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Abstract 

In this master thesis we apply a variation of different machine learning techniques on a dataset 

for credit card clients in Taiwan to model the probability of default.  

In this master thesis, we apply machine learning techniques on a dataset for credit card clients 

in Taiwan to model the Probability of Default (PD). The machine learning methods used were 

the Logistic Regression, Decision Tree, Random Forest, XGBoost, K-Nearest Neighbor 

(KNN) and Neural Network. We use Receiver Operating Curve Area Under the Curve (ROC 

AUC) and Confusion Matrix to assess the performance of each of the models, where the ROC 

AUC is used as our main performance measurement. 

We look into the standard methods of assessing credit and how the General Data Protection 

Regulation (GDPR) affects machine learning now and in the future. 

Random Forest performed the best followed by XGBoost and Neural Network. The difference 

in ROC AUC score between the top four models were only 0.023, while the worst performers 

KNN and Decision Tree were far behind. 
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1. Introduction 

Being able to accurately predict whether a customer is going to default or not is vital to the 

survival of credit lending companies. If the predictions are too strict, they will reject customers 

who would not default and therefore miss out on income. On the other hand, if the predictions 

are too lenient, they might lose money due to accepting customers who is going to default. 

The accuracy of credit companies is therefore incredibly important to how well they fare. 

Different methods of reporting credit have been used for over 100 years and the earliest uses 

dates back to 1869. Conceivably, these methods were far simpler, and the earliest methods 

often revolved around the “gut feel” of the lender. (Marketplace.org, n.d.). These methods for 

reviewing credit continued to evolve and in 1989 one of the most widely used credit scoring 

systems to date, FICO, was created. The credit scoring system revolved around the gathering 

of financial related statistics in order to classify the borrower (FICO, n.d.). 

Machine learning is by no means a new topic and was used as early as the 1950s, possibly 

even earlier (Kononenko, 2001). Despite being discovered this early, the use of machine 

learning did not “take off” until later. This was largely due to two factors: available data and 

computational power. In order for machine learning to be most effective the input data needs 

to be of a substantial size and quality. Secondly, machine learning in general requires a lot of 

computational resources, which were lacking back then. Today, companies store much more 

of their data, which opens up for of using tools like machine learning is there. Further, 

computational power has increased exponentially, while the prices have even decreased. 

Several studies have undertaken on this particular subject and Nordhaus (2001) found that the 

computational power increased by 55% on an annual basis from 1940 till around 2000. 

In this thesis we will be looking at a few different machine learning methods. While some 

methods may prove to be better in terms of giving a better prediction, they may suffer from 

being subsequently harder to interpret. For banks and credit card companies, this may not be 

a problem, however as new laws aimed to protect the consumers such as GDPR, the 

requirement for transparency has increased with it.  
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 Literature Review 

Machine learning has not yet been used as a standalone method for extending credit or loans. 

Depending on the type of loan and whether the loan is targeted towards consumers or firms, a 

various of different credit scoring methods have been employed. For consumers, the most 

known credit scoring model is the FICO score. FICO score is calculated by assessing five 

components: Amount of Debt, Payment History, Length of Credit History, New Credit and 

Credit Mix. The weighting of each of the components is different, based on the estimated 

importance. The end result is a credit score, which is usually between 350 and 850. A higher 

end score indicates that the consumer has a low credit risk, whereas a lower score indicates a 

higher risk (FICO, pg. 4, 2018). For private firms, Moody’s RiskCalc has been a commonly 

used tool in the United States, since it was released in 2000 (Falkenstein et al., 2000).  

There have been several studies regarding credit scoring and machine learning. Ong et al. 

(2005) reviewed the performance of a series of machine learning techniques, including 

Decision Tree, Neural Network and Logistic Regression. The best performing technique was 

General Programming (GP), but that method is out of the scope for this thesis. Both the 

Logistic Regression and Neural Network resulted good predictions, while the decision tree 

performed poorly.  

Hand and Henley (1996) performed a similar study of Neural Networks and Logistic 

Regression, albeit nine years earlier. While their paper indicated that both the Logistic 

Regression and Neural Network were good performers, their conclusion was more reserved; 

There is no best overall method and that what method to use is highly dependent on the data 

used (Hand & Henley, pg. 535, 1996). 

Xiao et al. (2006) investigates similar machine learning methods to the two previous papers, 

but also includes K-Nearest Neighbor (KNN) and various variations of Neural Network. The 

study was done on three credit datasets from Germany, Australia and United States. Once 

again, the Logistic Regression were among the best performers, only slightly behind the top 

performer, Support Vector Machines. KNN performed poorly on two of the three datasets 

used. A total of three variations were used for the Neural Network, were two of the variations 

performed well. 

