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Abstract  

The objective of this thesis is to forecast derivative prices of Forward Freight Agreements 

(FFAs) using machine learning techniques and investigate the profitability of implementing 

quantitative trading strategies. The thesis concentrates on two dirty tanker routes: TD3C, 

transporting oil from Ras Tenura in the Middle East to Ningbo in the Far East, and TD20, 

transporting oil from Nigeria in West Africa to Rotterdam in Europe. 

 

The machine learning model predicts the future daily price movements of the individual FFA 

contracts, and the daily price spread of the FFA pair using a Long-Short-Term Memory 

(LSTM) Neural Network (NN) machine learning methodology. The model benefits from 

Automatic Identification System (AIS) and voyage contracts data when constructing proxies 

for supply, demand and geographical distribution. To capture economic development, the 

model utilizes macroeconomic and financial data. With a forecasting horizon of one day, the 

findings suggest that the LSTM model outperforms Vector Autoregressive (VAR) and Random 

Walk (RW) benchmark models. 

 

To generate profitable trading signals, the forecasted individual routes and the directly 

forecasted price spread make use of two quantitative trading strategies: A Simple Long 

Short strategy and a Bollinger Band strategy. The strategies compare trading signals generated 

from the VAR and LSTM model with a Buy-and-Hold benchmark strategy (B&H). The results 

suggest that the Simple Long Short trading signals generated from the LSTM model is 

profitable when implemented on individual FFAs, but not profitable when implemented on 

the FFA pair. Conversely, the Bollinger Bands strategy combined with LSTM 

model is profitable when implemented on the FFA pair, but not profitable when implemented 

on the individual FFAs. The LSTM model combined with the two strategies outperforms the 

VAR model and the B&H benchmark. 
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1 Introduction 

Participants of the financial markets have the potential of generating lucrative profits if future 

directional movements of financial assets are precisely predicted and profitable trading 

strategies implemented. Forward Freight Agreements (FFAs) are defined as commodity 

derivatives, which derive from the underlying physical shipping markets in terms of spot freight 

rates on major shipping routes (Baltic Exchange, 2020). As financial derivative 

instruments, FFAs are mainly used by shipping companies, financial institutions and traders for 

speculation and hedging purposes. 

 

The first part of the thesis concentrates on predicting FFA prices in the crude tanker market, 

using Machine Learning methodology. Machine Learning and Artificial Intelligence has for 

many decades been used for computational statistics and forecasting purposes. Computational 

power has increased with greater technology and expanded the possibilities with stronger 

models able to capture non-linear relationships. With constant improving quality of marine 

trafficking data, the popularity of applying these model frameworks on the complex structure 

of this data has increased. One of the models used in this thesis is the Long Short-Term Memory 

Neural Network model, a feedback connection model able to learn complex relationships. The 

model framework is utilized to forecast the one-day-ahead price and the spread of FFA 

contracts applying feature engineering on AIS-and trade-data to derive relevant features. This 

thesis shows an improvement in the prediction compared to a Vector Autoregressive and 

Random Walk benchmark.  

 

The second part investigates the profitability of trading strategies implemented on the 

forecasted individual routes and the directly forecasted spread of the paired FFA contracts. The 

derivatives market plays an important role in transferring risks from those wanting to get rid of 

it to those willing to bear the risk in return for profits. As trading in the FFA derivative market 

has become more popular, possibilities for investors to trade across different shipping routes 

and maturity contracts has increased. In this thesis, three trading strategies has been applied to 

the above-mentioned forecasting models; A Simple Long Short Strategy, a Bollinger Band 

Strategy, and a Buy and Hold Strategy. Utilizing the relative mispricing in the FFA 

contracts, the thesis shows that it is possible to take long-short positions depending on the 

future expectations of the price movements, and hence generate profits. 
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Research on the FFA derivative market and the use of AIS data in shipping markets have been 

covered extensively in previous literature. There are a vast amount of existing studies covering 

quantitative trading strategies in the derivative market. However, the literature regarding 

forecasting and trading in the crude tanker FFA market is considered somewhat limited, 

especially concerning the FFA derivatives of TD3C and TD20. The study contributes to 

previous research by the use of AIS data in combination with an LSTM neural network model 

to forecast of the price movements and price spreads of FFA derivatives in the crude tanker 

market. The study takes the research further by providing insights into possible methods of 

using quantititive strategies in the trading of the forecasted FFA prices and the directly 

forecasted price spread. The research covers the complexity of FFA derivative market, while 

still making it possible for other researchers and parakeet participants to implement the same 

forecasting and trading techniques. 

 

The thesis is organized as follows: Chapter 1 presents a review of relevant literature. Chapter 

2 describes the variables used in the prediction and the data gathering process. Chapter 

3 covers the machine learning theory and methodology. Chapter 4 includes trading theory and 

methodology. Chapter 5 presents the forecasting results and the profits achieved from the 

trading strategies. Chapter 6 provides a discussion of the results and final conclusions.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 6 

2 Literature 

There have been several studies applying machine learning techniques and methods on AIS  

data. Regli and Nomikos (2019) utilized feature engineering to derive measures of capacity for 

the VLCC fleet to capture some of the development in the weekly TD3C tanker freight rate. 

They found that parts of the short-term freight rate could be explained by the measured changes 

in supply from AIS-data.   Prochazka, Adland and Wolff (2019) investigated the contracting 

behaviour in the tanker spot market by utilizing AIS- and fixture-data to analyse the positions 

of tankers at the time of fixture. They found indications of fixtures being set earlier during 

strong market conditions to secure oil tonnage for oil buyers. Kaluza et. al (2010) presented a 

network of cargo vessel movements in seaborne trade for various vessel classes using AIS. 

 

In a similar way, Cheng et. Al (2018) mapped movement of oil tanker trajectories to identify 

busy routes and areas surrounding the “Maritime Silk Road” using AIS-derived data, where 

they found AIS data to be successful in providing an analysis of the movements. Another study, 

conducted by Kumaraand and Heymann (2020), applied machine learning methods utilizing 

classification with an Artificial Neural Network (ANN) model to detect anomalies in maritime 

navigation using AIS data with promising results.  

 

Adland et. al (2017) showed that data derived from AIS could be used to obtain an estimate of 

seaborne crude exports, obtaining similar results to the aggregated crude export based on 

customs-reports. Tham (2008) investigated the TD3C tanker spot rates using ordered logistic 

regression and found that Brent-Dubai spreads, fleet utilization rate and availability of Very 

Large Crude Carriers (VLCC) were one of the primary drivers of the price.   

 

Kavussanos and Nomikos (2003) applied forecasting models on the relationship between spot 

and the freight futures market, finding a long-run relationship between them. They also 

found that freight futures could provide additional information when forecasting spot-rates but 

not necessarily the other way around. Additional discoveries were indications of the shipping 

derivative market capturing new information before the underlying physical market due 

to informed investors prioritizing the derivatives market. Assman (2020) investigated both 

classification- and regression-methods to predict freight derivatives for directional and point-

forecasting, respectively. She found that significant profits could be obtained applying trading 

rules for both methods and argued that the findings could indicate inefficient FFA markets.    
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There is a vast amount of literature and research covering spread trading strategies and other 

strategies implemented in the FFA derivative markets, in the tanker market, the stock market 

and the commodity markets. One paper, written by Alizadeh and Nomikos (2006), investigates 

the profitability of trading strategies in the tanker market. Based on a cointegration relationship 

between earnings and price, and statistical tests using a bootstrap approach, they implemented 

earnings-price ratio strategies. Their results suggested that the trading strategies significantly 

outperformed the buy and hold trading benchmark in the tanker market.  

 

In a paper written by Gatev, Goetzmann and Rouwenhorst (1999), the profitability of pairs 

trading strategies was investigated using a standard deviation strategy on equities. 

The stocks were paired based on normalized historical co-integrated prices. In line with their 

expectations, the results showed that excess returns obtained from temporary mispricing 

existed, achieving an annualized excess return of about 11% for the top-pair portfolios. In 

another paper, written by Elliott, van der Hoek and Malcolm (2005), a mean-reverting Gaussian 

Markov chain model is proposed to be implemented as a spread trading strategy. They 

compared the model predictions to subsequent observations of the spread between stocks to 

determine investment decisions. They showed that the model had potential to generate profits 

when their asset prices in the financial markets deviate from the underlying equilibrium.    

  

Kavussanos, et al (2010 and 2014a) investigated information flows and spill-over effects 

between the commodity futures markets and the freight derivative markets. Their findings 

suggest that there exist significant information flows between the two, and specifically from 

the commodity futures to the freight derivatives markets. Thus, investors can utilize the 

fluctuations in commodity futures and take appropriate positions in the FFA markets.   

  

Chang and Geman (2016) modelled spreads between different stock pairs of oil companies and 

implemented a high-frequency intraday spread trading strategy Their results obtained were 

remarkable, achieving a Sharpe ratio of 7.2, even after accounting for transaction costs. A more 

recent work written by Engmark and Haugland (2018) examined an intraday spread trading 

strategy based on a stochastic process model using Brent Crude oil futures contracts. They 

constructed different calendar spreads for trading and achieved a maximum Sharpe Ratio of 

4.3 Their findings were less optimistic, and under conservative assumptions, they concluded 

that the stochastic model was not profitable.    
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3 Data 

3.1 Data Foundation 

In this study, selected routes for the corresponding 2nd month FFA contracts, defined by the 

Baltic Dirty Tanker Index (BDTI) are investigated. The choice is based on a consideration of 

market liquidity, the variability in data of daily prices and time horizon of the data available for 

investigation. The two routes are TD3C, which is operated by VLCCs, transporting crude oil 

from Ras Tenura in the Middle East to Ningbo in the Far East, and TD20, a Suezmax route 

transporting oil from the port of Bony in Nigeria, West Africa, to Rotterdam on the European 

continent (Baltic Exchange, 2020). 

 

Studying the shape and behaviour of the supply and demand curves that characterize the 

shipping market is essential for the variable selection when predicting the price movements of 

the FFA contracts. The variables selection and variable extraction make use of a data foundation 

consisting of an Automatic Identification System (AIS) dataset from Vesseltracker GmbH 

provided by the Centre for Applied Research at NHH, a voyage dataset provided by Signal 

Ocean Group, as well as open-source financial and macroeconomic data. 

 

The variables are selected on a geographical regional and global basis and related to the vessel 

type of the respective routes. The regional level is meant to capture route specific changes in 

local demand and supply, while the global level is supposed to capture the current market 

conditions for the shipping industry and the economy as a whole. Additionally, some of the 

variables are selected based on reported destinations to account demand and vessels heading to 

specific ports. Concerning vessel types, the data on VLCC tankers are linked to TD3C, while 

the data on Suezmax tankers are linked to TD20, as these vessel classes are the most central 

and prominent for the respective routes (Baltic Exchange, 2020). The chosen time horizon of 

the data is set to the 1st of January 2014 to the 31st of July 2019. 

 

AIS Data 

Automatic Identification System (AIS) is an automatic vessel tracking system which keeps 

track of vessels at sea through transceivers on a global case. The main objective of the system 

is to provide an overview of marine traffic both locally and globally, resulting in improved 

navigation, security and control in marine trafficking (Navigation Center, 2020). The system 

was first enforced upon voyaging vessels with a carrying capacity on more than 300 DWT by 
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the International Marine Organization in 2002 and has expanded in use since. The data is 

gathered by satellites surrounding the Earth, solidifying the quality and frequency of AIS 

signals. The signals vary in length, content and frequency, and in 2019 there were 27 different 

message types (Navigation Center, 2020). The messages include information of ship type, ship 

ID, positions in longitude and latitude, timestamps, speed, course, draught, destination and 

other ship specifications. In this study the variables are created using the AIS information on 

longitude, latitude, speed, course, draught, destination and vessel class. An overview of the 

information provided by the AIS dataset utilized in this thesis is presented in Table 1: 

 

 

 

 

 

 

 

 

 

 

The IMO number is a unique vessel identifier provided for each ship type by the International 

Marine Organization. The IMO number is used to merge satellite data from the AIS dataset 

with the additional shipping data from the Clarkson World Fleet Register Database. The 

additional data from the Clarkson Database included in this study is vessel type, loading 

capacity, maximum draught and design speed. In all datasets, the information provided is 

filtered to only contain VLCC and Suezmax crude oil tankers, as these are the respective vessel 

classes for the selected routes.   

