(ρ, u
5
2(ρ),q3(u52(ρ))), φ2 ≥ 2/3,

where V̄1
(
ρ, ul2(ρ),qk(ul2(ρ))

)
=
α(q∗1 + u∗2 − q∗2)2

2β1
+ α

(
1− q∗1 + u∗2 − q∗2

β1

)
q∗1

+

(
1− q∗2 + 1− u∗2 − q∗1

β2

)
(1− u∗2 − q∗1)− ψ1(1− u∗2) + ρu∗2,

∀k = 1, 2, 3, ∀l = 1, . . . , 5. (3.11)

The superscripts l and k refer to the respective foreign agent’s quota and firms’ sales
distinct equilibrium solutions. Parameter ξ affects the home country’s objective indirectly
through the foreign agent’s equilibria and corresponding price thresholds. The correct
relationship between ul2 and qk(ul2) follows from propositions 1, 2 and 3.

The strategies (ρ∗, u∗2(ρ
∗),q∗(u∗2(ρ

∗))) ∈ R× [0, 1]× [0, u1]× [0, u2] constitute a Stack-
elberg equilibrium of the home country’s price subgame if and only if

V̄1
(
ρ∗, u∗2(ρ

∗),q∗(u∗2(ρ
∗))
)
≥ V̄1

(
ρ, u∗2(ρ),q∗(u∗2(ρ))

)
, ∀ρ ∈ R,

V̄2
(
ρ∗, u∗2(ρ

∗),q∗(u∗2(ρ
∗))
)
≥ V̄2

(
ρ∗, u2(ρ

∗),q∗(u2(ρ))
)
, ∀u2(ρ∗) ∈ [0, 1],

R̄i
(
ρ∗, u∗2(ρ

∗), q∗i (u
∗
2(ρ
∗)), q∗j (u

∗
2(ρ
∗))
)
≥ R̄i

(
ρ∗, u∗2(ρ

∗), qi(u
∗
2(ρ
∗)), q∗j (u

∗
2(ρ
∗))
)
,

∀qi ∈ [0, ui], ∀i, j = 1, 2 : i 6= j.

Similar to the previous subgame, solving problem (3.11) for a given set of parameter
values through enumeration is straightforward. But doing so does not provide a complete
categorisation of the different equilibria. Thus, again, we zoom into the branches of the
home country’s piecewise objective and derive the respective Stackelberg equilibria as
well as all necessary conditions for their existence. Moreover, we show that all equilibria
are mutually exclusive, i.e., unique. In total there are six cases that we need to evaluate
for both foreign agent types. This is because the functional specification for high market
efficiency, i.e., φ2 ≥ 2/3, is the same for both types. In this section, the different cases
are categorised on the basis of the foreign agent’s type and the magnitude of the market
efficiency parameter. In particular, when the foreign agent is welfare-maximiser, we
distinguish between very low, low, medium and high market efficiency. Similarly, when
the foreign agent is profit-maximiser, we discern between low, medium and high efficiency.

As in the previous subgame, the solution procedure between cases is repetitive, and
thus we describe it in detail only for the first case, namely, when the foreign agent is
welfare-maximiser and the market efficiency is very low, φ2 ∈ (0, 2/5 − θ]. For the
remaining cases, we summarise the main results and refer the reader to the appendices
for more details. The following algorithm provides a general description of the steps
involved. For every branch, based on the market efficiency parameter, do the following:

1. Determine the branches with respect to quota price variable, ρ. Check for the curvature
of the individual branches in order to determine the potential equilibrium candidates.
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2. Compare the payoff generated by the equilibrium candidates both within and across
branches in order to identify all possible outcomes.

3. Derive the necessary conditions for an optimal solution to guarantee the home country
a non-negative payoff, i.e., V̄1(ρ

∗) ≥ 0.

At the end of this process all distinct equilibria are categorised in the entire parameter
space. A distinct equilibrium strategy prescribes a quota pricing scheme for the home
country that depends on the parameter values when the TAC is exogenous, and on the
TAC and stock biomass levels when it is endogenous.

3.5.1 Welfare-maximiser foreign agent

3.5.1.1 Very low market efficiency

In case the foreign agent is welfare-maximiser and the foreign market parameter is very
low, i.e., θ < 2/5 and thus φ2 ∈ (0, 2/5 − θ], the sequential equilibrium outcome in
the foreign agent’s quota and the firms’ sales subgames is given by u12(ρ) and q1(u2(ρ)),
respectively, see propositions 1 and 2. Substituting in V̄1 yields the following piecewise
multi-valued function:

V̄1(ρ, u
1
2(ρ),q1(u12(ρ))) =



V̄1a = V̄1(ρ, 0, 2qbp), ρ ≥ ρ1,
V̄1b = V̄1(ρ, u

in
2 (ρ), 2qbp), ρ2 ≤ ρ ≤ ρ1,

V̄1c = V̄1(ρ, φ2, 2qbp), ρ3 ≤ ρ ≤ ρ2,
V̄1(ρ3, u2, 2qbb),∀u2 ∈ [φ2, 1− φ2], ρ = ρ3,

V̄1d = V̄1(ρ, 1− φ2, 2qpb), ρ4 ≤ ρ ≤ ρ3,
V̄1e = V̄1(ρ, 1, 2qpb), ρ ≤ ρ4,

(3.12)

which is discontinuous at ρ4, and at ρ3 its value is associated with multiple elements,
namely all u2 in the [φ2, 1−φ2] region. In addition, starting from the top, the first branch
is constant, the second is concave, the forth is a vertical line, and the remaining three are
linear and increasing.7 This implies that there exist five equilibrium candidates, namely,
ρ1, ρ

in, ρ2, ρ3, and ρ4. Candidate ρin is the inner candidate of the concave function V̄1b,
i.e., ρin = argmax V̄1b.

Figure 3.5 depicts possible plottings of the objective where each one of the five can-
didates is plotted as optimal. Notice how prices ρ3 and ρ4, which make the foreign agent
indifferent between multiple strategies, make the home country better off at a distinct
strategy, see subfigures (a) and (e). For example suppose that ρ∗ = ρ4, then the home
country is better off when the foreign agent purchases according to u2 = 1 (right corner
of the line left of ρ4 in (e)), instead of u2 = 1 − φ2 (left corner of the line right of ρ4 in
(a)). In this context, we assume that the home country can induce the preferred quantity
either by charging slightly below, i.e., ρ−3 and ρ−4 , or by offering the foreign agent a bundle
that specifies both a price and a quantity, for instance (ρ, u2) = (ρ4, 1) when ρ∗ = ρ4.
In other words, in order for the equilibrium to be well defined, we follow the convention
that in case of indifference between strategies, the follower selects the one that favours
the leader. This is observed in all cases where a discontinuity occurs or the objective is
vertical, i.e., multi-valued.

7The second order conditions are: V̄ ′′1b(ρ) = −(4β2(5αβ2 + 4β1)(αβ2 + β2
1)2)/(β1(4αβ2 + 3β1)2) < 0,

V̄ ′′1a(ρ) = V̄ ′′1c(ρ) = V̄ ′′1d(ρ) = V̄ ′′1e(ρ) = 0. The first order conditions of the linear functions are: V̄ ′1a(ρ) = 0,
V̄ ′1c(ρ) = φ2 > 0, V̄ ′1d(ρ) = 1− φ2 > 0, V̄ ′1e(ρ) = 1.
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Figure 3.5. Possible plottings of the home country’s objective. Plots (a)-(e) depict the
five equilibrium candidates as optimal when the foreign agent is welfare-maximiser and
the foreign market efficiency is very low. The last plot illustrates the case of high market
efficiency. The plots are merely for illustration and reflect no real parameter values.

Because of the piecewise nature of the objective, we need to compare the payoff
generated by all equilibrium candidates in order to determined the optimal pricing policy.
We start with the concave part of the objective. This categorises three candidates, namely,
ρ1, ρ

in and ρ2. Because the linear branches are increasing the optimal candidate is their
right bound. But this is not enough for specifying the global optimum and thus we need
to compare candidates across branches until all solutions are identified. We distinguish
between the different optimality regions using the cost parameters, and specifically their
difference, i.e., ∆ψ = ψ1 − ψ2, which we consider a measurement of efficiency associated
with the exploitation of the resource, and sometimes refer to as the firms’ efficiency level.
The home firm is more efficient or has a cost advantage when ∆ψ < 0, and vice-versa
when ∆ψ > 0. Throughout the analysis, we use λi to denote the cost difference thresholds
when ξ = 1 and µi when ξ = 0. Lemma 6 provides the optimal policy in the [ρ1, ρ2] region.

Lemma 6. Let ∆ψ = λ1 and ∆ψ = λ2 given by ρin = ρ1 and ρin = ρ2, respectively, be
cost difference thresholds.8 Then, the optimal policy ρ∗ in the [ρ2, ρ1] region is given by

ρ∗ = min(max(ρ2, ρ
in), ρ1) =


ρ2, ∆ψ ≥ λ2,
ρin, λ1 ≤ ∆ψ ≤ λ2,
ρ1, ∆ψ ≤ λ1.

In addition, λ1 < 0 and λ2 > 0 for all α ∈ (0, 1). See appendix C.1.1 for the proof.

Lemma 6 tells us that for any efficiency level below λ1, the home country issues a price
equal to ρ1. This induces the foreign agent to buy zero quotas, and as a consequence
the home firm takes the entire quota. Since λ1 is negative, it is implied that the home
firm exploits the resource by itself only when it has a substantial cost advantage such
that ψ1 ≤ ψ2 + λ1. If the foreign firm is more efficient, or when the home firm’s cost
advantage does not exceed |λ1|, both firms are active. For efficiency levels between λ1
and λ2, the optimal pricing strategy is ρin inducing the foreign firm to buy according to

8For explicit definitions of the cost difference thresholds associated with this case see appendix C.1.1.

110



uin2 (ρin), which is the least amount of quotas it can get. Finally, when the foreign firm
has a cost advantage that exceeds λ2, the optimal price is ρ∗ = ρ2 and the optimal quota
shares are u∗2 = φ2 and u∗1 = 1− φ2, with u∗1 > u∗2 since φ2 < 1/2.

Moving on, we compare the welfare generated at ρ4 and ρ3, which are local optima of
V̄1e and V̄1d, respectively. If V̄1e(ρ4) exceeds V̄1d(ρ3), then the optimal policy occurs at ρ4
and the home country prefers the foreign agent to buy everything (the foreign agent is
indifferent between u2 = 1 and u2 = 1− φ2 at ρ4). Otherwise, the optimal policy occurs
at ρ3 and the home country prefers the foreign agent to buy u2 = 1 − φ2 (the foreign
agent is indifferent between all u2 ∈ [φ2, 1−φ2] at ρ3). Lemma 7 gives the optimal policy.

Lemma 7. Let ∆ψ = λ3 given by V̄1e(ρ4) = V̄1d(ρ3) be a cost difference threshold. Then,
the optimal policy ρ∗ is given by

ρ∗ =

{
ρ4, ∆ψ ≥ λ3,
ρ3, ∆ψ ≤ λ3.

In addition, λ3 > λ2 when φ2 ∈ (0, 2/5− θ]. See appendix C.1.1 for the proof.

Next, we compare the welfare generated at ρ3 and ρ2, which are local optima of V̄1d
and V̄1c. If V̄1d(ρ3) exceeds V̄1c(ρ2), then the optimal policy occurs at ρ3 and the home
country prefers the foreign agent to buy u2 = 1 − φ2, who is indifferent between all
u2 ∈ [φ2, 1 − φ2]. Otherwise, the optimal policy occurs at ρ2 where the foreign agent
always buys u2 = φ2. The following lemma gives the optimal policy.

Lemma 8. Let ∆ψ = λ4 given by V̄1d(ρ3) = V̄1c(ρ2) be a cost difference threshold. Then,
the optimal policy ρ∗ is given by

ρ∗ =

{
ρ3, ∆ψ ≥ λ4,
ρ2, ∆ψ ≤ λ4.

Let β1/(αβ2) > −(34φ3
2 − 39φ2

2 + 22φ2 − 4)/(28φ3
2 − 14φ2

2 + 3φ2) be condition (C.1) and
β1(8φ

2
2 − φ2)/(αβ2) + 6φ2

2 ≥ 0 condition (C.2). The relative position of λ4 depends on
(C.1) and (C.2) as follows:
a. Let condition (C.1) to hold. Then, λ4 > λ3.
b. Let condition (C.1) to fail (C.2) to hold. Then, λ4 ∈ [λ2, λ3].
c. Let conditions (C.1) and (C.2) to fail. Then, λ4 ∈ (λ1, λ2).
See appendix C.1.1 for the proof.

From the last lemma we conclude that there exist cost thresholds, e.g., λ4, with multi-
ple relative positions. This implies that for every distinct position of λ4 the home country
has a mutually exclusive equilibrium strategy that depends on the market parameters and
the type of the foreign agent.

Suppose that (C.1) fails but (C.2) holds, then λ4 is positioned in the [λ2, λ3] region.
And it follows from lemmas 6-8 that λ1 < λ2 ≤ λ4 ≤ λ3. This implies that all strategies
occur in distinct ∆ψ regions and a complete equilibrium exists. If condition (C.2) binds,
then λ4 = λ2 and strategy ρ = ρ2 becomes weakly dominated by ρ = ρ3 and ρ = ρin, this
is a degeneration. Similarly, if condition (C.1) binds, then λ4 = λ3 and strategy ρ = ρ3
becomes weakly dominated by ρ = ρ4 and ρ = ρ2, this is also degeneration.

Suppose that (C.1) holds, then λ4 > λ3. This means that ρ = ρ3 is strictly dominated
by ρ = ρ4 for all ∆ψ ≥ λ4 > λ3, see lemma 7. Also, from lemma 8, ρ = ρ3 is strictly
dominated by ρ = ρ2 for all ∆ψ < λ4. Thus, ρ3 is a strictly dominated strategy either
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by ρ4 or ρ2 when λ4 > λ3, and therefore we need to compare them in order to determine
the complete equilibrium strategy. This is one case to follow up.

The other case to follow up occurs when both (C.1) and (C.2) fail. Then λ4 ∈ (λ1, λ2).
And it follows that ρ = ρ2 is strictly dominated by ρ = ρin for all ∆ψ ≤ λ4 < λ2,
see lemma 6. Moreover, from lemma 8, ρ = ρ2 is strictly dominated by ρ = ρ3 for all
∆ψ > λ4. Thus, ρ2 is a strictly dominated strategy either by ρin or ρ3 when λ4 ∈ (λ1, λ2),
and therefore we need to compare them in order to determine the complete equilibrium
strategy.

First, we proceed to find out what happens when (C.1) holds, i.e., λ4 > λ3. Lemma
9 provides the optimal policy between ρ4 and ρ2.

Lemma 9. Suppose λ4 > λ3 and let ∆ψ = λ5 given by V̄1e(ρ4) = V̄1c(ρ2) be a cost
difference threshold. Then, the optimal policy ρ∗ is given by

ρ∗ =

{
ρ4, ∆ψ ≥ λ5,
ρ2, ∆ψ ≤ λ5.

In addition, λ5 > λ2 when φ2 ∈ (0, 2/5− θ] and (C.1) holds.
See appendix C.1.1 for the proof.

It follows from lemmas 6-9 that when (C.1) holds, λ1 < λ2 < λ5, and thus the feasible
equilibrium strategies, ρ1, ρ

in, ρ2, and ρ4 are mutually exclusive for different ∆ψ. This
categorises another complete equilibrium. The last complete equilibrium occurs when
both (C.1) and (C.2) fail. Lemma 10 provides the optimal policy between ρ3 and ρin.

Lemma 10. Suppose that λ4 ∈ (λ1, λ2) and let ∆ψ = λ6 given by V̄1d(ρ3) = V̄1b(ρ
in) be

a cost difference threshold. Then, the optimal policy ρ∗ is given by

ρ∗ =

{
ρ3, ∆ψ ≥ λ6,
ρin, ∆ψ ≤ λ6.

In addition λ6 ∈ (λ4, λ2) when both (C.1) and (C.2) fail.
See appendix C.1.1 for the proof.

It follows from lemmas 6-10 that when (C.2) fails, λ1 < λ6 < λ3. This implies that all
feasible strategies, namely, ρ1, ρ

in, ρ3, and ρ4 occur in distinct ∆ψ region. The following
proposition summarises the unique first stage equilibria actions.

Proposition 4. Let ρ∗ denote the equilibrium solution for the home country’s price
subgame when the TAC is exogenous. In addition, let ξ = 1 and φ2 ∈ (0, 2/5 − θ] with
θ < 2/5. Then, there exist three mutually exclusive equilibria that depend on the market
and cost parameters as follows:

ρ∗ =


ρ1, (C.1) holds,

ρ2, (C.1) fails and (C.2) fails,

ρ3, (C.1) fails and (C.2) holds.

See appendix C.3 for the specification of ρ1, ρ2 and ρ3.

Proposition 4 provides a complete characterisation of the home country’s optimal
strategy in the entire parameter space, i.e., α×β1×β2×ψ1×ψ2 ∈ (0, 1)×R4

+, when the
foreign agent is welfare-maximiser and the market efficiency parameter is very low. The
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market parameters determine whether conditions (C.1) and (C.2) hold or not, and thus
the home country’s distinct equilibrium options. The distinct equilibrium price is then
prescribed by the relative cost efficiency of the firms.

So far we have derived the optimal pricing policy merely by comparing the various
strategies with each other, and have disregarded the fact that they shall guarantee a
non-negative payoff for the home country, i.e., V̄1(ρ

∗) ≥ 0. Unlike the foreign agent,
whose outside option occurs at a distinct strategy, u2 = 0,9 the home country does not
have a zero-payoff pricing strategy by definition. Even if the home country does not
exploit the resource, i.e., u1 = 0, the price ρ = ρ4 that it has to charge in order to
induce u2 = 1 does not ensure a non-negative payoff. This is true for all other pricing
policies. Therefore, we need to evaluate the home country’s objective at all equilibrium
prices and find the thresholds or bounds that make it zero. Since we have used the
cost parameters to distinguish between the different optimality regions, we derive the
zero-welfare bounds with respect to them. This yields a continuous cost frontier in the
ψ2 × ψ1 parameter space, above which it is too costly to exploit the resource for both
firms. Details regarding the derivation of the cost frontier are given in appendix C.4 for
this case only. In what follows, we briefly summarise the results for all remaining cases
and then present the complete solution in subsection 3.5.3. All details can be found in
the respective appendices.

