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Abstract 

With a focus on Europe, the present thesis empirically investigates the geographical patterns 

of the patent gender gap as well as the linkage between the patent gender gap and the education 

gender gap potentially explaining why women patent less than men. This paper contains a 

twofold analysis. Firstly, by a thorough spatial analysis of data covering 267 European regions, 

it is shown that, following a pattern similar to global patenting and innovation activity, 

women’s patenting is more frequent in cities and their vicinities. Secondly, by developing beta 

regression and panel regression models, it is shown that a set of various education-related 

gender gaps interdependently affect the severity of the patent gender gap. Being of interest to 

innovation agencies and other innovation-policy organisations, the contribution of this study 

lies in the analysis of the geographical patterns of women’s patenting as well as the intricate 

nature of the causes of a wide, although narrowing, gender gap in patenting and innovation. 
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1. Introduction 

After having had totally different and quite pejorative interpretations and meanings for 

centuries, Joseph Schumpeter made innovation win its spurs within economic theory in the 

mid 20th century. From that moment onwards, economic theoreticians began to see product 

and technological innovation as an engine of competitive advantages, a catalyst of economic 

growth and an essential driver of human progresses (Godin, 2019). Defined by the European 

Central Bank as the development and application of ideas and technologies that improve goods 

and services or make their production more efficient (2017), innovative processes and 

outbreaks benefit both consumers and businesses. As a driver of productivity improvements, 

innovation greatly contributes to economic growth in capitalist economic models: “creative 

destruction is the essential fact about capitalism” (Schumpeter, 1942, p.83), creative 

destruction being used as a term describing the disruptive transformation processes 

characterising innovation. 

As a tool used by businesses, research organisations and individuals to protect and enforce 

their intellectual property rights, patents play an increasingly important role in innovation and 

economic performance, especially in the fields of information and communication 

technologies – ICT – and biotechnology (OECD, 2004). Patents play an important role 

throughout the entire technology lifecycle from Research and Development to market 

diffusion and allow their originators to derive financial gains after the licensing of their 

competitive technologies to third-party entities. More precisely, a patent legally grants its 

holder the right to prevent others from commercially exploiting their invention for a limited 

period of time1 without the holder’s authorisation, typically granted through licensing. This 

protection applies in the geographical area where the patent application is filed2. Effectively, 

a patent turns an inventor’s know-how into a tradeable asset, enabling business growth 

opportunities and job creations (WIPO, n.d.). 

 

1 Maximum term of 20 years in Europe and the United States of America. 

2 For instance, a patent application filed at the European Patent Office will protect an invention across the European continent. 
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Despite an increase in the share of women in international patent applications filed via the 

World Intellectual Property Organisation between 1995 and 20153, it is empirically observed 

that a gender gap exists in patenting. Being a human right clearly stated by the United Nations 

as one of the seventeen Sustainable Development Goals4, higher gender equality is commonly 

seen as a driver for both higher economic growth (Bertay, Dordevic, & Sever, 2020) and 

research productivity (Gui-Diby, Pasali, & Rodriguez-Wong, 2017). Moreover, diverse and 

inclusive teams are more innovative (Phillips, 2014) and diverse companies are economically 

more profitable (Hunt et. al, 2020). Therefore, the existence of a patent gender gap is likely to 

impair economic growth by missing out on the great ideas of the female population and on an 

important part of human productivity (Liberda & Zajkowska, 2017).  

Moreover, gender inequalities are a long-lasting characteristic of a vast majority of societies, 

both today and in history. Among other elements, a crucial dimension through which gender 

inequalities manifest themselves is the gain of human capital through education, which in turn 

determines gender inequalities in a broad set of macroeconomic and social indicators, like 

employment, public life and the role in society of men and women. However, the education 

gender gap has been greatly closed – or even reversed – since the nineteenth century (Bertocchi 

& Bozzano, 2019). Hence, one can reasonably assert that the gender disparities in human 

capital accumulation are now narrower than they used to be. Concurrently to this closing in 

education, women have made a massive entrance into the western corporate world throughout 

the last fifty years. However, the underrepresentation of women in the corporate world is 

persisting and carries negative effects in the form of productivity loss as well as a lessened 

innovation capacity, for instance through patenting among other innovation means. In 

addition, women are more at risk to face a glass ceiling than their men counterparts, preventing 

women workers from attaining manager positions, hampering women’s career advancement 

to decision-making and leadership roles (Miller, 2019) and limiting women empowerment. 

This directly and negatively affects equality at the workplace, while an equal corporate culture 

is known to be a major driver of innovation, much more effective than salary incentives. 

Fostering businesses’ innovative mindset and culture through the improvement of equality at 

the workplace could lead to immense progress in economic growth, the potential gain in global 

 

3 From 17% in 1995 to 29% in 2015. See: https://www.wipo.int/pressroom/en/articles/2016/article_0015.html. These figures 
cover 151 countries worldwide. 

4 See: https://sdgs.un.org/goals. 
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GDP being estimated at $8 trillion in the ten-year period 2019-2028 (Shook & Sweet, 2019). 

Hence, the potential gains of narrowing the patenting gender gap – as part of the fostering of 

a broader innovation culture – are massive and potentially reinforce the virtuous circle of 

innovation (Akinyemi, 2016). 

Focused on the geographical patterns of patenting by women and the implications of the 

education gender gap on the patenting gender gap in Europe, this paper is structured as follows. 

The second section gives an account of previous literature that constitutes grounds for the 

statement of the four main hypotheses investigated in this paper. The third section presents the 

data collection process and the datasets used in this study, as well as subsidiary statistics that 

do not constitute the focal point of this study. The fourth section describes the econometric 

tools and models used to investigate the last three hypotheses formulated in the second section. 

The fifth section empirically analyses the four hypotheses stated in section 2, using both spatial 

visualisation of the data – for the first hypothesis – and the econometric tools presented in 

section 4 – for the three remaining hypotheses. Finally, the conclusions that can be drawn from 

this study are presented in the sixth and final section.  

These sections present several sets of results. Firstly, large cities seem to play a role in 

stimulating patenting by women, as the patenting gender gap is narrower in their surroundings, 

although far from an equal gender split. Secondly, narrowing the education gender gap seems 

to result in a narrower patenting gender gap on condition that the science, technical, 

engineering and mathematical fields of study are taken as the focus when narrowing the 

education gender gap. Thirdly and lastly, encouraging gender equality unsurprisingly result in 

a larger share of women among the total patentee population.  
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2. Literature support and hypotheses statements 

Based on existing literature and prior research, four hypotheses on contributing factors to more 

women patentees can be formulated: a higher women’s patenting activity located around large 

cities, the gender gap in the educational attainment level, the dominant academic discipline of 

the degree obtained and the associated gender gap, as well as gender equality at large coupled 

with the role of women in society and labour participation. Each hypothesis is preliminarily 

contextualised with supportive literature. 

2.1 H1. City effect 

The importance of cities in the innovation process and economic growth has been abundantly 

documented, as early as 1890 by the English economist Alfred Marshall who originated the 

theory of knowledge spillovers. Augmented successively by Arrow (1962), Romer (1986) and 

Glaeser et. al (1992), the knowledge spillovers theory argues that competitive or non-

competitive positive externalities arise in specialised industrial geographical clusters, both 

within and across industries. Due to a geographical proximity5, these spillovers stimulate 

innovation (Jaffe, Trajtenberg, & Fogarty, 2000), and, therefore, can stimulate patenting. 

Hence, cities can be seen as focal points of innovation and entrepreneurship processes (Florida, 

Adler, & Mellander, 2016) that aggregate innovation and production, activities that are co-

dependent with regard to skills, knowledge, products and/or markets (Pratt, 2008). Completing 

the argumentation highlighting the importance of cities for innovation, Bettencourt et. al 

(2007) argue that patent activity correlates positively with the presence of cities and their size. 

Considering the crucial role of cities in generating and stimulating innovation processes 

embodied by, for instance, patenting, the first hypothesis formulated is that cities also have a 

stimulating effect on patenting by women. Put differently, the hypothesis is that the share of 

women among patent applicants is higher in regions that contain large cities and/or a large 

industrial hub. Due to both the lack of a common definition of what is a large city and the 

variability of city sizes across European countries, this hypothesis will be tested and analysed 

in section 5 based on spatial visualisations of the data, i.e. maps, rather than regressions. 

