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Abstract 

In this thesis we seek to examine how modern forecasting approaches can improve estimations 

of stock pair correlations, and derived from this, contribute to making portfolios more stable. 

Volatility of financial markets have experienced increases due to the ongoing global pandemic. 

This amplifies the issues that investors face when assessing the risk related to their 

investments. We construct a hybrid model consisting of an ARIMA component to explain the 

linear tendencies of correlation, and a Long Short-Term Memory component to explain the 

non-linear tendencies. Our approach is populated by data from constituents of Oslo Stock 

Exchange ranging a time span from 2006 through the third quarter of 2020. Our results indicate 

that modern approaches to forecasting accrue stronger predictive performances than the 

conventional methods. Across all test periods our proposed hybrid model achieves an RMSE 

of 0.186 compared to an average benchmark RMSE of 0.237. However, the implications of 

these findings are ambiguous as the increase in predictive performance cannot be said to 

definitively outweigh the increase in cost of implementation. Our thesis contributes to the 

existing literature by exhibiting the untapped potential of how modern approaches to 

forecasting can improve accuracy of quantitative inputs for decision making. 
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1. Introduction 

Refining the accuracy of inputs that are used as decision basis is a continuous issue across all 

business industries. The conventional theories base their approaches to estimations and 

calculations of inputs on simplistic statistical methods. In line with technological 

developments and availability of data, modern frameworks for forecasting has been 

established. Many researchers have found such modern forecasting approaches to outshine the 

conventional methods when applied on a variety of data sets.  

However, modern approaches to forecasting have not been widely adopted for the issue of 

estimating inputs regarding investment risk. Research has been heavily focused on forecasting 

prices and returns on investment objects, while the equally important decision factor, risk, has 

not been covered to the same degree. The purpose of this thesis is to investigate quantitative 

methods for approaching risk in investment objects. The thesis relies on well-established 

concepts of portfolio theory, as well as modern approaches to making estimations for use in 

financial applications. It should be noted however that this thesis is not predominantly a thesis 

on the research field of finance. It is rather an exploration of how data analysis can support 

business decisions, here applied on a decision problem from the field of finance.  

Examining this research area is of importance because dealing with levels of risk subject to 

dynamic conditions is something that most decision makers must deal with incessantly. To 

investigate methods for approaching risk in a meaningful manner, we must first delimit the 

topic to an appropriate scope. In the following section we will provide the thematic boundaries 

and an outline of the contents of this thesis.  

1.1 Problem Definition 

Risk is omnipresent in the world of business, but to provide a meaningful contribution to the 

literature we must delimit the topic sufficiently. An element of risk that is quantifiable and 

abundantly recorded is the price movements, and thereby derived risk, of financial 

instruments. A possible approach to improve risk assessments could be investigating how 

advanced methods of making estimations can contribute to more robust and stable investment 

portfolios. Furthermore, an interesting aspect of risk assessment using advanced methods, is 

reviewing their ability to contribute over a time span that is affected by unlikely, but highly 
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impactful circumstances, also known as Black Swan Events. This specific element of the 

narrative is motivated by the ongoing global pandemic, Covid-19, which is forcing decision 

makers to prioritize risk assessments. For these reasons, the objective of this thesis can be 

delimited to the following research question:  

How can modern approaches to forecasting contribute to more stable portfolios? 

The research question is substantiated by two central elements of analysis: A comparative 

design with assessment of predictive performance across methods, materialized through our 

set of benchmark models (1), and a critical assessment of the method contribution’s sensitivity 

to financial black swans (2).  

Based on the background information hereunder, we lay the foundation for examining how 

estimations that investors rely on, can be improved. The succeeding literature review provides 

an overview of how risk has been estimated historically by practitioners, as well as emerging 

methods that can be utilized in this regard. The remainder of the thesis is structured as follows. 

Firstly, we define a proposed model inspired by existing literature and present an experimental 

approach to demonstrate how modern techniques, such as machine learning, can improve 

financial estimations. This experiment must be regarded only as a display of one possible 

application of modern forecasting approaches, meant to pose as a basis of analytical 

discussion. Secondly, we describe the data selection and the preprocessing required for it to 

populate our suggested methods. Thereafter, an explanation of how we decide to evaluate our 

model is included. The results from the model are then presented and evaluated before we 

ultimately discuss our findings with respect to our research question and related limitations. 
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2. Background 

The year 2020 has involved substantially increased levels of uncertainty worldwide. As the 

spread of Covid-19 continues, national measures such as social distancing and quarantining 

go hand in hand with fears of contagion and increasing layoffs. The International Monetary 

Fund has developed a measure for tracking uncertainty related to social, political and 

economic circumstances across the globe, constructed by performing textual analysis on 

reports for each country (World Uncertainty Index, 2020). This measure, called the World 

Uncertainty Index, has in 2020 reached heights that are unprecedented for as long as 

uncertainty has been tracked by the IMF. 

 

Figure 2.1 World Uncertainty Index. Data: (World Uncertainty Index, 

2020) 

New heights of global uncertainty naturally have impacts on the global financial markets. As 

Hites Ahir, the senior officer responsible for the World Uncertainty Index, described it in a 

recent index update; increasing levels of uncertainty historically coincides with periods of low 

economic growth and tighter financial conditions (Ahir, Bloom, & Furceri, 2020). In June 

2020, The World Bank published a report with the title Global Economic Prospects. They 

claim that the global pandemic has enkindled the deepest global recession in decades and 

include baseline forecasts which projects a 5.2% contraction in global GDP during 2020 

(World Bank, 2020). This global increase in uncertainty has provided motivation for our 

research question, as the implications derived from deviations in data driven decisions, will 

bear substantial impact.   
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2.1 Financial Black Swans 

Dealing with uncertainties is an everlasting challenge for all participants of the global market. 

Covid-19 is not the first pandemic that exceeds expectations and leads to unforeseen financial 

impacts, and it will surely not be the last. The idea that improbable events collectively are very 

likely to occur, has among others, been discussed by mathematician David J. Hand who has 

written a book on the subject called The Improbability Principle. In essence, he argues that 

improbable events in reality occur quite regularly (Hand, 2014). Complementing Hands 

literature, Nassim Nicholas Taleb coined the term Black Swan Events in 2001 when he 

published his book Fooled By Randomness, and further in The Black Swan: The Impact of the 

Highly Improbable released in 2007. The latter book discusses the extreme impacts of rare and 

unpredictable events (Taleb, 2007). It has been an area of discussion whether the current 

pandemic can be defined as a black swan event or not, and the author himself has weighed in 

arguing that it should not be (Avishai, 2020). However, the virus and its impacts fit the broader 

definition of an unlikely event with extreme consequences, and the key takeaway from Taleb’s 

contribution still stands regardless of the validity of definition. That is, humans should not 

seek to explain unlikely events by simplistic explanations in hindsight. Rather than attempting 

to predict unlikely events, one should build robustness for their adverse effects.  

This thesis will base on the assumption that Covid-19 and its impacts on financial markets are 

representing a financial black swan. The event is virtually impossible to predict and has 

tremendous effects on the returns and risk related to financial investments. This background 

information helps address our research question appropriately. Based on Taleb’s literature we 

seek to analyze forecasting contributions with consideration to financial black swans. 

According to his perspective we will assess the contributions from modern forecasting 

techniques with consideration to their robustness to a financial black swan. This leads us to 

investigate what constitutes risk in the financial markets and how it can be mitigated. In the 

next segment we will therefore explain how risk is quantified in decision making tools.  
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2.2 Investment portfolios 

Investors are always looking for ways to obtain returns while mitigating the risk they are 

taking. Therefore, in traditional portfolio theory, the performance of the investments is usually 

considered a combination of the main components; expected returns and the risks related to 

these investments. One of the most prominent influencers of portfolio theory is Harry 

Markowitz, who defined the Modern Portfolio Theory. His dissertation on portfolio selection 

is still highly relevant to this day, even though it was published as early as 1952. His theory 

was based on the idea that every investor seeks to maximize their returns for any given level 

of risk (Markowitz, 1952). Some investors are risk averse, while some seek the thrill of  

higher-risk investments. Regardless of the risk aversion level, the investor is interested in 

finding the portfolio within their risk desirability, likely to yield the highest returns. This can 

also be considered such that investors prefer portfolios with less risk for any level of return. 

The set of optimal portfolios for any desired level of risk, or alternatively level of return, is 

called the efficient frontier (Markowitz, 1952). Furthermore, the theory is based on the concept 

that the risk level of a portfolio can be reduced by diversifying through unrelated securities. 

Therefore, the overall risk related to a portfolio can be calculated as a function of the variances 

of portfolio assets, along with the correlation between each pair of assets. Alas, the correlation 

between investment objects can be considered a proxy for the risk involved with investments. 

There have been countless attempts at trying to predict future stock prices employing any 

thinkable method available. Being able to predict the expected stock prices accurately would 

mean that one of the two components practitioners assess when constructing portfolios are 

known entities. However, the same can be said about the risk component derived from 

correlations. Better predictions of future correlation, which employ modern methods, could 

potentially lead to better foundations for building effective investment portfolios. Going back 

to Nassim Taleb’s petition to build robustness for unlikely and extreme events, this could be 

addressed by improving estimations of the future correlation between stock pairs. Our research 

question relates to how portfolios can become more stable through applying forecasting 

methods for constructing inputs. In this sense the stability of a portfolio relates to the actual 

variance on returns achieved from portfolio compositions. Regardless of the risk preference 

of an investor, more accurate inputs will aid in attaining the desired risk profiles of 

investments.  
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In the next chapter we will therefore seek guidance from the literature as to how such 

improvements can be made with the support of modern techniques. We will present an 

overview of how risk has been quantified historically followed by literature on the broader 

field of estimating future values of financial time series. The former provides reference, or a 

starting point for analysis, while the latter provides inspiration regarding favorable 

methodology for estimating values that can be used by decision makers to construct portfolio 

strategies. 
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3. Literature Review 

In this section, we begin with describing how practitioners historically have approached the 

problem of quantifying risk. These traditional methods are often based on naïve projections or 

simply assumptions of constant correlation. In earlier years of the Modern Portfolio Theory, 

it was subject to criticism because of the assumptions it relied on for measuring risk through 

correlation coefficients (Low, Faff, & Aas, 2016). The simplest method used by practitioners 

of Modern Portfolio Theory, the Full Historical Model, assumed that correlation for any 

combination of assets in the investment horizon would be equal to the preceding observation. 

This is equivalent to producing naïve forecasts and are optimal when data follow a random 

walk, which is the case for many financial time series (Hyndman & Athanasopoulos, 2018). 

However, random walk forecasts were not deemed accurate enough, which culminated in an 

alternative approach for estimating future correlation in portfolios. This model, called the 

Constant Correlation model, was built on the assumption that any deviation from the market 

mean correlation coefficient was due to random fluctuations (Elton, Gruber, & Urich, 1978). 

Hence, correlation coefficients were according to this method estimated by projecting the 

mean correlation coefficient of all constituent pairs for the investment horizon. A third 

approach attempting to find better estimations of correlation coefficients also culminated, 

called the Single-Index Model (Elton, Gruber, & Urich, 1978). The Single-Index Model 

employs the market return to partly explain a pair of financial instruments’ price movement in 

relation to each other. However, none of these statistical methods for projecting correlation 

coefficients have been satisfactory when it comes to estimation performance.  

The aforementioned models employed in the Modern Portfolio Theory assumed that 

correlation coefficients are constant and fixed. Reflection of correlation is vital as it provides 

stability in portfolios through encouraging diversification. However, findings discussed by 

Preis et al. (2012) show that the average correlation among stocks scales linearly with market 

stress. Thus, naïve estimations on correlation coefficients are subject to large errors as 

uncertainty changes. The diversification effect responsible for protecting portfolios is 

diminished in times of market losses which, inconveniently, is when it is needed the most.  

Chesnay & Jondeau (2001) also provides an empirical study which points out that periods with 

high levels of financial turbulence and uncertainty, tend to generate positive correlations 

between stock prices, as contractions in the economy affect most companies. These studies 

imply that correlation coefficients are likely to deviate from historical quantities, which 
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provides further support towards the criticism of assuming fixed correlation coefficients. 

Following this, diversification derived from analysis of correlation coefficients is useless if it 

only works when market conditions remain unchanged. Alas, diversification as a stability 

measure need to account for changes in correlation of price movements and cannot rely on 

assumptions of fixed entities. Markowitz himself also addressed this criticism stating that his 

assumed task was to develop a framework for outputting efficient risk-return combinations, 

given inputs such as means and variances of individual securities and the correlation between 

them (Markowitz, 2002). He further assumed that it was not his task to provide these inputs 

and ensure their accuracy, but rather the task of security analysts. The field of forecasting has 

evolved tremendously since the time of Markowitz and we are therefore interested in 

investigating modern approaches to forecasting applicable to this problem, such as automated 

forecasting frameworks, machine learning, neural networks and the combination of such 

methods. 

The remaining research presented revolves around forecasting financial time series, and some 

highly favored frameworks for this research field.  The literature review is an essential segment 

of the thesis process, as there is a multitude of available methods in the field of financial time 

series analysis. All these methods come with their own benefits and detriments. The following 

sections seek to review literature on time series forecasting with long-established methods 

such as ARIMA, more modern methods in deep learning techniques such as neural networks, 

and lastly, several hybrid models employing a combination of methods.  

