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Abstract

In this thesis, we investigate the applicability of machine learning to predict optimal route

decisions for Capesize vessels. Our approach uses windows of historical macroeconomic

and market-specific variables to form a time-series classification problem. We fit a

Long-Short-Term-Memory neural network and an Extreme Gradient Boosting model on

historical optimal trip choices and predict an out-of-sample routing strategy. By relying

on historical input and no knowledge of the future, we can compute possible economic

gains, and evaluate the viability of machine learning as a decision support system in route

optimization.

In a simplified scenario, with two geographically different roundtrips, we evaluate

cumulative earnings throughout a three-year period. Our findings suggest the machine

learning methods can outperform an approximation of the average earnings of market

participants by almost 11%. Our thesis contributes to the existing literature on spatial

efficiency and routing optimization in the dry bulk market and provides insights into a

possible method of using machine learning in out-of-sample route prediction.

Keywords – Capesize dry bulk market, route optimization, XGBoost, LSTM
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1 Introduction

Historically, the bulk shipping markets have been considered perfect competitive markets,

implying co-integration between vessel earnings throughout the global trade routes. Recent

studies, however, suggest the dry bulk markets to be spatial inefficient in the short run,

creating opportunities to increase economic gains by proper optimization of vessel routing

(Adland et al., 2017; Prochazka et al., 2019). The geographical markets are immensely

complex and require deep expertise and years of industry experience to understand fully.

However, in recent years the availability and quality of data have created new opportunities

to model complex relationships without deep industry experience. Hence, proper data

analysis could function as a decision-making tool when designing chartering strategies.

In this thesis, we propose a machine learning approach for optimal vessel routing through

space and time to maximize expected earnings. The method is formulated as a time-series

classification (TSC) problem using historically optimal routes and related explanatory

features. Time-series classification is a technique used to predict different classes based

on sequential behavior throughout time. Unlike traditional classification, TSC takes into

account the ordering of the data, thus interpreting data points as dependent on each other.

Consequently, the proposed method is implementable for real-world applications as we

rely solely on information from the past without knowledge of the future.

We implement the model in a simplified world scenario, with two different roundtrip

estimations based on the China-Brazil and China-Australia Capesize routes. Consider a

Capesize vessel positioned in China has the choice to either sail to Australia and back,

or take the longer trip to Brazil and back. As the vessel returns, the same process of

trip choice is repeated. If Brazil is chosen, they might miss out on high future earnings

because of the prolonged employment time. In contrast, the shorter Australia trip could

yield opportunities to capitalize on next week’s increased rates. If freight rates were to

fall in the next couple of months, it could be beneficial with prolonged employment time

and earning fixed rates. Decision-makers need to evaluate the movements of the market

to appropriately design routing strategies, taking into account the entire time-horizon and

not only optimal local decisions.

Capesize is used as the vessel of choice for our implementation because of the freight
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rate volatility, a limited number of possible routes, and homogeneous cargo (Kavussanos

et al., 2010). The market volatility (See Figure A1.1) could make it possible to profit

from understanding prices correctly, especially if there are predictable regional differences.

The Capesize vessels are too large to use the Panama and Suez Canal, with a typical ship

size of around 175,000 deadweight tonnes (DWT). The vast size also makes the market

dominated by two resources, iron ore and coal. Capesize routes are therefore fixed between

the major exporters and importers of these resources. Because the market is dominated

by a few key resources and trading partners, it is possible to model a simplified two-trip

scenario that still covers a significant part of the market (Stopford, 2009).

This thesis aims to evaluate the feasibility of historical information for future route

optimization. Previous relevant studies, like Prochazka et al. (2019), have focused on

the possibility of optimizing chartering through space and time using perfect information

on some of, or the entirety of, the future time-horizon. Whereas these studies provide

deep insight into the dynamics and regional differences of freight markets and define the

theoretical framework, we wish to use these findings to suggest a real-world, applicable

methodology.

Subsequently, we are evaluating future market movements and how to utilize them based

on previous cycles and explanatory industry observations. Machine learning models are

able to model historical inter-relationships too complex and time-consuming for humans to

calculate, providing valuable insight that decision-makers can use to evaluate their future

outlook. Naturally, machine learning cannot directly replace intuition and deep experience

in the field. Still, it could serve as a decision support system in operational planning by

extracting signals and relationships useful when designing chartering strategies.

The remainder of the thesis is structured as follows. First, we will review relevant literature

regarding route optimization and freight rate forecasting. Second, we will discuss the

freight rates and explanatory data that are selected based on traditional market drivers.

Next, the theoretical framework will focus on the machine learning techniques applied.

The methodology section explains the implementation of the optimization and how these

results are processed to represent a supervised learning problem. Ultimately, the results

section highlights the prediction accuracy and possible economic gains relative to the

market average estimation.
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2 Literature Review

The literature review will first cover relevant past work on route optimization. Further,

we will focus on relevant literature covering spatial efficiency and freight rate forecasting.

These can be considered prerequisites to achieve economic gains by applying the method

suggested.

The optimization problem in this thesis will focus on tramp shipping. Tramp shipping

involves accepting contracts for spot cargoes between port pairs in a transport network.

The traditional literature on shipping route optimization is usually focused on liner

shipping networks (Christiansen et al., 2013). Unlike tramp shipping, liner shipping

networks operate with fixed routes, time windows, and specific cargo contracts (Hemmati

et al., 2014). The tramp shipping market on the other hand, is defined by a large number

of ships and cargoes that are constantly matched by shipbrokers in a perfectly competitive

market (Prochazka et al., 2019).

Prochazka et al. (2019) present a method to use knowledge of future prices to solve

the optimization problem of route selection in tramp shipping. They apply a dynamic

assignment problem with stochastic travel times and known freight rates for the entire

planning period (hereby known as perfect foresight). To highlight the effect of geographic

location and changes in freight rates over time, they also assume the ship operator as a

price taker, where decisions made do not affect the future market, and constant cargo

availability.1 The results obtained from the perfect foresight method reveal that the

economic gains relative to the market average were the largest in the Capesize sector.

With perfect knowledge of the future, they found one could outperform the benchmark

strategy with 23% in the period 2009–2016. The assumption of perfect foresight makes the

results unrealistic to achieve. However, they serve as an upper bound to any realistically

achievable earnings and imply that there is a potential for exploiting spatial inefficiencies

to optimize route selection and increase profits.

Prochazka et al. (2019) also introduces a new solution to the typical end of planning

horizon problem by using policy approximation. The policy approximation is performed

1The last assumption is justified by assuming the model is made for a relatively modern ship that
due to its energy efficiency and relatively lower marginal cost will remain employed even in times with
low freight rate and limited availability of cargo.
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by using limited foresight of future prices to predict the optimal decisions.2 They apply a

neural network algorithm trained on the optimal decisions found by the perfect foresight

method, using limited foresight of future prices as input. The results obtained show that

with limited foresight, they still outperform the market average. However, the results

are not as robust as with perfect foresight. The limited foresight method is not directly

implementable in real life, as it demands knowledge of future prices to make predictions.

There have been two main ways of investigating spatial efficiency in the shipping sector,

co-integration analysis of freight rates, and finding profitable trading strategies. The

co-integration analysis has been performed on the movement of freight rates in different

geographical regions. Glen and Rogers (1997) and Berg-Andreassen (1997) found freight

rates within a sector to be non-stationary and co-integrated following the Engle and

Granger (1987) definition. These findings imply that the freight rates share a long-

run equilibrium and will only deviate from the equilibrium in short time spans (Engle

and Granger, 1987). However, Koekebakker et al. (2006) argues that the findings of

non-stationarity in regional freight rates are questionable due to the weak power of the

statistical tests to reject non-stationarity. By using appropriate statistical tests, they

find regional freight rates to be stationary. Consequently, questioning the validity of

co-integration as the Engle and Granger (1987) definition assumes non-stationary time

series, integrated of order one.

