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Abstract

In thisthesis we seek to examine how modern forecasting approaches can improve estimations
of stock pair correlations, and derived from this, contribute to making portfolios more stable.
Volatility of financial markets have experienced increases dueto the ongoing global pandemic.
This amplifies the issues that investors face when assessing the risk related to their
investments. We construct a hybrid model consisting of an ARIMA component to explain the
linear tendencies of correlation, and a Long Short-Term Memory component to explain the
non-linear tendencies. Our approach is populated by data from constituents of Oslo Stock
Exchange ranging atime span from 2006 through the third quarter of 2020. Our resultsindicate
that modern approaches to forecasting accrue stronger predictive performances than the
conventional methods. Across all test periods our proposed hybrid model achieves an RMSE
of 0.186 compared to an average benchmark RMSE of 0.237. However, the implications of
these findings are ambiguous as the increase in predictive performance cannot be said to
definitively outweigh the increase in cost of implementation. Our thesis contributes to the
existing literature by exhibiting the untapped potential of how modern approaches to

forecasting can improve accuracy of quantitative inputs for decision making.
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1. Introduction

Refining the accuracy of inputs that are used as decision basis is a continuous issue across all
business industries. The conventional theories base their approaches to estimations and
calculations of inputs on simplistic statistica methods. In line with technological
developments and availability of data, modern frameworks for forecasting has been
established. Many researchers have found such modern forecasting approachesto outshine the

conventional methods when applied on avariety of data sets.

However, modern approaches to forecasting have not been widely adopted for the issue of
estimating inputs regarding investment risk. Research has been heavily focused on forecasting
prices and returns on investment objects, while the equally important decision factor, risk, has
not been covered to the same degree. The purpose of this thesis is to investigate quantitative
methods for approaching risk in investment objects. The thesis relies on well-established
concepts of portfolio theory, as well as modern approaches to making estimations for use in
financial applications. It should be noted however that thisthesisis not predominantly athesis
on the research field of finance. It is rather an exploration of how data analysis can support

business decisions, here applied on a decision problem from the field of finance.

Examining this research area is of importance because dealing with levels of risk subject to
dynamic conditions is something that most decision makers must deal with incessantly. To
investigate methods for approaching risk in a meaningful manner, we must first delimit the
topic to an appropriate scope. In the following section wewill provide the thematic boundaries

and an outline of the contents of this thesis.

1.1 Problem Definition

Risk is omnipresent in the world of business, but to provide a meaningful contribution to the
literature we must delimit the topic sufficiently. An element of risk that is quantifiable and
abundantly recorded is the price movements, and thereby derived risk, of financial
instruments. A possible approach to improve risk assessments could be investigating how
advanced methods of making estimations can contribute to more robust and stable investment
portfolios. Furthermore, an interesting aspect of risk assessment using advanced methods, is

reviewing their ability to contribute over atime span that is affected by unlikely, but highly



impactful circumstances, also known as Black Svan Events. This specific element of the
narrative is motivated by the ongoing global pandemic, Covid-19, which is forcing decision
makers to prioritize risk assessments. For these reasons, the objective of this thesis can be

delimited to the following research question:
How can modern approaches to forecasting contribute to more stable portfolios?

The research question is substantiated by two central elements of analysis: A comparative
design with assessment of predictive performance across methods, materialized through our
set of benchmark models (1), and acritical assessment of the method contribution’s sensitivity

to financial black swans (2).

Based on the background information hereunder, we lay the foundation for examining how
estimations that investorsrely on, can be improved. The succeeding literature review provides
an overview of how risk has been estimated historically by practitioners, as well as emerging
methods that can be utilized in thisregard. The remainder of thethesisis structured asfollows.
Firstly, we define a proposed model inspired by existing literature and present an experimental
approach to demonstrate how modern techniques, such as machine learning, can improve
financia estimations. This experiment must be regarded only as a display of one possible
application of modern forecasting approaches, meant to pose as a basis of analytical
discussion. Secondly, we describe the data selection and the preprocessing required for it to
populate our suggested methods. Thereafter, an explanation of how we decide to evaluate our
mode is included. The results from the model are then presented and evaluated before we

ultimately discuss our findings with respect to our research question and related limitations.



2. Background

The year 2020 has involved substantially increased levels of uncertainty worldwide. As the
spread of Covid-19 continues, national measures such as socia distancing and quarantining
go hand in hand with fears of contagion and increasing layoffs. The International Monetary
Fund has developed a measure for tracking uncertainty related to social, political and
economic circumstances across the globe, constructed by performing textual analysis on
reports for each country (World Uncertainty Index, 2020). This measure, called the World
Uncertainty Index, has in 2020 reached heights that are unprecedented for as long as
uncertainty has been tracked by the IMF.

World Uncertainty Index 1990-2020
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Figure 2.1 World Uncertainty Index. Data: (World Uncertainty Index,
2020)

New heights of globa uncertainty naturally have impacts on the global financial markets. As
Hites Ahir, the senior officer responsible for the World Uncertainty Index, described it in a
recent index update; increasing levels of uncertainty historically coincides with periods of low
economic growth and tighter financial conditions (Ahir, Bloom, & Furceri, 2020). In June
2020, The World Bank published a report with the title Global Economic Prospects. They
claim that the global pandemic has enkindled the deepest global recession in decades and
include baseline forecasts which projects a 5.2% contraction in global GDP during 2020
(World Bank, 2020). This global increase in uncertainty has provided motivation for our
research question, as the implications derived from deviations in data driven decisions, will

bear substantial impact.



2.1 Financial Black Swans

Dealing with uncertaintiesis an everlasting challenge for all participants of the global market.
Covid-19 is not the first pandemic that exceeds expectations and leads to unforeseen financial
impacts, and it will surely not bethelast. Theideathat improbable events collectively are very
likely to occur, has among others, been discussed by mathematician David J. Hand who has
written a book on the subject called The Improbability Principle. In essence, he argues that
improbable events in reality occur quite regularly (Hand, 2014). Complementing Hands
literature, Nassim Nicholas Taleb coined the term Black Swan Events in 2001 when he
published his book Fooled By Randomness, and further in The Black Swvan: The Impact of the
Highly Improbabl e released in 2007. The latter book discusses the extreme impacts of rare and
unpredictable events (Taleb, 2007). It has been an area of discussion whether the current
pandemic can be defined as a black swan event or not, and the author himself has weighed in
arguing that it should not be (Avishai, 2020). However, the virus and itsimpactsfit the broader
definition of an unlikely event with extreme consequences, and the key takeaway from Taleb’s
contribution still stands regardiess of the validity of definition. That is, humans should not
seek to explain unlikely events by simplistic explanationsin hindsight. Rather than attempting
to predict unlikely events, one should build robustness for their adverse effects.

Thisthesiswill base on the assumption that Covid-19 and its impacts on financial markets are
representing a financial black swan. The event is virtually impossible to predict and has
tremendous effects on the returns and risk related to financial investments. This background
information helps address our research question appropriately. Based on Taleb’s literature we
seek to anayze forecasting contributions with consideration to financial black swans.
According to his perspective we will assess the contributions from modern forecasting
techniques with consideration to their robustness to a financia black swan. This leads us to
investigate what constitutes risk in the financial markets and how it can be mitigated. In the
next segment we will therefore explain how risk is quantified in decision making tools.



2.2 Investment portfolios

Investors are always looking for ways to obtain returns while mitigating the risk they are
taking. Therefore, in traditional portfolio theory, the performance of theinvestmentsisusually
considered a combination of the main components; expected returns and the risks related to
these investments. One of the most prominent influencers of portfolio theory is Harry
Markowitz, who defined the Modern Portfolio Theory. His dissertation on portfolio selection
is ftill highly relevant to this day, even though it was published as early as 1952. His theory
was based on the idea that every investor seeks to maximize their returns for any given level
of risk (Markowitz, 1952). Some investors are risk averse, while some seek the thrill of

higher-risk investments. Regardless of the risk aversion level, the investor is interested in
finding the portfolio within their risk desirability, likely to yield the highest returns. This can
also be considered such that investors prefer portfolios with less risk for any level of return.
The set of optimal portfolios for any desired level of risk, or aternatively level of return, is
called the efficient frontier (Markowitz, 1952). Furthermore, the theory is based on the concept
that the risk level of a portfolio can be reduced by diversifying through unrelated securities.
Therefore, the overall risk related to aportfolio can be cal culated as afunction of the variances
of portfolio assets, along with the correl ation between each pair of assets. Alas, the correlation

between investment objects can be considered a proxy for the risk involved with investments.

There have been countless attempts at trying to predict future stock prices employing any
thinkable method available. Being able to predict the expected stock prices accurately would
mean that one of the two components practitioners assess when constructing portfolios are
known entities. However, the same can be said about the risk component derived from
correlations. Better predictions of future correlation, which employ modern methods, could
potentially lead to better foundations for building effective investment portfolios. Going back
to Nassim Taleb’s petition to build robustness for unlikely and extreme events, this could be
addressed by improving estimations of the future correl ation between stock pairs. Our research
guestion relates to how portfolios can become more stable through applying forecasting
methods for constructing inputs. In this sense the stability of a portfolio relates to the actua
variance on returns achieved from portfolio compositions. Regardless of the risk preference
of an investor, more accurate inputs will aid in attaining the desired risk profiles of

investments.



In the next chapter we will therefore seek guidance from the literature as to how such
improvements can be made with the support of modern techniques. We will present an
overview of how risk has been quantified historically followed by literature on the broader
field of estimating future values of financia time series. The former provides reference, or a
starting point for anaysis, while the latter provides inspiration regarding favorable
methodology for estimating values that can be used by decision makers to construct portfolio
strategies.



3. Literature Review

In this section, we begin with describing how practitioners historically have approached the
problem of quantifying risk. These traditional methods are often based on naive projections or
simply assumptions of constant correlation. In earlier years of the Modern Portfolio Theory,
it was subject to criticism because of the assumptions it relied on for measuring risk through
correlation coefficients (Low, Faff, & Aas, 2016). The simplest method used by practitioners
of Modern Portfolio Theory, the Full Historica Model, assumed that correlation for any
combination of assets in the investment horizon would be equal to the preceding observation.
This is equivalent to producing naive forecasts and are optimal when data follow a random
walk, which is the case for many financia time series (Hyndman & Athanasopoulos, 2018).
However, random walk forecasts were not deemed accurate enough, which culminated in an
aternative approach for estimating future correlation in portfolios. This model, called the
Constant Correlation model, was built on the assumption that any deviation from the market
mean correlation coefficient was due to random fluctuations (Elton, Gruber, & Urich, 1978).
Hence, correlation coefficients were according to this method estimated by projecting the
mean correlation coefficient of all constituent pairs for the investment horizon. A third
approach attempting to find better estimations of correlation coefficients also culminated,
caled the Single-Index Model (Elton, Gruber, & Urich, 1978). The Single-Index Model
employs the market return to partly explain a pair of financial instruments’ price movement in
relation to each other. However, none of these statistica methods for projecting correlation

coefficients have been satisfactory when it comes to estimation performance.

