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a b s t r a c t

This paper analyzes a dynamic stochastic equilibrium model of an asset market based on behavioral
and evolutionary principles. The core of the model is a non-traditional game-theoretic framework
combining elements of stochastic dynamic games and evolutionary game theory. Its key characteristic
feature is that it relies only on objectively observable market data and does not use hidden individual
agents’ characteristics (such as their utilities and beliefs). A central goal of the study is to identify an
investment strategy that allows an investor to survive in the market selection process, i.e., to keep with
probability one a strictly positive, bounded away from zero share of market wealth over an infinite
time horizon, irrespective of the strategies used by the other players. The main results show that under
very general assumptions, such a strategy exists, is asymptotically unique and easily computable.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

We develop a new dynamic stochastic equilibriummodel of an
sset market combining evolutionary and behavioral approaches.
he classical financial DSGE theory going back to Kydland and
rescott (1982) and Radner (1972, 1982) (see Magill and Quinzii,
996) relies upon the hypothesis of full rationality of market play-
rs, who are assumed to maximize their utilities or preferences
ubject to budget constraints, i.e., solve well-defined and pre-
isely stated constrained optimization problems. The model we
onsider relaxes these assumptions and permits traders/investors
o have a whole variety of patterns of behavior determined by
heir individual psychology, not necessarily describable in terms
f utility maximization. Strategies may involve, for example,
imicking, satisficing, rules of thumb based on experience, etc.
trategies might be interactive—depending on the behavior of the
thers. Objectives might be of an evolutionary nature: survival
especially in crisis environments), domination in a market seg-
ent, fastest capital growth, etc. They might be relative—taking

nto account the performance of the others.

✩ Results of this research were presented at the 1st (July 2017), 2nd (De-
cember 2017) and 3rd (September 2019) Manchester conferences ‘‘Mathematical
Economics and Finance". We are grateful to participants of these conferences,
especially to Rabah Amir, Sergei Belkov, Jiulio Bottazzi, Daniele Giachini, László
Györfi, Alex Possajennikov, Huang Weihong, Le Xu, Nicholas Yannelis and
Mikhail Zhitlukhin for helpful comments. Special thanks are due to Esmaeil
Babaei, Yuri Kifer, and Sergey Pirogov for useful discussions on topics in the
theory of random dynamical systems related to this work.

∗ Corresponding author at: Department of Banking and Finance, University of
urich, and Swiss Finance Institute, Zurich, Switzerland.

E-mail address: Thorsten.Hens@bf.uzh.ch (T. Hens).
https://doi.org/10.1016/j.jmateco.2020.09.004
0304-4068/© 2020 The Authors. Published by Elsevier B.V. This is an open access a
nc-nd/4.0/).
Models considered in this field – they are referred to as ‘‘EBF’’
(Evolutionary Behavioral Finance) models – combine elements of
the theory of stochastic dynamic games and evolutionary game
theory. The former offers the general notion of a strategy and
the latter suggests the game solution concept: a survival strategy.
In EBF frameworks, the process of market dynamics is described
as a sequence of consecutive short-run equilibria determining
equilibrium asset prices over each time period. The notion of
a short-run price equilibrium is defined directly via the set of
strategies of the market players specifying the patterns of their
investment behavior (behavioral equilibrium).

The main focus of EBF is on investment strategies that survive
in the market selection process, i.e., guarantee with probability
one a positive, bounded away from zero share of market wealth
over an infinite time horizon. Typical results show that such
strategies exist, are asymptotically unique and easily computable.
The computations do not require, in contrast with the classical
DSGE, the knowledge of hidden agents’ characteristics such as
individual utilities and beliefs.

Fundamental contributions to the evolutionary modeling of
financial markets were made in Anderson et al. (1988), Arthur
et al. (1997), Blume and Easley (1992), Bottazzi et al. (2018,
2005), Bottazzi and Dindo (2013a,b), Brock et al. (2005), Coury
and Sciubba (2012), Farmer (2002), Farmer and Lo (1999), Lo
(2004, 2005, 2012, 2017), Lo et al. (2018), Sciubba (2005, 2006),
and Zhang et al. (2014).

Financial DSGE models integrating evolutionary and behav-
ioral approaches were proposed in Amir et al. (2011) and Amir
et al. (2013). A survey describing the state of the art in EBF by

2016 and outlining a program for further research was given
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n Evstigneev et al. (2016). An elementary textbook treatment of
he subject can be found in Evstigneev et al. (2015), Ch. 20. For a
ost recent review of the development of studies related to this
rea see Holtfort (2019). General perspectives of a synthesis of
ehavioral and mainstream economics based on the evolutionary
pproach are discussed in a recent paper by Aumann (2019).
EBF models invoke ideas related to behavioral economics and

inance (Tversky and Kahneman, 1991; Shiller, 2003; Bachmann
t al., 2018), evolutionary game theory (Weibull, 1995; Samuel-
on, 1997; Gintis, 2009; Kojima, 2006) and games of survival
Milnor and Shapley, 1957; Shubik and Thompson, 1959)1. An-
ther important source for EBF is capital growth theory, or the
heory of growth-optimal investments: Kelly (1956), Breiman
1961) and Algoet and Cover (1988), and others. For a textbook
resentation of capital growth theory see Evstigneev et al. (2015),
h. 17. The EBF models we deal with may be regarded as capital
rowth models with endogenous (formed in dynamic equilib-
ium), rather than exogenous (as in the classical theory) asset
rices.
The present paper draws on the previous work of Amir et al.

2011), where a prototype of the model studied here was devel-
ped and some versions of the results we get in this paper were
btained. However, that study was conducted under very restric-
ive assumptions (equality of growth rates of the total volumes
f all the assets and equality of investment rates of the market
articipants). Relaxing these assumptions required overcoming a
umber of conceptual and technical difficulties. Even the form
f the main result on the existence of a survival strategy in the
resent, more general, setting differs substantially from that in
mir et al. (2011). Now this strategy is defined as a solution to
certain stochastic equation, in contrast with the previous, more
pecialized, model where it could be represented in an explicit
orm as the sum of a convergent series. For the proof of the
xistence and uniqueness of this solution we needed to develop
ew mathematical tools related to the ergodic theory of random
ynamical systems: non-stationary stochastic Perron–Frobenius
heorems (for stationary versions of these results see, e.g., Babaei
t al. (2018)).
The structure of the paper is as follows. Section 2 describes

he model. Section 3 states the main results. Section 4 discusses
he EBF modeling approach, its characteristic features and appli-
ations. Section 5 contains some auxiliary propositions needed
or the analysis of the model. Section 6 proves the main re-
ults. Appendix A includes routine proofs of a number of lemmas
ormulated in Section 6. Appendix B derives a non-stationary
tochastic version of the Perron–Frobenius theorem used in this
aper.

. The model

We consider a market where K ≥ 2 assets are traded. The
arket is influenced by random factors modeled in terms of an
xogenous stochastic process s1, s2, . . ., where st is a random

element of a measurable space St (‘‘state of the world’’ at date
t). The market opens at date 0 and the assets are traded at all
moments of time t = 0, 1, 2, . . .. At each date t = 1, 2, . . .
ssets k = 1, 2, . . . , K pay dividends Dt,k(st ) ≥ 0 depending on
he history st := ( s1, . . . , st ) of states of the world up to date
. The functions Dt,k(st ) (as well as all other functions of st we
ill consider) are assumed to be measurable with respect to the
roduct σ -algebra in the space S1 × · · · × St and satisfy
K

k=1

Dt,k(st ) > 0 for all t ≥ 1 and st . (2.1)

1 For a comprehensive discussion of game-theoretic aspects of EBF in a
ifferent but closely related model see Amir et al. (2013), Sections 1 and 6.
 s
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This condition means that at each date in each random situation
at least one asset yields a strictly positive dividend. The total
volume (the number of units) of asset k available in the market at
date t ≥ 0 is Vt,k(st ) > 0, where Vt,k(st ) is a measurable function
of st . For t = 0, the number Vt,k = V0,k > 0 is constant.

We denote by pt ∈ RK
+

the vector of market prices of the
assets. For each k = 1, . . . , K , the coordinate pt,k of pt =

(pt,1, . . . , pt,K ) stands for the price of one unit of asset k at date
t ≥ 0. There are N ≥ 2 investors (traders) acting in the market.
A portfolio of investor i at date t ≥ 0 is specified by a vector
xit = (xit,1, . . . , x

i
t,K ) ∈ RK

+
, where xit,k is the amount (the number

of units) of asset k in the portfolio xit . The scalar product ⟨pt , xit⟩ =∑K
k=1 pt,kx

i
t,k expresses the value of the investor i’s portfolio xit at

date t in terms of the prices pt,k. The state of the market at each
date t is characterized by the set of vectors (pt , x1t , . . . , x

N
t ), where

pt is the vector of asset prices and x1t , . . . , x
N
t are the traders’

portfolios.
At date t = 0 the investors have initial endowments wi

0 > 0
(i = 1, 2, . . . ,N), that form their budgets at date 0. Investor i’s
budget at date t ≥ 1 is

wi
t (s

t ) = ⟨Dt (st ) + pt (st ), xit−1(s
t−1)⟩,

where Dt (st ) = (Dt,1(st ), . . . ,Dt,K (st )). It consists of two compo-
nents: the dividends ⟨Dt , xit−1⟩ paid by the portfolio xit−1 and the
market value ⟨pt , xit−1⟩ of xit−1 expressed in terms of the prices
pt = (pt,1, . . . , pt,K ) at date t .

For each t ≥ 0, every trader i = 1, 2, . . . ,N selects a vector of
investment proportions λi

t = (λi
t,1, . . . , λ

i
t,K ) according to which i

plans to distribute the available budget between assets. Vectors
λi
t belong to the unit simplex

∆K
:= {(a1, . . . , aK ) ≥ 0 : a1 + · · · + aK = 1}.

In terms of the game we are going to describe, the vectors λi
t

represent the players’ (investors’) actions or control variables. The
investment proportions at each date t ≥ 0 are selected by the N
traders simultaneously and independently, so that we deal here
with a simultaneous-move N-person dynamic game. For t ≥ 1,
players’ actions might depend, generally, on the history st =

s1, . . . , st ) of the realized states of the world and the history of
the game (pt−1, xt−1, λt−1), where pt−1

= (p0, . . . , pt−1) is the
equence of asset price vectors up to time t − 1, and
t−1

:= (x0, x1, . . . , xt−1), xl = (x1l , . . . , x
N
l ),

t−1
= (λ0, λ1, . . . , λt−1), λl = (λ1

l , . . . , λ
N
l ),

re the sets of vectors describing the portfolios and the invest-
ent proportions of all the players at all the dates up to t − 1.
he history of the game contains information about the market
istory – the sequence (p0, x0), . . ., (pt−1, xt−1) of the states of the
arket – and about the actions λi

l of all the players (investors)
= 1, . . . ,N at all the dates l = 0, . . . , t − 1. A vector Λi

0 ∈ ∆K

and a sequence of measurable functions with values in ∆K

Λi
t (s

t , pt−1, xt−1, λt−1), t = 1, 2, . . .

form an investment (trading) strategy Λi of trader i, specifying
a portfolio rule according to which trader i selects investment
proportions at each date t ≥ 0. This is a general game-theoretic
definition of a strategy, assuming full information about the his-
tory of the game, including the players’ previous actions, and the
knowledge of all the past and present states of the world.