Adland and Strandenes (2006) initiated the idea of finding profitable trading strategies

to uncover spatial inefficiencies in the shipping market. Their findings suggested a

tanker operator could achieve improved earnings by applying kernel smoothing to identify

peaks and troughs in the market. Tsioumas and Papadimitriou (2015) followed with

an investigation on trading rules based on technical analysis of tripcharter rates and

found it was possible to outperform the benchmark strategy. Adland et al. (2017) argued

there is evidence that the Capesize bulk market is not spatially efficient, as they found a

significant premium in the Atlantic basin over time. Furthermore, they comment that

this premium would, if common knowledge, be corrected by the decision-makers in the

market, unlike previous assumptions made by Laulajainen (2007). Ultimately, Adland

et al. (2018) highlights how the co-integration of freight rates does not necessarily make

the shipping markets spatial efficient, seeing as the short-term regional difference might
2They test with 20, 50 and 80 days.
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still allow for well-informed chartering strategies to take advantage of spatial inefficiency.

Even though we will not forecast freight rate directly, investigating the relevant literature

on freight rate forecasting will indicate the ability of machine learning to pick up meaningful

information in historical data. The topic is not new and is thoroughly covered in the

existing literature. Batchelor et al. (2007) tested the performance of traditional time

series techniques on both spot rates and forward rates.3 Benth and Koekebakker (2016)

used univariate stochastic modeling on the Supramax market and found that short-term

movements in spot rates were, to some degree, predictable. Lyridis et al. (2004) applied a

univariate neural net on the tanker spot price, while Fan et al. (2013) obtained better

results using a multivariate neural network. Kanamoto et al. (2019) forecasted the Baltic

Capesize Index with a multivariate long-short-term-memory network and got promising

results. Overall, a multivariate approach to capture relevant market information has

shown the most effective and has given decent accuracy, at least in the short-term.

This thesis contributes to the literature by using the method developed by Prochazka et al.

(2019) as a foundation for a real-life implementable charting strategy based on machine

learning. Therefore, the thesis serves as a continuation of the work done by Prochazka

et al. (2019) and also enriches the already existing literature on spatial efficiency in the

Capesize sector. Our findings are relevant for both vessel operators and researchers alike,

as it gives an indication of spatial efficiency and assesses whether further work should be

done to test the effectiveness of implementing a similar approach in real life.

3ARIMA, VAR and VECM
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3 Data

The sample data is derived from multiple time series spanning from January 2011 to

December 2019. All observations are processed to be represented on a daily frequency,

aiming to reflect the market situation on a given day throughout the time horizon. The

choice of time span was motivated by two factors. Firstly, more explanatory variables were

available when starting in 2011, instead of an earlier point in time. Secondly, by going

further back than 2011, we would include the shipping boom prior to, and the crash after,

the 2008 financial crisis. Similarly to Prochazka et al. (2019), we assume these freight

rates not to be repeated, and that the future will be more like what has been observed

after the crises.

The dataset serves two purposes. Firstly, we establish optimal route selections throughout

time using Capesize earnings for the respective routes, forming a historical optimal

chartering strategy. Secondly, explanatory variables are used in addition to past earnings

to estimate a future chartering strategy based on prior, optimal decisions and the related

market situation. The data is mainly derived from the Clarkson Shipping Intelligence

Network, complemented with macroeconomic variables from Thomson Reuters Datastream.

To evaluate regional price differences between the Capesize routes, we use tripcharter

earnings as reported by Clarkson Research. The earnings are based on 2010 Capesize

vessels, from Tubarao (Brazil) and Western Australia to Quingdao (China), respectively.4

These earnings functions as an indicator of the estimated daily earnings for a vessel

operating on the specific routes, implied by the current spot freight rates (Research, 2015).

Note that the vessel is assumed to return to the original point of origin as the trip is

completed. Therefore, the reported earnings also take into account the ballast distance

from Quingdao.

The dataset, including the route earnings, contains 69 variables in total, with various

sampling frequencies. The additional explanatory variables used in the predictive analysis,

are carefully selected to adequately explain the supply/demand dynamics for Capesize

vessels, and the shipping industry in general. Table 3.1 depicts an abstract of ten of

the variables, their relevancy in the prediction of route choices, as well as their sampling

4See A2.1 for further trip details
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frequency and source.

Table 3.1: Selection of explanatory variables used to predict future trip choices (10 out
of 69 total variables)
Name Description Relevancy Frequency Source

Iron_Ore_Price
Iron Ore 62% Fe,
CFR China (TSI)
Futures Settlements

Demand,
Seaborn Commodity Trade Daily Thompson Reuters

Datastream

USYield_10yrs US 10-year Treasury Yield Demand,
World Economy Indicator Daily Thompson Reuters

Datastream

Rebar_Future SHFE Rebar Commodity Future
Continuation 1

Demand,
Seaborn Commodity Trade Daily Thompson Reuters

Datastream

Vale Vale SA Stock Index
(Global Mining)

Demand,
Seaborn Commodity Trade Daily Thompson Reuters

Datastream

USYUAN_FX_Spot US Dollar/Chinese Yuan
Offshore FX Spot Rate

Demand & Supply,
World Economy Indicator/
Local Costs

Daily Thompson Reuters
Datastream

Newbuild_Price 176-180k Capesize Bulkcarrier
Newbuilding Prices, $m

Supply,
Shipbuilding Production Weekly Clarkson Research

MGO_Singapore MGO Bunker Prices,
Singapore $/Tonnes

Supply,
Transportation Costs Weekly Clarkson Research

India_Scrap India Scrap Prices
(Capesize) $ldt

Supply,
Scrapping and Losses Weekly Clarkson Research

Port_Congestion Capesize Port Congestion
as % of Capesize Fleet

Supply,
Fleet Productivity Monthly Clarkson Research

Avg_Scrap_Age Capesize Demolition -
Average Age, Years

Supply,
Scrapping and Losses Monthly Clarkson Research

As seen from Table 3.1, the relevancy of the variables are considered according to their

effect on the market dynamics. Because of the significant number of variables, this

discussion will focus on the different groups of variables and what they aim to explain,

rather than going into detail on each individually.

Firstly, we have included variables to capture the seaborne commodity trade dynamics, as

explained by Stopford (2009), such as iron ore and coal prices. Long-term commodity

price trends give an indication on economic activity, thus affecting the volume of vessels

employed to carry such commodities. Including raw materials, like Iron_Ore_Price

and Coal_Price, aims to capture the commodity trade specifics for Capesize vessels,

as well as the lagged relationship between commodity and freight rates. The lagged

relationship is especially important; according to Stopford (2009), seaborne trade has a

significant lag between decisions and implementation. For Capesize commodities, this can

be seen in how China tends to stockpile iron and coal and withhold imports until prices

decrease. Furthermore, Tsioumas and Papadimitriou (2018) found a bidirectional lead-lag
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relationship between the BCI index, and iron ore and coal prices, providing statistical

evidence of this relationship. In addition to the raw materials, metallurgical products

such as rebar and coil futures are included to see if more product-specific derivatives can

provide insight into the seaborne trade dynamics.

