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Introduction

Logistics plays a crucial role in the global economy. In the U.S., over the last 10 years, business

logistics costs accounted for over 7 % of the GDP (Kearney, 2020). In addition, the volume

of freight movement is projected to grow by 40 % between 2015 and 2045 in the U.S. (Federal

Highway Administration, 2017). In the EU, a growth of 1 to 4 % per year is expected (Ferrell

et al., 2020).

The growth of the logistics sector has led to increased competition. This has been accom-

panied by introduction of products with shorter life cycles, rising labour prices, growing body

of regulations, customers reducing order sizes and expecting shorter delivery times, etc. Thus,

for logistics companies, operating in an economically efficient manner is becoming more and

more challenging (Archetti et al., 2009, Cruijssen et al., 2007). Consequences of this inefficiency

include among others, as presented by Ferrell et al. (2020), U.S. trucks’ trailers being on average

only 43 % full and 25 % of total travel being done with completely or nearly empty trailers. In

the EU, the empty truck miles are estimated to range from 15 to 20 %.

To improve efficiency in supply chains, companies can join efforts and coordinate their

activities. This can be referred to as collaborative logistics. Synergy effects associated with the

cooperation often result in reduction in costs and increase in efficiency (Cruijssen et al., 2007).

Moreover, collaborative logistics has also been identified as an opportunity to increase service

levels, gain market shares, enhance capacities and reduce the negative impacts of the bullwhip

effect (Audy et al., 2012).

In 2016, the transportation sector was responsible for 24.3 % of the total greenhouse gas

emissions in the EU (European Union, 2018). By increasing efficiency in supply chains, co-

operation may bring not only economical benefits, but can also contribute to reduction of the

environmental impact. Fossil fuel combustion has significant impact on the environment. Thus,

for instance, reduction of the empty miles would lead to decrease in the associated CO2 emis-

sions. Guajardo (2018) presented numerous case studies and reported substantial decrease in

CO2 emissions achieved by collaborative logistics.

Despite positive effects on several fronts, practical implementation of collaborative logis-

tics is not always easy. Many collaboration efforts fail to meet the participants’ expectations

(Cao et al., 2010). According to Sabath and Fontanella (2002), collaboration has “the most

disappointing track of the various supply chain management strategies” when it comes to its

practical implementation. Audy et al. (2012) and Basso et al. (2019) described and classified

common obstacles. Trust, fairness, conflicts of interest and choice of the right partners are just

some of them. Nevertheless, this does not mean that there is no evidence of successful coop-

eration. Björnfot and Torjussen (2012) reported savings resulting from cooperation in Swedish
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Introduction

timber industry. Cases of shared consolidation centers and cooperatively planned routing were

described for example by Eyers (2010) and Paddeu (2017).

When companies begin to cooperate, exploiting the synergies and finding a new business

strategy may often seem fairly straightforward. When it comes to inventory management,

transportation planning or any other business aspect, companies usually have proper tools

available before any potential cooperation occurs. Hence, with cooperation, the methodology

of finding a new solution usually does not differ much as opposed to finding a solution prior to

the cooperation. For example, with resources shared among partners, data can be aggregated

and the problem to solve becomes larger, but the methodology remains the same. However, for

a successful practical implementation, this may not suffice and more measures might need to

be accounted for.

Ensuring that incentives to cooperate exist for all companies has been recognized as one of

the main barriers for implementation of collaborative logistics (Basso et al., 2019). Cooperative

game theory provides tools to recognize whether such a solution exists and, if it does, methods

to find it. Additionally, the cooperative game-theoretic framework may help for example in an-

swering questions revolving around fairness in collaborative efforts as well as with identification

of an optimal partner or a coalition to join efforts with (whether it is to maximize economical

benefits or likelihood of successful practical implementation).

This thesis is organized into four self-contained chapters. All of the chapters were written

with an intention to publish in a scientific journal. Therefore, throughout the thesis, the terms

chapter, article and paper are used interchangeably. With my co-authors, we address some of the

questions revolving around cooperation within a scope of specific problems from transportation

and logistics. In particular, chapter 1 focuses on optimal choice of strategies in a cooperative

version of the traveling salesman problem with profits. Chapter 2 characterizes the cooperative

variant of the location-routing problem in terms of various features such as the existence of core

allocations, where players have no incentives to leave the collaboration. Chapter 3 focuses on

finding a fairness-maximizing solution among a finite set of options in the traveling tournament

problem. Lastly, chapter 4 introduces a methodology to determine the optimal coalition to join

when the outcomes are uncertain. Besides cooperative game theory, techniques from various

subfields of mathematical optimization are employed throughout the chapters, including integer,

stochastic as well as multi-objective optimization. A more detailed description of each chapter

follows.

Chapter 1. Cooperation of customers in traveling salesman problems with profits

with Mario Guajardo and Kurt Jörnsten

As opposed to the traveling salesman problem, in the traveling salesman problems with profits,

not all customers need to be visited. The customers offer prizes and the carrier chooses which

ones to visit based on the prize acquired upon their visit. The variant of the problem with an

objective to maximize the difference between the total collected profit and the total traveling

cost is called the profitable tour problem.

In this chapter, we focus on the prizes customers need to offer to ensure being visited by the

carrier. This can be formulated as a cooperative game where customers may form coalitions
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Introduction

and make decisions on the prize values cooperatively. We define the profitable tour game

describing this situation and analyze the cost associated with each coalition of customers and

prizes that help in achieving it. We derive properties of the optimal prizes to be offered when

the grand coalition is formed. These properties describe relationship between the prizes and

the underlying traveling salesman game to provide connection with extensive literature on core

allocations in traveling salesman games. Our most compelling result states that the set of

optimal prizes coincides with the core of the underlying traveling salesman game whenever this

core is nonempty.

Chapter 2. Cooperative game-theoretic features of cost sharing in location-routing

with Mario Guajardo and Thibault van Oost

The location-routing problem deals with a question of locating facilities while simultaneously

finding routes to serve customers from these facilities. The vast number of variants and exten-

sions of this problem in the literature demonstrates its importance in logistics. Eyers (2010) and

Paddeu (2017) report cases of companies sharing consolidation centers while simultaneously co-

operating on transportation of their products to customers. With these sharing practices emerg-

ing as important mechanisms to improve operations, it is increasingly important for companies

to understand the benefits and economic implications of cooperation in location-routing.

In this chapter, we formulate several variants of the collaborative version of the location-

routing problem and classify them within a cooperative game-theoretic framework. We derive

characteristics in terms of subadditivity, convexity, and non-emptiness of the core. Moreover,

for some of the game variants, we show that for facility opening costs substantially larger than

the costs associated with routing, the core is always non-empty. The theoretical results are

supported by numerical experiments aimed at illustrating the properties and deriving insights.

Among others, we observe that, while in general it is not possible to guarantee core allocations,

in a huge majority of cases the core is non-empty.

Chapter 3. Fair travel distances in tournament schedules: A cooperative game theory

approach

with Mario Guajardo

Generating fair schedules is an important aspect in the organization of sports competitions. The

vast majority of the sports scheduling literature has focused on optimization problems where the

tournament schedule is obtained by a minimization or a maximization of a single criterion. For

example, the traveling tournament problem, the most studied problem in the literature, aims at

finding a schedule that minimizes the total distance traveled by the teams. While minimizing

the expenditure resulting from all traveling between games is efficient from the overall objective

perspective, it overlooks the actual distribution of the travel among the teams. In consequence,

some teams may end up better than others with respect to their single goals, an imbalance

which may largely affect teams’ often limited resources as well as preparedness for the games.

In this chapter, we adopt a cooperative game theory framework to deal with the question

of fairness in sports scheduling. To obtain fair tournament schedules with respect to the travel
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distances of the teams, we develop the following approach. First, the scheduling problem is

reformulated as a transferable utility game. Second, by means of well-established cost alloca-

tion methods, such as the egalitarian method, Shapley value and nucleolus, an ideal distance

distribution among the teams is determined. Third, given the inherently discrete nature of the

space of feasible solutions to the scheduling problem, we introduce fairness measures to produce

a schedule which approximately resembles the ideal distribution. We also discuss how to obtain

a solution in case of not pursuing only fairness, but rather a compromise between fairness and

minimum total distance. To illustrate the approach, we compute numerical results in one of the

classic data instances of the TTP.

Chapter 4. Player-centered approach to coalition formation in transferable utility games

with uncertain payoffs

Partner selection has been identified by Basso et al. (2019) as one of the critical factors for

successful practical implementation of collaboration. Despite the fact that transferable utility

games (TU games) allow for reallocation of the worth of a coalition among its members, only a

small number of studies has considered endogenously formed coalitions where the final allocation

might actually affect the decision about which coalitions to establish. Moreover, to the best of

my knowledge, there have been no studies considering a decentralized approach to endogenous

coalition formation, i.e., finding coalitions optimal to form from a perspective of the players

while taking into account the subsequent allocation.

In this chapter, I investigate endogenous coalition formation in TU games from a perspec-

tive of their players. In particular, the focus is on decision-making situations where coalitions

need to be formed before their actual outcome is observable. Thus, the scope of this chapter

is much broader than problems from transportation and logistics. Several approaches are for-

mulated to determine which coalition is optimal for a given player to pursue while taking into

account the subsequent payoff or cost allocation. The formulated models are divided into two

main categories, those describing TU games where the subsequent allocation rules are known

prior to the coalition formation and those describing TU games where negotiations within the

formed coalitions are yet to take place after observing the uncertainty realization. Thus, in

addition to a novel approach to the coalition formation, the models also take into account pos-

sible uncertainty in the TU games’ properties and hence in their characteristic function values.

The models are then addressed with a stochastic programming approach. Subsequently, the

methodology is illustrated on an example of randomly winning coalitions and on an example

of a collaborative transportation problem. The results support arguments against exogenous

approaches to coalition formation and show that failing to take the uncertainty in parameter

values into account might lead to suboptimal solutions and consequently to false conclusions.
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Chapter 1

Cooperation of customers in traveling salesman

problems with profits∗

Ondrej Osickaa, Mario Guajardoa, Kurt Jörnstena

aDepartment of Business and Management Science, NHH Norwegian School of Economics, Bergen,

Norway

Abstract

In the profitable tour problem, the carrier decides whether to visit a particular customer with

respect to the prize the customer offers for being visited and traveling cost associated with the

visit, all in the context of other customers. Our focus is on the prizes customers need to offer

to ensure being visited by the carrier. This can be formulated as a cooperative game where

customers may form coalitions and make decisions on the prize values cooperatively. We define

the profitable tour game describing this situation and analyze the cost associated with each

coalition of customers and prizes that help to achieve it. We derive properties of the optimal

prizes to be offered when the grand coalition is formed. These properties describe relationship

between the prizes and the underlying traveling salesman game to provide connection with

extensive literature on core allocations in traveling salesman games. The most important result

states that the set of optimal prizes coincides with the core of the underlying traveling salesman

game if this core is nonempty.

Keywords: Traveling salesman problem; Profitable tour problem; Prize-collecting TSP; Logistics;

Cooperative game theory; Prize allocation

∗A published version of this chapter appears in Optimization Letters, 14, 1219-1233.
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Chapter 1. Cooperation of customers in traveling salesman problems with profits

1.1 Introduction

The traveling salesman problem (TSP) is one of the most studied problems in logistics (Laporte,

2007). It answers the question of how to visit several places within a single tour starting and

finishing at a particular place while minimizing the total traveling cost. Throughout this paper,

we will use words customers to refer to the places to be visited and carrier to refer to their

visitor. There have been a lot of variants of the traveling salesman problem dealing with different

aspects of the underlying situation. For example, the customers might offer prizes for being

visited which introduces the traveling salesman problems with profits (Feillet et al., 2005). This

offers alternations of the carrier’s objective in terms of focusing on minimizing the total traveling

cost, maximizing the total collected profit or any combination of these conflicting objectives.

In contrast to TSP, in the traveling salesman problems with profits not all customers need to

be visited and the carrier selects them based on a prize acquired when they are visited. The

variant with an objective to maximize the difference between the total collected profit and the

total traveling cost, is called the profitable tour problem (PTP) as described by Laporte and

Mart́ın (2007).

A cooperative formulation of the traveling salesman problem, the traveling salesman game,

attracted scientific interest after a question proposed by Fishburn and Pollak (1983). After a

road trip of a visitor visiting several sponsors, how should they be charged in a fair manner

such that they cover the total cost of the trip? To find such allocation, Fishburn and Pollak

(1983) stated several conditions on the allocated costs, then Potters et al. (1992) provided game-

theoretic insights. Nowadays, there exist many studies focusing on such allocations (Engevall

et al., 1998, Kimms and Kozeletskyi, 2016, Sun et al., 2015, Sun and Karwan, 2015, Tamir,

1989). In fact, traveling salesman games are the main topic of a great share of the atricles

gathered by a recent survey on cost allocation methods used in collaborative transportation

(Guajardo and Rönnqvist, 2016).

Estévez-Fernández et al. (2009) proposed a traveling salesman game alternative for the case

of customers offering prizes, called the routing game with revenues. Its focus remains on the

allocation of the total cost of a tour visiting all customers. However, the total cost incurred

by the customers is in fact the sum of all offered prizes. As shown by the following example,

sometimes it is needed to allocate more than the total traveling cost of the tour.

Example 1. Let 1, . . . , 6 be customers which desire to be visited by a carrier departing from

and returning to depot 0 as illustrated in Figure 1.1, an example taken from Tamir (1989). All

0

1
2

3

4
5

6

Figure 1.1: Problem in Example 1
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1.1. Introduction

edges of the graph represent unit traveling cost such that the minimal cost of traveling from 0

to 4 is of one unit (0-4) whereas the minimal cost of traveling from 2 to 3 is of two units (2-0-3).

It is easy to see that the least costly tour would be of 8 units (0-4-5-6-3-6-1-2-0). Looking at the

problem from a perspective of a prize-collecting carrier, let us assume the carrier is originally

visiting all of the customers which implies the aforementioned cost of 8 units. If the carrier

decides to drop customers 4 and 5 and only performs tour 0-3-6-1-2-0, the associated cost drops

to 5 units. This means that customers 4 and 5 can make themselves worth visiting by offering

a total prize of at least 3 units to cover the additional traveling cost associated with their visit.

The same requirement of at least 3 units being offered could be derived for the pair of customers

3 and 6 and the pair of customers 1 and 2. Together the prizes of all customers must add up

to at least 9 units. Otherwise, some customers do not get visited. In other words, at a cost of

8 units, the coalition of all customers fails to fulfill its purpose and both the traveling salesman

game and the routing game with revenues do not describe such a situation properly as they

assume all customers being visited at this cost.

The purpose of this paper is to define the profitable tour game, a cooperative version of the

profitable tour problem, and to derive its properties. We are particularly interested in prize

allocations that create incentives for the carrier to visit all relevant customers.

The traveling salesman game could be interpreted as a problem where the carrier is forced

to visit all customers and suggest charges in a way that makes the customers willing to be

visited. On the other hand, the profitable tour game allows the carrier to have a final word and

introduces a problem where the customers need to compete or cooperate and make themselves

worth being visited. The profitable tour game is not only of theoretical interest as it relates to

many situations occurring in practice.

The most straightforward application is a cooperation of customers that can be served within

a single route of a carrier. This might include for example less-than-truckload shipping where a

carrier is able to serve demands of several customers with a single vehicle (Archetti et al., 2014).

Whether it comes to delivery of goods or pickup of goods (such as waste collection (Šomplák

et al., 2017)), the customers might need to induce the carrier to visit them by offering sufficient

rewards. Subsequently, negotiation with other customers in the same position could lead to

better prizes while the carrier’s visit would remain guaranteed. This knowledge could also be

utilized by the carrier by offering specifically tailored discounts on multiple orders from the

same area.

The profitable tour game might also become relevant in evaluating and pricing of new

customers. In Engevall et al. (1998), for example, the Logistics Department at Norsk Hydro

Olje AB determines how gas stations across southern Sweden should be charged for distribution

of gas utilizing the concept of the traveling salesman game. If another gas station would like to

join the initial set of stations, a simple question of what charges should the gas station expect

for being even considered interesting already requires a point of view as given by the profitable

tour game.

The remainder of this paper is organized as follows. In section 1.2, we analyze the costs

associated with different coalitions of customers and define the profitable tour game. Section

1.3 studies the optimal prizes to be offered by customers. Concluding remarks follow in section
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1.4.

1.2 From the traveling salesman game to the profitable tour game

The problem outlined in the introduction is a two-stage conflict of n+1 decision-makers. First, n

customers decide on prizes offered to a carrier for being visited and, after all prizes are observed,

the carrier decides which customers to visit and how to perform the tour. We assume the carrier

to be rational and profit-maximizing, which means, the strategy is to choose the tour with the

largest difference between the total prize-based profit and the total traveling cost. With this in

mind, the customers want to set the prizes in a least costly manner that still guarantees them to

be visited. It might be useful to form coalitions with other customers. Such coalitions then aim

to set prizes offered by their customers such that their sum is the least possible to guarantee

being visited regardless of the other customers’ offered prizes.

The whole situation is a zero-sum game, that is, whatever is paid out by the customers gets

collected by the carrier. This does not offer opportunities for a meaningful cooperation of all

players. On the contrary, leaving out the carrier and focusing on the conflict of customers only,

the prizes can be set in a way that benefits other customers as well. This is the idea for defining

the profitable tour game as a cooperative game of the customers.

For modeling purposes, we impose standard assumptions on the traveling costs cij among

customers themselves and between them and the carrier’s home depot. Denoting the set of all

customers by N and the home depot by 0, these assumptions are

cii = 0 ∀i ∈ N ∪ {0}, (1.1)

cij ≤ cik + ckj ∀i, j, k ∈ N ∪ {0}. (1.2)

Assumptions (1.1) imply no traveling cost is associated with staying in the same place and

the triangle inequalities (1.2) make sure that the costs always represent the lowest possible costs

which cannot be beaten by going another way. These assumptions are common in the literature.

There are studies of traveling salesman problems with symmetric as well as asymmetric traveling

costs. We don’t limit our focus by imposing assumptions on this symmetry.

1.2.1 The traveling salesman game

To define the profitable tour game and derive its properties, it comes in handy to utilize the

definition of the traveling salesman game by Potters et al. (1992) which will become our starting

point.

Let N = {1, . . . , n} be the set of all customers. For each group of customers S ⊆ N which

need to be visited from depot 0 using only one vehicle starting from and finishing at the depot,

the least total traveling cost could be obtained by solving the traveling salesman problem (TSP)

given by

CostTSP (S) = min
∑

i∈S∪{0}

∑
j∈S∪{0}

cijxij (1.3)
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s.t.
∑

i∈S∪{0}

xij = 1 ∀j ∈ S ∪ {0}, (1.4)

∑
j∈S∪{0}

xij = 1 ∀i ∈ S ∪ {0}, (1.5)

∑
i∈T

∑
j∈T

xij ≤ |T | − 1 ∀T ⊂ S ∪ {0}: T 6= ∅, (1.6)

xij ∈ {0, 1} ∀i, j ∈ S ∪ {0}. (1.7)

In this integer linear programming model, xij is a binary variable that indicates whether

the vehicle travels directly from i to j in the final tour. Constraints (1.4) and (1.5) ensure that

all customers in S and the depot are visited exactly once and constraints (1.6) eliminate any

subtours to guarantee the solution to be a single tour. The binary nature of xij is prescribed

by (1.7). A tour with the lowest traveling cost is then selected by (1.3).

The pair (N,CostTSP ) is then the traveling salesman game as defined by Potters et al.

(1992).

1.2.2 Cooperation in the profitable tour problem

The introduction of prizes offered by customers to the carrier for visiting them, denoted by

Prizej for the prize offered by customer j ∈ N , requires a slightly different view of the problem.

Finding the optimal profit of the carrier is then the profitable tour problem (PTP) which can

be formulated as

ProfitPTP = max

 ∑
i∈N∪{0}

∑
j∈N

Prizejxij −
∑

i∈N∪{0}

∑
j∈N∪{0}

cijxij

 (1.8)

s.t.
∑

i∈N∪{0}

∑
j∈N∪{0}

xij ≤M
∑
j∈N

x0j , (1.9)

∑
i∈N∪{0}

xij =
∑

k∈N∪{0}

xjk ∀j ∈ N ∪ {0}, (1.10)

∑
i∈T

∑
j∈T

xij ≤ |T | − 1 + δTM ∀T ⊂ N ∪ {0}: T 6= ∅, (1.11)

∑
i∈(N∪{0})\T

∑
j∈N∪{0}

(xij + xji) ≤ (1− δT )M ∀T ⊂ N ∪ {0}: T 6= ∅, (1.12)

xij ∈ {0, 1} ∀i, j ∈ N ∪ {0}, (1.13)

δT ∈ {0, 1} ∀T ⊂ N ∪ {0}: T 6= ∅, (1.14)

where xij again indicates whether the vehicle travels directly from i to j, δT is a binary variable

used for modeling subtour elimination, and M is a big enough number (for example, M =

|N ∪ {0}|2 would be sufficient).

If there are any customers to be visited, constraint (1.9) ensures that the tour starts from

the depot. Constraints (1.10) ensure that if the vehicle arrives at a certain customer it needs to
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Chapter 1. Cooperation of customers in traveling salesman problems with profits

continue its tour afterwards. For the depot, the intuition is that the tour needs to both start

and finish there. Constraints (1.11) and (1.12) eliminate subtours by ensuring that, if there is

a cycle over a set T , all customers not belonging to T remain unvisited. Constraints (1.13) and

(1.14) state the binary nature of variables xij and δT . Overall, a tour maximizing the difference

between the total prize-based profit and the total traveling cost is chosen by (1.8).

In the case of PTP, the carrier is not forced to visit all customers, but visits only the most

profitable subset of them. On the other hand, if all customers in coalition S ⊆ N (and only

those) needed to be visited, new constraints could be introduced in the PTP model which would

create what we refer to as the profitable tour problem with all customers visited (PTP-AV). This

can be formulated generally for any group of customers S as

ProfitAV (S) = max

 ∑
i∈S∪{0}

∑
j∈S

Prizejxij −
∑

i∈S∪{0}

∑
j∈S∪{0}

cijxij

 (1.15)

s.t.
∑

i∈S∪{0}

xij =
∑

k∈S∪{0}

xjk ∀j ∈ S ∪ {0}, (1.16)

∑
i∈S∪{0}

xij = 1 ∀j ∈ S ∪ {0}, (1.17)

∑
i∈S∪{0}

∑
j∈S∪{0}

xij ≤M
∑
j∈S

x0j , (1.18)

∑
i∈T

∑
j∈T

xij ≤ |T | − 1 + δTM ∀T ⊂ S ∪ {0}: T 6= ∅, (1.19)

∑
i∈(S∪{0})\T

∑
j∈S∪{0}

(xij + xji) ≤ (1− δT )M ∀T ⊂ S ∪ {0}: T 6= ∅, (1.20)

xij ∈ {0, 1} ∀i, j ∈ S ∪ {0}, (1.21)

δT ∈ {0, 1} ∀T ⊂ S ∪ {0}: T 6= ∅. (1.22)

The model for ProfitAV (N) indeed differs from PTP only by the inclusion of constraints

(1.17), which ensure that all customers from S are visited (customers outside S are not visited

as they are in fact not even part of the model). It is easy to see that constraint (1.18) is no more

needed and the left-hand side of constraints (1.20) is never less than 2 and hence δT equals 0

for all nonempty T ⊂ S ∪ {0}. The PTP-AV model could be then reformulated as

ProfitAV (S) = max

∑
j∈S

Prizej −
∑

i∈S∪{0}

∑
j∈S∪{0}

cijxij

 (1.23)

s.t.
∑

j∈S∪{0}

xij = 1 ∀i ∈ S ∪ {0}, (1.24)

∑
i∈S∪{0}

xij = 1 ∀j ∈ S ∪ {0}, (1.25)

∑
i∈T

∑
j∈T

xij ≤ |T | − 1 ∀T ⊂ S ∪ {0}: T 6= ∅, (1.26)
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1.2. From the traveling salesman game to the profitable tour game

xij ∈ {0, 1} ∀i, j ∈ S ∪ {0}. (1.27)

One of two additional changes done is the replacement of constraints (1.16) by constraints

(1.24) as the combination of constraints (1.16)-(1.17) is obviously equivalent to the combination

of constraints (1.24)-(1.25). The second change is the change in the first term of objective

function (1.15) which indeed holds because of constraints (1.17). However, this term then

becomes constant over the decision variables and hence, for each S, the optimal solution is the

same as for the case of TSP and the objective value is

ProfitAV (S) =
∑
j∈S

Prizej − CostTSP (S) (1.28)

for any S.