3.5.1.2 Low market efficiency

In case the foreign agent is welfare-maximiser and the foreign market efficiency parameter
is low, i.e.,φ2 ∈ (max(0, 2/5− θ), 1/2], the sequential equilibrium outcome in the foreign
agent’s quota and the firms’ sales subgames is given by u22(ρ) and q1(u2), respectively,
see propositions 1 and 2. Substituting in V̄1 yields the following piecewise function:

V̄1(ρ, u
2
2(ρ),q1(u22(ρ))) =


V̄1a = V̄1(ρ, 0, 2qbp), ρ ≥ ρ1,
V̄1b = V̄1(ρ, u

in
2 (ρ), 2qbp), ρ2 ≤ ρ ≤ ρ1,

V̄1c = V̄1(ρ, φ2, 2qbp), ρ5 ≤ ρ ≤ ρ2,
V̄1e = V̄1(ρ, 1, 2qpb), ρ ≤ ρ5,

(3.13)

which is discontinuous at ρ5. Compared to the very low efficiency case, all remaining sub-
functions are the same, sub-function V̄1d no longer exists since u2 = 1 − φ2 is a strictly
dominated strategy in the foreign agent’s quota subgame. Moreover, price thresholds ρ3
and ρ4 are replaced by ρ5. Starting from top, the curvature is constant, concave, upwards
linear, and upwards linear. Therefore, the equilibrium candidates are ρ1, ρ

in, ρ2, and ρ5.
Because the process of identifying all unique equilibria is similar to the previous case, we
have placed all details on appendix C.1.2 and proceed with proposition 5 that summarises
the solution.

Proposition 5. Let ρ∗ denote the equilibrium solution for the home country’s price
subgame when the TAC is exogenous. In addition, let ξ = 1 and φ2 ∈ (max(0, 2/5 −
θ), 1/2]. Then, there exist two mutually exclusive equilibria that depend on the market
and cost parameters as follows:

ρ∗ =

{
ρ4, (C.3) holds,

ρ5, (C.3) fails.

See appendices C.1.2 and C.3 for the specification of (C.3), and ρ4 and ρ5, respectively.
9The foreign agent’s outside option is zero when ξ = 0, or equal to its consumer surplus when ξ = 1.
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3.5.1.3 Medium market efficiency

In case the foreign agent is welfare-maximiser and the foreign market efficiency param-
eter is medium, i.e., φ2 ∈ (1/2, 2/3), the sequential equilibrium outcome in the foreign
agent’s quota and the firms’ sales subgames is given by u42(ρ) and q2(u2), respectively,
see proposition 1 and 3. Substituting in V̄1 yields the following piecewise multi-valued
function:

V̄1(ρ, u
4
2(ρ),q2(u42(ρ))) =



V̄1a = V̄1(ρ, 0, 2qbp), ρ ≥ ρ1,
V̄1b = V̄1(ρ, u

in
2 (ρ), 2qbp), ρ7 ≤ ρ ≤ ρ1,

V̄1c = V̄1(ρ, 2− 3φ2, 2qbp), ρ8 ≤ ρ ≤ ρ7,
V̄1(ρ8, u2, 2qpp),∀u2 ∈ [2− 3φ2, 3φ2 − 1], ρ = ρ8,

V̄1d = V̄1(ρ, 3φ2 − 1, 2qpb), ρ9 ≤ ρ ≤ ρ8,
V̄1e = V̄1(ρ, 1, 2qpb), ρ ≤ ρ9,

(3.14)

which is discontinuous at ρ9, and at ρ8 its value is associated with multiple elements,
namely all u2 in the [2−3φ2, 3φ2−1] region. Compared to the very low and low efficiency
cases, i.e., φ2 ≤ 1/2, sub-functions V̄1a, V̄1b and V̄1e remain the same, whereas V̄1c and V̄1d
differ since they are evaluated at u2 = 2 − 3φ2 and u2 = 3φ2 − 1, respectively, but their
curvature remains the same. The five equilibrium candidates are ρ1, ρ

in, ρ7, ρ8, and ρ9.
As before, we proceed with proposition 6 that summarises the solution. For additional
details see appendix C.1.4.

Proposition 6. Let ρ∗ denote the equilibrium solution for the home country’s price
subgame when the TAC is exogenous. In addition, let ξ = 1 and φ2 ∈ (1/2, 2/3).
Then, there exist two mutually exclusive equilibria that depend on the market and cost
parameters as follows:

ρ∗ =

{
ρ6, (C.4) holds,

ρ7, (C.4) fails.

See appendices C.1.4 and C.3 for the specification of (C.4), and ρ6 and ρ7, respectively.

3.5.1.4 High market efficiency

In case the foreign market efficiency parameter is high, i.e., φ2 ≥ 2/3, the sequential
equilibrium outcome is independent of the foreign agent’s type and is given by u52(ρ)
and q3(u2), see propositions 1 and 3. Substituting in V̄1 yields the following piecewise
multi-valued function:

V̄1(ρ, u
5
2(ρ),q3(u52(ρ))) =


β2 − 1

β2
− ψ1, ρ > ρ8,

(1− u2)
(
β1 − 1

β2
− ψ1

)
+ ρu2, ∀u2 ∈ [0, 1], ρ = ρ8,

ρ, ρ < ρ8,

(3.15)

where ρ8 = (β2 − 1)/β2 − ψ2. Figure 3.5 (f) plots the objective when φ2 ≥ 2/3. The
multi-valued property of the objective does not exist under cost symmetry. Otherwise, at
ρ = ρ8 the foreign agent is indifferent between all u2 ∈ [0, 1]. The home country prefers
to keep the entire quota for its firm when it has a cost advantage, i.e., ψ1 < ψ2, otherwise
it prefers to sell it at the higher possible price, which is ρ8. Assuming that the foreign
agent buys accordingly, the optimal strategy is given by

ρ∗ = ρ8 =

{
ρ8, ψ1 ≥ ψ2,

ρ ∈ R : ρ > ρ8, ψ1 ≤ ψ2.
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3.5.2 Profit-maximiser foreign agent

3.5.2.1 Low market efficiency

In case the foreign agent is profit-maximiser and the foreign market efficiency parameter
is low, i.e., φ2 ∈ (0, 2/7], the sequential equilibrium outcome in the foreign agent’s quota
and the firms’ sales subgames is given by u22(ρ) and q1(u2), respectively, see proposition
1 and 2. Substituting in V̄1 yields the following piecewise function:

V̄1(ρ, u
2
2(ρ),q1(u22(ρ))) =


V̄1a = V̄1(ρ, 0, 2qbp), ρ ≥ ρ1,
V̄1b = V̄1(ρ, u

in
2 (ρ), 2qbp), ρ2 ≤ ρ ≤ ρ1,

V̄1c = V̄1(ρ, φ2, 2qbp), ρ5 ≤ ρ ≤ ρ2,
V̄1e = V̄1(ρ, 1, 2qpb), ρ ≤ ρ5,

(3.16)

which is discontinuous at ρ5 and is similar to the objective when the foreign agent is
welfare-maximiser and the market efficiency parameter is low, see subsection 3.5.1.2.
Their difference lies in the magnitude of the price thresholds and V̄1b, which depend on ξ.
The curvature remains the same, since V̄1b is concave.10 The four equilibrium candidates
are ρ1, ρ

in, ρ2 and ρ5. All solution details can be found in appendix C.2.1, proposition 7
summarises the equilibrium outcomes.

Proposition 7. Let ρ∗ denote the equilibrium solution for the home country’s price
subgame when the TAC is exogenous. In addition, let ξ = 0 and φ2 ∈ (0, 2/7]. Then, there
exist two mutually exclusive equilibria that depend on the market and cost parameters
as follows:

ρ∗ =

{
ρ9, (C.5) holds,

ρ10, (C.5) fails.

See appendices C.2.1 and C.3 for the specification of (C.5), and ρ9 and ρ10.

3.5.2.2 Medium market efficiency

In case the foreign agent is profit-maximiser and the foreign market efficiency parame-
ter is medium, i.e., φ2 ∈ (2/7, 2/3), the sequential equilibrium outcome in the foreign
agent’s quota and the firms’ sales subgame is given by u32(ρ) and q1(u2), respectively, see
propositions 1, 2 and 3. Substituting in V̄1 yields the following piecewise function:

V̄1(ρ, u
3
2(ρ),q1(u32(ρ))) =


V̄1a = V̄1(ρ, 0, 2qbp), ρ ≥ ρ1,
V̄1b = V̄1(ρ, u

in
2 (ρ), 2qbp), ρ6 ≤ ρ ≤ ρ1,

V̄1e = V̄1(ρ, 1, 2qpb), ρ ≤ ρ6,
(3.17)

which is discontinuous at ρ6. The top branch is constant, the middle is concave, and the
lower is linear and increasing. The three equilibrium candidates are ρ1, ρ

in and ρ6. All
solutions details can be found in appendix C.2.3, proposition 8 summaries our findings.

Proposition 8. Let ρ∗ denote the equilibrium solution for the home country’s price
subgame when the TAC is exogenous. In addition, let ξ = 0 and φ2 ∈ (2/7, 2/3).
Then, there exist two mutually exclusive equilibria that depend on the market and cost
parameters as follows:

ρ∗ =

{
ρ11, (C.6) holds,

ρ12, (C.6) fails.

See appendices C.2.3 and C.3 for the specificaiton of (C.6), and ρ11 and ρ12.
10V̄ ′′1b = −β2(5αβ2 + 6β1)/(4β1) < 0, thus the function remains concave when ξ = 0.
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3.5.3 Complete solution

The complete solution of the home country’s quota price subgame follows from proposi-
tions 4 to 8 and is given by the following piecewise continuous functions:

ρ∗|ξ=1 =



ρ1, φ2 ∈ (0,max(0, 2/5− θ)] and (C.1) H,

ρ2, φ2 ∈ (0,max(0, 2/5− θ)] and (C.1) F and (C.2) F,

ρ3, φ2 ∈ (0,max(0, 2/5− θ)] and (C.1) F and (C.2) H,

ρ4, φ2 ∈ (max(0, 2/5− θ), 1/2] and (C.3) H,

ρ5, φ2 ∈ (max(0, 2/5− θ), 1/2] and (C.3) F,

ρ6, φ2 ∈ (1/2, 2/3) and (C.4) F,

ρ7, φ2 ∈ (1/2, 2/3) and (C.4) F,

ρ8, φ2 ∈ [2/3,∞),

ρ∗|ξ=0 =



ρ9, φ2 ∈ (0, 2/7] and (C.5) H,

ρ10, φ2 ∈ (0, 2/7] and (C.5) F,

ρ11, φ2 ∈ (2/7, 2/3) and (C.6) H,

ρ12, φ2 ∈ (2/7, 2/3) and (C.6) F,

ρ8, φ2 ∈ [2/3,∞),

where H stands for holds and F for fails. Figure 3.6 depicts all possible equilibria that
can occur in the home country’s price subgame, and thus gives a complete picture of
the outcome for the entire game when the TAC is exogenous. The type of the foreign
agent and the market parameters determine the set of optimal pricing policies, which
we have grouped according to the firms cost of fishing in ρm, m = 1, . . . , 12.11 For each
equilibrium ρm there exist regions in the cost parameter space where different prices are
optimal. The outer curve represents the cost frontier, above which it is not worth for
both the foreign agent and the home country to have their firms exploit the resource.
The dashed line is the 45-degree symmetry line.

First, we consider the cases where the foreign agent is welfare-maximiser and the
market efficiency parameter is very low. Then, the optimal pricing regions are given by
subfigures (a), (b) and (c) depending on whether conditions (C.1) and (C.2) hold or not.
Because λ1 is negative and λ2 and λ6 are strictly positive, the optimal pricing strategy in
all subcases under cost symmetry is given by ρin with the home firm getting the majority
of quotas since 1−uin2 ≥ 1−φ2 > 1/2.12,13 If the home firm’s cost is less than ψ2+λ1 < ψ2,
then it is optimal for the home country to price at ρ1 and induce the foreign agent to buy
zero quotas. On the other hand, when the home firm’s cost exceeds ψ2 + λ5 or ψ2 + λ3,
it is optimal to price at ρ4 and induce the foreign agent to buy the entire TAC. For cost
differences between λ5 and λ1, or, λ3 and λ1 the foreign agent buys a percentage of the
TAC and both firms are active. Based on the relevant magnitude of the home country’s
pricing and the foreign agent’s quota purchasing strategies, we infer that the higher the
cost disadvantage the home firm has, the lower the quota price the home country charges,
and thus the higher the amount of quotas the foreign agent purchases.

The pricing regions in all remaining cases where the foreign agent is welfare-maximiser
follow more or less the same pattern. Subfigures (d) and (e) illustrate the low efficiency
cases, (f) and (g) the medium efficiency cases, and (h) the high efficiency case. Note
that the threshold λ9 in the medium efficiency cases is plotted as positive but it can
also be negative. The optimal strategy under cost symmetry in this case depends on
the sign of λ9 and is either ρin or ρ7. Either way, the foreign agent purchases a positive
amount of quotas and both firms are active in equilibrium. For the case of high market
efficiency, which is identical when the foreign agent is profit-maximiser, the home country
is indifferent between keeping the TAC at home or selling it to the foreign agent when
both firms have the same cost. In case of cost asymmetry, the optimal pricing policy

11The market parameters affect the size but not the shape of the equilibrium regions.
12See lemmas 6 for the signs of λ1 and λ2. The sign of λ6 follows from lemma 10 and the fact that

λ4 > 0 when φ2 < 1/2.
13Strategy uin2 is the inner solution of a concave function bounded in the [0, φ2] region, thus uin2 ≤ φ2.
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Figure 3.6. Home country’s optimal pricing policies in the entire parameter space, i.e.,
α × β1 × β2 × ψ1 × ψ2 × ξ ∈ (0, 1) × R4

+ × {0, 1}. The market parameters and the type
of the foreign agent determine the distinct equilibrium ρm, with m = 1, . . . , 12. The
optimal pricing policy is inferred by the cost parameters. The dashed line is the 45-
degree symmetry line. The magnitude of the market parameters affect the size but not
the shape of the equilibrium regions.
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Figure 3.7. Home country’s optimal pricing policies in the cost parameter space for
different market parameters. The dashed line is the 45-degree line. The foreign agent is
assumed to be welfare-maximiser.

is such that the most efficient firm takes the entire TAC, see subfigure (h). It is worth
mentioning that in the case of high market efficiency, strategic interaction between firms
ceases to exist because only one remains active.

For the case of a profit-maximiser foreign agent, the home country’s equilibrium price
regions are depicted in subfigures (i) and (j) when market efficiency is low, and in (k) and
(l) when it is medium. The interesting thing here is the fact that entry into the fishery
for the foreign firm is deterred under cost symmetry in all cases since µ1, µ5 and µ7 are
strictly positive. The reason why this happens is that the consumer surplus, which is
a strictly positive quantity when the foreign market is the preferred one, irrespective of
the foreign agent’s action, is disregarded in its optimisation procedure. This decreases
its outside option, namely the share of the foreign consumer surplus attributed to sales
by the home firm, to zero, and thus shifts the regions where the foreign agent affords a
positive quota share above the 45-degree symmetry line. In order to balance the fact that
the consumer surplus is disregarded, the foreign firm has to be more efficient in order for
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the foreign agent to accept a price that induces a positive quota share.
In order to investigate how the magnitude of the market parameters influences the size

of the price regions, we plot the corresponding equilibria in figure 3.7 for some parameter
vectors when the foreign agent is welfare-maximiser. In particular, we distinguish between
cases where the market saturation parameters vary in subfigures (a) and (b), and cases
where the relative maximum price varies in subfigures (c) and (d). The different price
regions are illustrated in shades of blue. The white region represents the area in the
cost-space where nothing happens, i.e., the resource remains unexploited.

The respective equilibria in (a) and (b) are ρ3 and ρ2. The difference lies in the market
saturation quantities where in (a) the foreign market is able to absorb the entire quota,
i.e., β2 = 1, whereas in (b) the home market can do so. A significant change in the
price regions occurs in the area where price ρ3 is optimal, which expands vertically and
nearly doubles when β1 = 1, see subfigure (b). This means that it is now optimal for
the home country to grant its firm a positive share of quotas for nearly double the cost
disadvantage. In addition, strategy ρ2 is only optimal when β2 = 1.

Moving on to (c) and (d), the respective equilibria are ρ7 and ρ4. Keep in mind that
because φ2 is equal to one-half when α = 0.5 and β2 = 3, the following price strategies are
equal: ρ7 = ρ2 and ρ9 = ρ5, and thus the price areas are comparable. Compared to (c),
strategy ρ8 is no longer optimal in (d) and the area of ρ9 expands vertically implying that
it is optimal for the home country to sell the entire TAC to the foreign agent even though
the home firm may be more efficient. In addition, the optimal pricing policy under cost
symmetry switches from ρin when α = 0.4 to ρ2 when α = 0.5.

3.6 Endogenous TAC

In this section we drop the assumption of exogenous TAC and address the problem of
optimal fishing within the context of the game theoretic framework we have just presented.
The purpose here is not to dwell into details regarding the type of the fishery and its
biology but rather to illustrate how our model can be incorporated into the standard
bioeconomic framework. Therefore, we focus on the simplest possible case, namely that of
sustainable fisheries management, and show how this influences the optimal price regions.
This means that the home country’s additional optimisation problem is static. It should
be noted though that the strategic framework developed here can also be embodied within
a dynamic setting since its sophistication lies solely in the complexity of the objective
function, which is autonomous as it is typically assumed in most dynamic fishery models.