Exchange rates are included to capture the relative fluctuations between economies,

while also functioning as a proxy for local costs. Consequently, exchange rates for

Brazil, China and Australia are included, such as USDAUS_Fx_Spot, USDYUAN_Fx_Spot

and USDBRL_Fx_Spot. Stopford (2009) argues that unit costs vary proportionately with

exchange rates as the main currency of the shipping industry is USD. Shipyards are

especially vulnerable to exchange rate fluctuations, affecting the world fleet dynamics

through the newbuilding market. Short-term shipping cycle peaks are identified by a

higher volume of newbuilding orders, where cash flows out of the shipping industry because

shipyards pay for materials and labor. Besides providing information on the liquidity in

the Capesize market, shipyard specific exchange rates also aims to capture some of the

supply dynamics of the world fleet. Consequently, USD/JPY and USD/KRW are included, as

Japan and South Korea produce about two-thirds of the world’s ships (Stopford, 2009).

To complement the supply characteristics captured by the newbuilding market, we

introduce variables defining the demolition dynamics. An active demolition market

could reflect a trough period, as minimal freight rates cause financial pressure, where old

ships fall to scrap price. Scrap prices, such as India_Scrap, in addition to Avg_Scrap_Age

aims to reflect the scrapping decisions done by decision-makers.5 While low freight rates

may trigger the demolition of older ships, shipowners are still reluctant to scrap vessels

considering future expectations. Therefore, scrapping dynamics is considered more of a

strategical process relative to expected future earnings (Tvedt, 2003). In addition, to

reflect market expectations, scrap prices especially are included as world fleet capacity

proxies. Higher rates in the demolition market functions as an incentive for carriers to

scrap vessels, adjusting the capacity of the world fleet.

Transportation costs are mainly accounted for by including bunker cost variables. Besides

influencing the vessel earnings directly, bunker costs also indirectly affect the market

supply of ships. Higher fuel cost arguably increases supply costs, in turn causing higher

5Other scrap prices include; Pakistan, and Bangladesh, defining the majority of the demolition market.
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freight rates due to high demand relative to market supply. As shipowners and operators

aim to maximize profit, fuel optimization is essential, especially when demand exceeds

supply. To create additional supply to cover the demand, operators could speed up their

fleet to increase capacity, increasing fuel consumption. Consequently, fuel prices would

determine the point where increasing the speed is no longer profitable.

Additionally, Port_Congestion is also included as a variable reflecting operational

efficiency and to account for supply fluctuations. In general, congestion causes vessels

to operate less efficiently, where schedule unreliability could affect fuel consumption.

Furthermore, Stopford (2009) argues port congestion to give indications of the market

cycle through the supply/demand relationship and consequently affecting the freight rates.

As time-lag plays a significant role in understanding the dynamics of the shipping market,

we need to consider the lead-lag relationship between the variables. The methodology

suggested, time-series classification, solves this issue to an extent, by using explanatory

variables lagged through time. Consequently, the dataset is constructed with lagged

versions of the explanatory variables to capture how historical decisions influence the

current market situation. The representation of lagged relationships in a time-series

classification will be further explained throughout the methodology.

Lastly, some assumptions are made to the raw explanatory data as they are sampled with

multiple frequencies. Firstly, due to the problem framing in this thesis, each variable

should be represented on a daily basis to reflect daily optimal decisions. To account for

the weekly reported earnings, we are assuming the earnings for each week to represent

a mean approximation for each day. The interval between each data point needed to

fill the remaining days is substantial, meaning interpolation, in general, causes increased

bias. Furthermore, an assumption of a linear process between data points, such as with

linear interpolation, removes the effect of random shocks and could result in incorrect

earnings estimates and unreliable market expectations. Therefore, we consider a mean

approximation to be the most realistic approach. The same method is used for variables

reported monthly, treating these observations as integers rather than trying to fit a

continuous pattern with potential bias.

Regarding variables sampled on business days, however, we use a simple linear interpolation.

Accordingly, we assume the missing data, especially over the weekends, to be close to
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the bordering data points. Most of the business day data is related to financial fixtures,

where volatility is reduced throughout the weekends, due to no trading (Sutherland et al.,

2013). Therefore, the assumption of similarity in bordering values seems logical. On the

other hand, this might lead to an underestimation of volatility within the series (Gençay

et al., 2001). Alternatively, the series could be considered using no interpolation at all,

reducing the uncertainty, but decreasing the number of observations significantly, as well

as the possible explanatory variables. Ultimately, the treatment of missing values is based

on a trade-off between bias and the problem framing, where the approach used follows

common principles within time series analysis and machine learning practices (Hyndman

and Athanasopoulos, 2018).
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4 Machine Learning Theory

4.1 Walk Forward Validation

The models will be validated using walk-forward validation. This methodology involves

incorporating new information as it becomes available, one time-step at a time. The flow

of information for each time step is decided by the window size, which can either be static

(sliding) or dynamic (expanding). The procedure can be explained as a rolling forecast,

where a model is trained at the beginning of the time series until time step t. The model

creates predictions for t+ 1 and is validated against the known value. For time step t+ 2,

the known value from t+ 1 is included in the window, and the process is repeated.

4.2 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are types of networks well suited for sequential-

data processing such as time series. Different from traditional feed-forward networks,

RNNs have the ability to interpret observations as dependent on each other, by storing

information throughout the process. Whereas feed-forward networks have a one-way

flow of information throughout the neurons, RNNs are extended to include feedback

connections where information cycles back into the network. These cycles enable the

network to have memory, where the neurons have different states. Mathematically, the

state of the neurons can be defined as:

h(t) = f(h(t−1), x(t); θ), (4.1)

where h(t) represents the state. Equation 4.1 depicts how the system is recurrent as h(t) is

defined by the previous version of itself, h(t−1), thus obtaining information from the prior

state (Goodfellow et al., 2016). This cyclical behaviour of RNNs can also be illustrated

by unfolding each iteration of the network, as seen in Figure 4.1.

One key aspect of RNNs, which is easily illustrated in Figure 4.1, is how the weight matrix,

W , is used repeatedly throughout time. This eventually results in one of the implications

of RNN architecture, the exploding and vanishing gradient problem. Exploding gradients
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Figure 4.1: Output (o) is produced given input x at time t. Loss L measures the error
of o when compared to target y. The input-to-hidden connection weights, U , hidden-to-
hidden recurrent connection weights, W and the hidden-to-output connection weights, V .
Reprinted from "Deep Learning", Goodfellow et al., 2016, Ch.10, MIT Press.

make learning unstable, while the vanishing gradients make it almost impossible to know

the direction of the parameters to improve the cost function (Goodfellow et al., 2016). To

overcome these difficulties, this thesis will explore special, gated, RNNs which address the

gradient problem, namely Long-Short-Term-Memory (LSTM).

4.2.1 Long-Short-Term-Memory

Proposed by Hochreiter and Schmidhuber (1997), LSTM overcomes the vanishing and

exploding gradient problem by introducing three gated cells, ft, it, ot, controlling the

information flow for each state unit.


ft

it

gt

ot

 =


σ (Wf [xt, ht−1] + bf )

σ (Wi[xt, ht−1] + bi)

tanh (Wg[xt, ht−1] + bg)

σ (Wo[xt, ht−1] + bo)

 (4.2)

The forget gate, ft, sets the old states to zero once all information from a feature has

been used, thus deciding what information to remove from the state. This is controlled

via a sigmoid unit, setting the weights between 0 and 1. The input gate, it, decides which

values in the cell state should be update in a similar fashion. Combining the forget and
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input gate, the internal state of the cell, ct, is given:

ct = ft · ct−1 + it · gt (4.3)

where gt represents the vector of cell updates, seen in Equation 4.2

Lastly, the output ot is based on the information encoded in the cell state, but will be

filtered through the output gate using the same sigmoid activation as well as a tanh layer

to control the output values from the network:

ht = ot · tanh(ct) (4.4)

When training RNNs, such as LSTM, the aim is to minimize the loss, L, as depicted in

Figure 4.1. This is achieved using optimization algorithms that are used to adjust the

network weights to get the optimal performance. The weight tuning in this thesis will

utilize the Adaptive Moment Estimation (Adam) optimizer, introduced by Kingma and Ba

(2014), which has been shown to be a robust stochastic optimization algorithm (Kingma

and Ba, 2014). Adam uses separate learning rates for all weights in the model, meaning

the learning rate is adapted separately as learning progresses within the network.