Under what conditions does PTP generate an optimal solution with all customers in a

particular coalition S being visited? Clearly, there needs to exist set T ⊆ N \ S such that

ProfitPTP = ProfitAV (S ∪ T ). (1.29)

A relationship between the objective values of PTP and PTP-AV could be expressed as

ProfitPTP = max
R⊆N

ProfitAV (R) (1.30)

and hence

ProfitAV (S ∪ T ) ≥ ProfitAV (R) ∀R ⊆ N. (1.31)

Thinking about how coalition S could achieve it by setting prizes offered by customers

in S (and not by the others), it needs to be noted that any customer outside S could make

themselves interesting for the carrier by setting the prize exceptionally high or uninteresting or

at least indifferent by setting it to zero. Therefore, as coalition S has no control over the other

prizes, instead of (1.31), S needs to set the prizes such that, for any T ⊆ N \ S, it is profitable

for the carrier to visit all customers in S, that is

ProfitAV (S ∪ T ) ≥ ProfitAV (R ∪ T ) ∀R ⊆ S, ∀T ⊆ N \ S (1.32)

or, using relation (1.28),∑
j∈S∪T

Prizej − CostTSP (S ∪ T ) ≥
∑

j∈R∪T
Prizej − CostTSP (R ∪ T )

∀R ⊆ S, ∀T ⊆ N \ S (1.33)

which can be simplified as∑
j∈S\R

Prizej ≥ CostTSP (S ∪ T )− CostTSP (R ∪ T ) ∀R ⊆ S, ∀T ⊆ N \ S. (1.34)
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1.2.3 The profitable tour game

As discovered in the previous subsection, the carrier would visit all customers in coalition S

only if the prizes were offered in a way satisfying conditions (1.34). It is then easy to determine

the minimal total cost associated with S as

CostPTP (S) = min
∑
j∈S

Prizej (1.35)

s.t.
∑
j∈S\R

Prizej≥ CostTSP (S ∪ T )− CostTSP (R ∪ T )

∀R ⊆ S, ∀T ⊆ N \ S, (1.36)

Prizej ≥ 0 ∀j ∈ S. (1.37)

The pair (N,CostPTP ) then defines a cooperative transferable-utility game of the customers

which we name the profitable tour game.

Example 2. Looking back at Example 1, it is easy to compute the CostPTP values and compare

them to those of CostTSP . These functions are defined for 64 different coalitions, but they differ

for 10 of them only. These are reported in Table 1.1. Taking the first one, S = {1, 2, 3, 6}, as

an example, suppose that customers 4 and 5 offer sufficiently high prizes such that the carrier

would always visit them. Then, by the same logic as in Example 1, each pair of customers 1

and 2, and 3 and 6 would need to offer a total prize of at least 3 units, that adds up to at

least 6 units in total. Hence, offering only 5 units does not guarantee all customers in S being

visited. However, if they were to offer 6 units for instance in a way that customers 1 and 6

offer 1 unit each and 2 and 3 offer 2 units each, it would leave the carrier indifferent between

visiting and not visiting all of them. Even a very small increase in the prizes would then create

strong preference for visiting them. 6 units is hence indeed the minimal cost guaranteeing all

customers in S being visited.

Table 1.1: Differences in values of cost functions CostTSP and CostPTP in Example 2

S CostTSP CostPTP S CostTSP CostPTP

{1, 2, 3, 6} 5 6 {1, 2, 3, 5, 6} 6 7
{1, 2, 4, 5} 5 6 {1, 2, 4, 5, 6} 6 7
{3, 4, 5, 6} 5 6 {1, 3, 4, 5, 6} 6 7
{1, 2, 3, 4, 5} 7 8 {2, 3, 4, 5, 6} 7 8
{1, 2, 3, 4, 6} 7 8 {1, 2, 3, 4, 5, 6} 8 9

1.3 Properties of the profitable tour game

The definition of the profitable tour game provides information on costs associated with dif-

ferent coalitions, but prizes leading to such outcomes also deserve attention. At this point, a

clear distinction between prize allocation and cost allocation needs to be made. Using game-

theoretic terminology, prize allocation represents the strategies of the customers, whereas the
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cost allocation represents the outcome of the cooperation assigned to the customers.

When dealing with cost allocation, most studies utilize concept of the core. For a game

(N,Cost) with N = {1, . . . , n}, the core is defined as a set of all allocations (x1, . . . , xn), where

xi is the cost prescribed to be paid by customer i ∈ N , that satisfy constraints∑
i∈N

xi = Cost(N), (1.38)∑
i∈S

xi ≤ Cost(S) ∀S ⊆ N. (1.39)

Constraint (1.38) guarantees that the total cost is allocated and constraints (1.39) ensure that

no coalition can get better off by breaking the cooperation. It is important to note that for

some games such allocations need not exist and then the core is empty.

1.3.1 Prize allocation

Many studies of traveling salesman games deal with conditions for nonemptiness of the core (Sun

and Karwan, 2015, Tamir, 1989). It is then natural to study how the optimal prize allocations

are affected by the emptiness of the core of the underlying traveling salesman game. In what

follows, when referring to an optimal prize allocation of the grand coalition, we mean the prizes

Prizej that represent the optimal solution of model (1.35)-(1.37) when solved for CostPTP (N).

Theorem 1. If the core of the traveling salesman game (N,CostTSP ) is nonempty, all allo-

cations from the core, and no other, are optimal prize allocations of the grand coalition in the

profitable tour game (N,CostPTP ).

Proof. For N , model (1.35)-(1.37) becomes

CostPTP (N) = min
∑
j∈N

Prizej (1.40)

s.t.
∑

j∈N\R

Prizej ≥ CostTSP (N)− CostTSP (R) ∀R ⊆ N, (1.41)

Prizej ≥ 0 ∀j ∈ N. (1.42)

With optimal prizes, constraints (1.41) need to hold for all R ⊆ N including R = ∅, that is∑
j∈N

Prizej ≥ CostTSP (N). (1.43)

The term on the left-hand side of this constraint is the same as in objective (1.40). Hence,

the objective value must be greater than or equal to CostTSP (N). The equality is achieved only

when constraint (1.43) is binding, that is∑
j∈N

Prizej = CostTSP (N). (1.44)
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Assuming this to hold, constraints (1.41) can be rewritten as∑
j∈R

Prizej ≤ CostTSP (R) ∀R ⊆ N. (1.45)

If the core of the traveling salesman game (N,CostTSP ) is nonempty, there exist prizes

Prizej that satisfy (1.44) and (1.45) and, hence, are optimal. Clearly, the set of all such prize

allocations coincides with the core of (N,CostTSP ).

If the core contains more than just one allocation, to select a particular one, it might

be useful to use allocation methods such as the nucleolus which by definition make as few

constraints (1.45) binding as possible (Schmeidler, 1969, Guajardo and Jörnsten, 2015). This

would contribute to lowering chances of leaving the carrier indifferent between visiting all and

just some of the customers. A binding constraint (1.45) for a particular R leaves the carrier

indifferent between visiting all customers and visiting only those in R. However, it still cannot

rule out the indifference between visiting all customers and not performing a tour at all which

is obvious from (1.44).

Example 3. Let 1, 2 and 3 be customers which desire to be visited by a carrier departing from

and returning to depot 0 as illustrated in Figure 1.2. Each edge of the graph is accompanied

0

1 2

3

10 10

10

17

17 17

Figure 1.2: Problem in Example 3

by a number standing for the respective traveling cost. The traveling salesman problem can be

solved to obtain costs for different coalitions. This results in CostTSP (∅) = 0, CostTSP ({1}) =

CostTSP ({2}) = CostTSP ({3}) = 20, CostTSP ({1, 2}) = CostTSP ({1, 3}) = CostTSP ({2, 3}) =

37, CostTSP ({1, 2, 3}) = 54.

By Theorem 1, optimal prize allocation (Prize1,Prize2,Prize3) belongs to the core of game

({1, 2, 3},CostTSP ), that is

Prize1 + Prize2 + Prize3 = 54, (1.46)

Prize1 + Prize2 ≤ 37, (1.47)

Prize1 + Prize3 ≤ 37, (1.48)

Prize2 + Prize3 ≤ 37, (1.49)

Prize1 ≤ 20, (1.50)

Prize2 ≤ 20, (1.51)
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Prize3 ≤ 20. (1.52)

This is satisfied for example by Prize1 = 20, Prize2 = 17, Prize3 = 17. However, one can

observe that it makes the carrier indifferent between visiting all customers, visiting customers 1

and 2, visiting customers 1 and 3, visiting only customer 1, and visiting no customers. However,

allocating the prizes as prescribed by the nucleolus, that is Prize1 = 18, Prize2 = 18, Prize3 = 18,

would leave the carrier indifferent only between visiting all customers and visiting no customers.

Even a marginal increase in any of these prizes would then incentivize the carrier to perform

the tour visiting all customers.1

Theorem 1 implies CostPTP (N) = CostTSP (N). This was not the case for Examples 1 and

2 which necessarily means that the core of the underlying traveling salesman game is empty for

this example. This is indeed shown by Tamir (1989).

Examples 1 and 2 might look strange as for many combinations of the traveling costs the

triangle inequality becomes equality and the unit traveling costs are not represented in Figure

1.1 with edges of the same length. Different explanations of this might take place such as

an underlying road network does not allow shorter ways between some customers and a short

distance traveled on a bad quality road is as expensive as a long distance traveled on a good

quality road. However, there are also examples of cases with Euclidean distance between all

places which result in games with empty cores (Engevall et al., 1998).

Theorem 2. If the core of the traveling salesman game (N,CostTSP ) is empty, then prizes

Prizej stand for an optimal prize allocation of the grand coalition in the profitable tour game

(N,CostPTP ) if and only if they represent an optimal solution of the problem:

min ε (1.53)

s.t.
∑
j∈N

Prizej = CostTSP (N) + ε, (1.54)

∑
j∈S

Prizej ≤ CostTSP (S) + ε ∀S ⊂ N, (1.55)

Prizej ≥ 0 ∀j ∈ N, (1.56)

ε ≥ 0, (1.57)

where the variable ε stands for the cost to be allocated in form of prizes in addition to the total

cost of a tour visiting all customers.

Proof. Following the same path as in the proof of Theorem 1, it is clear that assumption (1.44)

would not be correct in this case as there exist no prizes Prizej that satisfy (1.44) and (1.45)

when the core of the traveling salesman game (N,CostTSP ) is empty.

1A question could be raised of which ones of the customers should increase the prize. This might open a
long discussion since arguably every individual customer wants to minimize its own prize. However, in the
cooperative game-theoretical framework we adopt, the increment could be already reflected in the cost function
value CostTSP ({1, 2, 3}). Thus, the increment gets allocated in a manner that is fair according to the chosen
allocation method (the nucleolus in this example).

23



Chapter 1. Cooperation of customers in traveling salesman problems with profits

Assuming instead ∑
j∈N

Prizej = CostTSP (N) + ε (1.58)

for an arbitrary value of ε, constraints (1.41) could be reformulated as∑
j∈R

Prizej ≤ CostTSP (R) + ε ∀R ⊆ N. (1.59)

Lastly, because the term on the left-hand side of constraint (1.58) is the same as in objective

function (1.40) and CostTSP (N) is constant over the decision variables, then, in terms of the

optimal solution for prizes Prizej , objective function (1.40) is equivalent to

min ε. (1.60)

Model (1.40)-(1.42) can then be reformulated as (1.53)-(1.57) while preserving the same

optimal solution for prizes Prizej . The optimal value of ε can be interpreted as the minimal

cost that needs to be allocated in form of prizes in addition to the total cost of a tour visiting

all customers.

It is important to note that model (1.53)-(1.57) is always feasible. For example, prizes

prescribed as Prizej = CostTSP (N)+ε
|N | for each j ∈ N clearly satisfy constraint (1.54) and, since

CostTSP (S) ≥ 0 for any S ⊆ N , then ε ≥ |N |CostTSP (N) guarantees satisfaction of constraints

(1.55)-(1.57) as well.

Whereas there might exist multiple optimal solutions for prizes Prizej , optimal ε is clearly

unique. Then, game (N, ĈostTSP ) can be defined, where ĈostTSP (S) = CostTSP (S) + ε for

each S ⊆ N . Straightforwardly, all allocations from the core of (N, ĈostTSP ), and no other,

are optimal prize allocations of the grand coalition in profitable tour game (N,CostPTP ). This

allows for usage of allocation methods such as the nucleolus for problems with empty cores of

the associated traveling salesman games with the same implications as in the case of nonempty

cores.

Example 4. Solving model (1.53)-(1.57) for Examples 1 and 2 results in ε = 1. Thanks to

Example 2, we actually already knew the value of ε because

ε = CostPTP (N)− CostTSP (N) = 1. (1.61)

Defining ĈostTSP such that ĈostTSP (S) = CostTSP (S) + 1 for each S ⊆ N and analyzing

the core of the respective game introduces a system of one equality and 62 inequalities describing

the set of all optimal prize allocations. To choose just one of them, the nucleolus prescribes the

prize allocation Prize1 = 1, Prize2 = 2, Prize3 = 2, Prize4 = 2, Prize5 = 1, and Prize6 = 1.

Note that Theorem 2 could be generalized to all profitable tour games regardless of the core

emptiness of the respective traveling salesman game. In fact, if the core of the traveling salesman

game (N,CostTSP ) is nonempty, the optimal value of ε in problem (1.53)-(1.57) equals 0 and
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the optimal prizes Prizej must satisfy (1.44) and (1.45) which define the core of (N,CostTSP )

as in Theorem 1.

An interesting corollary of Theorems 1 and 2 appears when utilizing a concept of the dual

game (Sudhölter, 1996, Tarashnina, 2011). For a game (N,Cost), the dual game is defined as a

game (N,Cost*) where

Cost*(S) = Cost(N)− Cost(N \ S) ∀S ⊆ N. (1.62)

The corollary can be stated without a proof as it follows directly from model (1.40)-(1.42).

Corollary 1. Prizes Prizej stand for an optimal prize allocation of the grand coalition in the

profitable tour game (N,CostPTP ) if and only if they represent an optimal solution of problem

min
∑
j∈N

Prizej (1.63)

s.t.
∑
j∈R

Prizej ≥ CostTSP *(R) ∀R ⊆ N, (1.64)

Prizej ≥ 0 ∀j ∈ N. (1.65)

where CostTSP * represents a cost function of the dual game to the traveling salesman game

(N,CostTSP ).

1.4 Conclusion

We have studied the profitable tour problem where a profit-maximizing carrier decides whether

to visit a particular customer with respect to the prize the customer offers for being visited and

traveling cost associated with the visit, all in the context of other customers. Our focus has

been on the prizes that customers need to offer to ensure being visited by the carrier. This can

be formulated as a cooperative game where customers may form coalitions and make decisions

on the prize values cooperatively. We have defined the profitable tour game describing the

situation in which customers need to compete or cooperate and make themselves worth being

visited. This problem relates to logistics applications such as the evaluation of new customers

in traveling salesman problems or customer selection in less-than-truckload transportation.

We have found several properties of the optimal prizes to be offered if the coalition of all

customers, the grand coalition, is formed. These properties describe a relationship between

the prizes and the underlying traveling salesman game to provide another connection with an

extensive literature on core allocations in traveling salesman games. Our most important result

states that the set of optimal prizes to be offered coincides with the core of the underlying

traveling salesman game if this core is nonempty. Other results include the optimal prizes

description for the empty-core case and relation of the prizes to the dual game of the traveling

salesman game.

Overall, we have analyzed the total cost associated with each coalition of customers and,

in form of the prize allocation, the strategies to achieve it. Our analysis opens further research

opportunities for studying cost allocation to divide the costs paid out in form of prizes among
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the cooperating customers. Analyzing the core of the profitable tour game and the performance

of specific allocation methods are interesting avenues for future research.
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Abstract

While the interest in both collaborative logistics and location-routing has grown considerably,

horizontal cooperation in location-routing problems remains fairly unattended. This article stud-

ies several variants of the location-routing problem using a cooperative game-theoretic frame-

work. The authors derive characteristics in terms of subadditivity, convexity, and non-emptiness

of the core. Moreover, for some of the game variants, it is shown that for facility opening costs

substantially larger than the costs associated with routing, the core is always non-empty. The

theoretical results are supported by numerical experiments aimed at illustrating the properties

and deriving insights. Among others, it is observed that, while in general it is not possible to

guarantee core allocations, in a huge majority of cases the core is non-empty.
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2.1 Introduction

The European Union describes horizontal cooperation as “an agreement or concerted practice

between companies operating at the same level(s) in the market” (European Union, 2001). In

transportation and logistics, horizontal cooperation has been recognized as an important instru-

ment to reduce costs, increase productivity, improve customer service, stabilize or improve the

market position, among other benefits (Cruijssen et al., 2007a,b). Recent literature surveys by

Guajardo and Rönnqvist (2016), Gansterer and Hartl (2018), and Cleophas et al. (2019) reveal

a considerable growth in the number of articles and applications of collaborative transportation.

This literature positions collaborative transportation as an important mechanism to reduce cost

and negative environmental effects, and to increase profits and service levels.

In parallel, the literature on location-routing problems has also grown considerably. The

central problem in this literature is to locate facilities while simultaneously finding routes to

serve customers from these facilities. It has early been recognized that tackling these decision

problems separately may lead to suboptimal solutions (Perl, 1987, Salhi and Rand, 1989).

Reviews by Prodhon and Prins (2014), Drexl and Schneider (2015), and Schneider and Drexl

(2017) give account of a broad range of applications as well as a considerable progress in solution

methods for location-routing problems. Recent emergence of dynamic on-demand warehousing

(Sinha, 2016) emphasizes the potential in applicability even further as it introduces facility

location decisions of an operational (short-term) nature.

Cleophas et al. (2019) list the cooperative planning within location-routing problems as one

of the future challenges in operations research. Despite the growing interest in both collaborative

transportation and location-routing, the integration of these two areas remains fairly unattended

by researchers. The only exceptions, to our knowledge, are van Oost (2016), Quintero-Araujo

et al. (2019), and Ouhader and Kyal (2017), which present promising studies on the benefits

of collaboration in location-routing. Besides the academic interest, the intersection of these

two areas is motivated from practical situations, such as the installation of urban consolidation

centres for city logistics and the formation of strategic alliances. For example, Paddeu (2017)

recounts the case of the Bristol-Bath freight consolidation centre from the perspective of its

users (106 retailers) and points to pricing and cost coverage as important factors for success or

failure. If a consolidation centre is located in the periphery of a city to serve retailers in the

city centre by shared routes, they will naturally be concerned about the cost of the service and

how this compares to the non-shared solution. The location of the centre may, therefore, play

an important role in the willingness to adopt the shared solution. Another example in practice

is given by the alliance between Colgate-Palmolive, GlaxoSmithKline, Henkel, and Sara Lee

in France (Eyers, 2010). The alliance started in 2005 with cooperation on routing only, but

subsequently led to a decrease in the number of facilities of the alliance from four to only one.

With these sharing practices emerging as important mechanisms to improve operations, it is

increasingly important for firms to understand the economic foundations for cooperation in

location-routing.

In this article, we study several variants of the location-routing problem using a cooperative

game-theoretic framework. After defining a transferable utility game for each of these variants,
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the main focus of this article turns to exploration of essential properties that characterize

the behaviour of cooperation in location-routing from a cost sharing perspective such as the

subadditivity, convexity and emptiness of the core. In particular, this framework is useful to

answer whether incentives exist for all firms to align under a collaborative location-routing

approach. This has been recognized as one of the main barriers for the implementation of

collaboration in logistics (Audy et al., 2012, Basso et al., 2019). In this respect, we show that

for some of the variants of the collaborative location-routing games, the core is guaranteed to

be non-empty when the facility opening costs are substantially larger than the traveling costs

and the costs of using vehicles.

The rest of the article is organized as follows. Section 2.2 introduces the game-theoretic con-

cepts used throughout the article. In Section 2.3, we briefly overview related literature. Section

2.4 describes the main variants of the location-routing problem and defines the correspond-

ing cooperative games. In Section 2.5, we derive and investigate theoretical properties of the

location-routing games. Section 2.6 summarizes numerical results obtained from experiments.

Section 2.7 presents our concluding remarks.

2.2 Preliminaries

Let N = {1, . . . , n} denote the set of all players and S the set of all subsets of N . A transferable

utility game is a pair (N,C) where C : S → R is the characteristic function assigning to each

coalition S ∈ S the optimal cost achievable by cooperation of players within this coalition.

A transferable utility game (N,C) is considered subadditive if its characteristic function is

subadditive, i.e.,

C(S ∪ T ) ≤ C(S) + C(T ) ∀S, T ⊆ N : S ∩ T = ∅. (2.1)

If the subadditivity holds, no coalition is less profitable than some of its partitions. That is,

there is no loss involved in merging coalitions with respect to the total costs incurred.

The convexity of a transferable utility game is a stronger property which requires submod-

ularity of its characteristic function, i.e.,

C(S ∪ T ) + C(S ∩ T ) ≤ C(S) + C(T ) ∀S, T ⊆ N, (2.2)

or equivalently (Schrijver, 2003),

C(S ∪ {i})− C(S) ≥ C(T ∪ {i})− C(T ) ∀i ∈ N, ∀S, T ⊆ N : S ⊆ T ⊆ N \ {i}. (2.3)

Studies of transferable utility games naturally lead to studies of cost allocations which

prescribe the costs to be paid by particular players within the cooperation. For a transferable

utility game of n players, the cost allocation is a vector (π1, . . . , πn) ∈ Rn. Conditions of

efficiency, ∑
j∈N

πj = C(N), (2.4)
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and rationality, ∑
j∈S

πj ≤ C(S) ∀S ⊆ N, (2.5)

define a set of cost allocations known as the core as first introduced by Shapley (1955). A vector

in the core proposes a redistribution of total costs of the grand coalition N and is said to be

stable, as there are no incentives for any subset of players to deviate from the collaboration. In

the literature, this has been recognized as an essential condition to sustain the cooperation in

practice. It is hence desirable for a transferable utility game to have a non-empty core and it is

interesting to study whether a game admits or not allocations in the core.

2.3 Literature review

Cruijssen et al. (2007a,b) recognize horizontal cooperation in transportation and logistics as an

important instrument to reduce costs, increase productivity, improve customer service, stabilize

or improve the market position, among other benefits. This can be achieved for example with

optimized vehicle capacity utilization, reduced empty mileage or minimized cost of non-core

operations. A literature survey by Guajardo and Rönnqvist (2016) gathered articles and ap-

plications of collaborative transportation, with special focus on the benefits that the horizontal

cooperation introduces and their redistribution among the cooperating parties using appropri-

ate cost-sharing mechanisms. More recently, a survey by Gansterer and Hartl (2018) focuses

specifically on collaboration in vehicle routing problems.

The vehicle routing problem tackles a question of how to perform tours to visit a group

of customers from one or more facilities using one or more vehicles. For a current state of

this literature, see for example Adewumi and Adeleke (2018). In the vehicle routing problems,

the horizontal cooperation can be found on several different levels in form of cooperation of

customers, carriers or shippers. For the customer level, the traveling salesman game and the

basic vehicle routing game are among the most studied. For their definitions, see for example

studies by Potters et al. (1992) and Göthe-Lundgren et al. (1996). These problems focus on

allocating costs of realized tours among the visited customers. When it comes to the shippers

and carriers, the collaborative vehicle routing problem (CoopVRP) has been studied. In the

CoopVRP, the cooperating shippers and carriers pool their customers and allow for visiting

customers of different shippers within the same tour. In their survey, Gansterer and Hartl (2018)

acknowledge a usual lack of distinction between a cooperation of shippers and a cooperation of

carriers. They suggest that it might be sometimes important to recognize a difference in the

information they possess. However, since the focus of this article is on centralized collaborative

planning, we assume that the shippers and carriers possess the same information and make

decisions jointly. Thus, their distinction is not needed and we refer to them simply as shippers.

When it comes to the game-theoretic properties, it is easy to see that in the CoopVRP, as defined

for example by Zibaei et al. (2016), the subadditivity is generally satisfied as a combination of

any non-cooperative solutions forms a feasible solution in the cooperative formulation as long

as the facilities’ capacities are unconstrained. For the case of traveling salesman games, Potters

et al. (1992) show that the convexity is not generally satisfied and the core can be empty. Since
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the traveling salesman game can be formulated as a special case of the CoopVRP with vehicles

of a large capacity and shippers each serving one customer and possessing one facility in the

same location for all shippers, the results remain the same for the CoopVRP.