Among general portfolio rules, we will distinguish those for
which Λi

t depends only on st , rather than on the whole market
history (pt−1, xt−1, λt−1). We will call such portfolio rules basic.
hey play an important role in the present work: the survival

trategy we are going to construct will belong to this class.
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he essence of the main result (Theorem 2) lies in the fact
hat it indicates a relatively simple basic strategy, requiring a
ery limited volume of information and guaranteeing survival
n competition with any other strategies which might use all
heoretically possible information.

For each k = 1, . . . , K , a sequence of functions α0,k, α1,k(s1),
2,k(s2), . . . is given characterizing transaction costs for buying
sset k in the market under consideration. It is assumed that
< αt,k ≤ 1. If an investor i allocates wealth wi

t,k to asset k
t time t , then the value of the kth position of the i’s portfolio
ill be pt,kxit,k = αt,kw

i
t,k. The amount (1 − αt,k)wi

t,k will cover
ransaction costs.

Suppose that at date 0 each investor i has selected some
nvestment proportions λi

0 = (λi
0,1, . . . , λ

i
0,K ) ∈ ∆K . Then the

mount allocated to asset k by trader i is λi
0,kw

i
0, where wi

0 > 0
s the i’s initial endowment, so that the value of the holding of
sset k in the i’s portfolio is α0,kλ

i
0,kw

i
0. Thus the value of the

otal holding of asset k in all the investors’ portfolios amounts
o α0,k

∑N
i=1 λi

0,kw
i
0. It is assumed that the market is always in

quilibrium (asset supply is equal to asset demand), which makes
t possible to determine the equilibrium price p0,k of each asset k
rom the equations

0,kV0,k = α0,k

N∑
i=1

λi
0,kw

i
0, k = 1, 2, . . . , K . (2.2)

n the left-hand side of (2.2) we have the total value p0,kV0,k of
ll the assets of the type k in the market (recall that the total
mount of asset k at date 0 is V0,k). The investment proportions
i
0 = (λi

0,1, . . . , λ
i
0,K ) chosen by the traders at date 0 determine

heir portfolios xi0 = (xi0,1, . . . , x
i
0,K ) at date 0 by the formula

xi0,k =
α0,kλ

i
0,kw

i
0

p0,k
, k = 1, 2, . . . , K , i = 1, . . . ,N. (2.3)

Assume now that all the investors have chosen their invest-
ment proportion vectors λi

t = (λi
t,1, . . . , λ

i
t,K ) at date t ≥ 1.

Then the equilibrium of asset supply and demand determines the
market clearing prices

pt,kVt,k = αt,k

N∑
i=1

λi
t,k⟨Dt + pt , xit−1⟩, k = 1, . . . , K . (2.4)

The investment budgets ⟨Dt + pt , xit−1⟩ of the traders
i = 1, 2, . . . ,N are distributed between assets in the proportions
λi
t,k, so that the kth position of the trader i’s portfolio xit =

(xit,1, . . . , x
i
t,K ) is

xit,k =
αt,kλ

i
t,k⟨Dt + pt , xit−1⟩

pt,k
, k = 1, . . . , K , i = 1, . . . ,N. (2.5)

ote that the price vector pt is determined implicitly as the
solution to the system of Eqs. (2.4).

Define

γt,k(st ) = Vt,k(st )/Vt−1,k(st−1).

he number γt,k characterizes the speed of growth of the total
olume Vt,k of asset k. It can be shown (see Proposition 1 in
ection 5) that a non-negative vector pt (st ) satisfying Eqs. (2.4)
xists and is unique (for any st and any feasible xit−1 and λi

t ) as
long as the following condition holds

αt,k(st ) < γt,k(st ) for all t ≥ 1 and all st . (2.6)

This condition is implied by the basic assumptions under which
the results of this paper are obtained (see Section 4). Note that
if there are no transaction costs, i.e. αt,k = 1, then (2.6) means
that the total volumes of all the assets grow in time at a strictly
123
positive rate. In another extreme case, when γt,k = 1, i.e. Vt,k
s constant in t , condition (2.6) requires that αt,k < 1, i.e. the
ransaction cost rate is non-zero. This property – termed in Math-
matical Finance ‘‘efficient market friction’’ (see, e.g., Kabanov
nd Safarian (2009), p. 117) – plays an important role in various
odels with transaction costs, excluding phenomena like the
aint Petersburg paradox. In our context it is indispensable since
n those cases when this assumption does not hold, a short-run
quilibrium might fail to exist.
Given a strategy profile (Λ1, . . . , ΛN ) of investors and their

nitial endowments w1
0, . . . , w

N
0 , we can generate a path of the

arket game by setting
i
0 = Λi

0, i = 1, . . . ,N, (2.7)

i
t = Λi

t (s
t , pt−1, xt−1, λt−1), t = 1, 2, . . . , i = 1, . . . ,N, (2.8)

nd by defining pt and xit recursively according to Eqs. (2.2)–(2.5).
he random dynamical system described defines step by step the
ectors of investment proportions λi

t (s
t ), the equilibrium prices

t (st ) and the investors’ portfolios xit (s
t ) as measurable vector

unctions of st for each moment of time t ≥ 0. Thus we obtain a
andom path of the game

pt (st ); x1t (s
t ), . . . , xNt (s

t ); λ1
t (s

t ), . . . , λN
t (s

t )), t ≥ 0, (2.9)

s a vector stochastic process in RK
+

× RKN
+

× RKN
+

.
The above description of asset market dynamics requires clar-

fication. Eqs. (2.3) and (2.5) make sense only if pt,k > 0, or
quivalently, if the aggregate demand for each asset (under the
quilibrium prices) is strictly positive. Those strategy profiles
hich guarantee that the recursive procedure described above

eads at each step to strictly positive equilibrium prices will
e called admissible. In what follows, we will deal only with
uch strategy profiles. The hypothesis of admissibility guarantees
hat the random dynamical system under consideration is well-
efined. Under this hypothesis, we obtain by induction that on
he equilibrium path all the portfolios xit = (xit,1, . . . , x

i
t,K ) are

on-zero and the wealth
i
t := ⟨Dt + pt , xit−1⟩ (2.10)

f each investor is strictly positive. Further, by summing up
qs. (2.5) over i = 1, . . . ,N , we find that
N

i=1

xit,k =
αt,k

∑N
i=1 λi

t,k⟨Dt + pt , xit−1⟩

pt,k
=

pt,kVt,k

pt,k
= Vt,k (2.11)

the market clears) for every asset k and each date t ≥ 1. The
nalogous relations for t = 0 can be obtained by summing
p Eqs. (2.3). Thus for every equilibrium state of the market
pt , x1t , . . . , x

N
t ), we have pt > 0, xit ̸= 0 and (2.11).

We give a simple sufficient condition for a strategy profile to
be admissible. This condition will hold for all the strategy profiles
we shall deal with in the present paper, and in this sense it does
not restrict generality. Suppose that some trader, say trader 1,
uses a portfolio rule that always prescribes to invest into all the
assets in strictly positive proportions λ1

t,k. Then a strategy profile
containing this portfolio rule is admissible. Indeed, for t = 0, we
get from (2.2) that p0,k ≥ α0,kV−1

0,k λ
1
0,kw

1
0 > 0 and from (2.3)

that x10 = (x10,1, . . . , x
1
0,K ) > 0 (coordinatewise). Assuming that

x1t−1 > 0 and arguing by induction, we obtain

⟨Dt + pt , x1t−1⟩ ≥ ⟨Dt , x1t−1⟩ > 0

in view of (2.1), which in turn yields pt > 0 and x1t > 0 by virtue
of (2.4) and (2.5), as long as λ1 > 0.
t,k
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. The main results

Let (Λ1, . . . , ΛN ) be an admissible strategy profile of the in-
vestors. Consider the path (2.9) of the random dynamical system
generated by this strategy profile and the given initial endow-
ments wi

0. We are primarily interested in the long-run behavior
of the relative wealth or the market shares r it := wi

t/Wt of the
raders, where wi

t is the investor i’s wealth at date t ≥ 0 and
t :=

∑N
i=1 wi

t is the total market wealth. We shall say that a
ortfolio rule Λ, or an investor i using it, survives with probability
ne if inft≥0 r it > 0 almost surely (a.s.). This means that for almost
ll realizations of the process of states of the world s1, s2, . . ., the
arket share of investor i using Λ is bounded away from zero by
strictly positive random variable.

efinition. Let us say that a portfolio rule Λ is a survival strategy
f any investor using it survives with probability one irrespective
f what portfolio rules are used by the other investors.
We will construct a strategy Λ∗ which, as we shall prove, will

e a survival strategy. Put

t,k :=
αt,k

γt,k
=

αt,kVt−1,k

Vt,k
, t ≥ 1, k = 1, . . . , K .

Define the relative dividends of the assets k = 1, . . . , K by

Rt,k = Rt,k(st ) :=
Dt,k(st )Vt−1,k(st−1)∑K

m=1 Dt,m(st )Vt−1,m(st−1)
,

k = 1, . . . , K , t ≥ 1, (3.1)

and put Rt (st ) := (Rt,1(st ), . . . , Rt,K (st )). The strategy Λ∗
=

(λ∗
t (s

t ))t≥0, where λ∗
t = (λ∗

t,1, . . . , λ
∗

t,K ), is defined as the basic
strategy satisfying the equation

Et [ρt+1,kλ
∗

t+1,k + (1 −

K∑
m=1

ρt+1,mλ∗

t+1,m)Rt+1,k]

= λ∗

t,k (a.s.), k = 1, . . . , K . (3.2)

Here Et (·) = E(·|st ) stands for the conditional expectation given
st . We will provide conditions under which the strategy Λ∗ exists
and is unique up to stochastic equivalence, i.e. if Λ = (λt (st ))t≥0
is another solution to (3.2), then λ∗

t = λt (a.s.) for all t .

Throughout the paper we will assume that the following con-
ditions hold:

(A.1) There exist constants υ > 0 and l ≥ 0 such that for each
t and k, we have

max
1≤m≤l

Rt+m,k ≥ υ. (3.3)

(A.2) There exist strictly positive constants κ and α such that
for all k, t

α ≤ ρt,k ≤ 1 − κ. (3.4)

Theorem 1. Under assumptions (A.1) and (A.2), a solution (λ∗
t )t≥0

to Eq. (3.2) exists and is unique up to stochastic equivalence. There
exists a constant δ > 0 such that λ∗

t,k ≥ δ.