 

5 Hence, the term cluster. 
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2.2 H2. Educational gender gap  

Following a Granger causality relationship, there is a strong causality between the educational 

attainment level of an individual and the innovative capacity of this individual (Makkonen & 

Inkinen, 2013). Therefore, a higher educational attainment level achieved by a woman should 

boost her innovative capacity, which is here considered under its patenting form, i.e. the 

capacity of a woman to file a patent application. Following this logic, a woman holding a 

bachelor’s degree should have a higher patenting capacity than a woman holding a lower-level 

degree or no degree at all. Similarly, the patenting capacity should increase as the educational 

attainment level increases, a master’s degree and a PhD degree being the second highest and 

the highest degrees possibly achieved, respectively.  

Considering the positive correlation between the patenting capacity and the educational 

attainment level described hereinabove, there should be a positive correlation between the 

narrowness of the educational gender gap and the patent gender gap, i.e. the share of women 

among patent applicants. A particular attention is given to the PhD gender gap, as the 

possession of a “title” is one of the two most important characteristics venture capitalists 

search for among scientists when they extend invitations to participate in scientific boards and 

research projects, the other important characteristic being high productivity, women having 

either of these less frequently than men (Stephan & El-Ganainy, 2006). 

2.3 H3. STEM education gender gap 

This hypothesis is to be considered in parallel with the former hypothesis, both as an extension 

and a deepening of the second hypothesis. The acquisition of practical knowledge can be seen 

as the first prerequisite in forming innovative – and therefore patenting – capacity. Practical 

knowledge is then leveraged in combination with science knowledge such as mathematics, 

physics, chemistry and biology, and this combination is deployed and used in the search for 

improved and new products and processes (Scott, 2006). Scott also identifies the new-

economy sectors – such as high-technology manufacturing and R&D, biotechnology and IT 

technology and services – as particularly prone to innovation. An example of the importance 

of new-economy sectors in an innovation and patenting context is the fact that the second and 

third most important sources of patenting in Germany were respectively electrical machinery 

and mechanical elements, between 2015 and 2017, according to the World Intellectual 
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Property Organisation. Therefore, receiving education in a STEM6 field can be seen as a driver 

of patenting activity, regardless of gender. 

The third hypothesis formulated is that not only the narrowing of the educational gender gap 

correlates positively with the share of women in patenting – hypothesis 2 – but also that 

receiving education in a STEM-related field is another driver of women’s patenting activity. 

Hence, there should be a positive effect when reducing the STEM-education gender gap on 

the patent gender gap. Therefore, a positive correlation is expected between the share of 

women among STEM students and the share of women patentees. 

2.4 H4. Gender inequality and the role of women 

According to the European Commission, women are underrepresented in the European labour 

market7. A dimension of gender inequality taken in a job market context is the relative 

inaccessibility to the labour market or to some sectors of this market for women compared to 

men, and gender disparities are particularly blatant in STEM employment8. Moreover, labour-

related gender inequality can also be present in the working time discrepancies between 

genders, namely that women more often work part-time compared to men (European 

Commission, 2013). 

The fourth hypothesis formulated is that the countries or regions with a lower gender 

inequality present a higher share of women among their population of patent applicants. The 

measure used is the Gender Inequality Index calculated by the United Nations Development 

Programme. A negative correlation between the share of women patentees and this index is 

expected, since a lower index value is a sign of a diminished gender inequality and the other 

way around. Another rationale for this hypothesis comes from the WIPO statements that 

 

6 Science, Technology, Engineering and Mathematics. 

7 See: https://ec.europa.eu/info/policies/justice-and-fundamental-rights/gender-equality/women-labour-market-work-life-
balance/womens-situation-labour-market_en#gender-segregation-in-the-labour-market 

8 For instance, a third of men in Europe is employed in science, technology and engineering, while only 7% of women are 
employed in the same sectors. In contrast, a third of women in Europe is employed in education, health and social work, 
compared to only 8% of men in this sector. See: https://ec.europa.eu/info/policies/justice-and-fundamental-rights/gender-
equality/women-labour-market-work-life-balance/womens-situation-labour-market_en#gender-segregation-in-the-labour-
market 
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“closing the gender gap would benefit everyone” and “anything that restricts innovation (…) 

means we are all less well-off”9.  

Table 1 hereunder summarises the four hypotheses, the variables involved as well as the 

expected sign of the associated estimate coefficient. Further details and explanation about the 

definitions of variables are available in section 3.3. 

 

Table 1. Hypotheses summary 

 

9 See: https://www.wipo.int/ip-outreach/en/ipday/2018/innovation_creativity_gender_gap.html 
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3. Data 

3.1 Countries considered 

A sample of 27 European countries was included in the study. These countries are, in the 

alphabetical order: Austria, Belgium, Croatia, Czech Republic, Denmark, Estonia, Finland, 

France, Germany, Greece, Hungary, the Republic of Ireland, Italy, Latvia, Lithuania, 

Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Slovakia, Slovenia, Spain, 

Sweden, Switzerland and the United Kingdom10. They are highlighted in blue in figure 1 

hereunder: 

 

Figure 1. Countries included in the study 

Several European countries were excluded from the sample. These countries were excluded 

from the study based on five reasons. The first reason for their exclusion is the missingness of 

data for these countries in the OECD and European Eurostat database, despite their 

membership to either the European Union or the European Economic Area. The second reason 

for exclusion is a country’s non-membership to either the European Union or the European 

 

10 The United Kingdom was still a member of the European Union 31 January 2020. As of redaction date of this master thesis, 
the United Kingdom is still a member of the European Economic Area until 31 December 2020. 
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Economic Area. The third reason for exclusion is a debatable geographical location on the 

European continent. The fourth reason for exclusion consists in territorial conflicts and claims, 

splitting the country into two zones: an internationally recognised and undisputed national 

territory, and a disputed territory, possibly recognised by none, one or several other countries 

in the world. The fifth and final reason is a too small population size and land area, coupled 

with a close dependence to another country that is already included in the study. Hence, the 

following countries were excluded from the study based on the first of the above-mentioned 

reasons: Bulgaria, Cyprus, Iceland, Liechtenstein and Romania. The following countries were 

excluded based on the second reason: Russia, Belarus, Ukraine, Moldova, Bosnia 

Herzegovina, Albania, Montenegro, Serbia, Kosovo, and North Macedonia. Turkey was 

excluded from the study based on the third reason, while Cyprus was excluded based on the 

fourth reason. Finally, the microstates of Andorra, Liechtenstein, Monaco, San Marino and 

Vatican City were excluded based on the fifth and last reason. 

3.2 OECD and WIPO databases, gender identification 

The dependent variable considered throughout this study is the share of women patent 

applicants in European regions, in the sense of the European Union’s Nomenclature of 

Territorial Units for Statistics11 and at the NUTS2 level. To do so, patent data was first 

retrieved from the OECD’s REGPAT database12. This database presents patent data linked to 

regions based on the address of the applicants and inventors. The patent data is originally 

regionalised at the NUTS3 level, the last and lowest level of the Nomenclature Territorial 

Units for Statistics (Maraut et al., 2008). The difference between NUTS2 and NUTS3 levels 

is simply the length of the string of characters of the regional name code. A NUTS2 level code 

comprises four characters – two letters followed by two digits13 – while a NUTS3 level code 

comprises five characters – two letters followed by three digits – with the same first four 

characters for NUTS3 regions belonging to the same NUTS2 region. For example, the 

 

11 French: Nomenclature des Unités Territoriales Statistiques, hence abbreviated NUTS. 

12 Last version from July 2019. 

13 Except for Germany and the United Kingdom, where NUTS2 regions can be denoted by either a sequence of two letters 
and two digits or a sequence of three letters and one digit. For example: DEG0 or UKH1. This does not affect the way NUTS2 
regional code is implied by the NUTS3 regional code. 
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Austrian NUTS3 regions AT111, AT112 and AT11314 all belong to the Burgenland NUTS2 

region with the code AT11. Therefore, the observations included in the REGPAT dataset were 

converted to the NUTS2 level by simply deleting the last digit of the NUTS3 code. 