For situations where the shippers already know where their potential customers would be,

but they do not have a facility from which to serve them, the facility location problem becomes

useful. The facility location problem aims to find the optimal location of facilities such that

each customer gets assigned to a facility. The optimality lies in minimizing the sum of facility

opening costs and connection costs. Computation of the connection costs differs among various

formulations of the facility location problem. For an overview of several variants of the problem,

see Laporte et al. (2015). Goemans and Skutella (2004) introduced the cooperative facility

location game to deal with a cooperative formulation of the problem in which several shippers

aim to get their customers assigned to a facility. By allowing the customers to be connected

to facilities of different shippers, this problem might allow for substantial savings. With no

restriction on the facilities’ capacities, the FLG is subadditive as a combination of any non-

cooperative solutions forms a feasible solution in the cooperative formulation. On the other

hand, Goemans and Skutella (2004) show that the convexity is not generally satisfied and the

core can be empty.

Perl (1987) and Salhi and Rand (1989) pointed out that tackling the decisions on facility

location and vehicle routing separately may lead to suboptimal solutions. With the aim to con-

nect these problems, the location-routing problem was addressed by a large stream of literature

since then, as documented in surveys by Nagy and Salhi (2007), Prodhon and Prins (2014),

Drexl and Schneider (2015), and Schneider and Drexl (2017). Among others, these surveys

discuss different variants of the location-routing problem such as, for example, the standard

location-routing problem (LRP), the capacitated location-routing problem (LRP-C), and the

location-routing problem with a limited number of facilities (LRP-L). The LRP is used in nu-

merous applications as documented, for example, by Watson-Gandy and Dohrn (1973), Or and

Pierskalla (1979), Bruns et al. (2000), and Ambrosino et al. (2009) for the cases of food and

drink distribution, blood bank location, parcel delivery, and food distribution, respectively. As

claimed by Prodhon and Prins (2014), the LRP-C is nowadays addressed to a larger extent than

the LRP. For example, Nambiar et al. (1981, 1989), Gunnarsson et al. (2006), and Marinakis

and Marinaki (2008) utilize the LRP-C in rubber plant location, shipping industry, and wood

distribution, respectively. The LRP-L arises when some types of facilities cause nuisance and

social rejection. A city taking this into account could decide to impose a limit on the number

of a certain type of facilities. For instance, Caballero et al. (2007) deal with one such problem

by using the LRP-L for location of incineration plants for disposal of solid animal waste.

While a large number of articles in this literature stream have been devoted to development

of solution methods, very few have studied collaboration in location-routing. Among the excep-

tions, Quintero-Araujo et al. (2019) use numerical experiments to compare the non-cooperative

and cooperative scenarios in the location-routing problem in terms of the total cost and the total

traveling-related CO2 emissions. For the location-routing problem variant with two-echelons,

Ouhader and Kyal (2017) analyze the cooperation based on three different objectives, min-

imizing the total cost, minimizing the total amount of traveling-related CO2 emissions, and
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maximizing the number of created job opportunities (social impact). Through numerical ex-

periments, they observe how each objective separately affects the other measures. In literature

on collaborative transportation problems, cooperative game theory is commonly used to derive

theoretical properties and investigate implications of the collaboration. To our knowledge, our

article is the first one studying cooperation in location-routing problems from a cooperative

game-theoretic perspective.

2.4 Location-routing problems and game definitions

In this section, we briefly present some of the main location-routing problem variants and then

formally introduce the definition of transferable utility games for these variants.

2.4.1 Location-routing problem variants

Standard location-routing problem

Our departing point is the standard location-routing problem (LRP). Its definition, as described

for example by Prodhon and Prins (2014), assumes a set of potential facility locations and a set

of customers (and their corresponding demands) to be given. The LRP then aims at finding

locations and routes that minimize the total routing costs, costs of using vehicles and costs of

opening facilities while assuring that all customers are visited and their demand is satisfied.

Let G be the set of feasible sites of candidate facilities, I the set of customers to be served

and V = G∪ I the set of all such nodes. Let K be a set of all vehicles available for routing from

the facilities (no facility has a specific fleet). Let cij be the cost of traveling from node i ∈ V
to node j ∈ V , a the cost of acquiring a vehicle, and fg the cost of establishing and operating

a facility at site g ∈ G. The number of units demanded by customer i ∈ I is di. The capacity

of one vehicle is q. To make the values comparable, they need to be normalized with respect

to a certain time period. This depends on a particular application in question. Sometimes, for

example, an annual average may serve the purpose.

The LRP can be formulated as an integer linear programming model. Let Xijk be a binary

decision variable which takes value 1 if vehicle k travels directly from node i to node j, and zero

otherwise (for k ∈ K, i ∈ V , j ∈ V , such that i 6= j and at least one of these two nodes belongs

to I), and Zg a binary decision variable which equals 1 when facility at site g ∈ G is open, and

zero otherwise. Then, the model is formulated below.

min
Xijk,Zg

∑
i∈V

∑
j∈V

∑
k∈K

cijXijk +
∑
k∈K

a∑
g∈G

∑
j∈I

Xgjk

+
∑
g∈G

fgZg

 (2.6)

s.t.
∑
k∈K

∑
i∈V

Xijk = 1 ∀j ∈ I, (2.7)∑
j∈I

∑
i∈V

djXijk ≤ q ∀k ∈ K, (2.8)

∑
i∈V

Xipk −
∑
j∈V

Xpjk = 0 ∀p ∈ V, ∀k ∈ K, (2.9)
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∑
g∈G

∑
j∈I

Xgjk ≤ 1 ∀k ∈ K, (2.10)

∑
i∈S

∑
j∈S

Xijk ≤ |S| − 1 ∀S ⊆ I : S 6= ∅, ∀k ∈ K, (2.11)

∑
j∈I

Xgjk − Zg ≤ 0 ∀k ∈ K, ∀g ∈ G, (2.12)

Xijk ∈ {0, 1} ∀k ∈ K, ∀i, j ∈ V : i 6= j, {i, j} ∩ I 6= ∅, (2.13)

Zg ∈ {0, 1} ∀g ∈ G. (2.14)

Objective function (2.6) minimizes the sum of routing costs, the costs of using vehicles and the

costs of operating facilities. Constraints (2.7) state that each customer must be served by one

vehicle. Constraints (2.8) state that the capacity of vehicles must be respected. Constraints (2.9)

are flow conservation constraints. Constraints (2.10) express that no vehicle can depart from

more than one facility. Constraints (2.9) and (2.10) impose that every used vehicle has to come

back to the same facility it departed from. Constraints (2.11) eliminate sub-tours. Constraints

(2.12) ensure that a facility can be used if and only if this facility is open. Constraints (2.13)

and (2.14) state the binary nature of the variables.

Note that in this formulation, constraints (2.7) and (2.8) imply that each customer needs

to be served by a single vehicle. In combination with constraints (2.12) this also means that

the whole demand of a customer needs to be satisfied from only one facility. Consequently, the

problem might become infeasible if there is not enough vehicles to satisfy the total demand or

if a customer demands more than the capacity of the vehicles.

Capacitated location-routing problem

The capacitated location-routing problem (LRP-C) introduces an upper bound in the supply

available at the facilities. The limited capacity of the facilities leads to the following modifica-

tions of the model (2.6)–(2.14).

Parameter wg is added and defined as the capacity of facility g ∈ G. New binary decision

variable Fig takes value 1 if customer i is assigned to facility g, and 0 otherwise (for i ∈ I,

g ∈ G). In addition to constraints (2.7)–(2.14), constraints∑
u∈V

Xguk +
∑
u∈V

Xuik ≤ 1 + Fig ∀g ∈ G, ∀i ∈ I, ∀k ∈ K (2.15)

need to hold. To make constraints (2.12) account for the limited capacity of the candidate

facilities, they are replaced by ∑
i∈I

diFig ≤ wgZg ∀g ∈ G. (2.16)

Constraints (2.15) state that each customer served by a vehicle departing from a certain

facility must be assigned to this facility. The term
∑

u∈V Xguk is equal to 1 if the vehicle k

departs from the facility g while
∑

u∈V Xuik is equal to 1 if this vehicle supplies customer i. If
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both terms are equal to 1, it implies Fig to equal 1. Constraints (2.16) ensure that the capacities

of the facilities must be respected. At the same time, constraints (2.16) forbid customers to be

assigned to a facility which is not open.

To avoid infeasibility of the LRP-C, there need to be enough facility candidates with large

enough capacities such that each customer can be assigned to and fully supplied by only one

facility. Besides, as for the LRP, there need to be enough vehicles to satisfy the total demand

and customers cannot demand more than the capacity of the vehicles.

Location-routing problem with a limited number of facilities

The location-routing problem with a limited number of facilities (LRP-L) introduces an upper

bound in the maximum number of facilities that can be opened. If a condition that only l

facilities can be used takes place, the model (2.6)-(2.14) needs to be modified by introducing

the parameter l and adding the constraint∑
g∈G

Zg ≤ l (2.17)

which ensures that the total number of opened facilities is less or equal to the limit l.

The feasibility of the LRP-L is subject to the same conditions as in the case of the LRP, that

is, there need to be enough vehicles to satisfy the total demand and customers cannot demand

more than the capacity of the vehicles.

2.4.2 Location-routing games

Our interest lies in a collaborative version of the location-routing problem. When shippers

collaborate, the overall problem opens opportunities to combine their customers within the

same tours and serve their demands from shared facilities. To model this situation, we use a

cooperative game-theoretic framework.

Standard location-routing game

The standard location-routing game (LRG) is defined as a transferable utility game by the tuple

(N,C) where N = {1, . . . , n} denotes the set of all players (shippers), S the set of all subsets

of N , and C : S → R the characteristic function. The characteristic function C assigns to

each coalition S ∈ S its optimal cost, that is, the optimal objective value of the corresponding

LRP (by convention, C(∅) = 0). Let In be the set of customers originally to be served by a

shipper n ∈ N . The corresponding LRP for computing C(S) is then the LRP in which the

set of customers to be served is I =
⋃
n∈S In. This definition requires each customer to be a

client of only one shipper. However, customers with demand from several shippers may still be

modeled as multiple customers with identical location.

This modeling approach assumes that the cooperation on location and routing decisions does

not affect customers’ choice of shippers and there is no competition for customers associated

with the coalition formation. Particularly, in the model, the customers’ demands from a shipper

do not depend on the coalition that the shipper belongs to.
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Location-routing game extensions

Similarly, for the two other variants of the location-routing problem, the LRP-C and the LRP-

L, we define the capacitated location-routing game (LRG-C1) and the location-routing game

with a limited number of facilities (LRG-L1), respectively. The LRG-C1 introduces a problem

where each coalition solves a location-routing problem with capacitated facilities. The LRG-L1

extends the standard location-routing game by assuming a limit on the number of facilities that

can be located by each coalition. These capacities and limits are independent of the coalitions’

size or members and remain constant.

Unlike in other collaborative transportation problems (such as the collaborative vehicle

routing problem or the facility location game), in both the LRG-C1 and the LRG-L1, when co-

operation takes place, the original strategies before such cooperation are not necessarily feasible.

When two shippers use the same facility and operate on its full capacity in their stand-alone

strategies, this strategy is not possible once they cooperate. The same problem occurs for the

LRG-L1 if the shippers already use the maximum allowed number of facilities in their stand-

alone strategies. Therefore, we also formulate alternative models for the capacitated location-

routing game and the location-routing game with a limited number of facilities as LRG-C2 and

LRG-L2, respectively.

Let the LRG-C2 be defined as a transferable utility game in a similar way as the LRG-

C1, that is, for computation of each characteristic function value, the LRP-C is solved. Now,

however, these LRP-C’s differ not only in the sets of customers I =
⋃
n∈S In, but also in the

capacities wg. Here, each combination of a shipper n ∈ N and a candidate facility g ∈ G

is associated with a parcial capacity wgn which reflects the capacity of facility g available to

shipper n in a non-cooperative case. For a coalition S, the capacity of facility g is determined

as a sum of the partial capacities of all present shippers wg =
∑

n∈S wgn.

Similarly, let the LRG-L2 be defined as a transferable utility game in which the LRP-L is

solved for each characteristic function value computation. As opposed to the LRG-L1, however,

these LRP-L’s differ not only in the sets of customers I =
⋃
n∈S In, but also in the limits on the

number of facilities l. Each shipper is now associated with a partial limit ln, the limit on the

number of facilities in a non-cooperative case. In the cooperative case, the limit on the number

of facilities to be opened by a coalition S equals the sum of the partial limits of all present

shippers l =
∑

n∈S ln.

As opposed to the LRG-C1 and the LRG-L1, in the LRG-C2 and the LRG-L2, the capacities

and limits are dependent on the coalitions’ size and members. The shippers are associated with

partial capacities or limits which may be utilized in any coalition by adding up the partial

capacities or limits of all its members.

All the variants have their place in practice. The LRG-C1 can be used, for example, if

shippers may for some reason be associated only with facilities up to a certain capacity per

location. For situations where several facilities can be opened at each location, the LRG-C1 is

an appropriate model too. This reflects a case in which facilities consist of blocks of a certain

capacity and each shipper or coalition of shippers determines how many blocks to open. On the

other hand, in a single-commodity situation, if shippers for example have a maximum supply

available for each candidate facility, its value stands for the partial capacity of this facility in
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the LRG-C2 formulation. If the facilities cause social rejection and shippers do not want to be

associated with more than a certain number of them, cooperation might not increase the number

and the LRG-L1 becomes the appropriate model. If, on the other hand, there is an enforcement

preventing a shipper from operating more than a certain number of facilities, cooperation might

allow the total limit to be a sum of the limits of all involved shippers. Such situation requires

the use of the LRG-L2.

2.5 Theoretical results

Cooperation does not necessarily guarantee beneficial outcomes for all parties. In the following,

we investigate the satisfaction of subadditivity and convexity properties by the location-routing

games as well as whether they admit or not allocations in the core.

2.5.1 Game-theoretic properties of the standard location-routing game

Proposition 1. The standard location-routing game is subadditive.

Proof. For the LRG, it is easy to see that for any disjoint sets of players S and T , the solution

of a LRP where customers of shippers in S and T are served using the same facilities, routes

and vehicles as in the separate problems for S and T is a feasible solution of the LRP for set

S ∪ T . The value of C(S) + C(T ) is therefore an upper bound on the optimal objective value

C(S ∪ T ) of the problem for S ∪ T and the LRG is hence subadditive.

Proposition 2. The core of the standard location-routing game can be empty.

Proof. Göthe-Lundgren et al. (1996) present an example to prove that the core of the basic

vehicle routing game can be empty. By adapting this example, we can prove that the core of

the LRG can be empty as well. Figure 2.1 illustrates the location of three customers (1, 2 and

3) and feasible sites of candidate facilities (A, B and C). Each customer is a client of a different

1 2

3

A B

C

1.7

1.7 1.7

1

1

1 1

1

1

Figure 2.1: A standard collaborative location-routing problem with an empty core (the circles
and diamonds represent customers and candidate facilities, respectively, and the arcs indicate
the traveling costs)

shipper which can hence be referred to by 1, 2 and 3 as well. The figure also contains the
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transportation costs. The costs of establishing and operating a facility are equal to one unit

for each of the sites. The demand of each customer is of one unit. The capacity of each vehicle

is of two units. The cost of using a vehicle is set to zero. Calculating the characteristic cost

function for the singletons, we obtain C({1}) = C({2}) = C({3}) = 3. The routing cost is equal

to 2 and the facility opening cost to 1. The facility opened is one of the two adjacent to the

customer. For the two-player coalitions, C({1, 2}) = C({1, 3}) = C({2, 3}) = 4.7 (routing cost

of 3.7 and facility opening cost of 1). For the three-player coalition, C({1, 2, 3}) = 7.7 (routing

cost of 5.7 and facility opening cost of 2). From the costs, we can notice there is an incentive

for a two-player coalition. It is clearly more beneficial than a non-cooperative state. In case

of the three-player coalition, whichever the cost allocation is, there will always be two shippers

that could get better off by excluding the third one. Hence, the core is empty.

Corollary 2. The standard location-routing game is not necessarily convex.

Proof. According to Shapley (1971), the core of a convex game is not empty. Equivalently, by

contraposition, if the core of a game is empty, the game must be non-convex. Since the core of

the LRG can be empty, it follows that this game cannot be convex in general.

Moreover, in the problem of Figure 2.1, taking coalitions S = {1}, T = {1, 2} and i = 3, the

left-hand side of inequality (2.3) is 4.7− 3 = 1.7 while the right-hand side is 7.7− 4.7 = 3, thus

the inequality is violated and this is an example of a non-convex game.

2.5.2 Game-theoretic properties of the location-routing game extensions

Proposition 3. The LRG-C1 is not necessarily subadditive or convex.

Proof. A counter-example is illustrated in Figure 2.2. Again, we consider each customer being

assigned to a different shipper. The costs of establishing and operating facilities are equal to one

1

2 3

4A B

1

1

1 1

1

1

2

Figure 2.2: A non-subadditive capacitated location-routing game (the circles and diamonds
represent customers and candidate facilities, respectively, and the arcs indicate the traveling
costs)

unit for site A and six units for site B. Both candidate facilities have a maximum capacity equal

to two units. The demand for each customer is of one unit. The capacity of each vehicle is of

two units. The cost of using a vehicle is set to zero. For coalition S = {1, 2}, facility A is opened

and C(S) = 4. For coalition T = {3, 4}, facility A is opened as well and C(T ) = 8. However, for

S∪T , both facilities are opened and C(S∪T ) = 13 which causes that C(S∪T ) � C(S) +C(T )

and the subadditivity (as well as convexity) does not hold.

Proposition 4. The LRG-L1 is not necessarily subadditive or convex.
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Proof. Considering the same example (Figure 2.2) for the location-routing game with a limited

number of facilities, but now with omitting the maximum capacities, introducing a limit of

l = 1 on the number of facilities and having the costs of establishing and operating facilities

equal to 1 for both A and B, leads to C(S) = 4, C(T ) = 4 and C(S ∪ T ) = 11. Hence, again

C(S ∪ T ) � C(S) + C(T ) and the subadditivity and convexity properties do not hold.

Proposition 5. The core of the LRG-C1 and the LRG-L1 can be empty.

Proof. Clearly, if each facility offered a maximum capacity that could accommodate all cus-

tomers in the game, the LRG-C1 would reduce to the LRG. Similarly, if the limit on the

number of facilities l was equal or higher than the number of all potential facility sites, the

LRG-L1 would reduce to the LRG. Therefore, the example in Figure 2.1 could be used to show

a possibility of an empty core in the LRG-C1 and the LRG-L1 as well as for the case of the

LRG.

Proposition 6. The LRG-C2 and the LRG-L2 are subadditive.

Proof. For both the LRG-C2 and the LRG-L2, it is easy to see that for any disjoint sets S and

T , the solution where customers of shippers in S and T are served using the same facilities,

routes and vehicles as for the separate problems for S and T is a feasible solution for set S ∪T .

The value of C(S) +C(T ) is therefore an upper bound on the optimal objective value C(S ∪T )

and subadditivity is hence satisfied.

Proposition 7. The core of the LRG-C2 and the LRG-L2 can be empty.

Proof. For illustration of the possibility of an empty core, the same reasoning as in the case of

the LRG-C1 and the LRG-L1 could be used. That is, large enough capacities and large enough

limits on the number of facilities would reduce the LRG-C2 and the LRG-L2 to the LRG which,

as shown in the example of Figure 2.1, can have an empty core.

Corollary 3. The LRG-C2 and the LRG-L2 are not necessarily convex.

Proof. As in the proof of Corollary 2, the possible emptiness of the core consequently leads to

non-convexity.

All the aforementioned results are summarized in Table 2.1 along with the property sat-

isfaction of some of the collaborative transportation problems outlined in Section 2.3, namely

the collaborative vehicle routing problem (CoopVRP) and the facility location game (FLG). If

a checkmark is missing, this property might be satisfied for particular instances, but does not

hold in general. The results might suggest that all collaborative transportation problems allow

for an empty core. To avoid such misinterpretation, without its definition, we also include the

transportation game (TG) introduced by Samet et al. (1984). It is an example of a game which

is always subadditive and has a non-empty core, but is not necessarily convex (Sánchez-Soriano

et al., 2001).
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Table 2.1: Properties of different variants of the location-routing games, the collaborative vehicle
routing problem, the facility location game, and the transportation game

Subadditive Convex Non-empty core

LRG X - -
LRG-C1 - - -
LRG-L1 - - -
LRG-C2 X - -
LRG-L2 X - -
CoopVRP X - -
FLG X - -
TG X - X

2.5.3 Impact of the facility costs

The facility opening costs, fg in the model (2.6)–(2.14), play an important role in the location-

routing games. They stand for all costs necessary to establish and operate a facility. In what

follows, we will show that, if the facility opening costs are substantially larger than the traveling

costs and the costs of using vehicles, the core of the LRG is guaranteed to be non-empty.

Theorem 3. For any traveling and vehicle-related costs, there exists K ∈ R such that, if fg ≥ K
for all g ∈ G, the core of the respective standard location-routing game is non-empty.

Proof. Solving the model (2.6)–(2.14) for the grand coalition N results in an optimal objective

value of C(N). This cost could be allocated to the shippers for example such that each of them

is allocated the same cost, that is,

πj =
C(N)

|N |
∀j ∈ N. (2.18)

This allocation clearly satisfies the efficiency condition (2.4).

It would be feasible to open only the least costly facility and serve all customers from this

facility. Denoting the opening cost of this facility by fg∗ = ming∈G fg and any (not necessarily

minimal) routing costs and costs of using vehicles needed to serve all customers by utilizing

only this facility by V RCg∗ , the total cost would be at least as large as C(N),

C(N) ≤ fg∗ + V RCg∗ , (2.19)

and hence

πj ≤
1

|N |
(fg∗ + V RCg∗) ∀j ∈ N. (2.20)

Then, for any proper subset S ⊂ N ,

∑
j∈S

πj ≤
|S|
|N |

(fg∗ + V RCg∗) ≤
|N | − 1

|N |
(fg∗ + V RCg∗) . (2.21)

If the facility costs are substantially larger than the traveling costs and the costs of using
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vehicles, for example

V RCg∗ ≤
fg∗

|N | − 1
, (2.22)

(2.21) then implies ∑
j∈S

πj ≤ fg∗ ∀S ⊂ N. (2.23)

Since each coalition S ⊂ N needs to locate at least one facility and fg∗ is the minimal cost

associated with this, then ∑
j∈S

πj ≤ C(S) ∀S ⊂ N. (2.24)

In combination with satisfaction of the efficiency condition, this means that all rationality

conditions (2.5) are satisfied and (π1, . . . , π|N |) belongs to the core. Hence, the core is non-

empty.

Since V RCg∗ is not dependent on the value of fg∗ , it is easy to see that any K such that

V RCg ≤
K

|N | − 1
∀g ∈ G (2.25)

guarantees a non-empty core and proves the Theorem 3.

This result for the LRG can be generalized to the LRG-L1 and the LRG-L2 as well. However,

in the case of the LRG-C1 or the LRG-C2, due to their capacities, it is not always feasible to

locate only one facility and the same argument cannot be used.

2.6 Numerical results

To illustrate the theoretical results and explore the satisfaction of the properties that do not

hold in general, we have conducted a computational study using randomly generated instances

as well as instances from the literature on location-routing problems. We also address here the

problem of how to split the savings by applying cost allocation methods frequently used in the

literature.

Unless stated otherwise, all presented models and methods are implemented and solved

using AMPL/Gurobi 7.5.0.

2.6.1 Experiment design

We have generated 10,000 instances, all of them containing nine sites of candidate facilities and

three shippers, each of them having two or three customers.

Given a square 100× 100, the coordinates x and y of the customers and facility candidates

follow a uniform distribution between 0 and 100. The transportation cost cij between two nodes

is the Euclidean distance between the two nodes. Each shipper is randomly assigned two or

three customers. The demand dj for each customer follows a uniform distribution between 10

and 100 and the vehicle capacity q follows a uniform distribution between 100 and 200. The fleet
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is homogeneous. The cost of using a vehicle a is the same for all vehicles and ranges between 10

and 200 and each facility opening cost fg follows a uniform distribution between 100 and 300.

In the case of the LRG-L1, the limit on number of facilities l takes value 1, 2 or 3. The

partial limits on number of facilities ln in the LRG-L2 equal either 1 or 2. For the LRG-C1,

the facility capacities wg range from 100 to 500, whereas for the LRG-C2, the partial facility

capacities wgn range from 35 to 200. Generation of the values of wgn in this way implies that

for some coalitions there might be customers whose demand cannot be satisfied from only one

facility. In such case, the LRG-C2 would not yield a feasible solution. We observed only two

instances in which this occurred. For further analysis, we exclude those and take into account

only the instances with feasible solutions.