For the biological model we follow the standard framework used in single-species
fisheries management (Clark, 2010) where the evolution of the stock biomass is described
by the following dynamic equation:

dx

dt
= G(x)− U. (3.18)

Function G(x) describes the net natural growth of the resource for a given stock biomass
level, x, and U is the total harvest, which is the TAC within our context. To set the TAC
in a sustainable manner means that for any stock level x the TAC is equal to the natural
growth function, i.e., U = G(x). This is equivalent to saying that the home country
decides on a sustainable stock biomass level that maximises its welfare, while taking into
consideration how this influences the outcome in all subsequent subgames, namely, the
optimal price, the optimal foreign agent’ quota, and the optimal sale strategies.
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The home country’s optimisation problem can be described by maximising the fol-
lowing implicit function:

V1
(
x, p∗(x), U∗2 (·),Q∗(U∗2 (·))

)
, (3.19)

for x ≥ 0, where U∗2 (·) ≡ U∗2 (x, p∗(x)). The arguments p∗, U∗2 and Q∗ are the optimal
equilibria strategies of all subsequent subgames scaled back to the initial units. The
reason is that in the exogenous case the TAC has been scaled to unity for convenience.
Because the optimal equilibria are piecewise functions of the stock biomass, the above
implicit function is also piecewise, see appendix D for its complete specification.

To scale back all equilibria and relevant quantities to the initial units the transforma-
tions described in section 3.2.4 are applied in reverse. For example, p∗ = a2ρ

∗, U∗2 = Uu∗2
and Q∗ = Uq∗. The unit of the market efficiency parameter is as in qi. Thus, when
expressed in the initial units it becomes:

Φi ≡ Uφi =
bi
3

(
1− aj

ai

)
, ∀i, j = 1, 2 : i 6= j. (3.20)

The units of all price and cost thresholds follow from ρ and ψi respectively, thus pi = a2ρi
for all i = 1, . . . , 9, Λi = a2λi for all i = 1, . . . , 12, and Mi = a2µi for all i = 1, . . . , 7. Keep
in mind that the cost thresholds are stock dependent, i.e., Λi ≡ Λi(x) and Mi ≡ Mi(x).
This is because the cost parameters are stock dependent, and this dependency becomes
“visible” when the TAC is endogenous.

Because of the complexity of the objective, we solve it numerically for different market
parameters in a predefined cost parameter space, i.e., c1 × c2 ∈ [100, 10000]2, in order to
show how the areas of the different price policies change. For the growth function, we
assume a modified logistic growth skewed to the left, which is given by

G(x) = rx2
(

1− x

k

)
, (3.21)

where parameters r and k are the respective intrinsic growth rate and carrying capacity of
the resource. The maximum sustainable yield (MSY) biomass level occurs at xMSY = 2k/3
and the TAC at that level is given by UMSY = 4rk2/27.

In the numerical examples the foreign agent is assumed to be welfare-maximiser,
i.e., ξ = 1, and the biological and economic parameters are fixated as follows. The
growth parameters are set to r = 12 × 10−5 and k = 8000, and the maximum prices to
a1 = 0.6 and a2 = 1. For the market saturation parameters b1 and b2, we consider the
following four scenarios based on UMSY: i) b1 = 2UMSY, b2 = UMSY/2, ii) b1 = b2 = UMSY,
iii) b1 = b2 = 2UMSY, and iv) b1 = b2 = 4UMSY. By changing the market saturation
parameters we allow for changes in the market efficiency parameter Φ2, which is increasing
across the four scenarios. The first combination creates a crossing point in the inverse
demand functions. This means that there exists a quantity level that yields the same
price in both markets and therefore any quantity below it makes the foreign market more
attractive, whereas any quantity above it makes the home market more attractive. In
the remaining scenarios, the foreign inverse demand always exceeds the inverse demand
in the home country. Note that although the market efficiency parameter is fixed for a
specific scenario, the designations very low, low, medium, and high that we have applied
in the exogenous TAC analysis are no longer fixed but they depend on the magnitude of
the TAC.

Figure 3.8 shows the equilibrium price regions when the TAC is endogenous for all
numerical scenarios. In total there are ten distinct pricing strategies that we have grouped
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Figure 3.8. Home country’s optimal price regions in the cost parameter space for different
market realisations when the TAC is endogenous. The foreign agent is welfare-maximiser.

in table 3.4 based on the TAC allocation outcome. Note that price strategy p8 induces
the foreign agent to buy either the entire TAC, when Φ2 ≥ 2U/3, or a percentage of it,
otherwise. In contrast to the exogenous TAC where the maximum number of distinct
pricing strategies for a given market specification is five, see figures 3.6 (c) and (g), almost
all pricing strategic can become feasible when the TAC is endogenous. The reason why
this is happening is that when the TAC is fixed, it is only profitable to operate in a
limited subspace of the cost-space that occurs below the cost frontier. Allowing for the
TAC to be endogenous means that we allow for adjustments, both positive and negative,
within the cost-space, which increases the pricing options the home country has for any
market realisation. In addition to this increase in flexibility, the home country is able to
reshape the equilibrium price regions since they now depend on both the optimal TAC
and biomass level. The most profound change in our examples occurs in figure 3.8 (a)
between price strategies p3 and p4 where the indifference cost threshold is given by a
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Table 3.4. Home country’s price strategies grouped according to the TAC allocation
outcome, when the foreign agent is welfare-maximiser. Note that the TAC allocation
outcome is the same irrespective of whether the TAC is exogenous or endogenous.

TAC allocation outcome Price strategies Reference colour in Fig. 3.8

Home firm gets the entire TAC p1;∀p : p > p8 Shades of blue
Foreign firm gets the entire TAC p4; p5; p8; p9 Shades of red
Firms share the TAC pin; p2; p3; p7; p8 Shades of green

concave shaped bound. The corresponding bound when the TAC is exogenous is given
by ψ2 + λ3, see figure 3.6 (c), which is linear since λ3 is constant. This is no longer true
when the TAC is endogenous since Λ3(x) is a polynomial function of x of degree seven.

Regarding the optimal price strategies, starting from figures 3.8 (a) and (b) all strate-
gies but p9 are feasible, however the size of their region differs. There is a significant
reduction in the area of p3, where now it is optimal to mostly price according to p4. In
figure 3.8 (c) strategies p3 and p4 are no longer optimal. This is because the market effi-
ciency parameter is now given by Φ2 = 303.46, which always exceeds the max(0, K(x∗))
threshold that makes the two strategies suboptimal.14 Compared to the exogenous case
this occurs when φ2 > max(0, 2/5− θ), i.e., whenever the market efficiency parameter is
not very low, see figures 3.6 (d) to (h). Finally, in figure 3.8 (d) Φ2 = 606.8 and only
a handful of strategies are now optimal, which corresponds to the exogenous cases of
medium and high market efficiency, i.e., φ2 ≥ 1/2. Price p9 now becomes optimal, and
the most prevailing strategies are p1, p > p8 and p8, which imply that the either the home
or the foreign firm gets the entire TAC.

To sum up, the equilibrium price options in the case where the TAC is endogenous
have significantly increased, which implies that there is more flexibility in the decision-
making process of the home country. Regarding how the TAC is allocated between the
firms, the red shaded areas represent the cases where the foreign firm gets everything, the
blue shaded areas the cases where the home firm gets everything, and the green shaded
areas the cases where both firms are active. As the foreign market efficiency parameter
increases, the areas in the cost-space where both firms are active are getting confined
around the 45-degree symmetry line. For very-low/low market efficiency levels, the home
firm is active despite the fact that it has a significantly higher cost compared to the
foreign firm, e.g. area p3 in figure 3.8 (a).

3.7 Conclusion

In this paper we introduce a framework in an attempt to understand and quantify the
basis upon which fisheries agreements are being drawn up. The framework is based on
a game theoretic model that captures, among other things, how much it is worth for a
coastal state to give access to its fishery resources to foreign fleets. In order to focus on
the strategic interaction between the players, the problems of how much to fish and who
should fish are decoupled and dealt separately. In particular, we assume that for any fixed
period of time the TAC is known and categorise all possible strategic outcomes according
to the foreign agent’s type, and the market and cost parameters. After all outcomes are

14The definition of K(x) is given by U(2/5− θ) or 2G(x)/5− (a2 − a1)b1/(10a1).
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identified, we numerically optimise over them in order to determine the optimal TAC
level for the case of a sustainable exploited single-species fishery.

The game where the TAC is exogenous consists of three sequential subgames: a quota
pricing subgame, a quota purchasing subgame, and a sales subgames. For the case of
a welfare-maximiser foreign agent, both firms are active under cost symmetry, whereas
entry for the foreign firm is deterred when the foreign agent is profit-maximiser. This
happens because the consumer surplus in the foreign market, which is strictly positive in
our context, is disregarded in the foreign agent’s optimisation procedure when it acts on
behalf of a foreign firm instead of a foreign country. Under cost asymmetry, the home
country has multiple pricing strategies at its disposal depending on the foreign market’s
efficiency level and the firms’ fishing costs. Based on the relevant magnitude of the home
country’s pricing and the foreign agent’s quota purchasing strategies, we infer that the
higher the cost disadvantage the home firm has, the lower the quota price the home
country charges, and thus the higher the amount of quotas the foreign agent purchases.

Compared to the exogenous case, when the TAC is endogenous, the home country has
more flexibility with respect to its pricing options for given market realisations. Though
in both cases, the number of options depends on the foreign market efficiency parameter,
and decreases as it increases. For medium and high market efficiency levels the prevailing
price strategies in the cost-space induce a “bang-bang” type of behaviour especially when
there are significant fishing cost differences between firms. This means that either the
home or the foreign firm gets the entire TAC. Finally, the equilibrium price regions are
reshaped, which reflects the dependency between their bounds and the optimal TAC and
stock biomass level.

A natural extension of the current research is to apply the proposed framework to spe-
cific fisheries and compare the results with those from existing agreements. For example,
the SFPAs conducted between the EU and non-EU countries, which allow the EU fleet
to fish in the signatory countries’ EEZ in exchange for financial and sectoral support.
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Appendices

A Firms’ sales subgame

Let zi(qj), with i, j = 1, 2 : i 6= j, denote the inner solution of the firms optimisation
problems (3.4) and (3.5):

∂R̄1

∂q1
= 0⇔ z1(q2) =

2u1β1 − αβ2u2 − (1− α)β1β2
2(αβ2 + β1)

+
q2
2

∂R̄2

∂q2
= 0⇔ z2(q1) =

2αβ2u2 − β1u1 + (1− α)β1β2
2(αβ2 + β1)

+
q1
2
.
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Moreover, let qj and q̄j, with j = 1, 2, be the thresholds that bound the inner solution
within the feasible region, i.e., q̄j : zi(q̄j) = ui and qj : zi(qj) = 0

q1 =
β1u1 − 2αβ2u2 − (1− α)β1β2

αβ2 + β1
, q̄1 =

β1(u1 + 2u2)− (1− α)β1β2
αβ2 + β1

,

q2 =
αβ2u2 − 2β1u1 + (1− α)β1β2

αβ2 + β1
, q̄2 =

β2(αu2 + 2αu1) + (1− α)β1β2
αβ2 + β1

.

Given the structure of the best response functions, see equation (3.6), there are nine
potential equilibria pairs (q∗1, q

∗
2) that can occur in the sales subgame. In what follows,

we show which pairs are feasible in equilibrium, derive necessary conditions for their
existence, and show that they are mutually exclusive.

A.1 Proof of proposition 1

1. Suppose that (u1, u2) is an equilibrium. Then, from (3.6), the following must
hold: q∗1 = u1 ≥ q̄1 and q∗2 = u2 ≥ q̄2. Let u1 ≥ f1(u2) : u1 ≥ q̄1 and u1 ≤ f2(u2) : u2 ≥ q̄2.
Expressions f1 and f2 are given by

f1(u2) =
(α− 1)β1

α
+

2β1
αβ2

u2, f2(u2) =
(α− 1)β1

2α
+

β1
2αβ2

u2.

The pair (u1, u2) is an equilibrium if {u1 × u2 ∈ [0, 1]2 : u1 ≥ f1(u2) ∧ u1 ≤ f2(u2)} is a
non-empty set. For any given combination of α, β1, and β2 one can verify that the above
set is empty, thus (u1, u2) cannot be an equilibrium.

2. Suppose that (0, 0) is an equilibrium. Then, from (3.6), the following must
hold: q∗1 = 0 ≤ q1 and q∗2 = 0 ≤ q2. Let u1 ≥ f3(u2) : 0 ≤ q1 and u1 ≤ f4(u2) : 0 ≤ q2.
Expressions f3 and f4 are given by

f3(u2) = (1− α)β2 +
2αβ2
β1

u2, f4(u2) =
(1− α)β2

2
+
αβ2
2β1

u2.

The pair (0, 0) is an equilibrium if {u1 × u2 ∈ [0, 1]2 : u1 ≥ f3(u2) ∧ u1 ≤ f4(u2)} is a
non-empty set. For any given combination of α, β1, and β2 one can verify that the above
set is empty, thus (0, 0) cannot be an equilibrium.

3. Suppose that (z1(z2(q1)), z2(z1(q2))) is an equilibrium. The equilibrium solution
is given by

q∗1 =
β1(3u1 − (1− α)β2)

3(αβ2 + β1)
, q∗2 =

β2(3αu2 + (1− α)β1)

3(αβ2 + β1)
.

Then, from (3.6), the following must hold: q1 ≤ q∗1 ≤ q̄1 and q2 ≤ q∗2 ≤ q̄2. Let u2 ≥ f5 :
q∗1 ≥ q1, u2 ≥ f6 : q∗1 ≤ q̄1, u1 ≥ f7 : q∗2 ≥ q2, and u1 ≥ f8 : q∗2 ≤ q̄2. Expressions f5, f6,
f7, and f8 are given by

f5 = f8 = φ1 =
(α− 1)β1

3α
, f6 = f7 = φ2 =

(1− α)β2
3

.

Let market two be the primary market, i.e., α ∈ (0, 1), then φ1 becomes negative
and the equilibrium exists if {u1 × u2 ∈ [0, 1]2 : u1 ≥ φ2 ∧ u2 ≥ φ2 ∧ u1 + u2 = 1} is a
non-empty set. This is true whenever φ2 ≤ 1/2 and u2 ∈ [φ2, 1− φ2].
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Let market one be the primary market, i.e., α > 1, then φ2 becomes negative and the
equilibrium exists if {u1 × u2 ∈ [0, 1]2 : u1 ≥ φ1 ∧ u2 ≥ φ1 ∧ u1 + u2 = 1} is a non-empty
set. This is true if φ1 ≤ 1/2 and u2 ∈ [φ1, 1− φ1].

Let both markets have the same maximum price, i.e., α = 1, then φ1 = φ2 = 0
and the equilibrium exists for all u1, u2 ∈ [0, 1]2. The equilibrium strategies become
(q∗1, q

∗
2) = (u1β1/(β1 + β2), u2β2/(β1 + β2)).

4. Suppose that (0, u2) is an equilibrium. Then, from (3.6), the following must
hold: 0 ≥ q̄1 and u2 ≤ q2. Let u1 ≤ f9(u2) : 0 ≥ q̄1 and u1 ≤ f10(u2) : u2 ≤ q2.
Expressions f9 and f10 are given by

f9(u2) = (1− α)β2 − 2u2, f10(u2) =
(1− α)β2

2
− 1

2
u2.

The pair (0, u2) is an equilibrium if {u1 × u2 ∈ [0, 1]2 : u1 ≤ f9(u2) ∧ u1 ≤ f10(u2) ∧
u1 + u2 = 1} is a non-empty set. This is true when α ∈ (0, 1) and, φ2 ∈ [1/2, 2/3] and
u2 ∈ [2− 3φ2, 3φ2 − 1], or, φ2 ≥ 2/3 and u2 ∈ [0, 1]. And follows from the following: the
intersection of f9 and f10 occurs at u2 = φ2, the intersection of f10 and 1− u2 occurs at
u2 = 2− 3φ2, and the intersection of f9 and 1− u2 occurs at u2 = 3φ2 − 1.

5. Suppose that (0, z2(0)) is an equilibrium. The equilibrium solution is given by

q∗1 = 0, q∗2 =
2αβ2u2 − β1u1 + (1− α)β1β2

2(αβ2 + β1)
.

Then, from (3.6), the following must hold: q1 ≤ q∗1 ≤ q̄2 and q∗2 ≤ q2. Let u1 ≤ f11(u2) :
q∗1 ≥ q1, u1 ≥ f12(u2) : q∗1 ≤ q̄1, and u1 ≤ f13 : q∗2 ≤ q2. Expressions f11, f12, and f13 are
given by

f11(u2) = f3(u2), f12(u2) = f9(u2), f13 = φ2.

The equilibrium solution exists if {u1×u2 ∈ [0, 1]2 : u1 ≥ f12(u2)∧u1 ≤ f13∧u1+u2 = 1}
is a non-empty set. This is true when α ∈ (0, 1), and, φ2 ∈ [1/2, 2/3] and u2 ∈ [3φ2−1, 1],
or, φ2 ∈ [0, 1/2] and u2 ∈ [1− φ2, 1]. And follows from the following: the constant terms
in f11 and f12 are equivalent to 3φ2, and u1 ≤ f11 is automatically satisfied whenever
0 ≤ u1 ≤ f13 is true since f11 is upward-slopping.

6. Suppose that (z1(u2), u2) is an equilibrium. The equilibrium solution is given by

q∗1 =
β1(2u1 + u2)− (1− α)β1β2

2(αβ2 + β1)
, q∗2 = u2.

Then, from (3.6), the following must hold: q∗1 ≥ q̄1 and q2 ≤ q∗2 ≤ q̄2. Let u2 ≤ f14 : q∗1 ≥
q̄1, u1 ≥ f15(u2) : q∗2 ≥ q2 and u1 ≥ f16(u2) : q∗2 ≤ q̄2. Expressions f14, f15 and f16 are
given by

f14 = φ2, f15(u2) = f10(u2), f16(u2) = f2(u2).