AutoRegressive Integrated Moving Average, or ARIMA, is a forecasting framework 

developed by Box and Jenkins (1970), and is one of the most widely utilized methods of 

forecasting economic and financial time series (Hyndman & Athanasopoulos, 2018). Studies 

have been conducted on financial time series such as electricity prices, housing prices, and 

stock prices. Weiss (2000) employed the ARIMA framework to construct models that 

predicted electricity prices of mainland Spain with good results. The ARIMA model designed 

predicted prices with an average error of about 10%, both with explanatory variables and 

without. Raymond (1997) used an ARIMA model to identify trends in Hong Kong’s real estate 

prices and concluded that ARIMA models are particularly good frameworks for forecasting 

on the short-term due to slow changes in the short-term factors. The autoregressive component 

was helpful in determining the trending effects of the housing prices while the moving average 

components contributed with determining turning points. These two components, which in 

addition to some level of data differencing, make up the ARIMA framework, were successful 
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in tracking the direction of changes in the real-estate prices. Similarly, Adebiyi, Adewumi and 

Ayo (2014) found that ARIMA models have a strong potential for predicting for the short-

term. They built an ARIMA model for stock price prediction on two constituents, Nokia and 

Zenith Bank. The model predictions were satisfactory, and they concluded that ARIMA 

models can compete reasonably well with emerging forecasting techniques such as artificial 

neural networks in short-term prediction.  

Among machine learning applications in the field of stock market predictions, Galler, 

Kryzanowski and Wright performed a pioneering study in 1993. They developed a classifier 

model using deep learning and proceeded to correctly classify 72 % of directional movements 

on one-year-ahead stock returns (Kryzanowski, Galler, & Wright, 1993). In addition to being 

able to classify directional movements, Olson and Mossman (2003) showcased the potential 

for machine learning to be used in regression models. They forecasted one-year-ahead point 

predictions on the Canadian Securities Exchange. Both studies could report that their deep 

learning model could outperform the existing regression models using traditional techniques. 

Among the newest and most popular techniques within machine learning for forecasting time 

series is the application of neural networks. In particular, Long Short-Term Memory networks, 

or LSTM networks, have been employed diligently in recent times. 

Literature on utilizing LSTM in predictive modeling of financial markets is historically scarce, 

despite being suitable for financial time series predictions. There are several reasons why such 

literature might be lacking, which can be broken down into two main reasons. Firstly, 

challenges related to backtesting financial strategies deteriorates the value of findings. Alas, 

struggles with backtesting mean that separating what are successful trading strategies for only 

a specific place in time, and those applicable for the future, is severely challenging (Lopez de 

Prado, 2018). Secondly, there are predominant incentives for keeping significant findings 

unpublished as that will more likely lead to financial benefits. However, due to the growth in 

computational efficiency and the availability and popularization of machine learning in the 

last few years, the activity in this field has increased. Huck, Anh and Krauss published a paper 

in 2017 where they compared different machine learning techniques for stock price prediction. 

Interestingly, they did not outperform traditional techniques but performed well in periods 

with high volatility and market decline, such as the dot-com bubble in the late 90s and the 

2008 financial crisis (Krauss, Anh, & Huck, 2017). 
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Usually, LSTM networks are employed when working with vast amounts of data, but there 

are examples of successful application on training with fewer data points in the literature. 

Siami-Namini, Tavakoli and Namin (2018) built an LSTM network to predict time series of 

financial data and managed to obtain forecasts with average errors of between 13 and 16 %. 

In the same year, Fischer and Krauss (2018) built LSTM networks to model S&P 500 

constituents' directional movements. They found LSTM networks to outperform other 

alternatives within machine learning that are considered memory-free, such as Random Forest 

and a logistic regression classifier. In the next segment we will complement the literature 

review with some studies that delve into combining the methods mentioned above, so-called 

hybrid models. 

Hybrid models have the fundamental advantage that it combines two or more individual 

models, which means the models have the potential of complementing each other. This leads 

to being able to exploit the advantages of each model’s characteristics. In 2003 Peter G. Zhang 

published a study on the combination of the ARIMA model and a neural network. He proposed 

that since ARIMA models and neural networks often were subject to comparisons of predictive 

strength for time series, with varying conclusions, it should be investigated whether a hybrid 

model taking advantage of both models' strengths was beneficial. In the study, he investigated 

different time series, including sunspot data, Canadian lynx data and exchange rates. He 

displayed that neither ARIMA, nor neural networks individually, were suitable for a wide 

range of time series. Most time series include both linear and non-linear relationships between 

observations, and a hybrid model consisting of methods favorable for each type of relationship 

is advised according to his findings (Zhang, 2003). This pioneering study, establishing a 

framework for a hybrid between ARIMA and neural networks, has inspired several studies in 

recent times.  

A study conducted by Temür, Temür and Akgün (2019) employed a hybrid model made up of 

an ARIMA component and an LSTM network to forecast housing prices in Turkey. They 

found results that corresponded with Zhang's (2003) literature. The best accuracy was 

achieved with the mentioned hybrid model, and the difference in predictive power between 

the hybrid and the individual models was significant. Furthermore, Zhang’s (2003) literature 

has also provided methodological inspiration for a study by Choi (2018) where the 

effectiveness of an ARIMA and LSTM network hybrid model on predicting S&P 500 

constituents correlation coefficients were investigated. Choi found that the hybrid model 

produced forecasts on correlation coefficients for stock pairs, which improved significantly 
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upon traditional correlation projection methods. During the work on this thesis, we have let us 

inspire by these methodological frameworks and wish to build a similar hybrid model for Oslo 

Stock Exchange constituents to demonstrate the potential usefulness of neural networks for 

financial time series forecasting. 

Without having touched upon the specific approach of this thesis, it should still be pointed out 

how this thesis contribute to the literature. As far as we know there is no existing literature on 

making predictions of correlation coefficients employing the methods included in the literature 

reviewed for Oslo Stock Exchange constituents. We will come back to the specifics of selected 

approach and data in later chapters. Furthermore, the time span investigated in this thesis 

involves both the financial crisis of 2008 and the Covid-19 pandemic of 2020. We find no 

existing literature discussing the impact of black swans on estimates of correlation 

coefficients. The literature review contributes to explaining why our research question should 

be addressed by presenting a problem that traditionally has been addressed by simple statistical 

methods, despite the emergence of methods for forecasting that is applicable to the problem. 

All this considered, this thesis should complement the existing literature in a meaningful way.  

Substantiated by background information and the literature review above, we will in the next 

chapter propose our approach to explaining how modern forecasting techniques can aid 

decision makers in constructing stable portfolios. The approach chapter consists of our 

preferred method of addressing the research question but is naturally only one way of doing 

just that.  We will however emphasize the reasons for our selection of approach.  
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4. Approach 

In this chapter we will introduce our proposed model in the first section. The second section 

consists of the benchmark models we include in our approach which addresses the research 

question by providing a comparative design of analysis. The third section introduces an 

additional evaluation approach based on a portfolio sampling. Ultimately, the last section of 

this chapter describes the data which will populate our proposed model and benchmark 

models. 

4.1 Hybrid Model 

Inspired by the literature reviewed, we present a hybrid method, using an ARIMA model 

combined with an LSTM model to predict the correlation coefficients between each pair of 

stock. The method rests on the assumption that the time series data is composed of both linear 

and non-linear tendencies (Zhang P. , 2003), expressed in the following equation. 

 𝑥𝑡 =  𝐿𝑡 +  𝑁𝑡 +  𝜖𝑡 (4-1) 

Where the notation 𝐿𝑡 represent the linearity in the data 𝑥𝑡 at time step 𝑡, 𝑁𝑡 represent the non-

linearity and 𝜖𝑡 is the error term. As discovered through the literature review, hybrid models 

have emerged in recent years as a method of improving forecasts from individual models 

through combination. We are encouraged by the literature on this research and aspire to answer 

our research question with the help of these techniques. Dependent on the predictive 

performance derived from such methodology, this can aid decision makers by exhibiting the 

potential contribution of forecasting techniques in supplying inputs to frameworks for 

strategizing portfolios. There are a multitude of methods that are applicable for forecasting 

both the linear and non-linear component, and there are benefits and detriments to every 

method. In the following segments we will provide a rationale for the elected hybrid 

components, ARIMA and LSTM, an explanation of how they are implemented, and a 

description of the data selection process. 
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4.1.1 Hybrid section I - ARIMA 

ARIMA models have been a popular method of choice for researchers attempting to predict 

future values of financial time series (Hyndman & Athanasopoulos, 2018). Studies have 

shown that ARIMA models excel in forecasting several different types of econometric time 

series and is often able to outperform more complex and extensive methods (Levenbach, 

2017). As discovered in the literature review, ARIMA models have proven to be particularly 

good frameworks for forecasting the short-term linear tendencies of financial time series. The 

ARIMA model uses linear functions of past data to forecast future values and has been favored 

by researchers due to its simplicity in both comprehension and application (Fattah, Ezzine, 

Aman, Moussami, & Lachhab, 2018). In addition, financial time series are generally likely to 

inherit some seasonal effect, which ARIMA is well suited for handling (Hyndman & 

Athanasopoulos, 2018). The relative simplicity of ARIMA makes it enticing in a business 

sense as it eases implementation due to less requirements in preprocessing of data, 

computational efforts, and its wide applicability. In summation, ARIMA is an  

easy-to-implement framework that is applicable for forecasting financial timeseries at a low 

computational cost. Naturally, a wide range of methods could account for explaining the linear 

tendencies of financial time series data but based on the aforementioned reasons we will 

employ ARIMA. 

The ARIMA framework combines autoregressive processes and moving average processes, 

aiming to describe the autocorrelations in the data (Box & Jenkins, 1970). The additional 

integrate component involves applying differencing on the time series to convert non-

stationary time series into stationary (Box & Jenkins, 1970). In short, the ARIMA method 

involves a selection process to identify the number of lags to be used for the autoregressive 

and moving average parts that best fit the observed time series, as well as a level of 

differencing. The term autoregression refers to the procedure of regressing the variable against 

itself, using the previous 𝑝 values. Similarly, moving average uses the past 𝑞 forecast errors 

in a regression-like model (Hyndman & Athanasopoulos, 2018). Additionally, it is often 

necessary to apply a level of differencing 𝑑, to obtain a stationary time series. This process 

results in a ARIMA model of order (𝑝, 𝑑, 𝑞). A detailed description of the ARIMA method 

can be found in Appendix A2. 
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Our ARIMA approach is based on a stepwise automatic model selection algorithm developed 

by Hyndman and Khandakar (Hyndman & Khandakar, 2008), and implemented using the 

function auto.arima from the R-package forecast (Hyndman R. , et al., 2020). In short, the 

algorithm applies different model orders and calculates the relative goodness of fit with the 

Akaikes Information Criteria (AIC). The algorithm returns the model with the lowest AIC. 

We do not wish to force any model order on the time series input, as we seek to keep this 

section of the hybrid model as automated as possible. 

After fitting a model on all the correlation time series, the residuals from the ARIMA 

predictions are stored. As the ARIMA model predictions are assumed to have explained a 

substantial amount of the linear relationships in the data, the residuals are thought to contain 

the non-linear relationship and are used as input in the second section of the hybrid method. 

4.1.2 Hybrid section II – Neural Network 

Neural networks have surged in application the last decade and is recognized to handle and 

model a multitude of complex non-linear problems (Haykin, 2008). A neural network consists 

of nodes, organized in layers, that are connected with weights. In general, data is presented to 

the network in the input layer, passed through nodes in one or more hidden layers, before 

calculating an output in the output layer. Figure 4.1 displays these layers for a Feed-Forward 

Neural Network (FNN). 

 

Figure 4.1 Feed-Forward Neural Network structure (Bouvet Norge, 2020). 
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As the name suggests, the information in a FNN is passed forward through the layers in a 

single direction. The arrows that connect the nodes each has a weight that regulate the 

information passed through each connection. The network aims to optimize these weight 

parameters 𝑤, as well as bias parameters 𝑏, in order to predict values 𝑦̂ that minimize a loss 

function 𝐿. Thus, the predicted values are a function of the input 𝑥 and the network parameters 

𝜃 so that 𝑦̂ = 𝑓(𝑥, 𝜃). The loss function expresses the accuracy of the predictions 𝐿(𝑦̂, 𝑦) =

𝐿(𝑓(𝑥, 𝜃), 𝑦). The network learns by updating the loss function iteratively with an 

optimization algorithm that adjust the parameters 𝜃 in a direction that reduces distance 

between the predicted values and the true values. This optimization process is called back-

propagation and uses gradient descent, which is an iterative optimization for identifying a 

local minimum, to find the optimal values for the parameters (Lecun, Bottou, Orr, & Müller, 

2012). 

Recurrent Neural Network (RNN) is a subdivision of neural networks, which has a structural 

feature allows the network to contain information from sequential input across time steps 

(Dupond, 2019). The nodes in the hidden layers in the RNN is looped, allowing the sequential 

input to be interpreted iteratively. Information from the input is stored in each iteration as a 

hidden state and the hidden layers inherits these states from previous iterations. Thus, the 

hidden state can be described as the working memory of the network. A representation of this 

concept is displayed in figure 4.2. 

 

Figure 4.2 General structure of an RNN. An input sequence with four timesteps will create 

four identical copies of the network structure and the hidden state is passed onto the next 

time step. Source: (Bouvet Norge, 2020). 
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As depicted, RNN can be described as a chain of identical neural networks, one for each 

time step in the sequential input, looped together. When optimizing the loss function in an 

RNN, all time steps in the sequential input is passed through the loop before each update.  