The aim in choosing the parameters is to cover cases where the decisions on facility location

are of a similar relevance as the decisions on routing. We attempt to achieve this by generating

instances where the facility opening costs, the costs of using vehicles and the routing costs are

of a similar magnitude. For illustration, in the non-cooperative case of the LRG, the facility

opening costs range from 12 % to 67 % of the total costs, the costs of using a vehicle from 3 %

to 64 % and the routing costs from 12 % to 65 %. Respective histograms are shown in Figure

2.3a.
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1,000 Facility opening costs

20 % 40 % 60 % 80 %
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(a) Non-cooperative case
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20 % 40 % 60 % 80 %
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(b) Cooperative case

Figure 2.3: Histograms of facility opening costs, costs of using vehicles, and routing costs as a
percentage of the total costs

In the cooperative case, as depicted in Figure 2.3b, we observe a slight shift of the facility

opening costs to lower values as the cooperation is often accompanied by a reduction in the

number of open facilities. Overall, however, we can see that the experiment covers a broad

spectrum of how the costs could be distributed.

41



Chapter 2. Cooperative game-theoretic features of cost sharing in location-routing

2.6.2 Game properties

Regarding the properties of subadditivity, convexity and core-emptiness, results of the experi-

ment are shown in Table 2.2. All instances of the LRG, LRG-C2 and LRG-L2 are subadditive

which confirms the theoretical results from Section 2.5. There is only a slight change in the

results when it comes to the LRG-C1 and the LRG-L1 in which 2.7 % and 0.2 % of the instances

respectively end up as non-subadditive. This is not surprising as it was not difficult to find

examples violationg the subadditivity in the proofs of Propositions 3 and 4. We observe a huge

majority of instances having a non-empty core. Nevertheless, only less than a third of the

instances end up being convex. There are no substantial differences among the models. Only,

in the case of the LRG-C1, satisfaction of the properties is generally slightly lower than in the

other models.

Table 2.2: Satisfaction of properties in location-routing games

Subadditive Convex Non-empty core

LRG 100 % 30.5 % 99.3 %
LRG-C1 97.3 % 22.7 % 92.6 %
LRG-L1 99.8 % 30.3 % 99.1 %
LRG-C2 100 % 26.1 % 99.7 %
LRG-L2 100 % 30.4 % 99.3 %

By definition, in the instances with an empty core, no cost allocation can satisfy the efficiency

condition (2.4) and the rationality conditions (2.5) at the same time. By requiring only the

efficiency condition to be satisfied, we can measure the amount of violation of the rationality

constraints which is inevitable. For this, the strong ε-core can be utilized. The strong ε-core,

as introduced by Shapley and Shubik (1966), is a set of all optimal solutions of (π1, . . . , π|N |)

to problem

min
πj ,ε

ε (2.26)

s.t.
∑
j∈N

πj = C(N), (2.27)

∑
j∈S

πj ≤ C(S) + ε ∀S ⊆ N, (2.28)

πj ∈ R ∀j ∈ N, (2.29)

ε ∈ R, (2.30)

where ε represents the maximal violation of the rationality constraints. For all variants of the

location-routing game, the average maximal violation is rather low and ranges from 0.91 % to

1.70 % of the respective C(N).

2.6.3 Impact of the facility costs

As discussed in Section 2.5.3, for the LRG, LRG-L1, and LRG-L2, the core is non-empty when

the facility costs reach a certain size. We investigate this by generating new sets of instances
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with the only change being in the facility cost values. In the new instances we generate the

facility opening costs as multiples of the original facility opening costs, that is, for a multiplier

of 0, all facility opening costs equal zero, for a multiplier of 1, the results are the same as in

Table 2.2, for a multiplier of 2, all facility opening costs are doubled, and so on. The results are

reported in Table 2.3. For the LRG, we can see that the results confirm the theoretical findings

Table 2.3: Impact of the facility costs on properties of the location-routing games

Facility cost multiplier Subadditive Convex Non-empty core

LRG

0 100 % 41.4 % 97.1 %
1 100 % 30.5 % 99.3 %
2 100 % 32.0 % 99.9 %
3 100 % 32.9 % 100 %
4 100 % 33.5 % 100 %
5 100 % 33.9 % 100 %

LRG-C1

0 95.5 % 38.4 % 93.7 %
1 97.3 % 22.7 % 92.6 %
3 93.9 % 19.2 % 75.1 %
5 90.9 % 19.4 % 69.6 %

LRG-L1

0 57.3 % 17.6 % 67.1 %
1 99.8 % 30.3 % 99.1 %
3 100 % 32.9 % 100 %
5 100 % 33.9 % 100 %

LRG-C2

0 100 % 23.9 % 97.3 %
1 100 % 26.1 % 99.7 %
3 100 % 23.3 % 99.5 %
5 100 % 22.2 % 99.3 %

LRG-L2

0 100 % 25.7 % 97.5 %
1 100 % 30.4 % 99.3 %
3 100 % 32.9 % 100 %
5 100 % 33.9 % 100 %

and the core becomes non-empty already for a multiplier of 3. For the other variants, we only

report the results for multiplier values 0, 1, 3, and 5. As expected, the results are very similar

for the case of the LRG-L1 and the LRG-L2. However, we do not observe similar behavior in

the LRG-C1 and the LRG-C2.

2.6.4 Impact of the vehicle cost

The cost of using a vehicle, a in model (2.6)–(2.14), stands for not only the usage of the

vehicle as it might suggest. All kinds of costs regarding the tours, but not dependent on the

distance traveled, should be included. This covers loading and unloading costs, driver-related

costs, vehicle maintenance costs, and so on. The cost of using a vehicle might hence differ

substantially across applications. Therefore, it is worthwhile to investigate how the properties

of the location-routing games are affected by the magnitude of this cost.

For the LRG, when we compare instances resulting with an empty core with those resulting

with a non-empty core, we can see a substantial difference between the average costs of using
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a vehicle. This average is 164 for the empty-core instances and 104 for the non-empty-core

instances. We investigate this issue further by generating new sets of instances in the same way

as for the facility costs analysis. Now, the new sets of instances differ only in the cost of using

a vehicle. The results are provided in Table 2.4. For all the variants, we can notice that the

Table 2.4: Impact of the vehicle cost on properties of the location-routing games

Vehicle cost multiplier Subadditive Convex Non-empty core

LRG

0 100 % 28.1 % 100 %
1 100 % 30.5 % 99.3 %
2 100 % 30.7 % 97.3 %
3 100 % 30.8 % 96.4 %
4 100 % 30.7 % 95.8 %
5 100 % 30.7 % 95.7 %

LRG-C1

0 97.1 % 21.4 % 92.7 %
1 97.3 % 22.7 % 92.6 %
3 97.3 % 23.8 % 90.8 %
5 97.3 % 24.1 % 90.4 %

LRG-L1

0 99.7 % 27.6 % 99.8 %
1 99.8 % 30.3 % 99.1 %
3 99.8 % 30.6 % 96.2 %
5 99.8 % 30.5 % 95.6 %

LRG-C2

0 100 % 23.6 % 99.9 %
1 100 % 26.1 % 99.7 %
3 100 % 26.4 % 97.0 %
5 100 % 26.7 % 96.1 %

LRG-L2

0 100 % 27.9 % 100 %
1 100 % 30.4 % 99.3 %
3 100 % 30.7 % 96.3 %
5 100 % 30.6 % 95.7 %

proportion of instances with a non-empty core decreases as the cost of using a vehicle increases.

This indeed supports the observation of different average costs of using a vehicle.

2.6.5 Cost allocations

Regardless of the core emptiness or non-emptiness, in practice, a unique cost allocation often

needs to be specified to assess the contribution of different cooperating parties. With a focus

on collaborative transportation, Guajardo and Rönnqvist (2016) recognized the Shapley value

(Shapley, 1953), the nucleolus (Schmeidler, 1969) and proportional methods to be some of the

most preferred allocation methods used in literature.

Here, we investigate whether the allocation methods result in allocations that are rational,

that is, satisfy constraints (2.5). This relates to suitability of different allocation methods

for the location-routing game. Besides the Shapley value and the nucleolus, we investigate

the lexicographic equal profit method known as EPML (Frisk et al., 2010, Dahlberg et al.,

2017), and two proportional methods, the first of them proportional to the stand-alone costs

of each shipper and the second one to the total demand of each shipper’s customers. All these
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allocation methods by definition satisfy the efficiency condition (2.4). Additional satisfaction of

the rationality conditions hence means that the respective cost allocation belongs to the core.

Such an analysis is therefore meaningless for the instances with an empty core in which all

allocations would end up as non-rational. We investigate how often the particular allocation

methods satisfy the rationality conditions in the instances with a non-empty core. The results

are presented in Table 2.5.

Table 2.5: Rationality satisfaction by various cost allocation methods

Shapley
Nucleolus EPML

Cost proportional Demand proportional
value method method

LRG 97.0 % 100 % 100 % 79.7 % 67.7 %
LRG-C1 84.4 % 100 % 100 % 60.5 % 53.1 %
LRG-L1 96.9 % 100 % 100 % 79.3 % 67.4 %
LRG-C2 95.9 % 100 % 100 % 83.7 % 80.3 %
LRG-L2 97.0 % 100 % 100 % 79.7 % 67.7 %

The nucleolus and the EPML excel in the rationality satisfaction, which is not surprising as

they are defined to belong to the core if it is not empty. In a huge majority of the instances, the

rationality is also satisfied by the Shapley value. The proportional methods do not perform that

well. Nevertheless, in the computation of the Shapley value, the nucleolus, and the EPML, the

cost associated with each possible coalition needs to be determined. This becomes an obstacle

when the number of shippers increases as the number of coalitions grows exponentially. The

proportional methods, on the other hand, do not face this problem and might therefore be a

preferred option. In case of seeking a proportional method, from Table 2.5 we can suggest the

allocation proportional to the stand-alone costs to be the one to choose. In fact, we observe

that the cost proportional method performs better in all the location-routing game variants.

As already mentioned, in the instances with an empty core, no allocation method can satisfy

all the rationality conditions. To propose a similar allocation quality measure, a modification

of the strong ε-core model (2.26)–(2.30) becomes useful. If, for a given allocation (π1, . . . , π|N |),

the model is formulated as

min
ε
ε (2.31)

s.t.
∑
j∈S

πj ≤ C(S) + ε ∀S ⊆ N, (2.32)

ε ∈ R, (2.33)

the optimal solution of ε represents the maximal violation of the rationality constraints (2.5).

Table 2.6 shows the average maximal violation as a percentage of the respective C(N) for various

cost allocation methods (the EPML is not included because it is defined only for games with a

non-empty core). The results support the previous findings with the nucleolus having the lowest

average maximal violation of the rationality constraints. This, ranging from 0.9 % to 1.7 %,

outperforms the Shapley value, the cost proportional method, and the demand proportional

method in all the location-routing game variants. Among the proportional methods, the cost
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proportional method again performs better in all the variants.

Table 2.6: Average maximal violation of rationality constraints by various cost allocation meth-
ods in instances with an empty core

Shapley value Nucleolus
Cost proportional Demand proportional

method method

LRG 2.5 % 1.1 % 5.3 % 7.3 %
LRG-C1 3.5 % 1.7 % 5.5 % 7.7 %
LRG-L1 2.7 % 1.2 % 5.6 % 7.3 %
LRG-C2 3.2 % 0.9 % 5.3 % 7.3 %
LRG-L2 2.5 % 1.1 % 5.3 % 7.3 %

2.6.6 Savings

From the results of the LRG, it can be seen that the savings of the shippers can be substantial,

as shown in Figure 2.4. The histogram shows percentage savings when the grand coalition is

10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 100 %
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1,000

Figure 2.4: Histogram of percentage savings of the grand coalition with respect to the sum of
the stand-alone costs

formed as opposed to a non-cooperative case represented as a sum of the stand-alone costs.

These cost savings range from 6 % to 62 % with an average of 32 %. The main source of the

savings is that less facilities are often needed when the grand coalition forms. The facility

opening costs are on average reduced by 63 %.

Although it might seem counter-intuitive, we observe 14 % of instances where the total

routing cost increases in comparison to the non-cooperative solution as seen in Figure 2.5. The

intuition for this is that, since collaboration aims at reducing the overall costs (which include

routing costs, facility opening costs and costs of using vehicles), it is possible that in some

situations the selection of a reduced number of facilities might offset the increase in costs due

to larger distance traveled. On average, however, the routing costs are reduced by 16 %.
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Figure 2.5: Histogram of percentage difference of the grand coalition’s routing cost with respect
to the sum of the stand-alone routing costs
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The transportation is commonly recognized as one of the main contributors of CO2 emissions

(Ballot and Fontane, 2010). The increase in the traveled distance might thus lead to negative

environmental effects. However, as this is accompanied by a change in facility selection, the

emissions from transportation might be outbalanced by a reduction in emissions produced by

the facilities due to a lower number of them needed to be open. Due to the wide range of

applications of the location-routing problems, it is difficult to draw general conclusions. In

fact, most of literature on location-routing problems only considers emissions stemming from

transportation (Koç et al., 2016, Toro et al., 2017), whereas consideration of emissions produced

by the facilities is more recent (Palacio et al., 2018).

2.6.7 Other instances

In addition to the results obtained for the experiment above, we also conduct numerical compu-

tations using some instances from the literature on location-routing problems. In order to find

optimal solutions to a large enough number of instances, we have selected three relatively small

instances. The first two, coord20-5-1 and coord20-5-2, have been used by Prins et al. (2006a,b,

2007) and are available from Prodhon (2010). Both of these instances contain 20 customers

and 5 feasible sites of candidate facilities and the latter consists of customers located within

two clusters. The third instance, Gaskell67-21x5, comes from a Ph.D. thesis by Barreto (2004)

and is available from Barreto (nd). This instance contains 21 customers and 5 feasible sites of

candidate facilities.

Since these instances have been designed for the location-routing problem assuming a single

shipper, we use them as a basis to generate new instances with three, four and five shippers

with randomly assigned customers. For example, for the instance coord20-5-1, we assume three

shippers and generate 100 new instances by randomly assigning the customers such that the

first and second shipper serve 7 customers each and the third shipper serves the remaining 6

of them. For an overview of all cases, see Table 2.7 where each row represents 100 generated

instances. The mentioned example corresponds to the row for the instance coord20-5-1 with

customers per shipper being 7, 7, 6. The row for the instance Gaskell67-21x5 with customers

per shipper being 5, 4, 4, 4, 4 would then stand for five shippers with 5, 4, 4, 4, and 4 customers

respectively. To cover a wide range of cases, some of the instances also assume shippers with

substantially more or substantially less customers than the other shippers.

To find the optimal solutions to each of the instances, we use the following two-step exact

approach. First, for each of the original instances, based on the customers’ demands and the

vehicle capacity, we generate all feasible tours and, with the Concorde TSP Solver (Applegate

et al., 2007), we compute their costs. Second, for each of the new instances, we formulate a

set partitioning model similar to the one used by Akca et al. (2008) and find the characteristic

function values using Python/CPLEX 12.8.0.0.

For the LRG, the results on satisfaction of the properties of subadditivity, convexity and

emptiness of the core are provided in Table 2.7. All 2,100 instances lead to a non-empty core.

Moreover, the results on convexity instances suggest that there might be an effect of the number

of shippers on the convexity satisfaction. In fact, as the number of shippers increases from 3 to

5, the share of instances satisfying the convexity decreases to 0 %.
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Table 2.7: Satisfaction of properties in LRG and LRG-C1 for selected instances from literature

LRG LRG-C1

Customers
Subadditive Convex

Non-empty
Subadditive Convex

Non-empty
per shipper core core

co
or

d
2
0
-5

-1

7, 7, 6 100 % 33 % 100 % 100 % 38 % 100 %
8, 8, 4 100 % 80 % 100 % 100 % 77 % 100 %
12, 4, 4 100 % 75 % 100 % 100 % 0 % 94 %

5, 5, 5, 5 100 % 6 % 100 % 98 % 0 % 100 %
6, 6, 6, 2 100 % 0 % 100 % 100 % 0 % 100 %
8, 4, 4, 4 100 % 9 % 100 % 99 % 0 % 90 %

4, 4, 4, 4, 4 100 % 0 % 100 % 96 % 0 % 16 %

co
o
rd

20
-5

-2

7, 7, 6 100 % 73 % 100 % 100 % 1 % 100 %
8, 8, 4 100 % 65 % 100 % 100 % 3 % 100 %
12, 4, 4 100 % 38 % 100 % 100 % 0 % 64 %

5, 5, 5, 5 100 % 0 % 100 % 100 % 0 % 48 %
6, 6, 6, 2 100 % 0 % 100 % 100 % 0 % 69 %
8, 4, 4, 4 100 % 0 % 100 % 100 % 0 % 21 %

4, 4, 4, 4, 4 100 % 0 % 100 % 100 % 0 % 0 %

G
as

ke
ll

67
-2

1x
5 7, 7, 7 100 % 61 % 100 % 100 % 71 % 100 %

9, 9, 3 100 % 54 % 100 % 100 % 54 % 100 %
13, 4, 4 100 % 56 % 100 % 100 % 63 % 100 %

6, 5, 5, 5 100 % 0 % 100 % 100 % 0 % 100 %
6, 6, 6, 3 100 % 0 % 100 % 100 % 0 % 100 %
9, 4, 4, 4 100 % 0 % 100 % 100 % 1 % 100 %

5, 4, 4, 4, 4 100 % 0 % 100 % 100 % 0 % 100 %

For the LRG-C1, we set the facility capacities wg equal to the capacities in the original

instances. The results in Table 2.7 show that in contrast to the LRG, there exist few instances

where the subadditivity property is violated. Satisfaction of the convexity property seems to

follow a similar trend as in the LRG. In the LRG-C1, also the core non-emptiness seems to follow

this trend for the instance coord20-5-2 and partly for the instance coord20-5-1. Nevertheless,

since this is not consistent over all of the instances, it is difficult to draw a general conclusion.

To define values of the partial facility capacities in the LRG-C2, we have followed two

different approaches. In the first, for each shipper n ∈ N , we set the partial facility capacity

wgn equal to the capacity of facility g ∈ G in the original instance. In the second approach,

we divide the capacity in the original instances among the partial capacities proportionally to

the numbers of customers served by the shippers. For example, if a capacity of facility g ∈ G
equals 50 in the original instance, for a shipper n ∈ N serving 4 out of 20 customers, the partial

capacity wgn equals 50 with the first approach and 10 with the second approach. It should be

noted that, since the demand of each customer needs to be satisfied from only one facility, the

second approach might lead to infeasible solutions in computation of the characteristic function

for some coalitions. In fact, out of the total of 2,100 instances, 305 result in an infeasibility. In

Table 2.8, we denote the first approach by LRG-C2a and the second by LRG-C2b. The results

marked with ∗ are based on less than 100 instances as we have removed those with infeasible

solutions. All instances produce a non-empty core and, again, show a declining trend in the
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2.6. Numerical results

Table 2.8: Satisfaction of properties in LRG-C2a and LRG-C2b for selected instances from
literature

LRG-C2a LRG-C2b

Customers
Subadditive Convex

Non-empty
Subadditive Convex

Non-empty
per shipper core core

co
o
rd

20
-5

-1

7, 7, 6 100 % 33 % 100 % 100 % 0 % 100 %
8, 8, 4 100 % 80 % 100 % 100 % 3 % 100 %
12, 4, 4 100 % 0 % 100 % 100 % 3 % 100 %

5, 5, 5, 5 100 % 6 % 100 % 100 % 0 % 100 %
6, 6, 6, 2 100 % 0 % 100 % 100 %∗ 0 %∗ 100 %∗

8, 4, 4, 4 100 % 9 % 100 % 100 % 0 % 100 %
4, 4, 4, 4, 4 100 % 0 % 100 % 100 % 0 % 100 %

co
or

d
2
0
-5

-2

7, 7, 6 100 % 73 % 100 % 100 % 6 % 100 %
8, 8, 4 100 % 65 % 100 % 100 %∗ 11 %∗ 100 %∗

12, 4, 4 100 % 2 % 100 % 100 %∗ 13 %∗ 100 %∗

5, 5, 5, 5 100 % 0 % 100 % 100 %∗ 0 %∗ 100 %∗

6, 6, 6, 2 100 % 0 % 100 % 100 %∗ 0 %∗ 100 %∗

8, 4, 4, 4 100 % 0 % 100 % 100 %∗ 0 %∗ 100 %∗

4, 4, 4, 4, 4 100 % 0 % 100 % 100 %∗ 0 %∗ 100 %∗

G
as

ke
ll

67
-2

1x
5 7, 7, 7 100 % 61 % 100 % 100 % 19 % 100 %

9, 9, 3 100 % 54 % 100 % 100 %∗ 24 %∗ 100 %∗

13, 4, 4 100 % 55 % 100 % 100 % 23 % 100 %
6, 5, 5, 5 100 % 0 % 100 % 100 % 0 % 100 %
6, 6, 6, 3 100 % 0 % 100 % 100 %∗ 0 %∗ 100 %∗

9, 4, 4, 4 100 % 0 % 100 % 100 % 1 % 100 %
5, 4, 4, 4, 4 100 % 0 % 100 % 100 % 0 % 100 %

convexity satisfaction.

In the LRG, in the optimal solutions for all coalitions of all instances generated from coord20-

5-1 and coord20-5-2, we observe that only one facility is to be opened. Therefore, in the case

of the LRG-L1 and the LRG-L2, there would be no change in the solutions by introducing a

positive integer limit on the number of facilities and we skip these instances. For the case of

Gaskell67-21x5, the highest number of opened facilities is 2. To observe any changes in the

optimal solutions, we set the limit on number of facilities in the LRG-L1 as well as all the

partial limits on number of facilities in the LRG-L2 equal to 1. The results provided in Table

2.9 show only few instances violating the subadditivity and even less instances with an empty

core in the LRG-L1. Again, we observe the same trend in the convexity satisfaction.

Overall, the results to a large extent confirm the findings from the numerical experiment

in Section 2.6.1. Additionally, we do not observe any effect when one of the shippers serves

substantially more or substantially less customers than the other shippers. Also, we do not

observe any effect of customers being clustered. However, since we only included a case with

two clusters, the results might not be representative enough. This should certainly be tested

on larger instances with more clusters for which exact methods might not suffice anymore. The

same holds for the drop in the number of instances with a non-empty core in the LRG-C1 which

has not been observed for all of the instances. This might, nevertheless, reflect the somewhat
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Table 2.9: Satisfaction of properties in LRG-L1 and LRG-L2 for the Gaskell67-21x5 instance

LRG-L1 LRG-L2

Customers
Subadditive Convex

Non-empty
Subadditive Convex

Non-empty
per shipper core core

G
as

ke
ll

67
-2

1
x
5 7, 7, 7 99 % 38 % 100 % 100 % 57 % 100 %

9, 9, 3 99 % 28 % 100 % 100 % 46 % 100 %
13, 4, 4 100 % 34 % 100 % 100 % 42 % 100 %

6, 5, 5, 5 99 % 0 % 99 % 100 % 0 % 100 %
6, 6, 6, 3 99 % 0 % 99 % 100 % 0 % 100 %
9, 4, 4, 4 99 % 0 % 100 % 100 % 0 % 100 %

5, 4, 4, 4, 4 100 % 0 % 100 % 100 % 0 % 100 %

lower number of instances with a non-empty core in Table 2.2.

2.7 Concluding remarks

Horizontal cooperation is receiving more and more attention across transportation and logistics

processes. The location-routing problem is no exception with companies cooperating on both

locating their facilities and serving their customers. While there exists evidence of successful

cooperation in practice (Eyers, 2010, Paddeu, 2017), the literature lacks general assessment of

benefits coming from horizontal cooperation in location-routing problems.

In this article, we have introduced the standard location-routing game, a collaborative for-

mulation of the standard location-routing problem. For both the capacitated location-routing

problem and the location-routing problem with limited number of facilities, we have defined

two alternative formulations of their collaborative versions. In three of these problems, we have

shown the subadditivity property to hold in general. However, in the other two, the subad-

ditivity is not always satisfied. Moreover, none of the problems guarantees the convexity or a

non-empty core. Nevertheless, for the standard location-routing game and the location-routing

game with limited number of facilities, we have shown that, when the facility opening costs

are substantially larger than the traveling costs and the costs of using vehicles, the core is

guaranteed to be non-empty.

Although it is not possible to guarantee core allocations in general, with a numerical ex-

periment, we have shown that the core allocations exist in a huge majority of our instances.