The aforementioned models employed in the Modern Portfolio Theory assumed that
correlation coefficients are constant and fixed. Reflection of correlation is vital asit provides
stability in portfolios through encouraging diversification. However, findings discussed by
Preiset al. (2012) show that the average correlation among stocks scales linearly with market
stress. Thus, naive estimations on correlation coefficients are subject to large errors as
uncertainty changes. The diversification effect responsible for protecting portfolios is
diminished in times of market losses which, inconveniently, is when it is needed the most.
Chesnay & Jondeau (2001) also provides an empirical study which points out that periodswith
high levels of financial turbulence and uncertainty, tend to generate positive correlations
between stock prices, as contractions in the economy affect most companies. These studies

imply that correlation coefficients are likely to deviate from historical quantities, which



provides further support towards the criticism of assuming fixed correlation coefficients.
Following this, diversification derived from analysis of correlation coefficients is useless if it
only works when market conditions remain unchanged. Alas, diversification as a stability
measure need to account for changes in correlation of price movements and cannot rely on
assumptions of fixed entities. Markowitz himself also addressed this criticism stating that his
assumed task was to develop a framework for outputting efficient risk-return combinations,
given inputs such as means and variances of individual securities and the correlation between
them (Markowitz, 2002). He further assumed that it was not his task to provide these inputs
and ensure their accuracy, but rather the task of security analysts. The field of forecasting has
evolved tremendously since the time of Markowitz and we are therefore interested in
investigating modern approaches to forecasting applicable to this problem, such as automated
forecasting frameworks, machine learning, neural networks and the combination of such
methods.

The remaining research presented revolves around forecasting financial time series, and some
highly favored frameworksfor thisresearch field. Theliteraturereview isan essential segment
of the thesis process, as there is a multitude of available methods in the field of financia time
seriesanalysis. All these methods come with their own benefits and detriments. Thefollowing
sections seek to review literature on time series forecasting with long-established methods
such as ARIMA, more modern methods in deep learning techniques such as neural networks,

and lastly, several hybrid models employing a combination of methods.

AutoRegressive Integrated Moving Average, or ARIMA, is a forecasting framework
developed by Box and Jenkins (1970), and is one of the most widely utilized methods of
forecasting economic and financial time series (Hyndman & Athanasopoulos, 2018). Studies
have been conducted on financial time series such as e ectricity prices, housing prices, and
stock prices. Weiss (2000) employed the ARIMA framework to construct models that
predicted electricity prices of mainland Spain with good results. The ARIMA model designed
predicted prices with an average error of about 10%, both with explanatory variables and
without. Raymond (1997) used an ARIMA model to identify trends in Hong Kong’s real estate
prices and concluded that ARIMA models are particularly good frameworks for forecasting
on the short-term due to slow changesin the short-term factors. The autoregressive component
was helpful in determining the trending effects of the housing prices while the moving average
components contributed with determining turning points. These two components, which in

addition to some leve of data differencing, make up the ARIMA framework, were successful



in tracking the direction of changesin the real-estate prices. Similarly, Adebiyi, Adewumi and
Ayo (2014) found that ARIMA models have a strong potential for predicting for the short-
term. They built an ARIMA model for stock price prediction on two constituents, Nokia and
Zenith Bank. The model predictions were satisfactory, and they concluded that ARIMA
models can compete reasonably well with emerging forecasting techniques such as artificial
neural networks in short-term prediction.

Among machine learning applications in the field of stock market predictions, Galer,
Kryzanowski and Wright performed a pioneering study in 1993. They developed a classifier
model using deep learning and proceeded to correctly classify 72 % of directional movements
on one-year-ahead stock returns (Kryzanowski, Galler, & Wright, 1993). In addition to being
able to classify directional movements, Olson and Mossman (2003) showcased the potential
for machine learning to be used in regression models. They forecasted one-year-ahead point
predictions on the Canadian Securities Exchange. Both studies could report that their deep
learning model could outperform the existing regression models using traditional techniques.
Among the newest and most popular techniques within machine learning for forecasting time
seriesisthe application of neural networks. In particular, Long Short-Term Memory networks,

or LSTM networks, have been employed diligently in recent times.

Literatureon utilizing LSTM in predictive modeling of financial marketsis historically scarce,
despite being suitable for financial time series predictions. There are severa reasons why such
literature might be lacking, which can be broken down into two main reasons. Firstly,
challenges related to backtesting financial strategies deteriorates the value of findings. Alas,
struggles with backtesting mean that separating what are successful trading strategiesfor only
a specific place in time, and those applicable for the future, is severely challenging (Lopez de
Prado, 2018). Secondly, there are predominant incentives for keeping significant findings
unpublished as that will more likely lead to financial benefits. However, due to the growth in
computational efficiency and the availability and popularization of machine learning in the
last few years, the activity in thisfield hasincreased. Huck, Anh and Krauss published a paper
in 2017 where they compared different machine learning techniquesfor stock price prediction.
Interestingly, they did not outperform traditional techniques but performed well in periods
with high volatility and market decline, such as the dot-com bubble in the late 90s and the
2008 financial crisis (Krauss, Anh, & Huck, 2017).
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Usualy, LSTM networks are employed when working with vast amounts of data, but there
are examples of successful application on training with fewer data points in the literature.
Siami-Namini, Tavakoli and Namin (2018) built an LSTM network to predict time series of
financia data and managed to obtain forecasts with average errors of between 13 and 16 %.
In the same year, Fischer and Krauss (2018) built LSTM networks to model S&P 500
constituents directional movements. They found LSTM networks to outperform other
alternatives within machine learning that are considered memory-free, such as Random Forest
and a logistic regression classifier. In the next segment we will complement the literature
review with some studies that delve into combining the methods mentioned above, so-called
hybrid models.

Hybrid models have the fundamental advantage that it combines two or more individual
models, which means the models have the potential of complementing each other. This leads
to being able to exploit the advantages of each model’s characteristics. In 2003 Peter G. Zhang
published a study on the combination of the ARIMA model and aneural network. He proposed
that since ARIMA modelsand neural networks often were subject to comparisons of predictive
strength for time series, with varying conclusions, it should be investigated whether a hybrid
model taking advantage of both models' strengths was beneficial. In the study, he investigated
different time series, including sunspot data, Canadian lynx data and exchange rates. He
displayed that neither ARIMA, nor neura networks individually, were suitable for a wide
range of time series. Most time seriesinclude both linear and non-linear rel ationships between
observations, and ahybrid model consisting of methods favorable for each type of relationship
is advised according to his findings (Zhang, 2003). This pioneering study, establishing a
framework for a hybrid between ARIMA and neura networks, has inspired several studiesin

recent times.

A study conducted by Temdr, Temir and Akguin (2019) employed a hybrid model made up of
an ARIMA component and an LSTM network to forecast housing prices in Turkey. They
found results that corresponded with Zhang's (2003) literature. The best accuracy was
achieved with the mentioned hybrid model, and the difference in predictive power between
the hybrid and the individual models was significant. Furthermore, Zhang’s (2003) literature
has also provided methodological inspiration for a study by Choi (2018) where the
effectiveness of an ARIMA and LSTM network hybrid model on predicting S&P 500
constituents correlation coefficients were investigated. Choi found that the hybrid model
produced forecasts on correlation coefficients for stock pairs, which improved significantly
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upon traditional correlation projection methods. During the work on thisthesis, we have let us
inspire by these methodol ogical frameworks and wish to build asimilar hybrid model for Oslo
Stock Exchange constituents to demonstrate the potential usefulness of neural networks for

financial time series forecasting.

Without having touched upon the specific approach of thisthesis, it should still be pointed out
how this thesis contribute to the literature. Asfar aswe know there is no existing literature on
making predictions of correlation coefficients employing the methodsincluded in theliterature
reviewed for Oslo Stock Exchange constituents. Wewill come back to the specifics of selected
approach and data in later chapters. Furthermore, the time span investigated in this thesis
involves both the financial crisis of 2008 and the Covid-19 pandemic of 2020. We find no
existing literature discussing the impact of black swans on estimates of correlation
coefficients. The literature review contributes to explaining why our research question should
be addressed by presenting aproblem that traditionally has been addressed by simple statistical
methods, despite the emergence of methods for forecasting that is applicable to the problem.

All this considered, this thesis should complement the existing literature in ameaningful way.

Substantiated by background information and the literature review above, we will in the next
chapter propose our approach to explaining how modern forecasting techniques can aid
decision makers in constructing stable portfolios. The approach chapter consists of our
preferred method of addressing the research question but is naturally only one way of doing

just that. We will however emphasize the reasons for our selection of approach.
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4. Approach

In this chapter we will introduce our proposed model in the first section. The second section
consists of the benchmark models we include in our approach which addresses the research
question by providing a comparative design of analysis. The third section introduces an
additional evaluation approach based on a portfolio sampling. Ultimately, the last section of
this chapter describes the data which will populate our proposed model and benchmark

models.

4.1 Hybrid Model

Inspired by the literature reviewed, we present a hybrid method, using an ARIMA model
combined with an LSTM model to predict the correlation coefficients between each pair of
stock. The method rests on the assumption that the time series datais composed of both linear

and non-linear tendencies (Zhang P. , 2003), expressed in the following equation.
xt == Lt + Nt + Et (4'1)

Where the notation L; represent the linearity in the datax; at timestep t, N, represent the non-
linearity and e, is the error term. As discovered through the literature review, hybrid models
have emerged in recent years as a method of improving forecasts from individua models
through combination. We are encouraged by the literature on thisresearch and aspireto answer
our research question with the help of these techniques. Dependent on the predictive
performance derived from such methodology, this can aid decision makers by exhibiting the
potential contribution of forecasting techniques in supplying inputs to frameworks for
strategizing portfolios. There are a multitude of methods that are applicable for forecasting
both the linear and non-linear component, and there are benefits and detriments to every
method. In the following segments we will provide a rationale for the elected hybrid
components, ARIMA and LSTM, an explanation of how they are implemented, and a
description of the data selection process.
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4.1.1 Hybrid section | - ARIMA

ARIMA models have been a popular method of choice for researchers attempting to predict
future values of financial time series (Hyndman & Athanasopoulos, 2018). Studies have
shown that ARIMA models excel in forecasting severa different types of econometric time
series and is often able to outperform more complex and extensive methods (L evenbach,
2017). As discovered in the literature review, ARIMA models have proven to be particularly
good frameworks for forecasting the short-term linear tendencies of financial time series. The
ARIMA model useslinear functions of past datato forecast future values and has been favored
by researchers due to its simplicity in both comprehension and application (Fattah, Ezzine,
Aman, Moussami, & Lachhab, 2018). In addition, financial time series are generally likely to
inherit some seasonal effect, which ARIMA is well suited for handling (Hyndman &
Athanasopoulos, 2018). The relative simplicity of ARIMA makes it enticing in a business
sense as it eases implementation due to less requirements in preprocessing of data,
computational efforts, and its wide applicability. In summation, ARIMA is an
easy-to-implement framework that is applicable for forecasting financia timeseries at a low
computational cost. Naturally, awide range of methods could account for explaining the linear
tendencies of financial time series data but based on the aforementioned reasons we will
employ ARIMA.