One iteration of this procedure is called an epoch.  As the neural networks in the unrolled 

RNN are identical, they also share the same adjustable weights and biases that the function 

looks to optimize. 

The passing of the hidden states in an RNN, as shown by the red arrows in the figure, also 

comes with some limitations, as it often struggles to control the information over long 

sequences. The resulting effect of these hidden states on the network outputs either decays 

rapidly or explodes exponentially over time (Hochreiter, Bengio, Frasconi, & Schmidhuber, 

2001), and a graphical representation is depicted in figure 4.3. This problem is often referred 

to as the vanishing gradient problem and introduces a problem when attempting to model 

dependencies in long sequences (Bengio, Simard, & Frasconi, 1994). 

 

Figure 4.3 The vanishing gradient problem.   Source: (Graves, 2012) 

There have been several attempts to create a modified RNN architecture to deal with the 

aforementioned problem, and we have selected the Long Short-Term Memory (LSTM) 

approach in this thesis. 

In addition to the working memory through the hidden states, the LSTM has a cell state, that 

serves the function of a long-term memory. This allows it to persist and contain information 

over longer time periods and sequences. The cell state is regulated by gates that control what 

information to remove from the previous time step and what information to add from the input 

in the current time step. The cell state and the gates are the mechanisms of the LSTM that 

tackles the vanishing gradient problem. A more detailed description of RNN and LSTM is 

found in Appendix A3 and A4.  
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For our modelling task, the LSTM has desirable features, as we want the model to have the 

ability to use information from sequences in an early time step for forecasting current time 

steps. In theory, this facilitates the possibility for the model to extract information and learn 

from previous data such as from the financial crisis of 2008 and apply this when forecasting 

periods with similar circumstances. However, complex LSTM models are computationally 

heavy and time consuming to train. Additionally, it can be challenging to design and tune a 

network to obtain a model that does not just fit the observed data well, but also learn the true 

relationship in the data and forecasts well out-of-sample. For this reason, we focus the 

construction of the LSTM model to a simple and generalized structure to reduce the time, 

computational power and the size of the dataset required to train and use such a model. This 

entails a probable decrease in performance accuracy but increases usability and allow decision 

makers and portfolio managers to refit the model on a variety of time series to support the 

forecasting task of their interest. 

The input used for the LSTM model consisted of the residual values derived from the forecasts 

of the ARIMA model. The residual data is divided so that the last time step is treated as a 

target value 𝑌 and the model is trained on the remainder of the previous observations 𝑋. 

Furthermore, the LSTM requires the data to be three-dimensional, on the following form, 

[𝑆𝑎𝑚𝑝𝑙𝑒𝑠, 𝑇𝑖𝑚𝑒 𝑆𝑡𝑒𝑝𝑠, 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠]. 
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With the selection of ARIMA and LSTM as the components of the hybrid model, we can 

present the following flowchart of the hybrid model: 

 

 

Figure 4.4 Illustration of the hybrid model.  The residuals are contrived 

from the forecast of the ARIMA model, reshaped, and used as input in the 

LSTM model. The LSTM forecasts the residual which is combined with the 

ARIMA forecast to produce the final hybrid forecast. 

 

For the LSTM we need to address some hyperparameters and design choices for model 

optimization. Furthermore, we have also performed some measures to reduce the problem of 

overfitting. We will in the following segments elaborate on these aspects.  

LSTM Model architecture 

Additionally, there are several hyperparameters and design choices to be selected when 

building the architecture for the LSTM model. There has been extensive research in exploring 

methods to optimize the selection. However, these methods entail a tedious and 

computationally demanding task (Hutter, Hoos, & Leyton-Brown, 2011). For simplicity and 

due to computational limitations, some of the model choices are selected and assumed to be 

fixed throughout the development of the final model, and some have been found through trial 

and error. A short description of how the model design and hyperparameters are selected will 

follow. 
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The complexity of the network can be controlled with the selection of number of hidden layers 

and number of nodes in each layer. As we want a simple structure, we only employ a single 

hidden layer, and limit the number of nodes in the hidden layer by searching between the 

interval [5, 20]. 

For the calculations in each cell, the ADAM optimizer function is used as it is regarded as a 

robust selection to the choice of the remaining hyperparameters (Goodfellow, Bengio, & 

Courville, 2016). In order to merge the output from all the cells into a single value, the output 

layer employs a doubled-hyperbolic tangent function. Multiplying the hyperbolic tangent 

function by two will ensure that the final predictions are transformed into the range [−2,2], 

which encompasses the minimum and maximum value that the residuals of the correlations 

can take. To determine the learning rate, Greff et. al. suggests a procedure of starting with a 

high value (e.g. 1.0) and divide by 10 until performance stops increasing (Greff, Srivastava, 

Koutník, Steunebrink, & Schmidhuber, 2017). Through the design and selection of 

hyperparameters, a main weakness related to neural networks can be addressed, namely 

overfitting. In the next segment we will therefore describe how our approach is designed with 

respect to this problem area.  

Overfitting 

Neural networks have a tendency to fit a model too closely to the training data provided 

(Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 2014). This is known as 

overfitting and causes problems as it leads researchers to believe they have found a good model 

for their problem. However, as the models are used to produce real forecasts, they realize the 

predictive performances is not coherent with the assumed predictive strength. Alas, neural 

networks are often subject to developing models that correspond too closely with the specific 

dataset, and therefore fails to predict future observations reliably. 

When building a generalized model, it is also a well-known practice to incorporate a validation 

set in the development of the model (Kohavi & Provost, 1998). This way, the data can be 

separated into train, validation and test data and use the validation set, hereby referred to as 

the development set, to prevent overfitting on the observations in the training set. The data 

split is further outlined in section 4.4.3. We will implement the development set in the model 

development through an early stopping process. When training the model, a performance 

measure for the development set is calculated and registered every epoch. Whenever the model 

has not improved the performance on the development set for 10 epochs, the training ends, 
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and the weight and bias parameters from the epoch with the best performance is saved and 

used as the final model. Additionally, another common measure to reduce issues of overfitting 

is through regularization. Regularization is the act of making modifications to the learning 

algorithm which seeks to reduce the out-of-sample error, but not the in-sample error 

(Goodfellow, Bengio, & Courville, 2016). Out-of-sample error refers to the ability of 

predicting observations that is previously unseen to the algorithm, while in-sample error 

relates to predictions on the data which the algorithm is based upon. 

One method of regularization is carried out through the inclusion of dropout layers. Dropout 

regularization is a way to debias the layer, by turning off any given node during training of the 

model with a probability p (Zhang, Lipton, Li, & Smola, 2020). This is contributing to 

reducing risk of nodes becoming interdependent which is a prevalent source of overfitting 

(Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 2014). We investigate the effect 

of the dropout rate on the accuracy of the model on the train and development set 

incrementally. Additional regularization steps can be performed by conducting weight 

regularization, of which we separate between two main types. These are known as the Lasso 

regularization (L1) and the Ridge regularization (L2) (Martins, 2019). Weight regularization 

aims to penalize certain weights in the loss function, and their values are found by 

investigating the effect of different combinations of model hyperparameters on predictive 

performance. In summary, overfit has been addressed through employment of a development 

set and tuning of hyperparameters.  

In parallel with reviewing literature and defining a proposed model, we have examined 

different models applicable for estimating correlations on the investment horizon. As 

previously mentioned, these models are not solely meant to provide inspiration for our 

proposed model, but also to provide reference for examining the performance. To ensure a 

comparative design in the analysis of the performance of our proposed model we have 

therefore include a range of models as benchmarks. To evaluate the performance of the hybrid 

model and the benchmarks, we have used the Root Mean Squared Error (RMSE) and the Mean 

Average Error (MAE). The justification and details of these evaluation metrics are presented 

in Appendix A5. In the next section we will briefly elaborate on our selection of benchmark 

models.  
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4.2 Benchmark models 

The predictive performance of our hybrid model is compared to a total of seven benchmark 

models, whereas four are referred to as conventional approaches of projecting correlation 

coefficients for portfolio optimization based on historical coefficients. The remaining three 

benchmarks consists of the two methods in the hybrid model, evaluated individually, as well 

as an alternative hybrid model, which are referred to as forecasting methods. 

4.2.1 Historical Model 

The simplest method of projecting correlation coefficients for use in portfolio optimization 

presupposes that correlation for any pair of stock constituents will be persistent (Elton, Gruber, 

& Urich, 1978). Correlation coefficients used in the Historical Model will thus always be equal 

to the corresponding coefficient according to the most recent observation.  

 
𝑟𝑖𝑗

𝑡  =  𝑟𝑖𝑗
𝑡−1 

𝑖, 𝑗: stock constituent index in the correlation matrix 

(4-2) 

4.2.2 Constant Correlation Model 

The next method we use as benchmark employs the mean correlation coefficient for all stock 

constituents for projecting future correlations. The Constant Correlation model presupposes 

that any discrepancy from the mean are random deviations (Elton, Gruber, & Urich, 1978). 

Hence, the estimation of future correlations for each pair should be equal to the most recent 

observation of the average correlation. 

 

 

𝑟𝑖𝑗
𝑡  =  

∑ 𝑟𝑖𝑗
𝑡−1

𝑛(𝑛 − 1)/2
 

𝑖, 𝑗: stock constituent index in the correlation matrix 

𝑛: number of stock constituents 

(4-3) 
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4.2.3 Single Index Model 

The Single Index Model presupposes that the movement of the market return can be employed 

to make better estimates for future correlation coefficients (Elton, Gruber, & Urich, 1978). A 

key assumption in the Single Index Model is that stocks most often have positive covariance 

as they respond to the same macroeconomic factors. Nonetheless, companies are affected 

diversely by different economic factors. Following this reasoning the Single Index Model 

assumes that covariances of each stock pair are calculated by multiplying the respective betas 

and the market variance. The estimation of future correlation coefficients in the Single Index 

Model is expressed as 

 

𝑟𝑖𝑗
𝑡  =  

𝛽𝑖𝛽𝑗𝜎𝑚
2

𝜎𝑖𝜎𝑗
 

𝑖, 𝑗: stock constituent index in the correlation matrix 

𝑚: market index 

 

(4-4) 

4.2.4 Overall Mean 

Elton, Gruber and Urich (1978) conducted a study comparing a wide range of statistical 

methods for estimating correlation coefficients including the models described above. Among 

all the statistical methods compared they found the Overall Mean to achieve the best predictive 

performance. The Overall Mean assumes that correlation coefficients for a given pair of 

investment objects are estimated as their mean relationship of price movements over time. The 

estimation of future correlation coefficients employing Overall Mean is expressed as,  

 

𝑟𝑖𝑗
𝑡  =  

∑ 𝑟𝑖𝑗
𝑡1

𝑡−1

𝑛
 

𝑖, 𝑗: stock constituent index in the correlation matrix 

𝑛: number of observations for each pair 

(4-5) 
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4.2.5 ARIMA 

The ARIMA method is also included as a benchmark. The auto.arima models previously 

selected in the methodology section are used to create out-of-sample predictions for the 

development and test sets. This enables us to interpret to which degree the ARIMA by itself 

can explain the variation in the data, and thus provide insight about how each hybrid 

component is contributing to its performance.  These predictions are compared to the actual 

values for the sake of calculating accuracy metrics. 

4.2.6 LSTM 

For the same reason as adding a stand-alone ARIMA model for predicting future correlations 

we also add one for the LSTM method. This time LSTM are given past correlations as input 

instead of residuals from ARIMA. Parameter tuning through trial and error quickly revealed 

to have little impact on the accuracy of the stand-alone LSTM. Hence, we resolved to keeping 

pre-defined model parameters identical to those identified for the hybrid model. 

4.2.7 Hybrid: ARIMA-Random Forest 

Neural networks have been a widely popular method in the realm of Machine Learning in the 

recent years. We wanted to make sure that the perceived usefulness of neural networks among 

researchers is not inflated. As an assurance, we elected to make predictions using an alternative 

machine learning method as a replacement for the LSTM within the same hybrid methodology. 

Similarly to the LSTM, a Random Forest (RF) model requires restructuring of the data. Each 

quarterly correlation coefficient is treated as the outcome variable and is supplied with lagged 

values of the time series as predictors. 

Random Forest is a popular and effective machine learning algorithm which utilizes ensemble 

learning, an algorithm which combines multiple learning models to improve the overall 

performance. Random Forest constructs a multitude of decision trees which individually 

produces a prediction, either in the form of a class in classification problems or point 

predictions for regression problems (Breiman, 2001). For each tree, a random subset of the 

training data is drawn and used to calculate its output. The output of a Random Forest model 

is either the mode of the classes predicted in classification, or the mean prediction across the 

decision trees in a regression problem. One key advantage of using Random Forests models is 

that the generalization error converges to a limit as the number of trees in the forest increases. 
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In other words, in accordance with the Strong Law of Large Numbers, overfitting is seldom a 

problem for Random Forest models (Breiman, 2001). 

As the Random Forest model solely constitute a component of one of our benchmark models, 

we limit the optimization of hyperparameters to initial trial and error. Furthermore, there are 

in practice only two user-specified hyperparameters: the number of trees in the forest and the 

number of variables in the random subset at each node. In general, the model is most often not 

overly sensitive to these parameters (Liaw & Wiener, 2001). Nevertheless, the hybrid model 

combining ARIMA and Random Forest is not meant to represent an optimized regression on 

time series employing Random Forest, but rather provide a reference point for assessing the 

predictive power of our proposed model. 