The equilibrium solution exists if {u1×u2 ∈ [0, 1]2 : u1 ≥ f15(u2)∧u2 ≤ f14∧u1+u2 = 1}
is a non-empty set. This is true when α ∈ (0, 1), and, φ2 ∈ [1/2, 2/3] and u2 ∈ [0, 2−3φ2],
or, φ2 ∈ [0, 1/2] and u2 ∈ [0, φ2]. And follows from the following: the intersection of f15
and f16 occurs at u2 = 3φ2, and u1 ≥ f16 is automatically satisfied whenever 0 ≤ u2 ≤ f14
is true since f16 is upward-slopping.
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7. Suppose that (u1, 0) is an equilibrium. Then, from (3.6), the following must
hold: u1 ≤ q1 and 0 ≥ q̄2. Let u1 ≤ f17(u2) : u1 ≤ q1 and u1 ≤ f18(u2) : 0 ≥ q̄2.
Expressions f17 and f18 are given by

f17(u2) =
(α− 1)β1

α
− 2u2, f18(u2) =

(α− 1)β1
2α

− 1

2
u2.

The pair (u1, 0) is an equilibrium if {u1 × u2 ∈ [0, 1]2 : u1 ≤ f17(u2) ∧ u1 ≤ f18(u2) ∧
u1 + u2 = 1} is a non-empty set. This is true when α > 1, and, φ1 ∈ [1/2, 2/3] and
u2 ∈ [2− 3φ1, 3φ1 − 1], or, φ1 ≥ 2/3 and u2 ∈ [0, 1]. And follows from the following: the
intersection of which occurs at u2 = φ1. In addition, the intersection of f18 and 1 − u2
occurs at u2 = 2− 3φ1, and the intersection of f17 and 1− u2 occurs at u2 = 3φ1 − 1.

8. Suppose that (u1, z2(u1)) is an equilibrium. The equilibrium solution is given by

q∗1 = u1, q∗2 =
αβ2(u1 + 2u2)− (α− 1)β1β2

2(αβ2 + β1)
.

Then, from (3.6), the following must hold: q1 ≤ q∗1 ≤ q̄1 and q∗2 ≥ q̄2. Let u1 ≥ f19(u2) :
q∗1 ≥ q1, u1 ≤ f20(u2) : q∗1 ≤ q̄1 and u1 ≤ f21. Expressions f19, f20 and f21 are given by

f19(u2) = f17(u2), f20(u2) = f1(u2), f21 = φ1.

The equilibrium solution exists if {u1×u2 ∈ [0, 1]2 : u1 ≥ f19(u2)∧u1 ≤ f21∧u1+u2 = 1}
is a non-empty set. This is true when α > 1, and φ1 ∈ [1/2, 2/3] and u2 ∈ [3φ1 − 1, 1],
or, φ1 ∈ [0, 1/2] and u2 ∈ [1− φ1, 1]. And follows from the following: the constant terms
in f19 and f20 are equivalent to 3φ1, and u1 ≤ f20 is automatically satisfied whenever
0 ≤ u1 ≤ f21 is true since f20 is upward-slopping.

9. Suppose that (z1(0), 0) is an equilibrium. The equilibrium solution is given by

q∗1 =
2β1u1 − αβ2u2 + (α− 1)β1β2

2(αβ2 + β1)
, q∗2 = 0.

Then, from (3.6), the following must hold: q∗1 ≤ q1 and q2 ≤ q∗2 ≤ q̄2. Let u2 ≤ f22 : q∗1 ≤
q1, u1 ≥ f23(u2) : q∗2 ≥ q2 and u1 ≥ f24(u2) : q∗2 ≤ q̄2. Expressions f22, f23 and f24 are
given by

f22 = φ1, f23(u2) = f4(u2), f24(u2) = f18(u2).

The equilibrium solution exists if {u1×u2 ∈ [0, 1]2 : u1 ≥ f24(u2)∧u2 ≤ f22∧u1+u2 = 1}
is a non-empty set. This is true when α > 1, and, φ1 ∈ [1/2, 2/3] and u2 ∈ [0, 2−3φ1], or,
φ1 ∈ [0, 1/2] and u2 ∈ [0, φ1]. And follows from the following: the intersection of f23 and
f24 occurs at u2 = 3φ1, and u1 ≥ f23 is automatically satisfied whenever 0 ≤ u2 ≤ f22 is
true since f23 is upward-slopping.

B Foreign agent’s quota purchasing subgame

B.1 Low market efficiency: Proofs

Price thresholds and parameter expressions used in the proofs are summarised here.

ρ1 =
k1
k2
− ψ2, ρ2 =

k1 − φ2

k2
− ψ2, ρ3 =

α(β1 + β2 − 1)

αβ2 + β1
− ψ2

ρ4 =
k3
φ2

− ψ2, ρ5 =
k4

1− φ2

− ψ2, ρ6 =

√
k26 − 4k5k7 − k6

2k5
− ψ2

126



where

k1 =
β2(4(αβ2 + β1)

2 − (2αβ2 + (2− ξ)β1)(β1(1− α) + 2α))

β1(4αβ2 + (4− ξ)β1)
, k2 =

4β2(αβ2 + β1)
2

β1(4αβ2 + (4− ξ)β1)
,

k3 =
φ2(5β1(1− α) + 12α(β1 + β2 − 1))

12(αβ2 + β1)
− φ2β1(7β1(1− α) + 12α)ξ

24(αβ2 + β1)2
,

k4 =
5φ2β1(1− α) + 12(1− φ2)α(β1 + β2 − 1)

12(αβ2 + β1)
− φ2β1(7β1(1− α) + 12α)ξ

24(αβ2 + β1)2
,

k5 = 4β2(αβ2 + β1)
2, k6 = 4(αβ2 + β1)((2− β2)(αβ2 + β1)− αβ2(β1 + β2)),

k7 = 4α((β2 − 1)(αβ2 + β1)− β1)(β1 + β2 − 1)− 3φ2(1− α)β21 .

Proof of lemma 1. The inner policy is given by uin2 (ρ) = k1− k2(ρ+ψ2) with k2 > 0.
Let ρ1 = k1/k2 − ψ2 : uin2 (ρ) = 0 and ρ2 = (k1 − φ2)/k2 : uin2 (ρ) = φ2, with ρ2 < ρ1 since
φ2 > 0. The optimal policy follows from the concavity of V̄2c. Q.E.D.

Proof of lemma 2. The slope of V̄2b is given by V̄ ′2b = α(β1+β2−1)/(αβ2+β1)−ρ−ψ2.
Let ρ3 = α(β1 + β2 − 1)/(αβ2 + β1) − ψ2 : V̄ ′2b = 0. The slope is positive for ρ < ρ3 and
negative for ρ > ρ3. The optimal policy follows from the linearity of V̄2b. Q.E.D.

Suppose that ρ3 ≥ ρ2. Then,

ρ3 − ρ2 ≥ 0⇔ β1(α− 1)(αβ2 + β1) + (2(α− 1)β21 − 3αβ1)ξ

6(αβ2 + β1)2
≥ 0,

which is not true since α ∈ (0, 1). Thus, ρ3 < ρ2. Q.E.D.

Proof of lemma 3. The objective in the [1−φ2, 1] region is convex. The foreign agent
is indifferent between u2 = 1 − φ2 and u2 = 1 if and only if V̄2a(1 − φ2) − V̄2a(1) = 0 ⇔
φ2(ρ + ψ2) − k3 = 0. Let ρ4 = k3/φ2 − ψ2 : V̄2a(1 − φ2) − V̄2a(1) = 0. Since φ2 > 0,
u∗2 = 1− φ2 for all ρ ≥ ρ4, and u∗2 = 1 for all ρ ≤ ρ4. Q.E.D.

First, we compare ρ4 and ρ3. Their difference is given by

ρ4 − ρ3 =
A1 − ξA2

24(αβ2 + β1)2
β1,

where A1 = 10(1− α)(αβ2 + β1) > 0 and A2 = 7(1− α)β1 + 12α > 0, since α ∈ (0, 1). It
follows that ρ4 > ρ3 when ξ = 0. If ξ = 1, then the sign follows from A1 −A2, which can
be both positive and negative in the region of interest, i.e., φ2 ∈ (0, 1/2] and β1 +β2 ≥ 1.
One can verify this by plotting the inequalities in the β1× β2 space. Thus, ρ4 ≤ ρ3 when
(1− α)(10αβ2 + 3β1)− 12α ≤ 0 or φ2 ≤ 2/5− β1(1− α)/(10α), otherwise ρ4 > ρ3.

Since ρ4 can exceed ρ3, we need to compare it with ρ2. Their difference is given by

ρ4 − ρ2 =
A3 − ξA4

8(αβ2 + β1)2
β1,

where A3 = 2(1 − α)(αβ2 + β1) > 0 and A4 = 5(1 − α)β1 + 8α > 0, since α ∈ (0, 1). It
follows that ρ4 > ρ2 when ξ = 0. If ξ = 1, then A3 − A4 is negative for all φ2 ∈ (0, 1/2].
Suppose that A3−A4 ≥ 0⇔ 6αφ2−3(1−α)β1−8α ≥ 0⇔ φ2 ≥ 4/3+(1−α)β1/(2α) > 1,
which is a contradiction since φ2 cannot exceed one-half. Thus, ρ4 ∈ (ρ3, ρ2) when ξ = 1
and φ2 ∈ (2/5− β1(1− α)/(10α), 1/2].
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Since ρ4 exceeds ρ2 when ξ = 0, we need to compare it with ρ1. Their difference is:

ρ4 − ρ1 =
−A3

8(αβ2 + β1)2
β1,

which is negative since A3 > 0. Thus, ρ4 ∈ (ρ2, ρ1) when ξ = 0. Q.E.D.

Proof of lemma 4. The foreign agent is indifferent between u2 = φ2 and u2 = 1 if and
only if V̄2c(φ2) − V̄2a(1) = 0 ⇔ (1 − φ2)(ρ + ψ2) − k4 = 0. Let ρ5 = k4/(1 − φ2) − ψ2 :
V̄2c(φ2)− V̄2a(1) = 0. Since 1− φ2 > 0, u∗2 = φ2 for all ρ ≥ ρ5, and u∗2 = 1 for all ρ ≤ ρ5.

First, we compare ρ5 and ρ3. Their difference is given by

ρ5 − ρ3 =
A1 − ξA2

24(αβ2 + β1)2
β1

φ2
1− φ2

= (ρ4 − ρ3)
φ2

1− φ2
,

which is strictly positive when ρ4 > ρ3, which is a prerequisite. A1 and A2 are defined in
the previous proof. Next, we compare ρ5 and ρ4. Their difference is given by

ρ5 − ρ4 =
A1 − ξA2

24(αβ2 + β1)2
β1

2φ2 − 1

1− φ2
= (ρ4 − ρ3)

2φ2 − 1

1− φ2
,

which is strictly negative for all φ2 ∈ (0, 1/2) and zero if φ2 = 1/2. Thus, ρ5 ∈ (ρ3, ρ4] for
all φ2 ∈ (0, 1/2] and both ξ = {0, 1}. If ξ = 1, no further comparisons are needed since
ρ4 < ρ2. If ξ = 0, ρ4 > ρ2 and two more comparisons are needed. First, we compare ρ5
and ρ2. Their difference when ξ = 0 is given by

ρ5 − ρ2 =
(1− α)β1(7φ2 − 2)

12(αβ2 + β1)(1− φ2)
,

which is negative or zero for all φ2 ∈ (0, 2/7] and strictly positive for all φ2 ∈ (2/7, 1/2].
Finally, we compare ρ5 and ρ1. Their difference when ξ = 0 is given by

ρ5 − ρ1 =
(1− α)β1(11φ2 − 6)

12(αβ2 + β1)2(1− φ2)
,

which is strictly negative for all φ2 ∈ (0, 1/2]. Thus, when ξ = 0, ρ5 ∈ (ρ3, ρ2] for all
φ2 ∈ (0, 2/7], and ρ5 ∈ (ρ2, ρ1) for all φ2 ∈ (2/7, 1/2]. Q.E.D.

Proof of lemma 5. Let ξ = 0. The foreign agent is indifferent between u2 = uin2 and
u2 = 1 if and only if V̄2c(u

in
2 )− V̄2a(1) = 0⇔ k5ρ

2 + (2k5ψ2 + k6)ρ+ k5ψ
2
2 + k6ψ2 + k7 = 0.

The discriminant ∆ = (2k5ψ2+k6)
2−4(k25ψ

2
2 +k5k6ψ2+k5k7) simplifies to ∆ = k26−4k5k7

or 32β2
1(αβ2+β1)

2(1+(1−3φ2)
2) which is always positive. Thus, the prices that make the

foreign agent indifferent between the two strategies are ρ6 = (±
√
k26 − 4k5k7−k6)/(2k5)−

ψ2. From the two prices we keep the greater one, which is the only one that can exceed ρ2,
which as we show below must be satisfied. The difference between the zero-discriminant
root, −k6/(2k5)− ψ2, and ρ2 is given by β1(φ2− 1)/(β2(αβ2 + β1)), which is negative for
all φ2 ∈ (0, 1/2]. The direction of the optimal policy follows from the fact the quadratic
function is convex and that ρ6 is the greater of the two roots. Thus, for all ρ < ρ6,
V̄2c(u

in
2 ) < V̄2a(1), and for all ρ > ρ6, V̄2c(u

in
2 ) > V̄2a(1).

Suppose that ρ6 ≤ ρ2. Then, for any ρ ∈ [ρ6, ρ2] the following are true:
• From the first part of lemma 5, V̄2c(u

in
2 ) ≥ V̄2a(1) for all ρ ∈ [ρ6, ρ2].

• From lemma 1, V̄2c(φ2) ≥ V̄2c(u
in
2 ) for all ρ ∈ [ρ6, ρ2].

• From lemma 4, V̄2a(1) > V̄2c(φ2) for all ρ ∈ [ρ6, ρ2], since ρ5 > ρ2.
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Thus,
V̄2a(1) > V̄2c(φ2) ≥ V̄2c(uin2 ) ≥ V̄2a(1), ∀ρ ∈ [ρ6, ρ2],

which is a contradiction, and therefore, ρ6 > ρ2.
Suppose that ρ6 ≥ ρ5. Then, for any ρ ∈ [ρ5, ρ6] the following are true:

• From the first part of lemma 5, V̄2a(1) ≥ V̄2c(u
in
2 ) for all ρ ∈ [ρ5, ρ6].

• From lemma 1, V̄2c(u
in
2 ) > V̄2c(φ2) for all ρ ∈ [ρ5, ρ6], since ρ5 > ρ2.

• From lemma 4, V̄2c(φ2) ≥ V̄2a(1) for all ρ ∈ [ρ5, ρ6].
Thus,

V̄2c(φ2) ≥ V̄2a(1) ≥ V̄2c(uin2 ) > V̄2c(φ2), ∀ρ ∈ [ρ5, ρ6],

which is a contradiction, and therefore, ρ6 < ρ5. Thus, ρ6 ∈ (ρ2, ρ5). Q.E.D.

B.2 Medium and high market efficiency: Detailed description

For the case of medium market efficiency the five equilibrium candidates are one, 3φ2−1,
2 − 3φ2, u

in
2 (ρ), and zero. Lemmas 11, 12 and 13 provide the optimal policy in the

respective concave, linear and convex parts of the objective, see Eq. (3.10). For all
explicit expressions used in this subsection see appendix B.3.

Lemma 11. Let ρ1 and ρ7 given by uin2 (ρ) = 0 and uin2 (ρ) = 2 − 3φ2, respectively, be
quota price thresholds. Then, the optimal policy u∗2 in the [0, 2− 3φ2] region is given by

u∗2(ρ) = min(max(0, uin2 ), 2− 3φ2) =


0, ρ ≥ ρ1,
uin2 , ρ7 ≤ ρ ≤ ρ1,
2− 3φ2, ρ ≤ ρ7.

In addition, ρ1 > ρ7 for all φ2 ∈ [1/2, 2/3), and ρ1 = ρ7 when φ2 = 2/3.15

See appendix B.3 for the proof.

Lemma 12. Let ρ8 given by V̄ ′2d(u2) = 0 be a quota price threshold. Then, the optimal
policy u∗2 in the [2− 3φ2, 3φ2 − 2] region is given by

u∗2(ρ) =


2− 3φ2, ρ > ρ8,

u2 ∈ [2− 3φ2, 3φ2 − 1], ρ = ρ8,

3φ2 − 1, ρ < ρ8.

The relative position of ρ8 depends on ξ as follows:
a. Let ξ = 1 and φ2 ∈ [1/2, 2/3]. Then, ρ8 < ρ7.
b. Let ξ = 0. Then, ρ8 ∈ (ρ7, ρ1) for all φ2 ∈ [1/2, 2/3), and ρ1 = ρ7 = ρ8 when φ2 = 2/3.
See appendix B.3 for the proof.

Lemma 13. Let ρ9 given by V̄2a(3φ2 − 1) = V̄2a(1) be a quota price threshold. Then,
the optimal policy u∗2 is given by

u∗2(ρ) =

{
3φ2 − 1, ρ ≥ ρ9,
1, ρ ≤ ρ9.

The relative position of ρ9 depends on ξ as follows:
a. Let ξ = 1 and φ2 ∈ [1/2, 2/3). Then, ρ9 < ρ8.
b. Let ξ = 0 and φ2 ∈ [1/2, 2/3). Then, ρ9 ∈ (ρ8, ρ1).

16

See appendix B.3 for the proof.

15Notice that ρ7 = ρ2 when φ2 = 1/2.
16Notice that ρ9 = ρ4 = ρ5 when φ2 = 1/2.
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Suppose that ξ = 1 and φ2 ∈ [1/2, 2/3). It then follows from lemmas 11-13 that
ρ1 > ρ7 > ρ8 > ρ9. This implies that all equilibria candidates occur in distinct ρ regions.
Therefore, a complete equilibrium exists. Note that at φ2 = 2/3, candidates uin2 , 2− 3φ2

are equal to zero, and candidate 3φ2 − 1 is equal to one, and thus price threshold ρ8
becomes the switching price between the two strategies.

Suppose that ξ = 0 and φ2 ∈ [1/2, 2/3). It then follows from lemmas 11-13 that
ρ1 > ρ9 > ρ8 > ρ7. This implies that strategies u2 = 3φ2 − 1 and u2 = 2 − 3φ2 are
strictly dominated by u2 = uin2 for all ρ ≥ ρ8 since ρ8 > ρ7, and by u2 = 1 for all ρ ≤ ρ8
since ρ8 < ρ9. Thus, we need to compare candidates uin2 and 1 in order to determine the
complete equilibrium strategy. Because V̄2c and V̄2a are specified as in the low market
efficiency case the indifference price threshold is equivalent to ρ6, which is defined in
lemma 5, its relevant position however now differs since φ2 ≥ 1/2. Lemma 14 provides
the optimal policy for completeness.