 

An issue regarding the AIS-data is partly or entirely missing observations. Missing IMO 

numbers in the AIS dataset are obtained from the Clarkson Fleet Register by matching vessel 

names. The data observations are removed when both the IMO number and the vessel names 

are missing. Also, observations on non-business days and holidays are excluded, as there has 

been no trade taken place on these days. Information on speed, draught and destination is 

manually reported by the vessel crew, leaving room for error (Jia et al., 2015). Hence, if data 

for unique vessels are missing, interpolation is used to fill in the missing values. 

 

Table 1: AIS provided Data 
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Voyages Dataset 

The data provided by Signal Ocean spans from 2014 until August 2020, but only data up until 

31.07.2019 is used to match the AIS dataset. Like the AIS data, the subset of vessel types 

consists of crude tankers most prevalent on the routes of interest, namely VLCC and Suezmax. 

Each observation in the dataset contains a completed voyage from receiving a port call to the 

date of a new port call. The dataset offers voyage specifications such as dates for fixtures, 

loading and discharging of cargo in addition to coordinates for all ports and is involved in 

deriving variables for demand and operational status.  

 

3.2 AIS-Derived Features 

 

Fleet Productivity 

Speed is included as a supply-driven feature, aiming to capture the fleet’s productivity. 

Shipowners have the tendency to increase sailing speed as a response to increased excess 

demand and high freight rates (Tsioumas, 2016). In theory, this incentivises an increase in speed 

up until the marginal profit from being able to complete more voyage charters at a fixed day-

rate equals the marginal bunker fuel cost (Stopford, 2009). However, speed is also limited to 

the design speed, which varies for each individual vessel (Clarkson, 2020). Classic shipping 

theory suggests that higher sailing speed increases productivity and therefore supply (Stopford, 

2009). The opposite will apply for a reduction in sailing speed. Capturing a shift in supply 

through fleet speed can provide information regarding the underlying shipping market when 

forecasting the FFAs. The standard deviation of the speed is also included as a feature to capture 

speed volatility. 

 

The daily speed is derived by measuring the distance sailed per hour elapsed each day. The 

elapsed time difference and distance travelled are based on the first and last observation for 

each vessel on a given day. A haversine formula is implemented, which calculates the distance 

in nautical miles sailed given the longitude and latitude, and accounts for spherical 

curvature. Further, a raster map is used to provide mesh grid points for the surrounding land 

area, avoiding occurrences where the vector provides a straight line over land as designated 

path. The daily mean speed for each vessel is calculated by dividing the distance sailed by the 

time difference, then the aggregated average speed is divided by the number of 

tankers sailed for the respective region. The calculation is shown in Equation 1.   
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𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑆𝑎𝑖𝑙𝑖𝑛𝑔 𝑆𝑝𝑒𝑒𝑑 =  
∑

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑠𝑎𝑖𝑙𝑒𝑑
𝑇𝑖𝑚𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝑛
𝑖=1 ∈𝑁

𝑁 𝑡𝑎𝑛𝑘𝑒𝑟𝑠
 

Equation 1: Average Sailing Speed 

 

For the subsequent features, a dummy variable is implemented to distinguish moving and 

stationary ships. A threshold for a ship moving is set to 6 knots. Observations where vessel-

specific speed exceeds design speed of 17.2 and 18 for the Suezmax and VLCC class, 

respectively are filtered out. In cases where missing data leads to zero daily observations, 

interpolation of the previous day is used. In situations with one daily vessel observation 

available, the last observed position for the previous day is used.  

 

A map of the VLCC fleet sailing pattern through 2018 is illustrated in Figure 1: 

 

Figure 1: VLCC Fleet Sailing Pattern 2018 

 

Capacity Utilization 

Features concerning the average fleet load factor are included to further account for the fleet 

productivity and capacity utilization. Adland et. al (2016) showed that low freight rates lead to 

a state where vessels will take on suboptimal contracts where the capacity is not fully utilized. 

Hence, the vessel load factor provides information regarding supply and market conditions, 

potentially affecting FFA prices depending on the market view. Shipment quantity for each ship 

signal is not provided in the AIS-data. Inspired by Adland et. Al (2018), a proxy to measure the 

load factor is created. The reported draught is divided by the maximum draught level designed 

for each vessel and is then used to make an estimate of the loaded quantity at the time of the 

signal. The calculation of the load factor is given in Equation 2: 
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𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐿𝑜𝑎𝑑 𝐹𝑎𝑐𝑡𝑜𝑟 =  
∑

𝐷𝑟𝑎𝑢𝑔ℎ𝑡
𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑑𝑟𝑎𝑢𝑔ℎ𝑡

𝑛
𝑖=1 ∈𝑁

𝑁 𝑡𝑎𝑛𝑘𝑒𝑟𝑠
 

Equation 2: Average Load Factor 

In addition to the load factor, a feature measuring the share of vessels sailing ballast is created 

as an indicator of the fleet capacity utilization. According to Stopford (2009), non-cargo items 

such as fuel, crew, and water ballast account for approximately 5% of the total DWT, leaving 

95% of the remaining DWT to cargo. To account for voyages on sub-optimal contracts, the 

threshold of a vessel sailing ballast is set to equal or below 70% of its maximum draught. The 

number of vessels sailing under this threshold is calculated, giving a proxy regarding the share 

of vessels sailing ballast each day. 

 

Three features are included to describe the fleet capacity. The first feature counts the number 

of vessels in each region of interest, capturing the capacity allocation and the supply status, 

indirectly accounting for new additions and demolitions of each fleet. The second capacity-

feature captures the capacity available by obtaining an aggregate estimate for the total DWT of 

the fleet in each region. The last capacity-feature counts the in- and outflow count of vessels 

for each region to account for changes in local capacities.  

 

To derive the capacity features, a world grid map is divided into several polygons by using a 

Ray casting algorithm featured in several previous studies, among them Narkawicz and Hagen 

(2016). The algorithm determines whether an observation is inside a predetermined area by 

testing the number of times a ray intersects the polygons given a starting point. If the ray 

intersects the predetermined geo-fence an odd number of times, the signal is inside the polygon. 

Conversely, if the ray intersects an even number of times, the signal is outside the polygon. For 

each latitude- and longitude-pair, a dummy variable is created and labelled for each region. In 

the study, the world grid map is divided into the following polygons: North Atlantic, South 

Atlantic, North-Western Europe, Mediterrian Ocean, Arabian Gulf, Indian Ocean, Pacific 

Ocean and Asia continent. The polygons are illustrated in Figure 2. 
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After determining in which polygons the observations are located, a count of VLCC and 

Suezmax vessels in each polygon is derived. Then, the daily DWT capacity available is 

summarized, obtaining a measure of the total supply capacity within each polygon. Finally, the 

in- and outflow of vessels is derived by calculating the number of times vessels cross a 

particular polygon. 

 

3.3 Non AIS-Derived Features 

 

Tonne-Mile Demand 

Tanker demand is a function of the distance required to complete a voyage and the cargo 

quantity transported. The distance component of is denoted as the average haul of the trade, 

which varies with the trade locations. To incorporate average haul, the demand is measured on 

a “tonne-mile” basis (Stopford, 2009). Tonne-mile demand (TMD) is derived by multiplying 

the quantity by the distance sailed for voyages sailing laden. An increase in crude tonne-mile 

demand drive freight rates up as more tankers are required, which positively affects FFA prices. 

To create a proxy for tonne-mile demand based on time-specified fixtures in the Voyages 

dataset, the load- and discharge dates available for each voyage are utilized. A potential issue 

when determining TMD precisely, is obtaining the date for which the demand arose. In this 

study it is assumed that the demand arises on the loading arrival date. There is a weakness to 

this assumption, as the destination might not be visible to the forecasting model at the time of 

loading, especially if there are delivery options in place. Additionally, most fixtures are 

arranged long before arrival to the loading port (Prochazka et. Al, 2019). 

 

Figure 2: World Raster Map Divided in Eight Polygons 
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To calculate the voyage distance, the ‘Python-Ports-Distance-Calculator’, an algorithm by 

Huang (2017), is used. This algorithm uses a raster map to find the shortest path from one port 

to another without crossing any land areas. When calculating the average haul, the loading and 

discharge ports are the ports of interest. For most observations, the quantity is not reported, and 

an assumption of laden vessels sailing at 90% of its DWT capacity is made.  

 

To get the final estimation of TMD, the distance is multiplied by the DWT and an assumed load 

factor of 90% for each laden vessel. Equation 3 illustrates the calculation. The TMD is 

calculated globally and for each region related to the routes selected for the Suezmax and VLCC 

fleet. A feature measuring the cumulative sum of TMD is also created.  

 

𝑇𝑜𝑛𝑛𝑒 − 𝑚𝑖𝑙𝑒 𝑑𝑒𝑚𝑎𝑛𝑑 =  ∑ 90% ∗ 𝐷𝑊𝑇 ∗ 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑛 ∈ 𝑁

 

Equation 3: Tonne-Mile Demand 

Figure 3 presents the aggregated estimate of TMD per year compared to the true world seaborne 

trade of crude oil based on values from Clarkson Research Portal (2020). The estimated values 

seemingly match the true values well, deviating by approximately 1 billion tonne-miles per year 

except 2014 and 2019. 

 

Figure 3: World Seaborne Crude Oil Trade vs. Estimated Tonne-Mile Demand 

 

Unemployed Days 

A feature counting the days between voyages is created to account for fleet operational status, 

measuring the time vessels remain unemployed after last cargo discharge. Adland (2019) shows 

an inverse relationship between idle ships and earnings in the Capesize 16 market. If this 

relationship is similar for the crude tanker market, one could argue that a feature capturing this 
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dynamic either directly or indirectly can provide useful information of the operational status. 

This estimate of unemployed days is calculated by obtaining the daily time difference between 

the last discharge and the next voyage departure for each vessel. The number of days between 

voyages for each individual vessel is aggregated both globally and regionally based on the area 

of the original port call. Calculation is done at the time a new fixture is known when sailing to 

a new loading port to avoid forward-looking bias. The time series of unemployed days for the 

Suezmax and VLCC fleet in West Africa and Asia are illustrated in figure 4. 

 

 

Figure 4: Unemployed Days for Suezmaxes in West Africa (left) and VLCCs in Asia (right) 

According to Stopford (2009) there is a significant lag between decisions and implementations 

in the shipping markets. This time-lag dynamic is partly solved through the mechanics of the 

machine learning models, as they allow the model to look back to previous time steps when 

forecasting. 

 

3.4 Financial Variables 

Exchange Rates 

Exchange rates are defined as the price of a nation’s currency expressed in the terms of another 

currency (Investopedia, 2020). Kavussanos and Visvikis (2006) argues that capturing exchange 

rate movements will reflect the fluctuating relationship between economies. According to 

Stopford (2009) the US dollar is considered the main currency in the shipping industry. 

Consequently, exchange rates for currencies of the routes are included, measured against the 

US dollar. It is assumed that a strengthening of the USD compared to the other currencies have 

a positive impact on the derivative prices.  
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Time Charter Rates  

In addition to freight rates, the Baltic Exchange produces time-charter rates. One-year Time 

Charter Rates for Suezmax and VLCC are included to capture future spot rate expectations and 

period-to-period changes in revenue performance and voyages costs. The time charter rates are 

calculated by taking voyage revenues, subtracting voyage expenses, including canal, bunker 

and port costs, and then dividing the total by the round-trip voyage duration in days. 

(Investopedia, 2020). The VLCC Time Charter Rate uses TD1 and TD3C, while the Suezmax 

Time Charter Rate uses TD6 and TD20. 

  

One can argue that the physical time charter market does not contain additional information 

about the future market, and that the information is already reflected in FFA prices. However, 

the variables are still included to investigate the relationship with the FFA prices. Köhn (2008) 

argues that positive changes in time-charter rates reflect market expectations of improving spot 

rates. Stopford (2009) argues that higher transportation costs or bunker prices may affect the 

shipping demand negatively. Hence, it expected that the time charter rates are both positively 

and negatively correlated with FFA prices. The correlation with the FFA prices further depends 

on which variable is changing and the degree of the change. 