For a proof of Theorem 1 see Appendix B, Theorem B.2.
Let us discuss the meaning of Eq. (3.2). Suppose for the mo-

ment that the growth rates of all the assets are the same, so that

ρt,1 = ρt,2 = · · · = ρt,K = ρt . (3.5)

In this case, Eq. (3.2) takes on the following form

E [ρ λ∗
+ (1 − ρ )R ] = λ∗ (a.s.), (3.6)
t t+1 t+1,k t+1 t+1,k t,k c

124
and it admits an explicit solution. The kth coordinate λ∗

t,k of the
ector λ∗

t can be represented as the conditional expectation of the
um of the series

∗

t,k = Et
∞∑
l=1

ρ l
tRt+l,k , (3.7)

here

l
t :=

{
1 − ρt+l , if l = 1,

ρt+1ρt+2....ρt+l−1(1 − ρt+l), if l > 1. (3.8)

ote that in view of (3.4), the series of random variables
∞

l=1

ρ l
t = (1 − ρt+1) + ρt+1(1 − ρt+2) + ρt+1ρt+2(1 − ρt+3) + · · ·

onverges uniformly, and its sum is equal to one. Therefore
he series of random vectors

∑
∞

l=1 ρ l
tRt+l,k in (3.7) converges

niformly to a random vector belonging the unit simplex ∆K ,
o that the right-hand side of (3.7) is well-defined. The proof
f Eq. (3.7) will be given in Proposition 5.
Assume that ρt = ρ is constant. Then formula (3.7) can be

ritten as

∗

t,k = Et
∞∑
l=1

[(1 − ρ)ρ l−1Rt+l,k]. (3.9)

urther, if the random elements st are independent and identi-
ally distributed (i.i.d.) and the relative dividends Rt,k(st ) = Rk(st )
epend only on the current state st and do not explicitly depend
n t , then EtRk(st+l) = ERk(st ) (l ≥ 1), and so
∗

t,k = ERk(st ), (3.10)

hich means that the strategy Λ∗ is formed by the sequence of
ectors (ER1(st ), . . . , ERK (st )) (constant and independent of t and
t ). Note that in this special case, the formula (3.10) for Λ∗ does
ot involve the factor ρ.
Formulas (3.7), (3.9) and (3.10) reflect two general principles

n Financial Economics:
(a) The strategy Λ∗ prescribes the allocation of wealth among

ssets in the proportions of their fundamental values—the expec-
ations of the future relative (discounted, weighted) dividends.

(b) The portfolio rule Λ∗ defined in terms of the relative
ividends provides an investment recommendation in line with
he CAPM principles, emphasizing the role of the market portfolio
see, e.g., Evstigneev et al., 2015, Chapter 7).

In this connection it should be emphasized that instead of the
raditional weighing assets according to their prices, the weights
n the definition of Λ∗ are based on fundamentals, so that Λ∗ is
n example of fundamental indexing (Arnott et al., 2008).
As we have already noted, EBF can be viewed as an extension

f the classical capital growth theory (Kelly, 1956; Breiman, 1961;
lgoet and Cover, 1988, and others) to the case of endogenous
sset prices and returns. In the classical setting, a central role is
layed by the famous Kelly portfolio rule (Kelly, 1956) guarantee-
ng the fastest asymptotic growth rate of wealth in the long run.
he Kelly rule is obtained by the maximization of the expected
ogarithm of the portfolio return. It can be shown (see the next
ection) that in the present model survival is equivalent to the
asted relative growth of wealth in the long run. Therefore Λ∗

ay be viewed as a counterpart of the Kelly portfolio rule in the
resent model. However, in the game-theoretic model at hand,
here the performance of a strategy depends not only on the
trategy itself but on the whole strategy profile, Λ∗ cannot be
btained as a solution to a single-agent optimization problem
ith a logarithmic or any other objective functional.
It should be noted that in the case of different ρt,k, when
ondition (3.5) does not hold, we cannot provide an explicit
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ormula, like (3.7), for the strategy Λ∗. However, we can suggest
n algorithm for computing Λ∗ converging at an exponential rate.

This algorithm is actually contained in the proof of the existence
and uniqueness of a solution to Eq. (3.2), see Appendix B, formulas
(B.9) and (B.10).

The main results of the paper are formulated in Theorems 2
and 3.

Theorem 2. The portfolio rule Λ∗ is a survival strategy.

As we have already noted, the portfolio rule Λ∗ belongs to the
lass of basic portfolio rules: the investment proportions λ∗

t (s
t )

depend only on the history st of the process of states of the world
and do not depend on the market history.

Note that the class of basic strategies is sufficient in the follow-
ing sense. Any sequence of vectors rt = (r1t , . . . , r

N
t ) (rt = rt (st ))

of market shares generated by some strategy profile (Λ1, . . . , ΛN )
can be generated by a strategy profile (λ1

t (s
t ), . . . , λN

t (s
t )) consist-

ing of basic portfolio rules. The corresponding vector functions
λi
t (s

t ) can be defined recursively by (2.7) and (2.8), using (2.2)–
(2.5). Thus it is sufficient to prove Theorem 2 only for basic port-
folio rules; this will imply that the portfolio rule (3.7) survives in
competition with any, not necessarily basic, strategies.

The following result shows that the survival portfolio rule Λ∗

is unique in the class of all basic strategies.

Theorem 3. If there exists another basic survival strategy Λ = (λt ),
then:
∞∑
t=0

∥λ∗

t − λt∥
2 < ∞ (a.s.).

It is not known whether this result remains valid for the
class of general, not necessarily basic, strategies. This question
remains open; it indicates an interesting direction for further
research. Some examples pertaining to a different, but closely
related, model might suggest a conjecture that the answer to this
question is negative (see Amir et al., 2013, Section 5).

Proofs of Theorems 2 and 3 are given in the remainder of the
paper.

4. Discussion

In this section we discuss the EBF approach, the model under
consideration and the results obtained.

1. Marshallian temporary equilibrium. In the general
methodological perspective, the modeling framework at hand re-
lies upon the Marshallian (Marshall, 1949) principle of temporary
equilibrium. The dynamics of the asset market in this framework
are similar to the dynamics of the commodity market as outlined
in the classical treatise by Marshall (1949) (Book V, Chapter
II “Temporary Equilibrium of Demand and Supply”). The ideas
of Marshall were developed in the framework of mathematical
economics by Samuelson (1947). As it was noticed by Samuelson
and discussed in detail by Schlicht (1985), in order to study the
process of market dynamics by using the Marshallian “moving
equilibrium method,” one needs to distinguish between at least
two sets of economic variables changing with different speeds.
Then the set of variables changing slower (in our case, the set
xt = (x1t , . . . ., x

N
t ) of investors’ portfolios) can be temporarily

fixed, while the other (in our case, the asset prices pt ) can be
assumed to rapidly reach the unique state of partial equilibrium.
Samuelson (1947), pp. 321–323, writes about this approach:

I, myself, find it convenient to visualize equilib-
rium processes of quite different speed, some very
slow compared to others. Within each long run there
125
is a shorter run, and within each shorter run there is
a still shorter run, and so forth in an infinite regres-
sion. For analytic purposes it is often convenient to
treat slow processes as data and concentrate upon
the processes of interest. For example, in a short
run study of the level of investment, income, and
employment, it is often convenient to assume that
the stock of capital is perfectly or sensibly fixed.

As it follows from the above citation, Samuelson thinks about a
hierarchy of various equilibrium processes with different speeds.
In our model, it is sufficient to deal with only two levels of
such a hierarchy. We leave the price adjustment process leading
to the solution of the partial equilibrium problem (2.4) beyond
the scope of the model. It can be shown, however, that this
equilibrium will be reached at an exponential rate in the course
of a naturally defined tâtonnement procedure. This can be demon-
strated by using the contraction property of the operator (5.1)
involved in the equilibrium pricing equation (2.4). Our framework
makes it possible to admit a whole spectrum of mechanisms
leading to an equilibrium in the short run. In reality, various
auction-type mechanisms are used for the purpose of equilibrat-
ing bids and offers, resulting in market clearing. An analysis of
several types of such mechanisms and their implications for the
structure of trading in financial markets has been performed by
Bottazzi et al. (2005).

A rigorous mathematical treatment of the above multiscale
approach, involving “rapid” and “slow” variables, is provided
within continuous-time settings in the theory of singular pertur-
bations, see e.g. Smith (1985) and Kevorkian and Cole (1996). In
connection with economic modeling, questions of this kind are
considered in detail in the monograph by Schlicht (1985). The
equations on pp. 29–30 in Schlicht (1985) are direct continuous-
time (deterministic) counterparts of our Eqs. (2.4) and (2.5).

The term ‘‘temporary equilibrium’’ was apparently coined for
the first time by Marshall. However, in the last decades this term
has been associated basically with a different, non-Marshallian
notion, going back to Lindahl (1939) and Hicks (1946). This notion
was developed in formal settings by Grandmont, Hildenbrand
and others, see Grandmont (1988, 1977) and Grandmont and
Hildenbrand (1974). The characteristic feature of the Lindahl–
Hicks temporary equilibrium is the idea of forecasts or beliefs
about the future states of the world, which the market partic-
ipants possess and which are formalized in terms of stochastic
kernels (transition functions) conditioning the distributions of
future states of the world upon the agents’ private information. A
comprehensive discussion of this direction of research is provided
by Magill and Quinzii (2003). In this work, we pursue a com-
pletely different approach. Our model might indirectly take into
account agents’ forecasts or beliefs, but they can be only implicitly
reflected in the agents’ investment strategies. We do not need to
model in formal terms how the market players form, update and
use these beliefs in their investment decisions.

For further comments on the comparison of the financial DSGE
models based on the traditional Walrasian paradigm and those
relying upon the EBF approach, see Amir et al. (2020), Section 7.

2. In order to survive you have to win! One might think
that the focus on survival substantially restricts the scope of the
analysis, since ‘‘one should care about survival only if things go
wrong’’. It turns out, however, that the class of survival strategies
in most of the EBF models coincides with the class of unbeatable
strategies performing in the long run not worse in terms of
wealth accumulation than any other strategies competing in the
market. To demonstrate this let us reformulate the notion of
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survival strategy in terms of the wealth processes wi
t of the

arket players i = 1, 2, . . . ,N . Survival of a portfolio rule Λ1

sed by player 1 means that w1
t ≥ c

∑N
i=1 wi

t , where c is a strictly
ositive random variable. The last inequality holds if and only if
i
t ≤ Cw1

t , i = 1, . . . ,N, (4.1)

here C is some random variable. Property (4.1) expresses the
act that the wealth of any player i using any strategy Λi cannot
grow asymptotically faster than the wealth of player 1 who uses
the strategy Λ1. If this is the case, the portfolio rule Λ1 is called
unbeatable. Thus survival strategies are those and only those that
are unbeatable: in order to survive, you have to win!

For a general definition and discussion of the notion of an
unbeatable strategy as a game solution concept see Amir et al.
(2013), Section 6.