Lemma 14. Suppose that ξ = 0 and let ρ6 given by V̄2c(u
in
2 ) = V̄2a(1) be a quota price

threshold. Then the optimal policy u∗2 is given by

u∗2(ρ) =

{
uin2 , ρ ≥ ρ6,
1, ρ ≤ ρ6.

In addition, ρ6 ∈ (ρ7, ρ9) for all φ2 ∈ [1/2, 2/3).
See appendix B.3 for the proof.

Thus, when ξ = 0, it follows from lemmas 11-14 that ρ1 > ρ6 for all φ2 ∈ [1/2, 2/3)
and the feasible equilibrium strategies, namely, zero, one, and uin2 are mutually exclusive.
Note that at φ2 = 2/3, uin2 = 0, and thus ρ8 becomes the switching threshold between
strategies zero and one.

B.3 Medium and high market efficiency: Proofs

Price thresholds and parameter expressions used in the proofs are summarised here.

ρ1 =
k1
k2
− ψ2, ρ7 =

k1 − (2− 3φ2)

k2
− ψ2, ρ8 =

β2 − 1

β2
− ψ2,

ρ9 =
k8

2− 3φ2

− ψ2, ρ6 =

√
k26 − 4k5k7 − k6

2k5
− ψ2,

where

k8 =
5φ2β1(1− α) + 12(2− 3φ2)α(β1 + β2 − 1)

12(αβ2 + β1)
− β1(8φ

2
2 − 6φ2 + 1)

β2(αβ2 + β1)

− (2− 3φ2)β1((3 + 2/φ2)β1(1− α) + 12α)ξ

24(αβ2 + β1)2

For the explicit expressions of k1, k2, k5, k6 and k7 see appendix B.1.

Proof of lemma 11 The inner policy is given by uin2 (ρ) = k1− k2(ρ+ψ2) with k2 > 0.
Let ρ1 = k1/k2 − ψ2 : uin2 (ρ) = 0 and ρ7 = (k1 − (2 − 3φ2))/k2 : uin2 (ρ) = 2 − 3φ2, with
ρ7 ≤ ρ1 since 2− 3φ2 ≥ 0. The optimal policy follows from the concavity of V̄2c.Q.E.D.
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Proof of lemma 12. The slope of V̄2d is given by V̄ ′2d = (β2 − 1)/β2 − ρ − ψ2. Let
ρ8 = (β2 − 1)/β2 − ψ2 : V̄ ′2b = 0. The slope is positive for ρ < ρ8 and negative for ρ > ρ8.
The optimal policy follows from the linearity of V̄2d.

The difference between ρ8 and ρ7 is given by

ρ8 − ρ7 =
β1(2− 3φ2 − ξ)
2β2(αβ2 + β1)

,

which in the region of interest, i.e., φ2 ∈ [1/2, 2/3], is greater or equal to zero when ξ = 0,
and negative when ξ = 1. Since ρ8 ≥ ρ7 when ξ = 0, we need to compare it with ρ1.
Their difference is given by

ρ8 − ρ1 =
β1(3φ2 − 2)(αβ2 + β1)

2β2(αβ2 + β1)2
,

which is less or equal to zero in the region of interest. To sum up, ρ8 < ρ7 when ξ = 1 and
φ2 ∈ [1/2, 2/3]. Moreover, ρ8 ∈ (ρ7, ρ1) when ξ = 0 and φ2 ∈ [1/2, 2/3), and ρ1 = ρ2 = ρ3
when ξ = 0 and φ2 = 2/3. Q.E.D.

Proof of lemma 13. The objective in the [3φ2 − 1, 1] region is convex. The foreign
agent is indifferent between u2 = 3φ2−1 and u2 = 1 if and only if V̄2a(3φ2−1)− V̄2a(1) =
0⇔ (2−3φ2)(ρ+ψ2)−k8 = 0. Let ρ9 = k8/(2−3φ2)−ψ2 : V̄2a(3φ2−1)− V̄2a(1) = 0. At
φ2 = 2/3, ρ4 is not defined since 2− 3φ2 becomes zero, which causes no trouble since the
convex function is absorbed by the linear at that point and the two equilibria coincide.
For any φ2 ∈ [1/2, 2/3), 2 − 3φ2 is strictly positive and the optimal policy is given by
u∗2 = 3φ2 − 1 for all ρ ≥ ρ4, and u∗2 = 1 for all ρ ≤ ρ4.

First, we compare ρ9 and ρ8. Their difference when ξ = 1 is given by

ρ9 − ρ8 = −
(
αβ2 + β1

9φ2 − 2

6φ2

)
β1φ2

8β2(αβ2 + β1)2

which is negative since (9φ2 − 2)/(6φ2) > 0 for all φ2 ∈ [1/2, 2/3). Thus, ρ9 < ρ8.
Their difference when ξ = 0 is given by

ρ9 − ρ8 =
(2− 3φ2)β1

4β2(αβ2 + β1)
,

which is strictly positive since 2− 3φ2 > 0 for all φ2 ∈ [1/2, 2/3) implying that ρ9 > ρ8.
Finally, we compare ρ9 and ρ1 when ξ = 0. Their difference is given by

ρ9 − ρ1 = − β1(2− 3φ2)

4β2(αβ2 + β1)
,

which is negative since 2−3φ2 > 0 for all φ2 ∈ [1/2, 2/3). To sum up, ρ9 < ρ8 when ξ = 1
and φ2 ∈ [1/2, 2/3). Moreover, ρ9 ∈ (ρ8, ρ1) when ξ = 0 and φ2 ∈ [1/2, 2/3). Q.E.D.

Proof of lemma 14. Because V̄2c and V̄2a are the same as the case when φ2 ∈ (0, 1/2],
the price threshold and the direction of the optimal policy follows from lemma 5. Here
we verify that the greater root is the “right” one, and show that ρ6 ∈ (ρ7, ρ9). First, the
difference between the zero-discriminant root and ρ7 is given by β1(1−3φ2)/(β2(αβ2+β1)),
which is negative for all φ2 ∈ [1/2, 2/3). A reminder before moving on, ρ1 > ρ9 > ρ8 > ρ7
when ξ = 0.

Suppose that ρ6 ≤ ρ7. Then, for any ρ ∈ [ρ6, ρ7] the following are true:
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• From the first part of lemma 14, V̄2c(u
in
2 ) ≥ V̄2a(1) for all ρ ∈ [ρ6, ρ7].

• From lemma 11, V̄2c(2− 3φ2) ≥ V̄2c(u
in
2 ) for all ρ ∈ [ρ6, ρ7].

• From lemma 12, V̄2a(3φ2 − 1) > V̄2c(2− 3φ2) for all ρ ∈ [ρ6, ρ7], since ρ8 > ρ7.
• From lemma 13, V̄2a(1) > V̄2a(3φ2 − 1) for all ρ ∈ [ρ6, ρ7], since ρ9 > ρ7.
Thus,

V̄2a(1) > V̄2a(3φ2 − 1) > V̄2c(2− 3φ2) ≥ V̄2c(uin2 ) ≥ V̄2a(1), ∀ρ ∈ [ρ6, ρ7],

which is a contradiction, and therefore, ρ6 > ρ7.
Suppose that ρ6 ≥ ρ9. Then, for any ρ ∈ [ρ9, ρ6] the following are true:

• From the first part of lemma 14, V̄2a(1) ≥ V̄2c(u
in
2 ) for all ρ ∈ [ρ9, ρ6].

• From lemma 11, V̄2c(u
in
2 ) > V̄2c(2− 3φ2) for all ρ ∈ [ρ9, ρ6], since ρ9 > ρ7.

• From lemma 12, V̄2c(2− 3φ2) > V̄2a(3φ2 − 1) for all ρ ∈ [ρ9, ρ6], since ρ8 < ρ9.
• From lemma 13, V̄2a(3φ2 − 1) ≥ V̄2a(1) for all ρ ∈ [ρ9, ρ6],
Thus,

V̄2c(u
in
2 ) > V̄2c(2− 3φ2) > V̄2a(3φ2 − 1) ≥ V̄2a(1) ≥ V̄2c(uin2 ), ∀ρ ∈ [ρ9, ρ6],

which is a contradiction, and therefore, ρ6 < ρ9. Thus, ρ6 ∈ (ρ7, ρ9). Q.E.D.

B.4 Specification of the foreign agent’s quota equilibria

The foreign agent’s equilibria functions are:

u12(ρ) =



0, ρ ≥ ρ1,

uin2 (ρ), ρ2 ≤ ρ ≤ ρ1,

φ2, ρ3 ≤ ρ ≤ ρ2,

u2 ∈ [φ2, 1− φ2], ρ = ρ3,

1− φ2, ρ4 ≤ ρ ≤ ρ3,

1, ρ ≤ ρ4,

u42(ρ) =



0, ρ ≥ ρ1,

uin2 (ρ), ρ7 ≤ ρ ≤ ρ1,

2− 3φ2, ρ8 ≤ ρ ≤ ρ7,

u2 ∈ [2− 3φ2, 3φ2 − 1], ρ = ρ8,

3φ2 − 1, ρ9 ≤ ρ ≤ ρ8,

1, ρ ≤ ρ9,

u22(ρ) =


0, ρ ≥ ρ1,

uin2 (ρ), ρ2 ≤ ρ ≤ ρ1,

φ2, ρ5 ≤ ρ ≤ ρ2,

1, ρ ≤ ρ5,

u32(ρ) =


0, ρ ≥ ρ1,

uin2 (ρ), ρ6 ≤ ρ ≤ ρ1,

1, ρ ≤ ρ6,

u52(ρ) =


0, ρ ≥ ρ8,

u2 ∈ [0, 1], ρ = ρ8,

1, ρ ≤ ρ8.

C Home country’s price subgame

C.1 Welfare-maximiser foreign agent

C.1.1 Very low market efficiency: Proofs

Cost difference thresholds and parameter expressions used below are summarised here.

λ1 =
l2
l1
, λ2 =

l3
l1
, λ3 =

l4
φ2

, λ4 =
l5

1− 2φ2

, λ5 =
l6

1− φ2

, λ6 = − l8 +
√
l28 − 4l7l9
2l7

132



where

l1 =
4αβ2 + 3β1
5αβ2 + 4β1

, l2 =
(α− 1)β1(4αβ2 + 3β1)

4(αβ2 + β1)(5αβ2 + 4β1)
, l3 =

(1− α)β1(2αβ2 + β1)(4αβ2 + 3β1)

12(αβ2 + β1)2(5αβ2 + 4β1)
,

l4 =
β1((1− α)(8φ2 − 3)β1 + 3α((15φ2 − 14)φ2 + 4))

24(αβ2 + β1)2
, l5 =

β1φ2((1− α)(αβ2 + 3β1) + 3α)

6(αβ2 + β1)2
,

l6 =
β1(β1(1− α)(20φ2 − 3) + 3α(19φ2

2 − 10φ2 + 4))

24(αβ2 + β1)2
, l8 =

(8φ2 − 5)αβ2 + (7φ2 − 4)β1
5αβ2 + 4β1

,

l7 =
2β2(αβ2 + β1)

2

β1(5αβ2 + 4β1)
, l9 =

β2
1(49(1− α)φ2β

2
1 + 12α(αβ2(6φ

2
2 + 5φ2) + 4β1(5φ

2
2 + φ2)))

24β1(αβ2 + β1)2(5αβ2 + 4β1)
.

Proof of lemma 6. The differences between the two bounds ρ1, ρ2 and the inner policy
ρin are given by ρ1 − ρin = (ψ1 − ψ2)l1 − l2 and ρ2 − ρin = (ψ1 − ψ2)l1 − l3 with
l1 > 0, l2 < 0 and l3 > 0 for all α ∈ (0, 1). Let ∆ψ ≡ λ1 = l2/l1 : ρ1 = ρin and
∆ψ ≡ λ2 = l3/l1 : ρ2 = ρin. The optimal policy follows from the concavity of V̄1b. In
addition, λ1 < 0 and λ2 > 0. Q.E.D.

Proof of lemma 7. The home country is indifferent between ρ = ρ4 and ρ = ρ3 if
and only if V̄1d(ρ3) − V̄1e(ρ4) = 0 ⇔ l4 − φ2(ψ1 − ψ2) = 0. Let ∆ψ ≡ λ3 = l4/φ2 :
V̄1d(ρ3) − V̄1e(ρ4) = 0. Since φ2 > 0, ρ∗ = ρ3 for all ∆ψ ≤ λ3, and ρ∗ = ρ4 for all
∆ψ ≥ λ3.

Suppose that λ3 ≤ λ2. Then,

λ3 − λ2 ≤ 0⇔ β1(α(φ2(11φ2 − 14) + 4)− β1(1− α)(1− 2φ2))

8(αβ2 + β1)2φ2
≤ 0

Our conjecture is true if and only if B1 = α(φ2(11φ2− 14) + 4)− β1(1−α)(1− 2φ2) ≤ 0.
First, we know that φ2 ∈ (0, 2/5 − θ], where θ = β1(1 − α)/(10α) > 0 since α ∈ (0, 1).
This implies that φ2 must be strictly less than 2/5. Next, we build B1 from φ2 ≤ 2/5− θ,
which we re-write as: −β1(1−α) ≥ 2α(5φ2−2). Multiplying both sides with 1−2φ2 > 0,
and adding αφ2(11φ2 − 14) + 4) yields B1 ≥ αφ2(4− 9φ2). For all φ2 ≤ 2/5, 4− 9φ2 > 0
implying that B1 > 0. The conjecture is not true and therefore λ3 > λ2. Q.E.D.

Proof of lemma 8. The home country is indifferent between ρ = ρ3 and ρ = ρ2 if and
only if V̄1c(ρ2)− V̄1d(ρ3) = 0⇔ l5 + (2φ2− 1)(ψ1−ψ2) = 0. Let ∆ψ ≡ λ4 = l5/(1− 2φ2) :
V̄1c(ρ2) − V̄1d(ρ3) = 0. Note that in the region of interest φ2 < 2/5 < 1/2, thus λ4 is
always defined. Since 1− 2φ2 > 0, ρ∗ = ρ2 for all ∆ψ ≤ λ4, and ρ∗ = ρ3 for all ∆ψ ≥ λ4.

First, we compare λ4 and λ3. Their difference is given by

λ4 − λ3 =
αβ1(β1B2/(αβ2) + B3)

8(αβ2 + β1)2(1− 2φ2)φ2
,

where B2 = 28φ3
2−14φ2

2+3φ2 and B3 = 34φ3
2−39φ2

2+22φ2−4. B2 > 0, since its only real
root occurs at φ2 = 0, which is outside the region of interest. Moreover, B3 has one real
root at φ2 ≈ 0.3. Thus, B3 < 0 for all φ2 ∈ (0, 0.3), and B3 > 0 for all φ2 > 0.3. Since the
denominator is strictly positive, the sign is determined by the numerator and specifically
by β1B2/(αβ2) + B3, which can be both positive and negative in the region of interest,
i.e., when φ2 ∈ (0, 2/5 − θ]. The numerator is strictly positive, if β1/(αβ2) > −B3/B2,
implying that λ4 > λ3. And, negative or zero otherwise, implying that λ4 ≤ λ3.
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We illustrate this claim using two numerical examples. Consider the parameter vectors
Θ1 = [α = 0.6, β1 = 1, β2 = 2.4] and Θ2 = [α = 0.8, β1 = 1, β2 = 2.4]. φ2 takes the values
of 0.32 < 0.33 and 0.16 < 0.375 respectively, but λ4 > λ3 at Θ1 and vice-versa at Θ2.

If (C.1) fails, λ4 ≤ λ3 and we need to compare λ4 and λ2. Their difference is given by

λ4 − λ2 =
αβ1(β1(8φ

2
2 − φ2)/(αβ2) + 6φ22)

4(αβ2 + β1)2(1− 2φ2)

The roots of 8φ2
2−φ2 occur at φ2 = 0 and φ2 = 1/8. This implies that for all φ2 ∈ (0, 1/8]

its value is negative and for all φ2 > 1/8 its value positive. The sign is determined
by β1(8φ

2
2 − φ2)/(αβ2) + 6φ2

2, which can be both positive and negative in the region of
interest, i.e., when φ2 ∈ (0, 2/5 − θ] and (C.1) fails. Thus, λ4 ∈ [λ2, λ3), when β1(8φ

2
2 −

φ2)/(αβ2) + 6φ2
2 ≥ 0, and λ4 < λ2 otherwise.

We illustrate this claim using two numerical examples. Consider the parameter vectors
Θ2 = [α = 0.8, β1 = 1, β2 = 2.4] and Θ3 = [α = 0.95, β1 = 1, β2 = 2.4]. Condition (C.1)
fails for both vectors, φ2 takes the values of 0.16 < 0.375 and 0.04 < 0.395, respectively,
but λ4 ≥ λ2 at Θ2 and vice-versa at Θ3.

If (C.2) fails, λ4 < λ2 and we need to compare, λ4 and λ1. Their difference is:

λ4 − λ1 =
β1(1− α)(4αβ2(1− φ2) + αβ2 + 3β1)

12(αβ2 + β1)2(1− 2φ2)

which is strictly positive for all φ2 ∈ (0, 2/5− θ] ⊂ (0, 1/2), thus λ4 > λ1. Q.E.D.

Proof of lemma 9. The home country is indifferent between ρ = ρ4 and ρ = ρ2 if and
only if V̄1c(ρ2)− V̄1e(ρ4) = 0⇔ l6 − (1− φ2)(ψ1 − ψ2) = 0. Let ∆ψ ≡ λ5 = l6/(1− φ2) :
V̄1c(ρ2) − V̄1e(ρ4) = 0. Since 1 − φ2 > 0, ρ∗ = ρ2 for all ∆ψ ≤ λ5, and ρ∗ = ρ4 for all
∆ψ ≥ λ5.