 

Interest rates 

Interest rates exhibit information about the future expectations of economic activity. Also, 

interest rates stimulate the economy by impacting the cost of capital and investors willingness 

to invest (Da et al). The LIBOR (London Inter-Bank Offered) index is an interest rate base often 

used in the financing of loans in the shipping market. A decline in the LIBOR rate increases the 

purchasing power of investors and impacts the Capex of shipping companies, leading to higher 

company values. The opposite is true when the market observes a rise in the interest rate. 

Therefore, the LIBOR-rate quoted in USD is considered important for the prediction and the 

rate is assumed to have a negative relationship with the FFA values. 

 

Stock Index 

A selection of stock exchange indices linked to the countries of the respective routes are 

included in the prediction. These are Tadawul (SA), Shanghai SE Composite Index (CH),  

GSEINDX (NIG), AEX INDEX (NL) and S&P500 (US), including the VIX index. S&P500 

measures the value of the 500 largest companies listed on the New York Stock Exchange, while 

the VIX index captures the market’s and S&P500’s volatility expectations. A positive 
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relationship between the stock indices and the FFA prices is hypothesized, as improving market 

conditions leads to optimism and higher trade activity both on the stock and the derivative 

market. A negative relationship between the FFA price and the VIX is expected, as activity is 

expected to decrease when fear among investors increases.  

 

The Baltic Dirty Tanker Index 

The Baltic Exchange is among the world leading providers of freight market information, 

contributing to the development of well-functioning derivative markets. Several indices have 

been constructed over the years to meet the needs of the market participants trading in the 

different segments. The Baltic Dirty Tanker Index (BDTI), which is this thesis most appropriate 

index, reflects dirty cargo voyages transporting crude oil and lower distillates of oil refineries. 

The final calculation of the BDTI is an equally weighted average of each individual route, 

quoted in WorldScale (WS) points and $/mt. (Alizadeh and Nomikos, 2009). The BDTI is 

constructed using data and information served by a panel of independent shipbrokers. Every 

business day, the published freight rates and assessments are based on negotiations, the 

shipbrokers' perceptions of each trading routes’ value, considerations of supply and demand, 

and other available market information. Consequently, the prices of the FFA contracts are 

mostly expected to be positively correlated with the Baltic Dirty Tanker Index. 

 

Crude Oil Price 

The Brent Oil is one of the most common price benchmarks for crude oil. It is considered to be 

easily transported and refined, and according to ICE (2013), the price of the Brent Oil is the 

origin of the pricing of 60% of the oil traded globally. Hence, the variable included is the Arab 

Emirates Dubai brent oil and is supposed to capture the world demand for crude oil. Poulakidis 

and Joutz (2009) argue that a rise in the oil prices give an upward pressure on spot rates. The 

price mechanisms involved in transportation and the production of oil rather complicates the 

forecasting of directional movements of the oil price on the price of the FFA derivative 

contracts. Increased oil demand can be the source of a higher brent price, but also increased 

bunker costs can put an upward pressure on the brent price. According to Clarkson (2020), the 

dynamic of the oil price can a both of positive and negative effects on shipping, and hence it 

depends on the source of the price increase.  
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High Yield Spread 

To capture the investor’s willingness to invest money in the marker, a high yield bond spread 

is included in the model. The index captures the market’s expectations the future activity in the 

global economy. When investors become less risky, a tightening of the high-yield spread is 

expected to occur, as well as increased investments in the economy. Conversely, when investors 

become more risk averse, is reflected in an expansion of the high yield spread, which in turn 

leads to less economic activity. Westgard et al (2017) investigated the relationship between 

freight and high yield bond spreads and found a negative relationship in relation to the oil prices. 

In relation to FFA derivatives.     

 

OSX & OVX 

Two indexes related to the oil sector to capture future expectations of the shipping and 

derivative market. The indexes are The Phil Oil Service Sector Index (OSX) and the Crude Oil 

Volatility Index (OVX). The Phil Oil Service Sector Index (OSX) is a weighed market index 

consisting of companies that are involved in the Oil Service Sector and tracks the performance 

of the oil companies’ share price (Investopedia, 2020). The Cboe Crude Oil Volaltility Index 

(OVX) is an estimate of the expected 30-day volatility of crude oil as priced by the United 

States Oil Fund. (Investopedia, 2020). Westgaard et al (2017) used the OSX as an oil price 

indicator when studying oil price movements and concluded that the OSX index served as an 

appropriate indicator for crude oil prices. It is expected that the OSX is positively correlated 

with the FFA prices, while the OVX can is expected to be negatively correlated with the oil 

prices, as increased volatility usually reflect increasing fear among investors.  

.  

4 Theory & Methodology 

4.1 Machine Learning Theory & Methodology 

4.1.1 Supervised Machine Learning 

Machine learning is often divided into two subcategories, unsupervised and supervised 

learning. Supervised machine learning is the process where an algorithm is trained on data with 

labelled inputs in order to learn the mapping function between an input X and output 

Ŷ. When learning the model has access to previous examples of the X and Y combinations in 

terms of training data, eventually returning a prediction of the out-of-sample data based on what 

is learned. In unsupervised machine learning, the model is presented with data in which 
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the data label is unknown. The objective of an unsupervised machine learning model is to learn 

the patterns and clusters for the unknown labelled inputs. This thesis deals with labelled data 

that is already known, trying to optimize the mapping function and obtain a prediction, making 

it a supervised machine learning study.  

 

4.1.2 Artificial Neural Networks 

Artificial Neural Networks (ANN) are computational systems based on the principles behind 

biological neural networks. Neural networks consist of neurons able to communicate through 

electrical signals and are structured in different layers. The bottom layer consists of the 

predictors (inputs to the model), while the outputs (predictions) make up the upper layer. 

Additionally, there could be layers in between these two layers, often denoted as hidden layers. 

A NN without hidden layers resembles a linear regression. When the hidden layers are added, 

the model becomes non-linear. Based on the type of neural network, these hidden layers can 

have different properties. An example of this is a Recurrent Neural Network.  

 

4.1.3 Recurrent Neural Networks 

Recurrent neural networks, in contrast to normal neural networks, can use previously iterated 

time steps, and subsequently inform later time steps by preserving memory. An illustration of 

a recurrent neural network is shown in Figure 5.   

 

 

Figure 5: A simple RNN (Figure inspired by Olah,, 2015) 

 

At each cell A, the model returns to previous information when evaluation input 𝑋𝑡 Xt  

 through the activation of the hidden layer, ℎ𝑡−1ht−1, to form an output, (prediction) 𝑦𝑡+1yt+1. 

A simple RNN can preserve this information to an extent. However, as the number of time steps 

increase, the context depreciates and connecting the same dots might not be easy or beneficial 

to the model, as this leads to the model not learning properly. What happens is that the values 
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propagated forward explode or vanish, often referred to as the vanishing and exploding gradient 

problem (Hochreiter et al., 2001). During training of a model, the gradients in terms of weights 

early in the model can be very small. For each update of these weights throughout the model, 

they remain small. As this carry through the model, it essentially learns less over time and 

brings forward information poorly. The opposite is the case for an exploding gradient, as they 

grow exponentially and heavily influences the model negatively as time goes on. A 

framework able to account for the vanishing gradient problem is the LSTM model.  

 

4.1.4 Long Short-Term Memory 

Long short-term memory networks are variants of RNN, able to capture and learn long-term 

dependencies due to its cell structure, hence the name. An LSTM-chain is shown in Figure 6: 

 

Figure 6: LSTM Neutral Network (Figure inspired by Olah, 2015) 

In addition to the hidden layer activation from the RNN, there is an extra connection between 

each cell denoted as the cell state vector 𝐶𝑡 between each LSTM cell. At each time step, the 

LSTM cell has the alternatives to either read from the vector, write to it, or reset the cell using 

the mechanics of gating. Within an LSTM cell there are three gates with different functions 

affecting the cell state vector: Forget gate layer, input gate layer, and output gate layer. All 

these cells have a Sigmoid activation, denoted as σ, which is there to form smooth curves in the 

range of zero to one and the model stays differentiable. Some gates have a tahn activation, a 

mechanism that distributes the gradients well, and allows the information in the cell state vector 

to contain information longer without vanishing or exploding. The gates are explained one by 

one, starting from the far left in figure 6.  The forget gate layer (function 7) is the first layer, 

which looks at the previous output ℎ𝑡−1 and the current input 𝑥𝑡. If the sigmoid function returns 

“0” for the cell state, it implies that it is forgotten. If a “1” is returned, it means that it is 

completely kept moving forward.   

𝑓𝑡 =  σ(𝑊𝑓 ∗ [ℎ𝑡−1, 𝑥𝑡] +  𝑏𝑓) 

Figure 7: Forget Gate Layer 
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The input gate layer consists of a sigmoid activation layer as well as a following tahn activation 

layer. Firstly, the sigmoid layer decides which values should be updated. In parallel, the tahn 

layer forms a vector of new values that are candidates to be added to the cell state 

𝑖𝑡 =  σ(𝑊𝑖 ∗ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) 

Figure 8: Input Gate Layer 

𝐶̃𝑡 = tanh (𝑊𝐶 ∗ [ℎ𝑡−1, 𝑥𝑡] +  𝑏𝐶) 

Figure 9: Cell State Vector 

What happens next is combining the functionality of the forget gate layer and input gate 

layer to update the previous cell state 𝐶𝑡−1 to 𝐶𝑡. Here, the old cell state is multiplied by the 

function where what should be forgotten is decided, 𝑓𝑡 . The next step is adding new candidate 

values multiplied by the function determining to which degree each state value is 

updated. Finally, the output of the cell needs to be decided in the output layer gate. First, a 

sigmoid layer is run, deciding which parts of the cell states to be included. Second, the cell state 

goes through the tahn layer and scales the values between -1 and 1. Lastly, output from the 

sigmoid layer is multiplied with the output from the tahn layer, resulting in the final output for 

that time step. The cell state vector is then passed on to the next time step, repeating the 

same process. 

 

Hyperparameters  

Two types of parameters are present when training machine learning models. One is where the 

model configures and adjusts the internal weights during training based on what the model 

learns. Second, there are parameters that are set manually before training by the researcher. The 

aim is to optimize these parameters to make the model training as efficient as possible (Yang 

and Shami, 2020). Hyperparameter-tuning can either be done manually on a validation partition 

of the dataset or through various machine learning methods. For this thesis, a grid search 

optimizer algorithm is performed on the validation data (Autonomio Talos, 2019). The grid 

search is based on a parameter boundary for each hyperparameter, where combinations up to a 

threshold are subsequently tested one by one on the validation data only, separate from the 

remaining out-of-sample test data. The hyperparameter combination that returns the lowest 

Root Mean Square Error is selected to be applied on the testing data.  

 

The first hyperparameters considered in this thesis are the numbers of hidden layers and 

the number of units within each layer, where the number of layers determines how many hidden 
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layers there are between each input and output. The number of units for each hidden layer 

determines the dimension of each cell within a layer, in practice the units that the activations 

travel through before going to the next time step. Learning rate is also set, and a low learning 

rate converges easily but take longer to learn, while a high learning rate learns fast but 

converges slowly. The window size is the amount of time steps the model uses as “look-back” 

time to predict the next time step. In addition to these, a parameter accounting 

for regularization is added, ensuring that some of the recurrent information in the network gets 

dropped to avoid overfitting. Lastly, the batch and epoch size are set. The batch size is denoted 

by the number of samples that are worked through before the internal parameters of the model 

are updated. The epoch size defines the number of times that the learning algorithm works 

through the training dataset.   

 

Forecasting Horizon  

Selecting the right forecasting horizon is essential in determining what to forecast and the time 

horizon the data should be extracted for. In this thesis the data is sampled daily and aims to 

forecast using the sliding window method. The sliding window method utilizes a fixed lag of 

features p to predict the next time step, sliding one forward each time. For instance, for an input 

of feature p ten steps lagged 𝑥𝑝,𝑡−10 to predict 𝑌̂𝑡+1, this would roll forward as 𝑥𝑝,𝑡−10 for that 

same feature when predicting 𝑌̂𝑡+2. As previously mentioned, this could contribute to the 

prediction because of the time-lag dynamics in the shipping market. Since this thesis aims to 

utilize trading strategies on the predicted values, a one-day-ahead forecasting horizon has been 

chosen, where 𝑌̂𝑡+1 is predicted for each time step.  