The ARIMA framework combines autoregressive processes and moving average processes,
aiming to describe the autocorrelations in the data (Box & Jenkins, 1970). The additional
integrate component involves applying differencing on the time series to convert non-
stationary time series into stationary (Box & Jenkins, 1970). In short, the ARIMA method
involves a selection process to identify the number of lags to be used for the autoregressive
and moving average parts that best fit the observed time series, as well as a level of
differencing. The term autoregression refersto the procedure of regressing the variable against
itself, using the previous p values. Similarly, moving average uses the past g forecast errors
in a regression-like model (Hyndman & Athanasopoulos, 2018). Additionally, it is often
necessary to apply alevel of differencing d, to obtain a stationary time series. This process
results in a ARIMA model of order (p,d, q). A detailed description of the ARIMA method
can be found in Appendix A2.
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Our ARIMA approach is based on a stepwise automatic model selection algorithm developed
by Hyndman and Khandakar (Hyndman & Khandakar, 2008), and implemented using the
function auto.arima from the R-package forecast (Hyndman R. , et a., 2020). In short, the
algorithm applies different model orders and calculates the relative goodness of fit with the
Akaikes Information Criteria (AIC). The agorithm returns the model with the lowest AIC.
We do not wish to force any model order on the time series input, as we seek to keep this

section of the hybrid model as automated as possible.

After fitting a model on all the correlation time series, the residuals from the ARIMA
predictions are stored. As the ARIMA model predictions are assumed to have explained a
substantial amount of the linear relationships in the data, the residuals are thought to contain

the non-linear relationship and are used as input in the second section of the hybrid method.

4.1.2 Hybrid section Il — Neural Network

Neura networks have surged in application the last decade and is recognized to handle and
model a multitude of complex non-linear problems(Haykin, 2008). A neural network consists
of nodes, organized in layers, that are connected with weights. In general, data is presented to
the network in the input layer, passed through nodes in one or more hidden layers, before
calculating an output in the output layer. Figure 4.1 displays these layers for a Feed-Forward
Neural Network (FNN).

INPUT HIDDEN OUTPUT
LAYER LAYER LAYER

Figure 4.1 Feed-Forward Neural Network structure (Bouvet Norge, 2020).
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As the name suggests, the information in a FNN is passed forward through the layersin a
single direction. The arrows that connect the nodes each has a weight that regulate the
information passed through each connection. The network aims to optimize these weight
parameters w, as well as bias parameters b, in order to predict values y that minimize aloss
function L. Thus, the predicted values are afunction of theinput x and the network parameters
0 sothat y = f(x,8). The loss function expresses the accuracy of the predictions L(y,y) =
L(f(x,0),y). The network learns by updating the loss function iteratively with an
optimization algorithm that adjust the parameters 6 in a direction that reduces distance
between the predicted values and the true values. This optimization process is called back-
propagation and uses gradient descent, which is an iterative optimization for identifying a
local minimum, to find the optimal values for the parameters (Lecun, Bottou, Orr, & Miller,
2012).

Recurrent Neural Network (RNN) is a subdivision of neura networks, which has a structural
feature alows the network to contain information from sequential input across time steps
(Dupond, 2019). The nodes in the hidden layersin the RNN islooped, allowing the sequential
input to be interpreted iteratively. Information from the input is stored in each iteration as a
hidden state and the hidden layers inherits these states from previous iterations. Thus, the
hidden state can be described as the working memory of the network. A representation of this

concept isdisplayed in figure 4.2.

e | @ | @ @ @ @
| (5O = | O—O—O—0O
o | (|| @ O @

«ROLLED» «UNROLLED»

Figure 4.2 Generd structure of an RNN. An input sequence with four timesteps will create
four identical copies of the network structure and the hidden state is passed onto the next
time step. Source: (Bouvet Norge, 2020).
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As depicted, RNN can be described as a chain of identical neural networks, one for each
time step in the sequential input, looped together. When optimizing the loss function in an
RNN, all time steps in the sequential input is passed through the loop before each update.
Oneiteration of this procedureis called an epoch. Asthe neural networks in the unrolled
RNN are identical, they also share the same adjustable weights and biases that the function
looks to optimize.

The passing of the hidden statesin an RNN, as shown by the red arrows in the figure, also
comes with some limitations, as it often struggles to control the information over long
sequences. The resulting effect of these hidden states on the network outputs either decays
rapidly or explodes exponentially over time (Hochreiter, Bengio, Frasconi, & Schmidhuber,
2001), and a graphical representation is depicted in figure 4.3. This problem is often referred
to as the vanishing gradient problem and introduces a problem when attempting to model

dependencies in long sequences (Bengio, Simard, & Frasconi, 1994).

Outputs .

Hidden
Layer

Inputs .

Time 1 2 3 4 5 6 7
Figure 4.3 The vanishing gradient problem. Source: (Graves, 2012)

There have been severa attempts to create a modified RNN architecture to deal with the
aforementioned problem, and we have selected the Long Short-Term Memory (LSTM)
approach in thisthesis.

In addition to the working memory through the hidden states, the LSTM has a cell state, that
serves the function of along-term memory. This allows it to persist and contain information
over longer time periods and sequences. The cell state is regulated by gates that control what
information to remove from the previous time step and what information to add from the input
in the current time step. The cell state and the gates are the mechanisms of the LSTM that
tackles the vanishing gradient problem. A more detailed description of RNN and LSTM is
found in Appendix A3 and A4.
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For our modelling task, the LSTM has desirable features, as we want the model to have the
ability to use information from sequences in an early time step for forecasting current time
steps. In theory, this facilitates the possibility for the model to extract information and learn
from previous data such as from the financial crisis of 2008 and apply this when forecasting
periods with similar circumstances. However, complex LSTM models are computationally
heavy and time consuming to train. Additionally, it can be challenging to design and tune a
network to obtain amodel that does not just fit the observed datawell, but also learn the true
relationship in the data and forecasts well out-of-sample. For this reason, we focus the
construction of the LSTM model to a ssimple and generalized structure to reduce the time,
computational power and the size of the dataset required to train and use such a model. This
entails a probable decrease in performance accuracy but increases usability and allow decision
makers and portfolio managers to refit the model on a variety of time series to support the
forecasting task of their interest.

Theinput used for the LSTM model consisted of theresidual values derived from the forecasts
of the ARIMA model. The residual data is divided so that the last time step is treated as a
target value Y and the model is trained on the remainder of the previous observations X.
Furthermore, the LSTM requires the data to be three-dimensional, on the following form,

[Samples, Time Steps, Features].
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With the selection of ARIMA and LSTM as the components of the hybrid model, we can
present the following flowchart of the hybrid model:

Studio
- Preprocessing
E> |:> Forecast
Hybnd
3D reshaping torecast

. Forecasted
Residuals |::> residuals

@ python |4 Keras

Figure 4.4 Illustration of the hybrid model. The residuals are contrived
from the forecast of the ARIMA model, reshaped, and used asinput in the
LSTM model. The LSTM forecasts the residual which is combined with the
ARIMA forecast to produce the final hybrid forecast.

For the LSTM we need to address some hyperparameters and design choices for model
optimization. Furthermore, we have also performed some measures to reduce the problem of
overfitting. We will in the following segments elaborate on these aspects.

LSTM Model architecture

Additionally, there are several hyperparameters and design choices to be selected when
building the architecture for the LSTM model. There has been extensive research in exploring
methods to optimize the selection. However, these methods entail a tedious and
computationally demanding task (Hutter, Hoos, & Leyton-Brown, 2011). For ssimplicity and
due to computational limitations, some of the model choices are selected and assumed to be
fixed throughout the development of the final model, and some have been found through trial
and error. A short description of how the model design and hyperparameters are selected will

follow.
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The complexity of the network can be controlled with the selection of number of hidden layers
and number of nodes in each layer. As we want a simple structure, we only employ a single
hidden layer, and limit the number of nodes in the hidden layer by searching between the
interva [5, 20].

For the calculations in each cell, the ADAM optimizer function is used as it is regarded as a
robust selection to the choice of the remaining hyperparameters (Goodfellow, Bengio, &
Courville, 2016). In order to merge the output from all the cellsinto asingle value, the output
layer employs a doubled-hyperbolic tangent function. Multiplying the hyperbolic tangent
function by two will ensure that the final predictions are transformed into the range [—2,2],
which encompasses the minimum and maximum value that the residuals of the correlations
can take. To determine the learning rate, Greff et. al. suggests a procedure of starting with a
high value (e.g. 1.0) and divide by 10 until performance stops increasing (Greff, Srivastava,
Koutnik, Steunebrink, & Schmidhuber, 2017). Through the design and selection of
hyperparameters, a main weakness related to neural networks can be addressed, namely
overfitting. In the next segment we will therefore describe how our approach is designed with

respect to this problem area.

Overfitting

Neura networks have a tendency to fit a model too closely to the training data provided
(Srivastava, Hinton, Krizhevsky, Sutskever, & Saakhutdinov, 2014). This is known as
overfitting and causes problemsasit |eads researchersto believe they have found agood model
for their problem. However, as the models are used to produce real forecasts, they readlize the
predictive performances is not coherent with the assumed predictive strength. Alas, neural
networks are often subject to developing models that correspond too closely with the specific
dataset, and therefore fails to predict future observations reliably.

When building ageneralized model, it isalso awell-known practiceto incorporate avalidation
set in the development of the model (Kohavi & Provost, 1998). This way, the data can be
separated into train, validation and test data and use the validation set, hereby referred to as
the development set, to prevent overfitting on the observations in the training set. The data
split is further outlined in section 4.4.3. We will implement the development set in the model
development through an early stopping process. When training the model, a performance
measure for the development set is cal cul ated and registered every epoch. Whenever the model
has not improved the performance on the development set for 10 epochs, the training ends,
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and the weight and bias parameters from the epoch with the best performance is saved and
used asthe final model. Additionally, another common measure to reduce issues of overfitting
is through regularization. Regularization is the act of making modifications to the learning
algorithm which seeks to reduce the out-of-sample error, but not the in-sample error
(Goodfellow, Bengio, & Courville, 2016). Out-of-sample error refers to the ability of
predicting observations that is previously unseen to the algorithm, while in-sample error

relates to predictions on the data which the algorithm is based upon.

One method of regularization is carried out through the inclusion of dropout layers. Dropout
regularization isaway to debiasthelayer, by turning off any given node during training of the
model with a probability p (Zhang, Lipton, Li, & Smola, 2020). This is contributing to
reducing risk of nodes becoming interdependent which is a prevalent source of overfitting
(Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 2014). Weinvestigate the effect
of the dropout rate on the accuracy of the model on the train and development set
incrementally. Additional regularization steps can be performed by conducting weight
regularization, of which we separate between two main types. These are known as the Lasso
regularization (L1) and the Ridge regularization (L2) (Martins, 2019). Weight regularization
ams to penaize certain weights in the loss function, and their values are found by
investigating the effect of different combinations of model hyperparameters on predictive
performance. In summary, overfit has been addressed through employment of a development

set and tuning of hyperparameters.