Considering that the gender of each patent applicant was a central point of focus for this study, 

the observations retrieved from the REGPAT database were matched with the patent data 

compiled in the OECD’s HAN database15, which provides a grouping of patent applicants’ 

names. The REGPAT and HAN databases were consequently matched and merged by 

applicant id, so each patent application was assigned a name and a first name. However, the 

gender of each patent patentee was then still missing. To identify the gender of each patentee, 

I made use of the WIPO16 worldwide gender-name dictionary which compiles 6.2 million 

names for 182 countries disambiguating the gender of patent applicants (Lax Martínez, Raffo, 

& Saito, 2016). The gender of each patent applicant was therefore identified, which enabled 

the calculation of the women share of patentees among all patentees in the NUTS 2 regions of 

the countries included in the study.  

3.3 Datasets and variable definition 

This paper goes deeper than the country level and focuses on the regional level, as there can 

be great discrepancies within each country. Put differently, the women share among patentees 

can vary greatly across regions within the same country. Hence, the last step in the construction 

of the dataset was to retrieve the women share among patentees at the regional level, more 

precisely at the NUTS2 level, based on the information extracted from the REGPAT database.  

Two different datasets were constructed and are used in this paper: a cross-sectional data and 

a panel data, both covering 267 NUTS2 regions in the countries forming the sample. The cross-

sectional dataset contains the women share among all patentees in 2017, while the panel 

dataset contains the women share among all patentees from 2013 to 2017, year by year within 

this time frame. Both datasets also include a set of ten variables retrieved from the Eurostat 

 

14 The Mittelburgenland, Nordburgenland and Südburgenland districts, respectively. 

15 Latest version from July 2019. 

16 World Intellectual Property Organisation. 
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database observed at the NUTS2 regional level, which relate to regional educational 

attainment and demographics. Five additional variables relating to both educational fields, 

innovation capacity and access to employment were included in the cross-sectional dataset. 

These additional variables were retrieved from the 2017 Global Innovation Index (GII) report, 

published by the WIPO in collaboration with Cornell University and INSEAD. Composed of 

81 sub-indicators relating to political environment, education, infrastructure and business 

sophistication, the GII presents metrics about the innovation performance of 127 economies 

around the world. However, the data extracted from the 2017 GII were available at the country 

level only, not at the regional level. Hence, all NUTS2 regions of a same country were assigned 

the same value for the three variables retrieved from the 2017 GII report. Lastly, one additional 

variable was added: the Gender Inequality Index. Calculated by the United Nations as part of 

its Development Program, this index captures, among other areas, the gender inequality in 

access to the labour market and women empowerment. The Gender Inequality Index can 

therefore be used as a proxy for gender equality in the labour market and society. Data for the 

Gender Inequality Index was available at the country level only. Each NUTS2 region of a 

same country was thus assigned the same value for this variable. Overall, seventeen variables 

were retrieved and used in this study. Table 2 gives an overview of the seventeen variables 

considered, their respective definition and abbreviation.  

 

Table 2. Variable definition17 

 

17 STEM = Science, Technology, Engineering and Mathematics. 
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Variable 1 – fem_share – measures the severity of the patent gender gap, variables 4, 5 and 6 

measure the education gender gap at the bachelor, master and PhD level respectively, variable 

13 measures the education gender gap within the STEM academic fields. 

3.4 Subsidiary statistics: team sizes by gender 

Importantly, the inventorship share18 of each patentee within the same patent application is 

not considered in either dataset. A patent application can be filed by one applicant alone or 

several applicants jointly. In the latter case, there can be only one or several women, one or 

several women alongside one or several men, or only one or several men filing the same patent 

application. Put differently, this study does not account for the composition of each team 

applying for a patent, and a woman applying for a patent alone will be accounted for in the 

same way regardless of the other persons she may have filed the application with. However, 

some basic statistics about inventorship shares and team sizes can be retrieved.  

Tables 3 and 4 show the percentage of team size for women and men patentees, respectively. 

Importantly, these tables do not account for the gender of co-patentees forming the rest of the 

team. Put differently, the row “one woman and two other” in table 3, i.e. two other patentees, 

covers teams composed of one woman and two men, teams composed of one woman plus 

another woman and a man and teams composed of three women. Similarly, the row “one man 

and two other” in table 4, i.e. two other patentees, covers teams composed of one man and two 

women, teams composed of one man plus another man and a woman and teams composed of 

three men. 

 

18 Defined as the share of a patentee within his/her patent applications. For example, a patentee who filed a patent application 
alone will have an inventorship share of 100% for this patent application, while a patentee who filed a patent application 
together with two other patentees will have an inventorship share of 33.33% for this patent application. 
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Table 3. Team sizes for women patentees 

 

Table 4. Team sizes for men patentees 

From these tables, it appears that women tend to file patent applications within larger teams 

than men. In particular, women filing patent applications alone are much less frequent than 

men filing patent applications alone, with 7.035% for women versus 16.77% for men. The 

same goes for women filing patent applications together with another person, thereby forming 

a team of two patentees, compared to men filing a patent application with another person, with 

respectively 16.843% and 22.485%. Women filing patent applications in teams with more than 

five applicants are also more frequent than men filing patent applications in teams with more 

than five applicants, with respective shares of 32.039% and 28.759%. These observations 

indicate that, in general, women’s inventorship share is lower than men’s inventorship share. 
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4. Methodology 

As previously mentioned, two different datasets were considered to investigate hypotheses 

H2, H3 and H4: a cross-sectional dataset observing all regions at one point in time as well as 

a panel data set observing all regions across time, from 2013 to 2017. 

4.1 Cross-sectional data 

4.1.1 Preliminary considerations 

The methodological approach to be followed was a major point of concern in this research. 

Namely, the major problem was that the dependent variable considered is expressed as a 

percentage. Put differently, the dependent variable considered in this paper can be defined as 

the proportion of patent applicants in each NUTS2 European region that are women. Thus, the 

dependent variable can be considered as a proportion, and the appropriate model used should 

be chosen accordingly. The dependent variable is as such bounded between 0 and 1, meaning 

that the effect of explanatory variables tends to be non-linear, and that the variance tends to 

decrease when the mean gets closer to one of the boundaries. As a result, linear regression 

models are less appropriate when the dependent variable is a share, a percentage or a 

proportion (Buis, 2010). A more appropriate model is a beta regression, which is based on the 

assumption that the response is Beta distributed (Ferrari & Cribari-Neto, 2004). Smithson and 

Verkuilen (2006, p. 54) similarly argue that “for scales with a lower and upper bound, a 

suitable candidate for models is the beta distribution”. Another strong argument in favour of 

Beta regressions is the fact that the support for the Beta distribution lies between 0 and 1, 

making Beta distributions a natural choice for modelling percentages (Swearingen, Melguizo 

Castro, & Bursac, 2011). 

4.1.2 Beta regression 

Preliminary explanations about the Beta regression model are required. This model is based 

on the assumption that the dependent variable follows a beta distribution, with a two-parameter 

distribution function as follows (Ferrari & Cribari-Neto, 2004):  

𝜋(𝑦; 𝛼, 𝛽) = !(#$%)
!(#)!(%)

𝑦(#'()(1 − 𝑦)%'(, 
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where 𝑦 ∈ (0,1), 𝛼 > 0, 𝛽 > 0 and Γ is the gamma function. The mean and the variance are 

defined as follows, respectively: 

𝐸(𝑦) =
𝛼

𝛼 + 𝛽 

and 

𝑉(𝑦) =
𝛼𝛽

(𝛼 + 𝛽))(𝛼 + 𝛽 + 1) 

𝛼 and 𝛽 are the two parameters indexing the distribution, i.e. its shape. 

The model can also be defined including a dispersion parameter denoted 𝜙 and the mean of 

the response variable denoted 𝜇. This new parametrisation writes the density function as 

follows: 

𝑓(𝑦; 𝜇, 𝜙) = !(*)
!(+*)!,(('+)*-

𝑦+*'((1 − 𝑦)(('+)*'(,  𝑦 ∈ (0,1), 

where 0 < 𝜇 < 1 and 𝜙 > 0.  

