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Abstract

We address how recursive utility affects important results in the
theory of economics of uncertainty and time, as compared to the stan-
dard model, where the focus is on dynamic models in discrete time.
Several puzzles associated with the standard theory are less puzzling
with recursive utility, even if this type of preference representation
seems close to the standard one at first sight. The basic difference
is that recursive utility allows a form of separation of consumption
substitution from risk aversion. This also means that the timing of
resolution of uncertainty matters. In dynamic models, however, this
turns out to be rather crucial steps.

Keywords: recursive utility, axioms, scale invariance, utility gradients, the
equity premium puzzle, precautionary savings
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1 Introduction

In this article we discuss some elements of the economics of uncertainty and
time in a discrete time setting, when individuals have preferences represented
by recursive utility (RU).

We start by a description of RU of the Kreps-Porteus type, where cer-
tainty equivalents are determined by expected utility.
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We briefly discuss the axioms behind both the standard, and the recursive
preference representations. Some of the shortcomings of the standard model
are pointed out.

We restrict attention to a standard, scale invariant version of recursive
utility, belonging to the Kreps-Porteus class. Here we present equilibrium risk
premiums and the equilibrium short term, real interest rate, and illustrate
by some calibrations to market data. We compare with the corresponding
results of the standard model, and explain why the ”equity premium puzzle”
is less puzzling with RU.

We end by considering precautionary savings and related issues, and com-
pare with the standard model. In these applications it also turns out to be
important to be able to separate risk aversion from consumption substitution,
a property of RU that the standard model lacks.

The article is organized as follows: Section 2 is an introduction, where
we point out some weaknesses of the standard separable and additive ex-
pected utility representation in settings where consumption takes place in
more than one period. In Section 3 we present the basic elements of scale
invariant, recursive utility. It is emphasized precisely where RU departs from
the standard additive representation (EU). In some ways one can view this
version of RU as the closest, non-trivial extension from a standard form of
EU. In Section 4 we discuss the axioms, both those behind EU in the one-
period, and the dynamic version, and the axioms behind RU. In Section 5
we consider the implications of RU in a market economy, and in Section 6 we
end the article with a self-contained discussion of precautionary savings and
related issues. In the appendix, we explain the issue of early/late resolution
of uncertainty.

2 The Discrete Time Development

2.1 Introduction

The conventional asset pricing model in financial economics, the consumption-
based capital asset pricing model (CCAPM) of Lucas (1978) and Breeden
(1979), assumes a representative agent with a utility function of consump-
tion that is the expectation of a sum of future discounted utility (felicity)
functions. The model has been criticized for several reasons. First, the con-
ventional specification of utility can not separate the risk aversion from the
elasticity of intertemporal substitution, while it would clearly be advanta-
geous to disentangle these two conceptually different aspects of an individ-
ual’s preferences. Second, it does not perform well empirically. Third, the
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agent has a myopic perspective, and treats every period as if it were the last
one, or every decision as if it were the last.

Nevertheless, this representation satisfies three of the most basic axioms
of dynamic utilities, and the additive structure provides certain advantages
and is simple to work with in many applied problems, in particular in deter-
ministic settings.

The basic problem, however, seems to be that two agents having identical
preferences over deterministic consumption plans must also have the same
preferences. This fact leads to strange situations, where expected, discounted
utility is the same for different random consumption sequences that obviously
are very different in terms of risk, indicating that the additive nature of utility
may be too limiting. The following simple example illustrates:

Example 1:
Consider two random consumption sequences, a0 = 0, a1, a2, . . . , aT and

b0, b1, b2, . . . , bT . The random variables ai, i ≥ 1, are independent and identi-
cally distributed, where each ai takes the values 0 or 1 with equal probability.
The sequence b is determined in terms of a as b0 = a0, b1 = b2 = · · · = bT =
a1. In other words, for the consumption stream a consumption in each period
t is idetermined by the toss of a fair coin at the beginning of the period, and
the tosses are independent, while for the consumption sequence b everything
depends on what happens on the first toss of the coin. If it results in 0,
consumption will be 0 ever afterwards, while if this toss results in 1, it will
be 1 in all the consecutive periods.

With expected, additive utility U0(a) = U0(b) regardless of the felic-
ity index ut in the representation U0(x) = E

(∑T
t=0 β

tu(xt)
)

(here β is the
”patience” factor, to be explained below).1 So the individual is indifferent
between these two rather different consumption sequences. Since ut is sup-
posed to determine risk aversion, this is a rather odd, and far from intuitive
result, since obviously plan b will be considered significantly more risky than
plan a by most people.

To illustrate this latter claim, suppose that we concentrate future con-
sumption to the end of the first period. Then time-1 consumption of the
a-plan,

∑T
t=0 at, is binomially distributed B(T, 1

2
), while time-1 consumption

of plan b,
∑T

t=0 bt, takes the value 0 or T with probability 1/2 each. In this

case the random variable
∑T

t=0 bt happens to be a mean preserving spread of∑T
t=0 at in the sense of Rothschild and Stiglitz (1970)2, meaning that all risk

averters prefer
∑T

t=0 at to
∑T

t=0 bt.

1In contexts like these the term ”utility” is reserved for the function U (V ), while the
function u (v) is called a felicity index. One can more generally write βtu(xt) = u(xt, t).

2or Blackwell (1951).
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While expected utility seems to work well in the one period setting, with
consumption taking place at the end of the period only, in several periods,
or at more than one point in time, the additive and separable utility repre-
sentation is faced with some problems.

The above example, along with backward recursion, can be used to show
that with RU of the Kreps-Porteus class and felicity index u(·) related to the
certainty equivalent, as long as this function is strictly concave, the agent
will strictly prefer the sequence a to the sequence b.

Another issue is the timing of the resolution of uncertainty. For example,
suppose that for plan a all the independent coin tosses were performed at
the beginning. While the agent of the standard model would be indifferent
to this modification and plan a, this will not be so with RU. In the models
we consider, there will be ”early resolvers” and ”late resolvers”, where the
former would prefer this modification to plan a, and the latter would prefer
a to the modification.

We focus on uncertainty in this article, but RU has been used for de-
terministic models in macro economics as well. For example, for the Ram-
sey optimal growth problem the standard model leads to problems, notably
among them being the impatience problem. Here a form of RU, the Epstein-
Hymes utility, can be shown to solve this puzzle (Becker and Boyd (1997),
Koopmans (1960)).

3 Recursive utility

The basic notions are roughly summarized as follows: First consider a risk-
less economy, where preferences over consumption sequences (c0, c1, . . . , cT )
are characterized by Koopmans’ (1960) time aggregator f , which takes into
account both the present (t) and the future. This framework is then general-
ized to evaluate uncertain consumption sequences essentially by replacing the
second argument in f by the period t certainty equivalent of the probability
distribution over all possible consumption continuations. The resultant class
of recursive preferences may be characterized as

Ut(ct, ct+1, . . . , cT ) = fyt(ct,mt(Ut+1(ct+1, ct+2, . . . , cT )))

where mt(·) describes the certainty equivalent function based on the con-
ditional probability distribution over consumption sequences beginning in
period t + 1, and yt = (c0, c1, . . . , ct−1) represents the past. In other words,
the individual is indifferent between the future, random consumption se-
quence ct+1, ct+2, . . . , cT and the Ft-measurable quantity mt at time t. Here
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Ut = Ut(ct, ct+1, . . . , cT ) is future utility from time t on.
Recursive preferences have an axiomatic underpinning in the basic work

in the field by Kreps and Porteus (1978). With reference to that article, we
assume Axioms 2.1 (preference relation), 2.2 (continuity), 2.3 (the substitu-
tion axiom) and 3.1 (temporal consistency). This gives preference for early
or late resolution of uncertainty depending on the convexity or concavity
of the aggregator in its second argument, properly defined (see the following
discussion). In addition we assume Axiom 6.1 (Payoff history independence),
which removes yt as an argument in f .

Such preferences are dynamically consistent, Axiom 3.1 in Kreps and
Porteus (1978))3.

3.1 The aggregator

The general form of the aggregator is the following

Ut = f(ct,mt) = v−1((1− β)v(ct) + βv(mt)), t < T, UT = cT (1)

where v is a felicity index with inverse function v−1, mt is a conditional
certainty equivalent as of time t, and β is a parameter linked to patience
satisfying 0 < β < 1, with impatience rate δ defined via β = 1/(1 + δ).
When the parameter β is large, the agents are perceived as being patient
in that they put more weight on the future utility and less weight on the
present. Also the larger the impatience rate δ, the more impatient is the
agent, and the smaller is β.