In paralel with reviewing literature and defining a proposed model, we have examined
different models applicable for estimating correlations on the investment horizon. As
previously mentioned, these models are not solely meant to provide inspiration for our
proposed model, but also to provide reference for examining the performance. To ensure a
comparative design in the analysis of the performance of our proposed model we have
therefore include arange of models as benchmarks. To eval uate the performance of the hybrid
model and the benchmarks, we have used the Root Mean Squared Error (RM SE) and the Mean
Average Error (MAE). The justification and details of these evaluation metrics are presented
in Appendix A5. In the next section we will briefly elaborate on our selection of benchmark

models.
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4.2 Benchmark models

The predictive performance of our hybrid model is compared to atotal of seven benchmark
models, whereas four are referred to as conventional approaches of projecting correlation
coefficients for portfolio optimization based on historical coefficients. The remaining three
benchmarks consists of the two methods in the hybrid model, evaluated individually, as well
as an aternative hybrid model, which are referred to as forecasting methods.

4.2.1 Historical Model

The simplest method of projecting correlation coefficients for use in portfolio optimization
presupposesthat correlation for any pair of stock constituentswill be persistent (Elton, Gruber,
& Urich, 1978). Correlation coefficients used in the Historical Model will thus always be equal

to the corresponding coefficient according to the most recent observation.
r.t. = r.t._l (4‘2)

i, j: stock constituent index in the correlation matrix

4.2.2 Constant Correlation Model

The next method we use as benchmark employs the mean correlation coefficient for all stock
constituents for projecting future correlations. The Constant Correlation model presupposes
that any discrepancy from the mean are random deviations (Elton, Gruber, & Urich, 1978).
Hence, the estimation of future correlations for each pair should be equal to the most recent

observation of the average correlation.

s (4-3)
T atm-1)/2

i, j: stock constituent index in the correlation matrix

n: number of stock constituents
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4.2.3 Single Index Model

The Single Index Model presupposes that the movement of the market return can be employed
to make better estimates for future correlation coefficients (Elton, Gruber, & Urich, 1978). A
key assumption in the Single Index Moddl is that stocks most often have positive covariance
as they respond to the same macroeconomic factors. Nonetheless, companies are affected
diversely by different economic factors. Following this reasoning the Single Index Model
assumes that covariances of each stock pair are calculated by multiplying the respective betas
and the market variance. The estimation of future correlation coefficients in the Single Index
Model is expressed as

¢ _ BiBjom (4-4)

T
ij 0,0

i, j: stock constituent index in the correlation matrix

m: market index

4.2.4 Overall Mean

Elton, Gruber and Urich (1978) conducted a study comparing a wide range of statistical
methods for estimating correlation coefficients including the model s described above. Among
all the statistical methods compared they found the Overall Mean to achieve the best predictive
performance. The Overall Mean assumes that correlation coefficients for a given pair of
investment objects are estimated as their mean rel ationship of price movements over time. The

estimation of future correlation coefficients employing Overall Mean is expressed as,

e _ Zeali (4-5)

s
5] n

i, j: stock constituent index in the correlation matrix

n: number of observationsfor each pair
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4.2.5 ARIMA

The ARIMA method is aso included as a benchmark. The auto.arima models previously
selected in the methodology section are used to create out-of-sample predictions for the
development and test sets. This enables us to interpret to which degree the ARIMA by itself
can explain the variation in the data, and thus provide insight about how each hybrid
component is contributing to its performance. These predictions are compared to the actual
values for the sake of cal culating accuracy metrics.

4.2.6 LSTM

For the same reason as adding a stand-alone ARIMA model for predicting future correlations
we aso add one for the LSTM method. Thistime LSTM are given past correlations as input
instead of residuals from ARIMA. Parameter tuning through trial and error quickly revealed
to have little impact on the accuracy of the stand-alone LSTM. Hence, we resolved to keeping
pre-defined model parameters identical to those identified for the hybrid model.

4.2.7 Hybrid: ARIMA-Random Forest

Neural networks have been awidely popular method in the realm of Machine Learning in the
recent years. We wanted to make sure that the perceived usefulness of neural networks among
researchersisnot inflated. Asan assurance, we el ected to make predictions using an alternative
machine learning method as areplacement for the LSTM within the same hybrid methodol ogy.
Similarly to the LSTM, a Random Forest (RF) model requires restructuring of the data. Each
quarterly correlation coefficient istreated as the outcome variable and is supplied with lagged

values of the time series as predictors.

Random Forest is a popular and effective machine learning agorithm which utilizes ensemble
learning, an algorithm which combines multiple learning models to improve the overall
performance. Random Forest constructs a multitude of decision trees which individually
produces a prediction, either in the form of a class in classification problems or point
predictions for regression problems (Breiman, 2001). For each tree, a random subset of the
training datais drawn and used to calculate its output. The output of a Random Forest model
is either the mode of the classes predicted in classification, or the mean prediction across the
decision treesin aregression problem. One key advantage of using Random Forests modelsis

that the generalization error converges to alimit as the number of treesin the forest increases.
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In other words, in accordance with the Strong Law of Large Numbers, overfitting is seldom a
problem for Random Forest models (Breiman, 2001).

Asthe Random Forest model solely constitute a component of one of our benchmark models,
we limit the optimization of hyperparametersto initial trial and error. Furthermore, there are
in practice only two user-specified hyperparameters: the number of treesin the forest and the
number of variablesin the random subset at each node. In general, the model is most often not
overly sensitive to these parameters(Liaw & Wiener, 2001). Nevertheless, the hybrid model
combining ARIMA and Random Forest is not meant to represent an optimized regression on
time series employing Random Forest, but rather provide a reference point for assessing the

predictive power of our proposed model.

In addition to the comparative analysis provided by the benchmark models described in this
section, we also want to address the research question in a practitioner’s sense. Therefore, we
will in the next section describe an additional method of evaluation which incorporates the
portfolio variance of returns that can be derived from our results.

4.3 Portfolio Selection

The portfolio-based evaluation described hereunder constitutes an expansion on the already
established evaluation approach. Our intention is to provide an insight into how estimations

on correlation impacts the variance of returns for individual portfolios of constituents.

The portfolio selection will be based on arandom sampling from the population of investment
objects. The random sample will be performed 10 times, each including five investment
objects. We can then compare the total portfolio variance derived from estimated correlation
matrices, as well as the correlation matrices based on actual data. The number of samplesis
selected as a compromise between time consumption and the evaluation value attained. This
will represent a display of how estimation errors impact the actual variance of returns on
investors’ portfolios. This is useful because it portrays the quantitative results from the

investors perspective.

Asthis evauation method is time consuming, we have elected to compare the best performing
conventional method and forecasting method from the comparative evaluation. The overal

variance of a portfolio is a product of each investment objects individual variance as well as
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the covariance between al portfolio constituents. For simplicity we resort to equal weighting
between portfolio constituents. Our methods will provide correlation matrices and we can

employ these to calculate total portfolio variance through the following equation:

1 mp - 1ip w0,
o Tyr 1 Ty ]
Portfolio variance = [wy0y - wpop,] X |4 . X (4-6)
Wno-n
Tpp o 1

Where the correlation matrix for each portfolio is multiplied with a vector of weighted

standard deviations of asset returns and a transpose of the same vector.

The proposed methods, benchmarks, and portfolio evaluation described above need to be
populated by data. Based on the research question it is clear that the data should consist of
time series data on some sort of financial assets. This could include properties, commaodity,
stocks, currency, and a range of other tradeable assets. Because we are particularly interested
in the relationship of price movements between market constituents, and a considerable
number of them, we find it favorable to populate our methods with stock data. The following

section describe the data gathering and preprocessing steps made to the data.

4.4 Data

In this section we will describe the data that we have selected for populating our
methodological approach. Asbriefly mentioned, we have decided to employ stock data, which
have an obvious advantage when it comes to availability. Furthermore, we have selected to
focus on constituents of the Oslo Stock Exchange, as it will represent a set of financial
investment objects that are not widely investigated in our field of research. This thesis relies
on obtaining stock prices for the constituents of OSEBX. We want to focus our work on
constituents of OSEBX as it consists of a representative sample of al listed shares on Oslo
Stock Exchange (Oslo Bars, 2020). In addition, the list of shares on OSEBX are routinely
revised to, among other things, ensure ample liquidity. Before the raw data we collected can
populate our methodological approach, it requires some preprocessing, which will be
described in the following segment.
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4.4.1 Preprocessing

In thisthesis we have decided to investigate the period between 2006 through the third quarter
of 2020. This starting point provides a sizeable sequence of data, as well as it includes the
financial crisisoccurring in 2008. Thistime span corresponds with 3 700 trading days. Among
the origina list of OSEBX tickers there are 69 different tickers, however many of these have
not been listed on Oslo Stock Exchange for the entire period. We want to ensure that our
methods are populated by long series of datathat span amultitude of market cycles. Therefore,
theinitia filtering of companies consists of only keeping stocks that have been registered on
Oslo Stock Exchange for the entirety of the 3 700 days. This leaves us with a dataset of 38
companies and their adjusted closing prices, presented in table 4-1.

Table 4-1 Companiesincluded in our dataset

Companies included

Company Name Ticker Company Name Ticker
ABG Sundal Collier Holding ASC Medistim MEDI
AF Gruppen AFG NEL NEL
Aker AKER Nordic Semiconductor NOD
Aker Solutions AKSO Norsk Hydro NHY
American Shipping Company AMSC Norwegian Air Shuttle NAS
Atea ATEA Olav Thon Eiendomsselskap OLT
Axactor AXA Orkla ORK
Bonheur BON PGS PGS
DNB DNB Photocure PHO
DNO DNO Schibsted ser. A SCHA
Equinor EQNR SpareBank 1 SR-Bank SRBANK
Frontline FRO Stolt-Nielsen SNI
Gaming Innovation Group GIG Storebrand STB
Golden Ocean Group GOGL Subsea 7 SUBC
Hexagon Composites HEX Telenor TEL
Kitron KIT TGS-NOPEC Geophysical Company TGS
Kongsberg Automotive KOA Tomra Systems TOM
Kongsberg Gruppen KOG Veidekke VEI
Lerey Seafood Group LSG Yara International YAR

Even though al companies have been registered on the stock exchange for the entire time
span, there are still a few occurrences of NAs in the dataset. This is due to stocks not being
traded on certain days which could indicate trading halts, or ssmply the stock being so illiquid
that it has not been traded for aday. Since the models we will work with require complete data
for al rows, we decide to impute these NAs by replacing them with the previous observed
value. This ensures that we can calcul ate correlation coefficients for every stock pair and days
in the dataset. Also, we register that table 4-1 includes the mgor companies from the Oslo
Stock Exchange, and is diversified on amultitude of different industries, displayed in table A-
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2 in the appendix. Thus, we view our selection of companies to be sufficiently representative
for the OSEBX.