Let 𝜇 = #
#$%

 and 𝜙 = 𝛼 + 𝛽. We now have: 

𝐸(𝑦) = 𝜇 

and 

𝑉(𝑦) =
𝜇(1 − 𝜇)
1 + 𝜙  

With the cross-sectional dataset used in this paper, the dependent variable 𝑦 corresponds to 

the women share in patent applicants across 267 NUTS2 regions. The variable’s distribution 

plot as well as the associated parameters 𝛼, 𝛽, 𝜇 and 𝜙 – as well as the variable’s mean and 

variance – are presented in figure 2 and table 5 respectively19: 

 

19 Detailed calculations of the Beta-regression parameters can be found in appendix A. 
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Figure 2. Dependent variable distribution 

 

Table 5. Beta-regression parameters 

Further, the Beta-regression model was specified as follows: 

𝑔(𝜇.) = 𝛽( + 𝛽)𝑥.) +⋯𝛽/𝑥./ + 𝑒 

where 𝑥), … , 𝑥/ stands for the set of explanatory variables (see table 2).  

The link function used was a logit link, as follows: 



 22 

ln >
𝜇.

1 − 𝜇.
? = 𝑥.𝛽 

The dependent variable contained a non-negligeable number of regions without any women 

patentee (18), resulting in the dependent variable taking the value zero for these regions20. In 

order for 0s to be considered in the estimation, the fem_share dependent variable was 

transformed using Smithson’s and Verkuilen’s proposition (2006, p. 61):  

𝑦.0 =
[𝑦.(𝑛 − 1) + 0.5]

𝑛  

Here, 𝑛 = 267. For instance, let us consider region 𝑖 for which fem_share variable is originally 

zero, i.e. 𝑓𝑒𝑚_𝑠ℎ𝑎𝑟𝑒. = 0. With the above-mentioned transformation, fem_share in region 𝑖 

takes value: 𝑓𝑒𝑚_𝑠ℎ𝑎𝑟𝑒.0 =
1∗()34'()$1.6

)34
= (

678
> 0. 

4.1.3 Robustness 

A major threat to the robustness of estimated coefficients lies in the violation of the 

homoskedasticity assumption 𝑉(𝜀.|𝑥.) = 𝜎), i.e. the variance of the error term is the same 

across observations and does not depend on the value of the set of explanatory variables 𝑥.. If 

this assumption does not hold, there is heteroskedasticity and standard errors robust to 

heteroskedasticity must be used. All regression models estimated with the above-detailed 

methods went through the Breusch-Pagan test21, which has homoskedasticity for null 

hypothesis (𝐻0). The null hypothesis was rejected anytime the p-value resulting from the 

Breusch-Pagan test was below 0.05, assuming the presence of heteroskedasticity. 

Heteroskedasticity was then addressed by using heteroskedasticity-robust standard errors. 

Furthermore, perfect multicollinearity was avoided by excluding variables similar to those 

presented in table 2 but considering the male gender. Obviously, including such variables 

would have resulted in perfect multicollinearity as the male variables are often the exact 

complementary to one of the female variables. Lastly, outliers were also controlled for by 

winsorizing the variables considered at the 5% level.  

 

20 18 observations have no women patentee at all, i.e. 6.74% of observations included in the sample. 

21 See appendix B. 
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4.2 Panel Data 

As mentioned before, this study also includes a panel dataset including observations for the 

same seventeen variables across the same 267 NUTS2 regions over the period from 2013 to 

2017. Formally, the general panel data regression model is (McManus, 2011): 

𝑦.9 = 𝛽1 + 𝛽:𝑥:.9 + 𝜀.9, 

where: 𝑖 = 1,… , 267 is the set of NUTS2 regions observed, 𝑡 = 2013,… , 2017 is the time 

interval during which the observations are observed and 𝑘 = 1,… , 17 is the set of variables 

observed for the 267 NUTS2 regions over the specified time interval. 

4.2.1 Fixed effects 

A panel regression model can also be formally written as follows: 

𝑦.9 = 𝛽1 + 𝛽:𝑥:.9 + 𝛽;𝑧. + 𝜀.9, 

where 𝑧. captures heterogeneities that do not change over time and are unobserved across the 

𝑖 = 1,… ,267 NUTS2 regions. Therefore, the omission of 𝑧. could result in the presence of an 

omitted variable bias. The aim is again to estimate the set of 𝛽:′s, i.e. the effect of a change in 

the explanatory variables 𝑥: on the dependent variable 𝑦., holding the unobserved and time-

invariant factor 𝑧. constant (Torres-Reyna, 2007).  

Entity-fixed effects 
The objective when applying an entity-fixed effect model is to account for and address an 

omitted variable bias that might arise due to variables that vary across regions but not over 

time. The entity-fixed effects regression model with a single regressor can be written as (Stock 

& Watson, 2020):  

𝑦.9 = 𝛼. + 𝛽(𝑥.9 + 𝜀.9 

Generalising to 𝑘 regressors, the model becomes: 

𝑦.9 = 𝛼. + 𝛽(𝑥(.9 +⋯+ 𝛽:𝑥:.9 + 𝜀.9, 
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where, 𝑖 = 1,… , 267, 𝑡 = 2013,… , 2017 and 𝑥:.9 is the value of kth regressor for entity 𝑖 in 

year 𝑡. The specificity of this model is that it includes the term 𝛼.. The terms 𝛼. , … , 𝛼)34 

represent entity-specific intercepts. We also have: 𝛼. = 𝛽1 + 𝛽;𝑧.. 

Stock and Watson (2020) also explicit an equivalent way of writing the entity-fixed effect 

model, which includes a common intercept, the 𝑘 regressors 𝑥: and 𝑛 − 1 binary variables 

that represent all but one region: 

𝑦.9 = 𝛽1 + 𝛽(𝑥(.9 +⋯+ 𝛽:𝑥:.9 + 𝛾)𝐷2. + 𝛾7𝐷3. +⋯+ 𝛾<𝐷𝑛. + 𝜀.9, 

where 𝐷2. = 1 if 𝑖 = 2 and 𝐷2. = 0 otherwise, and so on. 

The first one of these two expressions is considered in the following sections, and the 

estimation method used is an entity-demeaned OLS22 regression. 

Time-fixed effects 
Similarly, the objective when applying a time-fixed effect model is to account for and address 

an omitted variable bias that might arise due to variables that vary over time but not across 

regions. Stock and Watson (2020) indicate that the time-fixed effects regression model with a 

single regressor 𝑥 can be written as:  

𝑦.9 = 𝜆. + 𝛽(𝑥.9 + 𝜀.9 

Again, generalising the above expression to 𝑘 regressors leads to: 

𝑦.9 = 𝜆9 + 𝛽(𝑥(.9 +⋯+ 𝛽:𝑥:.9 + 𝜀.9, 

where, again, 𝑖 = 1,… , 267, 𝑡 = 2013,… , 2017 and 𝑥:.9 is the value of kth regressor for entity 

𝑖 in year 𝑡. The specificity of this model is that it includes the term 𝜆9, which represents the 

effect on the dependent variable 𝑦 of year 𝑡. The terms 𝜆9 can therefore be defined as the time-

fixed effects.  

The time-fixed effect regression model can also be written with 𝑇 − 1 binary variables: 

 

22 Ordinary Least Squares. 
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𝑦.9 = 𝛽1 + 𝛽(𝑥.9 +⋯+ 𝛽:𝑥:.9 + 𝛿)𝐵2. +⋯+ 𝛿=𝐵𝑇. + 𝜀.9, 

where 𝐵2. = 1 if 𝑡 = 2 and 𝐵2. = 0 otherwise, and so on. 

The first one of these two expressions is considered in the following sections, and the 

estimation method used is a time-demeaned OLS regression. 

Two-way fixed effects 
The combination of entity – or region – and time-fixed effects models leads to a so-called two-

way fixed-effect model, which addresses for omitted variable biases that might arise due to 

both variables that vary over time but not across regions and variables that vary across regions 

but not over time (Stock & Watson, 2020). The two-way fixed-effects regression model with 

𝑘 regressors can be written as: 

𝑦.9 = 𝛼. + 𝜆9 + 𝛽(𝑥(.9 +⋯+ 𝛽:𝑥:.9 + 𝜀.9, 

where 𝑖 = 1,… , 267, 𝑡 = 2013,… , 2017 and 𝑘 = 1,… , 17. Region and time-fixed effects are 

incorporated using the time and region demeaning method. 