3. Evolutionary portfolio theory. One of the sources of mo-
tivation for EBF has always been related to quantitative applica-
tions of the results to portfolio selection problems. The data of
EBF models needed for quantitative financial analysis are essen-
tially the same as those needed for the applications of the theory
of derivative securities pricing (e.g. the Black–Scholes formula)
in Mathematical Finance/Financial Engineering. They do not need
the knowledge, or the algorithms for revealing, hidden agents’
characteristics such as their utilities and beliefs. The model and
the results are described in operational terms and require only
statistical estimates of objectively observable asset data.

A crucial role in the applications of EBF to portfolio selection is
played by the discovery of investment factors that deliver returns
in excess of the market. For example, Basu (1977) found the so-
called value factor, according to which investing into equities
with a high book-to-market ratio delivers higher returns than
the market. Banz (1981) found that the same is true if one
invests into equities with small market capitalization. Carhart
(1997) found the momentum factor according to which investing
in equities that have recently gone up delivers excess returns.
Moreover even though by now hundreds of investment factors
have been proposed, Harvey et al. (2016) have shown that only
a few factors are needed to understand the dynamics of equity
returns. The current state of these discoveries is summarized in
the Fama and French (2015) five-factor model. According to these
empirical results, the return of every portfolio selection strategy
can be decomposed into its allocation to a few investment factors.
Thus, it is natural to model the dynamics of equity markets by
modeling the dynamic interaction of those investment factors.
And this is what EBF is perfectly suited for. In the EBF framework,
an investment factor defines a strategy determining the corre-
sponding investment proportions. Note that investment factors
are not based on individuals’ utility functions and subjective
probabilities! EBF can then be used to compute what impact the
increase in relative wealth corresponding to one factor has on
any other factor. In particular, the impact of a factor on itself
gives a model-based measure of the capacity of the factor. This
is very practical information since investors should avoid being
stuck in crowded strategies. Also, when a certain investment
factor gets fashionable this has cross impacts on other factors
that one can compute based on the EBF model. For example, in
recent years investing according to ESG (Environmental, Social,
and Corporate Governance) criteria has become fashionable, and
the EBF approach shows that this has a strong negative impact
on the momentum factor. Finally, based on this approach one can
compute the dynamics of the relative wealth, so that one can use
the EBF model to determine which investment factors survive in
the long run. A first paper systematically developing these ideas
126
and opening up a new realm of fruitful applications of EBF to
portfolio selection problems has recently been published in the
Journal of Portfolio Management (Hens et al., 2020).

5. Auxiliary propositions

In this section we prove several auxiliary propositions needed
for the analysis of the model at hand. The first proposition estab-
lishes the existence and uniqueness of an equilibrium price vector
at each date t ≥ 0.

roposition 1. Let assumption (2.6) hold. Let xt−1 = (x1t−1, . . . ,
N
t−1) be a set of vectors xit−1 ∈ RK

+
satisfying (2.11). Then for any st

there exists a unique solution pt ∈ RK
+

to Eqs. (2.4). This solution is
measurable with respect to all the parameters involved in (2.4).

Proof of Proposition 1. Fix some t and st and consider the
operator transforming a vector p = (p1, . . . , pK ) ∈ RK

+
into the

vector q = (q1, . . . , qK ) ∈ RK
+

with coordinates

qk = αt,kV−1
t,k

N∑
i=1

λi
t,k⟨Dt + p, xit−1⟩. (5.1)

This operator is contracting in the norm ∥p∥V :=
∑

k |pk|Vt−1,k.
Indeed, by virtue of (2.6) we have

β := max
k=1,...,K

{αt,kVt−1,kV−1
t,k } < 1,

and so

∥q − q′
∥V =

K∑
k=1

|qk − q′

k|Vt−1,k ≤

K∑
k=1

αt,kVt−1,kV−1
t,k

N∑
i=1

λi
t,k|⟨p − p′, xit−1⟩|

≤ β

N∑
i=1

K∑
k=1

λi
t,k|⟨p − p′, xit−1⟩| =

β

N∑
i=1

|⟨p − p′, xit−1⟩| ≤ β

N∑
i=1

K∑
m=1

|pm − p′

m|xit−1,m =

β

K∑
m=1

N∑
i=1

|pm − p′

m|xit−1,m = β

K∑
m=1

|pm − p′

m|Vt−1,m

= β∥p − p′
∥V ,

where the last but one equality follows from (2.11). By using the
contraction principle, we obtain the existence, uniqueness and
measurability of the solution to (2.4). □

In the next proposition, we derive a system of equations gov-
erning the dynamics of the market shares of the investors given
their admissible strategy profile (Λ1, . . . , ΛN ). Consider the path
(2.9) of the random dynamical system generated by (Λ1, . . . , ΛN )
and the sequence of vectors rt = (r1t , . . . , r

N
t ), where r it is the

nvestor i’s market share at date t .

roposition 2. The following equations hold:

i
t+1 =

K∑
k=1

(ρt+1,k⟨λt+1,k, wt+1⟩ + Dt+1,kVt,k)
λi
t,kw

i
t

⟨λt,k, wt⟩
, (5.2)

i = 1, . . . ,N, t ≥ 0.
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roof of Proposition 2. From (2.4) and (2.5) we get

t,k = αt,kV−1
t,k

N∑
i=1

λi
t,k⟨pt + Dt , xit−1⟩

= αt,kV−1
t,k

N∑
i=1

λi
t,kw

i
t = αt,kV−1

t,k ⟨λt,k, wt⟩,

i
t,k =

αt,kλ
i
t,kw

i
t

pt,k
=

αt,kλ
i
t,kw

i
t

αt,kV−1
t,k ⟨λt,k, wt⟩

=
Vt,kλ

i
t,kw

i
t

⟨λt,k, wt⟩
,

where t ≥ 1, wt := (w1
t , . . . , w

N
t ) and λt,k := (λ1

t,k, . . . , λ
N
t,k).

Consequently, we have

wi
t+1 =

K∑
k=1

(pt+1,k + Dt+1,k)xit,k

=

K∑
k=1

(
αt+1,k⟨λt+1,k, wt+1⟩

Vt+1,k
+ Dt+1,k

)
Vt,kλ

i
t,kw

i
t

⟨λt,k, wt⟩
=

K∑
k=1

(
αt+1,k⟨λt+1,k, wt+1⟩Vt,k

Vt+1,k
+ Dt+1,kVt,k

)
λi
t,kw

i
t

⟨λt,k, wt⟩
=

K∑
k=1

(⟨λt+1,k, wt+1⟩ρt+1,k + Dt+1,kVt,k)
λi
t,kw

i
t

⟨λt,k, wt⟩
,

here, we recall, ρt+1,k = αt+1,kVt,k/Vt+1,k. □

Consider the model with two traders (N = 2) using strategies
Λi

= (λi
t,k(s

t )), i = 1, 2, and denote by xt the ratio of their market
shares:

xt =
r1t
r2t

=
w1

t

w2
t
.

Recall that the relative dividends Rt,k(st ) of the assets k = 1, . . . , K
re defined by (3.1), and Rt (st ) denotes the vector (Rt,1(st ), . . . ,
t,K (st )). Further, let us define for i = 1, 2,

i
t+1 := 1 −

K∑
k=1

ρt+1,kλ
i
t+1,k =

K∑
k=1

(1 − ρt+1,k)λi
t+1,k . (5.3)

roposition 3. The sequence xt is generated by the following ran-
om dynamical system

t+1 = xt

∑K
k=1[ρt+1,kλ

2
t+1,k + Rt+1,kU2

t+1]
λ1
t,k

λ1
t,kxt + λ2

t,k∑K
k=1[ρt+1,kλ

1
t+1,k + Rt+1,kU1

t+1]
λ2
t,k

λ1
t,kxt + λ2

t,k

(t = 0, 1, . . .). (5.4)

Proof of Proposition 3. Let i ∈ {1, 2} and j ∈ {1, 2}, j ̸= i. By
virtue of Proposition 2, we have (5.2). Then

Wt+1 = w1
t+1 + w2

t+1 =

K∑
k=1

ρt+1,k
⟨
λt+1,k, wt+1

⟩
+

K∑
k=1

Dt+1,kVt,k ,

and so
K∑

k=1

Dt+1,kVt,k = Wt+1 −

K∑
k=1

ρt+1,k
⟨
λt+1,k, wt+1

⟩
=
⟨
wt+1,Ut+1

⟩
.

(5.5)

Indeed,⟨
wt+1,Ut+1

⟩
=

2∑
wl

t+1(1 −

K∑
ρt+1,kλ

l
t+1,k)
l=1 k=1

127
= Wt+1 −

K∑
k=1

ρt+1,k

2∑
l=1

wl
t+1λ

l
t+1,k

= Wt+1 −

K∑
k=1

ρt+1,k⟨wt+1, λt+1,k⟩.

By using the definition of the relative dividends Rt+1,k, we can
rewrite formula (5.2) as follows:

wi
t+1 =

K∑
k=1

[
ρt+1,k

⟨
λt+1,k,wt+1

⟩
+
⟨
wt+1,Ut+1

⟩
Rt+1,k

] λi
t,kw

i
t⟨

λt,k, wt
⟩ .

Further, consider the expression in the brackets above:

ρt+1,k
⟨
λt+1,k,wt+1

⟩
+
⟨
wt+1,Ut+1

⟩
Rt+1,k

= wi
t+1

(
ρt+1,kλ

i
t+1,k + Rt+1,kU i

t+1

)
+

w
j
t+1

(
ρt+1,kλ

j
t+1,k + Rt+1,kU

j
t+1

)
. (5.6)

his, combined with (5.2), yields

i
t+1 = wi

t+1

K∑
k=1

[
ρt+1,kλ

i
t+1,k + Rt+1,kU i

t+1

] λi
t,kw

i
t⟨

λt,k, wt
⟩+

w
j
t+1

K∑
k=1

[
ρt+1,kλ

j
t+1,k + Rt+1,kU

j
t+1

] λi
t,kw

i
t⟨

λt,k, wt
⟩ ,

and so

wi
t+1

(
1 −

K∑
k=1

[
ρt+1,kλ

i
t+1,k + Rt+1,kU i

t+1

] λi
t,kw

i
t⟨

λt,k, wt
⟩) =

w
j
t+1

K∑
k=1

[
ρt+1,kλ

j
t+1,k + Rt+1,kU

j
t+1

] λi
t,kw

i
t⟨

λt,k, wt
⟩ . (5.7)

inally, note that

λi
t,kw

i
t⟨

λt,k, wt
⟩ = 1 −

λ
j
t,kw

j
t⟨

λt,k, wt
⟩ ,

nd consequently, the expression in the parentheses in Eq. (5.7)
an be written as:

−

K∑
k=1

[
ρt+1,kλ

i
t+1,k + Rt+1,kU i

t+1

] (
1 −

λ
j
t,kw

j
t⟨

λt,k, wt
⟩) =

1 −

K∑
k=1

[
ρt+1,kλ

i
t+1,k + Rt+1,kU i

t+1

]
+

K∑
k=1

[
ρt+1,kλ

i
t+1,k + Rt+1,kU i

t+1

] λ
j
t,kw

j
t⟨

λt,k, wt
⟩ =

K∑
k=1

[
ρt+1,kλ

i
t+1,k + Rt+1,kU i

t+1

] λ
j
t,kw

j
t⟨

λt,k, wt
⟩ ,

where the last equality follows from (5.3). Thus we obtain from
(5.7)

wi
t+1

w
j
t+1

=
wi

t

w
j
t

∑K
k=1

[
ρt+1,kλ

j
t+1,k + Rt+1,kU

j
t+1

] λi
t,k⟨

λt,k, wt
⟩

∑K
k=1

[
ρt+1,kλ

i
t+1,k + Rt+1,kU i

t+1

] λ
j
t,k⟨

λt,k, wt
⟩ ,

which completes the proof. □
The next proposition shows that it is sufficient to consider the

case when N = 2, i.e., the general model can be reduced to the
case of two investors.
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roposition 4. In the model with two investors i = 1, 2 using the
trategies Λ and Λ̃, respectively, the wealth w1

t of the first player
oincides with the wealth w1

t of the first player in the original model,
and the wealth w̃2

t of the second ‘‘aggregate’’ investor coincides with
the total wealth w2

t + · · · + wN
t of the group of N − 1 investors

i = 2, . . . ,N in the original model.