So, where does such an aggregator come from? The standard separa-
ble and additive expected utility representation has an ordinally equivalent
version which, when normalized, can be expressed in recursive form. For
example, the representation

Ut = Et

[ T−1∑
s=t

βs−tv(cs) +
βT−t

1− β
v(cT )

]
(2)

is ordinally equivalent to the recursive version in (1), provided the conditional
certainty equivalent mt = v−1(Et(v(Ut+1))) is the one of expected utility with
felicity index v.

Thus, in order to deviate, in a non-trivial way, from the standard, additive
representation of preferences, it is assumed that the conditional certainty

3In the infinite horizon case the Axiom ”Recursivity” in Chew and Epstein (1991)
is essentially identical to the notion of dynamic consistency, as outlined in Johnsen and
Donaldson (1985).
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equivalent can be represented as above, but with a different felicity index u:
mt = u−1(Et(u(Ut+1))), u 6= v. This turns out to be an important step, since
consumption substitution in a deterministic world is something very different
from risk aversion, where the latter only makes sense under uncertainty. This
essential difference is taken into account by the recursive model.

On the one hand this approach stays close enough to the standard, ad-
ditive representation of preferences to still benefit from many of its useful
properties, insights and interpretations, on the other this step is significant
enough to avoid some of its unrealistic and negative features. However, this
generalization comes at a price of added complexity, as is naturally the case
with most generalizations.

In this article we employ the two standard functions v and u, defined up
to affine transformations as v(w) = 1

1−ρ(w1−ρ−1) and u(w) = 1
1−γ (w1−γ−1),

with inverse functions v−1(y) = ((1−ρ)y+1)
1
ρ−1 and u−1(y) = ((1−γ)y+1)

1
γ−1

respectively. The following scale invariant aggregator results from (1)

Ut = f(ct,mt) = ((1− β)c1−ρ
t + βm1−ρ

t )
1

1−ρ (3)

where the conditional certainty equivalent m is given by

mt = (Et[U
1−γ
t+1 ])

1
1−γ

The parameter γ ≥ 0 corresponds to the agent’s relative risk aversion in
the standard one-period model (the time-less model), and has the same in-
terpretation here. Similarly, in a deterministic setting the parameter ρ ≥ 0,
where 1

ρ
is the elasticity of intertemporal substitution (EIS) in consumption.

These parameters correspond to different properties of the individual’s pref-
erences - and should be measured independently. In the standard, additive
expected utility model, γ = ρ, which turns out to be rather restrictive.

When ρ = 1, the felicity index v(x) = ln(x), and Ut = mβ
t c

1−β
t , and when

γ = 1, then we have u(x) = ln(x), and mt = exp(Et[ln(Ut+1)]).
The parameter β is the ’patience’ factor, where 0 ≤ β ≤ 1 as explained

above. The impatience rate δ = −ln(β) is typically used in continuous-time
models, and is approximately equal to δ defined as δ = 1/β − 1.

While preferences over deterministic consumption plans are solely deter-
mined by the function v, the limitation of the expected additive, discounted
utility in the presence of uncertainty rests on the fact that the function de-
termining risk aversion also governs the purely deterministic development.

RU overcomes this latter problem, and many of the other problems men-
tioned as well, by simply separating v from u.

The version in (3) is known as the Epstein-Zin aggregator.
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4 Back to the Axioms

Earlier we have referred to the various axioms behind the preference relations,
and here we return to this issue. As this topic can be rather complex in its full
mathematical description, we limit ourselves to an informal discussion, and
refer to the literature for precise definitions of the underlying mathematical
structure.

Starting with the axioms behind expected utility in a one-period model -
the timeless case - with no consumption at the initial time, they can briefly
be described as follows. Let PS be the set of all finite lotteries. The symbol ⊕
means lottery composition (mixing of probability distributions). The three
fundamental axioms behind expected utility theory are the following:

Axiom 1. � is a preference relation on PS .
Axiom 2. The Substitution Axiom. Given any three lotteries p, q, r ∈ PS

where p � q and α ∈ (0, 1]. Then αp⊕ (1− α)r � αq ⊕ (1− α)r.
Axiom 3. The Archimedean axiom. Consider any p, q, r ∈ PS such that

p � q � r. Then there exist numbers α, β ∈ (0, 1) such that αp⊕ (1−α)r �
q � βp⊕ (1− β)r.

Let C be the consumption space. Here we may think of it as the real
line or a metric space. Let U(p) :=

∑
x∈supp(p) u(x)p(x). We then have the

following:

Theorem 1 Let � satisfy axioms 1, 2 and 3. Then there exists a function
u : C → R such that

p � q ⇔
∑

x∈supp(p)

u(x)p(x) ≥
∑

x∈supp(q)

u(x)q(x)

Moreover, if u represents � in this sense, then a function ũ : C → R also
represents � in this sense if and only if there exist real numbers c > 0 and d
such that ũ(x) = cu(x) + d for all x ∈ C.

It is the Substitution Axiom that is instrumental in obtaining the additive
form of the expected utility representation in probabilities. Consider the
relationship U(αp⊕ (1−α)q) = αU(p) + (1−α)U(q). This is what we mean
when we say that a utility function U is additive in probabilities, and this is
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what this axiom provides. To see that Eu satisfies this, just consider

U(αp⊕ (1−α)q) = Eαp⊕(1−α)q u =
∑

x∈supp(p)∪supp(q)

u(x)(αp⊕ (1−α)q)(x) =

∑
x∈supp(p)∪supp(q)

u(x)(αp(x)⊕ (1− α)q(x)) =

α
∑

x∈supp(p)

u(x)p(x) + (1− α)
∑

x∈supp(q)

u(x)q(x) =

αEp u+ (1− α)Eq u = αU(p) + (1− α)U(q) (4)

In the fourth equality above we used the definition of composition (mixing
(⊕)) of lotteries.

A compound lottery in the present context consists of two stages: First
the single lottery

p p1 p2

prob. α 1− α

is realized. We denote this lottery by (α; p1, p2). Depending on the outcome
of the first stage, the final one is realized, here either p1 or p2 ∈ PS , whichever
was the result in the first stage. In the standard expected utility model the
individual is indifferent between this two stage procedure and a one-stage
lottery based on the ’one shot’ final probability distribution (see Example
2). With RU this is different.

4.1 The RU-Axioms

Moving to dynamics, properly reformulated, the three first axioms are still
fundamental, where the Archimedean Axiom is strengthened so that the
dynamic preference relation <t is continuous (see Kreps and Porteus (1978)
for the full formulation of this theory).

These three axioms, properly modified to a dynamic context, must be sup-
plemented by dynamic consistency : Given a dynamic utility process Ut(c),
if for any t and any c, c+ x ∈ C, Ut(c+ x) > Ut(c), then U0(c+ x) > U0(c).
An agent with dynamically consistent preferences that prefers to add x to a
consumption plan c at time t also prefers the plan c+ x to c at time zero.

With such a set of axioms the dynamic preference relation can be repre-
sented by a RU of the type we have seen in the above. As mentioned, the
consumer may have preference for early resolution of uncertainty, or the op-
posite. To see what is involved, we consider an ordinally equivalent version
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of the RU function in (3). Recall that this utility function can be written as

Ut = f(ct,mt) =
(
(1− β)c1−ρ

t + β(Et[U
1−γ
t+1 ])

1−ρ
1−γ
) 1

1−ρ

where the conditional certainty equivalent m is given by

mt = (Et[U
1−γ
t+1 ])

1
1−γ

The utility functions U and V are ordinally equivalent if and only if there
exists a unique increasing continuous function g such that V = g(U). Two or-
dinally equivalent utility functions represent the same preferences. Consider
the following ordinally equivalent version of the above U : V = U1−γ/(1−γ).
It can be written as

Vt(ct, ξt) =
1

1− γ

(
(1− β)c1−ρ

t + β
(

(1− γ)Et(Vt+1)
) 1−ρ

1−γ
) 1−γ

1−ρ

Let ξt := Et(Vt+1). The connection between m and ξ is given by m1−γ =
(1 − γ)ξt. From the simple conditional expectation Et(Vt+1) in the second
argument of Vt, one may be led to think that this corresponds to risk neutral-
ity; however, this is incorrect. Recall that U and V are ordinally equivalent,
and U is risk averse; hence, V is as well. We refer to this particular ordinally
equivalent version as the non normalized one.