 

4.1.5 Data Pre Processing 

Pre-processing of the data is done before the models were implemented. One 

concern is whether the features show signs of stationarity or not. If a time series is non-

stationary, trends and seasonality is present, affecting the values of the time series at various 

points in time (Hyndman and Athanaopoulos, 2018). On the other hand, if the time series do 

not depend on the time at which the series is observed, it is stationary. To test for stationarity, 

an Augmented Dickey Fuller-test is performed on all features. The test checks whether a unit 

root is present in the time series, with the null hypothesis of a unit root being present and an 

alternative hypothesis that the time series is stationary. For some features the null hypothesis 

cannot be rejected at a 5% level and an attempt to make the time series for the features stationary 
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is done by differencing (Hyndman and Athanaopoulos, 2018). The Dickey-Fuller test after 

differencing for features connected to each route is presented in the Appendix.  

  

The second step in pre-processing the data for supervised learning is splitting the data into a 

training, validation and test set. The split for this thesis is 60%, 10% and 30% respectively. 

Doing this split is important to train the model on a subset of the data without having knowledge 

of the subsequent observations, as the objective is to feed the model unseen data and use the 

inputs for each feature to make a prediction. The reasoning behind the split selection is to have 

enough data to train and validate the model architecture, while still maintaining sufficient data 

to perform a prediction and trade on. Test data is then compared to the predicted values and 

model performance is evaluated. The choice of splitting into training, validation, and test before 

applying a scaler to normalize the data is done to prevent as much data leakage as 

possible. After the data is split it is ready for normalization.  

  

Artificial neural network models tend to make assumptions regarding the distribution of the 

data, in some cases making scaling unnecessary. However, due to the varying nature of the 

variables, it is expected that the training of the model will be slower and not as optimal if the 

data is not scaled. By normalizing the data before applying it to machine learning models, the 

estimation error can be reduced in addition to the calculation time when training the model 

(Sola and Sevilla, 2020). When normalizing, the scaler is fit and transformed on the training 

data by utilizing Equation 4. Next, the scaler is applied on the test data with the same scaler fit 

on the training data. In that way, data leakage from the training to the test data is prevented.  

 

𝑋𝑛𝑜𝑟𝑚 =  
𝑋 −  𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 −  𝑋𝑚𝑖𝑛
 

Equation 4: Normalizing Formula 

4.1.6 Feature Selection 

Feature selection is the process of finding a subset of features that give the best predictions 

among a selection of features (James et al. 2013). The reasoning behind selecting only certain 

features is because some features do not contribute or are irrelevant to the prediction. For high-

dimensional datasets, an increasing number of features also increases training time for the 

model and in some scenarios leads to an increasing risk of overfitting. Feature selection also 

simplifies the model, reducing computational time and increases accuracy due to less 

misleading data. Lagged features are also included in the feature selection to capture time-
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lagged effects. Feature selection methods are often divided into three categories: filter, wrapper, 

and embedded methods. Wrapper methods require significantly more computational power, as 

they essentially use cross-validation and one by one attempts to learn which predictors 

contribute the most to the performance when added. Filter methods have shown to be slower, 

less accurate and more prone to overfitting, and could perform worse when dealing with too 

many features (Sànchez-Marono, 2020). Embedded methods combine some of the qualities of 

filter and wrapper methods, where the algorithm responsible for feature selection is an 

integrated part of the learning algorithm. As a result, primarily embedded methods are used in 

this thesis, except adding a linear correlation and multiple regression, as they might contribute 

additional information in cases of linear relations between features. Inspired by Næss (2018), a 

mean score is attributed to each feature based on the rank assigned by all the feature selection 

methods for a specific feature. The coefficients for all feature selection methods are scaled in 

the range [0,1] for better comparison.  

 

Multiple linear Regression 

A multiple linear regression model is a statistical method used to predict a dependent variable 

based on several independent variables, where the objective is to model the linear relationship 

between the dependent and independent variables. The formula for a multiple linear regression 

is denoted in Equation 5. (James et. al, 2013). 

 

𝑦𝑖 =  𝛽0 +  𝛽1𝑥𝑖1 + ⋯ 𝛽𝑝𝑥𝑖𝑝+∈ 

Equation 5: Multiple Linear Regression Formula 

 

Where 𝑦𝑖 is the dependent variable, 𝛽0 is the y-intercept, 𝛽𝑝 is the coefficients determining the 

slope for each independent variable, and 𝑥𝑖𝑝 is the independent variable value for each i for 

every feature p. As with a regular Ordinary Least Squares model, the objective is to estimate 

the coefficients 𝛽𝑝 that minimize the residual sum of squares (RSS) given in Equation 6. 

 

𝑅𝑆𝑆 =  ∑(𝑦𝑖 − 𝑦̂𝑖)
2

𝑛

𝑖=1

 

Equation 6: Residual Sum of Squares 
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Linear regression assumes linear relationships between the independent and dependent 

variables, as well as independence between observations. This might not always be the case for 

features presented in this study but is included under the presumption of information gain 

regarding the feature selection.  

 

Lasso Regression 

The Lasso regression method is a feature selection method which the framework of the ordinary 

least squares is used when fitting the model. In addition, this method incorporates a penalizing 

factor λ ∑ |𝛽𝑘|𝑝
𝑘=1  which shrinks the coefficient estimates towards zero, as seen in Equation 7 

(James et.al 2013).  

∑ (𝑦𝑖 −  𝛽0 − ∑ 𝛽𝑗𝑥𝑖𝑗

𝑝

𝑗=1

)

2

+  

𝑛

𝑖=1

λ ∑|𝛽𝑘|

𝑝

𝑘=1

 

Equation 7: Lasso Regression Formula 

Where n is the number of observations, p is the number of features/variables and λ is the penalty 

coefficient. With an increasing penalty coefficient λ, some coefficients 𝛽𝑘 shrink to 0 as a result, 

which rules out this coefficient and therefore feature. When λ is equal to 0 the remainder is just 

the ordinary least squares.  

 

Random Forest 

Random Forest (RF) is a tree-based method which can be used for prediction and feature 

selection among other uses. RF is an embedded selection method and used to select features of 

greatest importance to the model. RF consists of several hundred trees that all are “grown” 

based on randomly selected subsets and features from the dataset. The trees do not have 

information regarding the other branches, preventing overfitting and correlation-issues. 

Random forest utilizes what is called bagging. Bagging is the process of creating multiple 

copies of the training data using bootstrap, subsequently fitting each copy with a unique 

decision tree and then combining all these trees resulting in a final tree (James et al., 2013). At 

the end, the parts having the least variance increases the importance for that feature. At each 

node of the tree, the tree divides into two parts determining the predictability of a feature. 

 

Gradient Boosting (XGBoost) 

Gradient boosting is also a tree-based method frequently used for embedded feature selection, 

with resemblance to the random forest framework. However, instead of fitting several unique 



 26 

trees, the trees are grown sequentially, essentially utilizing information from previous grown 

trees to grow the next (James et al., 2013). There are three options for measuring the feature 

importance in the XGBoost framework, namely weight, cover and gain. The weight is used in 

this instance and is a measurement of how many times a certain feature is used when splitting 

the data across the range of trees grown. The importance of a certain feature is reflected in the 

importance score based on how weighted a particular feature is.   

 

Linear Correlation 

Predictors can correlate with the target of the prediction. The most used measure for correlation 

is the Pearson correlation coefficient, given in Equation 8. In terms of feature selection, a large 

positive correlation score indicates that the predictor and target feature move in the same 

direction, giving added value to that feature.   

𝜌
𝑋,𝑌= 

𝑐𝑜𝑣(𝑋,𝑌)
𝜎𝑋𝜎𝑌

 

Equation 8: Correlation Coefficient Formula 

FFA Price Methodology 

The FFA prices of TD3C and TD20 are log-transformed in addition to the difference- and 

normalizing-process described earlier in the methodology in order to make the inputs as 

indistinguishable compared to the real values as possible during training. The TD3C-TD20 

spread is precalculated by deriving the natural logarithmic value of both TD3C and TD20 

before subtracting them as TD3C-TD20. TD3C and TD20 are predicted separately, while the 

TD3C-TD20 spread is predicted directly. Features included when performing feature selection 

for TD3C-TD20 directly are the same features based on the individual routes TD3C and TD20. 
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4.1.7 Model Evaluation 

 

Random Walk Benchmark 

Random walk is a commonly used benchmark model primarily based in financial theory when 

predicting the stock market. The intuition behind the model is that when forecasting one step 

ahead, the subsequent movement of a security is random and cannot be predicted, and therefore 

the prediction for tomorrow 𝑌̂𝑡+1 given a forecasting horizon of 1 day can simply be stated as 

the value today, 𝑌𝑡, plus an error term 𝜖𝑡 (Hyndman and Athanasopoulos, 2018). 

 

Vector Autoregressive Benchmark 

A Vector Autoregressive (VAR) model is a commonly used alternative for multivariate time 

series forecasting due to its strong bidirectional capabilities. In comparison to a univariate time 

series model such as ARIMA, VAR can utilize the relationship between the predictors and the 

variable to be forecasted when training. In practice this implies that every variable affects the 

others as well as the independent variable (Hyndman and Athanasopoulos, 2018). The 

mechanics of an autoregressive vector is illustrated below in Equation 9 and 10, where a simple 

example of two variables with a lag of 1 is presented. 

 

𝑌1,𝑡 =  𝑐1 + 𝜃11,1𝑦1,𝑡−1 +  𝜃12,1𝑦1,𝑡−1 + 𝑒1,𝑡 

Equation 9: Vector Autoregressive Model variable 1 

 

𝑌2,𝑡 =  𝑐2 + 𝜃21,1𝑦2,𝑡−1 +  𝜃22,1𝑦2,𝑡−1 +  𝑒2,𝑡 

Equation 10: Vector Autoregressive Model variable 2 

Where 𝑐𝑖 is a k-vector of constants acting as the intercept of the model. 𝑒𝑖,𝑡 denotes the k-vector 

of error terms. The first coefficient 𝜃𝑖𝑖,𝑙𝑦1,𝑡−1 accounts for the impact that the lth lag of variable 

𝑦𝑖 has on itself, while 𝜃𝑖𝑗,𝑙𝑦2,𝑡−1 considers the impact of the lth lag of variable 𝑦𝑗 on 𝑦𝑖. The 

optimal number of lags for the model is chosen based on the Akaike Information Criterion 

(AIC), where the quality of each model according to the estimator is measured and the best 

model is returned (the one with l lags for each feature). 
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Performance Metrics 

Several metrics are considered when evaluating the performance of the predictions conducted 

on the test data. Root Mean Square Error (RMSE) is one of the most common metrics of 

performance within machine learning. RMSE denotes the square root of the average difference 

between the predicted and true values squared. 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑌𝑖 − 𝑌̂𝑖)2𝑁

𝑖=1

𝑁
 

Equation 11: Root Mean Square Error 

 

Another performance metric widely used for forecasting is Mean Absolute Percentage Error 

(MAPE). This performance metric penalizes to a larger degree negative error compared to 

positive errors but has the advantage of being unit-free (Hyndman and Athanasopoulos, 2018) 

MAPE is shown in Equation 12 below. 

𝑀𝐴𝑃𝐸 =  
1

𝑛
∑ |

𝐴𝑡 − 𝐹𝑡

𝐴𝑡
|

1

𝑡=!

 

Equation 12: Mean Absolute Percentage Error 

 

Where A is the actual value, F is the forecasted value and n is the number of observations. 

Mean Absolute Error is also used as a metric of performance, which measures the sum of the 

absolute difference between the true 𝑦𝑡 and predicted value 𝑦̂𝑡  divided by the number of 

observations n (Hyndman and Athanasopoulos, 2018)..  