Furthermore, because we want to measure all variables in a comparable metric, and price
levels vary substantially among the companies include, we decide to transform our adjusted
prices to returns. This enables evaluation of relationships among variables despite originating
from price series of unequal values. For decision-makers employing aframework like the one
we present, returns in favor of prices better summarize the investment opportunity in a
complete and scale-free manner. Correspondingly, we have calculated one-period simple

returns as expressed in equation 4-7.

Py — P4 4-7)

R, =
‘ P,y

R;: returnattimet
P,: asset priceat time t

4.4.2 Model Inputs

Our initial dataset consists of daily observations, however, we are interested in producing
quarterly forecasts. This is because quarterly data points can encompass more information
about which phase of the market cycle they belong to. Quarterly data alows for market
fluctuations, for example in the form of financial black swans, to be more visible because the
time periods extend over a considerable part of the market cycles. From the dataset of 3 700
daily observations, we will employ al of them, corresponding to 59 quarters of stock
observations ranging from Q1 2006 through Q3 2020. Correlation coefficients are calcul ated
based on daily data from each quarter. The correlation coefficient for the stock pairs, or the
sample Pearson correlation coefficient, which indicates the strength of the relationship
between two stocks (CFI, 2020), are calculated employing the equation:
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_ 2 =) — ) (4-8)
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X;, y;. return for stock x and y

X, y: mean of return for stock x and y

The final correlation matrix consists of each stock pair and their quarterly correlation
coefficients. Having 38 companies to choose from, the number of unique possible pairs is
703, The correlation matrix that we will use in the constructed models consequently consists
of 41477 data points. An interesting point when describing our data is that due to our
methodological approach, output data also constitutes input data. Residuals derived from the
ARIMA model isused as input datain the LSTM model.

This selection of datawill populate our selected models, but we a so need to select an approach
for interpreting and validating derived results. Therefore, we are dependent on defining a
strategy for quantitative evaluation of the results, which will be presented in the following

segment.

4.4.3 Data Split

The characteristics of the data we examine in this thesis as described in the previous section
imposes certain constraints on the design of validation and eval uation approach. However, we
will begin by describing the usefulness of splitting the data for the purpose of evaluating
forecast performance appropriately. In order to train the proposed models, we are dependent
on creating a data split which allows for evaluating how our models perform when predicting
correlations that were not used in fitting the models. This approach is commonly referred to
as atrain-test-split where the datais separated into two splits, namely atrain portion and atest
portion (Hyndman & Athanasopoulos, 2018). The training data is used for estimating the
forecasting model parameters and optimizing these based on the desired evaluation metric.
The test portion of the data is then employed to evauate the accuracy of forecasts produced
from the model. This split of the datareliably givesindications of the model’s true forecasting

power.

=703

n(n—1) _ 38x37
> =

1 Total number of unique pairs = >
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When it comes to the imposed constraints derived from the characteristics of our data, thisis
essentially dueto the dimension of time. When working with time series forecasting, the usual
methods of cross-validation are not possible, as the order of the data is essential. The
aternative to cross-validation often used for time series validation requires splitting the data
into severa train and test splits with a rolling time window (Hyndman & Athanasopoulos,
2018). This involves either a sliding window with a fixed window size or an expanding
window as observations are added for every time step. Usually, when employing a walk
forward methodology like this, the model is retrained for every observation added to the
window (Kirkpatrick & Dahlquist, 2010). This is referred to as walk forward optimization,
where the model parameters are continuously optimized at each time step. This method of
reoptimizing each time step's parameters leads to a trade-off between improved estimates at a
computational cost for creating many models. Therefore, we opt for employing awalk-forward
evaluation rather than optimizing at each time step. Training the model for one split of data,
validating it on the development set, and then evaluating using the walk forward principleisa

tolerable compromise.

We choose to create a time series cross-validation split with a constant training set size. A
constant training set size implies that for each observation we add at the end of the series we
remove one from the beginning. Since the LSTM model we have decided to employ requires
a substantial input of data, we have opted to keep the number of data splits low, in order for
the training set size to remain large. As previously mentioned, we have aso included a
development set in order to prevent overfitting to the initial training set. Lastly, we use the
walk forward concept explained aboveto include threetest setsfor measuring the performance
of true forecasts. The data split is visualized in figure 4.5.

time step
1 2 3 4 5 6 .. 54 5 56 57 58 59
Train
Development
Test 1

Test 2
Test 3

Figure 4.5 Illustration of the data split. The light blue squares depict the
forecasted time step as target value y for each data set.
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When interpreting results, it is advisable to understand the inherent difference within our set
of time steps. In the background information we touched upon how Covid-19 has had
tremendous effects on globa economy. This also includes Oslo Stock Exchange. Figure 4.6
clearly display the negative effects of Covid-19 during the start of 2020. In particular, the first
period used for out-of-sample forecasts, Test 1, involves significant negative returns for the
OSEBX. From the literature review it is established that periods of market 10ss coincide with
positive correlation coefficients across pairs. Hence, an initia expectation would be that
estimating correlation coefficientsfor Test 1isparticularly difficult because correlation differs
from the most occurrent situations. A summary of statistics for correlation in the test periods
included can be viewed in Appendix Al. This summary clearly show that our data coincides
with the literature and that the periods of market loss, generaly involve higher positive
correlations. Mean correlation among all stock pairsin Test 1 are more than three times higher
than in the preceding quarter. It should also be noted that figure 4.6 display that these market
movements are not unprecedented in the investigated time span. An ideal model would be able
to learn from these previous time sequences to understand that in periods of market loss,

correlation coefficients move collectively in the positive direction.

OSEBX Index Return 2006-2020

m Training Data

m Development

Test 1

Test 2

Test 3

Figure 4.6 Visualization OSEBX index return from Q1 2006 to Q3 2020.
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In this chapter we have described the elected approach for estimations, evaluation, and data
population. The fina hyperparameters for the LSTM model along with a general overview of
R and Python implementation can be reviewed respectively in Appendix A6 and Appendix
A7. In the next chapter we will present the results derived from the approach described in this
chapter. The findings will address the research question directly and form the basis for further
discussion of the research question and the subsidiary question related to financial black

swans.
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5. Results

The following chapter will exhibit our results which will serve as a basis for answering our
research question of how modern approachesto forecasting can improve stability in portfolios.
Subsequently, an assessment of the variation of results across the devel opment and test setsis
presented. Additionally, we display the effects of these predictions on sample portfolio
variances. This addresses the research question by allowing us to closer examine the stability

of models over time. Ultimately, we compare our findings to the existing literature.

5.1 Predictive Performance

In this section we present the predictive performance of the hybrid model in comparison with
the benchmark models outlined in segment 4.2. For each data partition, the models produce
out-of-sample forecasts for one quarter ahead and the accuracy is assessed with the
performance measures RMSE and MAE.

Table 5-1 Performance for all models and benchmarks, measured in RMSE
and MAE. Our proposed ARIMA-LSTM hybrid model is denoted as
‘HYBRID’. The lowest RMSE and MAE for each test set is highlighted in
bold face.

Root Mean Squared Error Mean Absolute Error
Dev Testl Test2 Test3| Avg. Dev Testl Test2 Test3| Avg.
Full Hist. 0.197 0.389 0283 0.209 | 0.269 | 0.159 0.344 0239 0.169 | 0.228
Constant Corr.| 0.215 0.508 0.331 0237 | 0323 | 0.170 0.483 0.283 0.196 | 0.283
SingleIndex | 0.161 0391 0242 0329 | 0.281 | 0.128 0.352 0.203 0.280 | 0.241
Overall Mean| 0.152 0.349 0.199 0.150 | 0.212 | 0.122 0.313 0.166 0.120 | 0.180
ARIMA 0.151 0.361 0194 0.150 | 0.214 | 0121 0.328 0.160 0.119 | 0.182
LSTM 0.180 0.300 0.203 0.160 | 0.211 | 0.149 0.266 0.163 0.128 | 0.176
ARIMA-RF | 0.135 0360 0.172 0.134 | 0.200 { 0.110 0.330 0.143 0.106 | 0.172
HYBRID 0.149 0.292 0155 0.147 | 0.186 | 0.120 0.259 0.126 0.118 | 0.156
Avg. 0.168 0.369 0222 0.189 | 0.237 | 0.135 0.334 0.185 0.154 | 0.202

Conv.

Forecast

In general, the forecasting methods outperform the conventiona method in almost all test
periods. However, the Overall Mean model stands out among the conventional methods and
has both RMSE and MAE vaues close to the forecasting methods in most periods.
Furthermore, the performance of our ARIMA-LSTM hybrid model stands out in Test 1 and
Test 2 and is only outperformed by the ARIMA-RF on the first and last evaluation period,
however marginally. However, the ARIMA-RF performs significantly worseon Test set 1 and

2, resulting in a higher average RMSE, depicted in the Avg. column in table 5-1. The
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components of the hybrid model have a worse average predictive performance when applied
individually and have a similar mean RMSE. As the individual LSTM model perform
significantly better in Test 1 than the individual ARIMA, it has a dightly lower average
RMSE.

The results are similar when reviewing the MAE. The ARIMA-LSTM hybrid performs
somewhat better than the other forecasting methods and the best performing conventional
model Overall Mean. The predictive power of the hybrid model is significantly better than the

remaining conventional methods.

5.2 Performance Stability

The main strength of the ARIMA-LSTM hybrid is its performance stability through the test
periods. Whereas the other forecasting models perform similarly well to the hybrid in the first
and last test periods, they have a significant drop in accuracy in the second and third period
tested. This tendency can be extracted from the average RMSE across al models, which is
shown in the bottom row of table 5-1. From the first to the second test period, the average
RMSE increases from 0.168 to 0.369. The ARIMA-LSTM hybrid also experiences adrop in
RMSE, but clearly outperforms the other models in the second test period, excluding the
individual LSTM, with an RMSE of 0.292. This trend continues in the third testing period,

however with somewhat |ess distinction.

Across the four sets tested, the hybrid had a standard deviation of 0.061 for the RMSE,
displayed in table 5-2. Comparing this to the closest performing conventional and forecast
model according to RMSE, the Overall Mean and the ARIMA-RF, that had a standard
deviation of 0.081 and 0.094 respectively, the hybrid appear to achieve high stability in its

predictions.

Table 5-2 Standard deviation for RMSE in test sets for all models

Standard Deviation of RMSE for each mode

Model St.dev

Full Historical Model 0.076
Constant Correlation Model 0.115
Single Index Model 0.087
Overall Mean Model 0.081
ARIMA 0.087

LSTM 0.054
ARIMA-RF 0.094
ARIMA-LSTM 0.061
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5.3 Portfolio Variance

Table 5-3 displaysthe portfolio variance cal culated using Overall Mean method and the hybrid
model for the 10 sample portfolios each made up of five randomly selected stocks from our
dataset. The variance for each of the 10 portfolios is summed and compared to the actual

variance. A more detailed view of the portfolio results can be found in Appendix A8.