This has also been confirmed by using selected instances from the location-routing literature.

The numerical results have also supported the findings of the effect of facility opening costs on

the core emptiness. As the facility opening costs increase, the likelihood of a non-empty core

increases. On the other hand, with the costs of using vehicles, we have observed the opposite ef-

fect. As the vehicle costs increase, the likelihood of a non-empty core decreases. It is important

to note that the core emptiness does not necessarily outrule the cooperation. Often, regardless

of the emptiness or non-emptiness of the core, it is preferred to pursue the cooperation and

choose a unique cost allocation. We have tested the performance of various cost allocation

methods. With respect to the stability, the results have shown dominance of the nucleolus and

the lexicographical equal profit method. The latter is however not defined for the cases with an
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empty core and cannot thus be used under any circumstances. The Shapley value has shown

a fairly good performance as well, followed by the cost proportional method and the demand

proportional method.

The focus of this article was on exploration of the properties of location-routing games.

While the numerical experiment was conducted in small instances that can be solved to opti-

mality, an interesting avenue for future research is to explore location-routing games where the

approximate solutions, instead of the optimal ones, are taken into account. In fact, large-scale

instances often occurring in practice are commonly solved with heuristic approaches (Schneider

and Drexl, 2017). It is worthwhile to investigate whether different solution approaches preserve

the same properties.

Although most of the research on collaborative logistics focuses on cost reduction, literature

has also reported other benefits such as shorter delivery times (Yang et al., 2016) and reduction

of greenhouse gas emissions (Pérez-Bernabeu et al., 2015, Guajardo, 2018). Studying these

features in collaborative location-routing problems is also a relevant direction for future research.
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Frisk, M., Göthe-Lundgren, M., Jörnsten, K., and Rönnqvist, M. (2010). Cost allocation in collaborative

forest transportation. European Journal of Operational Research, 205(2):448–458.

Gansterer, M. and Hartl, R. F. (2018). Collaborative vehicle routing: a survey. European Journal of

Operational Research, 268(1):1–12.

Goemans, M. X. and Skutella, M. (2004). Cooperative facility location games. Journal of Algorithms,

50(2):194–214.
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Abstract

Generating fair schedules is an important aspect in the organization of sports competitions. The

vast majority of the sports scheduling literature has focused on optimization problems where

the performance of alternative solutions is measured by an overall goal aggregating all teams of

the competition. For example, the most studied problem in the literature, so-called traveling

tournament problem (TTP), aims at finding a schedule that minimizes the total distance traveled

by the teams. While minimizing the expenditure resulting from all traveling between games

is efficient from the overall objective perspective, it overlooks the actual distribution of the

travel among the teams. In consequence, some teams may end up better than others with

respect to their single goals, an imbalance which may largely affect teams’ often limited resources

as well as preparedness for the games. In this article, we adopt a cooperative game theory

framework to deal with the question of fairness in sports scheduling. To obtain fair tournament

schedules, we develop the following approach. First, the scheduling problem is reformulated as

a transferable utility game. Second, by means of well-established cost allocation methods, such

as the egalitarian method, Shapley value and nucleolus, an ideal distance distribution among

the teams is determined. Third, given the inherently discrete nature of the space of feasible

solutions to the scheduling problem, we introduce fairness measures to produce a schedule which

approximately resembles the ideal distribution. We also discuss how to obtain a solution in case

of not pursuing only fairness, but rather a compromise between fairness and minimum total

distance. To illustrate the approach, we compute numerical results in one of the classic data

instances of the TTP.

Keywords: Sports scheduling; Fairness; Cooperative game theory; Cost allocation; Traveling

tournament problem
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Chapter 3. Fair travel distances in tournament schedules: A cooperative game theory approach

3.1 Introduction

Due to its importance in practice and the methodological challenges it involves, scheduling

sport tournaments has received a lot of attention from researchers and practitioners. The

application of operations research techniques and related fields has allowed for the incorporation

of many criteria to improve the schedules of sport tournaments. These criteria often derive

from logical and operational conditions (such as the number of matches between each pair of

opponents and the number of time slots available to schedule them), and from other league-

specific requirements. Then, these criteria are put together into an optimization problem,

where some of the conditions are modeled as constraints and the others as part of the objective

function (see Van Bulck et al. (2020) for a recent survey documenting typical constraints and

objective functions in the literature). Whether it is a minimization or a maximization problem,

the performance of alternative solutions is usually measured by an overall goal aggregating all

teams (e.g. minimization of total travel costs or maximization of total revenues from attendance

and TV). In consequence, some teams may end up better than others with respect to their

single goals. It is therefore interesting to address how the benefits of the overall best solution

could be fairly split among the different teams. Cooperative game theory offers a framework

to deal with that question. This article focuses on the intersection of such cooperative game

theory framework and fairness in sports scheduling, with particular emphasis on the traveling

tournament problem (TTP).

Introduced in the seminal work by Easton et al. (2001), the TTP is the most studied problem

in sports scheduling literature. The objective of the TTP is to find a schedule that minimizes

the total traveled distances incurred by the teams, while satisfying some essential constraints

of the tournament. While most of the related work on the TTP is methodological and focuses

on solving it, there are also real-world applications reported in the literature, such as Bonomo

et al. (2012) and Durán et al. (2019). Despite the numerous works on the TTP and other

related problems, the discussion of fairness issues in sports scheduling has not received so much

attention. Recently, Van Bulck and Goossens (2020) and Durán et al. (in press) have produced

pioneer efforts, but focused on rather specific tournament designs where the fairness criteria are

ad hoc to such designs.

In this article, we propose an approach to obtain a fair tournament schedule with respect

to the travel distances of the teams and show that the optimal solution of the TTP is not

necessarily the fairest solution. Furthermore, by analyzing the Pareto efficiency, we suggest a

way to find a compromise solution between the schedule minimizing the total distance and the

schedule maximizing fairness.

To the best of our knowledge, our article is the first one adopting a cooperative game theory

framework to address fairness in sports scheduling. This is a well-established framework founded

on general principles of fairness which have been studied in a broad range of applications.

Also, by focusing on the flagship problem of the area, namely the TTP, our article brings the

fairness discussion further to a common venue of research. Moreover, there is not much work

on cooperative game theory in sports tournaments, where most of the game theory work has

focused on its non-cooperative branch. This is perhaps because a sport tournament is essentially

a competitive situation. However, we may argue that not even the top teams of the top leagues
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would be what they are without smaller teams taking part in the same tournaments. The

success of the tournaments is subject to the participation of all teams, which also motivates

the introduction of a cooperative game theory perspective. In this regard, recent contributions

include for example Bergantiños and Moreno-Ternero (2020) focusing on sharing the revenues

from broadcasting sport league events among participating teams.

In the next section, we present the TTP as well as some relevant concepts from cooperative

game theory. In Section 3.3, we propose a methodology to find a tournament schedule by

maximizing fairness which, in Section 3.4, we illustrate on the NL6 instance, one of the classic

data instances of the TTP. Finally, Section 3.5 summarizes and concludes the article.

3.2 Preliminaries

In this section, we describe the traveling tournament problem (TTP) and present definitions of

the relevant concepts from the cooperative game theory.

3.2.1 Traveling tournament problem

In some sports leagues, the travel associated with visiting other teams’ venues plays an important

role due to the associated financial burden, time spent on road or its plain inconvenience. In

order to find schedules reducing the amount of travel, the TTP was introduced by Easton et al.

(2001). Given n teams, n even, the teams’ locations, and values L and U , L ≤ U , the TTP

generates a tournament schedule with 2(n − 1) rounds where every pair of teams plays twice,

once at home and once away for each team, the number of consecutive games at home and

consecutive games away is between L and U inclusive, and the total distance traveled by the

teams is minimized. The values of L and U are often set to 1 and 3, respectively.

A tournament in which every team faces each other team exactly twice, once at home and

once away, is often referred to as a double round-robin tournament. Additionally, with n even

and a total of 2(n − 1) rounds, the solution of the TTP corresponds with a compact double

round-robin tournament, i.e., the number of rounds is minimum and every team plays exactly

once in every round. This is a common requirement in sports scheduling competitions (see e.g.

Rasmussen and Trick (2008)). Besides, the TTP definition by Easton et al. (2001) introduces

a no-repeaters condition.

We adopt the above specifications for the rest of this study. These summarize as follows:

(C1) Every team faces each other team exactly twice, once at home and once away for each

team.

(C2) The number of rounds is minimum.

(C3) No team can play more than three consecutive games at home or three consecutive games

away.

(C4) No two teams can play against each other in two consecutive rounds (no repeaters).1

In order to determine a schedule satisfying conditions (C1)–(C4) while minimizing the total

distance, we use a model based on the formulation with O(n4) variables described by Melo et al.

1Note that this condition requires the number of teams to be greater than 2.
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(2009). With the set of teams N , the set of rounds R = {1, . . . , 2(n− 1)}, and parameters di,j

stating the distance between venues of teams i and j for each combination i, j ∈ N , the model

can be formulated as

min
∑
t∈N

∑
i∈N

∑
j∈N

∑
k∈R

di,j xt,i,j,k +
∑
t∈N

∑
i∈N

∑
j∈N

dj,t xt,i,j,|R| (3.1)

s.t.
∑
j∈N
j 6=t

∑
k∈R

xi,j,t,k = 1 ∀t ∈ N, i ∈ N : i 6= t, (3.2)

∑
i∈N

∑
j∈N

xt,i,j,k = 1 ∀t ∈ N, k ∈ R : k > 1, (3.3)

∑
j∈N

xt,t,j,1 = 1 ∀t ∈ N, (3.4)

∑
j∈N

xt,i,j,k =
∑
j∈N

xt,j,i,k−1 ∀t ∈ N, i ∈ N, k ∈ R : k > 1, (3.5)

∑
j∈N

xt,j,t,k =
∑
i∈N
i 6=t

∑
j∈N
j 6=t

xi,j,t,k ∀t ∈ N, k ∈ R, (3.6)

∑
j∈N

∑
i∈N
i 6=t

3∑
l=0

xt,j,i,k+l ≤ 3 ∀t ∈ N, k ∈ R : k ≤ |R| − 3, (3.7)

∑
j∈N
j 6=t

∑
i∈N

3∑
l=0

xj,i,t,k+l ≤ 3 ∀t ∈ N, k ∈ R : k ≤ |R| − 3, (3.8)

∑
j∈N

1∑
l=0

(xt,j,i,k+l + xi,j,t,k+l) ≤ 1 ∀t ∈ N, i ∈ N, k ∈ R : i 6= t, k < |R|, (3.9)

xt,i,j,k ∈ {0, 1} ∀t ∈ N, i ∈ N, j ∈ N, k ∈ R. (3.10)

The binary variable xt,i,j,k equals 1 if team t ∈ N travels from venue of team i ∈ N to

venue of team j ∈ N in round k ∈ R. Hence, the objective function (3.1) minimizes the total

distance traveled by all teams over all rounds (including the return home after the last game).

Constraints (3.2), (3.3), (3.4), (3.5), and (3.6) ensure satisfaction of conditions (C1) and (C2)

by prescribing each team to play at home against each other team once, play one game each

round, start at home before the first round, travel in each round from the venue of the previous

round’s game, and meet another team for a game when staying home, respectively. Condition

(C3) is enforced by constraints (3.7) and (3.8). For each team and for each sequence of four

consecutive rounds, constraints (3.7) restrict the number of games away to be at most three.

Constraints (3.8) work analogously for the home games. Constraints (3.9) make sure that no

pair of teams plays against each other in two consecutive rounds, i.e., condition (C4). Lastly,

(3.10) states the binary nature of the variables.

After solving model (3.1)–(3.10), the optimal objective value indicates the total distance

traveled by the teams. The associated optimal schedule can be derived from the values of

xt,i,j,k.
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3.2.2 Cooperative game theory

Let N denote the set of all players and S the set of all subsets of N . A transferable utility

game (TU game) is a pair (N, v) where v : S → R is the characteristic function assigning to

each coalition S ∈ S the optimal cost achievable by cooperation of players within this coalition.

Depending on the context, the characteristic function may be defined to represent either costs or

payoffs. Although some of the following definitions are universally applicable for both variants,

we limit the attention only to the case of v describing costs.

TU games allow for side payments, and thus for redistribution of the incurred costs among

cooperating players. One of the central questions in the cooperative game theory revolves

around a fair distribution of the costs. Assuming all players from N to cooperate and thus

incurring a total cost v(N), it is often not trivial to decide how big share of the cost should

each player bear. In practice, there is no consensus on what fairness actually means. In the

same vein, the game-theoretic literature recognizes multiple cost allocation methods based on

different views of fairness. Here, we describe three of the most commonly used, the egalitarian

method, the Shapley value and the nucleolus.

Proportional methods assign each player p ∈ N a share αp of the cost v(N), i.e.,

xp = αp · v(N) ∀p ∈ S (3.11)

where
∑

p∈N αp = 1. These cost allocation methods are very straightforward and easy to

communicate in practice.

Different strategies are employed in the literature as how to specify the shares αp. The

simplest option is the egalitarian method assigning to each player the same share of v(N), i.e.,

xp =
v(N)

|N |
∀p ∈ S (3.12)

where |N | denotes the cardinality of N , i.e., the total number of players.

The Shapley value is another commonly used cost allocation method. Algaba et al. (2019)

shows its importance across many different applications. To achieve a fair distribution, Shap-

ley (1953) derives the share of v(N) assigned to player p ∈ N from this player’s marginal

contributions to any possible coalition as

xp =
∑

S⊆N : p∈S

(|S| − 1)! (|N | − |S|)!
|N |!

· (v(S)− v(S\{p})) . (3.13)

The nucleolus, as defined by Schmeidler (1969), takes a different approach to determine a fair

distribution of v(N). In this case, the shares are derived from excesses of the coalitions in order

to minimize players’ incentives to leave N and form another coalition. For N = {p1, . . . , p|N |}
and a cost allocation x = (xp1 , . . . , xp|N|), the excess of coalition S ⊆ N at x is defined as

ε(x, S) = v(S) −
∑

p∈S xp. Furthermore, with S1, . . . , Sm denoting all subsets of N , e(x) =

(ε(x, S1), . . . , ε(x, Sm)) denotes the excess vector at x and θ(e(x)) is a vector resulting from

arranging the components of e(x) in nondecreasing order. The nucleolus is then defined as the

cost allocation x which lexicographically maximizes θ(e(x)).
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3.3 Fair scheduling in the TTP

The TTP generates a schedule guaranteeing minimum total distance traveled by the teams.

This does not imply minimum distance traveled by each particular team. In fact, some teams

might need to travel more if it keeps the collective distance low. It suggests a question: What a

fair schedule considering the collective as well as all individual preferences would look like? In

the following, we determine fair schedules by, first, finding an ideal distance distribution and,

then, determining the nearest schedule.

To find the ideal distance distribution, we employ the cost allocations introduced in the

previous section. As most of the cost allocations require the characteristic function, in Section

3.3.1, we define models to compute distances associated with each set of teams. With determined

ideal distance distribution, we proceed by finding the nearest solution, a schedule in which the

distances traveled by the teams resemble the distribution the most. Sections 3.3.2 and 3.3.3

focus on measuring of the resemblance and finding the nearest schedule, respectively. However,

just as the distance-minimizing TTP does not guarantee a fair solution, the fairness maximizing

solution does not guarantee the lowest distance. Therefore, in Section 3.3.4 we investigate the

Pareto efficiency and discuss the choice of the best schedule.

One could argue that the cost allocations introduced in Section 3.2.2 are defined for trans-

ferable utility games while the utility in TTP, the distance traveled, is not transferable. A

monetary value could be put on some aspects of the traveling distance which may or may not

allow for this property. Nonetheless, some more or less important aspects such as affected

players’ recovery while on road clearly remains non-transferable.

The literature on non-transferable utility games (NTU games) covers several concepts deal-

ing with payoff or cost allocation (McLean, 2002). However, they are often accompanied by

assumptions not suitable for our setting. The standard definition of an NTU game with set

of players N , as formulated for example by Hart (2004), requires feasible utility combinations

(corresponding to the distance distributions) for each coalition S ⊆ N to form a nonempty,

strict, closed, convex and comprehensive subset of Euclidean space R|N |. In the TTP, this is

often unachievable due to the finite number of feasible schedules. This makes the NTU-game-

based approach unfitting and, therefore, we substitute it by formulating the two-step approach

described above.

3.3.1 Characteristic function

With N standing for the set of all teams in a tournament, we can define a TU game (N, v).

The characteristic function v assigns to each coalition S ⊆ N the optimal traveling distance a

tournament of teams within S could achieve. The computation of v(S) varies depending on the

properties of S.

First, we look at coalitions of two or less teams. For any S ⊆ N such that |S| = 0 or |S| = 1,

there are no games to be played. Hence, v(S) = 0. For any S ⊆ N such that |S| = 2, exactly

two games need to be played. The teams in S need to face each other at each team’s venue.

However, a tournament schedule satisfying conditions (C1)–(C4) cannot be constructed. With

only two teams in a tournament, a feasible schedule needs to allow for the teams to play against

60



3.3. Fair scheduling in the TTP

each other in two consecutive rounds, i.e., violate condition (C4). Therefore, the value of v(S)

can be determined by replacing N in model (3.1)–(3.10) by S and removing constraints (3.9)

corresponding with condition (C4).

For any S ⊆ N such that |S| > 2 and |S| is even, the value of v(S) can be determined

as the optimal objective value of model (3.1)–(3.10) with N replaced by S. For S ⊆ N such

that |S| > 2 and |S| is odd, the computation of v(S) is not as straightforward. With an odd

number of teams, in each round there has to be at least one team unmatched with an opponent.

We refer to this situation as a team having a rest or having a bye as described for example by

Bao and Trick (2010) in the case of the relaxed traveling tournament problem. With teams

having byes, not only the minimum number of rounds no longer equals 2(|S| − 1), but even

with the correct number, model (3.1)–(3.10) cannot be applied. For instance, the combination

of constraints (3.4) and (3.6) explicitly requires each team to play one game each round. The

model thus needs to be modified.

In modeling of the byes, we assume that, when having a bye, the teams stay on road, i.e.,

the teams do not travel home during a round with no game. We still require the model to follow

conditions (C1)–(C4), but to avoid long periods without a game we introduce an additional one

as follows:

(C5) No team can have two or more consecutive byes.

To comply with condition (C2), the number of rounds needs to be minimum. With n teams

in a tournament, each team plays 2(n− 1) games. This means a total of n(n− 1) games in the

tournament. With n even, a maximum number of games in any round equals n
2 . With n odd,

a maximum number of games in any round equals n−1
2 . Therefore, the least number of rounds

equals 2(n− 1) for n even and 2n for n odd. Hence, with an odd number of teams, each team

needs to have a rest for at least two rounds.

Using a general formulation for any S ⊆ N , a model computing v(S) while allowing for byes

can be stated as

v(S) = min
∑
t∈S

∑
i∈S

∑
j∈S

∑
k∈R

di,j xt,i,j,k +
∑
t∈S

∑
i∈S

∑
j∈S

dj,t xt,i,j,|R| (3.14)

s.t.
∑
j∈S
j 6=t

∑
k∈R

xi,j,t,k = 1 ∀t ∈ S, i ∈ S : i 6= t, (3.15)

∑
i∈S

∑
j∈S

xt,i,j,k = 1 ∀t ∈ S, k ∈ R : k > 1, (3.16)

∑
j∈S

xt,t,j,1 = 1 ∀t ∈ S, (3.17)

∑
j∈S

xt,i,j,k =
∑
j∈S

xt,j,i,k−1 ∀t ∈ S, i ∈ S, k ∈ R : k > 1, (3.18)

∑
j∈S

xt,j,t,k ≥
∑
i∈S
i 6=t

∑
j∈S
j 6=t

xi,j,t,k ∀t ∈ S, k ∈ R : |S| > 1, (3.19)
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∑
j∈S

∑
i∈S

i 6=t,i 6=j

∑
m∈R

k≤m<k+l

xt,j,i,m ≤ 3 +
∑
j∈S
j 6=t

∑
i∈S
i 6=t

∑
m∈R

k≤m<k+l

M xj,i,t,m

∀t ∈ S, k ∈ R, l ∈ R :

k ≤ |R| − 3, 4 ≤ l ≤ |R| − k + 1, (3.20)∑
j∈S
j 6=t

∑
i∈S
i 6=t

∑
m∈R

k≤m<k+l

xj,i,t,m ≤ 3 +
∑
j∈S

∑
i∈S

i 6=t,i 6=j

∑
m∈R

k≤m<k+l

M xt,j,i,m

∀t ∈ S, k ∈ R, l ∈ R :

k ≤ |R| − 3, 4 ≤ l ≤ |R| − k + 1, (3.21)∑
j∈S
j 6=i

1∑
l=0

xt,j,i,k+l +
∑
j∈S
j 6=t

1∑
l=0

xi,j,t,k+l ≤ 1

∀t ∈ S, i ∈ S, k ∈ R :

i 6= t, k < |R|, |R| > 2, (3.22)

1∑
l=0

xt,i,i,k+l +
∑
j∈S
j 6=t

1∑
l=0

xt,j,t,k+l −
∑
j∈S
j 6=t

∑
h∈S
h6=t

1∑
l=0

xj,h,t,k+l ≤ 1

∀t ∈ S, i ∈ S, k ∈ R :

k < |R|, |S| > 1, (3.23)

xt,i,j,k ∈ {0, 1} ∀t ∈ S, i ∈ S, j ∈ S, k ∈ R, (3.24)

where R = {1, . . . , 2(n− 1)} for |S| even or R = {1, . . . , 2n} for |S| odd and M is a sufficiently

large number, for example M = |R|.
The binary variables xt,i,j,k in model (3.14)–(3.24) work in the same way as in model (3.1)–

(3.10). If team t ∈ N travels from a venue of team i ∈ N to play a game at a venue of team

j ∈ N in round k ∈ R, xt,i,j,k equals 1. Additionally, if team t ∈ N is to have a rest after being

at a venue of team i ∈ N , xt,i,i,k equals 1. The objective function (3.14) and constraints (3.15)–

(3.18), (3.24) correspond with the objective function (3.1) and constraints (3.2)–(3.5), (3.10),

respectively, with the only difference being in replacing the set of teams N by S. Constraints

(3.19) state that a team may travel to another team’s venue for a game only if the other team

is going to be there as well. Constraints (3.20) and (3.21) guarantee compliance with condition

(C3). If any sequence of at least four consecutive rounds includes no game at home, constraints

(3.20) require the number of games away in this sequence to be at most three. Constraints

(3.21) work analogously to restrict the number of consecutive games at home. Constraints

(3.22) prevent teams from playing against the same opponent in two consecutive rounds, i.e.,

condition (C4). Additionally, condition |R| > 2 in constraints (3.22) avoids infeasibility of the

model for tournaments of less than 3 teams. Lastly, for each team, constraints (3.23) enforce

condition (C5) by restricting the number of rests in any two consecutive rounds to be at most

one.

Model (3.14)–(3.24) can be solved for any coalition S ⊆ N regardless of its cardinality
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or parity of this cardinality. With fully specified characteristic function v, it is then easy to

determine cost allocations such as the egalitarian method, the Shapley value or the nucleolus.

Since these allocations follow certain concepts of fairness, they may serve as the ideal distance

distribution.

3.3.2 Measuring fairness

With the knowledge of the ideal distance distribution, we want to determine a schedule which

resembles this distribution the most. Since we consider resemblance regarding only the distances

traveled by the teams, we can represent each schedule by a vector of the distances. Hence, when

we compare the ideal distance distribution with a schedule or a schedule with another schedule,

we essentially compare two vectors of length |N |.
For a similar approach aiming for fairness in kidney exchange programmes, Biró et al.

(2020) apply a metric based on the sum of absolute deviations. For vectors x = (x1, . . . , xn)

and y = (y1, . . . , yn), this equals
n∑
j=1

|xj − yj |. (3.25)

For example, comparing vectors (100, 100, 100, 100) and (90, 110, 90, 110) results in a value of

40. However, the same result can be obtained when comparing vectors (100, 100, 100, 100) and

(100, 100, 100, 140). In our application, each element of the vectors stands for a different team.

With the objective to achieve fairness, it is then only natural to prefer the first case and try to

avoid the second one. Therefore, we do not consider this metric suitable for our purpose.