With RU there is a well-defined notion of the time at which uncertainty is
revealed, and although for compound lotteries there is also an implicit axiom
perceiving them as equivalent to the one-shot lottery they reduce to at a
single time, there is no axiom which says that uncertainties at two different
times are equivalent.

Given any consumption plans c′ and c′′ in the domain of V and any
α ∈ (0, 1), let cα = αc′ ⊕ (1 − α)c′′. The RU-agent is supposed to choose
from the space of random, temporal consumption plans.

This means that, in our notation, the following sum

αVt
(
ct, Et(Vt+1(c′))

)
+ (1− α)Vt

(
ct, Et(Vt+1(c′′))

)
(5)

can be strictly larger than, or strictly smaller than

Vt
(
ct, Et(Vt+1(cα))

)
(6)

while for expected additive utility we have seen that these two representations
must be equal. If the sum in (5) is larger than the expression in (6), we say
that the agent has preference for early resolution of uncertainty, if the sum
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is smaller, the agent has preference for late resolution of uncertainty.
There is a more general definition of early/late resolution of uncertainty

in Skiadas (2009), which we return to in Appendix 1.
The result in Kreps and Porteus (1978), Theorem 3, applied to our ver-

sion, is that if the function Vt(ct, ξt) is convex (respectively concave) in its
second argument for every t < T , then V0(·) represents preference for early
(respectively late) resolution of uncertainty. If the function is affine in ξ the
individual is indifferent, and we have an ordinal equivalent to separable and
additive expected utility.

We use this result and demonstrate (in Appendix 1) that for our version
of RU, the scale invariant one, when γ > ρ, the agents have preference for
early resolution of uncertainty; when ρ > γ the agents have preference for
late resolution; and when γ = ρ they are indifferent. In the appendix, we
present a proof this theorem using the more general definition of early/late
resolution of uncertainty mentioned earlier.

In the general theory, the aggregator depends also on the history repre-
sented by yt at time t. We have assumed history independence in the above
discussion. Formally, we have added an axiom about history independence,
leaving us with four basic axioms behind our representation.

Provided we add a last axiom to the above five stating that the individual
is indifferent between early and late resolution of uncertainty, the preference
relation can be represented by separable and additive expected utility of the
form given in the representation (2).

Accordingly, this dynamic utility has an axiomatic underpinning as well.
Notice that one of the above three axioms is the substitution axiom, adjusted
to a dynamic setting.

We now present an example that illustrates the preference for early/late
resolution of uncertainty issue, described earlier.

4.2 An Example

In preparation for the example, consider the following temporal decision
problem: We are given a two-period model, with consumption at times 0
and 1, denoted c0 and c1. Incomes in the two periods are denoted y0 and y1.
We suppose that after c0 has been chosen, all uncertainty is revealed. The
problem is to solve

maxc0≥0,c1≥0

(
(1− β)c1−ρ

0 + β
(
exp(E(lnU1))

)1−ρ
) 1

1−ρ
(7)

subject to c0 + c1 ≤ y0 + y1, where U1 = c1.
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Let us call the region C where consumption is positive and the budget
constraint holds, that is, where c0 ≥ 0, and 0 ≤ c1 ≤ y0 + y1 − c0, a.s. Here
y0 is observed before the decision is taken, y1 is a random variable and so is
c1.

Consider the two lotteries

y 1 2
p1(y) 0.5 0.5

y 0.6 6.702
p2(y) 0.5 0.5

Let p = 1
2
p1 ⊕ 1

2
p2 given by the following ”one-shot” lottery that it reduces

to (see Raiffa (1968))

y 0.6 1 2 6.702
p(y) 0.25 0.25 0.25 0.25

The region C vary with the lottery, and is smallest for the one shot lottery.
Here Cp = Cp1 ∩ Cp2 .

Example 2; Consider the above consumption ”lotteries” with RU. The
utility is given by

U0 =
(

(1− β)c1−ρ
0 + β

(
exp(E(lnU1))

)1−ρ
) 1

1−ρ

where U1 = c1. We set y0 = 0. Here we have set the relative risk aversion
γ = 1. Furthermore β = 0.50 corresponds to equal weighting of the utilities at
the two points in time. The non-normalized version is the ordinally equivalent
V = ln(U), with aggregator

V0 = ln
(

(1− β)c1−ρ
0 + β

(
exp(E(V1))

)1−ρ
) 1

1−ρ

where V1 = ln(c1). To address the issue of preference for early/late resolution
of ucertainty, let us fix c0 = c0p, where c0p is the optimizing initial consump-
tion for the lottery p, in the constrained optimization problem (7). We use
this value of c0 throughout. Here c0p = 0.4010. This gives V0,1(c0) = −0.4379,
V0,2(c0) = −0.3609 and Vp(c0) = Vp = −0.3996, which is optimal for this
value of c0 by definition. From this we obtain

1

2
V01(c0) +

1

2
V02(c0) = −0.3994 > Vp = −0.3996

This is consistent with preference for early resolution of uncertainty.
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Consider the same problem for the preference parameters ρ = 2 > γ = 1
and β = 0.50. Now c0p = 0.5019. This gives V0,1(c0) = −0.4543, V0,2(c0) =
−0.4931 and the maximal utility at p for this value of c0 is Vp = −0.4734.
From this we obtain

1

2
V01(c0) +

1

2
V02(c0) = −0.4737 < Vp = −0.4734

This is consistent with preference for late resolution of uncertainty.
Lastly we investigate the case when ρ = γ = 1 and β = 0.50 in this

example. This preference is ordinally equivalent to expected utility. We then
know from the above that the recursive (normalized) utility can be written
as Ut = mβ

t c
1−β
t , where the certainty equivalent mt = exp(Et(lnUt+1)), which

means that Vt = β(Et(Vt+1)) + (1− β)lnct, and V1 = ln(c1).
The optimal consumption levels at time zero for the lottery p is cp =

0.4440. This gives V0,1(c0) = −0.4422, V0,2(c0) = −0.4120 and Vp = −0.4271.
From this we obtain

1

2
V01(c0) +

1

2
V02(c0) = −0.4271 = Vp = −0.4271

We have additivity in probability for expected utility. 4

In the above example the results do not depend on our particular choice
for c0 so long as c0 ∈ Cp. An obvious choice is thus c0 = c0p.

That additivity in probability in the last example above holds, follows
essentially from (4) also in the temporary case (see Aase (2021)).

For the last situation considered in the above example, the one relevant
for expected additive and separable utility, it has been argued that since
the preferences obey the vN-M axioms, the consumer should be indifferent
between each of the lotteries pi, i = 1, 2, and any of their convex combinations
p := αp1 ⊕ (1 − α)p2, for any α ∈ [0, 1]. Accordingly, it was argued in
Kreps (1988) and Mossin (1969) that the substitution axiom should require
”additivity” in probability (mixtures) of the following kind

U∗(p) = U∗(αp1 ⊕ (1− α)p2) = αU∗(p1) + (1− α)U∗(p2) (8)

In contrast to the above, here U∗(pi) is the maximal utility for lottery pi,
i = 1, 2, each solving the maximization problem (7). However, this leads to
different values of c0 depending on the lottery. In the above example we have
c01 = 0.6096, and c02 = 0.3957 when γ = 1 and ρ = 1, see Aase (2017-19).
Neither of these are equal to c0p = 0.4440, in which case it is easy to show

4Equality holds to nine decimal places in the program that I have used.
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that additivity in probability does not hold. In the example this is verified,
since

1

2
U∗(p1) +

1

2
U∗(p2) > U∗(p)

where the sum on the left-hand side is −0.8004, while U∗(p) = −0.8542.
That this is not in violation of the axioms is shown elsewhere; see Aase

(2021). Expected, additive and separable utility in a temporary setting may
have its problems, but this type of inconsistency with the axioms is not one
of them.

5 Market Consequences

We give a short sketch of dynamic equilibrium and discuss briefly what the
assumption about RU adds to the standard theory. There is a rich litera-
ture on these topics, both in discrete-time and in continuous-time modeling.
In discrete time, it is of great importance to establish a closed form of the
stochastic discount factor. In equilibrium, the ratio of the Arrow-Debreu
state prices pt+1/pt must equal the intertemporal marginal rate of substitu-
tion, which depends on the agent’s preferences and equilibrium consumption
plan. This was characterized in the fundamental papers of Epstein and Zin
(1989-91). In continuous time the analogous references are Duffie and Ep-
stein (1992a,b). In these developments dynamic programming was the basic
tool behind the optimizations.