The difference between λ5 and λ2 is given by

λ5 − λ2 =
αβ1(β1B4/(αβ2) + B5)

8(αβ2 + β1)2(1− φ2)

where B4 = 22φ2
2 − 5φ2 and B5 = 23φ2

2 − 14φ2 + 4. B5 > 0, since its discriminant is
negative and at zero its value is positive. The roots of B4 are 0 and 5/22, thus for all
φ2 ∈ (0, 5/22) it is negative and for all φ2 ≥ 5/22 it is positive. The sign is determined
by the numerator, which is positive when B4 ≥ 0, but may be negative, when B4 < 0.

Let B4 be negative and suppose that β1B4/(αβ2) + B5 ≤ 0, which we re-write as
β1/(αβ2) ≥ −B5/B4. One can verify that the intersection of the above inequality with
the region of interest is empty. The region of interest occurs when condition (C.1) holds
and φ2 ∈ (0, 5/22) ∩ (0, 2/5− θ]. Thus, λ5 > λ2.
Hint: re-write φ2 ≤ 2/5− θ as β1/(αβ2) ≤ 4/(3φ2)− 10/3. Q.E.D.

Proof of lemma 10. The home country is indifferent between ρ = ρ3 and ρ = ρin

if and only if V̄1b(ρ
in) − V̄1d(ρ3) = 0 ⇔ l7(ψ1 − ψ2)

2 + l8(ψ1 − ψ2) + l9 = 0. The
discriminant ∆ = l28−4l7l9 simplifies to (αβ2(8φ

2
2−20φ2+5)+2β1(2−7φ2))/(5αβ2+4β1),

which is always positive in the region of interest, i.e., when both conditions (C.1) and
(C.2) fail. Thus, the cost differences that make the home country indifferent between
ρ = ρ3 and ρ = ρin are λ6 = (±

√
l28 − 4l7l9 − l8)/(2l7). From the two roots we keep

the lower one, which is the one that satisfies λ6 < λ2, which as we show below must be
satisfied. The difference between the zero-discriminant root, −l8/(2l7), and λ2 is given
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by β1(5αβ2 + 4β1)(1 − 2φ2)/(4β2(αβ2 + β1)
2, which is positive for all φ2 ∈ (0, 1/2]. The

direction of the optimal policy follows from the fact that the quadratic function is convex
and that λ6 is the lower of the two roots. Thus, ρ∗ = ρin for all ∆ψ ≤ λ6, and ρ∗ = ρ4
for all ∆ψ ≥ λ6.

Suppose that λ6 ≤ λ4. Then, for any ∆ψ = ψ1 − ψ2 ∈ [λ6, λ4] the following are true:
• From the first part of lemma 10, V̄1d(ρ3) ≥ V̄1b(ρ

in) for all ∆ψ ∈ [λ6, λ4].
• From lemma 6, V̄1b(ρ

in) > V̄1c(ρ2) for all ∆ψ ∈ [λ6, λ4], since λ4 < λ2.
• From lemma 8, V̄1c(ρ2) ≥ V̄1d(ρ3) for all ∆ψ ∈ [λ6, λ4].
Thus,

V̄1b(ρ
in) > V̄1c(ρ2) ≥ V̄1d(ρ3) ≥ V̄1b(ρin), ∀∆ψ ∈ [λ6, λ4],

which is a contradiction, and therefore, λ6 > λ4.
Suppose that λ6 ≥ λ2. Then, for any ∆ψ ∈ [λ2, λ6] the following are true:

• From the first part of lemma 10, V̄1b(ρ
in) ≥ V̄1d(ρ3) for all ∆ψ ∈ [λ2, λ6].

• From lemma 6,V̄1c(ρ2) ≥ V̄1b(ρ
in) for all ∆ψ ∈ [λ2, λ6].

• From lemma 8, V̄1d(ρ3) > V̄1c(ρ2) for all ∆ψ ∈ [λ2, λ6], since λ4 < λ2.
Thus,

V̄1d(ρ3) > V̄1c(ρ2) ≥ V̄1b(ρin) ≥ V̄1d(ρ3), ∀∆ψ ∈ [λ2, λ6],

which is a contradiction, and therefore, λ6 < λ2. Thus, λ6 ∈ (λ4, λ2). Q.E.D.

C.1.2 Low market efficiency: Details

For the case of low market efficiency the four equilibrium candidates are ρ1, ρ
in, ρ2, and

ρ5. The following lemmas provide the solution that maximises Eq. (3.13). In the [ρ2, ρ1]
interval the objective is similar to the very low efficiency case and the optimal policy is
thus given by lemma 6. Next, we compare the welfare generated at ρ5 and ρ2, which are
local optimal of V̄1e and V̄1c. If V̄1e(ρ5) exceeds V̄1c(ρ2), the preferred strategy is ρ5 and
the home country prefers the foreign agent to buy everything. Otherwise, the preferred
strategy is ρ2 and the foreign agent buys u2 = φ2. Lemma 15 summarises.

Lemma 15. Let ∆ψ = λ7 given by V̄1e(ρ5) = V̄1c(ρ2) be a cost difference threshold.17

Then, the optimal policy ρ∗ is given by

ρ∗ =

{
ρ5, ∆ψ ≥ λ7,
ρ2, ∆ψ ≤ λ7.

Let αφ2(17−23φ2)−(22φ2
2−21φ2+2)β1/β2 ≥ 0 be condition (C.3). The relative position

of λ7 depends on (C.3) as follows:
a. Let condition (C.3) to hold. Then, λ7 ≥ λ2.
b. Let condition (C.3) to fail. Then, λ7 ∈ (λ1, λ2).
See appendix C.1.3 for the proof.

Suppose that (C.3) holds, then it follows from lemmas 6 and 15 that λ1 < λ2 ≤ λ7.
This implies that strategies ρ1, ρ

in, ρ2 and ρ5 occur in distinct ∆ψ regions and thus a
complete equilibrium exists. If condition (C.3) binds, then λ7 = λ2 and strategy ρ = ρ2
becomes weakly dominated by ρ = ρ5 and ρ = ρin, this is a degeneration.

Suppose that (C.3) fails, i.e., λ7 < λ2. Then, ρ = ρ2 is strictly dominated by ρ = ρin

for all ∆ψ ≤ λ7 < λ2, see lemma 6. Also, from lemma 15, ρ = ρ2 is strictly dominated
by ρ = ρ5 for all ∆ψ > λ7. This implies that we need to compare strategies ρ5 and ρ2.
Lemma 16 provides the optimal policy.

17For explicit definitions of the cost difference thresholds associated with this case see appendix C.1.3.
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Lemma 16. Suppose that λ7 ∈ (λ1, λ2) and let ∆ψ = λ8 given by V̄1e(ρ5) = V̄1b(ρ
in) be

a cost difference threshold. Then, the optimal policy ρ∗ is given by

ρ∗ =

{
ρ5, ∆ψ ≥ λ8,
ρin, ∆ψ ≤ λ8.

In addition, λ8 ∈ (λ7, λ2) when (C.3) fails.
See appendix C.1.3 for the proof.

It then follows from lemmas 6, 15 and 16, that λ8 > λ1, when λ7 ∈ (λ1, λ2). This
implies that strategies ρ1, ρ

in and ρ5 are mutually exclusive.

C.1.3 Low market efficiency: Proofs

Cost difference thresholds and parameter expressions used below are summarised here.

λ7 =
l10

1− φ2
, λ8 = − l12 +

√
l212 − 4l11l13
2l11

where

l10 =
β1φ2((17− 20φ2)(1− α)β1 − 3α(19φ22 − 9φ2 − 4))

24(αβ2 + β1)2(1− φ2)
,

l11 =
2β2(αβ2 + β1)

2

β1(5αβ2 + 4β1)
, l12 =

(3φ2 − 5)αβ2 + (3φ2 − 4)β1
5αβ2 + 4β1

,

l13 =
β1φ2

(
(23− 27φ2)(1− α)β21 − (180φ22 − 125φ2 − 16)αβ1 − (99φ22 − 49φ2 − 20)α2β2

)
8(5αβ2 + 4β1)(αβ2 + β1)2(1− φ2)

Proof of lemma 15. The home country is indifferent between ρ = ρ5 and ρ = ρ2 if
and only if V̄1c(ρ2)− V̄1e(ρ5) = 0⇔ l10− (1− φ2)(ψ1−ψ2). Let ∆ψ ≡ λ7 = l10/(1− φ2) :
V̄1c(ρ2) − V̄1e(ρ5) = 0. Since 1 − φ2 > 0, ρ∗ = ρ2 for all ∆ψ ≤ λ7, and ρ∗ = ρ5 for all
∆ψ ≥ λ7.

First, we compare λ7 and λ2. Their difference is given by

λ7 − λ2 =
β1φ2(αφ2(17− 23φ2)− (22φ22 − 21φ2 + 2)β1/β2)

8(αβ2 + β1)2(1− φ2)2
,

which can be both positive and negative in the region of interest, i.e.,
φ2 ∈ (max(0, 2/5− θ, 1/2]. Thus, if αφ2(17− 23φ2)− (22φ2

2 − 21φ2 + 2)β1/β2 ≥ 0, then
λ7 ≥ λ2, otherwise, λ7 < λ2.

We illustrate this claim using two numerical examples. Consider the parameter vectors
Θ4 = [α = 0.5, β1 = 4, β2 = 1] and Θ5 = [α = 0.5, β1 = 4, β2 = 0.5]. Parameter φ2 takes
the values of 0.167 ∈ (0, 1/2] and 0.083 ∈ (0, 1/2], respectively, but λ7 > λ2 at Θ4 and
vice-versa at Θ5.

If (C.3) fails, λ7 < λ2 and we need to compare λ7 and λ1. Their difference is given by

λ7 − λ1 = −β1φ2(αβ2(13φ22 + 3φ2 − 10) + β1(14φ22 − 5φ2 − 6))

8β2(αβ2 + β1)2(1− φ2)2
,

which is positive for all φ2 ∈ (max(0, 2/5− θ), 1/2] ⊆ (0, 1/2], and thus λ7 > λ1.Q.E.D.
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Proof of lemma 16. The home country is indifferent between ρ = ρ5 and ρ = ρin

if and only if V̄1b(ρ
in) − V̄1e(ρ5) = 0 ⇔ l11(ψ1 − ψ2)

2 + l12(ψ1 − ψ2) + l13 = 0. The
discriminant ∆ = l212 − 4l11l13 simplifies to ((18φ3

2 − 2φ2
2 − 15φ2 + 5)αβ2 + (18φ3

2 − 9φ2
2 −

10φ2 + 4)β1)/((1 − φ2)(5αβ2 + 4β1)), which is always positive in the region of interest,
i.e., when condition (C.3) fails. Thus, the cost differences that make the home country
indifferent between ρ = ρ5 and ρ = ρin are λ8 = (±

√
l212 − 4l11l13 − l12)/(2l11). From

the two roots we keep the lower one, which is the only one that satisfies λ8 < λ2, which
as we shall show next must be satisfied. The difference between the zero-discriminant
root, −l12/(2l11), and λ2 is given by (1− φ2)(15αβ2 + 12β1)β1/(12(αβ2 + β1)

2β2), which
is strictly positive for all φ2 ∈ (0, 1/2]. The direction of the optimal policy follows from
the fact that the quadratic function is convex and that λ8 is the lower of the two roots.
Thus, ρ∗ = ρin for all ∆ψ ≤ λ8, and ρ∗ = ρ5 for all ∆ψ ≥ λ8.

Suppose that λ8 ≤ λ7. Then, for any ∆ψ = ψ1 − ψ2 ∈ [λ8, λ7] the following are true:
• From the first part of lemma 16, V̄1e(ρ5) ≥ V̄1b(ρ

in) for all ∆ψ ∈ [λ8, λ7].
• From lemma 15, V̄1c(ρ2) ≥ V̄1e(ρ5) for all ∆ψ ∈ [λ8, λ7].
• From lemma 6, V̄1b(ρ

in) > V̄1c(ρ2) for all ∆ψ ∈ [λ8, λ7], since λ7 < λ2.
Thus,

V̄1b(ρ
in) > V̄1c(ρ2) ≥ V̄1e(ρ5) ≥ V̄1b(ρin), ∀∆ψ ∈ [λ8, λ7],

which is a contradiction, and therefore, λ8 > λ7.
Suppose that λ8 ≥ λ2. Then, for any ∆ψ = ψ1 − ψ2 ∈ [λ2, λ8] the following are true:

• From the first part of lemma 16, V̄1b(ρ
in) ≥ V̄1e(ρ5) for all ∆ψ ∈ [λ2, λ8].

• From lemma 15, V̄1e(ρ5) > V̄1c(ρ2) for all ∆ψ ∈ [λ2, λ8], since λ7 < λ2.
• From lemma 6, V̄1c(ρ2) ≥ V̄1b(ρ

in) for all ∆ψ ∈ [λ2, λ8].
Thus,

V̄1e(ρ5) > V̄1c(ρ2) ≥ V̄1b(ρin) ≥ V̄1e(ρ5), ∀∆ψ ∈ [λ2, λ8],

which is a contradiction, and therefore, λ8 < λ2. Thus, λ8 ∈ (λ7, λ2). Q.E.D.

C.1.4 Medium market efficiency: Details

For the case of medium market efficiency the five equilibrium candidates are ρ1, ρ
in, ρ7,

ρ8, and ρ9. The following lemmas provide the solution that maximises Eq. (3.14). First,
we compare the candidates in the concave branch, i.e., [ρ7, ρ1] subregion. Lemma 17
provides the optimal policy.

Lemma 17. Let ∆ψ = λ1 and ∆ψ = λ9 given by ρin = ρ1 and ρin = ρ7, respectively, be
cost difference thresholds.18 Then, the optimal policy ρ∗ in the [ρ7, ρ1] region is

ρ∗ = min(max(ρ7, ρ
in), ρ1) =


ρ7, ∆ψ ≥ λ9,
ρin, λ1 ≤ ∆ψ ≤ λ9,
ρ1, ∆ψ ≤ λ1.

In addition, λ1 < 0, λ9 ≶ 0, and λ1 < λ9 for all φ2 ∈ (1/2, 2/3).
See appendix C.1.5 for the proof.

Since λ9 ≶ 0, there exist market conditions such that λ9 < 0 where the foreign
agent buys the positive quantities, uin2 (ρin) and 2 − 3φ2 despite the fact that it has a

18For explicit definitions of the cost difference thresholds associated with this case see appendix C.1.5.
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cost disadvantage. For efficiency levels less than λ1, the home country charges ρ1 which
induces the foreign agent to buy zero quotas. Next, we compare the value at ρ9 and ρ8,
which are local optimal of V̄1e and V̄1d respectively. Lemma 18 provides the preferred
strategy. In addition, lemma 19 provides the optimal policy between ρ8 and ρ7, which
are local optima of V̄1d and V̄1c respectively.

Lemma 18. Let ∆ψ = λ10 given by V̄1e(ρ9) = V̄1d(ρ8) be a cost difference threshold.
Then, the optimal policy ρ∗ is given by

ρ∗ =

{
ρ9, ∆ψ ≥ λ10,
ρ8, ∆ψ ≤ λ10.

In addition, λ10 > 0 and λ10 > λ9 for all φ2 ∈ (1/2, 2/3).
See appendix C.1.5 for the proof.

Lemma 19. Let ∆ψ = λ11 given by V̄1d(ρ8) = V̄1c(ρ7) be a cost difference threshold.
Then, the optimal policy ρ∗ is given by

ρ∗ =

{
ρ8, ∆ψ ≥ λ11,
ρ7, ∆ψ ≤ λ11.

Let αβ2(162φ3
2− 315φ2

2 + 174φ2− 28) + β1(108φ3
2− 234φ2

2 + 135φ2− 22) > 0 be condition
(C.4). The relative position of λ11 depends on (C.4) as follows:
a. Let condition (C.4) to hold. Then, λ11 > λ10.
b. Let condition (C.4) to fail. Then λ11 ∈ (λ9, λ10].
See appendix C.1.5 for the proof.

Suppose (C.4) fails, then it follows from lemmas 17-19 that λ1 < λ9 < λ11 ≤ λ10. This
implies that all strategies occur in distinct ∆ψ region and a thus complete equilibrium
exists. If condition (C.4) binds, then λ11 = λ10 and strategy ρ = ρ8 becomes weakly
dominated by ρ9 and ρ7, this is a degeneration.

Suppose that (C.4) holds, then λ11 > λ10 and strategy ρ = ρ8 is strictly dominated
by ρ = ρ9 for all ∆ψ ≥ λ11 > λ10, see lemma 18, and by ρ = ρ7 for all ∆ψ < λ11, see
lemma 19. This means that we need to compare strategies ρ9 and ρ7. The next lemma
provides the optimal policy.

Lemma 20. Let ∆ψ = λ12 given by V̄1e(ρ9) = V̄1c(ρ7) be a cost difference threshold.
Then, the optimal policy ρ∗ is given by

ρ∗ =

{
ρ9, ∆ψ ≥ λ12,
ρ7, ∆ψ ≤ λ12.

In addition, λ12 > 0 and λ12 > λ9 for all φ2 ∈ (1/2, 2/3).
See appendix C.1.5 for the proof.

Thus, when λ11 > λ10, it follows from lemmas 17-20 that λ1 < λ9 < λ12. This implies
that strategies ρ1, ρ

in, ρ7 and ρ9 are mutually exclusive for different ∆ψ levels, and thus
another complete equilibrium exists.
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C.1.5 Medium market efficiency: Proofs

Cost difference thresholds and parameter expressions used below are summarised here.

λ1 =
l2
l1
, λ9 =

l14
l1
, λ10 =

l15
2− 3φ2

, λ11 =
l16

3(2φ2 − 1)
, λ12 =

l17
3φ2 − 1

,

where

l14 =
β1(4αβ2 + 3β1)((2− 3φ2)(5αβ2 + 4β1)− 3φ2(αβ2 + β1))

4β2(αβ2 + β1)2(5αβ2 + 4β1)
,

l15 = −β1(αβ2(9φ
2
2 − 18φ2 + 4) + β1(2− 9φ2))

8β2(αβ2 + β1)2
, l16 = −β1(9φ

2
2 − 9φ2 + 2)

2β2(αβ2 + β1)
,

l17 = −β1(3αβ2(15φ22 − 18φ2 + 4) + β1(36φ22 − 45φ2 + 10))

8β2(αβ2 + β1)2
.