Overfitting to training data is a major concern when training neural network models.

One approach to help avoid overfitting is through feature selection. By applying Lasso

Regularization (L1), a penalty term, λ, is introduced to both shrink coefficients and

provide feature selection.

L =
1

2N

n∑
i=1

(Yi − Ŷi)2 + λ
N∑
j=1

|wj| (4.5)

As seen from Equation 4.5, L1 regularization uses the sum of the absolute value of the

coefficients as a penalty parameter, forcing some of the network’s weights to be zero.

Dropout regularization is a classic technique used to reduce overfitting by simply dropping

random units in the network while training. However, the use of dropout in recurrent

neural network architectures has been proven to reduce the memorization ability of RNNs

(Jozefowicz et al., 2015; Gal and Ghahramani, 2016). Gal and Ghahramani (2015) propose
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a way to apply appropriate dropout to RNNs by applying the same dropout mask to every

time steps, instead of a dropout mask that varies from time step to time step. Recalling

the computation of the LSTM gates from Equation 4.2, Equation 4.6 exemplifies how Gal

and Ghahramani (2015) proposes dropout for RNNs.


ft

it

gt

ot

 =


σ (Wf [xt, d(ht−1)] + bf )

σ (Wi[xt, d(ht−1)] + bi)

tanh (Wg[xt, d(ht−1)] + bg)

σ (Wo[xt, d(ht−1)] + bo)

 (4.6)

Recurrent dropout as described by Gal and Ghahramani (2015) is available through Keras

(for documentation, see Chollet et al. (2015)). This thesis will explore recurrent dropout

rates of 25% and 50% in accordance with Semeniuta et al. (2016), in order to identify and

finalize a suitable model to predict optimal route decisions.

To formulate the output to suit a classification problem, softmax activation is used in

the output layer. Softmax takes the numeric output from the network and turns it into

probabilities for each class.

s(xi) =
exi∑n
j=1 e

xj
(4.7)

Equation 4.7 illustrates this by taking the exponent of each output and normalizing the

output summing the exponents. The function further ensures that the sum of probabilities

add up to 1, which is preferable for multi-class-classification problems, and enables the

network to be expanded to include multiple routes for further research (Dunne and

Campbell, 1997).

LSTMs have been used to great effect, learning long-term dependencies, and how

information from previously observed data is relevant to future sequential observations,

obtaining state-of-the-art performance on sequence processing tasks. These capabilities

have been used to solve complex natural language processing, such as neural machine

translation and speech recognition, learning complex interrelationships between words.



4.3 Extreme Gradient Boosting 15

4.3 Extreme Gradient Boosting

The extreme gradient boosting (XGboost) algorithm has become one of the most used

machine learning algorithms and consistently perform competitively in machine learning

competitions. XGBoost was developed by Cho et al. (2014) and builds on the concept

of traditional boosting. Traditional boosting involves combining several weak learners

to ensemble a robust predictive model (Friedman, 2001). The most common learner to

boost is the tree algorithm and boosting involves fitting them sequentially on the residuals

of the previous trees. Therefore, each new tree is fit to pick up variance in the data

not already picked up by previous trees. This process is repeated until it reaches the

predetermined maximum number of trees. According to Cho et al. (2014), the main aspect

of XGBoost is how additional regularization parameters are included to prevent overfitting.

Thus, the model formalization is more regularized and gives better results. Nielsen (2016)

concluded that the effectiveness of the algorithm stems from the ability to operate with

varying flexibility, depending on the location in feature space. Hence, incorporating the

bias-variance trade-off as a core aspect in the model fitting. The increased flexibility

compared to traditional gradient boosting comes from the fact that XGBoost deploys a

Newton method in function space, while traditional gradient boosting has been based on

gradient decent algorithms (Nielsen, 2016).

The XGBoost method uses K additive functions to make predictions:

ŷi = φ(xi) =
K∑
k=1

fk(xi) fk ∈ F (4.8)

where F is the space of regression trees and each fk corresponds to an individual tree (Cho

et al., 2014). Predictions are made using the individual trees and weighting the output

from each output leaf in the K amount of function by the leaf weight, w. The following

regularized objective function is minimized to obtain the functions used by the model t:

L(φ) =
∑
i

l(ŷi, yi) +
∑
k

Ω(fk) (4.9)

Where, l represents the loss function, measuring the difference between the actual and
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predicted value, with Omega included to penalize complex models.

Ω(f) = γT +
1

2
λ||w||2 (4.10)

Where, T represents the number of leaves, and γ and λ are regularization parameters

included to prevent overfitting (Cho et al., 2014). γ is a minimum loss required for a tree

to split; therefore, a high gamma will lead to more shallow trees and less overfitting at the

cost of not being able to pick up patterns in the data. λ is the L2 regularization parameter,

similar to ridge regression. In addition to these parameters, XGBoost offers multiple

other hyperparameters that must be tuned for each dataset. The learning rate decides the

shrinkage that is done at every sequential step and is closely related to the other boosting

parameter. In general, complex relationships will demand a higher number of trees and

lower learning rate to compensate and prevent overfitting. The min_child_weight is like

γ, a tree parameter, and determines the minimum amount of observations that must be

in a terminal node for it to be included. Column sampling and row sampling are also

available randomization techniques that can enhance the overall model by decorrelating

trees, thus reducing the overall variance(Nielsen, 2016; Cho et al., 2014; James et al.,

2013).

The values of the hyperparameters can drastically change the effectiveness of the XGBoost

algorithm (Cho et al., 2014). Too much regularization and the fit will not pick up trends

and patterns from the training data. On the other hand, not enough regularization

will cause overfitting and poor generalization (James et al., 2013). To find the optimal

parameter values, one can use validation and a grid search of potential values. Ideally,

one would use a large grid to test as many combinations as possible. However, the high

number of parameters quickly becomes computationally demanding when there are many

variables and observations. Therefore, we have decided to follow an alternative approach

by tuning the learning rate, the number of trees and tree dept first, as parameters should

have the most significant effect on the result (Cho et al., 2014). We will then tune the

remaining parameters before we ultimately perform a recheck of the learning rate and the

number of trees.
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5 Methodology

This chapter contains three major parts, outlining the methodology used in the thesis.

Firstly, the route optimization method is presented. In this section, we will explain how

the upper bound is calculated with perfect foresight and how the benchmark is calculated

using a coin strategy. Secondly, data processing and model training is explained. This

part focuses on how the optimization output is transformed and formatted to predict

route decisions using machine learning algorithms. Ultimately, the evaluation section will

explain how the predictions are evaluated and used to calculate expected earnings.