In Aase (2016a) the stochastic maximum principle was used to establish
closed form expressions for risk premiums of risky assets and an expression
for the equilibrium, short term real interest rate, in a continuous time model
with continuous dynamics. These expressions were calibrated to various mar-
ket data, and the results were promising, compared to the corresponding
calibrations for the standard model.

Also optimal consumption and portfolio selection problems have been
dealt with, see, for example, Schroder and Skiadas (1999), for continuous
time, and Skiadas (2009) for discrete-time problems. Similar problems re-
lated to insurance have been dealt with in Aase (2016b), also in continuous
time.

5.1 The Frst Order Conditions

In order to determine an equilibrium we must solve the first order conditions
of agent optimalization, and then determine prices such that markets clear.
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The agent is characterized by a utility function U and an endowment
process e ∈ L. The agent’s problem is

supc∈L+
U(c) subject to E

( T∑
s=0

pscs
)
≤ E

( T∑
s=0

pses
)

where L is the space of adapted consumption processes, L+ its positive cone,
and p is the state price deflator (the Arrow-Debreu state price in units of
probability).

The Lagrangian of the problem is

L(c, λ) = U(c)− λE
( T∑
s=0

ps(cs − es)
)

where λ > 0 is the Lagrangian multiplier. Assuming U to be continuously
differentiable, the gradient of U at c in the direction x is denoted by5U(c;x).
This directional derivative is a linear functional, and by the Riesz Represen-
tation Theorem and for example, dominated convergence, it is given by

5U(c;x) = E
( T∑
s=0

πsxs
)

Here π is the Riesz representation of 5U(c; ·). The first-order condition is

5L(c, λ;x) = 0 for all x ∈ L.

This is equivalent to

E
{ t∑
s=0

(πs − λps)xs
}

= 0 for all x ∈ L.

This implies that πt = λpt for all t ≤ T .
Our next task is to characterize the Riesz representation π of U . When

this is done, by the above result we have the state price in the economy
modulo a constant.

5.2 The State Prices in the Economy

In order to characterize the state price in this economy, we need to find
the Riesz representation π of the utility function U as explained in the last
section.
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When c is an equilibrium allocation, or the aggregate endowment in a
representative agent economy, πt has the interpretation of being the state
price deflator at time t as demonstrated above.

Using directional derivatives and backward induction, we can show that
the utility gradient is given by the following expression

5 U(c;x) = 5U0(c;x) =

E
{ T∑

t=0

xt fc(ct,mt+1)
t−1∏
s=0

fm(cs,ms+1)

h′(ms+1)
h′(Us+1)

}
(9)

from which it follows that the state price deflator is given as

πt = fc(ct,mt+1)
t−1∏
s=0

fm(cs,ms+1)

h′(ms+1)
h′(Us+1) (10)

for t = 0, 1, · · · , T . In (10) c is assumed optimal from now on. Notice how
the agent lifts his/her perspective to take into account both the future via
the term mt+1 and the past via the product term, while the expected utility
maximizer is just myopic (πt = uc(ct, t) when u is the felicity index).

The intertemporal marginal rate of substitution, or the stochastic dis-
count factor, Mt+1 = πt+1/πt in equilibrium, and is given by the formula

Mt+1 =
fc(ct+1,mt+2)

fc(ct,mt+1)
fm(ct,mt+1)

h′(Ut+1)

h′(mt+1)
(11)

Along the optimal consumption path Mt+1 = πt+1/πt = pt+1/pt, i.e., the
ratio between the state prices at times t+ 1 and t.

5.3 The Stochastic Discount Factor

In order to find the stochastic discount factor we must compute the quantities
in (11), which are

∂

∂c
f(ct,mt) = (1− β)Uρ

t c
−ρ
t ,

∂

∂m
f(ct,mt) = βUρ

tm
−ρ
t

and
h′(Ut+1)

h′(mt)
=
U−γt+1

m−γt
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This means that the stochastic discount factor takes the form

Mt+1 =
πt+1

πt
= β

(ct+1

ct

)−ρ(Ut+1

mt

)ρ−γ
(12)

Let c signify optimal consumption, and Wt is the agent’s wealth at time t,
given by

Wt =
1

πt
Et

( T∑
s=t

πscs

)
(13)

Our definition of wealth Wt includes current consumption (dividend), so the
gross real rate of return on the wealth portfolio over the period (t, t+ 1) is

RW
t+1 :=

Wt+1

Wt − ct
. (14)

By the definition in (14), it now follows by a string of manipulations that

Mt+1 = β
1−γ
1−ρ

(ct+1

ct

)−ρ 1−γ
1−ρ (

RW
t+1

) ρ−γ
1−ρ (15)

This expression has been the starting point for much of the literature on RU
in discrete time models; see for example, Mehra and Donaldson (2008) and
Cochrane (2008), among many others. This is the stochastic discount factor,
first derived by Epstein and Zin (1989-91) in their seminal papers based on
dynamic programming techniques.

5.4 The Financial Market

Having established the general, homogeneous RU of interest, in this section
we turn our attention to pricing restrictions relative to the given optimal
consumption plan.

Suppose St is the price process (possibly adjusted for dividends) of any
risky asset in this economy, with corresponding gross return RR

t+1 := St+1

St
.

Since we have a state price deflator π, there is no arbitrage in this economy
if and only if Stπt is a martingale. The martingale property implies the
following pricing relation

St =
1

πt
Et{πt+1St+1}

16



for any t ∈ [0, T − 1]. This implies the pricing restriction

Et{Mt+1R
R
t+1} = 1 (16)

From this it follows by the defining property of covariance that

−
covt(Mt+1, R

R
t+1)

Et(Mt+1)
= Et(R

R
t+1)−Rf

t+1 (17)

provided that we interpret the reciprocal of Et(Mt+1) as the gross rate of
return on the riskless asset over the period (t, t+ 1), that is,

Rf
t+1 :=

1

Et(Mt+1)
(18)

This interpretation is seen from (17) to be correct, by replacing RR
t+1 by Rf

t+1,
in which case

covt(Mt+1, R
f
t+1) = 0

the defining property of the risk-less asset. The right-hand side of (17) is of
course the risk premium of the risky asset.

The main question of interest is then the determination of prices, in-
cluding risk premiums and the interest rate that makes the agent’s behavior
optimal.

We adopt the assumption that one can view exogenous income streams
as dividends of some shadow asset. Then our model is valid if the market
portfolio is expanded to include the new asset. While this is the most im-
portant addition, a few more portfolios must be included in order to be a
reasonable proxy for a nation’s wealth portfolio. We assume that the latter
is marketed, in which case Wt is the time t wealth required to finance the
consumption plan c from time t on; in other words (c,W ) is considered to be
a traded contract.5

5.5 Risk Premiums and the Interest Rate

Based on the above, we can derive expressions for the equilibrium risk pre-
miums and the equilibrium, real interest rate. To this end we use the pricing
restriction Et{Mt+1R

R
t+1) = 1, valid for any risky security R in the market,

together with the relationship lnRf
t+1 = −ln(Et(Mt+1)).

By making the assumption that the random variables of interest are

5In reality the (c,W ) is not traded, so the return to the wealth portfolio is not readily
estimated from the available data. However, see the following section.
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jointly log-normally distributed, the analysis becomes particularly simple.
Since the multinormal distribution has moments of all orders, and the condi-
tional joint probability distribution is fully characterized by the conditional
mean vector and conditional covariance matrix, our expressions depend on
the first two moments of the various random variables involved. In Aase and
Lillestøl (2015) it is demonstrated that deviations from normality may mat-
ter to some degree, but can in no way explain the equity premium puzzle.
The results of this approach are as follows: The risk premium of any risky
asset, denoted R, is given at any time t by the formula

Et(lnR
R
t+1)− lnRf

t+1 = ρ
1− γ
1− ρ

covt(ln
ct+1

ct
, lnRR

t+1)

+
γ − ρ
1− ρ

covt(lnR
W
t+1, lnR

R
t+1)− 1

2
vart(lnR

R
t+1) (19)

The log-return on the risk-free asset takes the form

lnRf
t+1 =

1− γ
1− ρ

ln
( 1

β

)
+
ρ(1− γ)

1− ρ
Et ln

(ct+1

ct

)
− 1

2

ρ2(1− γ)2

(1− ρ)2
vart(ln

ct+1

ct
)

+
γ − ρ
1− ρ

Et lnRW
t+1 −

1

2

(ρ− γ)2

(1− ρ)2
vart(lnR

W
t+1)

+ ρ
1− γ
1− ρ

ρ− γ
1− ρ

covt
(
ln
(ct+1

ct

)
, lnRW

t+1

)
(20)

The expressions in (19) and (20) are not relying on any approximations under
the joint normality assumption.

