

Modelling Probability of Default
with Machine Learning

How well does machine learning perform and can it replace the
standard methods?

Ruben Jæger-Pedersen

Supervisor: Jonas Andersson

Master Thesis, Economics and Business Administration

Major in Business Analytics

NORWEGIAN SCHOOL OF ECONOMICS

This thesis was written as a part of the Master of Science in Economics and Business

Administration at NHH. Please note that neither the institution nor the examiners are

responsible − through the approval of this thesis − for the theories and methods used, or results

and conclusions drawn in this work.

Norwegian School of Economics

Bergen, Fall 2020

 ii

Acknowledgement

Working with this thesis has been a difficult, but an incredible learning experience by allowing

me to get a better understanding of both machine learning and modelling of default in credit

risk.

First, I would like to thank my supervisor Jonas Andersson, for helpful advice and

conversation to guide me through this thesis. I would also like to thank Ingvar Ersland for

valuable information and conversation regarding the current landscape of machine learning

and modelling of default in Norway. This has been extremely helpful, and I believe has added

an extra layer of depth to my thesis. I would also like to thank Lars Petter Haugen for valuable

contribution.

 iii

Abstract

In this master thesis we apply a variation of different machine learning techniques on a dataset

for credit card clients in Taiwan to model the probability of default.

In this master thesis, we apply machine learning techniques on a dataset for credit card clients

in Taiwan to model the Probability of Default (PD). The machine learning methods used were

the Logistic Regression, Decision Tree, Random Forest, XGBoost, K-Nearest Neighbor

(KNN) and Neural Network. We use Receiver Operating Curve Area Under the Curve (ROC

AUC) and Confusion Matrix to assess the performance of each of the models, where the ROC

AUC is used as our main performance measurement.

We look into the standard methods of assessing credit and how the General Data Protection

Regulation (GDPR) affects machine learning now and in the future.

Random Forest performed the best followed by XGBoost and Neural Network. The difference

in ROC AUC score between the top four models were only 0.023, while the worst performers

KNN and Decision Tree were far behind.

Keywords – Probability of Default, PD Modelling, Machine Learning, GDPR, IRB,

Standard method

 iv

Contents

1. Introduction .. 1

1.1 Literature Review ... 2

1.2 Thesis Structure .. 3

2. Theory .. 4

2.1 Credit Risk ... 4

2.2 Definintion of Default .. 4

2.3 Assessment of Credit Risk as of Today ... 5

2.4 Data and GDPR .. 6

2.5 The Bias-Variance Tradeoff... 6

2.6 Supervised vs. unsupervised learning ... 7

2.7 Machine Learning and AI .. 8

2.8 Machine Learning Methods ... 8

2.8.1 Logistic Regression ... 9

2.8.2 Decision Tree .. 10

2.8.3 Random Forest ... 12

2.8.4 XGBoost .. 13

2.8.5 K-Nearest Neighbor (KNN) ... 14

2.8.6 Neural Networks (NN) ... 15

3. Data .. 16

3.1 Data Decsription .. 16

3.2 Variables .. 16

3.3 Software ... 18

4. Methodology ... 19

4.1 Data Cleaning... 19

4.2 Data partitioning .. 20

4.3 Tuning of Hyperparameters .. 21

4.3.1 Tuning of Decision Tree .. 21

4.3.2 Tuning of Random Forest ... 21

4.3.3 Tuning of XGBoost .. 22

4.3.4 Tuning of KNN... 23

4.3.5 Tuning of Neural Network ... 24

4.4 Evaluation of Model Performance .. 24

 v

5. Results ... 28

5.1.1 Decision Tree .. 28

5.1.2 KNN .. 29

5.1.3 Logistic Regression... 30

5.1.4 Neural Network ... 31

5.1.5 XGBoost.. 32

5.1.6 Random Forest ... 32

5.2 Summary of Performance ... 33

5.3 Variable Importance ... 34

6. Discussion .. 36

7. Conclusion .. 37

References .. 38

Appendix ... 41

A1 KNN – ROC and Confusion Matrix ... 41

A2 Decision Tree – ROC and Confusion Matrix ... 42

A3 Logistic Regression – ROC and Confusion Matrix ... 42

A4 – Neural Network – ROC and Confusion Matrix.. 43

A5 – XGBoost – ROC and Confusion Matrix .. 44

A6 – Random Forest – ROC and Confusion Matrix .. 45

Introduction vi

List of Figures

Figure 2.1: Bias-Variance Trade-off (Fortman-Roe, 2012) .. 7

Figure 2.2: Linear vs. Logistic Regression (Abonazel & Ibrahim, 2018) 10

Figure 2.3: Simple Decision Tree (James et al., 2017) .. 12

Figure 2.4: Feedforward Neural Network (Du & Swamy, 2016) 15

Figure 4.1: Example of ROC AUC plot ... 26

Figure 5.1: ROC for the Decision Tree ... 28

Figure 5.2: Cross-validation for KNN... 29

Figure 5.3: ROC curve for KNN ... 30

Figure 5.4: ROC for the Logistic Regression .. 30

Figure 5.5: ROC for the Neural Network ... 31

Figure 5.6: ROC for XGBoost .. 32

Figure 5.7: ROC for Random Forest ... 33

List of Tables

Table 3.1: Variables, descriptions and possible values .. 17

Table 4.1: XGBoost Hyperparameters and Grid Search .. 23

Table 4.2: Example of a Confusion Matrix .. 25

Table 5.1: Summary of Performance... 34

Table 5.2: Variable Importance .. 35

file://///Users/ruben/Google%20Drive/NHH/2.%20år/2.%20semester/Master/Oppgaven/Master%20Thesis%20FinalDocX.docx%23_Toc59388681
file://///Users/ruben/Google%20Drive/NHH/2.%20år/2.%20semester/Master/Oppgaven/Master%20Thesis%20FinalDocX.docx%23_Toc59388684
file://///Users/ruben/Google%20Drive/NHH/2.%20år/2.%20semester/Master/Oppgaven/Master%20Thesis%20FinalDocX.docx%23_Toc59388685

 1

1. Introduction

Being able to accurately predict whether a customer is going to default or not is vital to the

survival of credit lending companies. If the predictions are too strict, they will reject customers

who would not default and therefore miss out on income. On the other hand, if the predictions

are too lenient, they might lose money due to accepting customers who is going to default.

The accuracy of credit companies is therefore incredibly important to how well they fare.

Different methods of reporting credit have been used for over 100 years and the earliest uses

dates back to 1869. Conceivably, these methods were far simpler, and the earliest methods

often revolved around the “gut feel” of the lender. (Marketplace.org, n.d.). These methods for

reviewing credit continued to evolve and in 1989 one of the most widely used credit scoring

systems to date, FICO, was created. The credit scoring system revolved around the gathering

of financial related statistics in order to classify the borrower (FICO, n.d.).

Machine learning is by no means a new topic and was used as early as the 1950s, possibly

even earlier (Kononenko, 2001). Despite being discovered this early, the use of machine

learning did not “take off” until later. This was largely due to two factors: available data and

computational power. In order for machine learning to be most effective the input data needs

to be of a substantial size and quality. Secondly, machine learning in general requires a lot of

computational resources, which were lacking back then. Today, companies store much more

of their data, which opens up for of using tools like machine learning is there. Further,

computational power has increased exponentially, while the prices have even decreased.

Several studies have undertaken on this particular subject and Nordhaus (2001) found that the

computational power increased by 55% on an annual basis from 1940 till around 2000.

In this thesis we will be looking at a few different machine learning methods. While some

methods may prove to be better in terms of giving a better prediction, they may suffer from

being subsequently harder to interpret. For banks and credit card companies, this may not be

a problem, however as new laws aimed to protect the consumers such as GDPR, the

requirement for transparency has increased with it.

Introduction 2

 Literature Review

Machine learning has not yet been used as a standalone method for extending credit or loans.