5.1 Chartering Strategy

5.1.1 Route optimization

Prochazka et al. (2019) proposed a version of the minimum-cost flow problem to optimize

vessel allocation within a limited planning horizon. The version presented by Prochazka

et al. (2019) assumes perfect knowledge about prices to establish an upper bound for

a realistic routing strategy.6 The optimization model in this thesis is largely based on

the work of Prochazka et al. (2019) adopted to suite a two-route scenario, where, rjt,

denotes the tripcharter rates for a roundtrip, j, with duration from τmin
j to τmax

j , within

the planning horizon, T .7

The following optimization model is used to compute the optimal vessel allocations by

maximizing expected earnings within the specified planning horizon:

max
f

∑
jt

ejtfjt (5.1)

s.t

Rt =
∑
j

fjt ∀ t (5.2)

6For a more in-depth explanation of this version of the minimum-cost flow problem see Prochazka
et al. (2019)

7When comparing to the original paper, note that the version presented in this thesis assumes only
one origin, i, and two destinations, j, thus i is omitted in Equation 5.1 - 5.6
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Rjt = R0
jt +

t−τmin
j∑

s=t−τmax
j

πjfjs ∀ j, t (5.3)

where the flow, fjt, of a ship is computed as a function of the optimal decision, xj and

and the capacity Rt:

fjt = xjtRt (5.4)

and πj defines the probability of a trip duration:

πj =
1

τmax
j − τminj + 1

(5.5)

while ejt defines the expected earnings for a trip to destination j at time, t, given all

possible trip durations s:

ejt =

min
{
τmax
j ,T−t

}∑
s=τmin

j

πjrjts (5.6)

Solving the optimization model outputs the optimal chartering strategy stored as a binary

solution in xjt. For each time period, t, one trip could yield higher expected earnings than

the other; thus, xjt can be interpreted as a signal as to which route is the most profitable

based on perfect foresight of the future.

The optimal chartering strategy can be applied to recreate a trading flow and calculate

earnings achieved by taking the optimal route. The calculations of the earnings in each

time period is performed in similar fashion as in Prochazka et al. (2019), and the cumulative

earnings will be calculated for evaluation.

5.1.2 Benchmark Method

In addition to the upper bound of possible earnings, represented by the perfect foresight

results, we wish to compare our predicted routes with a benchmark strategy. Optimally,

the benchmark would be based on the real trade flows on each route, as used by Adland

et al. (2017), or the earnings achieved by an actual vessel sailing the selected routes in

the same period. However, because we do not have data available to find any of these
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two possible benchmarks, we will apply a coin strategy similar to the approach taken by

Prochazka et al. (2019). The coin strategy will be based solely on preset probabilities

of taking each route, not using any foresight of rates or knowledge of historical values.

Adland et al. (2017) found that by using probabilities proportional to real trade flows, one

could simulate the average earnings of the market participants. Prochazka et al. (2019)

further found that using probabilities, such that the expected utilization of each route is

equal, gave earnings that were not significantly different. Therefore, we can apply the coin

strategy as a proxy for average earnings achieved by the market participants. Hence, the

benchmark strategy represents a lower bound to the earnings one should, at a minimum,

meet by predicting optimal route selection. This implies that our models must outperform

the coin strategy to be considered adequate.

To simulate the earnings achieved by the coin method, the optimal destination, xj, is

set to the probability of going to each destination j. The calculations of the resulting

expected earnings can then be performed by taking the aggregate of all alternatives with

a non-zero probability such that a route is taken in time t.8

5.2 Machine Learning

5.2.1 Train-Test Split

To fit and evaluate performance on out-of-sample data, the dataset is divided into a

training and test set. The sample ratio between the train and test set is considered a

trade-off evaluation, as less data in the training set results in a greater variance in the

parameter estimates, and vice-versa. The trade-off evaluation, therefore, comes down to

the nature of the problem. In addition to giving proper destination estimates, this thesis

also aims to show how routing optimization affects cumulative earnings over time. To

properly identify the effect of an optimal chartering strategy, the testing period needs to

be of a certain size, as each roundtrip last a significant number of days. For this reason, a

test set containing 1,095 days is used, representing three years of chartering. Keeping the

last 1,095 days as out-of-sample gives a training set of 2,178 days.

To compute the optimal destinations for the training set, we apply the optimization

8For a more in-depth explanation of the difference in coin strategy calculations problem see Prochazka
et al. (2019)
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algorithm described in Section 5.1.1 on the training subset of data. Optimal destinations

are calculated as a function of expected earnings; thus, we do not include the testing

data in the training computation to ensure no data leakage from future observations.

Furthermore, we treat the testing set as a continuation of the training set, where the

optimization is conducted on the entirety of the data. We further extract the last 1,095

optimal destinations, for out-of-sample testing.9

5.2.2 Supervised Learning Data Representation

The nature of the problem requires us to formulate the data as a supervised learning

problem, where each window of feature data represent one class.10 To properly process the

data, the sliding window approach is applied, where the input data is divided into separate

fixed window containing lagged features. The shape of the data can be described in terms of

the number of samples, the number of time steps and the number of explanatory features.

For the training set, this approach returns a three-dimensional array, [2128,50,69],

containing 50 time steps of the 69 explanatory variables, with 2128 samples.11 Furthermore,

the test set would be summarized as the remaining samples; [1095,50,69]. Essentially,

meaning that for each sample, we have one window containing (50 · 69) 3450 explanatory

variables, with the 69 features for the 50 previous days.

Consequently, each window of features is associated with a specific optimal trip according

to the routing optimization described in Section 5.1.1. Following this approach, we have

a binary response variable explained by a window of historical features. This approach

ensures that there is no data leakage. The models are only trained and validated on

historical observations, whereas the actual response variable from the test set is not made

available to the model before evaluating performance.

The different scales of the explanatory variables may cause slow training and cause large,

unstable weights, especially for the LSTM model. To account for the different scales,

we normalize the explanatory variables when pre-processing data, thus presenting all

9Three year testing horizon, (xjt ∀t ≥ 1095)
10"Class" in classification term simply defines the different outcomes of the classification. In this thesis

we have two different trips, thus two different classes.
11Due to 50 lags used as explanatory variables, the 50 first optimal trips are removed, explaining the

reduction from 2,178 to 2,128 samples.
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variables on the same scale (Brownlee, 2018).12

5.2.3 Model training

The lagged data will be used to train, fit, and make predictions with both machine learning

methods. Hyperparameter tuning will be performed using walk-forward-validation solely

on the training data to prevent data leakage. After the optimal parameter values are

found, the models will be refit on the entire training set to include all available information

throughout the training period. After predicting the initial year, we will refit the models

yearly without retraining due to a lack of computing power. The route optimization

will be re-done and included in the refitting to prevent data leakage. Thus, our method

assumes that the decision-maker trains the models before each three-year period and then

refits it every year to capture variable levels.

To make predictions, the explanatory variables in the test set is used as input. This means

that for each day, we make predictions using historical information from the previous 50

days. The intuition behind this method is that if a decision-maker, at day t, is to make a

trip decision, all information prior to that day is available to base the said decision on.

The output of the predictions will be a vector of integer values representing the predicted

optimal destination each day.

5.3 Evaluation

To evaluate the predictions, we will first compute the out-of-sample accuracy and Cohen’s

Kappa. Accuracy is found by dividing the number of correct predictions by the total

number of predictions. The accuracy generally gives a good measurement of how many

observations that are predicted correctly but can be artificially high in the case of

imbalanced classes (James et al., 2013). Therefore, to account for imbalanced classes,

we will also look at Cohen’s Kappa statistic. The Kappa statistic takes into account

the possibility of the agreement between predictions and reference occurring by chance

(Cohen, 1960), comparing the observed accuracy, Po, and the expected accuracy, Pe:

12Z-score normalization is used for data scaling



22 5.3 Evaluation

k =
Po + Pe
1− Pe

(5.7)

Where Pe, is defined as the accuracy achievable from any random classifier based on

the confusion matrix. Ultimately, Cohen’s Kappa simply measures the accuracy of our

classifier relative to a classifier randomly guessing based on the frequency of each class.