Overall, the Logistic Regression and Neural Network were the two most commonly reviewed 

machine learning methods for these papers, where the performance of the two techniques were 
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similar. The explanatory ability of the techniques was a vocal discussion point in the paper of 

Xiao et al. (2006). The best model for overall interpretability was the Decision Tree, followed 

by the Logistic Regression. The Neural Network were among the worst in terms of 

interpretability due to its complexity in determining the output (Xiao et al., pg 431, 2006). 

 Thesis Structure 

This Master Thesis is divided into 7 chapters, including the introduction. The 2nd chapter 

introduces theory regarding credit risk, machine learning and the specific machine learning 

methods used. Chapter 3 presents the dataset used for the empirical part of this thesis. It 

includes a brief description of the dataset itself and its variables. In chapter 4, we go through 

the methodology for the empirical part, where we do some changes to the dataset and the 

tuning of relevant hyperparameters. Chapter 5 presents the empirical results, while we in 

chapter 6 will discuss machine learning and general questions around it. We draw a conclusion 

of this thesis in chapter 7. 
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2. Theory 

 Credit Risk 

Credit risk is the risk a lender takes due to the uncertainty whether a borrower will repay the 

amount of money borrowed plus other agreed fees, such as interest. The goal of the lender, as 

in any financial business, is to maximize their revenue and reduce costs. The income and costs 

for credit businesses stems largely from maximizing the volume of loans and interest revenue 

while minimizing the loss, or defaults, on each of these loans. This is the business rationale 

among the credit card companies, which the dataset in this thesis is based on. 

 Definintion of Default 

When a customer is not able to repay a loan, it is defined as a default. While the definition of 

default is simple enough, it may be difficult to determine exactly when the customer actually 

has defaulted. After how many days or months can a loan be considered default?  

The Basel Committee, which serve as a banking supervisor for its member, has released three 

accords, often referred to as The Basel Accords I to III, in 1998, 2004 and 2013 (BIS, n.d.). 

The purpose of these accords is to serve as regulations for banks and financial institutions. In 

the 2nd accord, Basel II, they define a default when either of two events have occurred: 

1. “The bank considers that the obligor is unlikely to pay its credit obligations to the 

banking group in full, without recourse by the bank to actions such as realising 

security (if held)”. 

 

2. “The obligor is past due more than 90 days on any material credit obligation to the 

banking group. Overdrafts will be considered as being past due once the customer 

has breached an advised limit or been advised of a limit smaller than current 

outstandings” (BIS, 2019b). 
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 Assessment of Credit Risk as of Today  

As of today, none of the banks or financial institutions use machine learning when extending 

credit or measuring credit risk. We briefly introduced two methods in chapter 1.2, RiskCalc 

and FICO score, which are two commonly used method in United States. In Norway, they 

currently use two main approaches: The Standardized Approach and Internal-Rating-Based 

Approach (IRB) (Finanstilsynet, 2017). Both of these methods are based on the Basel Accords, 

more specifically Basel II. These two methods are used to calculate the amount of capital 

required by the bank. 

The Standardized approach works by assigning risk weights to different exposures (BIS, 

2019a). The risk weights are usually assigned in one of two ways. The first option is to use the 

Capital Requirements Regulations (CRR) template values to assess the borrowers’ risk. The 

second option is to use external ratings of the borrowers’ risk from a selected number of 

approved external rating bureaus (Finanstilsynet, 2017). However, this can only be done for 

some exposure classes defined by the national supervisor (BIS, n.d.). 

For the IRB approach, the calculation of the capital requirement is done by one of two 

methods: The Foundation Approach and the Advanced Approach. The Foundation Approach 

requires the bank to compute only the probability of default (PD). The last two risk weights, 

Exposure At Default (EAD) and Loss Given Default (LGD) is calculated by the national 

supervisor (in Norway, “Finanstilsynet”). The Advanced Approach requires the bank to 

compute every risk weight in addition to PD.  

In order to apply either of the IRB methods, one required approval from Finanstilsynet. If 

approved, the bank can use their own models to compute the risk weights, which is then 

applied to arrive at the capital requirement needed. Very few banks are granted allowance to 

use the IRB models, and in 2018 Finanstilsynet made this even stricter by adding a new 

requirement where the value of the corporate portfolio need to be at least 30 billion NOK to 

for the use IRB Approach (Finanstilsynet, 2018). Even after getting approval to create IRB 

models, there are strict requirements to the data used and its validation methods.  