4.2.2 Robustness 

A major point of concern regarding the robustness of the estimates calculated through the 

region, time and two-way fixed effects regression models is that it is impossible that 

observations within one region are independent over time. For example, considering that most 

education programmes last for more than one single year, whether a given NUTS2 region has 

a high share of female pupils attending an early childhood education programme in a given 

year is a good predictor of whether this region will have a high share of female pupils attending 

a similar programme the year after. This results in possible autocorrelation within regions 

observed, meaning that the error term 𝜀.9 for a specific region in a given year is likely to be 

correlated with its value in the subsequent year. To ensure the robustness of the models applied 

to the panel dataset, the standard errors estimated and used for inference were clustered 

standard errors. The clustered standard errors present a double advantage. First, they allow for 

autocorrelation within entities. Second, they are robust for heteroskedasticity (Cameron & 

Miller, 2015). Again, outliers were also controlled for by winsorizing the variables considered 

at the 5% level.  
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5. Empirical results 

As previously mentioned, the results of this paper are split into two components: the identified 

geographical patterns used to test H1 and the results from the regression models explained in 

section 4 used to test H2, H3 and H4.  

5.1 Geographical patterns 

This section is about the first category of results, i.e. the geographical patterns. First, some 

preliminary observations are made. These first observations highlight the presence of a 

clustering of European countries into groups with two similar characteristics: their number of 

patentees and the share of women among their respective total number of patentees. Then, 

further and deeper observations are presented at the regional level, both within each cluster of 

countries and by country at the regional level. Using spatial visualisation on maps, a clearer 

pattern appears: the share of women among all patentees tends to be higher in regions where 

either the capital city or a large city of a given country is located, thereby confirming 

hypothesis H1 despite some non-negligible deviations. Moreover, several examples show that 

there may exist a spillovers effect affecting regions in the immediate vicinity of a neighbouring 

cluster. 

5.1.1 Preliminary observations 

Following the data collection procedure described in section 3, the number of patentees – 

regardless of their gender – in the selected countries from 2000 to 2018 is highest in Germany, 

second highest in France, and third highest in the United Kingdom23. Germany clearly has a 

strong preponderance in European patenting, as shown in figure 3. Moreover, the relatively 

low women share in Germany – third lowest among all countries considered – reduces the 

weighted average of women patentees share in all countries considered, which is 7.749% (see 

table 6). 

 

23 Respectively 53.47%, 11.16% and 6.36% of total; see figure 3. 
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Figure 3. The weight of considered countries in the total number of patent 
applicants (2000-2018) 

 

Table 6. Number of patent applicants and women share per country, 2000-2018 

 



 28 

Based on the previous observations on countries’ women share among their patentees, it is 

possible to cluster countries into groups, as shown in figure 4. The countries clustered into the 

same group present two similarities: a similar share of women among their patentees as well 

as a similar number of patent applicants, taken in its logarithmic transformation. The 

logarithmic transformation enables a clear visualisation of this phenomenon, addressing for 

the preponderance of Germany that would otherwise make a clear visualisation impossible. 

 

Figure 4. Country clustering 

Table 7 hereunder summarises the characteristics of each country group or cluster24. The 

central European group clearly stands out, both representing the highest share of the total 

sample and having the lowest share of women patentees.  

 

 

24 Colour code for clusters: Central Europe = red, Western Europe = yellow, Northern Europe = dark blue, Southern and 
Eastern Europe = green, Eastern Europe = light blue 
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Table 7. Clusters’ characteristics  

The spatial visualisation of data– namely, the women share in patentees by NUTS2 region – 

in the subsequent section provides further insights into distinguishable geographical patterns. 

5.1.2 Cluster and country level observations 

The visualisation of each cluster on maps – figures 5, 6 and 9 hereunder – gives further details 

about the discrepancies in the women share across countries within clusters and provides first 

indications about the discrepancies in the women share across regions within the same country. 

Considering their small weight in the total sample, maps for the southern and eastern European 

as well as the eastern European clusters are not included, although available in appendix C. 

 

Figure 5. Women share within the western European cluster 
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Figure 6. Women share within the northern European cluster 

As mentioned in the hypotheses section, one of the initial conjectures was that the share of 

women among patentees is relatively higher in the NUTS2 regions where a large city is 

located, compared to the NUTS2 regions without a large city. This pattern is broadly 

confirmed by the observation of figures 5 and 6. Indeed, for these clusters, the women share 

of patentees tends to be higher in regions that contain either a capital or large city. Some 

examples of this pattern can be seen in France where Paris stands out and has the highest share 

of women patentees among the French regions, in Spain where Madrid and Barcelona have 

the highest women shares in the country, in Italy with Rome and Milan, and the United 

Kingdom with London, Leeds, Liverpool and Newcastle. The same pattern appears on figure 

6 in Norway, Sweden, Finland, Denmark and to a lesser extent in Ireland25.  

 

25 See appendix D for the individual maps of all countries. 
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However, two interesting cases are worth of notice: Belgium and the Italian northernmost 

region of South Tyrol26. Firstly, the highest women share in Belgium is not located in the 

country’s capital city – Brussels – but in the surroundings of Charleroi (see figure 7), which 

can nonetheless be considered as a large city at the Belgian scale. Moreover, the country seems 

to be split, just as it is from the political and cultural perspectives. The northern Flemish-

speaking part of the country – Flanders – shows a relatively lower women share compared to 

the southern French-speaking part of the country27 – Wallonia – as shown on figure 8. 

Secondly, South Tyrol is the Italian region with the lowest share of women patentees, as shown 

on figure 8. This region presents the particularity of having a majority of German native 

speakers among its population, accounting for approximately two thirds of the regional 

population28. As such, the region is granted a large autonomy relating to its political, 

economic, educational and linguistic systems since 1948. Not only linguistically but also 

historically, the region has close ties to neighbouring Austria, to such an extent that both the 

provisional Austrian government and the South Tyrolese representatives intensely claimed 

and advocated for a return of South Tyrol to Austria immediately after the end of World War 

II29 (Peterlini, 2007). Therefore, and in many aspects, South Tyrol can be considered very 

close to Austria, despite being an integral part of Italy. This multifaceted proximity was 

materialised in the creation of the Tyrol-South Tyrol-Trentino Euroregion in 1998, one aim of 

Euroregions being the support of business cooperation across borders (Durà et. al, 2018), 

thereby reinforcing the ties between South Tyrol and neighbouring Austria. 

 

26 Also known as Alto Adige in Italian and Südtirol in German. 

27 Flemish regions have an average women share of 8.65% while the Walloon regions have an average women share of 
14.77%. 

28 According to the Provincial Institute of Statistics (ASTAT: Istituto Provinciale di Statistica), based on the 2011 census 
(see: https://astat.provincia.bz.it/downloads/JB2014.pdf) 

29 South Tyrol was annexed by Italy in 1919 following the Treaty of Saint-Germain, in the aftermath of World War I. Before 
1919, South Tyrol was part of Austria-Hungary double monarchy under the Austrian crown. 
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Figure 7. Women share in Belgium 

 

Figure 8. Women share in Italy 

Noticeably, Flanders and South Tyrol can be seen as peripheric regions of the western 

European cluster, due not only to their geographic proximity but also to their close cultural 

ties to countries other than the country they are part of: Flanders maintains close ties with the 

neighbouring Netherlands while South Tyrol has close ties with Austria, both the Netherlands 
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and Austria belonging to the central European cluster. This leads to a closer observation of 

this cluster to see whether a similar pattern exists there. 

 

Figure 9. Women share within the central European cluster 

Dominated by Germany, the central European cluster does not give such clear indication 

whether the city-effect hypothesis is valid or not. Indeed, some large cities like Hamburg, 

Prague, Vienna, Geneva or Leipzig present a relatively high share of women patentees in their 

respective countries, but most other large cities do not seem to have a stimulating effect on 

women patenting in their respective region (see figure 9). 