In addition to the aforementioned accuracy measures, the predictions will be evaluated

based on their ability to capture differences in expected earnings between the two trips.

To quantify the relative difference, we calculate the value of trip switching, Sjt, based on

the results from the optimization model presented in Section 5.1.

Sjt = Zit − Zjt i 6= j (5.8)

where Zjt is calculated using the expected earnings, Vt, from time t+ s, to the end of the

planning horizon. Zjt will represent the expected earnings for a trip to destination j, at

time t to the end of the planning horizon:

Zjt =

τmax
j∑

s=τmin
j

πj(rjts+ Vt+s) (5.9)

where s represents all possible trip durations to destination j.

SBrazil,t, will, in our two-trip case, give the difference in earnings if the Australia roundtrip

is taken instead of the Brazil roundtrip. Therefore, a positive SBrazil,t will indicate that a

higher expected earning is achieved by taking the Australia trip, while a negative SBrazil,t

suggests the opposite. The magnitude of the absolute value of Sjt functions as an indicator

describing the importance of taking the optimal decision each day.

The prediction output will be used to calculate expected earnings by using the destinations

in a three-year chartering simulation. Cumulative earnings achieved with the machine

learning prediction methods will then be compared to the earnings achieved with perfect

foresight and the benchmark strategy. The cumulative earnings are used instead of daily

earnings because the optimal route is found by maximizing the earnings at the end of
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the planning horizon.13 Therefore, the optimal trip for a given day might not yield the

highest short-term earnings, as the earnings from one period could be sacrificed for better

future positioning. Consequentially, the current daily earnings are not as important as

the total cumulative earnings and average daily earnings over the entire period.

To further evaluate the methods, a fleet of 9 additional ships will be included. Each

vessel will start at a different point in time, but ending on the same day. Therefore, the

level off cumulative profit cannot be used to compare the results between the different

vessels. Thus, we will evaluate the performance relative to the benchmark. Expanding the

analysis to include different starting points will, the results are more robust as it reduces

the likelihood of the results being due to chance.

13An alternative would be to use average daily earnings over the entire period. However, it would give
similar results to cumulative earnings.
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6 Results and Discussion

This chapter describes the research findings of the thesis. The first section presents

the result from applying the perfect foresight method and benchmark method for the

entire period. Secondly, the LSTM neural networks and XGBoost models are presented,

providing a brief discussion on the hyperparameters used. Next, the prediction models

are evaluated using both accuracy measures and the value of switch. Lastly, the earnings

achieved by using the predicted optimal routes are compared to the upper and lower

bounds to evaluate the effectiveness of the methods as a decision-support system.

6.1 Perfect Foresight and Benchmark Results

The first step in evaluating the results is to assess if it is possible to outperform the

market average by estimating the earnings for the entire time horizon. In accordance with

Prochazka et al. (2019), the upper bound is established using perfect foresight and reflects

the earnings obtained by optimal vessel positioning. Furthermore, a simulation using the

benchmark strategy is conducted to represent average earnings for market participants.

The cumulative earnings for the respective chartering strategies can be seen in Figure 6.1.

Figure 6.1: Comparison of the perfect foresight and coin strategy cumulative earnings
over the entire time horizon, October 2011 to December 2019.

As expected, based on the results presented by Prochazka et al. (2019), the perfect foresight

simulation outperforms the benchmark strategy achieving 17.33% higher cumulative

earnings at the end of the period. The results show that it is possible to take advantage of
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relative differences in freight rates to extract economic gains, at least under the assumption

of perfect foresight. Therefore, the machine learning methods can also outperform the

assumed market average if they are able to predict the optimal decisions correctly.

6.2 Predictive Models and Model Evaluation

The following subsection highlights the finalized models, their specifications, and the

hyperparameters. As described in the methodology section, we conduct a grid search to

tune the hyperparameters for both models. The results of the grid search, as well as the

achieved out-of-sample accuracy, can be seen in Table 6.1.

Table 6.1: Finalized models; an overview of hyperparameters and out-of-sample prediction
accuracy

LSTM XGBoost
Hyperparameter Value/type Hyperparameter Value/type
Number of hidden neurons layer 1 200 Number of trees 1300
Number of hidden neurons layer 2 200 Maximum Tree Depth 13
Classifier Softmax Learning Rate 0.01
Optimizer Adam Column subsampling 0.2
Learning rate 0.0005 Gamma 5
Number of epochs 2000 Minimum Child Weight 3
Recurrent Dropout 0.50 Row subsampling 1
L1 Regularization 0.08
Out-of-sample accuracy: 71.49% 68.07%
Cohen’s kappa: 0.2975 0.3032

As depicted in Table 6.1, the network configuration for the LSTM architecture is quite

complex, as it is a two-layered LSTM network with a significant number of iterations. To

account for the complexity of the architecture and avoid overfitting, recurrent dropout

is used, dropping 50% of the connections between the layers with each iteration. L1

Regularization reduces overfitting by penalizing coefficients and provides feature selection,

which is well suited for this problem with a large number of features.

The final XGBoost hyperparameters imply complex relationships and patterns in the

data. A high number of deep trees with a corresponding low learning rate is needed to

pick up the information effectively. The validation also showed that a high amount of

regularization was required to be able to reduce overfitting and generalize well onto new

data. The use of column subsampling to decorrelate trees and reduce the power of a few
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single explanatory variables was found the most effective. However, gamma and minimum

child weight was also used to limit unnecessary tree depth, due to the relatively high

maximum tree depth.

Both the LSTM and XGBoost models have a relatively high out-of-sample accuracy.

However, the imbalanced classes make traditional accuracy somewhat misleading. The

Kappa value accounts for the no-information rate and is used to control for imbalanced

classes. The imbalance classes imply a small premium towards the Australian route, as

this route i selected as the optimal route more often. While LSTM achieve the highest

accuracy, the XGBoost model seems to outperform the LSTM model when considering

the Kappa value. This can be explained by how XGBoost is more effective in correctly

classifying the less common class, the Brazil trips (See confusion matrix A3).

To further investigate the predictions, we compare the predictions against the value of

switching trips. The more the value of switch deviates from zero, the more costly it is to

make an incorrect prediction. Therefore, we analyze the relationship between the correct

and incorrect predictions, relative to the cost of making wrongful decisions.

Figure 6.2: Investigation of when the XGBoost and LSTM prediction are correct and
incorrect compared to the value of switch at the time. The value of switch is given as the
relative expected earnings, from the current time to the end of the planning horizon, if
one goes to Australia instead of Brazil.
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The time series plots in Figure 6.2 displays at what time periods the predictions are

correct and incorrect along with the value of switch. Visually, both methods seem to

classify the most extreme values correctly. However, the LSTM method appears more

stable, while the XGBoost method’s accuracy varies more with time. For example, the

XGBoost predictions appear weak in mid-2017 and late 2018, but very accurate in early

2018.

The density plot from Figure 6.2 visualizes the relative distribution of the absolute value

of switch, categorized by whether the observations are predicted correctly or not. The

distributions show that the models are in general better at correctly classifying optimal

routes as the absolute switching value increases. This is a good sign, as we are able to

avoid making wrongful decisions when the opportunity cost is (too) high. Most of the

incorrect predictions are occurring with lower values of switch, which could reflect how

the models are indifferent between the choices when the opportunity cost is minimal.