Depending on the type of loan and whether the loan is targeted towards consumers or firms, a

various of different credit scoring methods have been employed. For consumers, the most

known credit scoring model is the FICO score. FICO score is calculated by assessing five

components: Amount of Debt, Payment History, Length of Credit History, New Credit and

Credit Mix. The weighting of each of the components is different, based on the estimated

importance. The end result is a credit score, which is usually between 350 and 850. A higher

end score indicates that the consumer has a low credit risk, whereas a lower score indicates a

higher risk (FICO, pg. 4, 2018). For private firms, Moody’s RiskCalc has been a commonly

used tool in the United States, since it was released in 2000 (Falkenstein et al., 2000).

There have been several studies regarding credit scoring and machine learning. Ong et al.

(2005) reviewed the performance of a series of machine learning techniques, including

Decision Tree, Neural Network and Logistic Regression. The best performing technique was

General Programming (GP), but that method is out of the scope for this thesis. Both the

Logistic Regression and Neural Network resulted good predictions, while the decision tree

performed poorly.

Hand and Henley (1996) performed a similar study of Neural Networks and Logistic

Regression, albeit nine years earlier. While their paper indicated that both the Logistic

Regression and Neural Network were good performers, their conclusion was more reserved;

There is no best overall method and that what method to use is highly dependent on the data

used (Hand & Henley, pg. 535, 1996).

Xiao et al. (2006) investigates similar machine learning methods to the two previous papers,

but also includes K-Nearest Neighbor (KNN) and various variations of Neural Network. The

study was done on three credit datasets from Germany, Australia and United States. Once

again, the Logistic Regression were among the best performers, only slightly behind the top

performer, Support Vector Machines. KNN performed poorly on two of the three datasets

used. A total of three variations were used for the Neural Network, were two of the variations

performed well.

Overall, the Logistic Regression and Neural Network were the two most commonly reviewed

machine learning methods for these papers, where the performance of the two techniques were

 3

similar. The explanatory ability of the techniques was a vocal discussion point in the paper of

Xiao et al. (2006). The best model for overall interpretability was the Decision Tree, followed

by the Logistic Regression. The Neural Network were among the worst in terms of

interpretability due to its complexity in determining the output (Xiao et al., pg 431, 2006).

 Thesis Structure

This Master Thesis is divided into 7 chapters, including the introduction. The 2nd chapter

introduces theory regarding credit risk, machine learning and the specific machine learning

methods used. Chapter 3 presents the dataset used for the empirical part of this thesis. It

includes a brief description of the dataset itself and its variables. In chapter 4, we go through

the methodology for the empirical part, where we do some changes to the dataset and the

tuning of relevant hyperparameters. Chapter 5 presents the empirical results, while we in

chapter 6 will discuss machine learning and general questions around it. We draw a conclusion

of this thesis in chapter 7.

Theory 4

2. Theory

 Credit Risk

Credit risk is the risk a lender takes due to the uncertainty whether a borrower will repay the

amount of money borrowed plus other agreed fees, such as interest. The goal of the lender, as

in any financial business, is to maximize their revenue and reduce costs. The income and costs

for credit businesses stems largely from maximizing the volume of loans and interest revenue

while minimizing the loss, or defaults, on each of these loans. This is the business rationale

among the credit card companies, which the dataset in this thesis is based on.

 Definintion of Default

When a customer is not able to repay a loan, it is defined as a default. While the definition of

default is simple enough, it may be difficult to determine exactly when the customer actually

has defaulted. After how many days or months can a loan be considered default?

The Basel Committee, which serve as a banking supervisor for its member, has released three

accords, often referred to as The Basel Accords I to III, in 1998, 2004 and 2013 (BIS, n.d.).

The purpose of these accords is to serve as regulations for banks and financial institutions. In

the 2nd accord, Basel II, they define a default when either of two events have occurred:

1. “The bank considers that the obligor is unlikely to pay its credit obligations to the

banking group in full, without recourse by the bank to actions such as realising

security (if held)”.

2. “The obligor is past due more than 90 days on any material credit obligation to the

banking group. Overdrafts will be considered as being past due once the customer

has breached an advised limit or been advised of a limit smaller than current

outstandings” (BIS, 2019b).

 5

 Assessment of Credit Risk as of Today

As of today, none of the banks or financial institutions use machine learning when extending

credit or measuring credit risk. We briefly introduced two methods in chapter 1.2, RiskCalc

and FICO score, which are two commonly used method in United States. In Norway, they

currently use two main approaches: The Standardized Approach and Internal-Rating-Based

Approach (IRB) (Finanstilsynet, 2017). Both of these methods are based on the Basel Accords,

more specifically Basel II. These two methods are used to calculate the amount of capital

required by the bank.

The Standardized approach works by assigning risk weights to different exposures (BIS,

2019a). The risk weights are usually assigned in one of two ways. The first option is to use the

Capital Requirements Regulations (CRR) template values to assess the borrowers’ risk. The

second option is to use external ratings of the borrowers’ risk from a selected number of

approved external rating bureaus (Finanstilsynet, 2017). However, this can only be done for

some exposure classes defined by the national supervisor (BIS, n.d.).

For the IRB approach, the calculation of the capital requirement is done by one of two

methods: The Foundation Approach and the Advanced Approach. The Foundation Approach

requires the bank to compute only the probability of default (PD). The last two risk weights,

Exposure At Default (EAD) and Loss Given Default (LGD) is calculated by the national

supervisor (in Norway, “Finanstilsynet”). The Advanced Approach requires the bank to

compute every risk weight in addition to PD.

In order to apply either of the IRB methods, one required approval from Finanstilsynet. If

approved, the bank can use their own models to compute the risk weights, which is then

applied to arrive at the capital requirement needed. Very few banks are granted allowance to

use the IRB models, and in 2018 Finanstilsynet made this even stricter by adding a new

requirement where the value of the corporate portfolio need to be at least 30 billion NOK to

for the use IRB Approach (Finanstilsynet, 2018). Even after getting approval to create IRB

models, there are strict requirements to the data used and its validation methods.

It is important to emphasize that the two approaches of IRB introduced above are used to

identify the capital requirement for a bank. They are not used as a standalone decision tool

based on predicted probability of default in order to grant or deny loans. Today, the banks still

Theory 6

use traditional financial data, such as equity and income, to decide whether or not to grant a

loan and size of the loan.

 Data and GDPR

Over the past few years, the amount of data has increased tremendously. According to the

International Data Corporation, the amount of data increased by 16.6% last year and they

expect the annual growth from 2019-2024 to be 17.8% (IDC, n.d.). As data simply is a form

of information, this translates into more information being available and collected. Whether

using machine learning algorithms or other means of decision making, more information is

likely to improve the end result, assuming the data can be used. Depending on the source of

the data, it can either be structured or unstructured data. Structured data is data that can be

used without any need of heavy transforming, whereas instructed data needs to be processed

to gain any valuable insight from it.

As the data and its availability has steadily increased over time, so has the amount of data that

is being collected. The 25th of May 2018 the European Union released the new law “General

Data Protection Regulation” (GDPR). The law is aimed at protecting the consumers and

heavily punishing corporations for violating laws regarding consumer privacy (GDPR, n.d.d).

Consumer Protecting laws is nothing new and was already implemented in 1995 under the

name “Data Protection Directive”. GDPR differentiates from this by being more specific and

violation of the law results in severe fines of up to €20 million (GDPR, n.d.c). Protecting

consumer privacy is not the only focus of GDPR. Article 22 of GDPR states that a consumer

cannot be rejected to a decision solely based on automated processing (GDPR, n.d.b). If the

consumer is rejected by an automated system, they have the right for the process to be

manually checked instead. Many of the key points in GDPR are aimed at protecting the

consumers from being mistreated by corporations. Some of the articles also focus on flexibility

for the consumers. “The Right to Data Portability” under article 20, allows consumers to

transfer their personal data between providers (GDPR, n.d.a).