Proof of Proposition 4. Define

w̃2
t = w2

t + · · · + wN
t , (5.8)

λ̃2
t,k =

λ2
t,kw

2
t + · · · + λN

t,kw
N
t

w̃2
t

(k = 1, 2, . . . , K ). (5.9)

e have

˜2
t,k ≥ 0,

K∑
k=1

λ̃2
t,k =

w2
t + · · · + wN

t

w2
t + · · · + wN

t
= 1,

hich means that the vector λ̃2
t := (λ̃2

t,1, . . . , λ̃
2
t,K ) belongs to

he unit simplex ∆K . Let us regard λ̃2
t = (λ̃2

t,1, . . . , λ̃
2
t,K ) as

he vector of investment proportions of an ‘‘aggregate investor’’,
hose wealth is w̃2

t = w2
t + · · · + wN

t . The sequence of vectors
˜2
t = λ̃2

t (s
t ) defines a portfolio rule, which will be denoted by Λ̃.

ote that
˜2
t,kw̃

2
t = λ2

t,kw
2
t + · · · + λN

t,kw
N
t , (5.10)

nd so

⟨λt,k, wt⟩ = λ1
t,kw

1
t + λ̃2

t,kw̃
2
t ,

⟨λt+1,k, wt+1⟩ = λ1
t+1,kw

1
t+1 + λ̃2

t+1,kw̃
2
t+1.

(5.11)

ecall that the dynamics of wealth of N investors is governed by
he system of equations

i
t+1 =

K∑
k=1

(ρt+1,k⟨λt+1,k, wt+1⟩ + Dt+1,kVt,k)
λi
t,kw

i
t

⟨λt,k, wt⟩
,

i = 1, 2, . . . ,N

(see (5.2)). By summing up these equations over i = 2, 3, . . . ,N
and using (5.8), (5.10) and (5.11), we get

w1
t+1 =

K∑
k=1

[ρt+1,k(λ1
t+1,kw

i
t+1 + λ̃2

t+1,kw̃
2
t+1) + Dt+1,kVt,k]

×
λ1
t,kw

1
t

λ1
t,kw

1
t + λ̃2

t,kw̃
2
t

,

˜
2
t+1 =

K∑
k=1

[ρt+1,k(λ1
t+1,kw

1
t+1 + λ̃2

t+1,kw̃
2
t+1) + Dt+1,kVt,k]

×
λ̃2
t,kw̃

2
t

λ1
t,kw

1
t + λ̃2

t,kw̃
2
t

,

hich completes the proof. □

roposition 5. Under assumption (3.5), the portfolio rule Λ∗
=

λ∗

t,k) can be computed by formula (3.7).

roof of Proposition 5. Suppose (3.7) holds. Let us verify (3.6).
e have

t (ρt+1λ
∗

t+1,k) = Et (ρt+1Et+1

∞∑
l=1

ρ l
t+1Rt+1+l,k) =

Et (Et+1

∞∑
ρt+1ρ

l
t+1Rt+1+l,k) = Et (

∞∑
ρt+1ρ

l
t+1Rt+1+l,k),
l=1 l=1

128
and so

Et [ρt+1λ
∗

t+1,k + (1 − ρt+1)Rt+1,k]

= Et [
∞∑
l=1

ρt+1ρ
l
t+1Rt+1+l,k + (1 − ρt+1)Rt+1,k] =

Et (
∞∑
l=1

ρ l+1
t Rt+l+1,k + ρ1

t Rt+1,k) = Et
∞∑
l=1

ρ l
tRt+l,k = λ∗

t,k

ecause 1 − ρt+1 = ρ1
t and

ρ l+1
t = ρt+1ρt+2....ρt+l(1 − ρt+l+1) = ρt+1ρ

l
t+1

or l ≥ 1. □

. Proofs of the main results

In this section, proofs of Theorems 2 and 3 are given. The
lan of the proofs is as follows. Proposition 4 shows that we can
onsider, without loss of generality, the case of two investors.
his reduces the dimension of the original random dynamical
ystem from a general N to N = 2. Proposition 3 describes a one-
imensional system which governs the evolution of the ratio xt =
1
t /r

2
t of the market shares of the two investors, and thus reduces

he dimension of the problem to 1. Our goal is to show that the
andom sequence (xt ) defined recursively by (5.4) is bounded
way from zero almost surely. To this end it turns out to be
onvenient to take a “step back” and to increase the dimension to
(the number of assets). Assuming that the first trader uses the

nvestment proportions λ1
t,k = λ∗

t,k(s
t ) prescribed by the portfolio

ule Λ∗ and the second trader employs investment proportions
2
t,k = λt,k(st ) specified by some other portfolio rule Λ, we
ntroduce the following change of variables
k
t = λt,k/xt , k = 1, . . . , K , (6.1)

nd define yt := (y1t , . . . , y
K
t ). We examine the dynamics of

he random vectors yt = yt (st ) implied by the system (5.4).
he norm |yt | :=

∑
k |ykt | of the vector yt ≥ 0 is equal to

k(λt,k/xt ) = 1/xt , and what we need is to show that 1/|yt |
s bounded away from zero (a.s.). To prove this, we construct a
tochastic Lyapunov function—a function of yt which forms a non-
egative supermartingale (ζt ) along a path (yt ) of the system at
and (see Lemma 3). By using the supermartingale convergence
heorem, we prove that the stochastic process ζt converges (a.s.),
hich implies that it is bounded (a.s.). We complete the proof
f Theorem 2 by showing that the boundedness of ζt implies
hat xt = 1/|yt | is bounded away from zero. By using the above
echniques, together with some additional considerations, we
omplete this section with a proof of Theorem 3.
We begin the realization of the plan outlined with two lemmas

ontaining inequalities involving the variables ykt defined by (6.1).
efine the non-negative random variables

t := ln(1 + |yt |) = − ln r1t , (6.2)

t,k := ln(1 +
ykt
λ∗

t,k
) = ln

(
1 +

r2t λt,k

r1t λ∗

t,k

)
, (6.3)

t+1
k,m =

1 + ymt+1/λ
∗

t+1,m

1 + ykt /λ∗

t,k
. (6.4)

In particular, we have γ t+1
k,k = (1 + ykt+1/λ

∗

t+1,k)/(1 + ykt /λ
∗

t,k).
Later in the proofs, the following two equalities will be em-

ployed:

ln γ t+1
= Z − Z (6.5)
k,m t+1,m t,k
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i
(

T

t∑
H

w

P
s
a

∑

∑

∑
T

∞

f

i∑
F

∞

nd
λt+1,mλ∗

t,k|yt+1| − λ∗

t+1,my
k
t

λ∗

t,k + ykt
= λ∗

t+1,m

(
γ t+1
k,m − 1

)
. (6.6)

he algebraic identity (6.6) can be checked quite easily, and we
eave its proof to the reader. In particular, if m = k then (6.6)
akes on the following form:

λt+1,kλ
∗

t,k|yt+1| − λ∗

t+1,ky
k
t

λ∗

t,k + ykt
= λ∗

t+1,k

(
γ t+1
k,k − 1

)
.

Proofs of Theorems 2 and 3 are based on Lemmas 1–4 which
e formulate below and prove in Appendix A.
Let us define a function

(x) =
(x − 1) ln x

x + 2
, (6.7)

hich will be helpful in estimating some logarithmic expressions.

emma 1. The function f (x) is non-negative, has a unique root x = 1
and satisfies

x − 1 ≥ ln x + f (x), x ∈ (−∞, +∞). (6.8)

emma 2. The following inequality holds:
K∑

k=1

λ∗

t+1,kZt+1,k +

K∑
m=1

K∑
k=1

Rt+1,k(1 − ρt+1,m)λ∗

t+1,mf
(
γ t+1
k,m

)
≤

K∑
k=1

ρt+1,kλ
∗

t+1,kZt,k + U∗

t+1

K∑
k=1

Rt+1,kZt,k . (6.9)

Put

ζt :=

K∑
k=1

λ∗

t,kZt,k +

K∑
m=1

K∑
k=1

Rt,k(1 − ρt,m)λ∗

t,mf
(
γ t
k,m

)
. (6.10)

Lemma 3. The sequence of random variables ζt (t ≥ 1) is a
non-negative supermartingale, and we have

ζt − Etζt+1 ≥

K∑
m=1

K∑
k=1

Rt,k(1 − ρt,m)λ∗

t,mf
(
γ t
k,m

)
≥ 0 (a.s.). (6.11)

Lemma 4. Let ζt be a supermartingale such that inft Eζt > −∞.
Then the series of non-negative random variables

∑
∞

t=0(ζt −Etζt+1)
converges (a.s.).

In what follows, in the proofs of Theorems 2 and 3 as well
as Lemmas 1–4, we will sometimes omit "a.s.’’ where it does not
lead to ambiguity.

Proof of Theorem 2. By Lemma 4, the sequence ζt defined in
(6.10) is a non-negative supermartingale. Therefore it converges
(a.s.), and hence it is bounded above (a.s.) by some random
constant C:

C ≥ ζt =

K∑
k=1

λ∗

t,kZt,k +

K∑
m=1

K∑
k=1

Rt,k(1 − ρt,m)λ∗

t,mf
(
γ t
k,m

)
≥

K∑
k=1

λ∗

t,kZt,k =

K∑
k=1

λ∗

t,k ln

(
1 +

r2t λt,k

r1t λ∗

t,k

)
.

ere, we used the non-negativity of the function f established
n Lemma 1 and the non-negativity of Rt,k, λ∗

t,m and assumption
A.2).