It is important to emphasize that the two approaches of IRB introduced above are used to 

identify the capital requirement for a bank. They are not used as a standalone decision tool 

based on predicted probability of default in order to grant or deny loans. Today, the banks still 
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use traditional financial data, such as equity and income, to decide whether or not to grant a 

loan and size of the loan.  

 Data and GDPR 

Over the past few years, the amount of data has increased tremendously. According to the 

International Data Corporation, the amount of data increased by 16.6% last year and they 

expect the annual growth from 2019-2024 to be 17.8% (IDC, n.d.). As data simply is a form 

of information, this translates into more information being available and collected. Whether 

using machine learning algorithms or other means of decision making, more information is 

likely to improve the end result, assuming the data can be used. Depending on the source of 

the data, it can either be structured or unstructured data. Structured data is data that can be 

used without any need of heavy transforming, whereas instructed data needs to be processed 

to gain any valuable insight from it.  

As the data and its availability has steadily increased over time, so has the amount of data that 

is being collected. The 25th of May 2018 the European Union released the new law “General 

Data Protection Regulation” (GDPR). The law is aimed at protecting the consumers and 

heavily punishing corporations for violating laws regarding consumer privacy (GDPR, n.d.d). 

Consumer Protecting laws is nothing new and was already implemented in 1995 under the 

name “Data Protection Directive”. GDPR differentiates from this by being more specific and 

violation of the law results in severe fines of up to €20 million (GDPR, n.d.c). Protecting 

consumer privacy is not the only focus of GDPR. Article 22 of GDPR states that a consumer 

cannot be rejected to a decision solely based on automated processing (GDPR, n.d.b). If the 

consumer is rejected by an automated system, they have the right for the process to be 

manually checked instead. Many of the key points in GDPR are aimed at protecting the 

consumers from being mistreated by corporations. Some of the articles also focus on flexibility 

for the consumers. “The Right to Data Portability” under article 20, allows consumers to 

transfer their personal data between providers (GDPR, n.d.a).  

 The Bias-Variance Tradeoff 

When dealing with any kind of machine learning or statistical model, the concept of bias-

variance is an important aspect. The bias of the model can be seen as the difference in the 
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Figure 2.1: Bias-Variance Trade-off 
(Fortman-Roe, 2012) 

predicted values of a model versus the observed values due to assumptions made by the model. 

The most classical example is how a linear regression model will assume that there is a linear 

relationship between the predictors, when in fact the relationship could be non-linear. This 

results in high bias for the predictions made by the linear model. On the other hand, imagine 

a model with inputs that does not have to be linear and consequently follows the training data 

very well. While this model would have significantly lower bias it would also have an increase 

in the amount of variance. The issue with having high variance is that the predictions will vary 

significantly if we change our training set but keep the same test set. 

Both variance and bias leads to errors in predictions, which is why the Total Error is displayed 

as the U-curve below. 

 

  

 

 

 

 

 

 

As we can see there is a tradeoff between bias and variance. Low variance can lead to high 

bias and low bias to high variance. The ideal tradeoff between the two can be seen at the 

minimum point of the test error, shown by the stippled line.  

 Supervised vs. unsupervised learning 

As this thesis exclusively will be dealing with supervised learning as opposed to unsupervised 

learning, we will dig a bit deeper into this subject. Supervised learning can be divided into 

regression and classification. For regression problems, one is typically dealing with 

quantitative variables, while classification problems usually deal with qualitative variables. 
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However, it is important to note that this is not black and white, and some regression problems 

deals with qualitative variables and vice-versa (James et al., 2017). The logistic regression, 

which will be discussed later in this thesis, is an example of this. The logistic regression uses 

quantitative variables, but the use case of it is often for dealing with binary problem, such as 

default vs. non-default (James et al., 2017).  

 Machine Learning and AI 

Machine learning and artificial intelligence (AI) are two words that have gained a massive 

increased traction in recent years. While they are often used interchangeably it is important to 

know the difference between them. Machine learning is where the machine is able to benefit 

from its experiences and adapt or develop to produce a better result. AI on the other hand is 

able to make its own decisions. Machine learning can be seen as a subset of AI (Pathmind, 

n.d.).  

Machine learning is typically further divided into two main categories: supervised learning 

and unsupervised learning. In supervised learning, for every observation i there is a response 

y which is associated with this observation. This means that the goal in supervised learning is 

to accurately predict future y values using relevant predictors and in turn will often explain the 

relationship between the predictors and the response (James et al., 2017). A linear regression 

is a good and simple example of a method using supervised learning, where we try to fit the 

model of predictors to predict our response variable. Unsupervised learning is a bit more 

difficult compared to supervised learning. For every observation i there is vector of 

measurement and not a response y. We can no longer use statistical tools such as the linear 

regression as there is no response variable that can supervise the procedure and it is therefore 

unsupervised (James et al., 2017). A typical unsupervised learning tool is clustering, where 

the goal is to assign each observation to a certain number of clusters, in the best possible way. 