 The Bias-Variance Tradeoff

When dealing with any kind of machine learning or statistical model, the concept of bias-

variance is an important aspect. The bias of the model can be seen as the difference in the

 7

Figure 2.1: Bias-Variance Trade-off
(Fortman-Roe, 2012)

predicted values of a model versus the observed values due to assumptions made by the model.

The most classical example is how a linear regression model will assume that there is a linear

relationship between the predictors, when in fact the relationship could be non-linear. This

results in high bias for the predictions made by the linear model. On the other hand, imagine

a model with inputs that does not have to be linear and consequently follows the training data

very well. While this model would have significantly lower bias it would also have an increase

in the amount of variance. The issue with having high variance is that the predictions will vary

significantly if we change our training set but keep the same test set.

Both variance and bias leads to errors in predictions, which is why the Total Error is displayed

as the U-curve below.

As we can see there is a tradeoff between bias and variance. Low variance can lead to high

bias and low bias to high variance. The ideal tradeoff between the two can be seen at the

minimum point of the test error, shown by the stippled line.

 Supervised vs. unsupervised learning

As this thesis exclusively will be dealing with supervised learning as opposed to unsupervised

learning, we will dig a bit deeper into this subject. Supervised learning can be divided into

regression and classification. For regression problems, one is typically dealing with

quantitative variables, while classification problems usually deal with qualitative variables.

Theory 8

However, it is important to note that this is not black and white, and some regression problems

deals with qualitative variables and vice-versa (James et al., 2017). The logistic regression,

which will be discussed later in this thesis, is an example of this. The logistic regression uses

quantitative variables, but the use case of it is often for dealing with binary problem, such as

default vs. non-default (James et al., 2017).

 Machine Learning and AI

Machine learning and artificial intelligence (AI) are two words that have gained a massive

increased traction in recent years. While they are often used interchangeably it is important to

know the difference between them. Machine learning is where the machine is able to benefit

from its experiences and adapt or develop to produce a better result. AI on the other hand is

able to make its own decisions. Machine learning can be seen as a subset of AI (Pathmind,

n.d.).

Machine learning is typically further divided into two main categories: supervised learning

and unsupervised learning. In supervised learning, for every observation i there is a response

y which is associated with this observation. This means that the goal in supervised learning is

to accurately predict future y values using relevant predictors and in turn will often explain the

relationship between the predictors and the response (James et al., 2017). A linear regression

is a good and simple example of a method using supervised learning, where we try to fit the

model of predictors to predict our response variable. Unsupervised learning is a bit more

difficult compared to supervised learning. For every observation i there is vector of

measurement and not a response y. We can no longer use statistical tools such as the linear

regression as there is no response variable that can supervise the procedure and it is therefore

unsupervised (James et al., 2017). A typical unsupervised learning tool is clustering, where

the goal is to assign each observation to a certain number of clusters, in the best possible way.

 Machine Learning Methods

In this subsection, we will present the machine learning methods used in this thesis and the

general theory behind them.

 9

2.8.1 Logistic Regression

The logistic regression is often viewed to be a special case of linear regression, but with a

categorical response variable instead of a continuous (Abonazel & Ibrahim, pg. 80, 2018).

While linear regression can be used to solve classification problems, or more specifically

credit default probabilities, it is not the most ideal tool to use. The problem arises as there is

no upper or lower limit of our response variable. If we were to assume a bank that accepted or

rejected loans based on the balance of the client. For individuals with extreme balance values

in either ends, the predicted value could result in being less than 0 or higher than 0. As the

goal of credit card default problems usually are to try to predict probabilities of default this

creates a problem, as probabilities have to be within the range of 0 and 1.

When dealing with a binary categorical response variable, the logistic regression is a better

tool to use. Instead of using a straight line to predict the outcome, the logistic regression uses

the Logistic Function and will always yield a result between 0 and 1. The Logistic Function is

given by:

𝑝(�̅�) =
𝑒𝛽0+𝛽1∗𝑋1+⋯+𝛽𝐾∗𝑋𝐾

𝑒𝛽0+𝛽1∗𝑋1+⋯+𝛽𝐾∗𝑋𝐾 + 1
(2.1)

As we can see in the figure below, the Logistic Function is what gives the Logistic Regression

its distinctive S-Curve.

Theory 10

Figure 2.2: Linear vs. Logistic Regression (Abonazel & Ibrahim, 2018)

From the Logistic Function we can continue to find the odds for any given data point, by

transforming the function above to the log odds:

𝐿𝑜𝑔 (
𝑝(�̅�)

1 − 𝑝(�̅�)
) = 𝛽0 + 𝛽1 ∗ 𝑋1 + ⋯ + 𝛽𝐾 ∗ 𝑋𝐾 (2.2)

As seen from the formula above, we can find the log odds from the parameters on the right-

hand side. However, while we for regular linear regression do this by using Least Sum of

Squares, we instead use the Maximum Likelihood to determine the best fit (Abonazel &

Ibrahim, pg. 81, 2018). The Maximum Likelihood estimates the parameters of each

observation and will predict values closer to 1 for client that are more likely to default and 0

for clients who is not likely to default.

2.8.2 Decision Tree

Similarly to the logistic regression, Decision Trees can be used both for regression and

classification problems. The Decision Tree has a simple layout, which starts with the root

node. The root node is the first and main node and represents the whole population. The tree

is then split into daughter nodes by recursive partitioning. The number of daughter nodes

 11

depends on what type of classification tree we want. The most used type is the binary recursive

partitioned tree, where the number of daughter nodes per split is two. One can use more than

two daughter nodes by using multiway splits, however evidence suggests that these types of

trees does not necessarily provide better accuracy (Ishwaran & Rao, 2009). Tree impurity is

measured to determine what the split should be and how good it is. The more similar each

observation of the nodes are, the higher the decrease in impurity is, which leads to a better fit.

Finding the tree impurity can be done by various functions, where the Gini Index is the most

popular (Ishwaran & Rao, 2009)

The Gini Index is given by:

𝐺𝑖𝑛𝑖 𝐼𝑛𝑑𝑒𝑥 = 1 − ∑ 𝑝𝑗
2

𝑐

𝑗=1

(2.3)

The Gini Index ranges from 0 to 1. And as we want to decrease the impurity, the lower the

value the better each observation fits into a split.

While many of the machine learning methods have a great track record for predicting

probability of default, they often lack in terms of explainability. One may think that the

accuracy of the predictions is the most important, which is correct to a large degree. However,

one should not forget that explainability is also fairly important. It is critical for the firm itself

as it can easier interpret why or why not customers have been rejected by the algorithm. And

it is also important in order to easier explain to a potential customer why their loan was

rejected, as opposed to just referring to a complex algorithm.

While the simplicity of the decision tree model is one of its strengths it also introduces a

weakness. The decision tree suffers from high variance, which in turn may results in very

varying performance on the training and test data set. As a result of this, the prediction of the

model on the test data may be significantly lower compared to other machine learning

algorithms.

Theory 12

The figure below shows the simple intuition behind a Decision Tree. If the observations fail

to meet the “requirement” of the root node, i.e. being less than 4.5 years, we moves to the left.

On the contrary, if the requirement is fulfilled, we move to the right and the process is repeated

for the next daughter node.

Figure 2.3: Simple Decision Tree (James et al., 2017)

2.8.3 Random Forest

Random Forest is, like the name suggests, also a “tree” method. However, while we in

Decision Trees only use one tree, the Random Forest consists of multiple trees that merges

together into a single tree. This is done by using a technique called Bootstrap Aggregation, or

often referred to as “Bagging”. The idea behind Bagging is to reduce the variance introduced

by averaging multiple samples. While we ideally would like to average training data over

multiple datasets, this is not necessary as we can take multiple samples from one dataset and

then average these out (James et al., 2017):

𝑓𝑎𝑣𝑔(𝑥) =
1

𝐵
∑ 𝑓𝑏(𝑥)

𝐵

𝑏=1

(2.4)

 13

While Bagging improves the prediction accuracy this comes at the cost of a new problem;

correlation. In Bagging many of the trees produced will be highly correlated. By averaging

many highly correlated trees the reduction in variance will not be as significant as if these trees

are correlated. To solve this, Random Forest will not select predictors solely based on their

estimated prediction power (Pretorius et al., 2016). Instead, it selects a random number of

predictors for each split and then choses the best predictor among these. This method of

choosing predictors will greatly reduce the variance of all the trees as it allows for some of the

perceived weaker predictors to be taken into account. The numbers of random predictors

chosen per split can be defined by the user.