Perea and Puerto (2019) proposed a heuristic procedure for computing the nucleolus. To

assess its quality and compare the obtained result with the actual nucleolus, they proposed

two metrics, RDa and RDe. For a given allocation x = (x1, . . . , xn) and the nucleolus x̃ =

(x̃1, . . . , x̃n), they are defined as

RDa =

√∑n
j=1(x̃j − xj)2√∑n

j=1 x̃
2
j

(3.26)

and

RDe =

√∑kmax
k=1 (θ(e(x̃))k − θ(e(x))k)2√∑kmax

k=1 θ(e(x̃))2
k

(3.27)

where θ(e(x)) is the excess vector at x arranged in nondecreasing order as described in the

definition of the nucleolus and kmax is the number of the largest excesses to account for.

Furthermore, we introduce a new metric by adapting RDa for the use in fairness maxi-

mization. For the RDa metric, the signs of the differences in
∑n

j=1(x̃j − xj)2 do not matter.

However, due to the inclusion of the positive differences (corresponding with the prescribed

distances lower than the ideal ones), using this metric for schedule comparison could turn out

to be counterproductive. For illustration, let us assume a four-team tournament with ideal

distance distribution (150, 100, 200, 80) and only two feasible schedules prescribing distances
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(300, 80, 210, 75) and (300, 95, 210, 75). In both solutions, the first, third, and fourth team face

the same distances. On the other hand, the second team could benefit from the first solution

even though the distance prescribed by the second solution is closer to the ideal one. Never-

theless, due to the closer distance in the second solution, this would be the preferred schedule

from the perspective of the RDa metric. Hence, pursuing the RDa metric could make a par-

ticular team travel a longer distance even if no other team would benefit from it. This can be

avoided by focusing only on the negative differences. Therefore, we propose metric RD−a as a

modification of the RDa metric accounting only for the negative differences:

RD−a =

√∑n
j=1:x̃j−xj<0(x̃j − xj)2√∑n

j=1 x̃
2
j

(3.28)

3.3.3 Maximizing fairness

With a set of teams N = {t1, . . . , t|N |}, a fully specified characteristic function v and a chosen

allocation method, it is easy to obtain the ideal distance distribution x̃ = (x̃t1 , . . . , x̃t|N|). Then,

with a chosen metric of fairness, to find the nearest solution (schedule maximizing the fairness),

one can find a schedule minimizing this metric.

With the RDa metric, the nearest solution can be determined by a model with objective

function

min

√√√√∑
t∈N

(
x̃t −

∑
i∈S

∑
j∈S

∑
k∈R

di,j xt,i,j,k −
∑
i∈S

∑
j∈S

dj,t xt,i,j,|R|

)2

√∑
t∈N

x̃2
t

(3.29)

while satisfying constraints (3.15)–(3.24) in which all occurrences of set S are replaced by N .

We refer to this model as the RDa-minimizing TTP.

Similarly, this means objective function

min

√√√√kmax∑
k=1

(
θ(e(x̃))k − θ

(
e

((∑
i∈S

∑
j∈S

∑
k∈R

di,j xt,i,j,k +
∑
i∈S

∑
j∈S

dj,t xt,i,j,|R|

)
t∈N

))
k

)2

√
kmax∑
k=1

θ(e(x̃))2
k

(3.30)

and the RDe-minimizing TTP in case of the RDe metric, and objective function

min

√∑
t∈N :Dt<0D

2
t√∑

t∈N x̃
2
t

(3.31)

where

Dt = x̃t −
∑
i∈S

∑
j∈S

∑
k∈R

di,j xt,i,j,k −
∑
i∈S

∑
j∈S

dj,t xt,i,j,|R| ∀t ∈ N (3.32)
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and the RD−a -minimizing TTP in case of the RD−a metric.

In all three objective functions, one can notice that the denominators do not depend on the

variables of the models and, thus, remain constant. Therefore, and because the square root

function is a strictly increasing function, the objective functions (3.29), (3.30), (3.31) may be

replaced by

min
∑
t∈N

x̃t −∑
i∈S

∑
j∈S

∑
k∈R

di,j xt,i,j,k −
∑
i∈S

∑
j∈S

dj,t xt,i,j,|R|

2

, (3.33)

min

kmax∑
k=1

θ(e(x̃))k − θ

e
∑

i∈S

∑
j∈S

∑
k∈R

di,j xt,i,j,k +
∑
i∈S

∑
j∈S

dj,t xt,i,j,|R|


t∈N


k

2

, (3.34)

min
∑

t∈N :Dt<0

D2
t , (3.35)

respectively, with no change in the optimal solutions. Despite the simplification, all the objective

functions remain nonlinear and nonlinear integer programming solvers are required to solve the

respective models.

In the case of the RDe-minimizing TTP, the nonlinearity stems not only from the second

power, but also from the ordering function θ. In our attempts to find the nearest schedule

using solvers Bonmin and Couenne, even for the four-team NL4 instance, we failed to obtain

an optimal solution within 72 hours. On the other hand, the RDa-minimizing TTP and the

RD−a -minimizing TTP both generate an integer quadratic programming problem solvable by

solvers such as Gurobi or CPLEX. Therefore, in Section 3.4, we disregard the RDe-minimizing

TTP and focus only on the two remaining problems.

3.3.4 Pareto efficiency

The TTP selects a schedule associated with the shortest total distance. Maximizing fairness,

on the other hand, results in a schedule minimizing a given metric. Although the solutions

might coincide, it is not always the case. Since both criteria are often desirable, it is not trivial

to decide which schedule is the best. To aid this decision, one may employ a method from

multi-objective optimization called the Pareto front.

TheRDa-minimizing TTP,RDe-minimizing TTP,RD−a -minimizing TTP, and model (3.14)–

(3.24) for S = N contain the same set of constraints and differ only in their objective functions.

Hence, their feasible regions are identical and, for a given ideal distance distribution, values of

all the objective functions can be evaluated at each feasible solution.

As described for example by Hwang and Masud (1979), for a problem with two objective

functions, a solution is considered Pareto efficient if none of the objective functions can be

improved without worsening the other one. Pareto front is then a set of all Pareto efficient

solutions.

For example, let us assume selection of the RD−a metric in a problem with 8 feasible schedules

depicted in Figure 3.1. Only the solutions denoted by a full circle belong to the Pareto front. For

each of the other solutions, there exists another solution improving at least one of the objectives
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Figure 3.1: Example of a Pareto front

without worsening the other one. Therefore, it is reasonable to choose a schedule belonging to

the Pareto front. The left-most solution on the Pareto front is the schedule minimizing RD−a ,

while the right-most solution corresponds with minimizing the total distance. The two remaining

solutions offer some compromise between the two criteria.

The Pareto front may offer some options to choose from and help understand the trade-offs.

Nonetheless, there is no general answer for what is the right choice from the schedules on the

Pareto front. It very much depends on the tournament itself as well as on available resources,

inclination towards fairness, etc.

3.4 Numerical results for the NL6 instance

In this section, to illustrate the proposed methodology, we attempt to find a fair schedule in the

NL6 instance by Easton et al. (2001). All our models were implemented in AMPL and solved

with the Gurobi solver.

The NL6 instance contains six teams from the North American baseball league known as

the National League. Figure 3.2 describes the teams and location of their venues. In the rest

Handle Name Location

ATL Atlanta Braves Atlanta, Georgia
NYM New York Mets New York, New York
PHI Philadelphia Phillies Philadelphia, Pennsylvania
MON Montreal Expos Montreal, Canada
FLA Florida Marlins Miami, Florida
PIT Pittsburgh Pirates Pittsburgh, Pennsylvania

(a) Names and locations

ATL

NYM

PHI

MON

FLA

PIT

(b) Geographical distribution

Figure 3.2: Description of teams from NL6 instance

of this section, we refer to the teams only by their handles.

In Figure 3.2b, one can notice that teams NYM and PHI are based fairly close to each

other. Teams FLA and ATL are on the other hand quite distanced from all other teams.

The notion of fairness might vary across different leagues and tournaments. For instance, one

could see team FLA in an unfortunate position given its location and seek balance in traveled
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distances by minimizing this team’s distance on the expense of other teams. This viewpoint

would correspond with a choice of the egalitarian method or a similar allocation. Nonetheless,

one could also look at centrally located teams like NYM and PHI and claim that they should

not be punished for other teams such as team FLA, i.e., the teams should travel in line with

marginal distances they bring to the tournament. Such an approach would lead to a choice of

the Shapley value, nucleolus or a similar allocation.

We proceed by solving the TTP model (3.1)–(3.10). The optimal schedule prescribes dis-

tances shown in the first part of Table 3.1. Afterwards, model (3.14)–(3.24) is solved for each

S ⊆ N in order to evaluate the characteristic function which is then used to compute the

egalitarian method, Shapley value and nucleolus. These are listed in the second part of Table

3.1. The egalitarian method prescribes each team the same distance of 3,986. The Shapley

value and the nucleolus, as expected from the geographical distribution of the teams’ venues,

prescribe the lowest distances to teams NYM and PHI with no big difference while the distance

determined for team FLA is more than twice as large. To find schedules with distances similar

Table 3.1: NL6. DRR. Allocations.

ATL NYM PHI MON FLA PIT Total distance

TTP 4,414 3,328 3,724 3,996 5,135 3,319 23,916

Egalitarian method 3,986 3,986 3,986 3,986 3,986 3,986 23,916
Shapley value 3,781.1 3,141.3 3,008.3 4,488.8 6,336 3,161.5 23,916
Nucleolus 4,176.8 2,938.5 2,893.5 4,117.5 6,715.3 3,074.5 23,916

RDa-min. TTP (egal. m.) 4,147 3,857 4,174 4,090 4,953 4,058 25,279
RD−

a -min. TTP (egal. m.) 4,147 3,857 4,174 4,090 4,953 4,058 25,279
RDa-min. TTP (Shapley v.) 4,263 3,472 3,372 4,424 6,407 3,597 25,535
RD−

a -min. TTP (Shapley v.) 4,147 3,365 3,372 4,537 5,596 3,604 24,621
RDa-min. TTP (nucleolus) 4,551 3,509 3,200 3,994 6,455 3,218 24,927
RD−

a -min. TTP (nucleolus) 4,551 3,509 3,200 3,994 6,455 3,218 24,927

to the three computed allocations, we can now solve the RDa-minimizing TTP and the RD−a -

minimizing TTP. The results are listed in the last part of Table 3.1. Although the schedules

do not match the allocations exactly, they tend to be more similar to the respective allocations

than the solution of the original TTP.

In Section 3.3.2, we have discussed the main advantage of using the RD−a metric over the

RDa metric. In this example, for the egalitarian method and the nucleolus, the models actually

result in the same solutions for both of the metrics. This is not the case with the Shapley

value. The distances determined by the models differ for all teams except for PHI. In case of

ATL, NYM, MON, and PIT the distances are still fairly similar. The issue occurs in the case

of team FLA. While the RD−a metric leads to a distance of 5,596, the RDa metric determines a

solution with a distance of 6,407. Although this is much closer to the value of 6,336 determined

by the Shapley value, team FLA would certainly prefer the first option. It hence seems like an

unnecessary increase in the distance for team FLA which is also reflected in the total distance.

This supports the discussion in Section 3.3.2 and, therefore, for a detailed analysis of the results,

we proceed only with the models based on the RD−a metric.

Figure 3.3 reports the optimal schedules obtained by solving the TTP and the RD−a -

67



Chapter 3. Fair travel distances in tournament schedules: A cooperative game theory approach

Round
Team 1 2 3 4 5 6 7 8 9 10 Distance

ATL FLA NYM PIT @PHI @MON @PIT PHI MON @NYM @FLA 4,414
NYM @PIT @ATL @FLA MON FLA @PHI @MON PIT ATL PHI 3,328
PHI @MON FLA MON ATL @PIT NYM @ATL @FLA PIT @NYM 3,724

MON PHI @PIT @PHI @NYM ATL FLA NYM @ATL @FLA PIT 3,996
FLA @ATL @PHI NYM PIT @NYM @MON @PIT PHI MON ATL 5,135
PIT NYM MON @ATL @FLA PHI ATL FLA @NYM @PHI @MON 3,319

Total distance 23,916

(a) Optimal solution of the TTP

Round

Team 1 2 3 4 5 6 7 8 9 10 Distance

ATL FLA MON @PHI @NYM @MON PIT PHI NYM @PIT @FLA 4,147
NYM PIT PHI @PIT ATL @PHI MON FLA @ATL @FLA @MON 3,857
PHI MON @NYM ATL @FLA NYM FLA @ATL @PIT @MON PIT 4,174

MON @PHI @ATL @FLA PIT ATL @NYM @PIT FLA PHI NYM 4,090
FLA @ATL @PIT MON PHI PIT @PHI @NYM @MON NYM ATL 4,953
PIT @NYM FLA NYM @MON @FLA @ATL MON PHI ATL @PHI 4,058

Total distance 25,279

(b) Optimal solution of the RD−a -minimizing TTP (egalitarian method)

Round

Team 1 2 3 4 5 6 7 8 9 10 Distance

ATL FLA NYM PIT @MON @NYM @PHI MON PHI @PIT @FLA 4,147
NYM @PIT @ATL @FLA PHI ATL @MON FLA PIT MON @PHI 3,365
PHI MON @PIT @MON @NYM FLA ATL PIT @ATL @FLA NYM 3,372

MON @PHI FLA PHI ATL @PIT NYM @ATL @FLA @NYM PIT 4,537
FLA @ATL @MON NYM PIT @PHI @PIT @NYM MON PHI ATL 5,596
PIT NYM PHI @ATL @FLA MON FLA @PHI @NYM ATL @MON 3,604

Total distance 24,621

(c) Optimal solution of the RD−a -minimizing TTP (Shapley value)

Round

Team 1 2 3 4 5 6 7 8 9 10 Distance

ATL @FLA PHI MON NYM @PIT @MON @NYM PIT @PHI FLA 4,551
NYM @MON FLA PIT @ATL @FLA @PIT ATL PHI MON @PHI 3,509
PHI @PIT @ATL @FLA PIT MON FLA @MON @NYM ATL NYM 3,200

MON NYM PIT @ATL @FLA @PHI ATL PHI FLA @NYM @PIT 3,994
FLA ATL @NYM PHI MON NYM @PHI @PIT @MON PIT @ATL 6,455
PIT PHI @MON @NYM @PHI ATL NYM FLA @ATL @FLA MON 3,218

Total distance 24,927

(d) Optimal solution of the RD−a -minimizing TTP (nucleolus)

Figure 3.3: Optimal schedules
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minimizing TTP for all three allocations (character @ preceding a team handle indicates an

away game). Although the schedules, as well as the distances, differ significantly, one can

notice some similar patterns. For instance, the schedules of team ATL in Figures 3.3b and 3.3c

imply the same distance despite coinciding only in rounds 1, 9 and 10. This demonstrates the

flexibility in scheduling and shows that accommodating one team does not necessarily have a

negative effect on all other teams.

To better understand how the different schedules result in different distances, in Figure 3.4,

we display the actual travel of team FLA whose distances vary the most across the optimal

schedules. This makes the travel of team FLA ideal for illustrative purposes. For the interested

ATL

NYM

PHI

MON

FLA

PIT

(a) TTP

ATL

NYM

PHI

MON

FLA

PIT

(b) RD−a -minim. TTP
(egalitarian method)

ATL

NYM

PHI

MON

FLA

PIT

(c) RD−a -minim. TTP
(Shapley value)

ATL

NYM

PHI

MON

FLA

PIT

(d) RD−a -minim. TTP
(nucleolus)

Figure 3.4: Travel of team FLA

reader, figures depicting the travel of all other teams are provided in Appendix 3.A. The TTP

results with FLA covering a distance of 5,135. This is achieved by two trips, first visiting

teams ATL and PHI and second visiting teams NYM, MON and PIT. Although this model

minimizes the total distance, looking at Figure 3.4a, it might seem unreasonable that teams

PHI and NYM are not visited right after each other. With the RD−a -minimizing TTP and the

egalitarian method, this is resolved and the distance drops to 4,953. This is in fact the shortest

possible option for team FLA. Hence, even though the distance is still much larger than the one

prescribed by the egalitarian method, it has got as close as it could. The Shapley value and

the nucleolus, on the other hand, prescribe team FLA to cover longer distance than 5,135. The

RD−a -minimizing TTP’s with respect to these allocations indeed increase the distance. Figures

3.4c and 3.4d show the associated travel. One could argue that the travel seems very inefficient.

However, since we are using the RD−a metric, this inefficiency and increase in distance is a result

of other teams’ decreasing distances to achieve a more fair solution.

In Table 3.1, we can see that, for all allocations, the RD−a -minimizing TTP is associated

with an increase in the total distance. Therefore, as a last step, we can draw the Pareto fronts.

These are displayed in Figure 3.5 where each circle represents two schedules. This is due to the

fact that, in our problem, each feasible schedule can be reversed and run from the last round

to the first round without violating any constraints while resulting in the same distances.

In the case of the egalitarian method, one can see in Figure 3.5a that, although the upper-

left circle minimizes the RD−a metric and the lower-right circle minimizes the total distance, the
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(b) Shapley value
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(c) Nucleolus

Figure 3.5: Pareto fronts

lower-left circle performs very well on both of the criteria. Therefore, a schedule corresponding

with the lower-left circle seems to be a reasonable choice. In Figures 3.5b and 3.5c, it is not

as simple and the tournament organizer would need to decide based on the properties of the

tournament and importance of fairness.

3.5 Conclusion

In this article, we have developed a cooperative game theory approach to produce fair tour-

nament schedules in sports competitions, with particular focus on the celebrated TTP. To our

knowledge, this is the first research effort combining sports scheduling and cooperative game

theory concepts. Given the importance of scheduling design in sports competitions and the

importance of fairness in the outcomes and in the perception of the stakeholders around sport

competitions, the study of such well-established concepts of fairness in well-established problems

is relevant for the progress of the area.

To determine an ideal distribution of travel distances, we have tested three different methods.

As illustrated by our numerical results, the choice of a specific method is crucial for the final

schedule. Since the different methods are based on different notions of fairness, this choice

should reflect tournament planners’ perception of what fairness in a given tournament means.

Next, to find the nearest schedule to a particular distance distribution, we have discussed

several metrics to measure the resemblance. Out of the options, we have found that our proposed
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RD−a metric allows for fairly low computation time while not having some of the other metrics’

negative side effects.

Overall, we have shown how to find a fair schedule for a given tournament as well as how to

arrive at a solution representing a compromise between fairness and minimum total distance.

Although our focus has been on the TTP, the framework of finding an ideal distance dis-

tribution and a nearest schedule is general enough to adjust to different tournament settings.

In this regard, we remark that the input to define the cooperative game is a result of the

underlying scheduling problem, regardless of whether it is the TTP or another problem. In

turn, the computation of this input is often hard in larger-size instances and the computation

time increases exponentially with the number of teams, thus developing approximate solution

methods remains of interest. On the applied side, it is particularly interesting to analyze how

scheduling considering fairness could help teams in low-tier leagues, where resources are likely

to be very limited and travel costs account for a large part of total expenses.

Finally, although transferable utility games have gained popularity to address collaborative

problems in logistics and transportation, this article has studied the rather unexplored area

of how these TU games can be used to compute ideally fair solutions to problems of discrete

nature where non-transferable utility issues are in place. In our case, these non-transferable

utility issues arose from the burden associated to traveling fatigue and its potential effects on the

performance of players. We argue that similar issues arise in collaborative logistics problems and

thus our approach can be extended further. For example, implementing a cooperative solution

for the scheduling problem of two logistics companies based merely on an economic metric (e.g.

cost minimization or revenue maximization) may imply drivers of one company having a more

comfortable workload than drivers of the other company. This motivates finding solutions that

incorporate driver fatigue into the discussion of the collaboration, where extending the approach

developed in this article may be of interest.
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Appendix 3.A Teams’ travel for different schedules

For the different schedules, Figures 3.6, 3.7, 3.8, 3.9, and 3.10 depict the actual travel of teams

ATL, NYM, PHI, MON, and PIT, respectively. Similar conclusions could be drawn from these

figures as in the case of team FLA in section 3.4.
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Figure 3.6: Travel of team ATL

72



3.A. Teams’ travel for different schedules

ATL

NYM

PHI

MON

FLA

PIT

(a) TTP

ATL

NYM

PHI

MON

FLA

PIT

(b) RD−a -minim. TTP
(egalitarian method)

ATL

NYM

PHI

MON

FLA

PIT

(c) RD−a -minim. TTP
(Shapley value)

ATL

NYM

PHI

MON

FLA

PIT

(d) RD−a -minim. TTP
(nucleolus)

Figure 3.7: Travel of team NYM
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Figure 3.8: Travel of team PHI
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Figure 3.9: Travel of team MON
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Figure 3.10: Travel of team PIT
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Player-centered approach to coalition formation

in transferable utility games with uncertain pay-

offs
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Abstract

This study considers cooperative games with transferable utility (TU games) and investigates

endogenous coalition formation from a perspective of their players. Several approaches are for-

mulated to determine which coalition is optimal for a given player to pursue while taking into

account the subsequent payoff or cost allocation. In particular, the focus is on decision-making

situations where coalitions need to be formed before their actual outcome is observable. The

formulated models are divided into two main categories, those describing TU games where the

subsequent allocation rules are known prior to the coalition formation and those describing TU

games where negotiations within the formed coalitions are yet to take place after observing

the uncertainty realization. Thus, in addition to a novel approach to the coalition formation,

the models also take into account possible uncertainty in the TU games’ properties and hence

in their characteristic function values. The models are then addressed with a stochastic pro-

gramming approach. Subsequently, the methodology is illustrated on an example of randomly

winning coalitions and on an example of a collaborative transportation problem. The results

support arguments against exogenous approaches to coalition formation and show that failing

to take the uncertainty in parameter values into account might lead to suboptimal solutions and

consequently to false conclusions.

Keywords: Cooperative game theory; Stochastic cooperative games; Endogenous coalition for-

mation; Decentralized coalition formation
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4.1 Introduction

In cooperative game theory and more specifically in studies of cooperative games with transfer-

able utility (TU games), authors usually focus on the payoff or cost allocation. The allocation is

a mechanism that splits a certain amount (the worth of the coalition) among the players while

adhering to certain rules, complaints, or claims of these players. For example, a set of players

might claim a certain worth as otherwise, they would be better off leaving the current coalition.

Albeit it is important to account for fairness and overall compliance to the allocation, from

a perspective of a particular player it might be preferable to completely avoid some players’

complaints or claims by simply choosing a coalition without these players in the first place.

In the literature, this option is often dismissed as the majority of studies assumes that a

coalition of all players (the grand coalition) is established. However, there are exceptions to this

and one can observe a growing academic interest in formation of coalition structures (the set of

players partitioned into disjoint coalitions; see Aumann and Maschler (1964), Aumann and Dreze

(1974), Guajardo and Rönnqvist (2015) for examples or Rahwan et al. (2015) for a literature

review) or coalition configurations (all players assigned to one or more coalitions which may

even overlap; see Shehory and Kraus (1996), Chalkiadakis et al. (2010), Guajardo et al. (2018)

for examples). Even there, nonetheless, most studies of the allocations consider exogenously

given coalitions, i.e., they compute the allocations for coalitions determined beforehand.

Only a small number of studies considers endogenously formed coalitions where the final

allocation might actually affect the decision about which coalitions to establish. For example,

the model developed by Hart and Kurz (1983) evaluates various coalition structures and, based

on this evaluation, determines the stable ones. Similar approaches can be found in articles by

Ray and Vohra (1999) or Belleflamme (2000). These studies address the coalition formation

from a perspective of a central planner and aim for an outcome advantageous to all players.

Nonetheless, it is not difficult to imagine a situation where a small group of players is satisfied

with cooperation while some others might never reach mutual agreement. Even if these two

groups of players may never affect each other, the central-planner approach would fail while

trying to achieve each player’s satisfaction.

In this article, we propose a decentralized approach to endogenous coalition formation. In

other words, we investigate which coalitions are optimal to form from a perspective of the

players while taking into account the subsequent allocation. Additionally, our framework is not

limited to TU games with deterministic characteristic functions, but is broad enough to capture

decision-making situations where coalitions need to be formed before their actual outcome is

observable.

There have been studies considering TU games with uncertain payoffs. Granot (1977) pro-

posed a two-stage procedure to determine an allocation. First, an allocation likely to be realiz-

able is promised. Then, after the actual payoffs are observed, this allocation may be adjusted

according to circumstances. Suijs et al. (1998, 1999) and Suijs and Borm (1999) studied an

allocation method with application in insurance. Their allocation prescribes to each player a

combination of a fixed amount and a proportion of a random loss. Timmer et al. (2004, 2005)

proposed several allocations based on the Shapley value prescribed as fractions of the observed
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payoffs. Fernández et al. (2002) applied methods based on stochastic ordering to define two

different notions of core. Other studies such as Benati et al. (2019) have acknowledged the dif-

ficult task of computing allocations in TU games like the Shapley value and focused on finding

their statistic estimates through stochastic approximations of these games.