 Machine Learning Methods 

In this subsection, we will present the machine learning methods used in this thesis and the 

general theory behind them. 
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2.8.1 Logistic Regression 

The logistic regression is often viewed to be a special case of linear regression, but with a 

categorical response variable instead of a continuous (Abonazel & Ibrahim, pg. 80, 2018). 

While linear regression can be used to solve classification problems, or more specifically 

credit default probabilities, it is not the most ideal tool to use. The problem arises as there is 

no upper or lower limit of our response variable. If we were to assume a bank that accepted or 

rejected loans based on the balance of the client. For individuals with extreme balance values 

in either ends, the predicted value could result in being less than 0 or higher than 0. As the 

goal of credit card default problems usually are to try to predict probabilities of default this 

creates a problem, as probabilities have to be within the range of 0 and 1.   

When dealing with a binary categorical response variable, the logistic regression is a better 

tool to use. Instead of using a straight line to predict the outcome, the logistic regression uses 

the Logistic Function and will always yield a result between 0 and 1. The Logistic Function is 

given by: 

𝑝(𝑋̅) =  
𝑒𝛽0+𝛽1∗𝑋1+⋯+𝛽𝐾∗𝑋𝐾

𝑒𝛽0+𝛽1∗𝑋1+⋯+𝛽𝐾∗𝑋𝐾 + 1
(2.1) 

 

As we can see in the figure below, the Logistic Function is what gives the Logistic Regression 

its distinctive S-Curve. 
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Figure 2.2: Linear vs. Logistic Regression (Abonazel & Ibrahim, 2018) 

 

From the Logistic Function we can continue to find the odds for any given data point, by 

transforming the function above to the log odds: 

 

𝐿𝑜𝑔 (
𝑝(𝑋̅)

1 − 𝑝(𝑋̅)
) =  𝛽0 + 𝛽1 ∗ 𝑋1 + ⋯ + 𝛽𝐾 ∗ 𝑋𝐾 (2.2) 

 

As seen from the formula above, we can find the log odds from the parameters on the right-

hand side. However, while we for regular linear regression do this by using Least Sum of 

Squares, we instead use the Maximum Likelihood to determine the best fit (Abonazel & 

Ibrahim, pg. 81, 2018). The Maximum Likelihood estimates the parameters of each 

observation and will predict values closer to 1 for client that are more likely to default and 0 

for clients who is not likely to default. 

2.8.2 Decision Tree 

Similarly to the logistic regression, Decision Trees can be used both for regression and 

classification problems. The Decision Tree has a simple layout, which starts with the root 

node. The root node is the first and main node and represents the whole population. The tree 

is then split into daughter nodes by recursive partitioning. The number of daughter nodes 
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depends on what type of classification tree we want. The most used type is the binary recursive 

partitioned tree, where the number of daughter nodes per split is two. One can use more than 

two daughter nodes by using multiway splits, however evidence suggests that these types of 

trees does not necessarily provide better accuracy (Ishwaran & Rao, 2009). Tree impurity is 

measured to determine what the split should be and how good it is. The more similar each 

observation of the nodes are, the higher the decrease in impurity is, which leads to a better fit. 

Finding the tree impurity can be done by various functions, where the Gini Index is the most 

popular (Ishwaran & Rao, 2009) 

The Gini Index is given by: 

 

𝐺𝑖𝑛𝑖 𝐼𝑛𝑑𝑒𝑥 = 1 − ∑ 𝑝𝑗
2

𝑐

𝑗=1

(2.3) 

 

The Gini Index ranges from 0 to 1. And as we want to decrease the impurity, the lower the 

value the better each observation fits into a split. 

While many of the machine learning methods have a great track record for predicting 

probability of default, they often lack in terms of explainability. One may think that the 

accuracy of the predictions is the most important, which is correct to a large degree. However, 

one should not forget that explainability is also fairly important. It is critical for the firm itself 

as it can easier interpret why or why not customers have been rejected by the algorithm. And 

it is also important in order to easier explain to a potential customer why their loan was 

rejected, as opposed to just referring to a complex algorithm.  