2.8.4 XGBoost

XGBoost has quickly become one of the most used machine learning algorithms in the past

few years. On Kaggle, a website that regularly holds competitions with sizeable rewards and

recognitions, 15 of the 29 winners in 2015 used XGBoost as either their main model or in

combination with other models (Chen & Guestrin, 2016). The scalability of the model, the fast

computation time and its accurate predictions on several types of data has been the key factors

for the heavy success and use of XGBoost.

XGBoost is a machine learning algorithm that uses Gradient Boosting based on the research

from Friedmann et al. (Chen & Guestrin, 2016). The Gradient Boosting uses an ensemble tree

method to create a number of regular Decision Trees based on any given data sample, where

the prediction will be the sum of all the predictions from every tree made. As this alone could

easily result in overfitting the data, XGBoost aims to minimize the regularized objective model

given by this formula (Chen & Guestrin, 2016):

ℒ(𝜙) = ∑ 𝑙(�̂�𝑖, 𝑦,) + ∑ Ω

𝑘

(𝑓𝑘)

𝑖

(2.5)

𝛺(𝑓) = 𝛾𝑇 + 1/2 𝜆||𝜔||2 (2.6)

The first term measures the difference between the predicted ŷi and the observation y, while

the second term omega acts as a penalty the more complex the model is.

Theory 14

2.8.5 K-Nearest Neighbor (KNN)

The K-Nearest Neighbor is a non-parametric machine learning method mainly used for

classification problems. KNN classifies the test observation x0 based on K numbers of

neighbors by determining its probability of being class j given by the formula (James et al.,

2017):

Pr(𝑌 = 𝑗|𝑋 = 𝑥0) =
1

𝐾
∑ 𝐼(𝑦𝑖 = 𝑗)

𝑖∈𝒩0

(2.7)

The distance from the test observation x0 and its’ closest neighbor can be determined by

various ways of measuring distance, where the Euclidean Distance is the most widely used

metric (Hu et al., 2016). The Euclidean Distance is given by:

𝑑(𝑥, 𝑦) = √∑(𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

(2.8)

If we were to classify if x0 defaults or not with K being 11, the 11 closest neighbors would be

identified. If 7 out the 11 closest neighbors were classified as having defaulted, KNN would

predict x0 to default as 7/11 > 4/11.

The downsides of KNN are that the method is a lazy learner, and that the outcome is heavily

biased and dependent on the number of neighbors K (Guo et al., 2004). This results in higher

computation time and cost, due to the way new observations are handled and classified. The

Bias-Variance tradeoff discussed earlier in this chapter is present when determining the

appropriate number of neighbors K. If K is set too low, one will encounter low bias but in turn

higher variance. With K set too high, the variance is on the lower side with bias being

consequently higher. Therefore, tuning the K parameter to hit the sweet spot between bias and

variance is important for this machine learning method.

 15

2.8.6 Neural Networks (NN)

Neural Networks is one of the more complicated machine learning tools to be implemented in

this thesis. The model tries to replicate how the human brain works by using neurons that

connect with each other in various ways (Du & Swamy, pg. 1, 2013). Because of the way the

neural networks connect neurons together, it is referred to as a connectionist model. The

mapping of the neurons depends on the architecture the neural network used. The figure below

shows a layered feedforward network.

As the name suggest, the neurons in this architecture will only connect neurons from forward-

hidden layers and there is no feedback given from the hidden layer (Du & Swamy, 2013). The

four nodes at the very beginning of the figure are our input nodes, which is where our

predictors are. There is only one hidden layer, which is where the three neurons are located.

The last two nodes at the right, are the output nodes.

The number of neurons per layer and total number of hidden layers are hyperparameters that

can be set by the user. In line with other models, this also need to be done by tuning or a similar

method to avoid overfitting of the data.

Neural Networks usually provides good prediction accuracy, but it needs to be tuned well to

avoid overfitting. In addition to problems with overfitting, the Neural Network also suffers

from being hard to interpret and is often labelled as a black-box because of this (Du & Swamy,

2013).

Figure 2.4: Feedforward Neural Network (Du & Swamy,
2016)

Data 16

3. Data

In this part, we will introduce the dataset used for the empirical part of this thesis.

 Data Decsription

The data set used for the empirical part of this thesis is from a publicly available dataset by

UCI Machine Learning Repository. The dataset is based on the default of credit card customers

in Taiwan from 2004. Of the 30 000 included observations, roughly 22 % of the customers

defaulted on their payment. There is a total of 25 variables in the dataset, including the

response variable indicating default or non-default.

 Variables

The table below shows all the variables in this dataset, including a brief description of them

as well as what values these can be.

Variable Name Description Value

DEFAULT (original name

default.payment.next.month)

Whether the customer

defaulted or not

1 = Default, 0 = Non-default

ID Customer ID 1-30 000

LIMIT_BAL Amount of credit given Any amount, positive

SEX Gender 1 = Male, 2 = Female

EDUCATION Level of education 1 = Graduate school

2 = University

3 = High School

4 = Others

MARRIAGE Martial status 1 = Married

2 = Single

3 = Others

AGE Age of the customer in years Their age (min. recorded = 21,

max. recorded = 79)

PAY_1 (original name PAY_0) History of payment in

September 2005

-1 = paid duly

1 = 1 month late

…

8 = 8 months late

PAY_2 History of payment in August

2005

-1 = paid duly

1 = 1 month late

…

8 = 8 months late

PAY_3 History of payment in July

2005

-1 = paid duly

1 = 1 month late

…

 17

8 = 8 months late

PAY_4 History of payment in June

2005

-1 = paid duly

1 = 1 month late

…

8 = 8 months late

PAY_5 History of payment in May

2005

-1 = paid duly

2 = 2 months late

…

8 = 8 months late

PAY_6 History of payment in April

2005

-1 = paid duly

1 = 1 month late

…

8 = 8 months late

BILL_AMT1 Amount of bill statement in

September 2005 (in NT

Dollars)

Any value, both positive and

negative

BILL_AMT2 Amount of bill statement in

August 2005 (in NT Dollars)

Any value, both positive and

negative

BILL_AMT3 Amount of bill statement in

July 2005 (in NT Dollars)

Any value, both positive and

negative

BILL_AMT4 Amount of bill statement in

June 2005 (in NT Dollars)

Any value, both positive and

negative

BILL_AMT5 Amount of bill statement in

May 2005 (in NT Dollars)

Any value, both positive and

negative

BILL_AMT6 Amount of bill statement in

April 2005 (in NT Dollars)

Any value, both positive and

negative

PAY_AMT1 Amount of previous payment in

April 2005 (in NT Dollars)

0 to any value

PAY_AMT2 Amount of previous payment in

May 2005 (in NT Dollars)

0 to any value

PAY_AMT3 Amount of previous payment in

June 2005 (in NT Dollars)

0 to any value

PAY_AMT4 Amount of previous payment in

July 2005 (in NT Dollars)

0 to any value

PAY_AMT5 Amount of previous payment in

August 2005 (in NT Dollars)

0 to any value

PAY_AMT6 Amount of previous payment in

September 2005 (in NT

Dollars)

0 to any value

Table 3.1: Variables, descriptions and possible values

Data 18

 Software

The programming language used for this Master Thesis has been R alongside the integrated

development environment RStudio. All the data processing, cleaning and making of models

has been done with RStudio on a local machine with various packages depending on the tasks

performed.