In addition to the comparative analysis provided by the benchmark models described in this 

section, we also want to address the research question in a practitioner’s sense. Therefore, we 

will in the next section describe an additional method of evaluation which incorporates the 

portfolio variance of returns that can be derived from our results. 

4.3 Portfolio Selection 

The portfolio-based evaluation described hereunder constitutes an expansion on the already 

established evaluation approach. Our intention is to provide an insight into how estimations 

on correlation impacts the variance of returns for individual portfolios of constituents. 

The portfolio selection will be based on a random sampling from the population of investment 

objects. The random sample will be performed 10 times, each including five investment 

objects. We can then compare the total portfolio variance derived from estimated correlation 

matrices, as well as the correlation matrices based on actual data. The number of samples is 

selected as a compromise between time consumption and the evaluation value attained. This 

will represent a display of how estimation errors impact the actual variance of returns on 

investors’ portfolios. This is useful because it portrays the quantitative results from the 

investors perspective. 

As this evaluation method is time consuming, we have elected to compare the best performing 

conventional method and forecasting method from the comparative evaluation. The overall 

variance of a portfolio is a product of each investment objects individual variance as well as 
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the covariance between all portfolio constituents. For simplicity we resort to equal weighting 

between portfolio constituents. Our methods will provide correlation matrices and we can 

employ these to calculate total portfolio variance through the following equation: 

 𝑃𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = [𝑤1𝜎1 ⋯ 𝑤𝑛𝜎𝑛]  ×  [

1 𝑟12 ⋯ 𝑟1𝑛

𝑟21 1 ⋯ 𝑟2𝑛

⋮ ⋮ ⋱ ⋮
𝑟𝑛1 ⋯ ⋯ 1

  ]  × [

𝑤1𝜎1

⋮
𝑤𝑛𝜎𝑛

] (4-6) 

Where the correlation matrix for each portfolio is multiplied with a vector of weighted 

standard deviations of asset returns and a transpose of the same vector.  

The proposed methods, benchmarks, and portfolio evaluation described above need to be 

populated by data. Based on the research question it is clear that the data should consist of 

time series data on some sort of financial assets. This could include properties, commodity, 

stocks, currency, and a range of other tradeable assets. Because we are particularly interested 

in the relationship of price movements between market constituents, and a considerable 

number of them, we find it favorable to populate our methods with stock data. The following 

section describe the data gathering and preprocessing steps made to the data. 

4.4 Data 

In this section we will describe the data that we have selected for populating our 

methodological approach. As briefly mentioned, we have decided to employ stock data, which 

have an obvious advantage when it comes to availability. Furthermore, we have selected to 

focus on constituents of the Oslo Stock Exchange, as it will represent a set of financial 

investment objects that are not widely investigated in our field of research. This thesis relies 

on obtaining stock prices for the constituents of OSEBX. We want to focus our work on 

constituents of OSEBX as it consists of a representative sample of all listed shares on Oslo 

Stock Exchange (Oslo Børs, 2020). In addition, the list of shares on OSEBX are routinely 

revised to, among other things, ensure ample liquidity. Before the raw data we collected can 

populate our methodological approach, it requires some preprocessing, which will be 

described in the following segment. 
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4.4.1 Preprocessing 

In this thesis we have decided to investigate the period between 2006 through the third quarter 

of 2020. This starting point provides a sizeable sequence of data, as well as it includes the 

financial crisis occurring in 2008. This time span corresponds with 3 700 trading days. Among 

the original list of OSEBX tickers there are 69 different tickers, however many of these have 

not been listed on Oslo Stock Exchange for the entire period. We want to ensure that our 

methods are populated by long series of data that span a multitude of market cycles. Therefore, 

the initial filtering of companies consists of only keeping stocks that have been registered on 

Oslo Stock Exchange for the entirety of the 3 700 days. This leaves us with a dataset of 38 

companies and their adjusted closing prices, presented in table 4-1. 

Table 4-1 Companies included in our dataset 

 

Even though all companies have been registered on the stock exchange for the entire time 

span, there are still a few occurrences of NAs in the dataset. This is due to stocks not being 

traded on certain days which could indicate trading halts, or simply the stock being so illiquid 

that it has not been traded for a day. Since the models we will work with require complete data 

for all rows, we decide to impute these NAs by replacing them with the previous observed 

value. This ensures that we can calculate correlation coefficients for every stock pair and days 

in the dataset. Also, we register that table 4-1 includes the major companies from the Oslo 

Stock Exchange, and is diversified on a multitude of different industries, displayed in table A-



 27 

2 in the appendix. Thus, we view our selection of companies to be sufficiently representative 

for the OSEBX. 

Furthermore, because we want to measure all variables in a comparable metric, and price 

levels vary substantially among the companies include, we decide to transform our adjusted 

prices to returns. This enables evaluation of relationships among variables despite originating 

from price series of unequal values. For decision-makers employing a framework like the one 

we present, returns in favor of prices better summarize the investment opportunity in a 

complete and scale-free manner. Correspondingly, we have calculated one-period simple 

returns as expressed in equation 4-7. 

 

𝑅𝑡  =  
𝑃𝑡 − 𝑃𝑡−1

𝑃𝑡−1
 

𝑅𝑡: return at time 𝑡 

𝑃𝑡: asset price at time 𝑡  

(4-7) 

4.4.2 Model Inputs 

Our initial dataset consists of daily observations; however, we are interested in producing 

quarterly forecasts. This is because quarterly data points can encompass more information 

about which phase of the market cycle they belong to. Quarterly data allows for market 

fluctuations, for example in the form of financial black swans, to be more visible because the 

time periods extend over a considerable part of the market cycles. From the dataset of 3 700 

daily observations, we will employ all of them, corresponding to 59 quarters of stock 

observations ranging from Q1 2006 through Q3 2020. Correlation coefficients are calculated 

based on daily data from each quarter. The correlation coefficient for the stock pairs, or the 

sample Pearson correlation coefficient, which indicates the strength of the relationship 

between two stocks (CFI, 2020), are calculated employing the equation: 
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𝑟𝑥𝑦 =  
∑(𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)

√∑(𝑥𝑖 − 𝑥̅)2 ∑(𝑦𝑖 − 𝑦̅)2
 

𝑥𝑖, 𝑦𝑖: return for stock 𝑥 and 𝑦 

𝑥̅, 𝑦̅: mean of return for stock 𝑥 and 𝑦 

(4-8) 

The final correlation matrix consists of each stock pair and their quarterly correlation 

coefficients. Having 38 companies to choose from, the number of unique possible pairs is 

7031.  The correlation matrix that we will use in the constructed models consequently consists 

of 41 477 data points. An interesting point when describing our data is that due to our 

methodological approach, output data also constitutes input data. Residuals derived from the 

ARIMA model is used as input data in the LSTM model. 

This selection of data will populate our selected models, but we also need to select an approach 

for interpreting and validating derived results. Therefore, we are dependent on defining a 

strategy for quantitative evaluation of the results, which will be presented in the following 

segment.  

4.4.3 Data Split 

The characteristics of the data we examine in this thesis as described in the previous section 

imposes certain constraints on the design of validation and evaluation approach. However, we 

will begin by describing the usefulness of splitting the data for the purpose of evaluating 

forecast performance appropriately. In order to train the proposed models, we are dependent 

on creating a data split which allows for evaluating how our models perform when predicting 

correlations that were not used in fitting the models. This approach is commonly referred to 

as a train-test-split where the data is separated into two splits, namely a train portion and a test 

portion (Hyndman & Athanasopoulos, 2018). The training data is used for estimating the 

forecasting model parameters and optimizing these based on the desired evaluation metric. 

The test portion of the data is then employed to evaluate the accuracy of forecasts produced 

from the model. This split of the data reliably gives indications of the model’s true forecasting 

power. 

 

1  Total number of unique pairs =
𝑛(𝑛−1)

2
=  

38∗37

2
= 703 
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When it comes to the imposed constraints derived from the characteristics of our data, this is 

essentially due to the dimension of time. When working with time series forecasting, the usual 

methods of cross-validation are not possible, as the order of the data is essential. The 

alternative to cross-validation often used for time series validation requires splitting the data 

into several train and test splits with a rolling time window (Hyndman & Athanasopoulos, 

2018). This involves either a sliding window with a fixed window size or an expanding 

window as observations are added for every time step. Usually, when employing a walk 

forward methodology like this, the model is retrained for every observation added to the 

window (Kirkpatrick & Dahlquist, 2010). This is referred to as walk forward optimization, 

where the model parameters are continuously optimized at each time step. This method of 

reoptimizing each time step's parameters leads to a trade-off between improved estimates at a 

computational cost for creating many models. Therefore, we opt for employing a walk-forward 

evaluation rather than optimizing at each time step. Training the model for one split of data, 

validating it on the development set, and then evaluating using the walk forward principle is a 

tolerable compromise.  

We choose to create a time series cross-validation split with a constant training set size. A 

constant training set size implies that for each observation we add at the end of the series we 

remove one from the beginning. Since the LSTM model we have decided to employ requires 

a substantial input of data, we have opted to keep the number of data splits low, in order for 

the training set size to remain large. As previously mentioned, we have also included a 

development set in order to prevent overfitting to the initial training set. Lastly, we use the 

walk forward concept explained above to include three test sets for measuring the performance 

of true forecasts. The data split is visualized in figure 4.5. 

  1    2    3    4    5    6    …   54  55  56  57  58  59 
Train

Development x
Test 1 y
Test 2
Test 3

time step

 

Figure 4.5 Illustration of the data split.  The light blue squares depict the 

forecasted time step as target value y for each data set. 
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When interpreting results, it is advisable to understand the inherent difference within our set 

of time steps. In the background information we touched upon how Covid-19 has had 

tremendous effects on global economy. This also includes Oslo Stock Exchange. Figure 4.6 

clearly display the negative effects of Covid-19 during the start of 2020. In particular, the first 

period used for out-of-sample forecasts, Test 1, involves significant negative returns for the 

OSEBX. From the literature review it is established that periods of market loss coincide with 

positive correlation coefficients across pairs. Hence, an initial expectation would be that 

estimating correlation coefficients for Test 1 is particularly difficult because correlation differs 

from the most occurrent situations. A summary of statistics for correlation in the test periods 

included can be viewed in Appendix A1. This summary clearly show that our data coincides 

with the literature and that the periods of market loss, generally involve higher positive 

correlations. Mean correlation among all stock pairs in Test 1 are more than three times higher 

than in the preceding quarter. It should also be noted that figure 4.6 display that these market 

movements are not unprecedented in the investigated time span. An ideal model would be able 

to learn from these previous time sequences to understand that in periods of market loss, 

correlation coefficients move collectively in the positive direction.  

 

 

Figure 4.6 Visualization OSEBX index return from Q1 2006 to Q3 2020.   
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In this chapter we have described the elected approach for estimations, evaluation, and data 

population. The final hyperparameters for the LSTM model along with a general overview of 

R and Python implementation can be reviewed respectively in Appendix A6 and Appendix 

A7. In the next chapter we will present the results derived from the approach described in this 

chapter. The findings will address the research question directly and form the basis for further 

discussion of the research question and the subsidiary question related to financial black 

swans.  
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5. Results 

The following chapter will exhibit our results which will serve as a basis for answering our 

research question of how modern approaches to forecasting can improve stability in portfolios. 

Subsequently, an assessment of the variation of results across the development and test sets is 

presented. Additionally, we display the effects of these predictions on sample portfolio 

variances. This addresses the research question by allowing us to closer examine the stability 

of models over time. Ultimately, we compare our findings to the existing literature. 

5.1 Predictive Performance 

In this section we present the predictive performance of the hybrid model in comparison with 

the benchmark models outlined in segment 4.2. For each data partition, the models produce 

out-of-sample forecasts for one quarter ahead and the accuracy is assessed with the 

performance measures RMSE and MAE. 

Table 5-1 Performance for all models and benchmarks, measured in RMSE 
and MAE. Our proposed ARIMA-LSTM hybrid model is denoted as 
‘HYBRID’. The lowest RMSE and MAE for each test set is highlighted in 
bold face. 

Dev Test 1 Test 2 Test 3 Avg. Dev Test 1 Test 2 Test 3 Avg.
Full Hist. 0.197 0.389 0.283 0.209 0.269 0.159 0.344 0.239 0.169 0.228

Constant Corr. 0.215 0.508 0.331 0.237 0.323 0.170 0.483 0.283 0.196 0.283
Single Index 0.161 0.391 0.242 0.329 0.281 0.128 0.352 0.203 0.280 0.241

Overall Mean 0.152 0.349 0.199 0.150 0.212 0.122 0.313 0.166 0.120 0.180
ARIMA 0.151 0.361 0.194 0.150 0.214 0.121 0.328 0.160 0.119 0.182
LSTM 0.180 0.300 0.203 0.160 0.211 0.149 0.266 0.163 0.128 0.176

ARIMA-RF 0.135 0.360 0.172 0.134 0.200 0.110 0.330 0.143 0.106 0.172
HYBRID 0.149 0.292 0.155 0.147 0.186 0.120 0.259 0.126 0.118 0.156

Avg. 0.168 0.369 0.222 0.189 0.237 0.135 0.334 0.185 0.154 0.202

Root Mean Squared Error Mean Absolute Error

C
on

v.
F
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ec
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In general, the forecasting methods outperform the conventional method in almost all test 

periods. However, the Overall Mean model stands out among the conventional methods and 

has both RMSE and MAE values close to the forecasting methods in most periods. 