In this article, we follow a different approach to the TU games with uncertain payoffs

altogether. Instead of deciding on the allocations before the actual outcomes are observed, we

postpone the decision after the observation. We provide two examples to motivate this choice.

1. What sensitive information to share with other companies is often an essential question

when establishing coalitions and assessing the contribution of different players. With

uncertainty, this becomes even more problematic. For example, a company might choose

to report an inaccurate probability distribution of their resource availability to seem more

interesting to cooperate with and hence secure themselves a better share of the coalition’s

worth. Afterwards, even when less compelling amounts of the resources tend to occur, it

might be difficult to hold this company accountable for their promise.1

2. Even when the intentions of a company are honest, the reported probability distribution

might not reflect the actual distribution when cooperating. For example, a company might

report an accurate probability distribution of their customers’ demand. However, after

the coalition forms and the company gets promised a certain share of the coalition’s worth,

the company might become less concerned for example about their marketing efforts and

affect the demand’s probability distribution. This might be for instance due to feeling

more secure in the coalition or observing other companies’ behavior and not willing to

contribute to the common wealth more than others do.

The methodology proposed in this article aims to find the optimal coalition to form assuming

that the worth of the coalition is allocated based on the actual observations. With respect to

the aforementioned examples, this should help reduce misreporting and provide players with

incentives to operate as efficiently as possible. Note that allocating the actual outcome does not

reduce the problem to a deterministic one as the coalitions still need to be established before

the actual payoffs or costs can be observed.

The whole decision-making situation is structured in three steps as illustrated by the se-

quence in Figure 4.1. From the perspective of a particular player, the decisions to be made and

Players negotiate
and form
coalitions.

Values of random
parameters are

observed.

The coalitions’
actual worth
is allocated.

Figure 4.1: Sequence of the coalition formation process

the outcomes are the following. First, the player negotiates with others about which coalition

to form. As soon as an agreement is reached, the chosen coalition forms. Second, all the ran-

dom variables and thus also the coalitions’ outcomes are observed. Lastly, the player obtains

1Basso et al. (2019) address building of a trustful partnership as one of the main challenges cooperating
partners often face.
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the final payoff or pays the final cost as prescribed by a given allocation method. Naturally, a

rational decision maker would make all decisions in order to maximize this payoff or minimize

this cost. In the whole process, for the player, there is only one decision to be made. Which

coalition should the player pursue? Our methodology can serve each player as a tool to answer

this very question.

The rest of the article is organized as follows. Section 4.2 defines TU games and outlines

the aspects of coalition formation with uncertainty in payoffs or costs. In the process outlined

in Figure 4.1, one detail still remains unanswered. How and when does one reach an agreement

on which allocation method to use? We recognize and investigate two options. In section

4.3, we assume that the allocation method is decided upon at the time of coalition formation,

i.e., before the observation of the uncertainty. In section 4.4, we explore the option that the

allocation method is to be decided upon only after all coalitions are formed and all parameters’

actual values are revealed. In section 4.5, the methodology is illustrated on two examples.

Lastly, section 4.6 summarizes the observations and concludes the article.

4.2 Characteristics of the player-centered coalition formation

In this section, we introduce the game-theoretic concepts used throughout the article and discuss

options of handling uncertainty in the context of coalition formation.

4.2.1 Preliminaries

In game theory, a cooperative game with transferable utility (TU game) is defined as a pair

(N, v). Here, N represents the set of all players (decision makers) and v stands for the charac-

teristic function. Classically, the characteristic function is defined as v: P(N)→ R where P(N)

denotes the power set of N . For each nonempty subset S ⊆ N , the value v(S) measures the

worth of a coalition formed by players included in S. This is usually the highest payoff or the

lowest cost this coalition is able to achieve. Furthermore, v(∅) = 0. In the rest of this article,

all definitions assume characteristic functions representing payoffs. The cost variants would be

developed analogously.

To account for uncertainty in the coalitions’ worth, we assume a univariate or multivari-

ate random variable ξ to be the sole driver of this uncertainty. This allows us to define the

stochastic characteristic function as v: P(N) × Yξ → R where Yξ is the range of ξ. For any

realization ξ, the worth of coalition S then equals v(S, ξ). In other words, for each coalition,

the stochastic characteristic function does not prescribe a single value as is the case in the

“classical” cooperative game theory, but rather a random variable v(S, ξ).

In the following, when referring to an allocation within coalition S = {p1, . . . , pm}, we

understand a vector x = (x1, . . . , xm) ∈ Rm satisfying
∑m

i=1 xi = v(S, ξ). Here, ξ is the actual

realization of ξ and xi stands for the share of the worth of coalition S allocated to player pi.

Throughout this study, we assume that the player seeking the best coalition knows payoffs

of all potential coalitions. Although it is a strong assumption, it is an essential one as it allows

the player to evaluate their prospects in different coalitions. Some games are regulated by rules

which automatically guarantee that this information is public to all players, while, in other
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games, avoiding its disclosure might lead to an important strategic advantage. Sometimes, the

data sharing may even be restricted due to privacy or security issues (National Academies of

Sciences, Engineering, and Medicine, 2020). Nonetheless, since we implement the stochastic

variant of the characteristic function, our methodology also opens opportunities for capturing

one’s beliefs and expectations of competitors’ payoffs.

4.2.2 Uncertainty and the optimal solution

With the uncertainty in the coalitions’ worth, it is not always clear what characterizes the

optimal solution, i.e., the optimal coalition to pursue.

If a coalition is to be formed once and sustain over a long period of time with a variety of

realizations of ξ, players might prefer to form coalitions that maximize their expected payoffs.

When it comes to long-term cooperation, the lower outcomes for some realizations and higher

outcomes for other realizations balance each other and might pose no complications. At the

same time, there might be cases where some degree of consistency in the outcomes is needed.

If for example the realization of ξ affects the number of employees that need to be on site, the

expected value might not be the only important criterion to consider. In such a case, it might

be preferable to minimize the variance of the outcomes, maybe while requiring a certain level

of the expected value as for example in the portfolio optimization model by Markowitz (1959).

In the opposite extreme, when the coalition is formed with a purpose to sustain for only one

realization of ξ, the expected value might or might not be desirable. This becomes more of a

question of the players’ risk aversion. Some might remain inclined to optimize with respect to

the expected value or the variance, whereas others might prefer another optimization criterion

such as a certain quantile in the positive or negative spectrum of possible outcomes or a certain

risk measure such as the value at risk (VaR) or the conditional value at risk (CVaR). For an

overview of alternative risk measures, see for example McNeil et al. (2005).

In the following sections, we limit our attention to optimization with respect to the expected

value and the variance.

4.3 Player-centered coalition formation with prior agreement on al-

location method

At the time when a coalition forms, its worth might not be known and, as argued in the

introduction, not even the exact allocation of it should be decided upon. However, it is natural

to assume that the coalition formation is accompanied by an agreement of all involved players.

To join a coalition, the players might require some prior knowledge of how their share of the

benefits is going to be determined. In this section, we assume the shares to be prescribed in

accordance to a given allocation method. In other words, we assume a common knowledge that,

after forming a coalition and observing ξ, the coalition’s worth is going to be allocated by a

certain allocation method.

There have been numerous allocation methods proposed and used in the literature. With a

focus on collaborative transportation, a survey by Guajardo and Rönnqvist (2016) recognized
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more than 40 different methods. Among these, the Shapley value and various proportional

methods were the prevalent choice. Therefore, here we focus especially on these methods.

However, the approach is rather straightforward and, for different methods, the formulation

should not pose any complications.

4.3.1 Proportional allocation methods

For a coalition S ⊆ N , a proportional method assigns each player p ∈ S a share αp of the worth

v(S), i.e.,

xp = αp · v(S) ∀p ∈ S (4.1)

where
∑

p∈N αp = 1. Proportional methods are very straightforward and easy to communicate

in practice. However, due to their simplicity, they often do not satisfy important game-theoretic

properties (Özener and Ergun, 2008).

Different strategies are employed in the literature as how to specify the shares αp. The

simplest option is the egalitarian method assigning to each player the same share, i.e.,

xp =
v(S)

|S|
∀p ∈ S (4.2)

where |S| denotes the cardinality of S.

Another frequently used proportional method is one where the shares are determined in line

with the stand-alone payoffs, i.e., the payoffs each player is able to achieve with no cooperation.

According to this method,

xp =
v({p})∑

q∈S
v({q})

· v(S) ∀p ∈ S. (4.3)

To find the optimal coalitions to pursue, we formulate an approach based on the egalitarian

method. Nevertheless, the implementation would be analogous for a different proportional

method.

If a random variable ξ is observed as ξ, each player in coalition S receives a payoff equal to

v(S, ξ)

|S|
. (4.4)

Therefore, a risk-neutral player would naturally aim to be part of a coalition which maximizes

the expected value of this payoff. To find such a coalition, player p can simply evaluate the

value of

E

[
v(S, ξ)

|S|

]
(4.5)

for each coalition S such that p ∈ S and choose the coalition producing the highest value. This

is the optimal coalition for player p to pursue.

As mentioned in section 4.2, maximizing the expected value might not always be the pre-

ferred approach. In case player p would be more interested in minimizing the variance in their

allocated share of the coalition’s worth, the expected value operator in (4.5) could be replaced
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by the variance operator. The coalition S such that p ∈ S associated with the lowest value of

Var

[
v(S, ξ)

|S|

]
(4.6)

would then indicate the optimal coalition to aim for. Such an approach would then result in a

coalition with player p allocated the most consistent share across different realizations of ξ. For

example, in case of uncertainty in production, this approach could suggest partnership between

companies with productions to a certain extent complementary to each other with respect to

this uncertainty.

4.3.2 Shapley value

According to Thomson (2019), the Shapley value (Shapley, 1953) is “a centerpiece of the branch

of game theory known as ‘cooperative game theory’”. Its numerous applications covered by

Algaba et al. (2019) show its importance across many fields.

For a coalition S ⊆ N , the Shapley value assigns each player p ∈ S a share of the worth

v(S) as

xp =
∑

T⊆S: p∈T

(|T | − 1)! (|S| − |T |)!
|S|!

· (v(T )− v(T \{p})) . (4.7)

In a way corresponding to the approach discussed for the proportional methods, a coalition

maximizing the expectation of a share allocated to player p ∈ N according to the Shapley value

can be determined as the coalition S associated with the highest value of

E

 ∑
T⊆S: p∈T

(|T | − 1)! (|S| − |T |)!
|S|!

· (v(T, ξ)− v(T \{p}, ξ))

 . (4.8)

One may notice that for S = N expression (4.8) prescribes each player a value which

coincides with all three Shapley-like solutions proposed by Timmer et al. (2004) assuming all

players having “expectation preferences”. Nonetheless, whereas they use it to determine the

players’ shares in the final allocation, we utilize it only as a criterion to find the optimal coalition.

Again, in the case of a player seeking the most consistent outcome of the cooperation, the

expected value would be replaced by the variance and the coalition generating the lowest value

would be selected.

4.3.3 From preferences to coalitions

When the player’s only goal is to be part of a certain coalition, it is not automatically guaranteed

that such a coalition will actually be established. There are other players that might still

affect the result. If the goal coalition in fact involves other players, these have to be somehow

persuaded. If this does not succeed, maybe it is time for some alternative options.

The aforementioned approaches can determine the optimal coalition to pursue for a partic-

ular player. It is also easy to obtain the preference order over all coalitions by simply sorting

the coalitions this player could be part of from the best one to the worst one. The results may
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then serve the player as a guidance on which coalitions to prioritize in negotiations with other

players.

Additionally, when it is possible to determine which preference order applies to the other

players and reasonable to assume their rationality in subsequent negotiations, one could also

predict which coalitions will actually form. This is useful as it may provide insight on the real

value of cooperation. A player could for example benefit substantially from being in a particular

coalition but, if this player is very likely to end up alone anyway, taking part in the negotiations

might not be worth the effort.

Nevertheless, before making an assumption on other players’ preference orders, one should

be very cautious. Naturally, rational decision makers would evaluate their odds in different

coalitions to determine the preference orders, but their attitudes towards risk as well as other

important aspects of the evaluation might be very difficult to observe by other players.

Literature describes situations where all players’ preference orders over all coalitions are

revealed as the coalition formation games. For a survey of this literature, see Hajduková (2006).

Here, we shortly outline the core stable coalition structures as a potential outcome of the

coalition formation.

According to Hajduková (2006), a coalition T ⊆ N blocks a coalition structure PN (i.e.,

a partition of N), if each player p ∈ T strictly prefers the new coalition T to their current

coalition S ∈ PN where p ∈ S. A coalition structure which admits no blocking coalition is said

to be core stable.

Example 5. Consider a game with a set of players N = {1, 2, 3} and preference orders

{1, 2} �1 {1, 3} �1 {1, 2, 3} ∼1 {1},
{1, 2, 3} �2 {2, 3} ∼2 {1, 2} �2 {2},
{2, 3} �3 {1, 3} �3 {1, 2, 3} ∼3 {3},

where �p stands for strict preference of player p ∈ N and ∼p for their indifference. This means

that for example player 1 strictly prefers coalition {1, 2} to {1, 3} and is indifferent between

coalitions {1, 2, 3} and {1}.
One could observe that coalition structures {{1, 2}, {3}} and {{1}, {2, 3}} are core stable as

they admit no blocking coalitions. In other words, no group of players would be better off in

a different coalition without making at least one of them worse off. Hence, resulting in one of

these coalition structures is a likely outcome of the negotiation. On the other hand, for instance

the coalition structure {{1, 2, 3}}, i.e., formation of the grand coalition, does not imply the core

stability despite it being the best option for player 2. In fact, for both players 1 and 3, forming

the two-player coalition {1, 3} would be a strictly preferred alternative.

4.4 Player-centered coalition formation without prior agreement on

allocation method

In this section, we investigate the situation where players form coalitions before their actual

payoffs can be observed, but postpone the decision on the allocation method after the observa-
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tion. In other words, after the actual worth of a coalition is revealed, players in this coalition

negotiate on the allocation. When a player chooses which coalition to pursue, it is hence nat-

ural to take into account both the coalition’s expected worth and the odds of being able to

successfully bargain for a large share of it.

4.4.1 The core and stability

One of the most important concepts in the cooperative theory is the core. This was first

introduced by Shapley (1955) and represents a set of allocations within the coalition of all

players, the grand coalition. For an allocation x = (x1, . . . , x|N |) to belong to the core of a TU

game (N, v), the conditions of efficiency,∑
q∈N

xq = v(N), (4.9)

and rationality, ∑
q∈T

xq ≥ v(T ) ∀T ⊆ N, (4.10)

need to be satisfied. These conditions guarantee that, with any allocation in the core, all profits

are divided among the players and there are no incentives for any subset of players to deviate

from the collaboration. Such an allocation is then said to be stable. Note that for some TU

games the core may also be empty.

For this study, we need to extend the definition of the core so that we can evaluate stability

of an allocation within any coalition, not only the grand coalition.

Assuming a coalition S to be established, the efficiency condition can be extended in a

straightforward manner as ∑
q∈S

xq = v(S). (4.11)

Players would have incentives to break out of coalition S and form a new coalition if everyone

in the new coalition could be better off. The rationality conditions are supposed to prevent this

behavior. For the case of players breaking out of S and forming smaller coalitions within S,

conditions based on (4.10) can be formulated as∑
q∈T

xq ≥ v(T ) ∀T ⊆ S. (4.12)

We refer to these conditions as the conditions of internal rationality.

The players can nonetheless also threaten to break out of S and form a coalition with

players which are not part of S. Aumann and Dreze (1974) approached such behavior by

simply extending ∀T ⊆ S in conditions (4.12) to ∀T ⊆ N . This can be applicable in the case

of a central planner with control over all coalitions that are formed as well as all respective

allocations. From the players’ perspective the situation is more complicated since the players

in S have no prior information on how the players outside of S are organized and what their
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current profit is. We formulate conditions of external rationality to suppress such deviations as∑
q∈S∩T

xq +
∑
q∈T\S

yq ≥ v(T ) ∀T ⊆ N : T 6⊆ S, T ∩ S 6= ∅ (4.13)

where yq stands for the current payoff received by player q.

We say that an allocation x within coalition S is stable, if it satisfies conditions (4.11), (4.12)

and (4.13). As opposed to the model by Aumann and Dreze (1974), players in coalition S have

no control over the values of yq in (4.13). Moreover, these values may be unknown to them.

Therefore, we proceed by formulating sufficient conditions of external rationality.

Let us assume coalitions S and T for which (4.13) is violated. It could be interpreted as a

threat to stability of S by forming coalition T instead. However, in the case coalition T would

actually establish, the players from T \ S would immediately break out unless, in total, they

are allocated something better than what they can achieve without the players from S. In

other words, coalition T poses no threat to stability of S if, in T , players from T \ S cannot be

allocated a total payoff of more than

v∗(T \ S) = max
∑

S∈PT\S

v(S ) (4.14)

where PT\S is a set of all partitions of T \ S.2 At the same time, it is easy to see that, due to

rationality of the remaining players, the players from T \S may be allocated at most a value of

v(T )−
∑

q∈S∩T
xq. (4.15)

Therefore, if

v(T )−
∑

q∈S∩T
xq ≤ v∗(T \ S), (4.16)

coalition T poses no threat to stability of S.

We refer to constraints∑
q∈S∩T

xq + v∗(T \ S) ≥ v(T ) ∀T ⊆ N : T 6⊆ S, T ∩ S 6= ∅ (4.17)

as the sufficient conditions of external rationality. Overall, if an allocation x within coalition S

satisfies conditions (4.11), (4.12) and (4.17), it is stable.

4.4.2 Stability as a proxy for players’ best options

We utilize the idea behind the core and stability when assessing the prospects of a player in

each coalition.

Let us assume that a coalition S has been formed, the random variable ξ has been observed

as ξ and the allocation is now to be negotiated upon. Clearly, the final allocation must satisfy

2Note that for a superadditive characteristic function, v∗(T \ S) = v(T \ S).
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efficiency as the payoff v(S, ξ) needs to be fully distributed among the members of S. Addition-

ally, during the negotiation, each member as well as each group of members can claim a share of

the payoff which they could accomplish without the rest of the members. This corresponds to

the conditions of internal rationality (4.12). Hence, it is reasonable to expect the final allocation

to be efficient and internally rational.

For any player p, staying alone would lead to payoff v({p}, ξ). Although this is an efficient

and internally rational allocation within {p}, it is not necessarily the optimal coalition for player

p. To select the best coalition to be in, one needs to also account for the conditions of external

rationality with respect to the deviations player p could be part of. If there is a coalition S

including player p and satisfying conditions∑
q∈S∩T

xq +
∑
q∈T\S

yq ≥ v(T, ξ) ∀T ⊆ N : T 6⊆ S, p ∈ T , (4.18)

it guarantees that player p has no incentives to deviate from coalition S. This essentially makes

S the best coalition for player p. In the following, instead of (4.18), we use a sufficient condition

corresponding to (4.17) with v∗(T \ S, ξ) defined as

v∗(T \ S, ξ) = max
∑

S∈PT\S

v(S , ξ) (4.19)

where PT\S is a set including all partitions of T \ S.

In summary, for a player p and ξ observed as ξ, if there exists a coalition S including player

p and an allocation x within S satisfying conditions∑
q∈S

xq = v(S, ξ), (4.20)

∑
q∈T

xq ≥ v(T, ξ) ∀T ⊆ S, (4.21)

∑
q∈S∩T

xq + v∗(T \ S, ξ) ≥ v(T, ξ) ∀T ⊆ N : T 6⊆ S, p ∈ T , (4.22)

it is optimal to be in this coalition.

Nonetheless, such a coalition does not always need to exist. In such a case, it might be

impossible to predict the outcome of the negotiation and find the optimal coalition. The vast

amount of different allocation methods in the literature demonstrates that there is no consensus

on bargaining power and fairness which could help make the prediction. Nevertheless, it is easy

to see that for instance for TU games with nonempty cores, the optimal coalition always exists

in form of the grand coalition.

Stability likelihood maximization

For the player-centered coalition formation in TU games with uncertain payoffs, we propose an

approach we refer to as the stability likelihood maximization (SLM). According to this approach,

coalition S is optimal for player p, if p ∈ S and S maximizes the probability that an allocation
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x within S satisfying conditions (4.20)–(4.22) exists. In other words, for player p, this approach

determines the coalition associated with the highest probability of being the best coalition to

be in.

The SLM approach comes with a few drawbacks. For example, there might be a situation

when it is better to be in the second best coalition with a probability of 100 % than to be in the

best coalition with a probability of only 60 %. Moreover, the model does not control for what

happens when the stability cannot even be achieved. However, without the knowledge of the

actual outcomes, the efficiency and rationality are the only concepts to work with. This is all due

to the fact that the allocation method is not determined at time of the coalition formation. In

fact, if one had a prediction for how the worth will be distributed, the methodology introduced

in section 4.3 should always be the preferred option.

The conditions (4.22) might pose another limitation. Since (4.22) stand only for sufficient

conditions of external rationality, the probability associated with the optimal coalition may

actually underestimate the real probability of a stable outcome.

For a discrete random variable ξ, a mixed-integer linear programming model to determine

the optimal coalition can be formulated. Denoting the set of all possible realizations of ξ by Ξ

and the probability of realization ξ by πξ, the model for player p can be stated as

max
∑

S⊆N : p∈S

∑
ξ∈Ξ

πξκS,ξ (4.23)

s.t.
∑
q∈T

xq,ξ≥ v(T, ξ)− (1− κS,ξ) ·M

∀S, T ⊆ N, ξ ∈ Ξ : p ∈ S, T ⊆ S, (4.24)

∑
q∈S∩T

xq,ξ + v∗(T \ S, ξ)≥ v(T, ξ)− (1− κS,ξ) ·M

∀S, T ⊆ N, ξ ∈ Ξ : p ∈ S, T 6⊆ S, p ∈ T , (4.25)

∑
q∈N

xq,ξ =
∑

S⊆N : p∈S
δS · v(S, ξ) ∀ξ ∈ Ξ , (4.26)

∑
q∈N\S

xq,ξ ≤ (1− δS) ·M ∀S ⊆ N, ξ ∈ Ξ : p ∈ S, (4.27)

∑
S⊆N : p∈S

δS = 1, (4.28)

κS,ξ ≤ δS ∀S ⊆ N, ξ ∈ Ξ : p ∈ S, (4.29)

δS ∈ {0, 1} ∀S ⊆ N : p ∈ S, (4.30)

κS,ξ ∈ {0, 1} ∀S ⊆ N, ξ ∈ Ξ : p ∈ S, (4.31)

xq,ξ ∈ R ∀q ∈ N, ξ ∈ Ξ (4.32)

where M is a big enough number. For example, M = |N | ·maxS⊆N,ξ∈Ξ(v(S, ξ)) would suffice.

In the model, binary variable δS equals 1 when coalition S is the optimal coalition for player p

to join, 0 otherwise. Binary variable κS,ξ equals 1 when δS equals 1 and a stable allocation can be

achieved within coalition S under realization ξ, 0 otherwise. Continuous variable xq,ξ expresses
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the share allocated to player q under realization ξ. The objective function (4.23) maximizes the

probability of a stable allocation. Constraints (4.24) and (4.25) correspond to (4.21) and (4.22),

respectively, and additionally allow for violation via forcing the respective variable κS,ξ to equal

0 and thus having no contribution to the objective function. The combination of constraints

(4.26) and (4.27) enforces the efficiency condition (4.20) by dividing the worth of coalition S

among its players while prescribing xq,ξ = 0 to all players outside of S. Lastly, constraint

(4.28) guarantees that only one coalition is selected while constraints (4.29) make sure that

only allocations within this coalition can contribute to the objective function.

Example 6. Let us assume a TU game of three players 1, 2 and 3 in which each coalition

S ⊆ {1, 2, 3} with at least two members receives a payoff of 1, i.e., v(S) = 1 when |S| ≥ 2,

whereas staying alone leads to no payoff, i.e., v({1}) = v({2}) = v({3}) = 0. This example

hence assumes a deterministic characteristic function. Focusing on the prospects of player 1

in various coalitions, and thus solving model (4.23)–(4.32) for p = 1, would lead to one of two

optimal coalitions. Coalitions {1, 2} and {1, 3} both result in an objective value of 100 %. Let us

assume that the coalition {1, 2} subsequently forms. This coalition receives a payoff of 1 which

can be split among its members. As long as both players 1 and 2 are allocated a nonnegative

share of the payoff, they would not be better off alone.