Recall that by virtue of Theorem 1, λ∗

t,k ≥ δ for any t, k.
herefore C/δ ≥ ln

(
1 + r2λ /r1λ∗

)
for all t, k, and there exists
t t,k t t,k

129
some random variable H such that H ≥ 1 + r2t λt,k/r1t λ
∗

t,k for all
, k. Furthermore, there exists some k such that λt,k ≥ 1/K (since

K
k=1 λt,k = 1). For this k the following inequality holds:

≥ 1 +
r2t λt,k

r1t λ∗

t,k
≥ 1 +

r2t
r1t λ∗

t,kK
≥ 1 +

r2t
r1t K

= 1 +
(1 − r1t )
r1t K

,

hich implies r1t ≥ (K (H − 1) + 1)−1
= τ . □

roof of Theorem 3. The proof of this theorem consists in several
teps. We outline these steps here and provide details of the
rguments in Appendix A.
1st step. We first show that

∞

t=0

K∑
m=1

K∑
k=1

Rt,k(γ t
k,m − 1)2 < ∞. (6.12)

2nd step. From (6.12) we deduce that

∞

t=0

K∑
m=1

K∑
k=1

Rt,k
(
ymt /λ∗

t,m − ykt−1/λ
∗

t−1,k

)2
< ∞. (6.13)

3rd step. At this step, by using (6.13), we obtain:

∞

t=0

K∑
m=1

K∑
k=1

(
ymt /λ∗

t,m − ykt /λ
∗

t,k

)2
< ∞.

his series can be estimated as:

>

∞∑
t=0

K∑
m=1

K∑
k=1

(
ymt
λ∗
t,m

−
ykt
λ∗

t,k

)2

=

∞∑
t=0

(
r2t
r1t

)2 K∑
m=1

K∑
k=1

(
λt,m

λ∗
t,m

−
λt,k

λ∗

t,k

)2

≥

∞∑
t=0

(
r2t
r1t

)2 K∑
k=1

(
λt,m

λ∗
t,m

−
λt,k

λ∗

t,k

)2

(6.14)

or each m. This fact will be used at the next step.
4th step. Next we prove the following estimate for the sum

nvolved in (6.14):

K

k=1

(
λt,m/λ∗

t,m − λt,k/λ
∗

t,k

)2
≥
(
λt,m/λ∗

t,m − 1
)2

. (6.15)

inally, by using (6.14) and inequality (6.15), we conclude

>

∞∑
t=0

(
r2t
r1t

)2 K∑
m=1

K∑
k=1

(
λt,m

λ∗
t,m

−
λt,k

λ∗

t,k

)2

≥

∞∑
t=0

(
r2t
r1t

)2 K∑
m=1

(
λt,m

λ∗
t,m

− 1
)2

=

∞∑
t=0

(
r2t
r1t

)2 K∑
m=1

(
λt,m − λ∗

t,m

λ∗
t,m

)2

≥

∞∑
t=0

(
r2t
r1t

)2 K∑
m=1

(
λt,m − λ∗

t,m

)2
=

∞∑
t=0

(
r2t
r1t

)2

|
⏐⏐λt − λ∗

t

⏐⏐ |2 ≥

∞∑
t=0

φ2
|
⏐⏐λt − λ∗

t

⏐⏐ |2,
where φ > 0 is a random variable such that r2t /r

1
t ≥ φ, which

exists because Λ = (λt ) is a survival strategy. □
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ppendix A

roof of Lemma 1. We first observe that for 0 < x ≤ 1 we have
2(x − 1)(x + 1)−1

≥ ln x. Hence

(x − 1) ≥
(x + 1) ln x

2
≥ ln x +

(x − 1) ln x
x + 2

= ln x + f (x). (A.1)

n the other hand, for x ≥ 1 we have (x − 1)(x + 1)/(2x) ≥ ln x.
herefore

− 1 ≥
2x

x + 1
ln x ≥ ln x +

(x − 1) ln x
x + 2

= ln x + f (x). (A.2)

y combining (A.1) and (A.2) we obtain (6.8). Clearly f (x) is non-
egative and if x ̸= 1, then f (x) = (x− 1) ln x/(x+ 2) ̸= 0, and so

if x ̸= 1, then f (x) > 0. □

Proof of Lemma 2. From formula (5.4) and (5.3) with λ1
t,k = λ∗

t,k
and λ2

t,k = λt,k, we obtain

xt+1 = xt

∑K
k=1[ρt+1,kλt+1,k + Rt+1,kUt+1]

λ∗

t,k

λ∗

t,kxt + λt,k∑K
k=1[ρt+1,kλ

∗

t+1,k + Rt+1,kU∗

t+1]
λt,k

λ∗

t,kxt + λt,k

.

Consequently,
K∑

k=1

[ρt+1,kλ
∗

t+1,k + Rt+1,kU∗

t+1]
λt,k

λ∗

t,kxt + λt,k

=

K∑
k=1

[ρt+1,k
λt+1,k

xt+1
+

Rt+1,k

xt+1
Ut+1]

λ∗

t,kxt
λ∗

t,kxt + λt,k
.

By using the notation ykt = λt,k/xt and the fact that |yt | = 1/xt ,
we rewrite the above formula as

K∑
k=1

[ρt+1,kλ
∗

t+1,k + Rt+1,kU∗

t+1]
ykt

λ∗

t,k + ykt

=

K∑
k=1

[ρt+1,kykt+1 + Rt+1,k |yt+1|Ut+1]
λ∗

t,k

λ∗

t,k + ykt
,

hich yields
K∑

k=1

ρt+1,k
λ∗

t,ky
k
t+1 − λ∗

t+1,ky
k
t

λ∗

t,k + ykt

+

K∑
k=1

Rt+1,k
Ut+1λ

∗

t,k|yt+1| − U∗

t+1y
k
t

λ∗

t,k + ykt
= 0. (A.3)

ecalling the definition of Ut+1 (5.3), we notice that

Ut+1λ
∗

t,k|yt+1| − U∗

t+1y
k
t

λ∗

t,k + ykt
=

K∑
m=1

(1 − ρt+1,m)λ∗

t+1,m

(
γ t+1
k,m − 1

)
,

here γ t+1
k,m comes from (6.4). Then using (6.4) and (6.6), we write

A.3) as
K∑

k=1

ρt+1,kλ
∗

t+1,k

(
γ t+1
k,k − 1

)
+

K∑
m=1

K∑
k=1

Rt+1,k(1 − ρt+1,m)λ∗

t+1,m

(
γ t+1
k,m − 1

)
= 0. (A.4)

The first sum in (A.4) can be estimated by using the well-
nown inequality γ t+1

− 1 ≥ ln γ t+1. To estimate the second
k,k k,k

130
um let us employ Lemma 1: γ t+1
k,m − 1 ≥ ln γ t+1

k,m + f (γ t+1
k,m ). Then

e have
K∑

k=1

ρt+1,kλ
∗

t+1,k ln γ t+1
k,k +

K∑
m=1

K∑
k=1

Rt+1,k

× (1 − ρt+1,m)λ∗

t+1,m(ln γ t+1
k,m + f (γ t+1

k,m )) ≤ 0.

ecall that ln γ t+1
k,m = Zt+1,m − Zt,k, and so

K

k=1

ρt+1,kλ
∗

t+1,k(Zt+1,k − Zt,k)+

K∑
m=1

K∑
k=1

Rt+1,k(1 − ρt+1,m)λ∗

t+1,m(Zt+1,m − Zt,k + f (γ t+1
k,m )) ≤ 0.

his implies
K∑

k=1

λ∗

t+1,kZt+1,k +

K∑
m=1

K∑
k=1

Rt+1,k(1 − ρt+1,m)λ∗

t+1,mf
(
γ t+1
k,m

)
≤

K∑
k=1

ρt+1,kλ
∗

t+1,kZt,k + U∗

t+1

K∑
k=1

Rt+1,kZt,k.

his inequality obtained is nothing but the one in (6.9), which
ompletes the proof. □

roof of Lemma 3. By virtue of Lemma 1, the function f is
on-negative, and so we have
K

m=1

K∑
k=1

Rt,k(1 − ρt,m)λ∗

t,mf
(
γ t
k,m

)
≥ 0. (A.5)

his implies that ζt ≥ 0. By taking the conditional expectation
t (·) of both sides of (6.9), we obtain the following chain of
elations:

tζt+1 = Et

[
K∑

k=1

λ∗

t+1,kZt+1,k +

K∑
m=1

K∑
k=1

Rt+1,k

× (1 − ρt+1,m)λ∗

t+1,mf
(
γ t+1
k,m

)]
≤

Et
K∑

k=1

[ρt+1,kλ
∗

t+1,kZt,k + U∗

t+1Rt+1,kZt,k] =

K∑
k=1

Zt,kEt
[
ρt+1,kλ

∗

t+1,k + U∗

t+1Rt+1,k
]

=

K∑
k=1

Zt,kλ∗

t,k (A.6)

here the last equality follows from the definition of λ∗

t,k. By
sing (A.5) and (A.6), we find

tζt+1 ≤ Etζt+1 +

K∑
m=1

K∑
k=1

Rt,k(1 − ρt,m)λ∗

t,mf
(
γ t
k,m

)
≤

K∑
k=1

Zt,kλ∗

t,k+

K∑
m=1

K∑
k=1

Rt,k(1 − ρt,m)λ∗

t,mf
(
γ t
k,m

)
= ζt . (A.7)

To complete the proof that ζt is a supermartingale it is suffi-
ient to prove that the random variable

1 =

K∑
λ∗

1,kZ1,k +

K∑ K∑
R1,k(1 − ρ1,m)λ∗

1,mf
(
γ 1
k,m

)

k=1 m=1 k=1
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s bounded. To this end we notice that
1
k,m = (1+ym1 /λ∗

1,m)/(1+yk0/λ
∗

0,k) ≤ 1+ym1 /λ∗

1,m ≤ 1+r21/r
1
1 δ (a.s.)

ecause λ∗

1,k ≥ δ (see Theorem 1). Now it remains only to show
hat r11 is bounded away from zero by a strictly positive constant.

From Eq. (5.4) we get

r11
r21

=
r10
r20

∑K
k=1[ρ1,kλ1,k + R1,kU1]

λ∗

0,k

λ∗

0,kx0 + λ0,k∑K
k=1[ρ1,kλ

∗

1,k + R1,kU∗

1 ]
λ0,k

λ∗

0,kx0 + λ0,k

=:
r10
r20

A
B
. (A.8)

ince r20 is a strictly positive constant, it is sufficient to show that
he nominator of the above fraction, which we denote by A, is
ounded away from zero and the denominator, denoted by B, is
ounded above. We have

≥ U1

K∑
k=1

R1,k
λ∗

0,k

λ∗

0,kx0 + λ0,k
≥ κ

K∑
k=1

R1,k
λ∗

0,k

λ∗

0,kx0 + λ0,k

κλ∗

0,k/(K
(
λ∗

0,kx0 + λ0,k
)
) ≥ κδ/(K (δx0 + 1)) =: A.

he second inequality holds because U1 ≥ κ by the definition of
i (see (5.3)) and assumption (A.2). The third inequality is valid
ince there exists k such that R1,k ≥ 1/K (because

∑K
k=1 R1,k = 1)

and the whole sum is not less than one summand. It remains only
to observe that B is bounded above:

B ≤

K∑
k=1

[ρ1,kλ
∗

1,k + R1,kU∗

1 ] = 1.