𝑀𝐴𝐸 =  
1

𝑛
∑ |𝑦𝑗 − 𝑦̂𝑗|

𝑛

𝑗=1

 

Equation 13: Mean Absolute Error 
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4.2 Trading Theory & Methodology 

One part of the trading strategy implementation investigates the profitability of applying trading 

strategies to the forecasted FFA individual price time series. A Simple Long Short Strategy is 

compared to two benchmarks consisting of a Bollinger Bands and a Buy and Hold Strategy. 

The other part investigates the same trading strategies implemented on the directly forecasted 

spreads of the FFA contracts, utilizing the difference in the future price movements. 

Considering the price spreads, it is possible to profit from the convergence or divergence in 

prices by holding simultaneously long-short positions in the FFA derivatives. 

 

In spread trading, a long signal means buying the relatively expensive contract and selling the 

relatively cheap contract. A short signal means selling the relatively expensive contract and 

buying the relatively cheap contract. Whether the FFA contracts for the respective routes are 

considered relatively cheap or expensive is in this case determined by the $/mt-value of the 

FFA contracts. Hence, the route with the highest $/mt value is considered the most expensive, 

while the route with the lowest $/mt value is considered the cheapest. Another, perhaps more 

precisely way to determine which contracts are cheap and expensive, is to also take route 

distance into consideration. The WorldScale measurements quoted by the Baltic Exchanges 

could be used to determine relatively expensive and cheap routes, and afterwards convert the 

World Scale points it into a USD-values. But as mentioned, in this case only the prices of the 

contracts quoted in $/mt by the Baltic Exchange are taken into consideration. 

 

The Simple Long Short and The Bollinger Bands trading strategies rely on forces of supply and 

demand in the market to correct the mispricing of the FFA contracts, both in the case of 

individual routes or the relative value of the spreads. According to Gatev et al (2006), short-

term liquidity shocks occur and cause prices to converge or diverge. Both entering individual 

positions and combining opposite position of the FFA securities are ways to obtain different 

risk-exposures to the market. In contrast to trading individual routes, combining simultaneously 

opposite positions has an element of diversification, and is hence expected to lead to a more 

neutral risk-exposure to the market. 
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4.2.1 Co-Integration Approach 

A co-integration approach is chosen to investigate the short- and long-term statistical 

relationship between the predicted spreads. The cointegration method states that two time series 

that are integrated of order d, for example in the case where d = b = 1, and can be linearly 

combined to produce a single time series that is integrated of order d - b, where b > 0. The linear 

combined time series is then said to be stationary mean reverting. (Engle and Granger, 1983).  

 

ln 𝐹𝐹𝐴𝐴,𝑡 =  𝜇 +  𝜅 ∗ ln 𝐹𝐹𝐴𝐵,𝑡 +  𝜖𝑡 

Equation 14: Co-Integration Method Formula 

 

𝑌(𝑡) = ln 𝐹𝐹𝐴𝐴,𝑡 −  𝜅 ∗ ln 𝐹𝐹𝐴𝐵,𝑡 =  𝜇+𝜖𝑡 ~ 𝑁(𝜇, 𝜎) 

Equation 15: Co-Integration Method Formula 

In Equation 14 and 15,  is the cointegration coefficient,  is the residual of the regression,  is 

the proportion of asset B for each unit of asset A and  reflects the mean spread. In pairs trading, 

it is desirable to investigate if the spread between two pairs are cointegrated (mean reverting) 

by checking the stationarity of the residuals in the cointegration regression. If cointegration is 

found to be present, then a spread trading strategy is normally applied to generate long or short 

trading signals. In this thesis, the spread trading strategies are applied to the route combination. 

According to Kavussanos and Visvikis (2006), a necessary condition for successful and 

profitable spread trading is high long-term correlation and low short-term correlation between 

the two spread pairs. The long-term correlation measures the degree of co-movement and 

correlation between price levels in the long run. The short-term correlation reflects how much 

prices diverge in the short term and measures the degree of co-movements between the price 

changes.  

 

To evaluate the short-term statistical relationship, the chosen pairs are initially tested through 

their price returns correlation coefficients, using a testing range from January 3rd , 2014 to 

November 11th 2017, and a trading horizon of approximately one and a half year, from 

November 11th 2017 to June 31st 2019. The correlation coefficient measures the degree to which 

paired asset prices return move together, taking into consideration their standard deviation. The 

formula used for evaluating short-term relationships is presented in Equation 16:  
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𝜌(𝑦𝑟 , 𝑥𝑟) =
∑ (𝑦𝑟,𝑡 −𝑛

𝑡=1 𝜇𝑦𝑟)(𝑥𝑟,𝑡 − 𝜇𝑥𝑟)

√∑ (𝑦𝑟,𝑡 − 𝜇𝑦𝑟)2 ∑ (𝑥𝑟,𝑡 − 𝑥𝑦𝑟)2𝑛
𝑡=1

𝑛
𝑡=1

 

Equation 16: Correlation Coefficient Formula 

The correlation coefficient of the testing range always takes a value between zero and one. 

When the coefficient is equal to zero (𝜌(𝑦𝑟 , 𝑥𝑟)=0), there is no relationship between movements 

of the price returns. When the correlation coefficient is more than zero (𝜌(𝑦𝑟 , 𝑥𝑟)>0), the price 

returns of the FFA contracts move in the same directions. When the correlation coefficient is 

less than zero (𝜌(𝑦𝑟 , 𝑥𝑟)<0), the asset price returns of the FFAs move in the opposite directions.  

To examine the long-term statistical relationship, an Engle granger cointegration test is used, 

where the stationarity of the paired asset prices is tested using augmented Dickey-Fuller unit 

root test. The test is checking whether the individual price time series are non-stationary and 

then, if individual price time series difference are stationary.  

 

The Augmented Dickey-Fuller test evaluates whether paired FFA assets price spreads, 

individual asset prices and individual asset price difference time series are mean stationary. 

  

Δ𝑠𝑡 = 𝛼 + 𝛽𝑡 + 𝛾𝑠𝑡−1 + 𝛿∆𝑠𝑡−1 + 𝑒𝑡 

Equation 17: Mean Stationarity Formula 

The null hypothesis of the Augmented Dickey-Fuller test states that the time series contains a 

unit root and are not stationary. The p-values of the 𝛾-coefficient are the ones that are tested. If 

the p-value is less than 0.05 (p < 0.05), the time series are mean stationary, and the null 

hypothesis is rejected with 95% statistical confidence. If the p-value of the 𝛾-coefficients is 

greater than 0.05 (p > 0.05), then the null hypothesis is not rejected, and with 95% statistical 

confidence, the series are not mean stationary.  

 

To make the monetary contract sizes of the spreads comparable, the FFA prices of each pair 

are regressed to find a -value of the FFA contract. The value is computed by a regression based 

on the historical price time series. The rationale for including the  is that for every position 

taken in one contract, the -value tells how many positions to take in the second contract of the 

pair. For example, when 10 000 contracts are bought of one FFA, the value tells how many 

contracts to buy of the other FFA in the same pair. After the monetary sizes are made 

comparable, different trading strategies are implemented to the FFA contracts. In addition to 

contract size, transactions costs are considered. The transaction cost is set to one cent per trade.  



 32 

Furthermore, for all strategies, it has to be noted that the positions in the FFA contracts are 

closed when the contract rolls-over to a new period. For monthly contracts, the trading period 

is around 1 month.  

 

4.2.2 Bollinger Bands 

The Bollinger Bands strategy involves constructing upper and lower bands following the 

forecasted spread time series and individual price time series. The bands of Bollinger Bands 

expand and contract, representing volatility measures, where the lower bands will increase 

during periods of high market volatilities and narrow during periods of low volatilities. To 

construct the Bollinger Band strategy, an exponential moving average (EMA) is calculated over 

a window of n days of the forecasted time series values. The bands are then calculated by 

multiplying the standard deviations over the same window as the EMA, which is then multiplied 

by a factor, alpha. The upper band is constructed by adding the calculated standard deviation 

value to the EMA series, and the lower band is constructed by subtracting the standard deviation 

value from the EMA series. The formulas are presented below, where 𝑆𝐹𝐹𝐴̂𝑡+1|𝑡
𝑢𝑝𝑝𝑒𝑟

and 𝐹𝐹𝐴̂𝑡+1|𝑡
𝑢𝑝𝑝𝑒𝑟

 

are the upper bands of the spread and FFA price, and 𝑆𝐹𝐹𝐴̂𝑡+1|𝑡
𝑙𝑜𝑤𝑒𝑟 and 𝐹𝐹𝐴̂𝑡+1|𝑡

𝑙𝑜𝑤𝑒𝑟 are the lower 

bands. The 𝛼 is in this case set to be equal to one. The window of which the EMA and the 

standard deviations are calculated is set to twenty days. The formulas below show the Bollinger 

Bands applied to the forecasted spreads time series of the FFA contracts: 

 

𝑆𝐹𝐹𝐴̂𝑡+1|𝑡
𝑢𝑝𝑝𝑒𝑟 = 𝐸𝑀𝐴_𝑆𝐹𝐹𝐴̂𝑡+1|𝑡 + 𝛼 ∗  𝜎_𝑆𝐹𝐹𝐴̂𝑡+1|𝑡 

Equation 18: Upper Bollinger Band of predicted FFA Spread 

𝑆𝐹𝐹𝐴̂𝑡+1|𝑡
𝑙𝑜𝑤𝑒𝑟 = 𝐸𝑀𝐴_𝑆𝐹𝐹𝐴̂𝑡+1|𝑡 − 𝛼 ∗  𝜎_𝑆𝐹𝐹𝐴̂𝑡+1|𝑡 

Equation 19:Lower Bollinger Band of predicted FFA Spread 

𝜎_𝑆𝐹𝐹𝐴̂𝑡+1|𝑡 = √
∑ (𝑆𝐹𝐹𝐴̂𝑡+1|𝑡 − 𝑆𝐹𝐹𝐴̂𝑡+1|𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)2𝑡
𝑖=𝑡−𝑛

𝑛 − 1
 

Equation 20: Standard deviation of  predicted FFA Spread 

Where 𝑆𝐹𝐹𝐴̂𝑡+1|𝑡
𝑢𝑝𝑝𝑒𝑟

 is the upper band of the forecasted FFA spread, 𝑆𝐹𝐹𝐴̂𝑡+1|𝑡
𝑙𝑜𝑤𝑒𝑟 is the lower band 

of the forecasted FFA spread, 𝐸𝑀𝐴_𝑆𝐹𝐹𝐴̂
𝑡+1|𝑡 is the exponential moving average of the 

predicted FFA spreads over the last twenty days, 𝛼 is the factor multiplied with the standard 



 33 

deviation, and 𝜎_𝑆𝐹𝐹𝐴̂𝑡+1|𝑡 is the standard deviation of the predicted values over the last twenty 

days.   

 

The formulas below show the Bollinger Bands applied to the forecasted individual price time 

series of the FFA contracts: 

𝐹𝐹𝐴̂𝑡+1|𝑡
𝑢𝑝𝑝𝑒𝑟 = 𝐸𝑀𝐴_𝐹𝐹𝐴̂𝑡+1|𝑡 + 𝛼 ∗  𝜎_𝐹𝐹𝐴̂𝑡+1|𝑡 

Equation 21: Upper Bollinger Band of predicted FFA Price 

𝐹𝐹𝐴̂𝑡+1|𝑡
𝑙𝑜𝑤𝑒𝑟 = 𝐸𝑀𝐴_𝐹𝐹𝐴̂𝑡+1|𝑡 − 𝛼 ∗  𝜎_𝐹𝐹𝐴̂𝑡+1|𝑡 

Equation 22: Lower Bollinger Band of predicted FFA Price 

 𝜎_𝐹𝐹𝐴̂𝑡+1|𝑡 = √
∑ (𝐹𝐹𝐴̂𝑡+1|𝑡 − 𝐹𝐹𝐴̂𝑡+1|𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)2𝑡
𝑖=𝑡−𝑛

𝑛 − 1
 

Equation 23: Standard Deviation of Predicted FFA Price 

Where 𝐹𝐹𝐴̂𝑡+1|𝑡
𝑢𝑝𝑝𝑒𝑟

 is the upper band of the forecasted FFA price, 𝐹𝐹𝐴̂𝑡+1|𝑡
𝑙𝑜𝑤𝑒𝑟 is the lower band of 

the forecasted FFA price, 𝐸𝑀𝐴_𝐹𝐹𝐴̂
𝑡+1|𝑡 is the exponential moving average of the predicted 

FFA price time series over the last twenty days, 𝛼 is the factor multiplied with the standard 

deviation, and 𝜎_𝐹𝐹𝐴̂𝑡+1|𝑡 is the standard deviation of the predicted values over the last twenty 

days.   