In the expression for the risk premium the first term on the right-hand side
corresponds to the consumption-based capital asset pricing mode (CCAPM)
of Breeden (1979), while the next term corresponds to the market-based
CAPM of Mossin (1966). The first model was originally developed in con-
tinuous time with continuous dynamics, while the second was developed,
independently by several people at about the same time, in the time-less
setting of one period.

When ρ = 0 the above model can be considered as an extension of the
market based CAPM to a dynamic setting, with an assoicated equilibrium
interest rate. (In the original CAPM in the time-less world there is no con-
sumption substitution across time, hence no equilibrium interest rate.)

For comparisons, in the conventional, expected utility model these rela-
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tionships are

Et(lnR
R
t+1)− lnRf

t+1 = γ covt(ln
ct+1

ct
, lnRR

t+1)− 1

2
vart(lnR

R
t+1) (21)

and

lnRf
t+1 = ln

( 1

β

)
+ γ Et(ln

ct+1

ct
)− 1

2
γ2 vart(ln

ct+1

ct
) (22)

which can be obtained from the recursive formulas by simply setting ρ = γ.
This is the discrete-time version of Breeden’s CCAPM.6

Similar, but not identical expressions can be derived using Taylor series
approximations, ignoring moments of order 3 and higher. The small discrep-
ancy occurs in the expression for the risk premiums only:

Et(r̃
R
t+1)− lnRf

t+1 ≈ ρ
1− γ
1− ρ

covt(ln
ct+1

ct
, lnRR

t+1)

+
γ − ρ
1− ρ

covt(lnR
W
t+1, lnR

R
t+1) +

1

2
(Et(r̃

R
t+1))2 (23)

for any asset R in the economy. Here r̃Rt+1 is the simple return on the risky
asset R. That this expression is approximately equal to the one given in (19),
follows since

Et(lnR
R
t+1) +

1

2
vart(lnR

R
t+1) ≈ Et(r̃

R
t+1)− 1

2

(
Et(r̃

R
t+1)
)2

where this approximation holds precisely when we ignore moments of order
3 and higher.

A more detailed discussion of the theoretical topics of this section, in-
cluding proofs, can be found in Aase (2020), where the formulas for the risk
premiums (19) and the real short rate (20), as well as (23) and the corre-
sponding formula for short rate are derived (by both methods).

5.6 Calibrations

In Table 1 we provide the key summary statistics of the data in Mehra
and Prescott (1985) of the real annual return data related to the S&P-500,
denoted by M , as well as for the annualized consumption data, denoted c,
and the Government bills, denoted b 7.

6Weil (1989) does not develop expressions such as (19) and (20) but rather analyzes
(16) and (18) directly using a stationary two-state Markov process and numerical methods.

7There are of course newer data by now, but these retain the same basic features. If
we can explain the data in Table 1, we can most likely explain any of the newer sets as
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Expectat. Standard dev. Covariances

Consumption growth 1.83% 3.57% cov(M, c) = .002226
Return S&P-500 6.98% 16.54% cov(M, b) = .001401
Government bills 0.80% 5.67% cov(c, b) = −.000158
Equity premium 6.18% 16.67%

Table 1: Key US-data for the time period 1889-1978. Discrete-time com-
pounding.

In our calibrations, equations (19) and (20) tell us that we must consider
a log transformation and use log returns. The relevant summary statistics
are given in Table 2. Notice that this table is not a mere transformation
of Table 1, but developed from the original data set used in the Mehra and
Prescott (1985)-study, by taking logarithms of the relevant yearly quantities,
and basing the statistical analysis on these transformed data points.8

Expectat. Standard dev. Covariances

Consumption growth 1.75% 3.55% cov(M, c) = 0002268
Return S&P-500 5.53% 15.84% cov(M, b) = 0.001477
Government bills 0.64% 5.74% cov(c, b) = −0.000149
Equity premium 4.89% 15.95%

Table 2: Key US-data for the time period 1889-1978 in terms of log returns
of discrete-time compounding.

Assuming for the moment that the market portfolio can be used as a
proxy for the wealth portfolio, we then interpret the risky asset as the value
weighted market portfolioM corresponding to the S&P-500 index. The result
is two equation in two unknowns to provide estimates for the preference
parameters γ and ρ by the ”method of moments” for fixed values of the
parameter β. The impatience rate δ = 1/β − 1 in Table 3. We denote the
EIS in consumption by ψ := 1/ρ and refer to it as the EIS parameter. Under
this assumption we calibrate our model (19) and (20) for various values of
β. The results are given in Table 3 when the market portfolio is assumed a
proxy for the wealth portfolio.

For the standard EU model, there are only two parameters, so the solution

well.
8We have obtained the original data set from Professor R. Mehra. For example, a

log return is not obtained simply adjusted as µ − (1/2)σ2 from Table 1, which would be
(almost) true if returns and growth rates of consumption were normally distributed. We
observe some deviations from normality in the data, albeit not significant ones.
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Parameters γ ρ EIS δ

The expected utility model :
β = 1.01 27.07 27.07 0.037 - 0.01
The recursive model:

β = .965 2.32 0.10 10.35 0.036
β = .968 2.06 0.29 3.48 0.033
β = .970 1.88 0.41 2.43 0.030
β = .975 1.44 0.71 1.39 0.020
β = .980 0.99 1.01 0.97 0.025
β = .985 0.52 1.29 0.77 0.015

Table 3: Various calibrations consistent with Table 2.

β = 1.01, γ = 27 is unique. Since β ∈ [0, 1] and reasonable values of γ are
known to be in the range from 1.5 to 3 or 4, say, with 2 as the most reasonable
one, this is simply the famous equity premium puzzle: A value of γ of the
order 27 is far outside anything reasonable for relative risk aversion.

As shown in Table 3, both the parameters γ and ρ take on rather reason-
able values when β ∈ (0.96, 0.98). The most plausible ones suggest preference
for early resolution of uncertainty. In this range the EIS parameter is larger
than 1. When β increases beyond this range, the parameters are not unrea-
sonable; but now indicate preference for late resolution of uncertainty, where
the EIS parameter is smaller than 1. In this region the relative risk aversion
is, however, too low to really be considered plausible.

These results are in agreement with those of Aase (2016a) based on the
continuous-time model with continuous dynamics.

5.7 Discussion

Weil (1989) does not develop expressions such as (19) and (20),;but rather
analyzes (17) and (18) directly using a stationary two-state Markov process
and numerical methods. A similar remark can be made for the article by
Kocherlakota (1990). From the expressions (19) and (20) however, one can
readily infer, with a minimal amount of calculations, that both higher risk
premiums and lower real rates can be obtained from this model, compared
to the standard one, for reasonable values of the preference parameters, as
illustrated in Table 3.

Weil (1989), on the other hand, obtained the values β = 0.95, γ = 45 and
ψ = 1/ρ = 0.10 when the equity premium is 0.0572 and the risk-free rate
is 0.0085. According to Table 1 this equity premium is a bit smaller than
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the one estimated, and the risk-free rate is a slightly larger, but this may be
close enough for the present purposes. Using these values for the moment,
our model produces two possible solutions for β = .96: (γ = 1.8, ρ = 0.30)
and (γ = 30.8, ρ = 19.0). It is this last one that is closest to what Weil (1989)
obtained, using the two-state Markov model directly on (17) and (18).

In other words, sometimes more than one solution is obtained, but Weil
(1989) only reports one solution. The more interesting one was not discovered
by his approach. In contrast, he launched a new puzzle, the ”risk-free rate
puzzle” (for the recursive model). By our calibrations, there is no such puzzle.

A quick comparison between the two equilibrium interest rates in (20)
and (22) is instructive. The expression for the risk-free interest rate for the
EU-model in (22) can not explain the historical rate of less than 1%, since the
two first terms on the right-hand side amount to about 5% assuming γ = 2,
and the last term in (22) is negligible. In comparison, the corresponding
first three terms in (20) are all low if, for example, γ > 1 and ρ < 1. The
expression for the short term interest rate for the recursive model in (20) is
more flexible than (22), and can be consistent with a wide variety of possible
values for the risk-free rate.