The LSTM model appears better at correctly classifying observations with an absolute

value of switch over 300,000. However, the XGBoost model performs better when the

value of switch is higher than 750,000, yet the importance of this is questionable due to

the small number of trips within this range. Therefore, it is interesting to look at the

difference in the mean of the absolute switching values. The difference between the mean

of correctly and incorrectly classified trips is tested statistically using a one-sided t-test.14

The resulting low p-value for both methods indicate that we can reject the null hypothesis

of equal mean, thus implying that the difference is statistically significant, verifying the

visual analysis.

6.3 Expected Cumulative Earnings

To evaluate the models’ effectiveness as a decision support system, we calculate the

expected earnings achieved. The three-years of predicted decisions are used to simulate

the expected earnings obtained by applying the machine learning models to select which

route to take. Figure 6.3 depicts the cumulative earnings throughout the three-year period,

compared to the benchmark and perfect foresight strategy

14Welch Two Sample t-test
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Figure 6.3: Cumulative earnings from LSTM and XGBoost vessel routing, compared to
coin and perfect foresight. Three year chartering period, December 2016 to December
2019.

From the cumulative wealth plot to the left in Figure 6.3, we can see that both the

machine learning models outperform the benchmark strategy. As explained in Section

5.1.2, our benchmark strategy also functions as a proxy for the average earnings achieved

by market participants. Therefore, by outperforming the benchmark, we demonstrate

that machine learning methods can outperform the market average.

The plot on the right-hand side of Figure 6.3, portrays the relative earnings of the

chartering strategies as a difference in percentage from the benchmark strategy. Again,

we can see that both ML-methods outperform the benchmark strategy at the end of the

time horizon. The perfect foresight method consistently has cumulative earnings that

are around 17% higher than the benchmark strategy. The perfect foresight’s relative

outperformance of the benchmark strategy seems comparable to the findings by Prochazka

et al. (2019), where they found perfect foresight to have 23% higher earnings in the

Capesize market. A potential explanation for the difference in relative earnings could be

that their testing period was 2009-16 and that they had different spatial dynamics due to

different route selection.

Figure 6.3 reveals that the relative cumulative earnings at the end of the time period is

about 11.4% higher with LSTM, and 7.9% higher with XGBoost, compared to the market

average. Even though the earnings obtained at the end of the planning horizon are the

most important, due to the nature of the optimization problem, the relative movements
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show some interesting trends. Firstly, the LSTM and perfect foresight earnings are the

same until mid-2017 and seem to, in general, follow the same movements. However, the

perfect foresight cumulative earnings are in a short period lower than the LSTM earnings,

before drastically increasing. This movement demonstrates how the perfect foresight

optimization can forgo short-term earnings to secure an improved vessel positioning to

capitalize on increased freight rates. While the XGBoost earnings also start at the same

level as the perfect foresight earnings, they quickly drop to below the market average.

Thus, implying that the XGBoost model, unlike the LSTM, cannot pick up the information

needed to make the optimal choices during this period. The XGBoost model has its

strongest period from mid-2017 to 2018, which coincides with the period it had the best

accuracy (see Figure 6.2). Overall, our results show that a decision-maker who applies our

method and continuously updates the input data can outperform the assumed average

earnings achieved in the market.

The results obtained by using our machine learning methods is somewhat comparable to

the relative earnings achieved by Prochazka et al. (2019), using machine learning with

limited foresight. They found that limited foresight gave between 10-25% gain relative

to coin in the Capesize sector.15 However, their problem specification and time period

also made the relative outperformance with perfect foresight higher. A relatively higher

outperformance by the perfect foresight method indicates there is more economic gain

in the marked. Therefore, the difference in perfect foresight gain can partly explain why

the results are lower. Note that while the methods used are different, the comparison,

nonetheless, gives an indication of the performance of the ML-models relative to limited

foresight.

To evaluate the robustness of our results, we simulate the earnings of 9 additional vessels

starting at different points in time. The resulting relative earnings to the perfect foresight

method and benchmark method can be seen in Figure 6.4.

15See Prochazka et al. (2019), Figure 3 for the relative performance of limited foresight in the Capesize
sector
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Figure 6.4: Relative cumulative earnings compared to benchmark and perfect foresight,
for a fleet of 9 additional ships, with different starting points in time.

In Figure 6.4, the earnings achieved by the individual vessel is depicted. The figure shows

that the relative outperformance of the market is somewhat unstable, at least for the

XGBoost method. The LSTM method seems to consistently result in about 10% higher

earnings than the benchmark, while the XGBoost method achieves earnings from 2%

to 10% higher. For the entire 10 vessel fleet, XGBoost in total performs 6.14% better

than the market average, while the LSTM method outperforms the market with 10.95%.

Therefore, the results show that both methods can outperform the market average, even

when applied to a fleet. However, the perfect foresight method obtains 18.75% higher

earnings than the market average. Thus, it is possible to achieve even higher earnings

with the machine learning methods if one is able to increase the prediction accuracy.

To further quantify the performance, we can look at the average daily earnings in USD

over the period. The difference in percent will, as explained in Section 5.3, be the same

as the relative difference in cumulative earnings. The relative outperformance in USD

per day will depend on the freight rates in the period. Therefore, the outperformance in

USD per day will be different if one was to implement the approach in a time period with

different freight rates. However, in our case, each ship using the perfect foresight method,
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had average earnings of about 2,664 USD more than the market average per day. The

LSTM method and XGBoost approach, on the other hand, had average daily earnings of

about 1,667 USD and 1,010 USD more than the market average. Therefore, the average

participant in the market could, according to our results, increase their yearly earning

with about 600,000 USD per vessel in their fleet by using the LSTM approach.

Overall, of the two machine learning methods, the LSTM method seems more stable and

achieves the highest cumulative earnings. Looking back at Figure 6.2, the more stable

prediction accuracy over time can explain the less volatile performance by the LSTM

method. The LSTM method’s consistently higher earnings relative to XGBoost can be

explained by the density plot in Figure 6.2. The density plot revealed that the LSTM

method is better at correctly classifying trips with a high absolute value of switch.

6.4 Limitations and Further Research

The limitations of the approach taken in this paper mainly stem from the assumptions made

in the optimization method and the benchmark used. A limitation in the optimization is

that we assume the ship must always be sailing and is always able to get full cargo; this

could be considered unlikely. Cargo is not necessarily available and could lead operators

having to reposition the vessel at an expanse. Furthermore, the constant availability of

contracts through space and time could be considered unlikely, imposing some waiting

time for vessels between contracts.

We see two main possibilities for further work done on this topic. Firstly, the optimization

problem can be expanded to include more routes, or altered to incorporate different factors

relevant to the chartering strategy. For example, one could include decision variables for

speed, waiting days, refueling, and ship service.

Secondly, when it comes to predictive modeling, an interesting idea for further research is

to test whether one could achieve better results by retraining the models more frequently.

Even though this would be computationally demanding, it is reasonable to assume that in

a real-life business application, one would want all information possible used in training.

Thus, enabling the best decision making possible. Therefore, one could, for example,

perform the optimization and retrain the predictive models daily. The increased training

and decreased out-of-sample period should, in theory, lead to improved results. However,
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the magnitude of the improvement is difficult to say anything conclusive about. Further

work could also investigate the addition of more explanatory variables because, even

though we have included the most promising variables in literature, there might be other

variables that can increase the predictive power. For example, using the continuously

growing amount of AIS data to find the port and route-specific variables could potentially

improve the predictive power.