Finally,
r11 = r21Ax0/B = (1 − r11 )Ax0/B ≥ (1 − r11 )Ax0, which

ields r11 ≥ Ax0/
(
Ax0 + 1

)
. Thus, r11 is bounded away from zero,

herefore Z1,k and γ 1
k,m are bounded above, which implies the

oundedness of f
(
γ 1
k,m

)
and hence the boundedness of ζ1. The

roof is complete. □

roof of Lemma 4. The random variables ηt := ζt − Etζt+1 are
on-negative by the definition of a supermartingale. Further, we
ave

T−1

t=0

Eηt =

T−1∑
t=0

(Eζt − Eζt+1) = Eζ0 − EζT ,

nd so the sequence
∑T−1

t=0 E ηt is bounded because supT (−EζT ) =

infT E ζT < +∞. Therefore the series of the expectations
∞

t=0 E ηt of the non-negative random variables ηt converges,
hich implies

∑
∞

t=0 ηt < ∞ a.s. because E
∑

∞

t=0 ηt =
∑

∞

t=0 E
t (the last equality holds for any sequence ηt ≥ 0). The proof is
omplete. □
The remainder of the Appendix provides details of the proof

of Theorem 3 (steps 1 to 4).
1st step. Since investor 1 uses the strategy Λ∗, by virtue of

emma 3 the sequence ζt defined by (6.10) is a non-negative
upermartingale. By using inequality (6.11) and Lemma 4 we
btain
∞

t=0

K∑
m=1

K∑
k=1

Rt,k(1 − ρt,m)λ∗

t,mf
(
γ t
k,m

)
< ∞ (a.s.).

y assumption (A.2), we have (1 − ρt,m) ≥ ~ > 0, and since
∗
t,m ≥ δ, the above inequality implies

∞ K∑ K∑
Rt,kf

(
γ t
k,m

)
< ∞ (a.s.). (A.9)
t=0 m=1 k=1
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Let us show that if (A.9) converges, then the following series
onverges as well:
∞

t=0

K∑
m=1

K∑
k=1

Rt,k(γ t
k,m − 1)2 < ∞ (a.s.). (A.10)

o this end it is sufficient to verify that for some random variable
> 0, we have

t :=

∑K
m=1

∑K
k=1 Rt,kf

(
γ t
k,m

)∑K
m=1

∑K
k=1 Rt,k(γ t

k,m − 1)2
≥ θ > 0.

To prove this we observe that

min
m,k

ln γ t
k,m

(γ t
k,m + 2)(γ t

k,m − 1)
= min

m,k

(γ t
k,m − 1) ln γ t

k,m

(γ t
k,m − 1)2(γ t

k,m + 2)
≤ Gt .

Note that the function ln x(x−1)−1(x+2)−1 is non-increasing and
ence it achieves its minimum on (0,M] at M . Furthermore,

γ t
k,m =

1 + ymt+1/λ
∗

t+1,m

1 + ykt /λ∗

t,k
≤ 1 +

ymt+1

λ∗

t+1,m

= 1 +
r2t+1λt+1,m

r1t+1λ
∗

t+1,m
≤ 1 +

1 − τ

τδ
=: M, (A.11)

where the last inequality holds by virtue of Theorem 2 and
because λ∗

t,m ≥ δ. Since γ t
k,m ≤ M for each t, k,m, we get

Gt ≥ min
t,k,m

ln γ t
k,m

(γ t
k,m − 1)(γ t

k,m + 2)
≥

lnM
(M − 1)(M + 2)

.

Thus we have proved that the series (A.10) converges.
2nd step. Using (6.6) we can see that the following inequality

olds:

γ t
k,m − 1)2 =

(
ymt /λ∗

t,m − ykt−1/λ
∗

t−1,k

1 + ykt−1/λ
∗

t−1,k

)2

≥
1
M2

(
ymt
λ∗
t,m

−
ykt−1

λ∗

t−1,k

)2

because 1+ ykt−1/λ
∗

t−1,k ≤ M in view of (A.11). Hence, the series

∞∑
t=0

K∑
m=1

K∑
k=1

Rt,k
(
ymt /λ∗

t,m − ykt−1/λ
∗

t−1,k

)2
< ∞ (A.12)

onverges.
3rd step. Let us denote amt = ymt /λ∗

t,m and btm,k = amt − akt−1. In
his new notation,
∞

t=0

K∑
m=1

K∑
k=1

Rt,k(btm,k)
2 < ∞

or any k,m. Now recall that
∑K

k=1 Rt,k = 1 and hence for all t
here exists at least one k such that Rt,k ≥ 1/K . Denote this k by
∗
t . Clearly, we have

>

∞∑
t=0

K∑
k=1

Rt,k

K∑
m=1

(btm,k)
2

≥

∞∑
t=0

1
K

K∑
m=1

(btm,k∗t
)2.

Fix m and m′. Then it is easy to see that
∞

t=0

(btm,k∗t
)2 < ∞ and

∞∑
t=0

(btm′,k∗t
)2 < ∞. (A.13)

Observe that the following equalities hold

bt − bt = am − ak
∗
t

− am
′

+ ak
∗
t

= am − am
′

,
m,k∗t m′,k∗t t t−1 t t−1 t t
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nd so
∞

t=0

K∑
m=1

K∑
m′=1

(
amt − am

′

t

)2
=

∞∑
t=0

K∑
m=1

K∑
m′=1

(
btm,k∗t

− btm′,k∗t

)2
.

Furthermore(
btm,k∗t

− btm′,k∗t

)2
=

⏐⏐⏐(btm,k∗t
)2 + (btm′,k∗t

)2 − 2btm,k∗t
btm′,k

⏐⏐⏐ ≤

(btm,k∗t
)2 + (btm′,k∗t

)2 + 2
⏐⏐⏐btm,k∗t

btm′,k∗t

⏐⏐⏐ ≤ 2
(
(btm,k∗t

)2 + (btm′,k∗t
)2
)

ince 2
⏐⏐⏐btm,k∗t

btm′,k∗t

⏐⏐⏐ ≤ (btm,k∗t
)2 + (btm′,k∗t

)2. Therefore, since both
eries

∑
∞

t=0(b
t
m,k∗t

)2 and
∑

∞

t=0(b
t
m′,k∗t

)2 converge (see (A.13)), then
for all pairs m,m′, we have
∞∑
t=0

(
btm,k∗t

− btm′,k∗t

)2
< ∞,

and consequently,
∞∑
t=0

K∑
m=1

K∑
m′=1

(
btm,k∗t

− btm′,k∗t

)2
=

∞∑
t=0

K∑
m=1

K∑
k=1

(
ymt /λ∗

t,m − ykt /λ
∗

t,k

)2
< ∞. (A.14)

4th step. Consider two cases: (i) λt,m/λ∗
t,m ≥ 1 and

(ii) λt,m/λ∗
t,m ≤ 1. In the first case, among the K − 1 fractions

λt,k/λ
∗

t,k (k ̸= m) we can find at least one with λt,m′/λ∗

t,m′ ≤ 1.
Otherwise, λt,m′/λ∗

t,m′ > 1 for all m′
̸= m, i.e., λt,m′ > λ∗

t,m′ (m′
̸=

) and λt,m ≥ λ∗
t,m. Then we get 1 =

∑K
k=1 λt,k >

∑K
k=1 λ∗

t,k = 1,
which is a contradiction. By the same argument, we can show
in the second case that if λt,m/λ∗

t,m ≤ 1, then there exists m′

satisfying λt,m′/λ∗

t,m′ ≥ 1.
Thus, we have proved that for each m there exists m′ such that

either λt,m/λ∗
t,m ≥ 1 ≥ λt,m′/λ∗

t,m′ or λt,m′/λ∗

t,m′ ≥ 1 ≥ λt,m/λ∗
t,m,

Consequently,⏐⏐λt,m′/λ∗

t,m′ − λt,m/λ∗

t,m

⏐⏐ ≥
⏐⏐λt,m/λ∗

t,m − 1
⏐⏐ ,

which implies
K∑

k=1

(
λt,m/λ∗

t,m − λt,k/λ
∗

t,k

)2
≥

(
λt,m

λ∗
t,m

−
λt,m′

λ∗

t,m′

)2

≥

(
λt,m

λ∗
t,m

− 1
)2

.

ppendix B

The purpose of this Appendix is to prove Theorem B.2, which
mplies the existence and uniqueness of the Λ∗ strategy playing
a central role in this work (see the definition in Section 3). We
will deduce Theorem B.2 from Theorem B.1, which represents a
non-stationary version of the stochastic Perron–Frobenius the-
orem, see Babaei et al. (2018) and references therein. In turn,
Theorem B.1 will be obtained as a consequence of a chain of aux-
iliary results formulated in Lemmas B.1–B.2 and Propositions B.1–
B.3 below.

Denote by Mn (n > 1) the set of n×n matrices B ≥ 0 such that
Bx ̸= 0 for all x ∈ Q := {x : 0 ̸= x ≥ 0}. For x = (x1, . . . , xn) ∈ Rn,
efine |x| = |x1| + · · · + |xn|, x0 = x/|x|, and, for B ∈ Mn, put

κ(B) = max
x,y∈Q

|(Bx)0 − (By)0|.

Let φ(B) denote the ratio of the smallest and the greatest elements
of the matrix B.

Lemma B.1. Let B1, B2, . . . , Bk ∈ Mn. If Bi > 0 and n > 1, then

κ(B ...B ) ≤ ρ−1δ ...δ , (B.1)
k 1 1 1 k−1 B
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where

ρi = n−2φ(Bi)φ(Bi+1), δi = (1 − 2ρi).

For a proof of this result see Evstigneev (1974), Lemma 1.
Put ∆ = {x = (x1, . . . , xn) : xj ≥ 0,

∑
xj = 1}. Let Dn denote

the set of matrices B in Mn representing linear transformations
of Rn that map ∆ into itself. For δ > 0 we will denote by Dn

δ the
set of matrices B ∈ Dn whose elements are not less than δ.

Lemma B.2. Let B1, B2, . . . , Bk ∈ Dn
δ . Then

κ(Bk...B1) ≤ Mρk−1, (B.2)

where M = n2δ−2 and ρ = 1 − n−2δ2.