Furthermore, the performance of our ARIMA-LSTM hybrid model stands out in Test 1 and 

Test 2 and is only outperformed by the ARIMA-RF on the first and last evaluation period, 

however marginally. However, the ARIMA-RF performs significantly worse on Test set 1 and 

2, resulting in a higher average RMSE, depicted in the Avg. column in table 5-1. The 
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components of the hybrid model have a worse average predictive performance when applied 

individually and have a similar mean RMSE. As the individual LSTM model perform 

significantly better in Test 1 than the individual ARIMA, it has a slightly lower average 

RMSE. 

The results are similar when reviewing the MAE. The ARIMA-LSTM hybrid performs 

somewhat better than the other forecasting methods and the best performing conventional 

model Overall Mean. The predictive power of the hybrid model is significantly better than the 

remaining conventional methods.  

5.2 Performance Stability 

The main strength of the ARIMA-LSTM hybrid is its performance stability through the test 

periods. Whereas the other forecasting models perform similarly well to the hybrid in the first 

and last test periods, they have a significant drop in accuracy in the second and third period 

tested. This tendency can be extracted from the average RMSE across all models, which is 

shown in the bottom row of table 5-1. From the first to the second test period, the average 

RMSE increases from 0.168 to 0.369. The ARIMA-LSTM hybrid also experiences a drop in 

RMSE, but clearly outperforms the other models in the second test period, excluding the 

individual LSTM, with an RMSE of 0.292. This trend continues in the third testing period, 

however with somewhat less distinction. 

Across the four sets tested, the hybrid had a standard deviation of 0.061 for the RMSE, 

displayed in table 5-2. Comparing this to the closest performing conventional and forecast 

model according to RMSE, the Overall Mean and the ARIMA-RF, that had a standard 

deviation of 0.081 and 0.094 respectively, the hybrid appear to achieve high stability in its 

predictions. 

Table 5-2 Standard deviation for RMSE in test sets for all models 

Model St.dev

Full Historical Model 0.076
Constant Correlation Model 0.115

Single Index Model 0.087
Overall Mean Model 0.081

ARIMA 0.087
LSTM 0.054

ARIMA-RF 0.094
ARIMA-LSTM 0.061

Standard Deviation of RMSE for each model
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5.3 Portfolio Variance 

Table 5-3 displays the portfolio variance calculated using Overall Mean method and the hybrid 

model for the 10 sample portfolios each made up of five randomly selected stocks from our 

dataset. The variance for each of the 10 portfolios is summed and compared to the actual 

variance. A more detailed view of the portfolio results can be found in Appendix A8. 

Table 5-3 Portfolio variance for Overall Mean method and hybrid model, 
compared to the actual value. The most accurate variance for each test set is 
highlighted in bold face. 

Set Overall Mean Hybrid Actual
Dev 0.713 0.753 0.732

Test 1 0.365 0.395 0.601
Test 2 0.380 0.407 0.448
Test 3 0.398 0.471 0.369

Sum Variance for all Portfolios

 

In summation, the predictions from the hybrid model used to calculate the portfolio is closer 

to the actual variance than the estimations from the Overall Mean method in Test 1 and 2. In 

these periods, both the methods estimate a lower variance than what was actually observed, 

but since the hybrid predicts slightly higher, its performance is better. However, for the 

development set and Test 3, the hybrid overestimates the variances, and the Overall Mean 

method is able to produce estimations closer to the observed variances. Table 5-4 displays the 

accumulated absolute deviation from the methods’ estimation and the actual variance for each 

portfolio. 

Table 5-4 Absolute deviation between actual portfolio variance and the 
estimations from the method in all test sets.  The lowest deviation for each 
test set is highlighted in bold face. 

Set Overall Mean Hybrid
Dev 0.107 0.073

Test 1 0.237 0.207
Test 2 0.076 0.057
Test 3 0.046 0.103
Sum 0.465 0.441

Absolute Deviation Accumulated

 

The same information can be extracted from this table; the hybrid model’s estimations for the 

portfolio variance are better in Test 1 and Test 2, whereas the Overall Mean is better in the 
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development set and test 3. Accumulated over the four test sets, the deviation between the 

estimations of the hybrid model and the actual values is slightly lower than for the estimations 

from Overall Mean method, shown in the bottom row of the table. 

5.4 Findings in Relation to Previous Literature 

As displayed in the previous sections, our proposed hybrid model had the lowest average 

RMSE and MAE, and the highest stability in prediction accuracy over the four time periods 

tested. This is mainly in line with the findings made by previous literature employing a similar 

framework of methodology. Choi’s (2018) implementation of a similar hybrid model to 

predict stock correlations for S&P500 constituents showed that the ARIMA-LSTM model had 

a significantly lower RMSE compared to an equivalent set of financial methods such as 

Constant Correlation, Full Historical and the Single-Index Model. Our results display a similar 

improvement compared to these methods, but neither the best performing traditional method 

in our research, the Overall Mean model, nor other forecasting benchmarks was included in 

Choi’s experiment. The performance of the Overall Mean model is in line with Elton, Gruber, 

and Urich’s paper (1978) where it was the best performing model among a similar set of 

correlation forecasting methods in a comparative experiment. However, their paper and other 

research also identifies the Constant Correlation as one of the best performing methods. In 

contrast, the Constant Correlation method clearly yielded the highest average RMSE, and was 

the worst performing method in three out of the four periods tested.  

In summation, our ARIMA-LSTM hybrid model was able to achieve significantly higher 

accuracy in predicting correlation coefficients than most of the conventional methods, 

measured in both RMSE and MAE. In comparison with the other forecasting models, as well 

as the Overall Mean model, the hybrid achieved a somewhat lower average RMSE and MAE. 

The hybrid also showed the lowest variation in prediction accuracy across the test periods, as 

well as notably lower RMSE in Test 1 in which most of the benchmarks exhibit a large 

decrease in performance accuracy. When comparing the hybrid model and the Overall Mean 

model’s ability to predict the correlations between a randomly selected set of stocks in a 

portfolio, the differences in predictions diminished somewhat, but the hybrid still performed 

slightly better. The results presented in this chapter provides a basis for answering the research 

question through a discussion in the next chapter. 
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6. Discussion 

In this chapter we will discuss the results taking the previously stated research question into 

consideration. Firstly, we will discuss the implications of our results in relation to the research 

question. Secondly, we will discuss some barriers for adoption of modern forecasting 

approaches, before we acknowledge some limitations of the thesis. These limitations build up 

to our proposal for further research, which will constitute the last segment of this chapter.  

6.1 Implications for the Research Question  

The research question relates to how modern approaches to forecasting can contribute to 

making portfolios more stable. The research question is also substantiated by a supplementary 

question of to which degree these contributions are sensitive to financial black swans. To 

discuss these questions meaningfully it is desirable to first understand the dynamic tendencies 

of our testing periods. The five data splits used for training, development, and evaluation, stem 

from fundamentally different time periods. This is clearly illustrated by examining the OSEBX 

Index Chart in figure 6.1, segmented into our testing periods. Test 1 incorporates most of the 

financial impact from Covid-19, Test 2 incorporates the recovery, while Test 3 shows market 

tendencies similar to the development set in addition to the most recent years of training data.  

 

Figure 6.1 Visualization of OSEBX index return from Q1 2017 to Q3 2020. 

To begin with, the employment of more accurate forecasts of correlation coefficients will 

provide better basis for perceiving the risk related to a potential portfolio constituent. The 

closer the correlation coefficients used for determining constituents of a portfolio are to the 

real correlation among constituents in the investment horizon, the closer investors will come 
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to the true efficient frontier of portfolios. The portfolio selection segment of the evaluation 

contributes to displaying how the predictive performance has impact on smaller subsets of the 

data, and thus leads to better assessments of portfolio variance.  

Reviewing the results presented in the preceding section, the proposed hybrid model 

employing a neural network achieve the best predictive performance. Hence, employing neural 

networks can provide more accurate forecasts as an alternative to other means of defining 

correlation in the portfolio optimization problem. A stable portfolio will exist on the low-risk 

end of the efficient frontier, yielding moderate levels of return with a low portfolio variance. 

Defining correlation coefficients as a proxy for risk, is essential in this trade-off. With this in 

mind, the results presented show tendencies that the potential contribution of modern 

forecasting approaches to the stability of portfolios is significant. 

The supplementary question regarding financial black swans is more intricate to answer. Based 

on our evaluation, strict conclusions should not be drawn as our testing periods only include 

two quarters which are significantly affected of a financial black swan. However, the 

predictive performance in the black swan quarters, Test 1 and Test 2, can provide suggestions 

as to whether the contribution is resistant to black swan events. The proposed hybrid model 

employing ARIMA and LSTM has the best predictive power in the periods affected by a 

financial black swan.  

A common issue with forecasting in general discussed previously in this thesis is overfitting 

to the training data. Such overfitting means that seemingly accurate models will not retain the 

predictive performance when used for true forecasts over the investment horizon. 

Contributions from a model that are impeded when a black swan event occurs can indicate 

that the model overfits.  As presented in section 5.2 the proposed hybrid model with ARIMA 

and LSTM varies notably less in RMSE and MAE compared to the various models in general. 

This suggests that overfitting issues has been reduced as this model has lower fluctuations in 

predictive performance across multiple time steps. 

As the research question presented in this thesis is substantiated by a consideration of 

resistance to black swans, it requires assessing predictive performance on two ends. A model 

that fulfills the desired outcome of the posed research question must have strong predictive 

performance across all testing periods, while not letting the negative impacts of the atypical 

Test 1 and Test 2 periods deteriorate the overall predictive performance. From the results table 
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5-1 we can deduce that our proposed hybrid model both has a strong predictive performance 

and that this is not a result of overfitting data which would lead to relatively large errors in 

Test 1 and Test 2.  

In summary, the findings support the notion that modern approaches to forecasting can 

contribute to portfolio stability, and that these contributions to a sufficient degree are resistant 

to black swans. On the contrary, the results are ambiguous as to whether the LSTM in 

particular is able to improve the forecasts of ARIMA, as the ARIMA-RF model also performs 

well. However, both the individual LSTM and the hybrid employing an LSTM model performs 

significantly better than the remaining models in the periods affected by high market 

fluctuations. This could potentially be attributed to its long-term memory capacity and ability 

to store information about sequences over long training horizons. Nonetheless, the findings 

are unambiguous when it comes to the stronger predictive power of modern forecasting 

approaches, compared to the conventional methods. Better estimations on the back of modern 

forecasting approaches can help to provide accuracy in the implied risk decision makers are 

facing when investing. However, these findings rely on methodology with limitations and 

should not be followed by sentiments of undividedness when drawing conclusions. These 

limitations will be discussed in the section 6.3, but first we will provide a line of reasoning 

which might explain why this thesis, or similar studies, fail to bridge the gap between 

researchers and practitioners. It is important to understand why the modern and advanced 

methods, which might appeal to researchers due to their predictive power, not always achieves 

the same acceptance among enterprises or private investors.  

6.2 Adoption Barriers 

Our thesis provides findings with managerial implications that modern approaches can be 

employed to make better foundations for strategic decisions in portfolios. Further, this can be 

extrapolated to learning that expands on our research question. If our specific choice of 

investigation, portfolios, can be improved with modern approaches, then there is likely to exist 

other decision areas which have untapped potential in terms of exploiting machine learning 

and other emerging methods. This inference is however frivolous if businesses chooses not to 

adopt such modern approaches. Therefore, in the following discussion we will go into barriers 

of adopting new methods and the implications this have for further research. Admittedly, this 

is a digression from our specific research question that deals with the usefulness of modern 
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forecasting methods in portfolios. However, it is a valuable discussion for understanding to 

which degree managerial implications can and should be drawn from our thesis. 

One can draw parallels to the philosophical principle Occam’s razor. This principle states that 

if two different explanations exist for the same phenomenon, then the simpler explanation 

should be preferred (Duignan, 2020). The philosophical principle has laid the foundation for a 

principle in computational learning theory, Occam learning, which states that given all other 

things being equal, a shorter explanation for observed data should be favored over a lengthier 

explanation (Blumer, Ehrenfeucht, Haussler, & Warmuth, 1987). For our thesis this can be 

conveyed as; if simpler methods provide decision makers with the same value in terms of 

predictive power and implicit learning about relationships as advanced models, decision 

makers should prefer the simple method. This is because simpler methods can be associated 

with lower costs, while more advanced methods are consequently more expensive. Hence, 

lack of adoption of modern approaches to forecasting, and data analysis in general, is an issue 

that can be reduced to a cost-benefit analysis of possible methods. The benefit is the predictive 

power of models and the implicit learning of the model, which can be derived from the degree 

of interpretability. The cost on the other hand is related to requirements such as competence, 

preprocessing, computational power, availability, time, and data volumes. Given a problem 

related to a set of data, it is likely that there is an extremely complex model in a sea of infinitely 

many different modifications of models and parameters, which is optimal for the problem. 

However, it is unfeasible to try to find this one ideal model and decision makers must therefore 

always appraise the possible models with consideration to the associated cost of identification 

and implementation. Alas, businesses should, and most likely will, determine their problem 

approaches based on a cost-benefit assessment. 