In a similar way as for South Tyrol and Flanders, another particular case is to be observed in 

Switzerland within the central European cluster. The French-speaking peripheric region of 

Geneva bordering France presents an unusually high share of women patentees compared to 

other Swiss regions. Again, a Euroregion exists in this area since 1974, which can be beneficial 

in a context of globalised and intensified competition (Sohn, Reitel, & Walther, 2009). 

5.1.3 City effect confirmation, central European specificity and 
cross-border spillovers 

Based on the observations made in the two previous sections, three sets of insights can be 

drawn. They first tend to confirm the city effect, although some non-negligible deviations 
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exist. Furthermore, the existence of special cases in regions located at the border between two 

countries belonging to different clusters – central European and western European – advocates 

for the existence of cross-border influence between countries, that is cultural spillovers. 

Finally, the central European cluster, and perhaps Germany even more, present employment 

and historical features that certainly play a role in the women patenting activity.  

Mild confirmation of the city effect 
The first hypothesis, stated in section 2.1, was that the share of women among the total 

patentee population increases around a given country’s large cities. A majority of the European 

countries present their highest shares of women patentees in a region that contains a large city, 

on each country’s respective scale30. There are four exceptions: Croatia31, Hungary32, the 

Netherlands33 and Poland34.  

However, the city effect is much less observable in the central European cluster, notably in 

Germany (figure 10), the Netherlands (figure 11) and Switzerland (figure 12). Germany 

includes two industrial and economic hubs with a high employment density along the river 

Rhine, in the western and north-western parts of the country: the Ruhr area and to a lesser 

degree the Frankfurt-Mainz area. Despite the fact that a high employment density is a strong 

driver of patenting activity (Carlino, Chatterjee, & Hunt, 2007), the high density in these two 

German regions does not translate into a higher share of women patentees. Similarly, the large 

cities of Munich and Cologne do not seem to stimulate women patenting in their respective 

region. The Swiss region with the highest women share is the Geneva region, undeniably a 

large city in Swiss terms. However, the two other large Swiss cities – Zurich and Bern, the 

capital city – present a relatively low women share among patentees. Nonetheless, Vienna and 

 

30 The following countries have only one NUTS2 region, and it is therefore impossible to validate or not this hypothesis in 
their case: Estonia, Latvia and Luxembourg.   

31 The Zagreb region has a women share of 19.2% compared to 23.5% in the country’s other region located in the Adriatic 
region. See appendix D. 

32 The Budapest region has a women share of 21.1% compared to 23.2%  – highest value in the country – in the region of the 
Northern Great Plain. See appendix D. 

33 The regions of Amsterdam and Rotterdam present a women share of 6% and 8.2%, respectively, while the country’s highest 
value is of 12.5% in the Groningen province. See appendix D and figure 11. 

34 The Warmia-Masuria province has a women share of 20.3% – highest in the country – while the Polish provinces containing 
large cities all have a women share lower than 20%. See appendix D. 
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Prague are the regions with highest women share in Austria and Czech Republic, respectively 

(figures 14 and 15).  

 

 

Figure 10. Women share in Germany. 
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Figure 11. Women share in the Netherlands. 

 

Figure 12. Women share in Switzerland 
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Figure 13. Women share in Austria 

 

Figure 14. Women share in Czech Republic 

There are strong signs of the existence of a city effect stimulating patenting by women in the 

western and northern European clusters, while the central European cluster – in particular 

Germany, Switzerland and the Netherlands – casts a doubt on its existence. Whether the city 

effect does not exist or the central European cluster is an exception remains to be seen – this 

question is discussed in the immediately following section. 

The central European specificity 
As previously mentioned, there are several instances in the central European cluster that clash 

with the city-effect hypothesis. These instances, however, do not necessarily call the city effect 
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into question, as there are two possible explanations for these contrasting regions and 

countries. 

Gender gap in part-time employment 
The first plausible explanation relates to the gender gap in part-time employment in the 

countries in question, namely Germany, the Netherlands, Switzerland and Austria. This gender 

gap is defined as the difference between the share of part-time employment in total 

employment of women and men aged 20 to 6435. In these countries, the gender gap in-part 

time employment is the most severe in Europe, meaning that much more German, Dutch, 

Swiss and Austrian women work part time compared to their counterparts in other European 

countries, putting them at a disadvantage in many terms, including productivity (Matteazzi, 

Pailhé, & Solaz, 2017). This aligns with Stephan’s and El-Ganainy’s (2006) statement about 

women having a lower productivity, which in turn can put women at a disadvantage in many 

situations and slow down their patenting activity. This could explain not only why the city 

effect seems less effective in the central European cluster, but also why the average women 

share in these countries is much lower than the sample average excluding these four 

countries36. 

 

Table 8. The part-time employment gender gap in central Europe and the EU 

Moreover, a likely reason for German women taking more part-time employment is 

motherhood, and German working mothers being in part-time employment in a much higher 

proportion than German working fathers (Weinkopf, 2014), deteriorating women’s work-life 

 

35 See Eurostat: https://ec.europa.eu/eurostat/databrowser/view/tepsr_lm210/default/table?lang=en 

36 The sample weighted average, excluding the Netherlands, Germany, Austria and Switzerland is a women share of 11.70%, 
while the weighted average women share in these four countries is only 5.66%. 
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balance conditions, especially with dependent children to take care of (Wynarczyk & Renner, 

2006). This feature likely holds in Austria, the Netherlands and Austria as well. 

The Soviet legacy 
The second plausible explanation lies in history, which can explain two observations. Firstly, 

the former separation between eastern and western Germany seems to be somehow still present 

when considering the share of women in the total patentee population. Indeed, by a simple 

map observation, the German regions located in the former Eastern Germany tend to have a 

slightly higher women share than the German regions located in the former Western Germany. 

Secondly, most of the other countries belonging to the former Soviet bloc – or communist 

Yugoslavia – have a relatively high women share compared to the other countries in the 

sample. This is the case for Croatia, Estonia, Hungary, Latvia, Lithuania, Poland and 

Slovenia37. These two observations are perhaps not surprising considering the important 

legacy of the former socialist and communist regimes in terms gender parity in the scientific 

fields (UNESCO, 2016). 

Considering both the important part-time employment gender gap in the central European 

cluster as well as the soviet legacy in the eastern German regions, there are signs indicating 

the existence of a city effect, in the sense that women tend to represent a more important share 

of the patenting population in the large cities, or at least in their surroundings. Furthermore, 

the larger part-time employment gender gap in the central European cluster and its negative 

consequences on women’s productivity and patenting participation gives some credit to the 

fourth hypothesis – that gender inequality negatively impacts women’s patenting activity – 

although it remains to be confirmed. 

Cross-border cultural spillovers 
Borders between European states are no longer hard borders, materialised by the freedom of 

movement across most European countries and the introduction of several Euroregions. As 

previously mentioned, Euroregions aim at reinforcing the economic integration of two 

neighbouring regions that have close economic, historical and cultural ties but are however 

located on different sizes of an international border. Three examples of such Euroregions can 

 

37 Czech Republic and Slovakia are exceptions and were quite interestingly formerly united as Czechoslovakia both before 
and during the communist era.  
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be found between Italy and Austria in the South Tyrol region, between France and Switzerland 

in the Geneva area and between Belgium and the Netherland with the Belgian Flanders region. 

Based on map observations, these three regions do not present the same characteristics as the 

other regions of the country and cluster they belong to, in terms of patenting activity by 

women. Indeed, and without clustering, and without marking national borders, Geneva has a 

share of women patentees that is similar to a French region. The same applies to the Italian 

South Tyrol and Austria, and to Belgian Flanders and the Netherlands. Hence, there are signs 

that cultural spillovers across international borders exist, and that these spillovers influence 

the patenting activity by women. Furthermore, the fact that each of these three regions 

considered is located at the border between two clusters indicates that these spillovers can 

relate to culture, as these regions present characteristics of the neighbouring cluster rather than 

the cluster encompassing the country they belong to. Therefore, it is likely that culture 

influences the frequency of women patenting, as all three South Tyrol, Flanders and Geneva 

are somehow culturally distinct from the rest of their respective country. 