 19

4. Methodology

The methodology part will explain the various processes done of the dataset and the machine

learning methods used in this thesis.

 Data Cleaning

In order to get the most accurate predictions by the model implemented, it is important that

the data are thoroughly inspected and cleaned. Missing variables and extreme values can,

somewhat depending upon the context, heavily skew the data and influence the predictions

being made.

The dataset has no missing or extreme values and was in general very clean. The first change

we made was to first remove the variable “ID”. This column was simply just an identifcation

for the customers, ranging from 1st observation to the 30 000th, and therefore served no purpose

as a predictor. We also made some small name changes to some of the variables to fit the rest

of the dataset better. PAY_0 was changed to PAY_1, to better fit in with BILL_AMT1 and

PAY_AMT1. The dataset already contains our response variable, and it is therefore no need

for us to define this ourselves based on a certain criterion. However, the response variables

name was changed from “default.payment.next.month” to “DEFAULT”.

However, the dataset had a few inconsistencies regarding some of the variable values. The

variable “MARRIAGE” is an integer with values ranging from 1-3, as seen in the table from

the previous chapter. The dataset had 54 instances of this variable being 0 and these were

moved to the 3rd category “Other”. Further inspecting the remaining variables, shows that in

all the PAY_1-6 variables there are values of -2 and 0. Given the data description, these should

range from -1 when the customer has paid in time and from 1-8 depending on how late the

payment was made. There is no information regarding these values and we have to look more

into this.

By further inspecting these variables, we can see that the value -2 and 0 makes up a significant

part of our observations. Combining these two together (-2 and 0) makes up for almost 80%

of our dataset and therefore simply removing these would heavily decrease the size of the data

and most likely the prediction accuracy of our models. Our hypothesis is that the PAY_1

variable has a lot of predictive power when determining whether a customer is going to default

Methodology 20

or not. By subsetting the dataset we can see that the distribution for defaults vs. non-default

when PAY_1 is -1, i.e. paid in time, is 84%. When doing the same for -2 and 0, we get 86%

and 87% respectively. We suspect that -2 and 0 might be mislabelled and should instead be

labelled as -1. The next step in this process to determine this is to see how the distribution of

default is when the PAY_1 is 1, meaning payment is made 1 month late. The result of this was

a distribution of 33 % non-defaults. While this alone does not necessarily confirm our

hypothesis regarding the predictability of the variable, it certainly strengthens it. We repeated

the process from above on all the PAY_X variables and the numbers we got from this was

similar. As a result of this, we decided to change the PAY_X values from -2 and 0 to -1. While

this is not a perfect way of solving this problem, the suspected predictability of the predictor

and the distribution of the default vs non-default, we believe this is a satisfactory way of

dealing with it.

 Data partitioning

When building a statistical model, one will usually split the data into a training set and a

test/validation set. The relevant models will first be applied and will learn from the training

set, before they are being run on the new and unseen data in the test set. By doing this, one

can ensure that models with good predictions on the training set actually predicts well on

unseen data and is not just a case of overfitting. If the model follows the training data too

well and predicts poorly on the test set, it is usually a case of overfitting and the model has

not been able to identify the underlying relationship in the data set.

There are many methods for choosing a split and in this thesis, we have chosen an 80/20

split. 80% of the dataset will be used for training and the remaining 20% will be held out and

used as a test set.

We used the “set.seed” function in R and set this to “123” to get reproducible results. This

function ensures that the same random numbers are being used and the splits of test and

training data, models and results will be the same if ran multiple times or on different

computers.

 21

 Tuning of Hyperparameters

Many of the machine models presented and used in this thesis require carefully tuned

hyperparameters in order to get optimal predictions. The hyperparameters are defined as

parameters than can be changed manually when “building” machine learning models.

However, not all the models we use needs to be tuned or even have any hyperparameters at

all. The tuning process can be a long and slow process depending on the size of the data and

the complexity of the model. What makes the tuning process even harder is that there usually

is no “one size fits all” solution and we often need to brute force an optimal solution. This can

be done in various ways and in this thesis we have used a grid search in RStudio. This is still

not a perfect method as it can be computationally expensive the smaller the increments of each

hyperparameter in the grid search is. Therefore, even tuning with a method like grid search

will not yield the perfect solution, as it is done in increments and not in a continuous search.

Despite the fact that tuning can increase the computation time, it can vastly increase the

prediction accuracy.

4.3.1 Tuning of Decision Tree

In our model for the Decision Tree, we only have one hyperparameter that we tune; number

maximum depth. The maximum depth defines how deep the tree should be. We tune the

number of trees by doing a cross-validation and selecting the tree with the lowest error rate.

4.3.2 Tuning of Random Forest

For Random Forest there are three hyperparameters we are looking to tune: number of random

predictors, maximum depth and number of trees.

The number of random predictors is the number of predictors to be randomly selected at each

split. As stated in the theory part, this is usually set to the square root of the total number of

predictors. This value should, alongside the other hyperparameters, be tuned to increase the

prediction power. The square root of our 24 predictors is between 4-5 and we therefore start

our grid search with a value slightly lower than this. We start with 2 and increase in increments

of 5 up to a maximum of 22.

There is no similar general rule for the maximum depth of the trees made by Random Forest.

What the max depth should be heavily depend on the number of predictors and the size of the

Methodology 22

dataset. As this is not the biggest dataset and with our 24 predictors, we set the max depth to

range from 5 to 30.

One of the proclaimed features of Random Forest is that it supposedly handles overfitting in

regard to the number of trees well. However, a study from 2012 found the optimal number of

trees to be 128 (Oshiro et al., pg. 166, 2012). This study was done on several types of data and

with numbers of trees ranging from very low values to over 4000 trees. The results showed

that there were at most very little increase in performance when increasing the number of trees

and in some scenarios fewer trees performed better. The computational time also increased

exponentially the more trees were used for the model. With this in mind, our grid search for

number of trees started at 100, increasing by 20 until the maximum of 200 trees was reached.

4.3.3 Tuning of XGBoost

XGBoost is the model that required the most tuning in terms of numbers of hyperparameters.

We tuned the model by these hyperparameters: Loss reduction, Maximum depth, learning rate,

minimum sum of instance weight, subsample ratio and subsample of each tree. While

XGBoost is known for being a fast algorithm, the number of hyperparameters heavily

increased the computation time for this method, as these needed to be tuned.

The loss reduction function defines how strict or loose the model branches out to new daughter

nodes. Higher value will result in a less complex tree. There is no specified default value for

this, and we search from 0 to 5.

Maximum depth functions the same way as for our previous model, Random Forest. However,

the maximum depth is usually set to a smaller value for XGBoost. Chen & Guestrin (2016)

used 8 as maximum depth for all the trees. We set our maximum depth to be between 3 and

11, to cover well below and above the value of 8 used in the study.

The learning rate determine how much each tree should contribute to the final prediction made,

where the value ranges from 0 to 1. A lower value can be used to prevent overfitting but will

in turn increase the computational time of the model. Our grid search values has been set

between 0.01 and 0.3 as we want to avoid the potential of overfitting.

The hyperparameter minimum sum of instance weight regulates the sum of instance weight

required to further partition each tree, where a higher value increases the threshold and results

in fewer nodes. The default value is 1 and for our search we look at values between 1 and 5.

 23

Subsample for each tree decides how big the percentage of predictors to be chosen for the

building of each tree. This value can be set to be between 0 and 1, where 0 indicates not

choosing any predictors and 1 for choosing all. This method is somewhat similar to how

Random Forest operates, but the difference is that XGBoost does this at a tree-level instead

of per split in each tree.

Subsample ratio works similarly to the previous hyperparameter, but instead of subsampling

our predictors we are subsampling a percentage of our training data. It is set between 0 and 1

and choosing a lower value can reduce the chance of overfitting the data.

Below is a table that summarizes the hyperparameters we searched in the tuning for XGBoost.