Table 5-3 Portfolio variance for Overall Mean method and hybrid model,
compared to the actual value. The most accurate variance for each test set is
highlighted in bold face.

Sum Variance for all Portfolios

Set Overall Mean Hybrid Actual
Dev 0.713 0.753 0.732
Test 1 0.365 0.395 0.601
Test 2 0.380 0.407 0.448
Test 3 0.398 0.471 0.369

In summation, the predictions from the hybrid model used to calculate the portfolio is closer
to the actual variance than the estimations from the Overall Mean method in Test 1 and 2. In
these periods, both the methods estimate a lower variance than what was actually observed,
but since the hybrid predicts dightly higher, its performance is better. However, for the
development set and Test 3, the hybrid overestimates the variances, and the Overal Mean
method is able to produce estimations closer to the observed variances. Table 5-4 displaysthe
accumulated absolute deviation from the methods’ estimation and the actual variance for each

portfolio.

Table 5-4 Absolute deviation between actual portfolio variance and the
estimations from the method in all test sets. The lowest deviation for each
test set is highlighted in bold face.

Absol ute Devi ation Accumul ated

Set Overall Mean Hybrid
Dev 0.107 0.073
Test 1 0.237 0.207
Test 2 0.076 0.057
Test 3 0.046 0.103
Sum 0.465 0.441

The same information can be extracted from this table; the hybrid model’s estimations for the
portfolio variance are better in Test 1 and Test 2, whereas the Overall Mean is better in the
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development set and test 3. Accumulated over the four test sets, the deviation between the
estimations of the hybrid model and the actual valuesis slightly lower than for the estimations

from Overall Mean method, shown in the bottom row of the table.

5.4 Findings in Relation to Previous Literature

As displayed in the previous sections, our proposed hybrid model had the lowest average
RMSE and MAE, and the highest stability in prediction accuracy over the four time periods
tested. Thisismainly in line with the findings made by previous literature employing asimilar
framework of methodology. Choi’s (2018) implementation of a similar hybrid model to
predict stock correlationsfor S& P500 constituents showed that the ARIMA-LSTM model had
a significantly lower RMSE compared to an equivalent set of financial methods such as
Constant Correlation, Full Historical and the Single-Index Model. Our resultsdisplay asimilar
improvement compared to these methods, but neither the best performing traditional method
in our research, the Overall Mean model, nor other forecasting benchmarks was included in
Choi’s experiment. The performance of the Overall Mean model isin line with Elton, Gruber,
and Urich’s paper (1978) where it was the best performing model among a similar set of
correlation forecasting methods in a comparative experiment. However, their paper and other
research also identifies the Constant Correlation as one of the best performing methods. In
contrast, the Constant Correlation method clearly yielded the highest average RM SE, and was
the worst performing method in three out of the four periods tested.

In summation, our ARIMA-LSTM hybrid model was able to achieve significantly higher
accuracy in predicting correlation coefficients than most of the conventional methods,
measured in both RMSE and MAE. In comparison with the other forecasting models, as well
asthe Overall Mean model, the hybrid achieved a somewhat lower average RMSE and MAE.
The hybrid also showed the lowest variation in prediction accuracy across the test periods, as
well as notably lower RMSE in Test 1 in which most of the benchmarks exhibit a large
decrease in performance accuracy. When comparing the hybrid model and the Overall Mean
model’s ability to predict the correlations between a randomly selected set of stocks in a
portfolio, the differences in predictions diminished somewhat, but the hybrid still performed
dlightly better. The results presented in this chapter provides abasisfor answering the research

guestion through a discussion in the next chapter.
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6. Discussion

In this chapter we will discuss the results taking the previously stated research question into
consideration. Firstly, wewill discuss theimplications of our resultsin relation to the research
question. Secondly, we will discuss some barriers for adoption of modern forecasting
approaches, before we acknowledge some limitations of the thesis. These limitations build up
to our proposal for further research, which will constitute the last segment of this chapter.

6.1 Implications for the Research Question

The research question relates to how modern approaches to forecasting can contribute to
making portfolios more stable. The research question is aso substantiated by a supplementary
guestion of to which degree these contributions are sensitive to financial black swans. To
discuss these questions meaningfully it is desirable to first understand the dynamic tendencies
of our testing periods. The five data splits used for training, development, and evaluation, stem
from fundamentally different time periods. Thisisclearly illustrated by examining the OSEBX
Index Chart in figure 6.1, segmented into our testing periods. Test 1 incorporates most of the
financia impact from Covid-19, Test 2 incorporates the recovery, while Test 3 shows market

tendencies similar to the development set in addition to the most recent years of training data.

OSEBX Index Chart 2017-2020

1000

m Training Data

m Development

Value

m Test 1

Test 2

Test 3

Figure 6.1 Visualization of OSEBX index return from Q1 2017 to Q3 2020.

To begin with, the employment of more accurate forecasts of correlation coefficients will
provide better basis for perceiving the risk related to a potential portfolio constituent. The
closer the correlation coefficients used for determining constituents of a portfolio are to the

real correlation among constituents in the investment horizon, the closer investors will come
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to the true efficient frontier of portfolios. The portfolio selection segment of the evaluation
contributes to displaying how the predictive performance has impact on smaller subsets of the

data, and thus leads to better assessments of portfolio variance.

Reviewing the results presented in the preceding section, the proposed hybrid model
employing aneural network achievethe best predictive performance. Hence, employing neural
networks can provide more accurate forecasts as an aternative to other means of defining
correlation in the portfolio optimization problem. A stable portfolio will exist on the low-risk
end of the efficient frontier, yielding moderate levels of return with alow portfolio variance.
Defining correlation coefficients as a proxy for risk, is essential in this trade-off. With thisin
mind, the results presented show tendencies that the potential contribution of modern

forecasting approaches to the stability of portfoliosis significant.

The supplementary question regarding financial black swansismoreintricate to answer. Based
on our evaluation, strict conclusions should not be drawn as our testing periods only include
two quarters which are significantly affected of a financia black swan. However, the
predictive performance in the black swan quarters, Test 1 and Test 2, can provide suggestions
as to whether the contribution is resistant to black swan events. The proposed hybrid model
employing ARIMA and LSTM has the best predictive power in the periods affected by a
financial black swan.

A common issue with forecasting in general discussed previoudly in this thesis is overfitting
to the training data. Such overfitting means that seemingly accurate models will not retain the
predictive performance when used for true forecasts over the investment horizon.
Contributions from a model that are impeded when a black swan event occurs can indicate
that the model overfits. As presented in section 5.2 the proposed hybrid model with ARIMA
and LSTM varies notably lessin RMSE and MAE compared to the various modelsin general.
This suggests that overfitting issues has been reduced as this model has lower fluctuationsin

predictive performance across multiple time steps.

As the research question presented in this thesis is substantiated by a consideration of
resistance to black swans, it requires assessing predictive performance on two ends. A model
that fulfills the desired outcome of the posed research question must have strong predictive
performance across al testing periods, while not letting the negative impacts of the atypical
Test 1 and Test 2 periods deteriorate the overall predictive performance. From the resultstable
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5-1 we can deduce that our proposed hybrid model both has a strong predictive performance
and that this is not a result of overfitting data which would lead to relatively large errorsin
Test 1 and Test 2.

In summary, the findings support the notion that modern approaches to forecasting can
contribute to portfolio stability, and that these contributions to a sufficient degree are resistant
to black swans. On the contrary, the results are ambiguous as to whether the LSTM in
particular is able to improve the forecasts of ARIMA, asthe ARIMA-RF model also performs
well. However, both theindividual LSTM and the hybrid employing an LSTM model performs
significantly better than the remaining models in the periods affected by high market
fluctuations. This could potentialy be attributed to its long-term memory capacity and ability
to store information about sequences over long training horizons. Nonetheless, the findings
are unambiguous when it comes to the stronger predictive power of modern forecasting
approaches, compared to the conventional methods. Better estimations on the back of modern
forecasting approaches can help to provide accuracy in the implied risk decision makers are
facing when investing. However, these findings rely on methodology with limitations and
should not be followed by sentiments of undividedness when drawing conclusions. These
limitations will be discussed in the section 6.3, but first we will provide a line of reasoning
which might explain why this thesis, or similar studies, fail to bridge the gap between
researchers and practitioners. It is important to understand why the modern and advanced
methods, which might appeal to researchers dueto their predictive power, not always achieves

the same acceptance among enterprises or private investors.

6.2 Adoption Barriers

Our thesis provides findings with managerial implications that modern approaches can be
employed to make better foundations for strategic decisions in portfolios. Further, this can be
extrapolated to learning that expands on our research question. If our specific choice of
investigation, portfolios, can be improved with modern approaches, then thereislikely to exist
other decision areas which have untapped potential in terms of exploiting machine learning
and other emerging methods. Thisinference is however frivolous if businesses chooses not to
adopt such modern approaches. Therefore, in the following discussion we will go into barriers
of adopting new methods and the implications this have for further research. Admittedly, this

is adigression from our specific research question that deals with the usefulness of modern
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forecasting methods in portfolios. However, it is a valuable discussion for understanding to
which degree managerial implications can and should be drawn from our thesis.

One can draw parallelsto the philosophical principle Occam’s razor. This principle states that
if two different explanations exist for the same phenomenon, then the simpler explanation
should be preferred (Duignan, 2020). The philosophical principle haslaid the foundation for a
principle in computational learning theory, Occam learning, which states that given all other
things being equal, a shorter explanation for observed data should be favored over alengthier
explanation (Blumer, Ehrenfeucht, Haussler, & Warmuth, 1987). For our thesis this can be
conveyed as; if simpler methods provide decision makers with the same value in terms of
predictive power and implicit learning about relationships as advanced models, decision
makers should prefer the ssimple method. This is because simpler methods can be associated
with lower costs, while more advanced methods are consequently more expensive. Hence,
lack of adoption of modern approaches to forecasting, and data analysisin general, is an issue
that can be reduced to a cost-benefit analysis of possible methods. The benefit isthe predictive
power of models and the implicit learning of the model, which can be derived from the degree
of interpretability. The cost on the other hand is related to requirements such as competence,
preprocessing, computational power, availability, time, and data volumes. Given a problem
related to aset of data, it islikely that thereisan extremely complex model in aseaof infinitely
many different modifications of models and parameters, which is optimal for the problem.
However, it isunfeasibleto try to find thisone ideal model and decision makers must therefore
always apprai se the possible models with consideration to the associated cost of identification
and implementation. Alas, businesses should, and most likely will, determine their problem

approaches based on a cost-benefit assessment.