Our results should be contrasted with the view based on Weil’s results,
where some researchers express disappointment with the Epstein-Zin-model’s
ability to explain empirical observations.

In Aase (2020) two more data sets are considered, one of the US economy
for the period 1960-2015 where we also have data related to national wealth.
The other, a data set for the Norwegian economy for the period 1971-2014, is
also discussed in Aase (2016a) for the continuous model and in Aase (2020)
for the discrete, scale invariant RU model. For these, we have data for
the national wealth as well. These data sets calibrate reasonably well to
the recursive model, while the standard model does considerably worse in
calibrations to these newer sets of market and consumption data.

Figure 1 illustrates the feasible region in (γ, ρ)-space. For the conventional
model it is the 45◦-line shown (γ = ρ). For RU it is all of the first quadrant,
including the axes. The points above the 45◦-line represent late resolution of
uncertainty, and the points below correspond to early resolution.

Notice the distance between the typical calibrated point ”Calibr” in Fig-
ure 1 and the corresponding uniquely determined point for the expected
additive model: It is located on the diagonal, far outside the boundaries of
Figure 1. A relative risk aversion of the order of 27 is considered implausible.

The larger region for the (γ, ρ) combinations permitted by RU is not a
frivolous generalization of the conventional, additive model. That the richer
structure of the recursive model is not a modest extension is demonstrated
by the interpretations and plausible results yielded in the simple expressions
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Figure 1: Calibration points in the (γ, ρ)-space

(19) and (20). The model is based on fundamental assumptions and axioms
of rational behavior (Kreps and Porteus (1978), or Chew and Epstein (1991)
for the infinite time horizon).

6 Precautionary Savings

From our discussion in Section 3.1, we noticed from the basic relations in
(1) and (3) that the essential difference between the standard model and
the recursive one is contained in the separation of the function v from the
function u, that is, the ability of the the recursive model to separate risk
aversion from consumption substitution. In this last section we discuss some
of the implications of this separation for optimal saving decisions of individu-
als. This treatment does not require an excessive preparation, yielding some
interesting results by throwing some more light on the subject matter of this
article.

We consider T = 1, that is, a two date economy (which is dynamic). To
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start, we first assume a sure income z0 at date 0 and uncertain income z̃1 at
date 1. We assume that this risk is exogenous. For example, the consumer
might plan for the future knowing that his future labor income is subject
to changes that might be higher or lower than anticipated. Note that this
simple set-up is dynamic because consumption takes place both at the initial
time and at time 1, while in the one-period, time-less model no consumption
takes place at the initial time.

Consumers select how much to save (s) at date 0 in order to maximize
their lifetime utility, giving (z0 − s) to consume at the initial time.

In the standard model the utility function is

UEU(s) = u0(z0 − s) + βE(u1((1 + r)s+ z̃1)

for some strictly increasing and concave felicity indices ui(·), i = 0, 1. Let us
denote the solution to the maximization problem maxsUEU(s) by s∗. Here r
is the interest rate, assumed deterministic for the time being.

The uncertainty affecting future consumption introduces a new motive for
saving. The intuition is that it induces consumers to increase their wealth
accumulation in order to prepare themselves to face future risk. This is the
precautionary motive for saving, and it relies on the technical concept of
prudence, to be defined shortly. The result can be derived by comparing s∗

with optimal saving s0 when the uncertain future income z̃1 is replaced by
its expectation E(z̃1). The answer is that s∗ ≥ s0 whenever u′1 is convex, or
equivalently, whenever u′′′1 is positive, which is referred to as prudence.

Aside from the technicalities, this seems like an intuitive and reasonable
result, and our first question is if this is also true for RU But what do we
mean by RU here? In general, the RU function is defined by the two functions
u and v satisfying

U(s) = v−1
(
(1− β)v(z0 − s) + βu(m)

)
where m = u−1

(
E(u(U1))

)
, u 6= v, so that m is the certainty equivalent of

time 1 utility, and u and v are two different felicity indices.
In the following discussion we will be interested in finding out more about

risk aversion and consumption substitution, in which case we choose to work
with the scale invariant version of RU with the Epstein-Zin parameteriza-
tion, as we did in the above. This means that the objective with RU is the
following:

U(s) =
(

(1− β)(z0 − s)1−ρ + β
(
E((1 + r)s+ z̃1)1−γ) 1−ρ

1−γ
) 1

1−ρ
(24)
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For the problems of this section, we could alternatively drop the factor (1−β)
at time zero, but here we choose to keep this factor, consistent with our
treatment in Sections 3 and 4.

The optimal saving s∗ is the solution to maxsU(s), and the first order
condition is

1− β
β(1 + r)

(z0 − s)−ρ =
(
E((1 + r)s+ z̃1)1−γ) γ−ρ1−γE

(
(1 + r)s+ z̃1)

)−γ
(25)

Let us denote by E(z̃1) = z1, and first consider the case of certainty. That
is, we replace z̃1 by its expectation z1 in the first order condition. We call
the optimal saving s under certainty s0. Let α = β

1−β . It is easy to see from
the above that

s0 =
z0 − kz1

1 + (1 + r)k
, where k = (α(1 + r))−

1
ρ (26)

is valid if ρ > 0. 9 When z0 ≥ kz1 positive savings take place under certainty.
If z0 = z1, this happens if α(1 + r) ≥ 1, that is, when the gross interest
1 + r more than cancels the effect of the factor β/(1 − β). If we define the
impatience rate δ in this two-period model by α = 1

1+δ
, this means that

r ≥ δ.
Now we turn to uncertainty and ask when is s∗ ≥ s0. This is when

we have precautionary savings in the RU model: Faced with future income
uncertainty, the ”prudent” consumers save more than they would in a world
of certainty.

The analysis become rather simple once we observe that we may replace
the two expectations in (25) by expressions containing certainty equivalents
or, even simpler, by inserting the certainty equivalent m right away in the
expression for U(s) given in (24): We can alternatively write

U(s) =
(

(1− β)(z0 − s)1−ρ + β
(
E((1 + r)s+ z̃1)1−γ) 1−ρ

1−γ
) 1

1−ρ
=

(
(1− β)(z0 − s)1−ρ + β

(
(1 + r)s+m

)1−ρ
) 1

1−ρ

The first order condition in s is, using this latter expression

1− β
β(1 + r)

(z0 − s∗)−ρ =
(
(1 + r)s∗ +m

)−ρ
(27)

9In the special case that α(1 + r) = 1, s0 does not depend on ρ. Equation (26) is then
still valid in the limiting case when ρ→ 0.
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This gives the optimal amount of saving

s∗ =
z0 − km

1 + (1 + r)k
(28)

From equation (27) it may seem as if the optimal value of s∗ depends mainly
on ρ, but this is not the case. As the result (28) tells us, it depends on
the marginal utility flexibility parameter ρ through k, while the certainty
equivalent m depends on the relative risk aversion γ. When k = 1 we notice
that s∗ does not depend on ρ. 10

By replacing the certainty equivalent m in (27) with the expected value
z1 = E(z̃1), we again obtain the optimal saving s0 under certainty given in
(26). Thus precautionary savings are obtained, since s∗ ≥ s0 follows from
m ≤ z1 (Jensen’s inequality) and k > 0.

In the above discussion we have used the constant relative risk aversion
(CRRA) version for the felicity index u. For expected utility, when the time
one felicity index u1 is of this type, it is prudent in the above definition, so
here we have consistency between these two different preference representa-
tions as far as precautionary savings is concerned. But notice that for RU
the particular form of the function v also matters, in other words, it depends
on the parameter ρ, while for the additive, expected utility representation
the result is independent of the particular form of the initial felicity index
u0, so long as it is increasing and concave.

6.1 Risky Savings and Precautionary Demand

In the previous section we considered only labor-income risk. The individual
had a risk-free savings alternative but was unsure about how much income
would be earned at date 1. We now look at a model where labor income is
known, but the rate on return on savings is risky. Here we abstract from the
portfolio selection problem. First we assume there is only one fund for risky
savings paying a random return 1 + r̃, where Er̃ = r0 > 0.

Saving at the stochastic rate is then compared to saving at the deter-
ministic rate r0, and the question is in which case does the agent save the
most.