For the implicit expressions of l1 and l2 see appendix C.1.1.

Proof of lemma 17. The differences between the two bounds ρ1, ρ7 and the inner
policy ρin are given by ρ1−ρin = (ψ1−ψ2)l1−l2 and ρ7−ρin = (ψ1−ψ2)l1−l14 with l1 > 0,
l2 < 0 and l14 ≶ 0. Let ∆ψ ≡ λ1 = l2/l1 : ρ1 = ρin and ∆ψ ≡= λ9 = l1/l14 : ρ7 = ρin.
The optimal policy follows from the concavity of V̄1b. In addition, λ1 < 0 and λ9 ≶ 0,
with λ1 < λ9. Their difference is given by

λ1 − λ2 = −β1(2− 3φ2)(5αβ2 + 4β1)

4β2(αβ2 + β1)2
,

which is negative for all φ2 ∈ (1/2, 2/3). Q.E.D.

Proof of lemma 18. The home country is indifferent between ρ = ρ9 and ρ = ρ8 if
and only if V̄1d(ρ8) − V̄1e(ρ9) = 0 ⇔ l15 − (2 − 3φ2)(ψ1 − ψ2) = 0. Let ∆ψ ≡ λ10 =
l15/(2 − 3φ2) : V̄1d(ρ8) − V̄1e(ρ9) = 0. Since 2 − 3φ2 > 0, ρ∗ = ρ8 for all ∆ψ ≤ λ10, and
ρ∗ = ρ9 for all ∆ψ ≥ λ10.

Threshold λ10 is strictly positive since l15 > 0 for all φ2 ∈ (1/2, 2/3). Moreover, the
difference between λ10 and λ9 is given by

λ10 − λ9 = −β1(αβ2(117φ22 − 150φ2 + 44) + β1(90φ22 − 117φ2 + 34))

8β2(αβ2 + β1)2(2− 3φ2)

For all φ2 ∈ (1/2, 2/3), both 117φ2
2 − 150φ2 + 44 and 90φ2

2 − 117φ2 + 34 are negative.
Thus, λ10 > λ9. Q.E.D.

Proof of lemma 19. The home country is indifferent between ρ = ρ8 and ρ = ρ7 if
and only if V̄1c(ρ7) − V̄1d(ρ8) = 0 ⇔ l16 − 3(2φ2 − 1)(ψ1 − ψ2) = 0. Let ∆ψ ≡ λ11 =
l16/(3(2φ2 − 1)) : V̄1c(ρ7)− V̄1d(ρ8) = 0. Since 2φ2 − 1 > 0 for all φ2 ∈ (1/2, 2/3), ρ∗ = ρ7
for all ∆ψ ≤ λ11, and ρ∗ = ρ8 for all ∆ψ ≥ λ11.

First, we compare λ11 and λ10. Their difference is given by

λ11 − λ10 =
β1(αβ2(162φ32 − 315φ22 + 174φ2 − 28) + β1(108φ32 − 234φ22 + 135φ2 − 22)

24β2(αβ2 + β1)2(2φ2 − 1)(2− 3φ2)

For all φ2 ∈ (1/2, 2/3) the numerator can be both negative and positive. Thus, λ11 > λ10
when αβ2(162φ3

2 − 315φ2
2 + 174φ2 − 28) + β1(108φ3

2 − 234φ2
2 + 135φ2 − 22) > 0, otherwise

λ11 ≤ λ10.
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We illustrate this claim using two numerical examples. Consider the parameter vectors
Θ6 = [α = 0.3, β1 = 1, β2 = 2.2] and Θ7 = [α = 0.3, β1 = 1, β2 = 2.5], φ2 takes the values
of 0.513 and 0.583 respectively, but λ11 > λ10 at Θ6 and vice-versa at Θ7.

If (C.4) fails, λ11 ≤ λ10 and we need to compare λ11 and λ9. Their difference is given
by

λ11 − λ9 =
β1(αβ2(90φ22 − 96φ2 + 26) + β1(72φ22 − 75φ2 + 20))

12β2(αβ2 + β1)2(2φ2 − 1)
,

which is strictly positive for all φ2 ∈ (1/2, 2/3). Thus λ11 > λ9. Q.E.D.

Proof of lemma 20. The home country is indifferent between ρ = ρ9 and ρ = ρ7 if and
only if V̄1c(ρ7)− V̄1e(ρ9) = 0⇔ l17 − (3φ2 − 1)(ψ1 − ψ2). Let ∆ψ ≡ λ12 = l17/(3φ2 − 1) :
V̄1c(ρ7)− V̄1e(ρ9) = 0, with l17 > 0 for all φ2 ∈ (1/2, 2/3). Since 3φ2 − 1 > 0, ρ∗ = ρ2 for
all ∆ψ ≤ λ12, and ρ∗ = ρ9 for all ∆ψ ≥ λ12.

The difference between λ12 and λ9 is given by

λ12 − λ9 =
β1(αβ2(63φ22 − 42φ2 + 8) + β1(54φ22 − 33φ2 + 6))

8β2(αβ2 + β1)2(3φ2 − 1)
,

which is strictly positive for all φ2 ∈ (1/2, 2/3). Thus λ12 > λ9. Q.E.D.

C.2 Profit-maximiser foreign agent

C.2.1 Low market efficiency: Details

For the case of low market efficiency when the foreign agent is profit-maximiser the four
equilibrium candidates are ρ1, ρ

in, ρ2 and ρ5. The following lemmas provide the solution
that maximises Eq. (3.16). We use µi to denote the cost difference thresholds when
ξ = 0. We start with the concave part.

Lemma 21. Let ∆ψ = µ1 and ∆ψ = µ2 given by ρin = ρ1 and ρin = ρ2, respectively, be
cost difference thresholds.19 Then, the optimal policy ρ∗ in the [ρ2, ρ1] region is given by

ρ∗ = min(max(ρ2, ρ
in), ρ1) =


ρ2, ∆ψ ≥ µ2,
ρin, µ1 ≤ ∆ψ ≤ µ2,
ρ1, ∆ψ ≤ µ1.

In addition, µ1 > 0 and µ2 > 0 for all φ2 ∈ (0, 2/7] with µ2 > µ1.
See appendix C.2.2 for the proof.

Lemma 21 is the equivalent of lemma 6 when the foreign agent is profit-maximiser.
Since µ1 > 0, the home country induces the foreign agent to buy nothing even if its
firm has a cost disadvantage. In order for the foreign firm to buy some quotas, its cost
advantage has to exceed |µ1|. Next, we compare the welfare generated at ρ5 and ρ2. The
following lemma provides the optimal policy.

Lemma 22. Let ∆ψ = µ3 given by V̄1e(ρ5) = V̄1c(ρ2) be a cost difference threshold.
Then, the optimal policy ρ∗ is given by

ρ∗ =

{
ρ5, ∆ψ ≥ µ3,
ρ2, ∆ψ ≤ µ3.

19For explicit definitions of the cost difference thresholds associated with this case see appendix C.2.2.
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In addition, µ3 < µ2 for all φ2 ∈ (0, 2/7].
See appendix C.2.2 for the proof.

Since µ3 is less than µ2, ρ2 is strictly dominated by ρ = ρin for all ∆ψ ≤ µ3 < µ2,
see lemma 21, and by ρ = ρ5 for all ∆ψ > µ3, see lemma 22. Thus, we proceed to the
comparison of ρ5 and ρin. Lemma 23 gives the optimal policy.

Lemma 23. Let ∆ψ = µ4 given by V̄1e(ρ5) = V̄1b(ρ
in) be a cost difference threshold.

Then, the optimal policy ρ∗ is given by

ρ∗ =

{
ρ5, ∆ψ ≥ µ4,
ρin, ∆ψ ≤ µ4.

Let 1 −
√

(3αβ2 + 2β1)(6φ
3
2 − φ2

2 − 5φ2 + 3) + αβ2φ
2
2 + 2β1φ2(3φ

2
2 − 3φ2 + 2))

(1− φ2)(5αβ2 + 6β1)
≥ 0 be

condition (C.5). The relative position of µ4 depends on (C.5) as follows:
a. Let condition (C.5) to hold. Then µ4 ∈ [µ1, µ2).
b. Let condition (C.5) to fail. Then, µ4 < µ1.
See appendix C.2.2 for the proof.

Suppose that (C.5) holds, then it follows from lemmas 21-23 that µ1 ≤ µ4 < µ2, and
strategies ρ1, ρ

in and ρ5 are mutually exclusive, and thus a complete equilibrium exists.
If condition (C.5) binds, then µ4 = µ1 and ρin becomes a weakly dominated strategy, this
is a degeneration.

Suppose that (C.5) fails, then µ4 < µ1 and ρ = ρin is strictly dominated by ρ = ρ1
for all ∆ψ ≤ µ4 < µ1 and by ρ = ρ5 for all ∆ψ > µ4, see lemmas 21 and 23. Then, we
need to compare ρ = ρ5 and ρ = ρ1.

Lemma 24. Suppose that µ4 < µ1 and let ∆ψ = µ5 given by V̄1e(ρ5) = V̄1a(ρ1) be a cost
difference threshold. Then, the optimal policy ρ∗ is given by

ρ∗ =

{
ρ5, ∆ψ ≥ µ5,
ρ1, ∆ψ ≤ µ5.

In addition, µ5 ∈ (µ4, µ1). See appendix C.2.2 for the proof.

Thus, when (C.5) fails, it follows from lemmas 21-23 that both ρ2 and ρin are strictly
dominated, and that strategies ρ1 and ρ5 occur in distinct ∆ψ regions, another complete
equilibrium.

C.2.2 Low market efficiency: Proofs

Cost difference thresholds and parameter expressions used below are summarised here.

µ1 =
m2

m1
, µ2 =

m3

m1
, µ3 =

m4

1− φ2
, µ4 = −m6 +

√
m2

6 − 4m5m7

2m5
, µ5 = m8
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where

m1 =
4(αβ2 + β1)

5αβ2 + 6β1
, m2 =

αβ1(2− 3φ2)

(αβ2 + β1)(5αβ2 + 6β1)
, m3 =

2β1((1− α)(αβ2 + 3β1) + 3α)

(αβ2 + β1)(5αβ2 + 6β1)
,

m4 =
β1φ2(2φ2(1− 6φ2)β1/β2 − α(19φ22 − 13φ2 + 4))

8(1− φ2)(αβ2 + β1)2
, m5 =

2β2(αβ2 + β1)
2

β1(5αβ2 + 6β1)
,

m6 = −αβ2(3φ
2
2 − 10φ2 + 7) + 6β1(1− φ2)
(1− φ2)(5αβ2 + 6β1)

, m8 =
(1− α)β1(4− 9φ2)φ2
12(1− φ2)(αβ2 + β1)

,

m7 =
(12β1/β2 + 22α)(4− 9φ2)φ

2
2β

2
1 − (99φ32 − 61φ22 + 16φ2 − 4)α2β2β1

8(1− φ2)(αβ2 + β1)2(5αβ2 + 6β1)
.

Proof of lemma 21. The differences between the two bounds ρ1, ρ2 and the inner
policy ρin are given by ρ1 − ρin = (ψ1 − ψ2)m1 −m2 and ρ2 − ρin = (ψ1 − ψ2)m1 −m3

with m1 > 0, m2 > 0, and m3 > 0. Let ∆ψ ≡ µ1 = m2/m1 : ρ1 = ρin and ∆ψ ≡ µ2 =
m3/m1 : ρ2 = ρin, with µ1 > 0, µ2 > 0 and µ2 > µ1 for all φ2 ∈ (0, 2/7]. The optimal
policy follows from the concavity of V̄1b. Q.E.D.

Proof of lemma 22. The home country is indifferent between ρ = ρ5 and ρ = ρ2 if and
only if V̄1c(ρ2)− V̄1e(ρ5) = 0⇔ m4− (1−φ2)(ψ1−ψ2) = 0. Let ∆ψ ≡ µ3 = m4/(1−φ2) :
V̄1c(ρ2) − V̄1e(ρ5) = 0. Since 1 − φ2 > 0, ρ∗ = ρ2 for all ∆ψ ≤ µ3, and ρ∗ = ρ5 for all
∆ψ ≥ µ3.

Suppose that µ3 ≥ µ2. Then,

µ3 − µ2 ≥ 0⇔ −β1(3αC1 + 2(1− α)β1C2)

24(αβ2 + β1)2C3
≥ 0,

where C1 = 23φ3
2 − 17φ2

2 + 4, C2 = 12φ2
2 − 13φ2 + 6, and C3 = φ2

2 − 2φ2 + 1. This is
a contradiction, since all C1, C2 and C3 are strictly positive when φ2 ∈ (0, 2/7]. Thus,
µ3 < µ2 for all φ2 ∈ (0, 1/2]. Q.E.D.

Proof of lemma 23. The home country is indifferent between ρ = ρ5 and ρ = ρin

if and only if V̄1b(ρ
in) − V̄1e(ρ5) = 0 ⇔ m5(ψ1 − ψ2)

2 + m6(ψ1 − ψ2) + m7 = 0. The
discriminant ∆ = m2

6− 4m5m7 simplifies to ((3αβ2 + 2β1)(6φ
3
2− φ2

2− 5φ2 + 3) +αβ2φ
2
2 +

2β1φ2(3φ
2
2−3φ2+2))/((1−φ2)(5αβ2+6β1)), which is strictly positive for all φ2 ∈ (0, 1/2].

Thus, the cost differences that make the home country indifferent between ρ = ρ5 and
ρ = ρin are µ4 = (±

√
m2

6 − 4m5m7 −m6)/(2m5). From the two roots we keep the lower
one, which is the only one that satisfies µ4 < µ2, which as we show below must be
satisfied. The difference between the zero-discriminant root, −m6/(2m5), and µ2 is given
by (15αβ2 + 18β1)(1 − φ2)β1/(12(αβ2 + β1)

2β2), which is positive for all φ2 ∈ (0, 1/2].
The direction of the optimal policy follows from the fact that the quadratic function is
convex and that µ4 is the lower of the two roots. Thus, ρ∗ = ρin for all ∆ψ ≤ µ4, and
ρ∗ = ρ5 for all ∆ψ ≥ µ4.

Suppose that µ4 ≥ µ2. Then, for any ∆ψ = ψ1 − ψ2 ∈ [µ2, µ4] the following are true:
• From the first part of lemma 23, V̄1b(ρ

in) ≥ V̄1e(ρ5) for all ∆ψ ∈ [µ2, µ4].
• From lemma 21, V̄1c(ρ2) ≥ V̄1b(ρ

in) for all ∆ψ ∈ [µ2, µ4].
• From lemma 22, V̄1e(ρ5) > V̄1c(ρ2) for all ∆ψ ∈ [µ2, µ4], since µ3 < µ2.
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Thus,
V̄1e(ρ5) > V̄1c(ρ2) ≥ V̄1b(ρin) ≥ V̄1e(ρ5), ∀∆ψ ∈ [µ2, µ4],

which is a contradiction, and therefore, µ4 < µ2.

The difference between µ4 and µ1 is: µ4 − µ1 = C4
β1(5αβ2 + 6β1)

4β2(αβ2 + β1)2
, where

C4 = 1−
√

(3αβ2 + 2β1)(6φ
3
2 − φ22 − 5φ2 + 3) + αβ2φ

2
2 + 2β1φ2(3φ

2
2 − 3φ2 + 2))

(1− φ2)(5αβ2 + 6β1)
.

C4 can be both positive and negative in the region of interest, i.e., φ2 ∈ (0, 2/7]. This
implies that µ4 ∈ [µ1, µ2) if C4 ≥ 0, and µ4 < µ1 otherwise.

We illustrate this claim using two numerical examples. Consider the parameter vectors
Θ6 = [α = 0.15, β1 = 1, β2 = 0.5] and Θ7 = [α = 0.15, β1 = 1, β2 = 1], φ2 takes the values
of 0.142 and 0.283 respectively (the 2/7 bound is approximately 0.2857), but µ4 < µ1 at
Θ6 and vice-versa at Θ7. Q.E.D.

Proof of lemma 24. The home country is indifferent between ρ = ρ5 and ρ = ρ1
if and only if V̄1a(ρ1) − V̄1e(ρ5) = 0 ⇔ m8 − (ψ1 − ψ2) = 0. Let ∆ψ ≡ µ5 = m8 :
V̄1a(ρ1) − V̄1e(ρ5) = 0. It follows that ρ∗ = ρ1 for all ∆ψ ≤ µ5, and ρ∗ = ρ5 for all
∆ψ ≥ µ5.

Suppose that µ5 ≤ µ4. Then, for any ∆ψ = ψ1−ψ2 ∈ [µ5, µ4] The following are true:
• From the first part of lemma 24, V̄1e(ρ5) ≥ V̄1a(ρ1) for all ∆ψ ∈ [µ5, µ4].
• From lemma 21, V̄1a(ρ1) > V̄1b(ρ

in) for all ∆ψ ∈ [µ5, µ4], since µ4 < µ1.
• From lemma 23, V̄1b(ρ

in) ≥ V̄1e(ρ5) for all ∆ψ ∈ [µ5, µ4].
Thus,

V̄1a(ρ1) > V̄1b(ρ
in) ≥ V̄1e(ρ5) ≥ V̄1a(ρ1), ∀∆ψ ∈ [µ5, µ4]

which is a contradiction, and therefore µ5 > µ4.
Suppose that µ5 ≥ µ1. Then, for any ∆ψ = ψ1−ψ2 ∈ [µ1, µ5] The following are true:

• From the first part of lemma 24, V̄1a(ρ1) ≥ V̄1e(ρ5) for all ∆ψ ∈ [µ1, µ5].
• From lemma 21, V̄1b(ρ

in) ≥ V̄1a(ρ1) for all ∆ψ ∈ [µ1, µ5].
• From lemma 23, V̄1e(ρ5) > V̄1b(ρ

in) for all ∆ψ ∈ [µ1, µ5], since µ4 < µ1.
Thus,

V̄1e(ρ5) > V̄1b(ρ
in) ≥ V̄1a(ρ1) ≥ V̄1e(ρ5), ∀∆ψ ∈ [µ1, µ5]

which is a contradiction, and therefore µ5 < µ1. Thus, µ5 ∈ (µ4, µ1). Q.E.D.