While the simplicity of the decision tree model is one of its strengths it also introduces a 

weakness. The decision tree suffers from high variance, which in turn may results in very 

varying performance on the training and test data set. As a result of this, the prediction of the 

model on the test data may be significantly lower compared to other machine learning 

algorithms. 
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The figure below shows the simple intuition behind a Decision Tree. If the observations fail 

to meet the “requirement” of the root node, i.e. being less than 4.5 years, we moves to the left. 

On the contrary, if the requirement is fulfilled, we move to the right and the process is repeated 

for the next daughter node. 

 

Figure 2.3: Simple Decision Tree (James et al., 2017) 

 

2.8.3 Random Forest 

Random Forest is, like the name suggests, also a “tree” method. However, while we in 

Decision Trees only use one tree, the Random Forest consists of multiple trees that merges 

together into a single tree. This is done by using a technique called Bootstrap Aggregation, or 

often referred to as “Bagging”. The idea behind Bagging is to reduce the variance introduced 

by averaging multiple samples. While we ideally would like to average training data over 

multiple datasets, this is not necessary as we can take multiple samples from one dataset and 

then average these out (James et al., 2017): 

𝑓𝑎𝑣𝑔(𝑥) =  
1

𝐵
∑ 𝑓𝑏(𝑥)

𝐵

𝑏=1

(2.4) 
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While Bagging improves the prediction accuracy this comes at the cost of a new problem; 

correlation. In Bagging many of the trees produced will be highly correlated. By averaging 

many highly correlated trees the reduction in variance will not be as significant as if these trees 

are correlated. To solve this, Random Forest will not select predictors solely based on their 

estimated prediction power (Pretorius et al., 2016). Instead, it selects a random number of 

predictors for each split and then choses the best predictor among these. This method of 

choosing predictors will greatly reduce the variance of all the trees as it allows for some of the 

perceived weaker predictors to be taken into account. The numbers of random predictors 

chosen per split can be defined by the user. 

2.8.4 XGBoost 

XGBoost has quickly become one of the most used machine learning algorithms in the past 

few years. On Kaggle, a website that regularly holds competitions with sizeable rewards and 

recognitions, 15 of the 29 winners in 2015 used XGBoost as either their main model or in 

combination with other models (Chen & Guestrin, 2016). The scalability of the model, the fast 

computation time and its accurate predictions on several types of data has been the key factors 

for the heavy success and use of XGBoost. 

 

XGBoost is a machine learning algorithm that uses Gradient Boosting based on the research 

from Friedmann et al. (Chen & Guestrin, 2016). The Gradient Boosting uses an ensemble tree 

method to create a number of regular Decision Trees based on any given data sample, where 

the prediction will be the sum of all the predictions from every tree made. As this alone could 

easily result in overfitting the data, XGBoost aims to minimize the regularized objective model 

given by this formula (Chen & Guestrin, 2016): 

ℒ(𝜙) =  ∑ 𝑙(𝑦̂𝑖, 𝑦,) +  ∑ Ω

𝑘

(𝑓𝑘)

𝑖

(2.5) 

 

𝛺(𝑓) =  𝛾𝑇 +   1/2 𝜆||𝜔||2 (2.6) 

 

The first term measures the difference between the predicted ŷi and the observation y, while 

the second term omega acts as a penalty the more complex the model is.  
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2.8.5 K-Nearest Neighbor (KNN) 

The K-Nearest Neighbor is a non-parametric machine learning method mainly used for 

classification problems. KNN classifies the test observation x0 based on K numbers of 

neighbors by determining its probability of being class j given by the formula (James et al., 

2017): 

Pr(𝑌 = 𝑗|𝑋 = 𝑥0) =  
1

𝐾
∑ 𝐼(𝑦𝑖 = 𝑗)

𝑖∈𝒩0

(2.7) 

 

The distance from the test observation x0 and its’ closest neighbor can be determined by 

various ways of measuring distance, where the Euclidean Distance is the most widely used 

metric (Hu et al., 2016). The Euclidean Distance is given by: 

 

𝑑(𝑥, 𝑦) =  √∑(𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

(2.8) 

 

If we were to classify if x0 defaults or not with K being 11, the 11 closest neighbors would be 

identified. If 7 out the 11 closest neighbors were classified as having defaulted, KNN would 

predict x0 to default as 7/11 > 4/11.  