After investigating the validity of the first hypothesis and having identified some specific 

features of the central European countries based on the analysis of maps, the following 

subsection focuses on econometric empirical results. These results will be used to see whether 

there is support validating the three other hypotheses: a higher educational attainment level 

positively correlating with a higher patenting by women (H2), STEM academic disciplines 

further increasing women’s patenting (H3) and severe gender inequality putting women at a 

disadvantage when it comes to patenting (H4). 
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5.2 Gender gaps: educational attainment, STEM and 
gender inequality 

5.2.1 H2 testing: cross-sectional and panel analyses 

Cross-sectional analysis 

 

Table 9. Beta regressions on educational gender gaps variables 

Table 9 shows the regression results on educational attainment gender gaps variable, applying 

a beta regression method. The variables labelled F_EDat38 and F_share_pop39 are meant as 

control variables. The models include three variables capturing the gender gap in the 

participation in educational programmes at four different levels: early educational 

 

38 Share of women with education up to secondary, post-secondary and tertiary education.  

39 Share of regional population that are women. 
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programmes40 as well as all three levels of higher education from bachelor to PhD41. A 

logarithmic transformation is applied to the variable F_early_educ_count in order to account 

for its likely non-linear relation with the dependent variable. Values reported between 

parentheses are standard errors of the coefficient estimates. 

Specifications (2) and (4) give first indications about hypothesis H2 – the educational 

attainment level. The positive and statistically significant – at the 1% level – estimated 

coefficients on the variable F_share_tereduc_PhD indicate that the higher the share of women 

undertaking PhD programmes, the higher women’s patenting activity is. The estimated 

coefficient on the F_share_tereduc_PhD is equal to 0.045 in specification (2) and to 0.041 in 

specification (4)42. The respective R2 for specifications (2) and (4) are 0.237 and 0.317, i.e. 

respectively 23.7% and 31.7% of the variance in the share of women among patentees is 

explained by the independent variables. Since a logit link function was used in these 

specifications, these coefficients are log-odds. Hence, the coefficients estimated by such a beta 

regression correspond to the additional increase or decrease in the log-odds of the dependent 

variable. Formally, the model equation is the same as in a logistic regression, which 

corresponds to: 

𝑙𝑜𝑔𝑖𝑡(𝜇.) = 𝑥.𝛽. 

ln `
𝐸(𝑦.)

1 − 𝐸(𝑦.)
a = 𝑥.𝛽. 

Where 𝜇. = 𝐸(𝑦.). In this setup, 𝑦. = 𝑓𝑒𝑚_𝑠ℎ𝑎𝑟𝑒., i.e. the dependent variable being defined 

as the share or proportion of women among the total patenting population. Formally, the 

dependent variable 𝑓𝑒𝑚_𝑠ℎ𝑎𝑟𝑒 is defined as: 

𝑓𝑒𝑚_𝑠ℎ𝑎𝑟𝑒. =
>?@A<	CD9A<9.<E!

>?@A<	CD9A<9.<E!$@A<	CD9A<9.<E!
, in region 𝑖. 

 

40 F_early_educ_count and its logarithmic transformation. 

41 F_share_tereduc_Bach at the bachelor level, F_share_tereduc_Mast at the master level, F_share_tereduc_PhD at the PhD 
level. 

42 Both estimates are statistically significant at the 1% level (p-value<0.01). 
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From specification (2), the estimated coefficient for the independent variable 

F_share_tereduc_PhD is significant at the 1% level and equal to 0.045. Hence, an absolute 1-

unit change in F_share_tereduc_PhD leads to a relative change of 𝑒1.186 ≈ 1.046, that is a 

4.6% positive change in the proportion of women in patenting, thereby reducing the patenting 

gender gap in region 𝑖. Considering specification (4), the change in the proportion of women 

in patenting is also positive, and equal to 𝑒1.18( = 1.0419, that is a 4.19% increase43. Hence, 

the higher the share of women in the PhD population, i.e. the narrower the PhD gender gap, 

the higher the proportion of women among the patenting population, i.e. the narrower the 

patent gender gap. Interestingly, the estimated effect of narrowing the gender gap at the 

bachelor level has an opposite sign. Indeed, from specification (2) and (4), the estimated 

coefficient for the F_share_tereduc_Bach variable is equal to -0.033 and -0.030, respectively, 

both estimates being statistically significant at the 5% level. Considering specification (4), the 

change in the proportion of women in patenting is negative and equal to 𝑒'1.171 ≈ 0.9704, 

i.e. a 2.96% reduction. The estimated effect of the participation of young girls to early 

education programmes44 on the patent gender gap is positive, as estimates from both 

specifications (2) and (4) are positive and significant at the 1% level. However, the estimated 

effect of narrowing the gender at the master level – captured by the variable 

F_share_tereduc_Mast – is not significant. 

Overall, there is some evidence that a narrower gender gap at the PhD level – correlates 

positively with the proportion of women in the patenting population. However, the estimated 

negative correlation between the bachelor gender gap at the bachelor level and the patent 

gender gap casts doubts on the progressive nature of the improvements in the patenting gender 

gap as the gender gap in education levels narrows.  

Panel analysis 
The advantage of panel analyses is to make possible to address for omitted variable biases that 

may arise due to variables that vary over time and across regions when controlling for both 

time and entity-fixed effects, i.e. two-way fixed effects. As before, the F_EDat variables are 

considered as control variables. 

 

43 The coefficient estimate is significant at the 1% level. 

44 F_early_educ_count variable taken in its logarithmic transformation. 
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Table 10. Panel regressions, two-way fixed effects 

Controlling for both time and entity fixed effects, the estimated coefficient on the PhD-level 

gender gap variable45 is still highly significant – at the 1% level – but its sign has changed 

from positive (see table 9) to negative (see table 10). Put differently, narrowing the PhD gender 

gap does not seem to narrow the patenting gender gap, but instead to increase it. At the same 

time, the coefficient estimates on gender gaps at the other educational levels have lost their 

significance. The change in coefficient sign can be due to the fact that, so far, the regression 

models considered have not made any sort of distinction between the academic disciplines 

considered, and considered all kinds of PhD degrees, regardless of the field of study. Hence, 

it can be the case that, even if the gender gap narrows at the PhD level, there is no improvement 

in the patent gender gap due to the fact that women can very well attend more PhDs in non-

scientific fields for which the likelihood of patenting is small to very small, like humanities. 

 

45 Denoted F_share_tereduc_PhD 
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This leads to the investigation of hypothesis (3), namely whether the academic discipline of 

degrees obtained impacts the severity of the patent gender gap.  

5.2.2 H3 & H4 testings: STEM gender gap and gender inequality 

 

Table 11. Beta regressions with STEM and inequality variables 

As seen on table 11, the estimated coefficient on the PhD-level gender gap46 is still highly 

statistically significant in all specifications, and positive. Considering specification (7), the 

estimated coefficient is equal to 0.044, which means that the estimated effect on the patent 

gender gap47 is equal to 𝑒1.188 = 1.0450, i.e. a 4.5% positive change. This is very similar to 

results derived from the analysis of table 9. 

 

46 F_share_tereduc_PhD variable. 

47 betatransfem_share, that is the beta transformation of the fem_share dependent variable, as described in section 4.1.2. 
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Two other results are included in table 11. On the one hand, the share of STEM graduates 

among the total population of graduates correlates negatively with the patent gender gap, i.e. 

the more STEM graduates there are the more severe the patent gender gap is. Indeed, estimates 

are negative and significant at the 5% level in all specifications that include this variable as an 

independent variable – specifications (1), (2) and (7). The estimated effect of this variable on 

the patent gender gap varies between 𝑒'1.1)3 = 0.9743, that is a 2.57% decrease – 

specification (2) – and 𝑒'1.17F = 0.9618, that is a 3.82% decrease in the ratio of the proportion 

of women patentees to men patentees. On the other hand, the share of female STEM graduates 

among the total STEM graduates – or, put differently, the gender gap in STEM graduates – 

correlates positively with the proportion of women among the total patenting population. The 

estimated coefficient on the variable F_Share_STEM is both positive and significant at the 5% 

level in all specifications that include this variable – specifications (1), (2) and (7). The 

estimated effect of this variable on the patent gender gap varies between 𝑒1.1(F = 1.0192, that 

is a 1.92% increase – specification (7) – and 𝑒1.1)7 = 1.0233, that is a 2.33% positive change 

in the patent gender gap. Hence, it appears that narrowing the gender gap in STEM academic 

disciplines reduces the patent gender gap. Namely, the higher the share of women in STEM-

related academic fields, the higher the proportion or share of women in the patenting 

population, which validates the third hypothesis. These results indicate that encouraging more 

women towards a higher level of education without increasing their participation to STEM 

academic fields does not improve the patent gender gap in patenting, and a combination of 

both increasing a higher educational achievement and encouraging women to undertake a 

STEM education is necessary.  