If we accept notions that there are emerging and more advanced methods that possibly can 

provide better predictive power than the status quo, it is highly relevant to discuss why these 

are not adopted more widely among businesses. For such methods to be adopted and 

implemented in favor of the traditional methods, the perceived value added must outweigh the 

increased cost. This can happen in one of two ways. Either researchers must improve emerging 

methods to a point where their added values are so superior that businesses are forced to adopt 

them in spite of increased costs, or they must develop effective frameworks which 

dramatically lessens the burden of implementation. This thesis has relied on the latter to some 

degree. The relative simple method of ARIMA for explaining linear tendencies are specialized 

for each of the 703 time series in our data set, however implemented with the help of an 
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automatic framework, while the LSTM network is generalized to reduce the computational 

cost. Our approach is therefore an example of how researchers can adhere to the cost-benefit 

consideration, but it is only one of many possible approaches to do just that. This leads us to 

the limitations of our thesis and our encouragement to future research.  

6.3 Limitations  

The findings of the methodology reported in the last section should be considered in light of 

some limitations. Although our results suggest promising potential with the application of 

modern approaches for forecasting the correlation coefficient between stocks, it is important 

to highlight some of the limitations the approach does not cover in its current state. This section 

includes identifying said limitations, in addition to discussing some of these limitations in 

detail. Lastly, alternative approaches and direction for future research is proposed. 

First and foremost, the most fundamental constraint when performing research in general 

should be referred to. This thesis is subject to constraints regarding to time and the time 

required for different processes. In particular, the computational burden of problems increases 

in parallel with time necessities. Naturally, such constraints lead to a need for simplifications 

across a multitude of thesis elements. 

One of these simplifications relates to the data gathering. Only included companies’ historical 

price movements were collected as data foundation, limiting our model and benchmarks to 

univariate time series architecture. A multivariate time series model with additional 

explanatory variables would have entailed a stronger foundation to draw empirical conclusions 

from. Therefore, the univariate time series structure limits the validity of the generalization of 

the hybrid model. This could mean that application on different time periods, or on other stock 

pair correlations, would have resulted in less accurate predictions. 

Another ramification of the all-embracing time constraint is the simplifications applied to the 

size of our data. Neural networks have a fundamental advantage of being able to handle vast 

amounts of data, which means that this thesis is limited in its review of this learning algorithm. 

Including additional points of data through covering a wider timespan, or supplementary 

variables as mentioned in the preceding paragraph, would increase the utility value of the 

neural network. Exhibiting awareness of this limitation could be viewed as paradoxical when 

considering the transformation from daily to quarterly data. This transformation undeniably 
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reduces the number of data points fed to the models. However, this has been considered a 

trade-off between time span covered and computational feasibility. Employing quarterly data 

allows for covering a substantially wider time span, without making the computational burden 

unmanageable.  

A desire to provide sufficient amounts of data to the neural network led to this thesis relying 

on simplifications regarding the validation split of data. Normally cross-validation in time 

series involves including numerous data splits to validate on many time steps. However, the 

data hungriness of neural networks led to keeping the window size of the time series cross-

validation large, which consequently reduces the number of possible evaluation steps. Having 

said that, it should be regurgitated that each time step in our data split involves predicting and 

calculating performance metrics that are composed of 703 correlation coefficients. On account 

of this, making a generalized model on the initial training data and evaluating it on a limited 

amount of testing sets is determined an acceptable compromise. 

The constraints related to time and computational efforts also induce need of limitation in 

model applications. In this thesis automated frameworks have been used to reduce the time 

consumption of certain methodological steps. These automated frameworks are great for this 

reason; however, they can also bring about suboptimal solutions or potentially hampered 

learning as it reduces researcher involvement. In other cases, for instance in the inclusion of 

benchmark models, parameter tuning is limited which will have depreciating effects on the 

validity of findings. Limited time also led to this thesis not making efforts to look inside the 

black box of the LSTM (Beizer, 1995). Traditionally, applications of advanced neural 

networks for decision making have received criticism for being used in favor of interpretable 

models. This criticism has triggered a response where researchers have developed methods for 

backpropagating through neural networks, which allows for learning causality mechanisms. 

On the other hand, this thesis and the research question presented does not make efforts to 

explain the causalities of changes in correlation coefficients, but rather discuss the potential 

value of modern learning applications in financial forecasting.  These presented limitations 

are the starting point for a discussion on how this specific method can be embroidered in 

further research, and thus contribute to better predictive power and improve implicit learning 

through increased interpretability. 
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6.4 Future Research 

Further research in the field with regards to these limitations can be motivated by the reasoning 

that increased value added from modern approaches to forecasting will lead to a higher 

probability of real-life business adoption. Improvements in predictive power can be achieved 

by exploring different learning algorithms, or alternative data foundations. Parameter 

optimization is costly both in time and computational efforts, which is significantly limiting 

the scope of this thesis. Furthermore, inclusion of explanatory time series is a field of further 

research that is likely to yield interesting findings, which further strengthens the predictive 

power that modern forecasting approaches can display to attract practitioners.  As mentioned 

earlier, however, we would also like to point out that further research that improves the 

predictive power of these new methods should be done simultaneously with attempts to 

automate and simplify their implementation on real issues in order to best reduce barriers to 

business adoption. We will therefore attribute the same emphasize to developing frameworks 

for implementation of modern approaches, as to constantly expanding the complexity of 

models. 
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7. Conclusion 

This thesis aimed to investigate how modern approaches to forecasting can contribute to more 

stable portfolios. The background and literature review provided a reasoning for why this 

research question needs to be addressed. The background information explained a long-lasting 

problem of constructing inputs for portfolio strategy. This problem is also surrounded by 

dynamic conditions represented in this thesis by the inclusion of Covid-19 as an example of a 

financial black swan. Furthermore, the literature review revealed a decision area which 

traditionally is solved with simpler statistical methods, despite developments of modern 

forecasting methods that are applicable to the problem. 

The aforementioned elements led us to our proposed model consisting of an ARIMA 

component and an LSTM component, which was responsible for explaining the linear and 

non-linear tendencies in the data, respectively. Our experimental approach was populated by 

data on Oslo Stock Exchange returns, including a time span that encompassed several peaks 

and throughs. This coincided with our attempt to substantiate our research question with an 

element of sensitivity to financial black swans. The approach also included a range of 

benchmarks consisting of conventional methods for estimating correlation, the individual 

components of the hybrid model and an alternative machine learning method for the non-linear 

tendencies of a hybrid model. This ensured a comparative design of the experiment which 

aimed to provide findings related to our research question.  

Our approach, populated by the elected data, provided findings which illustrated an untapped 

potential of modern approaches to forecasting in providing input accuracy in portfolio strategy. 

The elected forecasting methods of our thesis accrued a predictive performance that overall 

was stronger than the conventional methods across all test sets. In addition, the dynamic 

conditions represented in a financial black swan encompassed by Test 1 and Test 2 did not 

deteriorate the predictive performance enough for these contributions to lose its value. This 

implies that practitioners equipped with modern forecasting approaches can achieve more 

accuracy in their inputs and thus achieve their desired level of portfolio stability.  

However, the discussion has also addressed why common practice may deviate from scientific 

findings, such as the ones presented in this thesis. The Overall Mean, which is a relatively 

simple statistical method for estimating future correlation, had a predictive performance 

comparable to the forecasting methods. Considering that this method is substantially less 
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costly, in reference to computational cost and time demand, it is difficult to strictly determine 

that forecasting methods with their predictive power displayed in this thesis is worthwhile for 

business adoption. We therefore want to encourage researchers to focus their attention to 

efforts on reducing the cost of modern forecasting approaches, in order to bridge the gap 

between researchers and practitioners. In addition, our findings were affected by the main 

limitation which is related to the scarcity of time. Provided more time this thesis could include 

additional, data, methods and optimization of model parameters, which would be expected to 

increase the predictive performance achieved.  

This thesis has contributed to the literature by displaying how previously unused modern 

approaches to forecasting can be utilized for estimation of inputs required for decision making. 

Alas, we contribute to the literature by providing an example of how modern forecasting 

approaches can provide more stability in portfolios by increasing the accuracy of correlation 

coefficient estimations. Forecasting of correlation coefficients is naturally only one specific 

area of decision-making inputs, and we believe that there are a multitude of potential areas to 

investigate in further research.  

 

 

 

 

 

 



 45 

8. References 

Adebiyi, A., Adewumi, A., & Ayo, C. (2014, March). Comparison of ARIMA and Artificial 

Neural Networks Models for Stock Price Prediction. J. Appl. Math. doi:614342:1-

614342:7. 

Ahir, H., Bloom, N., & Furceri, D. (2020, April 4). IMF Blog. Retrieved December 8, 2020, 

from Global Uncertainty Related to Coronavirus at Record High: 

https://blogs.imf.org/2020/04/04/global-uncertainty-related-to-coronavirus-at-record-

high/ 

Armstrong, J. (2001). Evaluating forecasting methods. Chapter 14 in Principles of 

forecasting: a handbook for researchers and practitioners. 

Avishai, B. (2020, April 21). The Pandemic Isn't a Black Swan but a Portent of a More Fragile 

Global System. Retrieved from The New Yorker: 

https://www.newyorker.com/news/daily-comment/the-pandemic-isnt-a-black-swan-

but-a-portent-of-a-more-fragile-global-system 

Beizer, B. (1995). Black-Box Testing: Techniques for Functional Testing of Software and 

Systems.  

Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning Long-Term Dependencies with 

Gradient Descent is Difficult. Transactions On Neural Networks, 5(2), pp. 157-166. 

Blumer, A., Ehrenfeucht, A., Haussler, D., & Warmuth, M. K. (1987). Occam's razor. 

Information processing letters, 24(6), pp. 377-380. 

Bouvet Norge. (2020, June 11). Convolutional Neural Networks : The Theory. Retrieved 

October 10, 2020, from Bouvet Deler: https://www.bouvet.no/bouvet-

deler/understanding-convolutional-neural-networks-part-1 

Box, G., & Jenkins, G. (1970). Time Series Analysis: Forecasting and Control. San Fransisco: 

Holden Day. 

Breiman, L. (2001). Random Forests. Machine Learning, 45, pp. 5-32. 

doi:10.1023/A:1010933404324 



 46 

CFI. (2020). Correlation - A statistical measure of the relationship between two variables. 

Retrieved October 6, 2020, from Corporate Finance Institute: 

https://corporatefinanceinstitute.com/resources/knowledge/finance/correlation/ 

Chesnay, F., & Jondeau, E. (2001). Does Correlation Between Stocks Really Increase During 

Turbulent Periods? Economic Notes(30), pp. 53-80. 

Choi, H. K. (2018). Stock price correlation coefficient prediction with ARIMA-LSTM hybrid 

model. Seoul, Korea: Korea University. Retrieved from Retrieved from: 

https://arxiv.org/pdf/1808.01560v5.pdf 

Chollet, F., & others. (2015). Keras. Retrieved from https://github.com/fchollet/keras 

Duignan, B. (2020, August 5). Topic: Occam's razor. Retrieved November 2, 2020, from 

Brittanica: https://www.britannica.com/topic/Occams-razor 

Dupond, S. (2019). A thorough review on the current advance of neural network structures. 

Annual Reviews in Control, 14, pp. 200-230. 

Elton, E., Gruber, M., & Urich, T. (1978, December). Are Betas Best? The Journal of Finance, 

33(5), pp. 1375-1384. doi:10.2307/2327272 

Fathi, O. (2019). Time series forecasting using a hybrid ARIMA and LSTM model. France: 

Velvet Consulting. 

Fattah, J., Ezzine, L., Aman, Z., Moussami, H., & Lachhab, A. (2018). Forecasting of demand 

using ARIMA model. International Journal of Engineering Business Management, 

10(2). doi:10.1177/1847979018808673. 

Fischer, T., & Kraus, C. (2018). Deep learning with long short-term memory networks for 

financial market predictions. European Journal of Operational Research, 270(2), pp. 

654-669. doi:10.1016/j.ejor.2017.11.054 

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. Cambridge, MA.: MIT 

Press. 

Graves, A. (2012). Supervised Sequence Labelling with Recurrent Neural Networks (Springer. 

utg.). 



 47 

Greff, K., Srivastava, R. K., Koutník, J., Steunebrink, B. R., & Schmidhuber, J. (2017, 

October). LSTM: A Search Space Odyssey. IEEE Transactions on Neural Networks 

and Learning Systems, 28(10), pp. 2222-2232. doi:10.1109/TNNLS.2016.2582924 

Grolemund, G., & Wickham, H. (2011). Dates and Times Made Easy with lubridate. Journal 

of Statistical Software, 40(3), pp. 1-25. Retrieved from 

https://www.jstatsoft.org/v40/i03/ 

Hand, D. J. (2014). The Improbability Principle: Why Coincidences, Miracles, and Rare 

Events Happen Every Day. New York: Scientific American / Farrar, Straus and Giroux. 

Haykin, S. (2008). Neural Networks and Learning Machines: Third Edition. Upper Saddle 

River, New Jersey: Pearson Education, Inc. 

Hochreiter, S., & Schmidhuber, J. (1997). LONG SHORT-TERM MEMORY. Neural 

Computation, 9(8), s. :1735{1780. doi:10.1162/neco.1997.9.8.1735 

Hochreiter, S., Bengio, Y., Frasconi, P., & Schmidhuber, J. (2001). Gradient Flow in Recurrent 

Nets: the Difficulty of Learning Long-Term Dependencies. A Field Guide to 

Dynamical Recurrent Neural Networks. 