The downsides of KNN are that the method is a lazy learner, and that the outcome is heavily 

biased and dependent on the number of neighbors K (Guo et al., 2004). This results in higher 

computation time and cost, due to the way new observations are handled and classified. The 

Bias-Variance tradeoff discussed earlier in this chapter is present when determining the 

appropriate number of neighbors K. If K is set too low, one will encounter low bias but in turn 

higher variance. With K set too high, the variance is on the lower side with bias being 

consequently higher. Therefore, tuning the K parameter to hit the sweet spot between bias and 

variance is important for this machine learning method. 
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2.8.6 Neural Networks (NN) 

Neural Networks is one of the more complicated machine learning tools to be implemented in 

this thesis. The model tries to replicate how the human brain works by using neurons that 

connect with each other in various ways (Du & Swamy, pg. 1, 2013). Because of the way the 

neural networks connect neurons together, it is referred to as a connectionist model. The 

mapping of the neurons depends on the architecture the neural network used. The figure below 

shows a layered feedforward network.  

 

As the name suggest, the neurons in this architecture will only connect neurons from forward-

hidden layers and there is no feedback given from the hidden layer (Du & Swamy, 2013). The 

four nodes at the very beginning of the figure are our input nodes, which is where our 

predictors are. There is only one hidden layer, which is where the three neurons are located. 

The last two nodes at the right, are the output nodes.  

The number of neurons per layer and total number of hidden layers are hyperparameters that 

can be set by the user. In line with other models, this also need to be done by tuning or a similar 

method to avoid overfitting of the data.  

Neural Networks usually provides good prediction accuracy, but it needs to be tuned well to 

avoid overfitting. In addition to problems with overfitting, the Neural Network also suffers 

from being hard to interpret and is often labelled as a black-box because of this (Du & Swamy, 

2013). 

Figure 2.4: Feedforward Neural Network (Du & Swamy, 
2016) 
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3. Data 

In this part, we will introduce the dataset used for the empirical part of this thesis. 

 Data Decsription 

The data set used for the empirical part of this thesis is from a publicly available dataset by 

UCI Machine Learning Repository. The dataset is based on the default of credit card customers 

in Taiwan from 2004. Of the 30 000 included observations, roughly 22 % of the customers 

defaulted on their payment. There is a total of 25 variables in the dataset, including the 

response variable indicating default or non-default.  

 Variables 

The table below shows all the variables in this dataset, including a brief description of them 

as well as what values these can be.  

Variable Name Description Value 

DEFAULT (original name 

default.payment.next.month) 

Whether the customer 

defaulted or not 

1 = Default, 0 = Non-default 

ID Customer ID 1-30 000 

LIMIT_BAL Amount of credit given Any amount, positive 

SEX Gender 1 = Male, 2 = Female 

EDUCATION Level of education 1 = Graduate school  

2 = University  

3 = High School 

4 = Others 

MARRIAGE Martial status 1 = Married 

2 = Single 

3 = Others 

AGE Age of the customer in years Their age (min. recorded = 21, 

max. recorded = 79) 

PAY_1 (original name PAY_0) History of payment in 

September 2005 

-1 = paid duly 

1 = 1 month late 

… 

8 = 8 months late 

PAY_2 History of payment in August 

2005 

-1 = paid duly 

1 = 1 month late 

… 

8 = 8 months late 

PAY_3 History of payment in July 

2005 

-1 = paid duly 

1 = 1 month late 

… 
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8 = 8 months late 

PAY_4 History of payment in June 

2005 

-1 = paid duly 

1 = 1 month late 

… 

8 = 8 months late 

PAY_5 History of payment in May 

2005 

-1 = paid duly 

2 = 2 months late 

… 

8 = 8 months late 

PAY_6 History of payment in April 

2005 

-1 = paid duly 

1 = 1 month late 

… 

8 = 8 months late 

BILL_AMT1 Amount of bill statement in 

September 2005 (in NT 

Dollars) 

Any value, both positive and 

negative 

BILL_AMT2 Amount of bill statement in 

August 2005 (in NT Dollars) 

Any value, both positive and 

negative 

BILL_AMT3 Amount of bill statement in 

July 2005 (in NT Dollars) 

Any value, both positive and 

negative 

BILL_AMT4 Amount of bill statement in 

June 2005 (in NT Dollars) 

Any value, both positive and 

negative 

BILL_AMT5 Amount of bill statement in 

May 2005 (in NT Dollars) 

Any value, both positive and 

negative 

BILL_AMT6 Amount of bill statement in 

April 2005 (in NT Dollars) 

Any value, both positive and 

negative 

PAY_AMT1 Amount of previous payment in 

April 2005 (in NT Dollars) 

0 to any value 

PAY_AMT2 Amount of previous payment in 

May 2005 (in NT Dollars) 

0 to any value 

PAY_AMT3 Amount of previous payment in 

June 2005 (in NT Dollars) 