Hyperparameter Grid search

Loss Reduction (Gamma) 0 to 20

Maximum Depth (Max_depth) 3 to 8

Learning Rate (ETA) 0.0 to 0.3

Minimum Sum of Instance Weight

(Min_child_weight)

1 to 5

Subsample Ratio (Subsample) 0.5 to 1

Subsample for each tree (Colsample_bytree) 0.5 to 1

Table 4.1: XGBoost Hyperparameters and Grid Search

4.3.4 Tuning of KNN

As introduced in the theory chapter, setting the right number of neighbours, K, is crucial for

getting a good result with this method. K is also the only hyperparameter that is set and the

final value used is closely tied to the bias-variance trade-off.

In order to find the optimal number of K, we used cross validation with different values for K

to find the iteration with the lowest error rate.

Methodology 24

4.3.5 Tuning of Neural Network

The Neural Network is the most complex method applied on the dataset. For this model, we

have chosen to only tune one hyperparameter, the number of neurons. In other words, the

Neural Network will have a single hidden layer, where we tune the number of neurons in this

layer. The type of Neural Network used for our model is a layered feedforward, as shown in

figure 2.4 in chapter 2. We tuned the network with neurons ranging from 1 and 6 as our highest

value.

 Evaluation of Model Performance

When looking at the performance of a model, there are several different methods to choose

from. Depending on the type of problem you are dealing with, some evaluation metrics may

perform better than others. As we in our case are handling a binary classification problem, we

have chosen two popular metrics within this field; Accuracy derived from a Confusion Matrix

and Receiver Operatic Characteristic Area Under the Curve, also known as ROC AUC. While

ROC AUC will be our main evaluation metric of choice in this thesis, the Confusion Matrix

will provide us with information on how well each model performed specifically on the dataset

given a certain threshold.

The Confusion Matrix displays how well each of the models were able to classify the

predictions made on the dataset. This is done by dividing the results into four categories, where

two of these classes are correctly predicted. “True positive” and “True negative” is where our

model will correctly have predicted from the dataset, whereas “False positive” and “False

negative” shows us where our model made the wrong predictions. The two types of errors are

often referred to as Type-I and Type-II error respectively.

 25

 ACTUAL POSITIVE

CLASS

ACTUAL NEGATIVE

CLASS

PREDICTED POSITIVE

CLASS

True positive (Tp) False negative (Fn)

PREDICTED NEGATIVE

CLASS

False positive (Fp) True negative (Tn)

Table 4.2: Example of a Confusion Matrix

From our Confusion Matrix we are able to get an accuracy of the correct percentage of

predictions made by the model, given by:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑝 + 𝑇𝑛

𝑇𝑝 + 𝑇𝑛 + 𝐹𝑛 + 𝐹𝑝
(4.1)

The advantages of using this metric for evaluation is that the requirement for computational

power is low and it is easy to understand for everyone, not just professionals within the field.

Another reasoning for using the Confusion Matrix in conjunction with the accuracy derived

from it is to validate that the models are actually predicting both defaults and non-defaults.

The importance of this can be illustrated by imagining a heavily imbalanced dataset. Assume

we have a dataset with 20 000 observations and 19 000 of them being non-default. Simply by

predicting every observation to be non-default, we would achieve an accuracy of 95%.

The ROC AUC is widely used to assess the performance of classification problems. The ROC

graph can be plotted with Specificity on the X-axis and Sensitivity on the Y-Axis, which are

given by (Fawcett, 2006):

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 (4.2)

Methodology 26

Figure 4.1: Example of ROC AUC plot

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
(4.3)

The advantage of using the ROC AUC curve compared to only using the Confusion Matrix is

that it provides a better overall view for the model. From the Confusion Matrix alone, you can

only see the Sensitivity and Specificity for a single point, while the ROC AUC curve shows

the Specificity and Sensitivity for various thresholds. When plotting the ROC AUC curve, the

X axis is usually labelled 1-Specificity. In essence, we are plotting the True Positives versus

the True Negatives.

The figure above shows the plotted ROC AUC curve in black. The highest possible value to

achieve is up in the left corner, where we would correctly predict everything and in turn have

no False Positives. The grey line is where X = Y and can be classified as a random

performance. In other words, this can occur if the model is just blindly guessing (Fawcett,

2006). Any curve that is below this grey line will therefore perform worse than guessing and

could be a case of not being able to properly handle the information (Fawcett, 2006).

 27

The reasoning for using the ROC AUC curve as our main deciding tool is due to the nature of

the credit market. Instead of just giving a snapshot of a singular threshold, ROC AUC displays

multiple thresholds. The consequence of issuing credit to a consumer who defaults has a

greater cost to the bank compared to denying credit for a customer who does not the default.

Therefore, we believe that ROC AUC will be a better tool to rank our models.

Results 28

5. Results

In this part of the thesis, we will present the results from each model in an increasing order

based on the ROC AUC value. As mentioned earlier, the ROC AUC will be the evaluation

metric we use to evaluate the performance of the model. The Confusion Matrix will be a

complementary tool. The main reason for this is that the Confusion Matrix provides a snapshot

of how the model performed on this training and test data, while ROC AUC gives a better

overall view of the model performance, as it looks at the Specificity and Sensitivity across

various thresholds.

Additionally, we will show the final values of the tuning of the hyperparameters for each

model.

5.1.1 Decision Tree

The Decision Tree performed the worst out of all the models, slightly behind the KNN. This

is to be expected as the Decision Tree is only made up by one single tree, unlike Random and

Forest XGBoost. This translates to a high amount of variance as even small changes in the

training data can highly affect the outcome of this model.

Figure 5.1: ROC for the Decision Tree

 29

5.1.2 KNN

KNN performed similarly to the Decision Tree and was only slightly better measured by the

ROC AUC. While one would naturally expect the Decision Tree to perform bad, it might come

as a bit of a surprise how KNN performs close to the same and being way behind the other

machine learning methods One reason for this is that the dataset is somewhat unbalanced, and

this can affect KNN to some extent. While the dataset is not heavily imbalanced, the number

of non-defaults makes up for around 77% of the dataset, which still is a significant amount. A

study done in 2015 by Beckmann et al., confirmed that imbalanced datasets indeed affects the

performance of classifier algorithms such as KNN (Beckmann et al., 2015).

By repeated cross-validation of KNN, we arrived at the value 21 for number of neighbours K.

The value of K is chosen based on the highest accuracy achieved, which can be seen in the

plot below.

Figure 5.2: Cross-validation for KNN

Despite KNNs modelling simplicity, the computational time is significant, and even on par or

slower compared to some of the more complex models. Combined with its low predicting

power based on our empirical results, the overall performance is low.

Results 30

Figure 5.3: ROC curve for KNN

5.1.3 Logistic Regression

The Logistic Regression performs substantially better than both KNN and the Decision Tree

and is very close to the top three models of this thesis. The simplicity and speed of the model

is a clear advantage, and the model is still able to perform among the best ones.

Figure 5.4: ROC for the Logistic Regression

 31

5.1.4 Neural Network

The Neural Network performed almost identical to the Logistic Regression. Neural Network

is often praised for its great ability to classify; however, the model did perform the best out

of our chosen methods. It is important to note that this was a neural network with only one

hidden layer. Increasing the number of hidden layers could potentially have increased its

prediction power, but due to the computational time and power required to properly do this it

was not a feasible solution. The computational time with two hidden layers and 3 neurons in

each layer reached over 24 hours before we decided to stop. With 1-4 neurons in layer 1 and

up to 2 neurons in the second layer, the computational time was shorter, but the result worse

compared to a single layer with 3 neurons. Consequently, we decided to tune the neural

network only using a single layer and grid search the optimal number of neurons in this

layer. The final number of neurons was set to 3.

Figure 5.5: ROC for the Neural Network

Results 32

5.1.5 XGBoost

XGBoost was the method with the highest number of hyperparameters to tune. The model

performance was almost perfectly in-between the Neural Network and Random Forest, with

0.009 ahead and 0.01 behind respectively.