6.1.1 The standard model

We consider a consumer with an investment horizon of two periods. Since
lifetime income is known with certainty, we assume without loss of generality

10In this particular case it is seen that s∗ is stable as ρ→ 0.
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that all income is paid at date t = 0. Letting z0 denote this wealth, the
consumer’s objective is to maximize the function U(s) given by

U(s) = u(z0 − s) + βE(u((1 + r̃)s))

The first order condition is given by

u′(z0 − s∗) = βE[(1 + r̃)u′((1 + r̃)s∗)]

where s∗ is the optimal saving under uncertain interest rate. Since the ob-
jective function U(s) is concave, the second order condition holds for this
problem.

The first order condition for the corresponding problem where saving
takes place at the deterministic savings rate r0 = E(r̃) is given by

u′(z0 − s0) = β(1 + r0)u′((1 + r0)s0)

where s0 is the optimal saving with the deterministic interest rate r0. In this
case we denote the objective function by Û(s).

We now compare saving under these two conditions, and ask when is
s∗ > s0. Since the objective Û(s) is concave in s, the answer to this question
is that saving to an uncertain interest rate will increase the amount of saving
provided Û ′(s∗) < 0.

It follows that the uncertainty in the rate of return will cause the optimal
level of savings to increase whenever

E[(1 + r̃)u′((1 + r̃)s∗)] > (1 + r0)u′((1 + r0)s∗)

This inequality holds if the function f(x) := xu′(xs∗) is strictly convex (x =
1+r), by Jensen’s inequality, which happens if and only if relative prudence,
−wu′′′(w)/u′′(w), is larger than 2 (Eeckhoudt et al. (2005), Chapter 6).

For the expected utility model there are two competing influences at work:
On the one hand, the riskiness of returns makes savings less attractive than
saving at a risk-free rate with the same average return. On the other hand,
the end of period risk will induce a precautionary motive to the prudent con-
sumer. It turns out that when relative prudence exceeds 2 the precautionary
motive dominates.

With CRRA utility the relative prudence is given by 1+γ, and this result
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translates to

s∗will


increase if relative risk aversion γ > 1

remain the same if relative risk aversion γ = 1

decrease if relative risk aversion γ < 1

(29)

Thus the result (29) says that when γ > 1, s∗ > s0, when γ < 1, s∗ < s0,
and when γ = 1, s∗ = s0.

We now extend the analysis to include a risk-free asset with return 1+rrf ,
where rrf < r0, both constants. This inequality follows, since the return on
the risk-free asset must be lower than the expected return E(r̃) on a risky
asset, a direct consequence of risk aversion.11

We then compare savings at these two deterministic rates. At first sight
this may appear as a rather simple question, as one would, perhaps, think
that the rational agent would save more at the highest interest rate. Denoting
the optimal saving srf at the risk free interest rate rrf , proceeding as above,
saving will be largest with the highest certain rate of return provided

β(1 + r0)u′((1 + r0)s0) > β(1 + rrf )u
′((1 + rrf )s

0)

This will take place when the function g(x) = xu′(xs0) is strictly increasing
in x, which holds if and only if −wu′′(w)/u′(w) < 1. With the utility func-
tion u(c) = c1−ρ/(1− ρ), where ρ represents the ’resistance’ to consumption
substitution across time (there is no uncertainty here), this holds if and only
if ρ < 1. The result of this comparison can be summarized as

srf will


increase if ρ > 1

remain the same if ρ = 1

decrease if ρ < 1

(30)

Thus srf > s0 if ρ > 1, so the smallest interest rate leads to the highest
saving when ρ > 1. Also srf < s0 if ρ < 1, and srf = s0 if ρ = 1. When
ρ < 1, the consumer will save more when the certain interest rate increases,
which is, perhaps, the natural savings result one would expect.

To understand the result (30), let us first digress as to what the elasticity
of substitution in consumption, ψ = 1/ρ, describes for an individual. Let
Rc1c0 denote the marginal rate of substitution between consumption at the
two dates 0 and 1, and let Elxf(x) be the elasticity of the function f(x) with

11This is introduced for comparative statics only, so arbitrage is not a subject here.
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respect to x. Then

ψc1c0 = ElRc1c0 (
c1

c0

)

The elasticity of substitution in consumption tells us, approximately, how
many percent the ratio c1/c0 changes, when the consumer moves along his/her
indifference curve U(c0, c1) = c, a constant, in such a manner that Rc1c0 in-
creases by 1%.

If ψ > 1 this indicates that the consumer has lower resistance to con-
sumption substitution than if ψ < 1. For the utility of this section, ψ = 1/ρ,
so this property translates to higher resistance to consumption substitution
when ρ > 1 then when ρ < 1.

When ρ > 1, the consumer’s resistance against consumption substitution
dominates the temptation to save more when the interest rate is higher, as
this would lead to too much transfer of consumption between the two dates.
When ρ < 1 the consumers have less resistance to consumption substitution,
and as a result they will save more when the interest rate increases.

It is clear that with saving under certainty in (30) it is the resistance to
intertemporal substitution of consumption interpretation of the parameter ρ
that is relevant. In the saving under uncertainty given in (29) this is at best
unclear.

It is striking how the explanations for the results change so much in these
two situations. In the standard model γ = ρ, so we can only guess what
is the correct interpretation under uncertainty; is it really the risk aversion
property that drives the result, or the consumption substitution property?

In order to answer this question, we move to RU, where these two prop-
erties are separated.

6.1.2 Recursive utility

The objective function can now be written as

U(s) =
(

(1− β)(z0 − s)1−ρ + β
(
E((1 + r̃)s)1−γ) 1−ρ

1−γ
) 1

1−ρ
(31)

where r̃ is the uncertain interest rate, a random variable. The optimal saving
s∗ at the interest rate r̃ is a solution to maxsU(s). We first find the certainty
equivalent interest rate, call it r, to the stochastic rate r̃. It satisfies

E
(
((1 + r̃)s)1−γ) := ((1 + r)s)1−γ
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By Jensen’s inequality

1

1− γ
E
(
((1 + r̃)s)1−γ) < 1

1− γ
((1 + E(r̃))s)1−γ

Since the CRRA-utility function is a strictly increasing function, this implies
that r < r0, where r0 = E(r̃). With the certainty equivalent interest rate r
inserted in the objective, it becomes

U(s) =
(

(1− β)(z0 − s)1−ρ + β
(
(1 + r)s)1−ρ

) 1
1−ρ

and the first order condition is s is

(1− β)

β(1 + r)
(z0 − s)−ρ =

(
(1 + r)s

)−ρ
Because the objective is strictly concave, the first order condition is both
necessary and sufficient for optimality. The solution is

s∗ =
z0

1 + α−
1
ρ (1 + r)

ρ−1
ρ

(32)

where α = β
1−β .

In other words, the recursive agent is indifferent between saving at the
uncertain interest rate r̃ and saving at the deterministic rate r, the certainty
equivalent interest rate, where r < r0 = E(r̃). The inequality follows by
Jensen’s inequality, since the agent is risk averse. If we denote optimal saving
at the certainty equivalent interest rate by sr, we here have that sr = s∗,
which gives this indifference conclusion from (31).

First we compare this level of saving to the corresponding optimal amount
of saving s0 when the stochastic interest rate r̃ is replaced by its expectation
E(r̃) = r0, so that saving takes place under certainty. Under this condition
the optimal amount of saving is

s0 =
z0

1 + α−
1
ρ (1 + r0)

ρ−1
ρ

Since r < r0, this gives the following conclusion

s∗will


increase if ρ > 1

remain the same if ρ = 1

decrease if ρ < 1

(33)
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In other words, s∗ > s0 when ρ > 1, s∗ < s0 when ρ < 1, and s∗ = s0 when
ρ = 1.

Comparing the result in (33) to the corresponding result (29) for the
standard model, we see that it is the elasticity of substitution in consumption
that is behind the result, also with saving at an uncertain rate r̃, not risk
aversion. Under uncertainty, we are not able to separate these properties in
the standard model, since then γ = ρ.

In the present model, however, where these different properties of an indi-
vidual have been separated under uncertainty, we are finally able to recognize
what property is behind the result (29) (at least in the CRRA case). When
resistance to consumption substitution across time is low, that is, when ρ < 1,
the amount of saving s∗ under uncertainty (r̃) will go down compared to sav-
ing under certainty (r0), when E(r̃) = r0. The role played by risk aversion
here is to secure that r < r0, that is, the certainty equivalent interest rate r
is smaller than E(r̃). This holds as long as γ > 0. It is this fact that makes
saving less attractive than saving at the certain rate r0, when ρ < 1, not
because the relative risk aversion γ < 1 as suggested by (29). The larger the
relative risk aversion, the larger is the difference (r0 − r), and the larger the
difference between s0 and s∗. Thus the explanation for this phenomenon is
the same as for the situation where ρ < 1 in (30): The consumer will save
more in this situation when the certain interest is the highest, because of low
resistance to consumption fluctuation across the two time periods.