However, the effect of implementing such incentives for women in STEM fields is uncertain, 

as the educational gender gap is not the only possible explanation for the underrepresentation 

of women in patenting. The access to STEM-related jobs also suffers from a blatant gender 

gap, and the access to this segment of the job market is biased in men’s favour. Based on 

American data, Beede et al. (2011) assert that women with a STEM degree are also less likely 

than men to work in a STEM occupation, and that women are likely to work in healthcare and 

education. Hence, there is also a STEM-employment gender gap, for which Beedle et al. 

provide several explanations: the absence of female model – itself due to the 

underrepresentation of women in STEM employment, creating a vicious circle – gender-based 

stereotypes, impaired flexibility due to family obligations, corroborating the observations 

made by Wynarczyk & Renner (2006) and Weinkopf (2014). Gender stereotypes and the lack 
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of early exposure to innovation-oriented programmes also seem to hinder women’s patenting 

(Couch, Estabrooks, & Skukauskaite, 2018). 

Furthermore, the estimated coefficient for the GII variable in table 11 is highly negative as 

well as statistically significant at the 5% level in all specifications (5), (6) and (7). As 

mentioned previously, the GII is calculated in such a way that the higher the index, the more 

blatant the gender inequalities are. Hence, the negative and significant estimated coefficient 

points towards the validation of the fourth hypothesis. 
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6. Conclusion 

In this paper, the geographical patterns of the patenting gender gap as well as the educational 

driving forces of patenting have been empirically investigated. The sample used in these 

investigations comprises 27 European countries belonging either to the European Union or the 

OECD, or both, which are divided into 267 NUTS2 statistical regions. From this sample, the 

map visualisation of the data – the share of women among the regional population of patent 

applicants – shows the existence of a city effect that narrows the patent gender gap. However, 

this effect does not seem to operate fully in central European countries, due to employment-

related gender gaps affecting women’s productivity and work-life balance. In addition, the 

relatively higher participation of women in patenting in European regions formerly belonging 

to the Soviet bloc as well as the existence of a handful of cross-border spillovers between 

geographical clusters indicate that culture and history are other factors affecting the patent 

gender gap on the European continent. Complementing the analysis of the geographical 

patterns, the development and application of beta-regression and panel models show that one 

of the key elements for narrowing the patent gender gap is to reduce the educational gender 

gap at the highest education level in STEM fields, that is to increase the participation of women 

to scientific fields. However, narrowing the education gender gap in STEM is unlikely to be 

the one-size-fit-all solution in achieving gender parity in patenting on the European continent, 

as other gender gaps – related to employment, stereotypes and the role of women with regard 

to their family – would remain unsolved by merely encouraging more women to pursue STEM 

education. Hence, the most appropriate policies in narrowing the patent gender gap are policies 

that take a holistic approach of gender gaps rather than focusing on a gender gap in particular 

field.  

Takeaways of this study can be found both for public policy makers and private businesses. 

The first key takeaway of this study for policy makers is that incentive schemes encouraging 

innovation and patenting by women should be emphasised in large cities and their 

surroundings, as they seem to positively influence the frequency of women patenting. As a 

result, the efficiency of women patenting policies could be higher compared to less urbanised 

areas. However, some important deviations from the city effect exist, in particular in countries 

where women suffer from larger inequalities when it comes to the access to the labour market 

by taking part-time positions much more often than men, which means that these countries 

should focus even more on devising and implementing policies enabling women to take on or 
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keep full-time positions regardless of their family situations and parenthood. In addition, 

policy makers should not only pursue a narrower gender gap in education in general but also 

implement incentives aiming at increasing the share of women in STEM disciplines, the 

educational gender gap is already quite narrow in many non-STEM educational fields and 

women are still widely underrepresented in STEM disciplines. This would result in improved 

career-progression potential as well as an increased scientific output production by women 

(Bertocchi & Bozzano, 2019). The mere pursuit of more women in tertiary education as a 

whole is likely to miss the target while letting the gender gap in STEM narrow further. Lastly, 

gender equality in its various dimensions – access to the labour market, working terms and 

conditions, family duties, etc. – are an overarching goal that has to be pursued in order to 

improve the patenting output of the feminine half of the European population. When it comes 

to businesses, a possible takeaway from this study is that private businesses should encourage 

more diverse teams, that is the inclusion of more women in their scientific teams, as diversity 

promotes equality, which in turns fosters innovation and eventually can result in a higher 

innovation and patenting output. Another takeaway for businesses is the recommended 

implementation of schemes providing support to women at the workplace, for instance by 

offering flexible working hours and/or environments better enabling offering women a better 

work-life balance to mitigate the dilemma between family obligations and work duties 

working mothers can be faced with, and by offering continuous training programs aiming at 

narrowing the human capital gaps between men and women especially in technical and 

scientific industries and business units. 

Contrasting with this study, researchers have also argued that considering the mere number or 

frequency of patenting by women does not bring enough nuancing to the analysis of gender 

disparities in patenting. For instance, Sugimoto et. al (2015) focused on the organisational 

context in which women patenting occurred as well as the gender disparities in the impact of 

patenting. They found that women patenting is less likely to occur in corporate and 

governmental environments but more likely in academic institutions, and that the 

technological impact of women’s patents is comparatively lower than men’s patenting. 

Consequently, Hence, further studies on gender disparities in light of patent quality and 

productivity can only be encouraged. Lastly, the suitability of patent data as a measure of 

innovation is largely discussed, as not all innovations are patented (see for example Griliches, 

1998) and patents are not a necessary condition to show the existence of innovation (Morand 

& Manceau, 2009). 
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Appendices 

Appendix A – Calculation of Beta-regression parameters 

Using the mean R function, the mean of fem_share is: 𝐸(𝑦) = 0.09951998 = 𝜇 

Using the variance R function, the variance of fem_share is: 𝑉(𝑦) = 0.007983993 

Hence,  

𝑉(𝑦)
𝜇(1 − 𝜇) =

1
1 + 𝜙 

1 + 𝜙 =
𝜇(1 − 𝜇)
𝑉(𝑦)  

𝜙 =
𝜇(1 − 𝜇)
𝑉(𝑦) − 1 

𝜙 =
0.09951998(1 − 0.9951998)

0.007983993 = 10.22442787 

Given that (see Ferrari & Cribari-Neto, 2004): 

𝛼 = f
1 − 𝜇
𝑉(𝑦) −

1
𝜇g 𝜇

) 

and 

𝛽 = f
1 − 𝜇
𝑉(𝑦) −

1
𝜇g 𝜇(1 − 𝜇) 

It follows that: 

	𝛼 = >
1 − 0.09951998
0.007983993 −

1
0.09951998? 0.09951998

) = 1.01753 

and 

𝛽 = >
1 − 0.09951998
0.007983993 −

1
0.09951998?0.09951998

(1 − 0.09951998) = 9.20689 
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Appendix B – Breusch-Pagan test for heteroskedasticity 
control 

Assuming the following specification: 

𝑦 = 𝛽1 + β(𝑥( +⋯+ 𝛽.𝑥. + 𝜀. 

- Null hypothesis (𝐻0): homoskedasticity, i.e. 

𝐻0: 𝑉(𝜀.|𝑥.) = 𝜎) 

- Estimation of the squared of residuals 

𝑢Gl
) = 𝛾1 + 𝛾(𝑥( +⋯+ 𝛾.𝑥. + 𝑒 => 𝑅H"I#

)  

- Test statistic 

𝐿𝑀 = 𝑛𝑅H"I#
) ~𝜒.) 
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Appendix C – Women share within the southern and 
eastern as well as the eastern European clusters 
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Appendix D – Maps of all countries 
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