If we accept notions that there are emerging and more advanced methods that possibly can
provide better predictive power than the status quo, it is highly relevant to discuss why these
are not adopted more widely among businesses. For such methods to be adopted and
implemented in favor of the traditional methods, the perceived value added must outweigh the
increased cost. This can happen in one of two ways. Either researchers must improve emerging
methods to a point where their added values are so superior that businesses are forced to adopt
them in spite of increased costs, or they must develop effective frameworks which
dramatically lessens the burden of implementation. Thisthesis hasrelied on the latter to some
degree. Therelative simple method of ARIMA for explaining linear tendencies are specialized
for each of the 703 time series in our data set, however implemented with the help of an
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automatic framework, while the LSTM network is generalized to reduce the computational
cost. Our approach is therefore an example of how researchers can adhere to the cost-benefit
consideration, but it is only one of many possible approaches to do just that. This leads us to

the limitations of our thesis and our encouragement to future research.

6.3 Limitations

The findings of the methodology reported in the last section should be considered in light of
some limitations. Although our results suggest promising potential with the application of
modern approaches for forecasting the correlation coefficient between stocks, it is important
to highlight some of the limitations the approach does not cover inits current state. Thissection
includes identifying said limitations, in addition to discussing some of these limitations in

detail. Lastly, alternative approaches and direction for future research is proposed.

First and foremost, the most fundamental constraint when performing research in genera
should be referred to. This thesis is subject to constraints regarding to time and the time
required for different processes. In particular, the computational burden of problems increases
in parallel with time necessities. Naturally, such constraints lead to a need for simplifications

across a multitude of thesis e ements.

One of these simplifications relates to the data gathering. Only included companies’ historical
price movements were collected as data foundation, limiting our model and benchmarks to
univariate time series architecture. A multivariate time series model with additiona
explanatory variables would have entailed astronger foundation to draw empirical conclusions
from. Therefore, the univariate time series structure limits the validity of the generalization of
the hybrid model. This could mean that application on different time periods, or on other stock

pair correlations, would have resulted in less accurate predictions.

Another ramification of the all-embracing time constraint is the ssmplifications applied to the
size of our data. Neura networks have a fundamental advantage of being able to handle vast
amounts of data, which meansthat thisthesisislimited initsreview of thislearning algorithm.
Including additional points of data through covering a wider timespan, or supplementary
variables as mentioned in the preceding paragraph, would increase the utility value of the
neura network. Exhibiting awareness of this limitation could be viewed as paradoxical when

considering the transformation from daily to quarterly data. This transformation undeniably
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reduces the number of data points fed to the models. However, this has been considered a
trade-off between time span covered and computational feasibility. Employing quarterly data
allowsfor covering asubstantially wider time span, without making the computational burden

unmanageable.

A desire to provide sufficient amounts of data to the neural network led to this thesis relying
on simplifications regarding the validation split of data. Normally cross-vaidation in time
series involves including numerous data splits to validate on many time steps. However, the
data hungriness of neural networks led to keeping the window size of the time series cross-
validation large, which consequently reduces the number of possible evaluation steps. Having
said that, it should be regurgitated that each time step in our data split involves predicting and
calculating performance metrics that are composed of 703 correlation coefficients. On account
of this, making a generalized model on the initial training data and evaluating it on alimited

amount of testing sets is determined an acceptable compromise.

The constraints related to time and computational efforts also induce need of limitation in
model applications. In this thesis automated frameworks have been used to reduce the time
consumption of certain methodological steps. These automated frameworks are great for this
reason; however, they can aso bring about suboptimal solutions or potentially hampered
learning as it reduces researcher involvement. In other cases, for instance in the inclusion of
benchmark models, parameter tuning is limited which will have depreciating effects on the
validity of findings. Limited time also led to this thesis not making efforts to look inside the
black box of the LSTM (Beizer, 1995). Traditionally, applications of advanced neural
networks for decision making have received criticism for being used in favor of interpretable
models. This criticism hastriggered a response where researchers have devel oped methods for
backpropagating through neural networks, which alows for learning causality mechanisms.
On the other hand, this thesis and the research question presented does not make efforts to
explain the causalities of changes in correlation coefficients, but rather discuss the potential
value of modern learning applications in financial forecasting. These presented limitations
are the starting point for a discussion on how this specific method can be embroidered in
further research, and thus contribute to better predictive power and improve implicit learning

through increased interpretability.
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6.4 Future Research

Further research in thefield with regardsto these limitations can be motivated by the reasoning
that increased value added from modern approaches to forecasting will lead to a higher
probability of real-life business adoption. Improvements in predictive power can be achieved
by exploring different learning algorithms, or aternative data foundations. Parameter
optimization is costly both in time and computational efforts, which is significantly limiting
the scope of this thesis. Furthermore, inclusion of explanatory time seriesis afield of further
research that is likely to yield interesting findings, which further strengthens the predictive
power that modern forecasting approaches can display to attract practitioners. As mentioned
earlier, however, we would aso like to point out that further research that improves the
predictive power of these new methods should be done simultaneously with attempts to
automate and simplify their implementation on real issues in order to best reduce barriers to
business adoption. We will therefore attribute the same emphasize to devel oping frameworks
for implementation of modern approaches, as to constantly expanding the complexity of

models.
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7. Conclusion

Thisthesis aimed to investigate how modern approaches to forecasting can contribute to more
stable portfolios. The background and literature review provided a reasoning for why this
research question needs to be addressed. The background information explained along-lasting
problem of constructing inputs for portfolio strategy. This problem is aso surrounded by
dynamic conditions represented in this thesis by the inclusion of Covid-19 as an example of a
financial black swan. Furthermore, the literature review revealed a decision area which
traditionally is solved with simpler statistical methods, despite developments of modern
forecasting methods that are applicable to the problem.

The aforementioned elements led us to our proposed model consisting of an ARIMA
component and an LSTM component, which was responsible for explaining the linear and
non-linear tendencies in the data, respectively. Our experimental approach was populated by
data on Oslo Stock Exchange returns, including a time span that encompassed several peaks
and throughs. This coincided with our attempt to substantiate our research question with an
element of sensitivity to financial black swans. The approach aso included a range of
benchmarks consisting of conventional methods for estimating correlation, the individual
components of the hybrid model and an alternative machine learning method for the non-linear
tendencies of a hybrid model. This ensured a comparative design of the experiment which

aimed to provide findings related to our research question.

Our approach, populated by the elected data, provided findings which illustrated an untapped
potential of modern approachesto forecasting in providing input accuracy in portfolio strategy.
The elected forecasting methods of our thesis accrued a predictive performance that overall
was stronger than the conventional methods across all test sets. In addition, the dynamic
conditions represented in a financial black swan encompassed by Test 1 and Test 2 did not
deteriorate the predictive performance enough for these contributions to lose its value. This
implies that practitioners equipped with modern forecasting approaches can achieve more
accuracy in their inputs and thus achieve their desired level of portfolio stability.

However, the discussion has al so addressed why common practice may deviate from scientific
findings, such as the ones presented in this thesis. The Overall Mean, which is a relatively
simple statistical method for estimating future correlation, had a predictive performance
comparable to the forecasting methods. Considering that this method is substantially less
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costly, in reference to computational cost and time demand, it is difficult to strictly determine
that forecasting methods with their predictive power displayed in thisthesisis worthwhile for
business adoption. We therefore want to encourage researchers to focus their attention to
efforts on reducing the cost of modern forecasting approaches, in order to bridge the gap
between researchers and practitioners. In addition, our findings were affected by the main
limitation which isrelated to the scarcity of time. Provided more time thisthesis could include
additional, data, methods and optimization of model parameters, which would be expected to

increase the predictive performance achieved.

This thesis has contributed to the literature by displaying how previously unused modern
approachesto forecasting can be utilized for estimation of inputs required for decision making.
Alas, we contribute to the literature by providing an example of how modern forecasting
approaches can provide more stability in portfolios by increasing the accuracy of correlation
coefficient estimations. Forecasting of correlation coefficients is naturally only one specific
area of decision-making inputs, and we believe that there are a multitude of potential areas to

investigate in further research.
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9. Appendix

The appendix is arranged according to the chronological references throughout the text.
Firstly, we present a descriptive summary of the collected data. Secondly, we present theory
regarding ARIMA, RNN and LSTM. A brief explanation of the elected evaluation metricsis
then included. Thereafter, we provide a short description of the approach implementationin R
and Python. Lastly, disaggregated results from the portfolio evaluation are presented.
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Al: Data Description

Table A-1 Descriptive test data summary

Summary Statistics for Correlation in Test Periods

Data Set  Quarter Return OSEBX Median Mean S.d.
Dev 2019 Q4 5% 0.133 0.144 0.159
Test 1 2020 Q1 -20% 0.501 0.483 0.157
Test 2 2020 Q2 4% 0.278 0.265 0.200
Test 3 2020 Q3 8 % 0.153 0.182 0.154

Table A-2 Companies included in the dataset, with ticker and industry

Company Name Ticker Industry
Af Gruppen ASA AFG Construction & Engineering
Aker ASA AKER Oil & Gas Related Equipment and Services
Aker Solutions ASA AKSO Oil & Gas Related Equipment and Services
American Shipping Comparny ASA AMSC Freight & Logistics Services
ABG Sundal Collier Holding ASA ABG Investment Banking & Investment Services
Atea ASA ATEA Software & IT Services
Axactor SE AXA Banking Services
Bonheur ASA BONHR Electrical Utilities & IPPs
Dnb ASA DNB Banking Services
Dno ASA DNO Qil & Gas
Equinor ASA EQNR Oil & Gas
FRONTLINE LTD FRO Oil & Gas Related Equipment and Services
GAMING INNOVATION GROUP INC GIG Hotels & Entertai nment Services
Golden Ocean Group Limited GOGL Freight & Logistics Services
Hexagon Composites ASA HEX Containers & Packaging
Kitron ASA KIT Electronic Equipment & Parts
Kongsberg Automotive ASA KOA Automobiles & Auto Parts
Kongsberg Gruppen ASA KOG Aerospace & Defense
Leroy Seafood Group ASA LSG Food & Tobacco
Medistim ASA MEDI Healthcare Equipment & Supplies
Norwegian Air Shuttle ASA NAS Passenger Transportation Services
Nel ASA NEL Renewable Energy
Norsk Hydro ASA NHY Metals & Mining
Nordic Semiconductor ASA NOD Semiconductors & Semiconductor Equi pment
Olav Thon Eiendomssel skap ASA OLT Real Estate Operations
OrklaASA ORK Food & Tobacco
PGS ASA PGS Oil & Gas Related Equipment and Services
Photocure ASA PHO Pharmaceuticals
Schibsted ASA SCHA Media & Publishing
STOLT-NIELSEN LIMITED SNI Freight & Logistics Services
Sparebank 1 SR Bank ASA SRBNK Banking Services
Storebrand ASA STB Investment Banking & Investment Services
Subsea 7 SA SUBC Oil & Gas Related Equipment and Services
Telenor ASA TEL Telecommuni cations Services
TGS NOPEC Geophysical Company ASA TGS Oil & Gas Related Equipment and Services
Tonra Systems ASA TOM Professional & Commercia Services
Veidekke ASA VEI Construction & Engineering
Yara International ASA YAR Chemicals
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A2: ARIMA

A univariate ARIMA model attempts to predict a value in aresponse time series by utilizing
linear combinations of its past values and errors. This requires stationarity in the time series.
A stationary time series is a time series whose properties, such as mean, variance and
autocorrelation, do not depend on the time at which the series are observed (Hyndman &
Athanasopoulos, 2018).