Another alternative approach would also be to forecast freight rates and use the forecasted

rates as input in a predictive model trained following the limited foresight method applied

by Prochazka et al. (2019). This method would however quickly become computationally

demanding as it would require a high number of forecasts.16

16The forecasts would be used as input to predict the optimal decision. Therefore, one would need n·t
number of forecasts, where n is the number of days with foresight and t is the number of days in the
testing period.
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7 Conclusion

In this thesis, we have evaluated to what degree machine learning is applicable as a

decision support system for optimal spot chartering for Capesize vessels. The approach

presented aims to predict optimal future routes based on historical data. Accordingly, we

establish an estimation of possible economic gains by learning from previous market trends

and their respective optimal chartering strategy. The results obtained give an indication

of whether machine learning techniques are suitable to support future chartering decisions.

We formulated a time-series classification problem using Long-Short-Term-Memory and

Extreme Gradient Boosting to predict optimal future trip choices. The methodology

was adopted to a two-trip scenario, predicting the optimal chartering strategy for the

China-Brazil and China-Australia round trips. By classifying future trips daily, we were

able to predict around 71% of the optimal trips correctly for a three-year chartering period.

Controlling for imbalanced classed, a kappa of 0.29 and 0.30, was achieved by LSTM and

XGBoost, respectively.

Furthermore, the predictions were evaluated using the value of geographical switching

to analyze the implications of correct and incorrect predictions. The value of switch

analysis suggests a statistically significant difference between the mean of the absolute

value of switch for the correct and incorrect predictions. This indicates that the models

perform better when there is a higher value to be captured by geographical switching.

Consequently, implying that the model is, to some degree, able to identify and analyze

geographical mispricing. This finding is important in itself and provides useful insights to

both model evaluation and opportunities for future research.

Overall, our results show that by predicting optimal trip choices, one can achieve about

11% higher cumulative earnings relative to average earnings of market participants in

the years 2017-2020. To further evaluate the robustness of these results, we calculate the

cumulative earnings from ten different vessels, starting at different points in time. The

stable 10-11% in relative cumulative earnings further strengthen the conclusion from the

one vessel analysis, reducing the likelihood of randomness in the results. Subsequently,

the results suggest that there is value to be captured by using historical data to make

chartering decisions, which could further strengthen future outlooks of decision-makers in
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the market.

The nature of the classification method enables our approach to be applicable for scenarios

with multiple different round trip choices and can be expanded to include one-way trips

by introducing ship positioning.
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Appendix

A1 Index Volatility

Figure A1.1: Historical values of the Baltic Exchange Capesize drybulk indices. Data
obtained from the Clarkson Shipping Intelligence Network.

A2 Tripdetails

Table A2.1: Abstract of Bulkcarrier Voyage Details (2009 Onwards), obtained from
Clarkson Research

Voyage Voyage Dist.
Miles Voyage Time - Days

No. Load Discharge Cargo Size
Tonnes Ladden Ballast Sea

Time
Sea

Margin
Port
Time

Total Voyage
Time

Oper. Speed
Knots (L/B)

Bunker
Port

B146 Tubarao Qingdao 176,000 11,086 4,974 54.4 2.7 9.5 69.0 12.0/13.0 Singapore*
B148 Dampier Qingdao 174,000 3,582 3,500 23.7 1.2 7.5 35.1 12.0/13.0 Qingdao

* Vessel will take bunker twice, one on the laden leg, the other on the ballast leg (Xiangfu, 2018)
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A2.1 Historical Tripcharter Rates

Figure A2.1: Historical Tripcharter Rates.

A3 Confusion Matrix

Table A3.1: Confusion Matrix with XGBoost predictions.

Reference
0 1

Prediction 0 195 156
1 162 483

Table A3.2: Confusion Matrix with LSTM predictions.

Reference
0 1

Prediction 0 120 47
1 237 592
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A4 T-Test

Table A4.1: Value of switch sorted by predictions.

Model Predictions Number of observations Mean Value of Switch Mean Absolute Value of Switch
XGBoost Correct 678 150125.59 268920.17
XGBoost Incorrect 318 23680.80 215583.43
LSTM Correct 712 207296.07 277143.19
LSTM Incorrect 284 -134785.77 188582.58

Table A4.2: Output from one-sided t-test with unequal variance.†
Model Difference in absolute mean P-value T-value Degrees of Freedom Lowerbound* Upperbound*
XGBoost 53336.74 2.449e-05 4.08 794.97 31823.95 Inf
LSTM 88560.61 6.162e-12 6.89 711.57 67389.83 Inf

† Tested for if the absolute mean of incorrectly predicted
decisions is higher than correctly predicted decision
*The lower and upperbound are the values from a 95% confidence intervall

A5 Individual Vessel Results

Table A5.1: Overview of cumulative earnings achieved by each vessel in the fleet.

Vessel Cumulative Earnings Relative Cumulative Earning (%)
Vessel Start Date End Date Perfect Foresight Benchmark LSTM XGBoost Perfect Foresight LSTM XGBoost

Initial Vessel 2016-12-23 2019-09-14 18518344 15870224 17677614 17133639 16.69 11.39 7.96
Vessel 1 2017-02-11 2019-09-14 15080157 12728519 13906517 13324048 18.48 9.25 4.68
Vessel 2 2017-04-02 2019-09-14 17842962 15354550 17126442 16441794 16.21 11.54 7.08
Vessel 3 2017-05-22 2019-09-14 13712199 11645012 12552851 12026954 17.75 7.80 3.28
Vessel 4 2017-07-11 2019-09-14 15891488 13774141 15373787 15137206 15.37 11.61 9.90
Vessel 5 2017-08-30 2019-09-14 12574994 10715828 11453566 10953465 17.35 6.88 2.22
Vessel 6 2017-10-19 2019-09-14 14197684 12363860 13737844 13432181 14.83 11.11 8.64
Vessel 7 2018-01-27 2019-09-14 12088512 10391873 11674708 11310675 16.33 12.34 8.84
Vessel 8 2018-03-18 2019-09-14 9330850 7751991 8393352 7908559 20.37 8.27 2.02
Vessel 9 2018-05-07 2019-09-14 10175952 8812703 9935876 9381107 15.47 12.74 6.45

Table A5.2: Overview of average daily earnings in USD achieved by each vessel in the
fleet.

Vessel Average Daily Earnings (USD) Difference from benchmark (USD)
Vessel Start Date End Date Perfect Foresight Benchmark XGBoost LSTM LSTM XGBoost Perfect Foresight

Initial Vessel 2016-12-23 2019-09-14 18601 15942 17211 17757 1815 1269 2659
Vessel 1 2017-02-11 2019-09-14 15950 13464 14093 14709 1245 630 2486
Vessel 2 2017-04-02 2019-09-14 19931 17153 18366 19131 1978 1213 2778
Vessel 3 2017-05-22 2019-09-14 16223 13779 14231 14853 1073 452 2444
Vessel 4 2017-07-11 2019-09-14 19973 17313 19025 19322 2009 1712 2659
Vessel 5 2017-08-30 2019-09-14 16876 14384 14702 15373 989 319 2492
Vessel 6 2017-10-19 2019-09-14 20429 17793 19329 19769 1976 1536 2636
Vessel 7 2018-01-27 2019-09-14 20304 17457 18999 19610 2153 1542 2848
Vessel 8 2018-03-18 2019-09-14 17110 14220 14505 15393 1174 286 2891
Vessel 9 2018-05-07 2019-09-14 20556 17806 18954 20072 2266 1148 2750
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A6 Variable Importance

Figure A6.1: XGBoost Variabel Importance top 50 variables.