Figure 5.6: ROC for XGBoost

5.1.6 Random Forest

The best performing model on our dataset was the Random Forest. The method had an ROC

AUC score of 0.789. We believe that the reasoning for Random Forest performed the best

might be due to its ability to reduce overfitting by selecting only a random number of

predictors per split. This in turn, as presented in chapter 2.8.3 , reduce the correlation. As only

a few predictors are chosen per split, the variation is also decreased, contributing to better

predictions as well.

 33

Figure 5.7: ROC for Random Forest

 Summary of Performance

The table 5.1 resents the final results of all the models, ranked in an increasing order by ROC

AUC score. We have also added the final values of the hyperparameters used for each of the

models. The accuracy is gathered from the Confusion Matrix from each of the methods, with

the best score in bold.

Random Forest performed best out of all the models, with XGBoost close behind. Logistic

Regression and Neural Network performed almost equally and were not far behind the top two

models.

Results 34

Machine Learning

Method

ROC AUC Score Accuracy Hyperparameters used

Random Forest 0.789 81.85% Number of Trees = 140

Number of predictors

per split = 7

Max. depth = 10

XGBoost 0.779 81.95% Loss Reduction = 3

Max. depth = 4

Learning Rate = 0.0752

Min. Sum of Instance

W. = 4.7

Subsample Ratio = 0.8

Subsample for each Tree

= 0.772

Neural Network 0.774 81.56% Number of Neurons = 3

Logistic Regression 0.766 81.05%

Decision Tree 0.647 82.02% Max depth = 1

KNN 0.632 80.56 % Number of K = 21

Table 5.1: Summary of Performance

 Variable Importance

The variable importance reveals which of the variables the models relied most upon in their

predictions. We have found the most important features for the following four models:

Decision Tree, Random Forest, XGBoost and Neural Network. Variable importance cannot

be derived directly from the KNN and the Logistic Regression, and these have not been

included. As the dataset only contains 24 variables, we will list the top three most important

ones for each model. Pay_1 and Pay_2 were the variables that appeared the most, by making

the top three most important predictors in three of the four models.

 35

Model Most important variables

Decision Tree 1. Pay_1

2. Pay_2

3. Pay_3

Random Forest 1. Pay_1

2. Pay_2

3. Bill_amt1

XGBoost 1. Pay_1

2. Pay_2

3. Pay_amt3

Neural Network 1. Pay_amt2

2. Pay_amt1

3. Pay_amt3

Table 5.2: Variable Importance

Discussion 36

6. Discussion

From the results we can see that the top performing machine learning methods performs well

on a somewhat difficult dataset. The main question still remains unanswered: Can machine

learning be implemented to determine whether or not to grant credit? One of the known

drawbacks of machine learning is the interpretability of some of the more advanced models.

While the methods have increased significantly in popularity over the years, the

interpretability has remained the same. Under GDPR article 22, if the consumer is denied by

an automated process without a clear reason as to what caused the rejection. If a prediction is

made by a Random Forest or XGBoost model, it can be difficult to interpret why the

application was denied or granted.

The increasing amount of data being created and collected is a positive sign from an analytical

standpoint. Still, one should note that more data does not necessarily increase accuracy on

predictions alone. For the data to be good, it should both be of a significant quantity and quality

to ensure good predictions are being made.

We would have liked to create a reference score based on the regular methods as well for this

dataset, but this was unfortunately not feasible due to the variables the dataset is made up by.

Traditional scoring methods rely on, as presented in the theory chapter, on financial data. This

includes data such as income, equity, solidity and so on. Our dataset consists mostly of

behavioral variables, e.g. late payment and amount paid last bill. Another factor is that we

simply do not know the exact formula behind the decision of extending credit, and even if we

did, we do not think its method would be applicable due to the nature of the variables. From

the variable importance analysis, these variables also turned out to be the most predictive

variables in most of the models. Therefore, not being able to implement them in a regular

model would heavily decrease prediction accuracy. As machine learning has been widely used

in many professional fields such as science, healthcare and finance, we see no reason as to

why it should not predict as good or even better.

 37

7. Conclusion

Random Forest, XGBoost and the Neural Network were the top three performers of the dataset

with ROC AUC scores of 0.789, 0.779 and 0.776 respectively. The Logistic Regression

followed closely behind these with a score of 0.765, while KNN and the Decision Tree were

far behind at 0.632 and 0.647.

Machine learning algorithms have already been deployed and used in various professional

fields; however, it is uncertain when or if it will be deployed in the credit market. The GDPR

law does not allow banks and financial institution to deny credit applications based on an

automated process. As machine learning falls under this category, the law would have to be

altered or removed for machine learning to be used as a legal method to grant credit. In theory,

machine learning can be applied to either of the two IRB Approaches to help determine both

the capital requirement of the banks and risk assessment of the borrowers. Currently machine

learning cannot be used as a standalone method to grant or deny loans.

References 38

References

Abonazel, M. R. & Ibrahim, M. G. (2018). On Estimation Methods for Binary Logistic

Regression with Missing Value. International Journal of Mathematics and

Computational Science, 4(3), 79-85.

Beckmann, M., Ebecken, N. & Lima, B. (2015). A KNN Undersampling Approach for Data

balancing. Journal of Intelligent Learning Systems and Applications, 7, 104-116.

https://doi.org/10.4236/jilsa.2015.74010

BIS (2019a). Calculation of RWA for Credit Risk: IRB Approach minimum requirements to

use IRB Approach. Retrieved from:

https://www.bis.org/basel_framework/chapter/CRE/36.htm?tldate=20400918&inforc

e=20220101

BIS. (2019b). Calculation of RWA for Credit Risk. Retrieved from:

https://www.bis.org/basel_framework/chapter/CRE/20.htm?inforce=20220101

BIS. (n.d.). BIS Chronology. Retrieved from:

https://www.bis.org/about/chronology.htm?m=1%7C4%7C550

Chen, T. & Guestrin, C. (2016). XGBoost: A scalable Tree Boosting System. International

Conference on Knowledge Discovery and Datamining, 2016, 785-794.

https://doi.org/10.1145/2939672.2939785

Falkenstein, E. G., Boral, A. & Carty, L. V. (2000). RiskCalc for Private Companies:

Moody’s Default Model. https://doi.org/10.2139/ssrn.236011

Fawcett, T. (2006). Introduction to ROC Analysis. Pattern Recognition Letters, 27(8), 861-

874. https://doi.org/10.1016/j.patrec.2005.10.010

FICO. (2018). Frequently Asked Questions About Fico Scores. Retrieved from:

https://www.ficoscore.com/ficoscore/pdf/Frequently-Asked-Questions-About-FICO-

Scores.pdf

FICO. (n.d.). Learn About the Fico Score and its Long History. Retrieved from:

https://www.fico.com/25years/

Finanstilsynet (2020, 17. April). Beregningsgrunnlaget. Retrieved from:

https://www.finanstilsynet.no/tema/kapitaldekning/beregningsgrunnlaget/

Finanstilsynet. (2018, 11. December). Krav til banker som søker om å benytte IRB.

Retrieved from: https://www.finanstilsynet.no/nyhetsarkiv/nyheter/2018/krav-til-

banker-som-soker-om-a-benytte-irb/

GDPR (n.d.a). Article 20: Right to data portability. Retrieved from: https://gdpr.eu/article-

20-right-to-data-portability/

GDPR. (n.d.b). Article 22: Automated individual decision-making, including profiling.