0 to any value 

PAY_AMT4 Amount of previous payment in 

July 2005 (in NT Dollars) 

0 to any value 

PAY_AMT5 Amount of previous payment in 

August 2005 (in NT Dollars) 

0 to any value 

PAY_AMT6 Amount of previous payment in 

September 2005 (in NT 

Dollars) 

0 to any value 

 

Table 3.1: Variables, descriptions and possible values 
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 Software 

The programming language used for this Master Thesis has been R alongside the integrated 

development environment RStudio. All the data processing, cleaning and making of models 

has been done with RStudio on a local machine with various packages depending on the tasks 

performed. 
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4. Methodology 

The methodology part will explain the various processes done of the dataset and the machine 

learning methods used in this thesis.  

 Data Cleaning 

In order to get the most accurate predictions by the model implemented, it is important that 

the data are thoroughly inspected and cleaned. Missing variables and extreme values can, 

somewhat depending upon the context, heavily skew the data and influence the predictions 

being made. 

The dataset has no missing or extreme values and was in general very clean. The first change 

we made was to first remove the variable “ID”. This column was simply just an identifcation 

for the customers, ranging from 1st observation to the 30 000th, and therefore served no purpose 

as a predictor. We also made some small name changes to some of the variables to fit the rest 

of the dataset better. PAY_0 was changed to PAY_1, to better fit in with BILL_AMT1 and 

PAY_AMT1. The dataset already contains our response variable, and it is therefore no need 

for us to define this ourselves based on a certain criterion. However, the response variables 

name was changed from “default.payment.next.month” to “DEFAULT”. 

However, the dataset had a few inconsistencies regarding some of the variable values. The 

variable “MARRIAGE” is an integer with values ranging from 1-3, as seen in the table from 

the previous chapter. The dataset had 54 instances of this variable being 0 and these were 

moved to the 3rd category “Other”. Further inspecting the remaining variables, shows that in 

all the PAY_1-6 variables there are values of -2 and 0.  Given the data description, these should 

range from -1 when the customer has paid in time and from 1-8 depending on how late the 

payment was made. There is no information regarding these values and we have to look more 

into this. 

By further inspecting these variables, we can see that the value -2 and 0 makes up a significant 

part of our observations. Combining these two together (-2 and 0) makes up for almost 80% 

of our dataset and therefore simply removing these would heavily decrease the size of the data 

and most likely the prediction accuracy of our models. Our hypothesis is that the PAY_1 

variable has a lot of predictive power when determining whether a customer is going to default 
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or not. By subsetting the dataset we can see that the distribution for defaults vs. non-default 

when PAY_1 is -1, i.e. paid in time, is 84%. When doing the same for -2 and 0, we get 86% 

and 87% respectively. We suspect that -2 and 0 might be mislabelled and should instead be 

labelled as -1. The next step in this process to determine this is to see how the distribution of 

default is when the PAY_1 is 1, meaning payment is made 1 month late. The result of this was 

a distribution of 33 % non-defaults. While this alone does not necessarily confirm our 

hypothesis regarding the predictability of the variable, it certainly strengthens it. We repeated 

the process from above on all the PAY_X variables and the numbers we got from this was 

similar. As a result of this, we decided to change the PAY_X values from -2 and 0 to -1. While 

this is not a perfect way of solving this problem, the suspected predictability of the predictor 

and the distribution of the default vs non-default, we believe this is a satisfactory way of 

dealing with it.  

 Data partitioning 

When building a statistical model, one will usually split the data into a training set and a 

test/validation set. The relevant models will first be applied and will learn from the training 

set, before they are being run on the new and unseen data in the test set. By doing this, one 

can ensure that models with good predictions on the training set actually predicts well on 

unseen data and is not just a case of overfitting. If the model follows the training data too 

well and predicts poorly on the test set, it is usually a case of overfitting and the model has 

not been able to identify the underlying relationship in the data set. 

 

There are many methods for choosing a split and in this thesis, we have chosen an 80/20 

split. 80% of the dataset will be used for training and the remaining 20% will be held out and 

used as a test set.  

We used the “set.seed” function in R and set this to “123” to get reproducible results. This 

function ensures that the same random numbers are being used and the splits of test and 

training data, models and results will be the same if ran multiple times or on different 

computers. 
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 Tuning of Hyperparameters 

Many of the machine models presented and used in this thesis require carefully tuned 

hyperparameters in order to get optimal predictions. The hyperparameters are defined as 

parameters than can be changed manually when “building” machine learning models. 