Consider the general ARIMA modé of order (p,d, q)
14 q
yi=c+ Z Piyi,+ e+ z 0 &_j (9-1)
i=1 j=1

Where: y¢ is stationary at time t with d levels of differencing, ¢ is a constant intercept, ; is
a parameter denoting the coefficient related to the previous p vaues of y,, and &, is an error
term ~V'(0, 02), 6; is a parameter denoting the coefficient related to the past q values of the

error term.

Box and Jenkins suggest an iterative three-stage processfor estimating an ARIMA model (Box
& Jenkins, 1970). Firstly, the order (p, d, q) of the model is selected based on the time series
observed characteristics. Typicaly, the time seriesis visually inspected to identify how many
differencing levels must be applied to obtain stationarity. Onelevel of differencingisequal to
computing the difference between consecutive observations, expressed as z; = x; — X;_q.
Additional computations like logarithmic or Box-Cox transformations can also be applied to
stabilize the variance. Then, the autocorrelation function, regularly referred to asthe ACF, can
be used to measure the linear dependence between observations separated by a time lag p.
Further, the partial autocorrelation function, referred to as PACF, can be used to determine
how many autoregressive terms q are necessary (Hyndman & Athanasopoulos, 2018).
Secondly, the parameters ¢; and 6; for the selected model (p,d,q) are estimated. These
coefficients are typicaly computed with maximum likelihood estimation to best fit the
selected model.
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The goodness of fit of the calculated model is often measured by Akaikes Information Criteria
(AIC) (McElreath, 2016).

The AIC can be written as

AIC = —2log(L) +2(p+q+k+1) (9-2

Where L isthe likelihood estimate of the data, p and g are the number of past values and past
error terms included in the model as parameters, and k is an indicator where k = 1 if the

intercept coefficients ¢ > 0 and O otherwise.

Lastly, the model fitted is evaluated and the autocorrelations from its residual s are checked to
satisfy certain assumptions. The residual s are expected to resemble white noise and show low
levels of autocorrelation. If the autocorrelations still contain some large values, the values for

p and g can be adjusted and the three-stage process is repeated.

A3: RNN

We utilized a Recurrent Neural Network, commonly referred to as an RNN, in order to make
thefinal predictions for the correlation coefficients. The general structure of a neural network
is that of a network of mathematical functions, known as neurons or nodes, that is joined by
connection weights (Graves, 2012). RNNs are a type of sequential neural network that, in
contrary to Feed-Forward Networks, can use its output data from a previous time step as input
data in the next time step, through a feedback loop (Dupond, 2019). Thus, RNNs alow the
model to capture dependencies, and store this information over time and sequences as hidden
states, making such models suitable for time series forecasting. The recurrent structure of a
RNN isdisplayed in figure A-1.
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Figure A-1 RNN structure. Source: (Zhang, Lipton, Li, & Smola, 2020)

Generally, the RNN updates its hidden state H,, given a sequence of input values
X = [xq, X5, ... x;] @nd the hidden state of the previous time step H;, as shown in the following

equation
Ht = ¢(WXt + UHt_1 + b) (9'3)

Where ¢ represents an activation function, which serves as a gate that transforms and maps
the input values. The model aims to learn the parameters Wand U, as well asthe biasterm b.
Furthermore, the activation is passed forward to the next layer of nodes until it reaches the
output node where it produces the fina predictions. The network seeks to optimize the
parameters by minimizing a loss function that computes the difference between the model
predictions y on the training data and the true target value y. For regression tasks, the most
common loss function is the squared error, (y — $)?, but different functions can be selected
depending on the specificity of the task. In practice, the network draws a randomly selected
subset, referred to as abatch, of the training samples at fixed size and cal culates the loss of the
predictions. The parameters are then updated through a process called backpropagation
through time, based on an optimization algorithm that improves the loss function. The network
also uses a pre-defined learning rate when deciding how much to update the parameters each
iteration. A single iteration of this process is called an epoch and the number of iterationsiis,
in addition to the size of the selected subset, learning rate and optimization algorithm used, a
hyperparameter that should be tuned in order to find an appropriate model.
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However, due to the recurrent connections in these RNN structures, the resulting effect of
these hidden states on the network outputs either decays rapidly or explodes exponentially
over time (Hochreiter, Bengio, Frasconi, & Schmidhuber, 2001), depicted in figure A-2. This
problem is often referred to as the vanishing gradient problem and poses a problem when
attempting to model dependencies in long sequences (Bengio, Simard, & Frasconi, 1994).
There have been several attempts to create a modified RNN architecture in order to deal with
the aforementioned problem, and we have selected the Long Short-Term Memory (LSTM)
approach in thisthesis.

@) @ @ O O
Hidden
Layer

w @ O O O O

Time 1 2 3 = 5 6 7

Figure A-2 Vanishing gradient problem. Source: (Graves, 2012)

A4d: LSTM

In 1997, Hochreiter & Schmidhuber developed the LSTM network to address the problem of
long-term information preservation without the risk of exploding or vanishing gradients. A
LSTM model introduces four different gates, the forget gate, the input gate, the input
candidate gate and the output gate, that gives the model the ability to decide when to
remember and when to ignore inputs in the hidden state by using a specified algorithm (Zhang,
Lipton, Li, & Smola, 2020). Additionally, a cell state C; is calculated, stored, and passed on
to the following time step, serving as the long-term memory in the model (Fathi, 2019). Figure
A-3 depicts how the gatesin anode interact with data passed from the previous node and how
it calculates what output H, to pass on to the next node.
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Figure A-3 Graphical illustration of the inner structure of an LSTM cell.
The operations performed in each gate is explained below. Source: (Zhang,

Lipton, Li, & Smola, 2020)

The forget gate F, represents a forgetter that is pointwise multiplied to the previous cell state
C,_, to drop values that are deemed unnecessary, as well as keeping those who are necessary
for the predictions. The calculations in the forget gate is expressed through the following
equation

Ft = O-(fot + Uth—l + bf) (9'4)

The input value x; and the hidden state from the previous block H;_; is weighted with the
parameters Wy and Uy, where the subscript f refers to the forget gate. Additionally, the gate’s
bias parameter by is added, before asigmoid function o is applied, ensuring that the output is
mapped between 0 and 1.

The input gate I, decides how much information from the input that will be added to the cell

state and follows the same structure as the forget gate.

It = O'(Wixt + Uth—l + bl) (9-5)

C, = tanh(W.x, + U.H,_; + b,) (9-6)
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The input candidate gate €, uses a tanh function to create a set of candidate values that is
combined with I, through pointwise multiplication. If the forget gate approximates 1 over time
and the input gate approximates 0, most of the past cell states C;_; are saved and used in
current time steps. This enables the model to better identify long-term dependencies which
reduces the effect of the vanishing gradient problem (Zhang, Lipton, Li, & Smola, 2020).The
tanh function is a hyperbolic tangent function which renders values between -1 and 1. The
combination that updates the cell state uses pointwise multiplication, described in the
following equation

Ct = Ft @ Ct—l + It @ Ct (9'7)

In other words, the new cell state is stripped for information the model deemed unnecessary

and will encompass information from the new input that it deems valuable.

Then, thisfinal cell state C; is stored and passed on to the next time step, and also used in the
calculations for the output in the output gate in equation 9-9.

0r = o(Woxe + UpHy—1 + by) (9-8)

H, = 0. © tanh (C;) (9-9)

Again, weights are multiplied with the inputs and the gate’s bias parameter is added before a
sigmoid function is applied to perform the output gate calculations. Lastly, the output gate
calculates what values to use as output in the hidden state H, by combining the tanh applied

cell state with 0, using pointwise multiplication.

A5: Performance Metrics

A5.1 MSE
Historically, the MSE is a popular pick as an accuracy measure for forecasting due to its

theoretical relevance in modelling statistics (Hyndman & Koehler, 2006). The MSE is
calculated as a sum of the squared errors for each observation, divided by the total number of
observations, shown in equation 9-10. Due to the squaring of the errors, the M SE will penalize

large deviations between the true values y and the forecasted values y more heavily. For the
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validity of our models, we wish to avoid obtaining a model that performs extremely well in
some circumstances and very poorly in others. For this reason, MSE is our preferred metrics
asit isbetter to display the stability and generalization of the models across all the time series.
Additionally, the root of the MSE (RMSE) increases interpretability as it expresses the
prediction error in the same units as the variable we are estimating. Alas, we will use the
RM SE when presenting the results.

1N
=D =9 (9-10

A5.2: MAE
We also include the Mean Absolute Error (MAE) as a performance measure. Contrary to the

MSE, the MAE is less sensitive to outliers and large prediction deviations which has caused
some authorsto favour the metric for forecast accuracy evauation (Armstrong, 2001). In other
words, the MAE penalises the errors for all the observations i equally, which captures the
overall performance better, but is less suitable when a potential outlier has a great negative
effect for the practical use of the model. Therefore, we include MAE as an additiona
performance metric, meant to supplement the MSE. The calculation of MAE is displayed in
equation 9-11.

1,
NZI% -9 (o-11)
i=
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A6: Hyperparameter Selection
Table A-3 Final hyperparameters used in the LSTM model

Hyper parameter Value
Number of hidden layers 1
Number of nodes 10
Loss function MSE
Activation function tanh
Opti mi zation al gorithm adam
Epochs 100
Batch size 64
Early Stopping 10
(L1, L2) regularization weights (0.2, 0.0)
(L1, L2) regularizationbias | (0.2, 0.0)
Learning rate 0.001
Dropout rate 0.1

A7: R and Python Implementation
All of our models besides from the LSTM are implemented in the R programming language.
The LSTM network is implemented using keras version 2.3.1 (Chollet & others, 2015) with

built in tensorflow version 1.13.1, in aJupyter Notebook environment. We employed lubridate

for manipulating dates (Grolemund & Wickham, 2011), dplyr for data manipulation and
subsetting (Wickham, Francois, Henry, & Mdller, 2020), forecast for all ARIMA -related tasks
(Hyndman R. , et al., 2020) and randomForest for fitting benchmark RF model and forecasting
(Liaw & Wiener, 2001).

A8: Sample Portfolios
Table A-4 Stock tickersin the 10 randomly sampled portfolios

Sampl e Portfolios
1 2 3 4 5 6 7 8 9 10
BON AFG AMSC AXA DNO AFG LSG AKSO AKER AMSC
5 | EONR KOA DNO EQNR GOGL AXA SCHA DNB ASC BON
§ KOA NOD KIT NAS KIT EQNR SNI MEDI  OLT DNB
F |1 NOD PGS KOA SIN OLT KOA SUBC NHY SIB KOG
STB YAR NOD STB SCHA MEDI TGS TOM TEL ORK
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Table A-5 Portfolio variances. Derived from the correlation predictions with
the Overal Mean model and the hybrid model, compared to the actua

variances
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