Hutter, F., Hoos, H. H., & Leyton-Brown, K. (2011). Sequential Model-Based Optimization 

for General Algorithm Configuration. Lecture Notes in Computer Science, vol 6683. 

doi:10.1007/978-3-642-25566-3_40 

Hyndman, R. J., & Khandakar, Y. (2008). Automatic time series forecasting: The forecast 

package for R. Journal of Statistical Software, 27(1), pp. 1-22. 

doi:10.18637/jss.v027.i03 

Hyndman, R. J., & Koehler, A. B. (2006). Another look at measures of forecast accuracy. 

International journal of forecasting, 22(4), ss. 679-688. 

Hyndman, R., & Athanasopoulos, G. (2018). 3.1 Some simple forecasting methods. 

Forecasting: principles and practice. Australia: Otexts. Retrieved December 8, 2020, 

from Forecasting: principles and practice: https://otexts.com/fpp2/simple-

methods.html 



 48 

Hyndman, R., & Athanasopoulos, G. (2018). Forecasting: principles and practice. Melbourne, 

Australia. Retrieved December 8, 2020, from 8 - ARIMA models: 

https://OTexts.com/fpp2 

Hyndman, R., Athanasopoulos, G., Bergmeir, C., Caceres, G., Chhay, L., O'Hara-Wild, M., . 

. . Yasmeen, F. (2020). forecast: Forecasting functions for time series and linear 

models. Retrieved from https://pkg.robjhyndman.com/forecast/ 

Hyndman, R., Athanasopoulos, G., Bergmeir, C., Caceres, G., Chhay, L., O'Hara-Wild, M., . 

. . Yasmeen, F. (2020). forecast: Forecasting functions for time series and linear 

models. R package version 8.13. Hentet fra https://pkg.robjhyndman.com/forecast/ 

Kirkpatrick, C. D., & Dahlquist, J. R. (2010). Technical Analysis: The Complete Resource for 

Financial Market Technicians. FT Press., p. 548. 

Kohavi, R., & Provost, F. (1998). Glossary of terms. Machine Learning, 30, pp. 271-274. 

doi:10.1023/A:1007411609915 

Krauss, C., Anh, X., & Huck, N. (2017). Deep neural networks, gradient-boosted trees, 

random forests: Statistical arbitrage on the S&P 500. European Journal of Operational 

Research, 259(2), pp. 689-702. doi:10.1016/j.ejor.2016.10.031 

Kryzanowski, L., Galler, M., & Wright, D. W. (1993, July). Using Artificial Neural Networks 

to Pick Stocks. Financial Analysts Journal, 49(4), pp. 21-27. 

doi:10.2469/faj.v49.n4.21 

Lecun, Y., Bottou, L., Orr, G., & Müller, K.-R. (2012). Efficient BackProp. I Y. Lecun, L. 

Bottou, G. Orr, & K.-R. Müller, Neural Networks: Tricks of the Trade. (ss. 9-48). 

Berlin, Heidelberg: Springer. doi:10.1007/978-3-642-35289-8_3 

Levenbach, H. (2017). Change & Chance Embraced: Achieving Agility with Smarter 

Forecasting in the Supply Chain. Delphus Publishing. 

Liaw, A., & Wiener, M. (2001). Classification and Regression by RandomForest. R News, 2, 

pp. 18-22. 

Lopez de Prado, M. (2018). Advances in Financial Machine Learning. John Wiley & Sons 

Inc. 



 49 

Low, R., Faff, R., & Aas, K. (2016). Enhancing mean–variance portfolio selection by 

modeling distributional asymmetries. Journal of Economics and Business, 85, ss. 49–

72. doi:10.1016/j.jeconbus.2016.01.003 

Markowitz, H. (1952, March). Portfolio Selection. The Journal of Finance(7(1)), pp. 77-91. 

doi:10.2307/2975974 

Markowitz, H. (2002). Efficient Portfolios, Sparse Matrices, and Entities: A. Operations 

Research, 50(1), pp. 154-160. doi:10.1287/opre.50.1.154.17774 

Martins, T. G. (2019). Deep Learning Lecture 1 - Prevent overfitting in Keras. Department of 

Mathematical Sciences, NTNU. Retrieved from 

https://www.math.ntnu.no/emner/MA8701/2019v/DeepLearning/7-

prevent_overfitting.html 

McElreath, R. (2016). Statistical Rethinking: A Bayesian Course with Examples in R and Stan. 

CRC Press. 

Olson, D., & Mossman, C. (2003, January). Neural network forecasts of Canadian stock 

returns using. International Journal of Forecasting, 19, pp. 453-465. 

doi:10.1016/S0169-2070(02)00058-4 

Oslo Børs. (2020). Hovedindeksen OSEBX. Retrieved December 8, 2020, from 

https://archive.is/oeAvZ#selection-791.0-803.12 

Preis, T., Dror, Y., Kenett, H., Stanley, E., Helbing, D., & Ben-Jacob, E. (2012, October 18). 

Quantifying the Behavior of Stock Correlations Under Market Stress. Scientific 

Report(2). doi:10.1038/srep00752 

Raymond, Y. T. (1997). An application of the ARIMA model to real-estate prices in Hong 

Kong. Journal of Property Finance, 8(2), pp. 152-163. doi:0958-868X 

Siami-Namini, S., Tavakoli, N., & Namin, A. (2018). A Comparison of ARIMA and LSTM 

in Forecasting Time Series. IEEE International Conference on Machine Learning and 

Applications, 17, pp. 1394-1401. doi:10.1109/ICMLA.2018.00227 



 50 

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). 

Dropout: A Simple Way to Prevent Neural Networks from Overfitting. Journal of 

Machine Learning Research, 15, pp. 1929-1958. 

Taleb, N. N. (2007). The Black Swan: The Impact of the Highly Improbable. New York: 

Random House. 

Temür, A., Akgün, M., & Temür, G. (2019). Predicting housing sales in Turkey using 

ARIMA, LSTM and hybrid models. Journal of Business Economics and Management, 

20, pp. 920-938. doi:10.3846/jbem.2019.10190.  

Weiss, E. (2000). Forecasting commodity prices using ARIMA. Technical Analysis of Stocks 

& Commodities, 18(1), pp. 18-19. 

Wickham, H., François, R., Henry, L., & Müller, K. (2020). dplyr: A Grammar of Data 

Manipulation. R package version 1.0.2. Retrieved from https://CRAN.R-

project.org/package=dplyr 

World Bank. (2020). Global Economic Prospects, June 2020. Washington, DC: World Bank. 

doi:10.1596/978-1-4648-1553-9 

World Uncertainty Index. (2020, November 20). Home: World Uncertainty Index (WUI): 

Global. Retrieved November 8, 2020, from https://worlduncertaintyindex.com/ 

Zhang, A., Lipton, Z. C., Li, M., & Smola, A. J. (2020). Dive into Deep Learning. Retrieved 

December 8, 2020, from https://d2l.ai 

Zhang, P. (2003). Time Series Forecasting Using a Hybrid ARIMA and Neural Network 

Model. Neurocomputing, 50, pp. 159-175. doi:10.1016/S0925-2312(01)00702-0.  

 

 

 

 

 



 51 

9. Appendix 

The appendix is arranged according to the chronological references throughout the text. 

Firstly, we present a descriptive summary of the collected data. Secondly, we present theory 

regarding ARIMA, RNN and LSTM. A brief explanation of the elected evaluation metrics is 

then included. Thereafter, we provide a short description of the approach implementation in R 

and Python. Lastly, disaggregated results from the portfolio evaluation are presented.  
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A1: Data Description 
Table A-1 Descriptive test data summary 

 

Table A-2 Companies included in the dataset, with ticker and industry 

Company Name Ticker Industry
Af Gruppen ASA AFG Construction & Engineering

Aker ASA AKER Oil & Gas Related Equipment and Services
Aker Solutions ASA AKSO Oil & Gas Related Equipment and Services

American Shipping Company ASA AMSC Freight & Logistics Services
ABG Sundal Collier Holding ASA ABG Investment Banking & Investment Services

Atea ASA ATEA Software & IT Services
Axactor SE AXA Banking Services

Bonheur ASA BONHR Electrical Utilities & IPPs
Dnb ASA DNB Banking Services
Dno ASA DNO Oil & Gas

Equinor ASA EQNR Oil & Gas
FRONTLINE LTD FRO Oil & Gas Related Equipment and Services

GAMING INNOVATION GROUP INC GIG Hotels & Entertainment Services
Golden Ocean Group Limited GOGL Freight & Logistics Services

Hexagon Composites ASA HEX Containers & Packaging
Kitron ASA KIT Electronic Equipment & Parts

Kongsberg Automotive ASA KOA Automobiles & Auto Parts
Kongsberg Gruppen ASA KOG Aerospace & Defense

Leroy Seafood Group ASA LSG Food & Tobacco
Medistim ASA MEDI Healthcare Equipment & Supplies

Norwegian Air Shuttle ASA NAS Passenger Transportation Services
Nel ASA NEL Renewable Energy

Norsk Hydro ASA NHY Metals & Mining
Nordic Semiconductor ASA NOD Semiconductors & Semiconductor Equipment

Olav Thon Eiendomsselskap ASA OLT Real Estate Operations
Orkla ASA ORK Food & Tobacco
PGS ASA PGS Oil & Gas Related Equipment and Services

Photocure ASA PHO Pharmaceuticals
Schibsted ASA SCHA Media & Publishing

STOLT-NIELSEN LIMITED SNI Freight & Logistics Services
Sparebank 1 SR Bank ASA SRBNK Banking Services

Storebrand ASA STB Investment Banking & Investment Services
Subsea 7 SA SUBC Oil & Gas Related Equipment and Services
Telenor ASA TEL Telecommunications Services

TGS NOPEC Geophysical Company ASA TGS Oil & Gas Related Equipment and Services
Tomra Systems ASA TOM Professional & Commercial Services

Veidekke ASA VEI Construction & Engineering
Yara International ASA YAR Chemicals  
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A2: ARIMA 
A univariate ARIMA model attempts to predict a value in a response time series by utilizing 

linear combinations of its past values and errors. This requires stationarity in the time series. 

A stationary time series is a time series whose properties, such as mean, variance and 

autocorrelation, do not depend on the time at which the series are observed (Hyndman & 

Athanasopoulos, 2018).  

Consider the general ARIMA model of order (𝑝, 𝑑, 𝑞) 

 𝑦𝑡
𝑑 = 𝑐 + ∑ 𝜑𝑖

𝑝

𝑖=1

𝑦𝑡−1
𝑑 + 𝜀𝑡 + ∑ 𝜃𝑗

𝑞

𝑗=1

𝜀𝑡−𝑗 (9-1) 

Where: 𝑦𝑡
𝑑 is stationary at time 𝑡 with 𝑑 levels of differencing, 𝑐 is a constant intercept, 𝜑𝑖 is 

a parameter denoting the coefficient related to the previous 𝑝 values of 𝑦𝑡, and 𝜀𝑡 is an error 

term ~𝒩(0, 𝜎𝜀
2), 𝜃𝑗  is a parameter denoting the coefficient related to the past 𝑞 values of the 

error term.  

Box and Jenkins suggest an iterative three-stage process for estimating an ARIMA model (Box 

& Jenkins, 1970). Firstly, the order (𝑝, 𝑑, 𝑞) of the model is selected based on the time series' 

observed characteristics. Typically, the time series is visually inspected to identify how many 

differencing levels must be applied to obtain stationarity. One level of differencing is equal to 

computing the difference between consecutive observations, expressed as 𝑧𝑡 = 𝑥𝑡  −  𝑥𝑡−1. 

Additional computations like logarithmic or Box-Cox transformations can also be applied to 

stabilize the variance. Then, the autocorrelation function, regularly referred to as the ACF, can 

be used to measure the linear dependence between observations separated by a time lag 𝑝. 

Further, the partial autocorrelation function, referred to as PACF, can be used to determine 

how many autoregressive terms 𝑞 are necessary (Hyndman & Athanasopoulos, 2018). 

Secondly, the parameters 𝜑𝑖 𝑎𝑛𝑑 𝜃𝑗  for the selected model (𝑝, 𝑑, 𝑞) are estimated. These 

coefficients are typically computed with maximum likelihood estimation to best fit the 

selected model.  
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The goodness of fit of the calculated model is often measured by Akaikes Information Criteria 

(AIC) (McElreath, 2016).  

 

The AIC can be written as 

 𝐴𝐼𝐶 =  −2 log(𝐿) + 2(𝑝 + 𝑞 + 𝑘 + 1) (9-2) 

Where 𝐿 is the likelihood estimate of the data, 𝑝 and 𝑞 are the number of past values and past 

error terms included in the model as parameters, and k is an indicator where 𝑘 = 1 if the 

intercept coefficients 𝑐 > 0 and 0 otherwise.  

Lastly, the model fitted is evaluated and the autocorrelations from its residuals are checked to 

satisfy certain assumptions. The residuals are expected to resemble white noise and show low 

levels of autocorrelation. If the autocorrelations still contain some large values, the values for 

𝑝 and 𝑞 can be adjusted and the three-stage process is repeated. 