One could oppose that the result of the example is not stable as the player 3 could still

interfere. In fact, if player 2 does not receive the full payoff v({1, 2}), they could threaten to

deviate and form coalition {2, 3} with an allocation from which both players 2 and 3 would

benefit. This may or may not be a valid threat to the stability. In some settings, when a

coalition forms, claims involving external players might be allowed. In other settings, they

might be restricted for instance by the contract design. The SLM approach corresponds to

the latter situation. To account for the former situation instead, i.e., claims involving external

players are valid in the allocation negotiations, the model can be easily modified as follows.

Stability likelihood maximization with negotiations involving external players

Conditions (4.21) describe the negotiations in a formed coalition with respect to claims involving

players within the coalition. This can be extended to involve the external players by additionally

accounting for conditions∑
q∈S∩T

xq + v∗(T \ S, ξ) ≥ v(T, ξ) ∀T ⊆ N : T 6⊆ S, T ∩ S 6= ∅ (4.33)

corresponding to the sufficient conditions of external rationality (4.17). Note that the set of

conditions (4.33) includes also conditions (4.22).

In line with the SLM approach, for a player p, coalition S, such that p ∈ S, is optimal if

it maximizes the probability that an allocation x within S satisfying conditions (4.20), (4.21)

and (4.33) exists. We refer to this approach as the stability likelihood maximization with

negotiations involving external players (SLMext).

Looking at Example 6, one would now find out that for all players, all coalitions are asso-

ciated with a stability likelihood of 0 %. For this example, this approach hence prescribes no
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preferable coalitions.

4.4.3 From optimal coalitions to coalition structures

Although a player may prefer a certain coalition, this coalition is not yet guaranteed to actually

form. As in section 4.3, it is interesting to investigate which coalition structures could be the

result of all players using the SLM or the SLMext approach.

As opposed to the analysis in section 4.3, these models provide players only with the optimal

coalitions and not with the full preference orders. Even though, it is often possible to determine

the likely outcome of the negotiation. If, in a three-player TU game, players 1 and 2 both

pursue coalition {1, 2}, no matter what player 3’s preference is, the coalition {1, 2} will form

and player 3 will be left alone. Generally speaking, a coalition S can be expected to form if it is

an optimal coalition for all players p ∈ S. On the other hand, when player 1 aims for coalition

{1, 2}, player 2 for {2, 3} and player 3 for {1, 3}, the situation gets much more complicated and

the outcome is unclear.

Assuming a TU game (N, v) and all its players using the SLM approach, one would need to

determine their optimal coalitions and see if there exists a coalition T1 ⊆ N optimal for all its

members. If there indeed is such a coalition, it will form. Then, since the players of T1 have

achieved their optimal solution, the remaining players cannot affect them anymore. Hence, the

remaining players can apply the SLM approach on a TU game (N \ T1, v). Again, if there

exists a coalition T2 ⊆ N optimal for all its members, it will form. This can be repeated until

all the players are assigned to a coalition resulting in a coalition structure {T1, T2, . . . }. If, at

any point, there is no coalition optimal to all its members, no conclusion can be made about

the remaining players. If, on the other hand, there is more than one coalition optimal to all

its members, the process can be broken into separate branches possibly resulting in multiple

coalition structures.

With the SLMext approach, the process is easier. One can notice that conditions (4.20),

(4.21) and (4.33) do not explicitly include the player p. Hence, a coalition S maximizing the

probability that an allocation x within S satisfying conditions (4.20), (4.21) and (4.33) exists is

also an optimal coalition for all players p ∈ S according to the SLMext approach. This can be

again repeated for a TU game of all the remaining players until the complete coalition structure

is revealed. In this case, the final coalition structure can always be determined and, again, in

case of multiple optimal coalitions, the process can lead to multiple coalition structures.

4.5 Player-centered coalition formation on examples

To illustrate the proposed framework for endogenous coalition formation from the players’ per-

spective, we apply the described methods on two examples. First, the concepts are illustrated

on a simple example of a three-player TU game where coalitions receive positive payoffs only

with a given probability. Then, the methods are applied for coalition formation in an example

of a collaborative transportation problem.

To see the added value the stochastic programming approaches bring as compared to de-

terministic ones and to highlight the importance of proper specification of the characteristic
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functions, we also present results of the methods’ deterministic reformulations.

4.5.1 Problem of randomly winning coalitions

Let us assume a TU game of three players 1, 2 and 3 similar to the deterministic example from

the previous section. Staying alone again leads to no payoff, i.e., v({1}) = v({2}) = v({3}) = 0.

On the other hand, cooperation with other players may or may not lead to a positive payoff.

Particularly, for each S such that |S| ≥ 2, v(S) = 1 (S is a winning coalition) with probability

of 50 % and v(S) = 0 (S is not a winning coalition) otherwise. The payoffs of different coalitions

are mutually independent. Hence, there might be multiple winning coalitions at the same time

as well as there might be no such coalition.

There are four coalitions which may or may not be winning. This implies 16 distinct

combinations which can be interpreted as scenarios with probability of realization equal to

0.54 = 0.0625. For instance, one scenario may depict coalitions {1, 2} and {2, 3} as winning

while all others as not winning. With such a specification of the uncertainty, it is easy to apply

the methods proposed in this article.

We also present results of the methods’ deterministic reformulations. These are based on

the expected values of all parameters. In other words, we solve the models as if there was only

one scenario with probability of 100 % with v({1}) = v({2}) = v({3}) = 0 and v({1, 2}) =

v({1, 3}) = v({2, 3}) = v({1, 2, 3}) = 0.5.

Prior agreement on the egalitarian method

Given that the players from the example would like to form a coalition with a prior knowledge

that the egalitarian allocation method will be applied, they could determine the best coalition

with the approach described in section 4.3.1. Taking player 1 for instance, the potential coali-

tions would lead to expected allocated payoffs and expected variance of the allocated payoffs

shown in Table 4.1.

Table 4.1: Properties of the share allocated to player 1 by the egalitarian allocation method

Coalition Expected value Variance

{1} 0 0
{1, 2} 0.25 0.06
{1, 3} 0.25 0.06
{1, 2, 3} 0.17 0.03

From the expected-value viewpoint, pursuing a two-player coalition is the optimal solution

as it generates the highest expected value. It is rather straightforward as the stand-alone option

yields no payoff and the three-player option is associated with the same probability of winning,

but the payoff needs to be allocated among more players. Interestingly, the results are exactly

the same with the deterministic reformulation.

The variance minimizing approach, on contrary, favors staying alone followed by forming

the grand coalition. The two-player coalitions yield the highest variance and are therefore the

least preferred option. Nonetheless, in this simple example, the variance minimizing approach
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might be quite misleading as, the higher the variance is, the further away from 0 the allocated

share is in case of winning.

To find a compromise between the highest expected value and the lowest variance, one

could also choose a coalition from a set of coalitions for which there exists no coalition that

would yield lower expected payoff with lower variance, i.e., a set corresponding to the so-called

Markowitz efficient frontier. For player 1, this includes all the coalitions since the stand-alone

option dominates in terms of variance, the two-player coalitions in terms of the expected value

and the grand coalition stands for an intermediate option on both measures.

As described in section 4.3.3, with preference orders of all players, one can evaluate the

stability of different coalition structures to predict which coalitions are likely to actually form.

Assuming all players minimizing the expectation of their allocated share, one would obtain

preference orders

{1, 2} ∼1 {1, 3} �1 {1, 2, 3} �1 {1},
{1, 2} ∼2 {2, 3} �2 {1, 2, 3} �2 {2},
{2, 3} ∼3 {1, 3} �3 {1, 2, 3} �3 {3}.

Clearly, it is not possible to achieve all players’ optimal coalitions and at least one player needs

to step back. In fact, three core stable coalition structures can be found and all involve one

player remaining alone, namely, {{1, 2}, {3}}, {{1, 3}, {2}} and {{1}, {2, 3}}.

Prior agreement on the Shapley value

With players’ prior agreement on employing the Shapley value to allocate the final payoff,

the approach described in section 4.3.2 results for player 1 in values reported in Table 4.2.

Compared to the agreement on the egalitarian method, there is only one difference. In case of

Table 4.2: Properties of the share allocated to player 1 by the Shapley value

Coalition Expected value Variance

{1} 0 0
{1, 2} 0.25 0.06
{1, 3} 0.25 0.06
{1, 2, 3} 0.17 0.07

the grand coalition, the variance is slightly higher at value 0.07. Altogether, with the exception

of the grand coalition not being the least preferred option from the variance viewpoint and the

Markowitz efficient frontier now consisting only of coalitions {1}, {1, 2} and {1, 3}, the results

remain the same.

Stability likelihood maximization

In the case the allocation method is not agreed upon beforehand, one should resort to one of

the approaches from section 4.4 based on stability likelihood maximization. Due to the finite

90



4.5. Player-centered coalition formation on examples

number of scenarios, the SLM approach can be carried out with model (4.23)–(4.32). For the

SLMext approach, an analogous model can be formulated.

For player 1, the SLM approach determines coalitions {1, 2} and {1, 3} as the optimal ones,

both associated with an objective value of 62.5 %. This means that with probability of 62.5 %

the players in the coalition are able to find an allocation such that there is no better coalition

for player 1 and there is no better coalition without involving external players for the other

player.

When the stability may be affected by external players, i.e., applying the SLMext approach,

{1, 2, 3} is the optimal coalition for player 1. The optimal objective value equals 50 %. This is

less than the 62.5 % associated with coalitions {1, 2} and {1, 3} using the SLM approach. How-

ever, since the SLMext approach would evaluate the two-player coalitions at only 43.75 %, the

grand coalition is a strictly preferred option when external players have a say in the negotiations.

Following the approaches from section 4.4.3, one can investigate which coalitions are actually

likely to establish with all players following the SLM or the SLMext approach. With the SLM

approach, coalition structures {{1, 2}, {3}}, {{1, 3}, {2}} and {{1}, {2, 3}} represent possible

outcomes with two players achieving their optimal coalition and one player forced to stay alone.

On contrary, with the SLMext approach, formation of the grand coalition {1, 2, 3} can be

expected as it is the optimal coalition for all players.

Looking at the deterministic reformulations for both the SLM and the SLMext approach,

it is clear that the optimal objective value equals either 100 % or 0 % since the expected values

essentially generate a single scenario. This weakness of the deterministic approaches is apparent

from the results. With the SLM approach for player 1, coalitions {1, 2} and {1, 3} result in 100 %

while all other coalitions result in 0 %. Although in this case the optimal solution coincides with

the original optimal solution, the stability likelihood is largely overestimated. The situation is

different with the SLMext approach for player 1, where the deterministic reformulation results

in 0 % for all coalitions. Hence, such a result provides the player with no insight. This indicates

the importance of proper specification of the uncertainty in the characteristic function.

4.5.2 Collaborative transportation problem

In this part, we illustrate the proposed methods for coalition formation on a more complex

and arguably more practical example of a TU game, the collaborative transportation problem.

We use a similar formulation as used by Frisk et al. (2010). It is a TU game with a set of

players N transporting a certain commodity. As opposed to Frisk et al. (2010), we assume a

single commodity instead of multiple commodities. Each player p ∈ N is associated with a

distinct set of supply points (origins) Ip and a distinct set of demand points (destinations) Jp.

When cooperation among the players takes place, it allows satisfying some of the demand from

partners’ supply points with an objective to minimize the total transportation cost. We assume

the supply to be random. Hence, with the formulation by Frisk et al. (2010), we could face

infeasibility issues if the supply did not suffice to satisfy the total demand. Therefore, we modify

the model by introducing a penalty for any unsatisfied demand. The model to determine the

optimal cost associated with each coalition S and each realization ξ of random variable ξ can
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then be formulated as

v (S, ξ) = min
∑
i∈IS

∑
j∈JS

cijyij +
∑
j∈JS

cejzj (4.34)

s.t.
∑
j∈JS

yij ≤ si(ξ) ∀i ∈ IS, (4.35)

∑
i∈IS

yij + zj = dj ∀j ∈ JS, (4.36)

yij ≥ 0 ∀i ∈ IS, j ∈ JS, (4.37)

zj ≥ 0 ∀j ∈ JS. (4.38)

Here, sets IS and JS contain all supply points and all demand points of players in S, respectively,

i.e., IS =
⋃
p∈S Ip and JS =

⋃
p∈S Jp. Parameter cij stands for the cost of transporting one unit

of the commodity from supply point i to demand point j. Parameter cej represents the cost of

unsatisfied demand at demand point j per unit of the commodity. The supply at supply point

i and the demand at demand point j are expressed by si(ξ) and dj , respectively. In this case,

since the supply is subject to uncertainty, it is formulated as a function of the realization of

random variable ξ.

Variables yij and zj equal the amount to be transported from supply point i to demand point

j and the amount of unsatisfied demand at demand point j, respectively. They are determined

by minimizing the total cost in (4.34) while not exceeding the available supply at each supply

point as prescribed by (4.35). Lastly, (4.36) are the demand constraints allowing for unsatisfied

demand and constraints (4.37) and (4.38) enforce the variables to be nonnegative. Note that

in this example, the characteristic function does not stand for payoffs, but for costs of the

coalitions.

Let us assume a situation depicted in Figure 4.2. Here, five players own one supply point

S1

D1

S2

D2S3

D3

S4

D4
S5

D5

Figure 4.2: Example of a collaborative transportation problem

and one demand point each. For example, S1 and D1 are a supply point and a demand point

of player 1, respectively. The values of cij are generated as the euclidean distance between the

respective points whose position is described in Table 4.3. Furthermore, we assign each demand

point a demand of 250 and a cost per unit of unsatisfied demand of 1000. For the supply

points, the supply values are generated as realizations of i.i.d. random variables following

normal distribution N(300, 1000). We discretize these variables by generating 100 scenarios

with uniform probabilities of occurrence.
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Table 4.3: Position of the supply and demand points

S1 S2 S3 S4 S5 D1 D2 D3 D4 D5

x-coordinate 10 40 50 83 90 10 75 55 32 90
y-coordinate 3 13 0 7 22 22 1 25 21 0

In the following, we again apply all the proposed methods of finding the best coalition. As

for the previous example, we also include results of their deterministic reformulations. These

are again based on the expected values of the parameters. In other words, we solve the models

as if there was only one scenario with probability of 100 % with the supply at each supply point

equal to 300.

Prior agreement on the egalitarian method

In the case the players from the example would like to form a coalition with a knowledge that

the egalitarian allocation method will be applied, the approach described in section 4.3.1 can

be used. Player 1, for instance, could evaluate all coalitions in terms of the expected allocated

cost and expected variance of the allocated costs. These values are reported in Table 4.4.

Table 4.4: Properties of the share allocated to player 1 by the egalitarian allocation method

Coalition Expected value Variance Coalition Expected value Variance

{1} 5995.4 31740745 {1, 3, 4} 6541.2 1230991
{1, 2} 7210.0 3715158 {1, 3, 5} 5559.7 4846
{1, 3} 5792.5 3418771 {1, 4, 5} 6697.9 126341
{1, 4} 8608.5 4480485 {1, 2, 3, 4} 4044.7 4272
{1, 5} 5422.6 6109464 {1, 2, 3, 5} 5336.4 1150
{1, 2, 3} 5339.6 355733 {1, 2, 4, 5} 3755.9 10238
{1, 2, 4} 3378.0 5368 {1, 3, 4, 5} 5498.0 17561
{1, 2, 5} 6346.5 119722 {1, 2, 3, 4, 5} 4214.3 7028

Prioritizing the lowest expected cost would lead player 1 to pursuing coalition {1, 2, 4}.
On the other hand, a variance minimizing objective would suggest coalition {1, 2, 3, 5}. The

Markowitz efficient frontier, in addition to these two, contains also coalition {1, 2, 3, 4} repre-

senting an intermediate option on both measures.

Assuming all players aiming to minimize their expected cost, their preference orders over all

coalitions can be determined. With them, we find that there is only one core stable coalition

structure, namely the coalition structure {{3}, {2, 4}, {1, 5}}. This is hence a possible outcome

of the coalition formation.

The deterministic reformulation results for all players with the same optimal coalitions. It

can be however observed that the deterministic formulation slightly underestimates the actual

expected cost. For example, for player 1, the optimal objective equals 3359.5 instead of the

previously obtained cost of 3378.0. Although we do not see differences in the optimal coali-

tions, the preference orders are affected and generate a different core stable coalition structure,

specifically, {{1}, {2, 4}, {3}, {5}}. Hence, omitting the proper specification of the parameters
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and simplifying the problem into a deterministic one may in fact lead to suboptimal solutions

and inefficient managerial decisions.

Prior agreement on the Shapley value

With players’ agreement on the Shapley value, the approach described in section 4.3.2 results

for player 1 in values reported in Table 4.5.

Table 4.5: Properties of the share allocated to player 1 by the Shapley value

Coalition Expected value Variance Coalition Expected value Variance

{1} 5995.4 5008463 {1, 3, 4} 4926.3 3672493
{1, 2} 5177.6 6647699 {1, 3, 5} 5133.8 756194
{1, 3} 5221.9 2082219 {1, 4, 5} 4533.0 1991516
{1, 4} 4811.4 7694333 {1, 2, 3, 4} 4910.3 1344385
{1, 5} 5418.5 1620829 {1, 2, 3, 5} 4959.5 1952171
{1, 2, 3} 5045.3 2610719 {1, 2, 4, 5} 4818.9 1306237
{1, 2, 4} 4893.8 4061667 {1, 3, 4, 5} 4736.8 1054453
{1, 2, 5} 5091.7 3509091 {1, 2, 3, 4, 5} 4840.3 722815

The optimal coalitions for player 1 are {1, 4, 5} in terms of expected value and {1, 2, 3, 4, 5}
in terms of variance. The Markowitz efficient frontier then includes also coalitions {1, 4, 5} and

{1, 3, 4, 5}.
Again, when all players follow the same approach, their preference orders over all coalitions

can be determined. These then lead to five core stable coalition structures, namely,

{{1, 3}, {2, 4}, {5}},
{{3}, {1, 2, 4, 5}},
{{1, 3}, {2, 4, 5}},
{{2, 4}, {1, 3, 5}},
{{1, 2, 4}, {3, 5}}.

The deterministic reformulation again leads to the same optimal coalitions with an exception

of player 5. In that case, coalition {1, 3, 4, 5} becomes the most desirable option instead of

{3, 4, 5}. Moreover, the preference orders of all players are affected as well as the core stable

coalition structures. With the deterministic approach, the coalition structure {{1, 2, 4}, {3, 5}}
is no more core stable while four new coalition structures become core stable.

Stability likelihood maximization

For the case of players with no prior agreement on the allocation method, we apply the ap-

proaches based on stability likelihood maximization.

As mentioned in section 4.4, for TU games admitting core allocations, the grand coalition is

always an optimal coalition. For a problem similar to the collaborative transportation problem

(4.34)–(4.38), Sánchez-Soriano et al. (2001) proved that the core is always nonempty. In fact,
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we observe the same for all 100 scenarios. On the other hand, even in logistics there are many

problems which might result in an empty core. This has been shown for example for cooperative

vehicle routing problems or location-routing games by Potters et al. (1992) and Osicka et al.

(2020), respectively.

To keep the example simple and easy to follow as well as to demonstrate another useful

application of the proposed methodology, we proceed with the collaborative transportation

problem. However, as done for example by Guajardo and Rönnqvist (2015), we impose a

condition on maximum cardinality of the established coalition. We set the value to 3 which

means that only coalitions including up to 3 players may be formed. Hence, this excludes the

five-player grand coalition as well as all four-player coalitions in the example.

The constrained cardinality affects not only the set of potential coalitions but also the set of

coalitions which may serve as threats to deviate. Therefore, the SLM and SLMext approaches

need to be modified by adding condition |T | ≤ 3 into (4.21), (4.22) and (4.33). With such

modified models, optimal coalitions can be determined for each player as shown in Table 4.6.

Table 4.6: Optimal coalitions with approaches based on stability likelihood maximization

SLM SLMext

Player Optimal coalition Stability likelihood Optimal coalition Stability likelihood

1 {1, 2, 4} 89 % {1, 2, 4} 1 %
2 {2, 4, 5} 72 % {2, 4, 5} 71 %
3 {2, 3, 4} 89 % {2, 3, 4} 21 %
4 {2, 4, 5} 71 % {2, 4, 5} 71 %
5 {2, 4, 5} 86 % {2, 4, 5} 71 %

It is interesting to see that both approaches prescribe the same coalitions to all players. It is

however also easy to observe the fundamental difference between the approaches. The coalition

{1, 2, 4} promises player 1 likelihood of 89 % with the use of the SLM approach, but as soon

as external players enter the negotiations, and more specifically player 5, it changes radically.

This is obvious from the fact that coalition {2, 4, 5} is optimal for all involved players with both

approaches. Therefore, the SLM approach might be useful for player 1 as long as players 2 and

4 are unaware of the added value player 5 could bring.

Following the procedures from section 4.4.3, one can find a potential outcome of all players

using any of these approaches to be a coalition structure {{1, 3}, {2, 4, 5}}. This is not surprising

based on the prevalent preference for coalition {2, 4, 5}.
Results of the deterministic reformulations of both approaches again to some extent corre-

spond with the results, but due to their binary nature (100 % or 0 %), they might appear very

misleading. Both approaches would for example prescribe the coalition {2, 4, 5} with 100 % for

all involved players. If such a coalition formed, it is easy to imagine that a realization allow-

ing no stable allocation could make the players question their decisions. From the stochastic

formulations, we already know that such a realization may actually occur. The inconsistency

between the predicted and the actual results could even lead to distrust among the partners

and affect their future relations. Proper specification of the uncertain nature of the TU games

is hence very important and might be essential for a successful cooperation.
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4.6 Conclusion

We have studied endogenous coalition formation in TU games from a perspective of their players.

For this, we have proposed several approaches to determine which coalition is optimal for a given

player to pursue while taking into account the subsequent payoff or cost allocation. This makes

the methodology different from the fairly common exogenous coalition formation which to an

extent disregards the allocation when deciding on the optimal coalitions. This methodology also

differs from the traditional central-planner approach as it maximizes the welfare of a particular

player instead of the aggregated welfare of all players.

Our framework also captures possible uncertainty in the TU games’ properties and hence

in their characteristic function values. In particular, the focus is on decision-making situations

where coalitions need to be formed before their actual outcome is observable. The introduced

methods are divided into two main categories, those describing TU games where the subsequent

allocation rules are known prior to the coalition formation and those describing TU games where

negotiations within the formed coalitions are yet to take place after observing the uncertainty

realization. We illustrate the framework on an example of randomly winning coalitions and on

an example of a collaborative transportation problem.

For the case when players agree on using a particular allocation method prior to the coalition

formation, we demonstrate the methodology for the egalitarian method and for the Shapley

value. The results from the collaborative transportation problem show that different allocation

methods might lead to different optimal coalition and subsequently to different partitions of the

players. This implies that the allocation method choice might substantially affect the optimal

coalitions. Unless the coalition formation in a TU game is inherently exogenous, this undermines

the reliability of the traditional methods and strengthens the argument for using endogenous

methods as those described in this article.

Because for some TU games the prior agreement on an allocation method might not be

possible, we have also introduced two approaches based on stability likelihood maximization as

alternatives to the exogenous coalition formation. As shown on the examples, they can be easily

used to determine the optimal coalitions along with the probability of it being the best coalition.

Additionally, as illustrated on the collaborative transportation problem, these approaches can

be also used in TU games with restrictions on the coalitions’ cardinality.

Furthermore, comparing all the approaches with their deterministic reformulations, we have

observed slightly different results. Although the results might sometimes coincide, we have seen

weaknesses of the deterministic formulations in several aspects. This highlights the importance

of taking the uncertainty in the TU games’ parameters into account as its omission might lead

to suboptimal decisions.

To conclude, we suggest few directions for further research. One natural avenue would be to

extend the SLM and SLMext approaches by an approximation of what happens when the stabil-

ity cannot be achieved. Another interesting direction could be evaluation of different negotiation

strategies. With knowledge of the optimal coalitions as well as likely final coalition structures,

from a player’s point of view, there might be a coalition structure more beneficial than others

and there might be a negotiation strategy which is more likely to reach it. Lastly, as suggested,
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the stochastic characteristic function might not only capture the real probabilistic distributions

but may be based on players’ beliefs and expectations. In that case, sensitivity analysis of the

proposed approaches providing insights into how potential errors in the distributions affect the

optimal solutions might be useful for the decision makers.
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Guajardo, M., Rönnqvist, M., Flisberg, P., and Frisk, M. (2018). Collaborative transportation with

overlapping coalitions. European Journal of Operational Research, 271(1):238–249.
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