C.2.3 Medium market efficiency: Details

For the case of medium market efficiency when the foreign agent is profit-maximiser the
four equilibrium candidates are ρ1, ρ

in and ρ6. The following lemmas provide the solution
that maximises Eq. (3.17). The optimal policy in the concave part of the objective is
given in lemma 21. That is, ρ1 is preferred for all ∆ψ ≤ µ1, and ρin is preferred for all
∆ψ ≥ µ1. Next, we compare ρ6 and ρin, the following lemma provides the optimal policy.

Lemma 25. Let ∆ψ = µ6 given by V̄1e(ρ6) = V̄1b(ρ
in) be a cost difference threshold.20

Then, the optimal policy ρ∗ is given by

ρ∗ =

{
ρ6, ∆ψ ≥ µ6,
ρin, ∆ψ ≤ µ6.

20For explicit definitions of the cost difference thresholds associated with this case see appendix C.2.4.
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Let 1−
√

(4
√

2
√

9φ2
2 − 6φ2 + 2 + 1− 18φ2

2 + 6φ2)(αβ2 + β1) + 3β1(2φ2 − 1)

5αβ2 + 6β1
≥ 0 be con-

dition (C.6). The relative position of µ6 depends on the market parameters as follows:
a. Let condition (C.6) to hold. Then, µ6 ≥ µ1.
b. Let condition (C.6) to fail. Then, µ6 < µ1.
See appendix C.2.4 for the proof.

If µ6 ≥ µ1, strategies ρ1, ρ
in and ρ6 are mutually exclusive, thus a complete equilibrium

exists. If condition (C.6) binds, then µ6 = µ1, and ρin becomes a weakly dominated
strategy, this is a degeneration. Otherwise, ρ = ρin is strictly dominated by ρ = ρ1 for all
∆ψ ≤ µ6 < µ1, and by ρ = ρ6 for all ∆ψ > µ6, see lemmas 21 and 25. Thus, we proceed
to compare ρ1 and ρ6.

Lemma 26. Suppose that µ6 < µ1 and let ∆ψ = µ7 given by V̄1e(ρ6) = V̄1a(ρ1) be a cost
difference threshold. Then, the optimal policy ρ∗ is given by

ρ∗ =

{
ρ6, ∆ψ ≥ µ7,
ρ1, ∆ψ ≤ µ7.

In addition, µ7 ∈ (µ6, µ1).
See appendix C.2.4 for the proof.

When (C.6) fails, it follows from lemmas 21, 25 and 26 that strategies ρ1 and ρ6 occur
in distinct ∆ψ regions, another complete equilibrium.

C.2.4 Medium market efficiency: Proofs

Cost difference thresholds and parameter expressions used below are summarised here.

µ6 =
m10 −

√
m2

10 − 4m9(m11 +m12)

2m9
, µ7 = m13,

where

m9 =
2β2(αβ2 + β1)

2

β1(5αβ2 + 6β1)
, m10 =

αβ2(7− 3φ2) + 6β1
5αβ2 + 6β1

,

m11 =
β1((9φ

2
2 − 6φ2 + 2)(β21 + 11(αβ2 + β1)

2) + 22(αβ2 + β1)
2 − 6α2β22φ2 + 2β21)

8β2(5αβ2 + 6β1)(αβ2 + β1)2
,

m12 = −β1
√

2
√

9φ22 − 6φ2 + 2

2β2(αβ2 + β1)
, m13 =

β1(9φ
2
2 − 6φ2 + 4)

4β2(αβ2 + β1)
+m12

Proof of lemma 25. The home country is indifferent between ρ = ρ6 and ρ = ρin if
and only if V̄1b(ρ

in) − V̄1e(ρ6) = 0 ⇔ m9(ψ1 − ψ2)
2 − m10(ψ1 − ψ2) + m11 + m12 = 0.

The discriminant ∆ = m2
10 − 4m9(m11 + m12) simplifies to

(
(4
√

2
√

9φ2
2 − 6φ2 + 2 + 1 −

18φ2
2 + 6φ2)(αβ2 + β1) + 3β1(2φ2 − 1)

)
/
(
5αβ2 + 6β1

)
, which is strictly positive for all

φ2 ∈ (0, 2/3]. Thus, the cost differences that make the home country indifferent between
ρ = ρ6 and ρ = ρin are µ6 = (m10±

√
m2

10 − 4m9(m11 +m12))/(2m9). From the two roots
we keep the lower one because the zero-discriminant root solution, m10/(2m9), exceeds
the cost difference threshold, µ2, where ρin equals ρ6, making ρin infeasible and thus non-
comparable. Their difference is given by m10/(2m9)−µ2 =

√
2(9φ2

2 − 6φ2 + 2)β1(5αβ2 +
6β1)/(8(αβ2 + β1)

2β2), which is always positive. The direction of the optimal policy
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follows from the fact that the quadratic function is convex and that µ6 is the lower of the
two roots. Thus, ρ∗ = ρin for all ∆ψ ≤ µ6, and ρ∗ = ρ6 for all ∆ψ ≥ µ6.

The difference between µ6 and µ1 is: µ6 − µ1 = C5
β1(5αβ2 + 6β1)

4β2(αβ2 + β1)2
, where

C5 = 1−
√

(4
√

2
√

9φ22 − 6φ2 + 2 + 1− 18φ22 + 6φ2)(αβ2 + β1) + 3β1(2φ2 − 1)

5αβ2 + 6β1
.

C5 can be both positive and negative in the region of interest, i.e., φ2 ∈ (2/7, 2/3]. This
implies that µ6 ≥ µ1 if C4 ≥ 0, and µ6 < µ1 otherwise.

We illustrate this claim using two numerical examples. Consider the parameter vectors
Θ8 = [α = 0.4, β1 = 2, β2 = 2] and Θ9 = [α = 0.4, β1 = 4, β2 = 2], φ2 takes the value
of 0.4 in both cases (the 2/7 bound is approximately 0.2857), but µ6 < µ1 at Θ8 and
vice-versa at Θ9. Q.E.D.

Proof of lemma 26. The home country is indifferent between ρ = ρ6 and ρ = ρ1 if
and only if V̄1a(ρ1)− V̄1e(ρ6) = 0. Let ∆ψ ≡ µ7 = m13 : V̄1a(ρ1)− V̄1e(ρ6) = 0. It follows
that ρ∗ = ρ1 for all ∆ψ ≤ µ7, and ρ∗ = ρ6 for all ∆ψ ≥ µ7.

Suppose that µ7 ≤ µ6. Then, for any ∆ψ = ψ1−ψ2 ∈ [µ7, µ6] The following are true:
• From the first part of lemma 26, V̄1e(ρ6) ≥ V̄1a(ρ1) for all ∆ψ ∈ [µ7, µ6].
• From lemma 21, V̄1a(ρ1) > V̄1b(ρ

in) for all ∆ψ ∈ [µ7, µ6], since µ6 < µ1.
• From lemma 25, V̄1b(ρ

in) ≥ V̄1e(ρ6) for all ∆ψ ∈ [µ7, µ6].
Thus,

V̄1a(ρ1) > V̄1b(ρ
in) ≥ V̄1e(ρ6) ≥ V̄1a(ρ1), ∀∆ψ ∈ [µ7, µ6],

which is a contradiction, and therefore µ7 > µ6.
Suppose that µ7 ≥ µ1. Then, for any ∆ψ = ψ1−ψ2 ∈ [µ1, µ7] The following are true:

• From the first part of lemma 26, V̄1a(ρ1) ≥ V̄1e(ρ6) for all ∆ψ ∈ [µ1, µ7].
• From lemma 21, V̄1b(ρ

in) ≥ V̄1a(ρ1) for all ∆ψ ∈ [µ1, µ7].
• From lemma 25, V̄1e(ρ6) > V̄1b(ρ

in) for all ∆ψ ∈ [µ1, µ7], since µ6 < µ1.
Thus,

V̄1e(ρ6) > V̄1b(ρ
in) ≥ V̄1a(ρ1) ≥ V̄1e(ρ6), ∀∆ψ ∈ [µ1, µ7],

which is a contradiction, and therefore µ7 < µ1. Thus, µ7 ∈ (µ6, µ1). Q.E.D.

C.3 Specification of the home country’s price equilibria

The home country’s equilibria functions are:

ρ1 =


ρ4, ∆ψ ≥ λ5,

ρ2, λ2 ≤ ∆ψ ≤ λ5,

ρin, λ1 ≤ ∆ψ ≤ λ2,

ρ1, ∆ψ ≤ λ1,

ρ2 =


ρ4, ∆ψ ≥ λ3,

ρ3, λ6 ≤ ∆ψ ≤ λ3,

ρin, λ1 ≤ ∆ψ ≤ λ6,

ρ1, ∆ψ ≤ λ1,

ρ3 =



ρ4, ∆ψ ≥ λ3,

ρ3, λ4 ≤ ∆ψ ≤ λ3,

ρ2, λ2 ≤ ∆ψ ≤ λ4,

ρin, λ1 ≤ ∆ψ ≤ λ2,

ρ1, ∆ψ ≤ λ1,

ρ4 =


ρ5, ∆ψ ≥ λ7,

ρ2, λ2 ≤ ∆ψ ≤ λ7,

ρin, λ1 ≤ ∆ψ ≤ λ2,

ρ1, ∆ψ ≤ λ1,

ρ5 =


ρ5, ∆ψ ≥ λ8,

ρin, λ1 ≤ ∆ψ ≤ λ8,

ρ1, ∆ψ ≤ λ1,

ρ6 =


ρ9, ∆ψ ≥ λ12,

ρ7, λ9 ≤ ∆ψ ≤ λ12,

ρin, λ1 ≤ ∆ψ ≤ λ9,

ρ1, ∆ψ ≤ λ1,
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ρ7 =



ρ9, ∆ψ ≥ λ10,

ρ8, λ11 ≤ ∆ψ ≤ λ10,

ρ7, λ9 ≤ ∆ψ ≤ λ11,

ρin, λ1 ≤ ∆ψ ≤ λ9,

ρ1, ∆ψ ≤ λ1,

ρ8 =

{
ρ8, ψ1 ≥ ψ2,

ρ ∈ R : ρ > ρ8, ψ1 ≤ ψ2,
ρ9 =


ρ5, ∆ψ ≥ µ4,

ρin, µ1 ≤ ∆ψ ≤ µ4,

ρ1, ∆ψ ≤ µ1,

ρ10 =

{
ρ5, ∆ψ ≥ µ5,

ρ1, ∆ψ ≤ µ5,
ρ11 =


ρ6, ∆ψ ≥ µ6,

ρin, µ1 ≤ ∆ψ ≤ µ6,

ρ1, ∆ψ ≤ µ1,

ρ12 =

{
ρ6, ∆ψ ≥ µ7,

ρ1, ∆ψ ≤ µ7.

C.4 Derivation of the cost frontier

In this appendix subsection, we show how to derive the cost frontier when the foreign
agent is welfare-maximiser, i.e., ξ = 1, and the foreign market efficiency parameter is
very low, i.e., φ2 ∈ (0,max(0, 2/5− θ).

Let ρ = ρ1 be the optimal pricing policy. Solving V̄1a(ρ1) = 0 with respect to ψ1 yields

ψ̄1 =
β1(18φ22β1/β2 + α(27φ22 − 12φ2 + 4)) + 8α(β1 + β2 − 1)(αβ2 + β1)

8(αβ2 + β1)2
> 0,

which is the break even cost level when the home firm exploits the resource alone.
Let ρ = ρ4 be the optimal pricing policy. Solving V̄1e = 0 with respect to ψ2 yields

ψ̄2 =
β1φ2(3β1/β2 + 9φ2α) + 8α((β1 + β2 − 1)αβ2 + (β1 + β2 − 1− φ2/4)β1)

8(αβ2 + β1)2
> 0,

which is the break even cost level when the foreign firm exploits the resource alone.
Let ρ = ρ2 be the optimal pricing policy. Solving V̄1c = 0 with respect to ψ1 yields

ψ1 =
β1(5φ

2
2β1/β2 + α(7φ22 − 3φ2 + 1)) + 2α(β1 + β2 − 1)(αβ2 + β1)

2(αβ2 + β1)2(1− φ2)
− φ2

1− φ2
ψ2,

which is a downwards slopping function of ψ2 and represents the break even cost levels
where both firms exploit the resource according to u2 = φ2 and u1 = 1−φ2. The constant
is strictly positive for all φ2 ∈ (0, 1/2].

Let ρ = ρ3 be the optimal pricing policy. Solving V̄1d = 0 with respect to ψ1 yields

ψ1 =
β1(4(2φ22β1/β2 + α(6φ22 − 4φ2 + 1)) + 8α(β1 + β2 − 1)(αβ2 + β1)

8(αβ2 + β1)2φ2
− 1− φ2

φ2
ψ2,

which is a downwards slopping function of ψ2 and represents the break even cost levels
where both firms exploit the resource according to u2 = 1−φ2 and u1 = φ2. The constant
is strictly positive for all φ2 ∈ (0, 1/2].

Let ρ = ρin be the optimal pricing policy. Solving V̄1b = 0 with respect to ψ1 yields

ψ1 =
2B6ψ2 − B7 −

√
B2
7 − 4B6(B8 − ψ2)

2B6

which is the lower of the two roots of the quadratic expression given by
V̄2a(ρ

in) = B6ψ
2
1 + (B7 − 2B6ψ2)ψ1 + B6ψ

2
2 − (1 + B7)ψ2 + B8, where

B6 =
2(αβ2 + β1)

2β2
β1(5αβ2 + 4β1)

, B7 =
β2(1− α)(αβ2 + β1)

(5αβ2 + 4β1)
− 1,

B8 = (β21(81φ22β
2
1/(4β2) + α(6β1φ

2
2 + (3αβ2 + 4β1)(12φ22 + 3φ2 − 1)))

+ αβ1(αβ2 + β1)(8β1(αβ2 + β1) + 10αβ2(β1 + β2 − 1)))/(2β1(5αβ2 + 4β1)(αβ2 + β1)
2).
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We pick the lower of the roots because its the only one that, when plotted on the ψ2×ψ1

space, crosses the region where ρin is feasible. This is defined by curves ψ2 + λ1 and
ψ2 + λ2 when ρ2 is not strictly dominated (see figure 3.6 (a) and (c)), or by ψ2 + λ1 and
ψ2 + λ6 when ρ2 is strictly dominated (see 3.6 (b)).

Existence of the roots can be verified by showing that the zero-discriminant root is
always on the left of the ψ2 + λ2 curve. This takes care of both cases since λ6 < λ2
(see lemma 10) and ψ2 + λ6 is always on the right of ψ2 + λ2. The zero-discriminant
root is given by ψ2 −B7/(2B6), its difference with ψ2 − λ2 is given by β1(1− φ2)(5αβ2 +
4β1)/(4(αβ2 + β1)

2β2), which is always positive when φ2 ∈ (0, 1/2].
Next, we show by contradiction why we pick the lower root. Suppose that the the

higher is the correct one. Then,

2B6ψ2 − B7 +
√

B2
7 − 4B6(B8 − ψ2)

2B6
= ψ2 + λ2 ⇔√

B2
7 − 4B6(B8 − ψ2) = 2B6λ2 + B7 = φ2 − 1 < 0, ∀φ2 ∈ (0, 1/2],

which is a contradiction because the square root must be positive since the two roots
exist in the feasible region.

On a final remark, it is straightforward to check that the cost frontier is continuous
at the intersections of the different curves.

D Specification of V1 when the TAC is endogenous

In case the TAC is endogenous, the home country’s objective is given by the following
piecewise functions, which depend on the foreign agent’s type,

V1|ξ=1 =



V1(x, p
1, U1

2 (p1),Q1(U1
2 (p1))), Φ2 ∈ (0,max(0, K(x)] and Λ4(x) > Λ3(x),

V1(x, p
2, U1

2 (p2),Q1(U1
2 (p2))), Φ2 ∈ (0,max(0, K(x)] and Λ4(x) < Λ2(x),

V1(x, p
3, U1

2 (p3),Q1(U1
2 (p3))), Φ2 ∈ (0,max(0, K(x)] and Λ2(x) ≤ Λ4(x) ≤ Λ3(x),

V1(x, p
4, U2

2 (p4),Q1(U2
2 (p4))), Φ2 ∈ (max(0, K(x)), G(x)/2] and Λ7(x) ≥ Λ2(x),

V1(x, p
5, U2

2 (p5),Q1(U2
2 (p5))), Φ2 ∈ (max(0, K(x)), G(x)/2] and Λ7(x) < Λ2(x),

V1(x, p
6, U4

2 (p6),Q2(U4
2 (p6))), Φ2 ∈ (G(x)/2, 2G(x)/3) and Λ11(x) > Λ10(x),

V1(x, p
7, U4

2 (p7),Q2(U4
2 (p7))), Φ2 ∈ (G(x)/2, 2G(x)/3) and Λ11(x) ≤ Λ10(x),

V1(x, p
8, U5

2 (p8),Q3(U5
2 (p8))), Φ2 ≥ 2G(x)/3,

V1|ξ=0 =



V1(x, p
9, U2

2 (p9), Q1(U2
2 (p9))), Φ2 ∈ (0, 2G(x)/7] and M4(x) ≥M1(x),

V1(x, p
10, U2

2 (p10), Q1(U2
2 (p10))), Φ2 ∈ (0, 2G(x)/7] and M4(x) < M1(x),

V1(x, p
11, U3

2 (p11), Q2(U3
2 (p11))), Φ2 ∈ (2G(x)/7, 2G(x)/3) and M6(x) ≥M1(x),

V1(x, p
12, U3

2 (p12), Q2(U3
2 (p12))), Φ2 ∈ (2G(x)/7, 2G(x)/3) and M6(x) < M1(x),

V1(x, p
8, U5

2 (p8), Q3(U5
2 (p8))), Φ2 ≥ 2G(x)/3,

where K(x) ≡ U(2/5 − θ) = 2G(x)/5 − (a2 − a1)b1/(10a1). The dependencies between
pm, U l

2(p
m) and Qk(U l

2(p
m)) follow from propositions 1 to 8.
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