A3: RNN 
We utilized a Recurrent Neural Network, commonly referred to as an RNN, in order to make 

the final predictions for the correlation coefficients. The general structure of a neural network 

is that of a network of mathematical functions, known as neurons or nodes, that is joined by 

connection weights (Graves, 2012). RNNs are a type of sequential neural network that, in 

contrary to Feed-Forward Networks, can use its output data from a previous time step as input 

data in the next time step, through a feedback loop (Dupond, 2019). Thus, RNNs allow the 

model to capture dependencies, and store this information over time and sequences as hidden 

states, making such models suitable for time series forecasting. The recurrent structure of a 

RNN is displayed in figure A-1. 
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Figure A-1 RNN structure. Source: (Zhang, Lipton, Li, & Smola, 2020) 

Generally, the RNN updates its hidden state 𝐻𝑡, given a sequence of input values 

𝑥 = [𝑥1, 𝑥2, … 𝑥𝑡] and the hidden state of the previous time step 𝐻𝑡, as shown in the following 

equation 

 𝐻𝑡 =  𝜑(𝑊𝑋𝑡 + 𝑈𝐻𝑡−1 + 𝑏) (9-3) 

Where 𝜑 represents an activation function, which serves as a gate that transforms and maps 

the input values. The model aims to learn the parameters 𝑊and 𝑈, as well as the bias term 𝑏. 

Furthermore, the activation is passed forward to the next layer of nodes until it reaches the 

output node where it produces the final predictions. The network seeks to optimize the 

parameters by minimizing a loss function that computes the difference between the model 

predictions 𝑦̂ on the training data and the true target value 𝑦. For regression tasks, the most 

common loss function is the squared error, (𝑦 − 𝑦̂)2, but different functions can be selected 

depending on the specificity of the task. In practice, the network draws a randomly selected 

subset, referred to as a batch, of the training samples at fixed size and calculates the loss of the 

predictions. The parameters are then updated through a process called backpropagation 

through time, based on an optimization algorithm that improves the loss function. The network 

also uses a pre-defined learning rate when deciding how much to update the parameters each 

iteration. A single iteration of this process is called an epoch and the number of iterations is, 

in addition to the size of the selected subset, learning rate and optimization algorithm used, a 

hyperparameter that should be tuned in order to find an appropriate model.  
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However, due to the recurrent connections in these RNN structures, the resulting effect of 

these hidden states on the network outputs either decays rapidly or explodes exponentially 

over time (Hochreiter, Bengio, Frasconi, & Schmidhuber, 2001), depicted in figure A-2. This 

problem is often referred to as the vanishing gradient problem and poses a problem when 

attempting to model dependencies in long sequences (Bengio, Simard, & Frasconi, 1994). 

There have been several attempts to create a modified RNN architecture in order to deal with 

the aforementioned problem, and we have selected the Long Short-Term Memory (LSTM) 

approach in this thesis. 

 

Figure A-2 Vanishing gradient problem.  Source: (Graves, 2012) 

A4: LSTM 
In 1997, Hochreiter & Schmidhuber developed the LSTM network to address the problem of 

long-term information preservation without the risk of exploding or vanishing gradients. A 

LSTM model introduces four different gates, the forget gate, the input gate, the input 

candidate gate and the output gate, that gives the model the ability to decide when to 

remember and when to ignore inputs in the hidden state by using a specified algorithm (Zhang, 

Lipton, Li, & Smola, 2020). Additionally, a cell state 𝐶𝑡 is calculated, stored, and passed on 

to the following time step, serving as the long-term memory in the model (Fathi, 2019). Figure 

A-3 depicts how the gates in a node interact with data passed from the previous node and how 

it calculates what output 𝐻𝑡 to pass on to the next node. 
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Figure A-3 Graphical illustration of the inner structure of an LSTM cell. 
The operations performed in each gate is explained below. Source: (Zhang, 

Lipton, Li, & Smola, 2020) 

The forget gate 𝐹𝑡 represents a forgetter that is pointwise multiplied to the previous cell state 

𝐶𝑡−1 to drop values that are deemed unnecessary, as well as keeping those who are necessary 

for the predictions. The calculations in the forget gate is expressed through the following 

equation  

 𝐹𝑡 = 𝜎(𝑊𝑓𝑥𝑡 + 𝑈𝑓𝐻𝑡−1 + 𝑏𝑓) (9-4) 

The input value 𝑥𝑡 and the hidden state from the previous block 𝐻𝑡−1 is weighted with the 

parameters 𝑊𝑓 and 𝑈𝑓, where the subscript 𝑓 refers to the forget gate. Additionally, the gate’s 

bias parameter 𝑏𝑓 is added, before a sigmoid function 𝜎 is applied, ensuring that the output is 

mapped between 0 and 1. 

The input gate 𝐼𝑡 decides how much information from the input that will be added to the cell 

state and follows the same structure as the forget gate.  

 𝐼𝑡 = 𝜎(𝑊𝑖𝑥𝑡 + 𝑈𝑖𝐻𝑡−1 + 𝑏𝑖) (9-5) 

 𝐶̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐𝑥𝑡 + 𝑈𝑐𝐻𝑡−1 + 𝑏𝑐) (9-6) 
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The input candidate gate 𝐶̃𝑡 uses a 𝑡𝑎𝑛ℎ function to create a set of candidate values that is 

combined with 𝐼𝑡 through pointwise multiplication. If the forget gate approximates 1 over time 

and the input gate approximates 0, most of the past cell states 𝐶𝑡−1 are saved and used in 

current time steps. This enables the model to better identify long-term dependencies which 

reduces the effect of the vanishing gradient problem (Zhang, Lipton, Li, & Smola, 2020).The 

𝑡𝑎𝑛ℎ function is a hyperbolic tangent function which renders values between -1 and 1. The 

combination that updates the cell state uses pointwise multiplication, described in the 

following equation 

 𝐶𝑡 = 𝐹𝑡 ⊙  𝐶𝑡−1 + 𝐼𝑡 ⊙  𝐶̃𝑡 (9-7) 

In other words, the new cell state is stripped for information the model deemed unnecessary 

and will encompass information from the new input that it deems valuable. 

Then, this final cell state 𝐶𝑡 is stored and passed on to the next time step, and also used in the 

calculations for the output in the output gate in equation 9-9. 

 𝑂𝑡 = 𝜎(𝑊𝑜𝑥𝑡 + 𝑈𝑜𝐻𝑡−1 + 𝑏𝑜) (9-8) 

 𝐻𝑡 =  𝑂𝑡 ⊙ 𝑡𝑎𝑛ℎ (𝐶𝑡) (9-9) 

Again, weights are multiplied with the inputs and the gate’s bias parameter is added before a 

sigmoid function is applied to perform the output gate calculations. Lastly, the output gate 

calculates what values to use as output in the hidden state 𝐻𝑡 by combining the 𝑡𝑎𝑛ℎ applied 

cell state with 𝑂𝑡 using pointwise multiplication. 

 

A5: Performance Metrics 
A5.1 MSE 

Historically, the MSE is a popular pick as an accuracy measure for forecasting due to its 

theoretical relevance in modelling statistics (Hyndman & Koehler, 2006). The MSE is 

calculated as a sum of the squared errors for each observation, divided by the total number of 

observations, shown in equation 9-10. Due to the squaring of the errors, the MSE will penalize 

large deviations between the true values 𝑦 and the forecasted values 𝑦̂ more heavily. For the 
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validity of our models, we wish to avoid obtaining a model that performs extremely well in 

some circumstances and very poorly in others. For this reason, MSE is our preferred metrics 

as it is better to display the stability and generalization of the models across all the time series. 

Additionally, the root of the MSE (RMSE) increases interpretability as it expresses the 

prediction error in the same units as the variable we are estimating. Alas, we will use the 

RMSE when presenting the results. 

 
1

𝑁
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑁

𝑖=1

 (9-10) 

A5.2: MAE 
We also include the Mean Absolute Error (MAE) as a performance measure. Contrary to the 

MSE, the MAE is less sensitive to outliers and large prediction deviations which has caused 

some authors to favour the metric for forecast accuracy evaluation (Armstrong, 2001). In other 

words, the MAE penalises the errors for all the observations 𝑖 equally, which captures the 

overall performance better, but is less suitable when a potential outlier has a great negative 

effect for the practical use of the model. Therefore, we include MAE as an additional 

performance metric, meant to supplement the MSE. The calculation of MAE is displayed in 

equation 9-11. 

 
1

𝑁
∑|𝑦𝑖 − 𝑦̂𝑖|

𝑁

𝑖=1

 (9-11) 
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A6: Hyperparameter Selection 
Table A-3 Final hyperparameters used in the LSTM model 

Hyperparameter Value
Number of hidden layers 1

Number of nodes 10

Loss function MSE

Activation function tanh

Optimization algorithm adam

Epochs 100

Batch size 64

Early Stopping 10

(L1, L2) regularization weights (0.2,  0.0)

(L1, L2) regularization bias (0.2, 0.0)

Learning rate 0.001

Dropout rate 0.1  

A7: R and Python Implementation 
All of our models besides from the LSTM are implemented in the R programming language. 

The LSTM network is implemented using keras version 2.3.1 (Chollet & others, 2015) with 

built in tensorflow version 1.13.1, in a Jupyter Notebook environment. We employed lubridate 

for manipulating dates (Grolemund & Wickham, 2011), dplyr for data manipulation and 

subsetting (Wickham, François, Henry, & Müller, 2020), forecast for all ARIMA-related tasks 

(Hyndman R. , et al., 2020) and randomForest for fitting benchmark RF model and forecasting 

(Liaw & Wiener, 2001). 

 

A8: Sample Portfolios 
Table A-4 Stock tickers in the 10 randomly sampled portfolios 

1 2 3 4 5 6 7 8 9 10
BON AFG AMSC AXA DNO AFG LSG AKSO AKER AMSC

EQNR KOA DNO EQNR GOGL AXA SCHA DNB ASC BON
KOA NOD KIT NAS KIT EQNR SNI MEDI OLT DNB
NOD PGS KOA SIN OLT KOA SUBC NHY STB KOG
STB YAR NOD STB SCHA MEDI TGS TOM TEL ORK

T
ic

ke
r

Sample Portfolios
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Table A-5 Portfolio variances. Derived from the correlation predictions with 
the Overall Mean model and the hybrid model, compared to the actual 
variances 

 

S
et

1
2

3
4

5
6

7
8

9
10

S
um

D
ev

0.
08

5
0.

03
2

0.
04

4
0.

08
9

0.
03

4
0.

07
9

0.
11

5
0.

04
5

0.
01

9
0.

17
1

0.
71

3

T
es

t 1
0.

02
9

0.
03

2
0.

04
4

0.
05

2
0.

03
4

0.
04

7
0.

04
7

0.
03

5
0.

01
8

0.
02

8
0.

36
5

T
es

t 2
0.

03
1

0.
03

4
0.

04
6

0.
05

4
0.

03
5

0.
04

9
0.

04
8

0.
03

7
0.

01
9

0.
02

9
0.

38
0

T
es

t 3
0.

03
3

0.
03

7
0.

04
9

0.
05

7
0.

03
6

0.
05

1
0.

04
9

0.
03

7
0.

02
0

0.
02

9
0.

39
8

S
um

0.
17

8
0.

13
5

0.
18

2
0.

25
2

0.
13

8
0.

22
5

0.
25

8
0.

15
4

0.
07

6
0.

25
6

1.
85

5

1
2

3
4

5
6

7
8

9
10

S
um

D
ev

 
0.

08
9

0.
03

5
0.

05
0

0.
10

0
0.

03
8

0.
09

1
0.

12
1

0.
05

0
0.

02
0

0.
15

9
0.

75
3

T
es

t 1
0.

03
0

0.
03

5
0.

05
0

0.
05

8
0.

03
8

0.
05

2
0.

04
8

0.
03

8
0.

01
8

0.
02

8
0.

39
5

T
es

t 2
0.

03
2

0.
03

7
0.

05
1

0.
06

0
0.

03
8

0.
05

3
0.

04
9

0.
03

9
0.

01
9

0.
03

0
0.

40
7

T
es

t 3
0.

04
0

0.
04

2
0.

06
3

0.
07

1
0.

04
2

0.
06

0
0.

05
4

0.
04

2
0.

02
1

0.
03

4
0.

47
1

S
um

0.
19

1
0.

14
9

0.
21

5
0.

28
9

0.
15

6
0.

25
6

0.
27

3
0.

16
8

0.
07

8
0.

25
1

2.
02

6

1
2

3
4

5
6

7
8

9
10

S
um

D
ev

 
0.

10
1

0.
02

8
0.

05
8

0.
10

4
0.

03
7

0.
09

4
0.

10
4

0.
04

4
0.

01
5

0.
14

7
0.

73
2

T
es

t 1
0.

05
0

0.
05

1
0.

09
7

0.
08

5
0.

05
6

0.
08

4
0.

06
6

0.
05

6
0.

03
0

0.
02

8
0.

60
1

T
es

t 2
0.

02
9

0.
03

2
0.

05
4

0.
06

8
0.

04
1

0.
05

9
0.

05
2

0.
04

9
0.

02
3

0.
04

2
0.

44
8

T
es

t 3
0.

02
6

0.
02

4
0.

03
9

0.
05

4
0.

03
4

0.
05

3
0.

05
5

0.
03

6
0.

01
9

0.
02

8
0.

36
9

S
um

0.
20

6
0.

13
4

0.
24

8
0.

31
1

0.
16

7
0.

29
0

0.
27

7
0.

18
5

0.
08

7
0.

24
6

2.
15

0

O
ve

ra
ll

 M
ea

n

H
yb

ri
d

A
ct

ua
l