 

Signal generators are activated when one of the bands are reached. When the real value of the 

FFA spread (or real individual FFA price) is lower than the lower threshold,  𝑆𝐹𝐹𝐴𝑡< 

𝑆𝐹𝐹𝐴̂𝑡+1|𝑡
𝑙𝑜𝑤𝑒𝑟 (or 𝐹𝐹𝐴𝑡< 𝐹𝐹𝐴̂𝑡+1|𝑡

𝑙𝑜𝑤𝑒𝑟), after being greater than the lower threshold, 𝑆𝐹𝐹𝐴𝑡> 

𝑆𝐹𝐹𝐴̂𝑡+1|𝑡
𝑙𝑜𝑤𝑒𝑟  ( 𝑜𝑟 𝐹𝐹𝐴𝑡> 𝐹𝐹𝐴̂𝑡+1|𝑡

𝑙𝑜𝑤𝑒𝑟), a long position is entered. In the case of spreads, the short 

position implies going short in the relatively expensive route and long in the cheapest route, 

while a long position implies going short in the relatively cheap route and long in the relatively 

expensive route.  When the real spread (or individual FFA price) reverts to the forecasted value, 

and the real spread is larger than the forecasted value,  𝑆𝐹𝐹𝐴𝑡> 𝑆𝐹𝐹𝐴̂𝑡+1|𝑡 (or 𝐹𝐹𝐴𝑡> 

𝐹𝐹𝐴̂𝑡+1|𝑡), after being smaller than the lower bound  𝑆𝐹𝐹𝐴𝑡< 𝑆𝐹𝐹𝐴̂𝑡+1|𝑡
𝑙𝑜𝑤𝑒𝑟 (or 𝐹𝐹𝐴𝑡< 𝐹𝐹𝐴̂𝑡+1|𝑡

𝑙𝑜𝑤𝑒𝑟), 

then the long signal is closed, and profits are taken.  

 

A short position is entered when the real spread value (or real individual FFA price) is greater 

than the forecasted spread, 𝑆𝐹𝐹𝐴𝑡> 𝑆𝐹𝐹𝐴̂𝑡+1|𝑡
𝑢𝑝𝑝𝑒𝑟

 (or forecasted individual FFA price, 𝐹𝐹𝐴𝑡> 



 34 

𝐹𝐹𝐴̂𝑡+1|𝑡), after being smaller than the upper threshold  𝑆𝐹𝐹𝐴𝑡< 𝑆𝐹𝐹𝐴̂𝑡+1|𝑡
𝑢𝑝𝑝𝑒𝑟

 (or  𝐹𝐹𝐴𝑡< 

𝐹𝐹𝐴̂𝑡+1|𝑡
𝑢𝑝𝑝𝑒𝑟

). The short position is closed when the spread reverts to the forecasted FFA spread 

(or forecasted individual FFA price), and the spread is smaller than the forecasted FFA spread,  

𝑆𝐹𝐹𝐴𝑡< 𝑆𝐹𝐹𝐴̂𝑡+1|𝑡 (or forecasted 𝐹𝐹𝐴𝑡< 𝐹𝐹𝐴̂𝑡+1|𝑡), after being larger than the upper bound,  

𝐹𝐹𝐴𝑡> 𝐹𝐹𝐴̂𝑡+1|𝑡
𝑢𝑝𝑝𝑒𝑟

 (or 𝑆𝐹𝐹𝐴𝑡> 𝑆𝐹𝐹𝐴̂𝑡+1|𝑡
𝑢𝑝𝑝𝑒𝑟

). 

 

To generate the timing of transactions in the model, the distances between the upper bands and 

real spread value (or individual FFA price), and the distances between the lower bands (and the 

individual FFA price) are calculated, which is shown in the formulas below: 

𝑃𝐷̂𝑡+1|𝑡
𝑢𝑝𝑝𝑒𝑟 = 𝐹𝐹𝐴̂𝑡+1|𝑡

𝑢𝑝𝑝𝑒𝑟 − 𝐹𝐹𝐴̂𝑡+1|𝑡 

Equation 24: Distance between the Upper Band and Predicted FFA Price 

𝑃𝐷̂𝑡+1|𝑡
𝑙𝑜𝑤𝑒𝑟 = 𝐹𝐹𝐴̂𝑡+1|𝑡

𝑙𝑜𝑤𝑒𝑟 − 𝐹𝐹𝐴̂𝑡+1|𝑡 

Equation 25: Distance between the Lower Band and the Predicted FFA Price 

𝑆𝐷̂𝑡+1|𝑡
𝑢𝑝𝑝𝑒𝑟 = 𝑆𝐹𝐹𝐴̂𝑡+1|𝑡

𝑢𝑝𝑝𝑒𝑟 − 𝑆𝐹𝐹𝐴̂𝑡+1|𝑡 

Equation 26: Distance between the Lower Band and the Predicted FFA Spread 

𝑆𝐷̂𝑡+1|𝑡
𝑙𝑜𝑤𝑒𝑟 = 𝑆𝐹𝐹𝐴̂𝑡+1|𝑡

𝑙𝑜𝑤𝑒𝑟 − 𝑆𝐹𝐹𝐴̂𝑡+1|𝑡 

Equation 27: Distance between the Lower Band and the Predicted FFA Spread 

 

Where, 𝑃𝐷̂𝑡+1|𝑡
𝑙𝑜𝑤𝑒𝑟is the upper price distance and 𝑃𝐷̂𝑡+1|𝑡

𝑙𝑜𝑤𝑒𝑟is the lower price distance in terms of 

the individual routes. In terms of spreads, 𝑆𝐷̂𝑡+1|𝑡
𝑢𝑝𝑝𝑒𝑟

 is the upper spread distance, and 𝑆𝐷̂𝑡+1|𝑡
𝑙𝑜𝑤𝑒𝑟 is 

the lower spread distance. 

 

4.2.3 Simple Long Short 

The Simple Long Short strategy consists of a short signal triggered when the forecasted LSTM 

or VAR values are predicting lower FFA spread values  𝑆𝐹𝐹𝐴̂𝑡+1|𝑡 <  𝑆𝐹𝐹𝐴𝑡 (or individual 

FFA price values, 𝐹𝐹𝐴̂𝑡+1|𝑡 <  𝐹𝐹𝐴𝑡). A long signal is entered when the forecasted value of 

the LSTM model or the VAR model is forecasting higher FFA spreads, 𝑆𝐹𝐹𝐴̂𝑡+1|𝑡 >  𝑆𝐹𝐹𝐴𝑡 

(or individual prices,  𝐹𝐹𝐴̂𝑡+1|𝑡 >  𝐹𝐹𝐴𝑡). The position is held until the LSTM or VAR time 

series predict an opposite direction of the spreads (or individual price) movements to occur.  
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4.2.4 Strategy performance 

To evaluate the performance of the implemented spread trading strategies, different 

performance measures are calculated. The trading strategies are compared through annualized 

return, annualized standard deviation, annualized Sharpe ratio and cumulative return charts.  

Annualized return, as shown in Equation 28 is a performance metric that calculates the number 

of observations root of annually scaled cumulative product of daily returns. In the formulas, 𝑟𝑡 

is value of the return,  𝑝𝑡 is the current day’s price,  𝑟𝑎 is the product of the daily return and n 

is number of days.  

𝑟𝑎 = 𝑟𝑡

𝑝𝑡

𝑝𝑡−1
− 1 

Equation 28: Annualized Return Metrics 

𝑟𝑎 [∏(𝑟𝑡 + 1)

𝑛

𝑡=1

]

252/𝑛

− 1 

Equation 29: Annualized Return Metrics 

Annualized Standard Deviation is a metric of risk, that consists of daily standard deviations 

multiplied by square root of a number of periods per year, where 𝜎𝑎 is the standard deviation, 

𝑟𝑡 is the value of the return, and 𝜇 is the average value of the return over n number of periods. 

𝜎𝑎 = 𝜎√252 

Equation 30: Standard Deviation Formula 

𝜎𝑎 = √
1

𝑛
∑(𝑟𝑡 − 𝜇)2

𝑛

𝑡=1

 

Equation 31: Annualized Standard Deviation Metrics 

𝜇 =
1

𝑛
∑ 𝑟𝑡

𝑛

𝑡=1

 

Equation 32: Average Value of Return 

Annualized Sharpe Ratio consists of annualized excess return per unit of risk and is considered 

a risk-adjusted performance metric. The variable 𝑟𝑎 is the annualized return, 𝑟𝑓 is the annualized 

risk-free rate and 𝜎𝑎 is the annualized standard deviation. The formula is shown below: 

𝑆𝑅𝑎 =
𝑟𝑎 − 𝑟𝑓

𝜎𝑎
 

Equation 33: Annualized Sharpe Ratio Metrics 
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5 Results 

5.1 Forecasting Results 

 

5.1.1 Feature selection and hyperparameter results 

 

Feature Selection Results 

Table 2, 3 and 4 show the final subset of features elected for TD3C, TD20 and TD3C-TD20, 

spread predictions based on mean scores derived from each individual feature selectin method. 

All features are ranked for each lag of the feature, and the rankings of features were prioritized 

when selecting, followed by testing combinations and dropping features until the improvements 

in performance no longer changed notably on the validation data. Due to having 88,77 and 153 

features for TD3C, TD20 and TD3C-TD20, respectively, only the final subset of features are 

presented in the tables below. The top 30 feature sin terms of mean score for TD3C is found in 

the Appendix 1.2 to illustrate the feature selection proves.  

 

Table 2: Feature Selection TD20 
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Table 3: Feature Selection TD3C 

 

 

Table 4: Feature Selection TD3C-TD20 
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In- and outflows of vessels for regions based on the regional polygons seems to be a strong 

predictor overall, as it is included for all FFA 

contract prices.  This suggests that the regional net flow in supply for route-specific 

regions positively contributes to explaining the FFA price. Regional capacity in terms of DWT 

is also included in all models, which implies that available tonnage capacity also contributes to 

understanding the price movements. For TD20, it appears to be changes in 

fleet capacity for other regions rather than route-specific that perform best in terms of 

predictability. Arguably, this is due to most of the oil trade occurring in areas of 

these features, possibly capturing the global Suezmax allocation better than the route-specific 

features.    

 

Speed features are represented in all three models, although exclusively speed 

features with moving vessels. One thing to note is that speed-volatility features are the 

only speed features that appears to add to the predictability of the TD20 FFA 

contract. Among these features is the speed volatility of Suezmax vessels with destination 

Rotterdam, which implies that the change in speed for vessels heading to Rotterdam contributes 

more to the prediction rather than the mean speed for the same vessels.  Features regarding the 

load factor is also present for all three models to a large degree, which is interesting considering 

that the proxy feature aiming to measure the share of vessels sailing ballast should be a more 

direct measurement of capacity utilization. Even if not present in the TD3C or TD20 model, 

two features measuring this is included in the spread-model. It is also intriguing that non-AIS 

features to a larger extent seems to show better predictability for the individual routes compared 

to the combined spread. The exchange rate between the local currency and USD is present 

for all models, which appears to overall contribute well as a predictor of price 

movements. BDTI is included for both TD3C and TD20 which is not surprising as it is 

expected and confirmed in appendix XX to be positively correlated with the FFA contract.   

It is also worth noting that the Dubai oil futures and Brent Oil spread are included for the TD3C 

and TD20 price, respectively. This could arguably show that the geographically close oil 

spreads hold more predictive power when it comes to predicting the price of each FFA.   

 

Hyperparameter tuning 

The final hyperparameter selection after performing the grid search for each LSTM model is 

shown in table 5. 