It is true that there is a precautionary savings motive with RU as well,
shown in the last section, and here this motive dominates only when ρ > 1,
that is, when the resistance to consumption substitution is high. In this
situation the highest certain interest rate gives the lowest saving, for the
same reason as in (30) when ρ > 1.

Here we remind the reader that with the constant elasticity of substitution
(CES )-utility function, which is formally the aggregator of the RU version
we consider, the scale invariant one, it is also the case that

ψ := ψc1c0 = ElRc1c0 (
c1

c0

) =
1

ρ

so that the parameter ρ has the same interpretation as for the standard
expected utility model, and the CES-function indeed lives up to its name.

Finally, let us compare saving at the two deterministic rates r0 and rrf
where rrf < r0, as we did for the standard model. By analogy with the result
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just shown for RU, we obtain

srf will


increase if ρ > 1

remain the same if ρ = 1

decrease if ρ < 1

(34)

which is the same result as for the standard model, provided we interpret the
parameter in (30) as ρ = 1/ψ and not as risk aversion γ (there is no risk in
this situation and hence risk aversion is irrelevant).

The examples of this section demonstrate the advantages of having one
parameter for relative risk aversion, another for consumption substitution,
where one is not merely the reciprocal of the other.

7 Appendix 1

7.1 Preference for Early/Late Resolution of Uncertainty

With RU there is a well-defined notion of the time at which uncertainty is
revealed, and although for compound lotteries there is also an implicit axiom
perceiving them as equivalent to the one-shot lottery they reduce to at a
single time, there is no axiom which says that uncertainties at two different
times are equivalent.

Given any consumption plans c′ and c′′ in the domain of V and any
α ∈ (0, 1), let cα = αc′ ⊕ (1 − α)c′′. The RU-agent is supposed to choose
from the space of random temporal consumption plans.

This non indifference means, in our notation, that the expressions in (5)
and (6) in Section 4.1 will, in general, not be equal.

Let us now try to extend this concept using the definition due to Skiadas
(2009). Toward this end, let C be the consumption set and F the set of all
filtrations {Ft : t = 0, 1, . . . , T} satisfying F0 = {Ω,Ø} and FT = 2Ω.

Consider the non normalized utility function V0(·) over the set of pairs
(ct, {Ft}) ∈ C ×F such that ct is Ft adapted.

Definition 1 The utility function V0(·) represents preferences for early res-
olution of uncertainty if for any (c, {F1

t }) and (c, {F2
t }) in its domain.

F1
t ⊂ F2

t for all t implies V0(c, {F1
t }) ≤ V0(c, {F2

t })

Preferences for late resolution of uncertainty are defined likewise, with the
last inequality reversed.
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Denote the aggregator of Vt by ft, a concave function. Let ξt := E(Vt+1|Ft).
The result is then:

Theorem 2 For fixed t < T the RU function V0(·) represents early (resp.
late) resolution of uncertainty if and only the function f is convex (resp.
concave) in the ξ-argument. If f is affine in ξt the individual is indifferent.

Proof: Consider the following set of inequalities:

Vt
(
ct, E(Vt+1(cα)|F2

t )
)
≥ Vt

(
ct, E(Vt+1(cα)|F1

t )
)

if and only if

αVt
(
ct, E(Vt+1(c′)|F2

t )
)

+ (1− α)Vt
(
ct, E(Vt+1(c′′)|F2

t )
)

≥ Vt
(
ct, E(Vt+1(cα)|F1

t )
)

if and only if

αE
{
Vt
(
ct, E(Vt+1(c′)|F2

t )
)
|F1

t

}
+ (1− α)E

{
Vt
(
ct, E(Vt+1(c′′)|F2

t )
)
|F1

t

}
≥ Vt

(
ct, E(Vt+1(cα)|F1

t )
)

if and only if

αVt
(
ct, E(E(Vt+1(c′)|F2

t )|F1
t )
)

+ (1− α)Vt
(
ct, E(E(Vt+1(c′′)|F2

t )
)
|F1

t )
)

≥ Vt
(
ct, αE(Vt+1(c′)|F1

t ) + (1− α)E(Vt+1(c′′)|F1
t )
)

if and only if

αft
(
ct, ξ

′
t

)
+ (1− α)ft

(
ct, ξ

′′
t )
)
≥ ft

(
ct, αξ

′
t + (1− α)ξ′′t

)
,

where ξ′t = E(Vt+1(c′)|F1
t ) and ξ′′t = E(Vt+1(c′′)|F1

t ).
The first equivalence follows from the development in Kreps and Por-

teus (1978) related to (5) and (6), which is what they mean by early res-
olution of uncertainty in the present setting, the second follows by tak-
ing conditional expectation across the inequality, given F1

t , observing that
f
(
ct, E(Vt+1(cα)|F1

t )
)

is F1
t -measurable, the third follows from Jensen’s in-

equality on conditional form, and the fourth follows from the rule of iterated
expectations.

By this result, we have to investigate under what conditions the function
Vt(ct, ξt) is convex/concave/affine in the variable ξt, where

V (ct, ξt) =
1

1− γ

(
(1− β)c1−ρ

t + β
(

(1− γ)ξt

) 1−ρ
1−γ
) 1−γ

1−ρ
(35)

The two first partial derivatives are

∂V (c, ξ)

∂ξ
= β

(
(1− β)c1−ρ

t + β
(

(1− γ)ξ
) 1−ρ

1−γ
) ρ−γ

1−ρ (
(1− γ)ξ

) γ−ρ
1−γ

and

∂2V (c, ξ)

∂ξ2
= β2(ρ− γ)

(
(1− β)c1−ρ

t + β
(

(1− γ)ξ
) 1−ρ

1−γ
) ρ−γ

1−ρ−1(
(1− γ)ξ

) 2(γ−ρ)
1−γ +
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β(γ − ρ)
(

(1− β)c1−ρ
t + β

(
(1− γ)ξ

) 1−ρ
1−γ
) ρ−γ

1−ρ (
(1− γ)ξ

) (γ−ρ)
1−γ −1

The second partial derivative we rearrange as follows:

∂2V (c, ξ)

∂ξ2
= β(ρ− γ)

(
(1− β)c1−ρ

t + β
(

(1− γ)ξ
) 1−ρ

1−γ
) ρ−γ

1−ρ (
(1− γ)ξ

) (γ−ρ)
1−γ ·

((
(1− β)c1−ρ

t + β
(

(1− γ)ξ
) 1−ρ

1−γ
)−1

β
(
(1− γ)ξ

) (γ−ρ)
1−γ −

(
(1− γ)ξ

)−1
)

By polynomial division, the term

(
(1− β)c1−ρ

t + β
(

(1− γ)ξ
) 1−ρ

1−γ
)−1

β
(
(1− γ)ξ

) (γ−ρ)
1−γ =

(
(1− γ)ξ

)−1 −
(1− β)c1−ρ

t

(
(1− γ)ξ

)−1

(1− β)c1−ρ
t + β

(
(1− γ)ξ

) 1−ρ
1−γ

Accordingly

∂2V (c, ξ)

∂ξ2
= β(ρ− γ)

(
(1− β)c1−ρ

t + β
(

(1− γ)ξ
) 1−ρ

1−γ
) ρ−γ

1−ρ (
(1− γ)ξ

) (γ−ρ)
1−γ ·(

−
(1− β)c1−ρ

t

(
(1− γ)ξ

)−1

(1− β)c1−ρ
t + β

(
(1− γ)ξ

) 1−ρ
1−γ

)
(36)

From this expression we observe that

1) If γ > ρ, then ∂2V (c,ξ)
∂ξ2

> 0 implying that V (c, ξ) is convex in the second

variable. According to Theorem 3 in Kreps and Porteus (1978), the consumer
prefers early resolution of uncertainty to late.

2) If γ < ρ, then ∂2V (c,ξ)
∂ξ2

< 0 implying that V (c, ξ) is concave in the second
variable. Accordingly, the consumer prefers late resolution of uncertainty to
early.

3) If γ = ρ, then ∂2V (c,ξ)
∂ξ2

= 0 implying that V (c, ξ) is affine in the second vari-
able. Accordingly, the consumer is indifferent to the timing of the resolution
of uncertainty.
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