Retrieved from: https://gdpr.eu/article-22-automated-individual-decision-making/

https://doi.org/10.4236/jilsa.2015.74010
https://www.bis.org/basel_framework/chapter/CRE/36.htm?tldate=20400918&inforce=20220101
https://www.bis.org/basel_framework/chapter/CRE/36.htm?tldate=20400918&inforce=20220101
https://www.bis.org/basel_framework/chapter/CRE/20.htm?inforce=20220101
https://www.bis.org/about/chronology.htm?m=1%7C4%7C550
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.2139/ssrn.236011
https://doi.org/10.1016/j.patrec.2005.10.010
https://www.ficoscore.com/ficoscore/pdf/Frequently-Asked-Questions-About-FICO-Scores.pdf
https://www.ficoscore.com/ficoscore/pdf/Frequently-Asked-Questions-About-FICO-Scores.pdf
https://www.fico.com/25years/
https://www.finanstilsynet.no/tema/kapitaldekning/beregningsgrunnlaget/
https://www.finanstilsynet.no/nyhetsarkiv/nyheter/2018/krav-til-banker-som-soker-om-a-benytte-irb/
https://www.finanstilsynet.no/nyhetsarkiv/nyheter/2018/krav-til-banker-som-soker-om-a-benytte-irb/
https://gdpr.eu/article-20-right-to-data-portability/
https://gdpr.eu/article-20-right-to-data-portability/
https://gdpr.eu/article-22-automated-individual-decision-making/

 39

GDPR. (n.d.c). What are the GDPR Fines? Retrieved from: https://gdpr.eu/fines/

GDPR. (n.d.d). What is GDPR, the EU’s new data protection law? Retrieved from:

https://gdpr.eu/what-is-gdpr/

Guo, G., Wang, H., Bell, D. A., Bi, Y. & Greer, K. (2004). KNN Model-Based Approach in

Classification. Lecture Notes in Computer Science, 2888, 986-996.

https://www.doi.org/10.1007/978-3-540-39964-3_62

Hand, D. J. & Henley, W. E. (1996). Statistical Classification Methods in Consumer Credit

Scoring: a Review. Journal of the Royal Statistical Society, 160(3), 523-541.

https://doi.org/10.1111/j.1467-985X.1997.00078.x

Hu, L.-Y., Huang, M.-W., Ke S.-W. & Tsai, C.-F. (2016). The distance function effect on k-

nearest neighbor classification for medical datasets. Springerplus, 5(1).

https://doi.org/10.1186/s40064-016-2941-7

IDC. (2020, 13. May). IDC’s Global StorageSphere Forecasts Shows Continued Strong

Growth in the World’s Installed Base of Storage Capacity. Retrieved from:

https://www.idc.com/getdoc.jsp?containerId=prUS46303920

Ishwaran, H., Rao, J. (2009). Decision Tree: Introduction. Encyclopedia of medical decision

making, 324-328. https://doi.org/10.4135/9781412971980.n97

James, G., Witten, D., Hastie, T. & Tibshirani, R. (2017). An Introduction to Statistical

Learning: with Applications in R. Springer

Kononenko, I. (2000). Machine learning for medical diagnosis: history, state of the art and

perspective. Artificial Intelligence in Medicine, 23(1), 89-109.

https://doi.org/10.1016/S0933-3657(01)00077-X

Nordhaus, W. D. (2001, September). The Progress of Computing. Retrieved from:

https://ssrn.com/abstract=285168

Ong, C.-S., Huang, J.-J. & Tzeng, G.-H. (2005). Building credit scoring models using

genetic programming. Expert Systems with Applications, 29(1), 41-47.

https://doi.org/10.1016/j.eswa.2005.01.003

Oshiroa, T. M., Peres, P. S. & Baranauskas, J. A. (2012). How Many Trees in a Random

forest? Machine Learning and Data Mining in Pattern Recognition, 154-168.

https://doi.org/10.1007/978-3-642-31537-4_13

Pathmind (n.d.). Artificial Intelligence (AI) vs. Machine Learning vs. Deep Learning.

Retrieved from: https://wiki.pathmind.com/ai-vs-machine-learning-vs-deep-learning

Pretorius, A., Bierman, S. & Steel, S. (2016). A Meta-Analysis of Research in Random

Forests for Classification. Pattern Recognition Association of South Africa and

Robotics and Mechatronics International Conference, 2016, 1-6.

https://doi.org/10.1109/RoboMech.2016.7813171

Swamy, M. N. & Du K.-L. (2013). Neural Networks and Statistical Learning. Springer

London

https://gdpr.eu/fines/
https://gdpr.eu/what-is-gdpr/
https://www.doi.org/10.1007/978-3-540-39964-3_62
https://doi.org/10.1111/j.1467-985X.1997.00078.x
https://doi.org/10.1186/s40064-016-2941-7
https://www.idc.com/getdoc.jsp?containerId=prUS46303920
https://doi.org/10.4135/9781412971980.n97
https://doi.org/10.1016/S0933-3657(01)00077-X
https://ssrn.com/abstract=285168
https://doi.org/10.1016/j.eswa.2005.01.003
https://doi.org/10.1007/978-3-642-31537-4_13
https://wiki.pathmind.com/ai-vs-machine-learning-vs-deep-learning
https://doi.org/10.1109/RoboMech.2016.7813171

References 40

UCI. (n.d.). UCI Machine Learning Repository. Retrieved from:

https://archive.ics.uci.edu/ml/about.html

Xiao, W., Zhao, Q. & Fei, Q. (2006). A comparative study of data mining methods in

consumer loans credit scoring management. Journal of Systems Science and System

Engineering, 15, 419-435

Yeh, I. C. & Lien, C. H. (2009). The comparisons of data mining techniques for the

predictive accuracy of probability of default of credit card clients. Expert Systems

with Applications, 36(2), 2473-2480. https://doi.org/10.1016/j.eswa.2007.12.020

Yeh, I. C., & Lien, C. H. (2009). The comparisons of data mining techniques for the

predictive accuracy of probability of default of credit card clients. Expert Systems

with Applications, 36(2), 2473-2480.

https://archive.ics.uci.edu/ml/about.html
https://doi.org/10.1016/j.eswa.2007.12.020

 41

Appendix

A1 KNN – ROC and Confusion Matrix

Appendix 42

A2 Decision Tree – ROC and Confusion Matrix

A3 Logistic Regression – ROC and Confusion Matrix

 43

A4 – Neural Network – ROC and Confusion Matrix

Appendix 44

A5 – XGBoost – ROC and Confusion Matrix

 45

A6 – Random Forest – ROC and Confusion Matrix

	1. Introduction
	1.1 Literature Review
	1.2 Thesis Structure

	2. Theory
	2.1 Credit Risk
	2.2 Definintion of Default
	2.3 Assessment of Credit Risk as of Today
	2.4 Data and GDPR
	2.5 The Bias-Variance Tradeoff
	2.6 Supervised vs. unsupervised learning
	2.7 Machine Learning and AI
	2.8 Machine Learning Methods
	2.8.1 Logistic Regression
	2.8.2 Decision Tree
	2.8.3 Random Forest
	2.8.4 XGBoost
	2.8.5 K-Nearest Neighbor (KNN)
	2.8.6 Neural Networks (NN)

	3. Data
	3.1 Data Decsription
	3.2 Variables
	3.3 Software

	4. Methodology
	4.1 Data Cleaning
	4.2 Data partitioning
	4.3 Tuning of Hyperparameters
	4.3.1 Tuning of Decision Tree
	4.3.2 Tuning of Random Forest
	4.3.3 Tuning of XGBoost
	4.3.4 Tuning of KNN
	4.3.5 Tuning of Neural Network

	4.4 Evaluation of Model Performance

	5. Results
	5.1.1 Decision Tree
	5.1.2 KNN
	5.1.3 Logistic Regression
	5.1.4 Neural Network
	5.1.5 XGBoost
	5.1.6 Random Forest
	5.2 Summary of Performance
	5.3 Variable Importance

	6. Discussion
	7. Conclusion
	References
	Appendix
	A1 KNN – ROC and Confusion Matrix
	A2 Decision Tree – ROC and Confusion Matrix
	A3 Logistic Regression – ROC and Confusion Matrix
	A4 – Neural Network – ROC and Confusion Matrix
	A5 – XGBoost – ROC and Confusion Matrix
	A6 – Random Forest – ROC and Confusion Matrix