 39 

Optimal hyperparameters varies between each model and does not provide much info regarding 

the capabilities of the models before tested on out-of-sample data. However, Epochs-sizes 

indicate that the TD3C-TD20 and TD3C model requires more training than TD20. 

 

Table 5: Hyperparameter Tuning 

 

 

5.1.2 Forecasting Performance 

Table 6 presents the results for the one-day-ahead prediction models for 

the TD3C and TD20 FFA 2-month maturity contracts in addition to direct prediction 

of the TD3C-TD20 spread. Due to predicting one-step-ahead, therefore being frequent 

timesteps, it is not expected to see large volatility in predictions from one day to another, as the 

previous day is taken into consideration by the models when predicting the next step. The 

model output for the FFA prices of TD3C, TD20 and TD3C-TD20 is the result of inverse 

transformed values to match the true format after prediction, which the performance metrics 

are based on 
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Table 6: Forecasting Performance 

 

 

The Random Walk model and Vector Autoregressive model acts as the benchmarks to the 

LSTM model regarding predictive performance. The LSTM model outperforms the benchmark 

models in terms of RMSE and MAE for the TD3C price with a RMSE of 0.287 compared to 

0.301 and 0.369 for VAR and RW, respectively. The LSTM model is also better than both 

benchmarks in terms of the Mean Absolute Error and MAPE for the TD3C contract, with a 

MAE and MAPE of 0.150 and 1.67%, respectively.  The LSTM model performs well on the 

TD20 contract price as well, beating both benchmarks for all performance metrics 

included. When predicting the TD3-TD20 FFA spread the LSTM performs worse than both 

benchmarks with a RMSE of 0.029 compared to the 0.018 of the RW, while 

the VAR model performs slightly better than the RW in predicting the spread, in terms of 

RMSE and MAE.  MAPE is not reported for the TD3C-TD20 spread for any of the models due 

to the true values of the price spread reaching zero.    

 

When visually inspecting the graphs for the LSTM- and VAR-models, it is apparent that 

fluctuations in predictions are quite small. However, the VAR model predictions are to a greater 

extent volatile.     
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The graph of real predicted values of the LSTM and VAR for TD3C is shown in figure 10 and 

11 respectively. The remaining graphs are found in appendix  

 

Figure 10 LSTM TD3 

 

Figure 11 VAR-TD3 

5.2 Trading Results 

5.2.1 Individual Routes Forecasting Results 

The performance metrics in Table 7 displays an overview of the trading strategies implemented 

on the forecasted individual tanker routes using the LSTM model and the VAR model.  
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Table 7: Trading Performance Individual Routes 

 

 

The table shows that the best performing strategy is the Simple Long Short strategy when 

implemented on the LSTM forecasts of the individual tanker routes. The strategy outperforms 

the Bollinger Band strategy and the Buy and Hold Strategy in terms of the trading performance 

measurements. The implementation of the strategy on the TD3C contract results in an 

annualized return of 53,57%, an annualized standard deviation of 21,80% and an annualized 

Sharpe Ratio of 2,34. The implementation of the strategy on the TD20 contract achieved 

slightly lower results, with an annualized return of 43,30%, an annualized standard deviation 

of 29,18% and an annualized Sharpe Ratio of 1,39. The Simple Long Short strategy 

implemented on the VAR forecasts of the individual tanker routes also shows positive results, 

but slightly worse than the LSTM forecasts.  

 

The worst performing strategy is the Bollinger Band strategy, when implemented both on the 

LSTM forecasts and the VAR forecasts of the individual tanker routes. The strategy obtains 

negative results when implemented on the LSTM forecast of TD3C, achieving an annualized 

return of -9,89%, an annualized standard deviation of 30,36% and an annualized Sharp Ratio 

of -0,41. When implemented on the LSTM forecast of the TD20, the strategy also obtains 

negative results, with an annualized return of -22,57%, an annualized standard deviation of 

29,00%, and an annualized Sharpe Ratio of -0,87. The Bollinger Band strategy in combination 

with the VAR model, shows even worse results when implemented on TD20, but slightly better 

and positive results when implemented on TD3C. 
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In general, the Buy and Hold benchmark Strategy outperforms Bollinger Bands, but does not 

outperform the Simple Long Short strategy when implemented on the individual tanker routes. 

The Buy and Hold benchmark obtain annualized returns of,55% and 6,88%, and Sharpe Ratios 

of 0,437 and 0,13 on TD3C and TD20, respectively. 

 

The graphs below plot the cumulative returns of the trading strategies implemented on the 

individual tanker routes.  

 

 

Figure 12: Cumulative Returns of Trading Strategies Applied to Individual FFAs 

 

 

 

The graph confirms the results above, and shows that the all curves except three, obtain steady 

positive cumulative returns. As shown in the curves, the LSTM Simple Long Short beat the buy 

and hold benchmark, and obtains the highest returns, which indicate that the strategy is working 

when implemented on the individual tanker routes. Furthermore, the curves, show that the 

Bollinger Band Strategy obtain steady negative returns, and does not beat the buy & hold 
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Benchmark, which conversely indicate that the strategy is not working well when implemented 

on the individual tanker routes.  

 

5.2.2 Spreads Trading Results 

The Augmented Dickey Fuller tests suggest that the TD3C-TD20 pair does not fulfil the 

requirements of cointegration, as the route does not have low short-term correlation and high 

long-term correlation. However, to be able to make trading comparisons with the forecasted 

individual routes, the spread strategy is still implemented to the forecasted route combination. 

 

 

Figure 13: Trade Signals Bollinger Bands on the LSTM predicted FFA spread 

 

 

 

 

 

 

The diagram above shows the trading signals activated when the Bollinger Band Strategy was 

implemented on the LSTM forecasted price spread of TD3C and TD20. The figure shows that 

the upper and lower bands are expanding and contracting around the EMA, where the red line 

represents the upper threshold and pink line the lower threshold. The black line represents the 
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LSTM predicted spread forecast, while the grey line represents the exponential moving average. 

The red dots show the points at where the short signals are generated at the point where the 

spread hit the red line (crossed the threshold from below), while the pink dots show the points 

at where the long signals were generated, when the spread hit the pink line (crossed the 

threshold from above). The close signals are generated whenever the spread reverted to a mean, 

where light blue dots represent the closing of long positions (cross the threshold from below) 

and the dark blue dots represents closing of short signals (crossed the threshold from above). 

The grey dots show the time of the rollover of the FFA contracts, and indicate a closing of the 

position, before a new 2nd month contract is entered.  

The diagram below shows the trading signals that were activated when implementing the 

Simple Long Short strategy on the forecasted price spread. The signal dots are representative 

in this model as well, in the way they are described above However, the black line shows the 

predicted LSTM forecast, while the grey line represents the real value of the price spread.  

 

 

 

 

Figure 14: Trade Signals LSTM Simple Long Short on the FFA spread 

 

 

 

 

 

 

 

 

 

 

To compare the trading signal models, the diagrams show that there are generally more trading 

signals generated from the Simple Long Short strategy than the Bollinger Band strategy, as the 

Bollinger Bands requires the thresholds to be crossed before any signals are generated. The fact 

that the Simple Long Short strategy generate more signals, require the trader to more often go 

in and out of positions, which results in slightly higher transaction costs. Furthermore, one can 
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argue that trading in pairs also results in higher transaction costs compared to trading in 

individual routes, as two positions are obtained simultaneously, instead of one. However, the 

transaction costs are considered to be quite low when the volume traded is high.  

 

The performance metrics in Table 2 displays an overview of the trading strategies implemented 

on the directly forecasted price spreads of tanker routes using the LSTM model and the VAR 

model. 

 

Table 8: Trading Performance Route Pair 

 

 

 

The table shows that the Simple Long Short model gained negative results when implemented 

on the directly forecasted FFA spreads, which is true for both the LSTM model and the VAR 

model. The losses obtained when using the LSTM and Var model, in terms of performance 

metrics, are annualized returns of -12,72% and -2,89%, annualized standard deviations of 

25,17% and 18,70%, and Sharpe Ratios of -0,61 and -0,29, respectively.  

 

The Bollinger Bands strategy obtained higher and positive trading results, both using the LSTM 

and the VAR model. The LSTM model achieved an annualized return of 92,67%, an annualized 

standard deviation of 27,66% and a Sharpe Ratio of 3,26, while the VAR model achieved an 

annualized return of 90,10%, an annualized standard deviation of 29,48% and a Sharpe Ratio 

2,97. The graphs below plot the cumulative returns of the spread trading strategies. 
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Figure 15: Cumulative Returns of Trading Strategies Applied to the FFA Spread 

 

The diagram shows that the Simple Long Short strategy when implemented on the VAR and 

the LSTM spread models most of the time obtain steady negative returns. Conversely, the 

Bollinger Band strategy clearly outperform the Simple Long Short Strategy and earns a steady 

positive cumulative return when implemented on the forecasted spreads. This graph shows that 

the Bollinger Band strategy implemented on both the VAR model and the LSTM model almost 

achieve the same cumulative return pattern, which can be a result of almost similar EMA values 

obtained from both models.   

 

The figure below displays the cumulative return of all strategies when implemented on the 

LSTM model, which means that in this graph the Buy and Hold benchmarks and the strategies 

implemented on the VAR model are excluded.  
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Figure 16: Cumulative Returns of Trading Strategies - Only LSTM Model 

 

The graph shows that the spread the Bollinger Bands strategy performed best and obtained 

positive results when trading in the forecasted route pair, while the Simple Long Short strategy 

performed best and obtained positive results when trading in the individual routes. Conversely, 

the graph shows Simple Long Short Strategy performed worse and obtained negative results 

when implemented on the route pair, while the Bollinger Band strategy performed worse and 

obtained negative results when implemented on the individual routes. The overall best 

performing strategy was the Bollinger Bands on LSTM route pair of TD3C-TD20, while the 

secondly best performing strategy was Simple Long Short on the individual route of TD3C. To 

summarize the comparison of the trading strategies, it turns out that the best performing strategy 

for the individual routes does not necessarily works well when implemented to the route pairs, 

and the strategy that performs well for the route pairs, does not necessarily work well when 

implemented don the individual routes. Hence, which strategy is considered the best, depends 

on where the investor wants to take one position in individual routes, or two simultaneous 

positions in the route pairs.  
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6 Discussion 

6.1 Discussion of Forecasting Results 

Among the AIS-features presented in this thesis, features regarding speed, the local capacity 

utilization, as well as the capacity allocation of the VLCC and Suezmax fleet seem to be the 

most prominent in explaining the one-day-ahead price of the FFA contracts. As for the non-

AIS variables, the exchange rates, BDTI, TCE and oil spreads appears to overall hold the most 

predictive power.   

 

The feature selection process was performed using a combination of embedded and filter 

methods, where the results for the mean score of all methods constituted the final subset. One 

could argue that a wider range of methods when selecting the final subset could have been used, 

and it is possible that a different combination of features for each respective FFA contract price 

could net better result for the forecast.     

 

Furthermore, the features derived in this thesis are prone to errors as they heavily depend on 

the quality of the data. Missing and error-signals from the AIS-data are examples of possible 

errors. There is also a possibility that both VAR and LSTM models could have performed better 

if features were based on more accurate geofencing, as many of the features are based on world 

regions and route-specific areas of interest. Additionally, how the daily observations are 

presented to the models might also influence the performance, as the model might not be able 

to interpret the daily fluctuations presented to the model.  

  

Regarding the forecasting results, the LSTM outperformed both benchmarks on the individual 

FFA prices for all metrics included, while VAR outperformed LSTM and RW slightly when 

forecasting the TD3-TD20 spread. Overall, the VAR forecasts appears to be more volatile than 

the LSTM forecasts.   

 

Even if the results of the LSTM model return better forecasting performance compared to 

Random Walk and VAR for two of the FFA contracts, the model seems to have a tendency of 

following the development from the previous day when predicting the next time step. There 

could be several reasons for this happening. Since the period of this study spans over 4 years, 

with only 60% being data used for training, it is possible that the model is not able to learn 

the time-lagged dependencies that exist in the shipping market (Stopford, 2009). As a result, 
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this can lead to occurrences where the input from the previous day acts as the best predictor for 

the next day.  