Proof. This is immediate from (B.1) because

1 ≥ φ(Bi) ≥ δ, ρi = n−2φ(Bi)φ(Bi+1) ≥ n−2δ2,

ρ−1
1 ≤ n2δ−2

= M,

δi = 1 − 2ρi ≤ 1 − n−2δ2 = ρ. □

Let B1, B2, . . . be a sequence of matrices in Dn.

Proposition B.1. There exists a sequence (y∗
t )≥0 such that y∗

t ∈ ∆

and

y∗

t = Bt+1y∗

t+1, t ≥ 0. (B.3)

roof. Put ∆∞
= ∆ × ∆ × · · · and Y = Rn

× Rn
× · · ·. Let us in-

roduce in Y the product topology: (ymt )t≥0 → (yt )t≥0 if and only
f ymt → yt for all t . Then Y is a topological locally convex vector
pace and ∆∞ is a compact convex set in Y . Consider the mapping

: Y → Y transforming (yt )t≥0 into (Bt+1yt+1)t≥0. This mapping
s continuous and transforms ∆∞ into itself. Consequently, by the
chauder–Tychonoff theorem (e.g. Zeidler, 1986) it has a fixed
oint y∗

= By∗, which proves the proposition. □

For each t ≥ 1 and j ≥ 0 denote Bt+j
t = Bt ...Bt+j. For any

= (yt ) ∈ ∆∞ denote by Bm
t (y) the tth term of the sequence

m(y) ∈ ∆∞, where Bm(y) is the mth iterate of the mapping B.
learly, if we put ymt = Bm

t (y) (t ≥ 0), then

y1t = Bt+1yt+1 = Bt+1
t+1yt+1,

y2t = Bt+1y1t+1 = Bt+1Bt+2yt+2 = Bt+2
t+1yt+2, . . . ,

m
t = Bt+1Bt+2...Bt+myt+m = Bt+m

t+1 yt+m, t ≥ 0.

roposition B.2. Suppose there exist an integer l ≥ 0 and a real
umber δ > 0 such that for any t ≥ 1 the matrix Bt+l

t belongs to
n
δ . Then the solution y∗

= (y∗
t )t≥0 to Eq. (B.3) is unique, and for

very t ≥ 0, the sequence ymt = Bm
t (y) converges to y∗

t uniformly in
∈ ∆∞.

roof. Uniqueness follows from convergence. To prove the uni-
orm convergence of ymt we estimate the distance between ymt and
∗
t by using (B.2). Define

j = Bt+jl+j
t+(j−1)l+j, j ≥ 1.

or m ≥ l + 1 denote by k = k(m) the greatest natural number
uch that kl + k ≤ m and put

t+m
t =

{
Bt+m
t+kl+k+1, kl + k < m

Id, kl + k = m .

hen we have
t+m t+l+1 t+2l+2 t+3l+3 t+kl+k t+m t+m

t+1 = Bt+1 Bt+l+2 Bt+2l+3...Bt+(k−1)l+kBt+kl+k+1 = H1...HkCt
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y∗

t = Bt+m
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∗

t+m = H1...HkC t+m
t y∗

t+m,

ymt = Bt+m
t+1 yt+m = H1...HkC t+m

t yt+m.

Thus, in view of (B.2),

|y∗

t − ymt | ≤ Mρk−1

because Hj ∈ Dn
δ . Therefore ymt = Bm

t (y) → y∗
t uniformly in y,

since k = k(m) → ∞ as m → ∞. □

Suppose that the matrices Bt = Bt (ω) ∈ Dn are random,
i.e., Bt (ω) for each t = 1, 2, . . . is a measurable matrix function on
the probability space (Ω,F, P). Assume the following condition
holds:

(B) For some l ≥ 0 and δ > 0, the matrix Bt+l
t (ω) belongs to

Dn
δ a.s. for all t ≥ 1.

Proposition B.3. Under assumption (B), there exists a sequence
(y∗

t )t≥0 of measurable vector functions y∗
t (ω) with values in ∆ such

that

Bt+1y∗

t+1 = y∗

t , t ≥ 0 (a.s.). (B.4)

The solution (y∗
t )t≥0 to Eq. (B.4) is unique, and we have y∗

t (ω) ≥ δe
(a.s.). There exists a set Ω1 ∈ F with P(Ω1) = 1 such that for every
t ≥ 0 and ω ∈ Ω1 the sequence ymt (ω) = Bm

t (y)(ω) converges to
y∗
t (ω) uniformly in y ∈ ∆∞.

The uniqueness is understood in terms of stochastic equiv-
alence: if (y∗∗

t (ω))t≥0 is another such sequence, then y∗∗
t (ω) =

y∗
t (ω) (a.s.) for all t .

Proof of Proposition B.3. By assumption, there exists a set Ω1 ∈

F of full measure such that for ω ∈ Ω1 the matrix Bt+l
t (ω) ∈ Dn

δ

for all t ≥ 1. Take any ω ∈ Ω1 and apply Proposition B.2. We
obtain that there exists a sequence of vector functions y∗

t (ω) with
values in ∆ satisfying (B.3) for ω ∈ Ω1. Fix some d ∈ ∆ and
define y∗

t (ω) as d for ω ∈ Ω\Ω1. Then (B.4) will hold almost
surely. Observe that the functions y∗

t (ω) are measurable because
according to Proposition B.2 (applied to y := (d, d, . . .) ∈ ∆∞),
we have

y∗

t (ω) = lim
m→∞

Bt+m
t+1 (ω)d for ω ∈ Ω1.

To prove uniqueness suppose there is another sequence ŷ =

(ŷt (ω))t≥0 satisfying (B.4) almost surely. Then by virtue of
Proposition B.2, Bm

t (ŷ)(ω) → y∗
t (ω) for ω ∈ Ω1. On the other

hand, Bm
t (ŷ)(ω) = ŷt (ω) (a.s.), and so y∗

t (ω) = ŷt (ω) (a.s.).
Finally, y∗

t (ω) ≥ δe (a.s.) because y∗
t (ω) = Bt+l+1

t+1 (ω)y∗

t+l+1(ω),
where y∗

t+l+1(ω) ∈ ∆ and Bt+l+1
t+1 (ω) ∈ Dn

δ (a.s.). □

Let A1(ω), A2(ω), . . . be a sequence of random matrices. Con-
sider the following condition:

(A) For each t ≥ 1, the matrix At (ω) depends Ft-measurably
on ω, and there exist l ≥ 0 and δ > 0, such that the matrix
At+l
t (ω) := At (ω)...At+l(ω) belongs to Dn

δ a.s. for all t ≥ 1.

Theorem B.1. Under assumption (A), there exists a sequence
(x∗

t (ω))t≥0 of vector functions with values in ∆ such that x∗
t (ω) is

Ft-measurable and

EtAt+1x∗

t+1 = x∗

t (a.s.), t ≥ 0. (B.5)

This sequence is unique up to stochastic equivalence, and we have

x∗

t ≥ δe (a.s.). (B.6)
133
Proof. Fix any (non-random) matrix B1
∈ Dn

δ and define

B1 = B1, Bt := At−1, t ≥ 2. (B.7)

By applying Proposition B.3 to the sequence of matrices (Bt )t≥1
defined by (B.7), we obtain that there exists a sequence y∗

t (ω),
t ≥ 1, of measurable vector functions with values in ∆ such that

Aty∗

t+1 = y∗

t , t ≥ 1. (B.8)

Define

x∗

t = Ety∗

t+1, t ≥ 0.

From (B.8) we get

EtAt+1y∗

t+2 = Ety∗

t+1, t ≥ 0.

Therefore

EtAt+1x∗

t+1 = EtAt+1Et+1y∗

t+2 = EtEt+1At+1y∗

t+2 = Ety∗

t+1 = x∗

t ,

and so the sequence (x∗
t )t≥0 satisfies (B.5).

Suppose there is another sequence (x̂t )t≥0 satisfying EtAt+1x̂t+1
= x̂t (a.s.) for all t ≥ 0. Then we have

x̂t = EtAt+1x̂t+1 = EtAt+1Et+1At+2x̂t+2

= EtEt+1At+1At+2x̂t+2 = EtAt+1At+2x̂t+2 (a.s.).

Continuing this process, we get

x̂t = EtAt+1...At+mx̂t+m = EtAt+m
t+1 x̂t+m (a.s.). (B.9)

By using Proposition B.3, we obtain At+m
t+1 x̂t+m = Bt+1+m

t+2 x̂t+m →
∗

t+1 (a.s.), consequently,

ˆt = EtAt+m
t+1 x̂t+m → Ety∗

t+1 = x∗

t (a.s.), (B.10)

nd so x̂t = x∗
t (a.s.). □

We conclude this Appendix by formulating and proving
heorem B.2—the result on the existence and uniqueness of the
∗ strategy in the model studied in the present paper. Let (ρt )t≥1
e a sequence of Ft-measurable random vectors ρt = (ρt,1, . . . ,

t,n) such that 0 ≤ ρt,i ≤ 1, and (Rt )t≥1 a sequence of Ft-
easurable random vectors Rt = (Rt,1, . . . , Rt,n) satisfying

t ≥ 0,
n∑

i=1

Rt,i = 1.

ecall that Λ∗ was defined as the solution to Eq. (3.2). To prove
hat this solution exists and is unique let us define for each t ≥ 0
he linear operator At+1:

At+1x)i = ρt+1,ixi + (
n∑

m=1

xm −

n∑
m=1

ρt+1,mxm)Rt+1,i

= ρt+1,ixi +
n∑

m=1

(1 − ρt+1,m)xmRt+1,i.

his operator transforms ∆ into itself, and for x ∈ ∆ we have

At+1x)i = ρt+1,ixt+1,i + (1 −

n∑
m=1

ρt+1,mxt+1,m)Rt+1,i.

onsequently, Eq. (3.2) can be written in the form (B.5) (with
bvious changes in notation).
Let us introduce the following condition.
(R) There exist constants γ > 0 and l ≥ 0 such that for each

and i, we have

max
≤m≤l

Rt+m,i ≥ γ . (B.11)
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T
c
T

heorem B.2. Suppose that condition (R) holds and there exists a
onstant θ > 0 such that min{ρt,i, 1 − ρt+1,i} ≥ θ for all t and i.
hen a solution (x∗

t )t≥0to Eq. (B.5) exists, is unique up to stochastic
equivalence, and satisfies (B.6) for some δ > 0.

Proof. Take any x ∈ ∆ and define recursively xt+1 = At+1x, and
xt+m+1 = At+m+1xt+m. Then we have

(At+1x)i = ρt+1,ixi +
n∑

m=1

(1 − ρt+1,m)xmRt+1,i ≥ θ (xi + Rt+1,i),

which yields

xt+l ≥ θ lxt,i + θ lRt+1,i + θ l−1Rt+2,i + · · · + θRt+l,i

≥ θ l max
1≤m≤l

Rt+m,i ≥ θ lγ .

Thus condition (A) holds with δ := θ lγ , and so Theorem B.2
follows from Theorem B.1. □
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