 

Another possibility is the tuning the hyperparameters of the model. In terms of hyperparameter 

optimization, a more structured and extensive approach could have been chosen. Grid search 

hyperparameter optimization is useful when checking within certain parameter boundaries but 

lack depth. Using a random based grid search would require substantially more time and 

computational power, but would likely net better results, as a larger dimension of parameter 

combinations would be investigated.  

 

Further work could be forecasting Crude tanker FFA prices using AIS-data by 

utilizing directional forecasts as means of obtaining a better result. As quality of AIS data is in 

constant improvement, more useful data will become available, and implementing the same 

strategy on more data could possibly improve the results.   

 

6.2 Discussion of Trading Results 

As shown in some of the results above, taking two positions can reduce the price-risk and 

volatility exposure, as the diversification increases, compared to only taking one position at the 

time. Although there are benefits, there are also disadvantages to be considered. Implementing 

the spread trading models to the FFA pair, some of the profits calculations result in losses, 

which was the case with the Simple Long Short strategy on TD3C-TD20. It turns out that when 

large profits are obtained selling one contract, the profits can be offset by taking the opposite 

position in the other contract, which can result in even higher losses. On the other hand, when 

the positions are closed, the gains sometimes turn out to be larger than the losses obtained, as 

was the case with the Bollinger Band strategy in the route pair. Hence it turns out that the 

strategies are not only dependent on the co-movements and correlations between the FFA 

contract prices, but also the strategy implemented as well as the time horizon investigated.   

 

Another concern regarding the trading strategies, whether they are implemented on spreads or 

individual routes, is the liquidity of the FFA market. Some routes are generally more liquid 

than others, and as mentioned, TD3C and TD20 were considered as the most liquid routes 

concerning variability in the data. For trading and forecasting purposes, one can argue that a 

weakness of this study is that the route combinations and individual routes investigated are 
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limited. In further work, and as the liquidity in the market increase, one can investigate other 

routes of the BDTI. The trading and forecasting opportunities can further be increased by 

applying spread trading strategies across different markets, like the clean tanker market or the 

dry bulk market. Another possible solution is to trade on the different maturities available for 

the contracts by applying time spreads. One could also implement spread trading strategies on 

time charter equivalents and baskets of routes. These approaches were not prioritized due to 

time limitations but can be objects for further investigation. In further work it would also be 

interesting to implement other or more complicated technical trading rules than investigated in 

this thesis.  

 

Bid-as spreads are not considered in the profitability calculations. The bid-ask spread could 

further reduce the performance and the profitability of the strategies implemented. In the 

presented results, it is assumed that it is possible to entry and exit the positions before price 

moves occur. Concerning liquidity-related issues and bid-ask spreads, the actual performance 

results obtained in a real market could be more conservative or worse compared to the results 

presented in this thesis. Furthermore, transaction costs higher than the ones used in the models 

presented above, commissions and counter-party risk should be considered when trading in the 

real OTC FFA market. Also, the time consumed when implementing technical rules and spread 

trading strategies has to be taken into considerations when trading these derivatives. 

 

7 Conclusion 

The objective of this thesis has been to forecast the one-day-ahead prices of selected crude 

tanker FFAs using machine learning techniques and AIS-derived data in order to investigate 

the profitability of applying selected trading strategies on these forecasts. Specifically, this 

thesis has looked at the two, assumed to be, most liquid crude tanker routes (TD3C and TD20) 

including the route-pair TD3C-TD20 and forecasted the FFA prices. A complex Long Short-

Term memory NN model is utilized, and performance is evaluated up against two benchmarks, 

a RW and VAR model as benchmark to measure. Further, the trading profitability is 

investigated by implementing a Simple Long Short, Bollinger Bands and Buy-and Hold 

strategy. 

 

This thesis finds that the LSTM performs better than the RW and VAR model when predicting 

the one-day-ahead price for the individual FFA contracts of TD3C and TD20 but falls short to 
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both benchmarks when predicting the TD3C-TD20 route-pair. Even though the forecasting 

results has a promising outlook, we acknowledge that the study holds some weaknesses and 

limitations, especially regarding the predictions. The LSTM model seems to have trouble 

understanding the underlying mechanisms of the features presented, resulting in suboptimal 

predictions. A limitation of the study is the missing values in the AIS data, which could be 

contributing negatively when deriving the features.   

 

When the trading strategies are implemented on the individual tanker routes and the route pair, 

it turns out that the Bollinger Band strategy performs best when implemented on the forecasted 

LSTM model of the TD3C-TD20 route pair, while the Simple Long Short Strategy performs 

best when implemented on the forecasted LSTM models of the individual routes of TD3C and 

TD20.  
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Appendix 1.1 

Results Dickey Fuller test  

TD3C  

  ADF-Statistic  P-value  1%  Accept H0 at 1%  

BDTI  -13.3454  5.80768e-25  -3.43503  False  
In_flowcount_VLCC_IndianO  -12.7612  8.13663e-24  -3.43509  False  

TCE_VLCC  -8.51221  1.15926e-13  -3.43509  False  
USD_SAR_exchange  -9.50299  3.40565e-16  -3.43509  False  

Out_flowcount_VLCC_NWE  -13.4334  3.97356e-25  -3.43509  False  
LF_std_ArabGulf_VLCC_moving  -12.0882  2.15299e-22  -3.43509  False  

CNY_USD_exchange  -37.5949  0  -3.43501  False  
S&P500  -19.3427  0  -3.43502  False  

Count_Asia_VLCC_moving  -13.7139  1.22292e-25  -3.43507  False  
Speed_mean_Asia_VLCC_moving  -14.0193  3.59582e-26  -3.43507  False  

Dubai_Crude_1vs2M  -18.0396  2.66029e-30  -3.43503  False  
VLCC_Cap_AG  -16.181  4.26704e-29  -3.43506  False  

In_flowcount_VLCC_AG  -13.1501  1.37265e-24  -3.43509  False  
TD3C  -32.3502  0  -3.43501  False  

TD20  

  
  

ADF-Statistic  P-value  1%  Accept H0 

at 1%  

BDTI  -15.5483  2.11616e-28  -3.43557  False  
Speed_std_West_Africa_Suezmax_M_allD  -11.8597  6.89407e-22  -3.43565  False  

Speed_std_Global_Suezmax_M_Rotter  -13.7304  1.14322e-25  -3.43564  False  
LF_mean_Global_Suezmax_moving  -12.1629  1.47996e-22  -3.43563  False  

in_flowcount_Suezmax_AG  -12.6241  1.55501e-23  -3.43566  False  
3MCVBRNT Index  -8.22718  6.20108e-13  -3.43565  False  

NGN_USD_ex  -34.5437  0  -3.43556  False  
LF_std_Global_Suezmax_M_Rotterdam  -12.3025  7.39492e-23  -3.43565  False  

Suezmax_cap_FE  -14.4473  7.19423e-27  -3.43561  False  
out_flowcount_Suezmax_IndianO  -12.6328  1.49179e-23  -3.43566  False  

LF_mean_Global_Suezmax_M_Rotterdam  -12.6568  1.33131e-23  -3.43565  False  
LF_mean_Global_Suezmax  -11.64  2.15864e-21  -3.43564  False  

TD20  -30.6859  0  -3.43556  False  
  

lnTD3C-lnTD20  

  

  ADF-Statistic  P-value  1%  Accept H0 at 1%  

Count_Asia_VLCC_moving  -13.4339  3.96435e-25  -3.43563  False  
LF_std_ArabGulf_VLCC  -14.4564  6.96295e-27  -3.43562  False  

Speed_mean_Global_Suezmax_M_Rotterdam  -12.5298  2.44237e-23  -3.43566  False  
USD_SAR_exchange  -10.6135  5.75169e-19  -3.43565  False  

Speed_mean_Asia_VLCC_moving  -13.4688  3.41427e-25  -3.43563  False  
VLCC_cap_IndianO  -12.3264  6.57508e-23  -3.43564  False  

LF_std_Global_Suezmax_M_Rotterdam  -12.3025  7.39492e-23  -3.43565  False  
VLCC_cap_NWE  -13.7171  1.20708e-25  -3.43563  False  

LF_mean_Global_Suezmax_M_Rotterdam  -12.6568  1.33131e-23  -3.43565  False  
Crude Oil(Brent)  -37.9353  0  -3.43556  False  

TCE_VLCC  -14.2026  1.77705e-26  -3.43558  False  
LF_std_Global_Suezmax_moving  -13.6264  1.75651e-25  -3.43562  False  

In_flowcount_VLCC_AG  -12.6241  1.55501e-23  -3.43566  False  
% Ballast_ArabGulf_Suezmax_moving  -12.9442  3.48309e-24  -3.43565  False  

% Ballast_Asia_VLCC  -12.2771  8.38523e-23  -3.43566  False  
lnTD3_lnTD20  -14.9068  1.47869e-27  -3.43559  False  
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Appendix 1.2 

Results feature importance  

Top 30 features (including lag) for TD3C  

  

   
Feature (lag)  Multi 

Reg.  
Lasso 

Reg.  
RF  Linear 

Corr.  
XGB  Mean 

Score  
              
BDTI (t)  0.83  0  0.23  1  0.03  0.42  
In_flowcount_VLCC_IndianO (t-15)  0.16  0  1  0.03  0.56  0.35  
TCE_VLCC (t-1)  0.1  0  0.52  0.96  0.1  0.34  
USD_SAR_exchange(t-15)  0.09  0  0.32  0.81  0.31  0.31  
Out_flowcount_VLCC_NWE (t-7)  0.09  1  0.02  0.44  0  0.31  
CNY_USD_exchange(t-11)  0.12  0  0.26  0.4  0.48  0.25  
LF_std_ArabGulf_VLCC_moving (t-1)  0.2  0  0.03  0  1  0.25  
In_flowcount_VLCC_IndianO (t-4)  0.2  0  0.27  0.38  0.36  0.24  
S&P500 (t-5)  0.14  0  0.11  0.79  0.17  0.24  
Count_Asia_VLCC_moving(t-15)  0.21  0  0.23  0.48  0.18  0.22  
USD_SAR_exchange (t-2)  0.28  0  0.39  0.39  0.13  0.21  
Speed_mean_Asia_VLCC_moving(t-9)  0.26  0  0.05  0.22  0.53  0.21  
S&P500 (t-1)  0.24  0  0.69  0.01  0.09  0.21  
Dubai_Crude_1vs2M (t-8)  0.75  0  0.04  0.21  0.04  0.21  
VLCC_Capacity_AG (t-8)  0.54  0  0.07  0.27  0.18  0.21  
Count_Asia_VLCC_moving (t-6)  0.39  0  0.01  0.44  0.14  0.20  
In_flowcount_VLCC_AG (t-9)  0.09  0  0.17  0.39  0.34  0.20  
Out_flowcount_VLCC_AG (t-15)  0.39  0  0.07  0  0.45  0.18  
              
              
LF_mean_Asia_VLCC (t-7)  0.41  0  0.01  0.51  0  0.19  
              
STI(t)  0.18  0  0.35  0.26  0.14  0.19  
LIBOR_3M (t-6)  0.46  0  0.14  0.2  0.01  0.16  
VLCC_Capacity_IndianO (t-8)  0.57  0  0.02  0.19  0  0.16  
TMD_AllVessels_Global_cumsum (t-12)  0.37  0  0.03  0.08  0.21  0.14  
% Ballast_Asia_VLCC_moving (t-9)  0.54  0  0.07  0.1  0  0.14  
% Ballast_IndianO_VLCC (t)  0.22  0  0.01  0.37  0  0.12  
TMD_AllVessels_Global_cumsum (t-8)  0.32  0  0.03  0.2  0  0.11  
              
% Ballast_Asia_VLCC (t-7)  0.19  0  0.01  0.37  0  0.11  
% Ballast_Global_VLCC (t-12)  0.51  0  0.01  0.01  0.01  0.11  
SSE_index(t-8)  0.46  0  0.02  0.03  0  0.10  
% Ballast_ArabG_VLCC(t-13)  0.37  0  0.01  0.06  0.02  0.09  
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Appendix 1.3 

TD3C_TD20 - LSTM 

 

TD20 – LSTM 
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TD3C-TD20 – VAR 

 

TD2_VAR

 