However, not all the models we use needs to be tuned or even have any hyperparameters at 

all. The tuning process can be a long and slow process depending on the size of the data and 

the complexity of the model. What makes the tuning process even harder is that there usually 

is no “one size fits all” solution and we often need to brute force an optimal solution. This can 

be done in various ways and in this thesis we have used a grid search in RStudio. This is still 

not a perfect method as it can be computationally expensive the smaller the increments of each 

hyperparameter in the grid search is. Therefore, even tuning with a method like grid search 

will not yield the perfect solution, as it is done in increments and not in a continuous search. 

Despite the fact that tuning can increase the computation time, it can vastly increase the 

prediction accuracy.  

4.3.1 Tuning of Decision Tree 

In our model for the Decision Tree, we only have one hyperparameter that we tune; number 

maximum depth. The maximum depth defines how deep the tree should be. We tune the 

number of trees by doing a cross-validation and selecting the tree with the lowest error rate. 

4.3.2 Tuning of Random Forest 

For Random Forest there are three hyperparameters we are looking to tune: number of random 

predictors, maximum depth and number of trees.  

The number of random predictors is the number of predictors to be randomly selected at each 

split. As stated in the theory part, this is usually set to the square root of the total number of 

predictors. This value should, alongside the other hyperparameters, be tuned to increase the 

prediction power. The square root of our 24 predictors is between 4-5 and we therefore start 

our grid search with a value slightly lower than this. We start with 2 and increase in increments 

of 5 up to a maximum of 22. 

There is no similar general rule for the maximum depth of the trees made by Random Forest. 

What the max depth should be heavily depend on the number of predictors and the size of the 
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dataset. As this is not the biggest dataset and with our 24 predictors, we set the max depth to 

range from 5 to 30. 

One of the proclaimed features of Random Forest is that it supposedly handles overfitting in 

regard to the number of trees well. However, a study from 2012 found the optimal number of 

trees to be 128 (Oshiro et al., pg. 166, 2012). This study was done on several types of data and 

with numbers of trees ranging from very low values to over 4000 trees. The results showed 

that there were at most very little increase in performance when increasing the number of trees 

and in some scenarios fewer trees performed better. The computational time also increased 

exponentially the more trees were used for the model. With this in mind, our grid search for 

number of trees started at 100, increasing by 20 until the maximum of 200 trees was reached.  

4.3.3 Tuning of XGBoost 

XGBoost is the model that required the most tuning in terms of numbers of hyperparameters. 

We tuned the model by these hyperparameters: Loss reduction, Maximum depth, learning rate, 

minimum sum of instance weight, subsample ratio and subsample of each tree. While 

XGBoost is known for being a fast algorithm, the number of hyperparameters heavily 

increased the computation time for this method, as these needed to be tuned. 

The loss reduction function defines how strict or loose the model branches out to new daughter 

nodes. Higher value will result in a less complex tree. There is no specified default value for 

this, and we search from 0 to 5.  

Maximum depth functions the same way as for our previous model, Random Forest. However, 

the maximum depth is usually set to a smaller value for XGBoost. Chen & Guestrin (2016) 

used 8 as maximum depth for all the trees. We set our maximum depth to be between 3 and 

11, to cover well below and above the value of 8 used in the study. 

The learning rate determine how much each tree should contribute to the final prediction made, 

where the value ranges from 0 to 1. A lower value can be used to prevent overfitting but will 

in turn increase the computational time of the model. Our grid search values has been set 

between 0.01 and 0.3 as we want to avoid the potential of overfitting. 

The hyperparameter minimum sum of instance weight regulates the sum of instance weight 

required to further partition each tree, where a higher value increases the threshold and results 

in fewer nodes. The default value is 1 and for our search we look at values between 1 and 5. 
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Subsample for each tree decides how big the percentage of predictors to be chosen for the 

building of each tree. This value can be set to be between 0 and 1, where 0 indicates not 

choosing any predictors and 1 for choosing all. This method is somewhat similar to how 

Random Forest operates, but the difference is that XGBoost does this at a tree-level instead 

of per split in each tree.  

Subsample ratio works similarly to the previous hyperparameter, but instead of subsampling 

our predictors we are subsampling a percentage of our training data. It is set between 0 and 1 

and choosing a lower value can reduce the chance of overfitting the data. 

Below is a table that summarizes the hyperparameters we searched in the tuning for XGBoost. 

Hyperparameter Grid search  

Loss Reduction (Gamma) 0 to 20  

Maximum Depth (Max_depth) 3 to 8 

Learning Rate (ETA) 0.0 to 0.3 

Minimum Sum of Instance Weight 

(Min_child_weight) 

1 to 5 

Subsample Ratio (Subsample) 0.5 to 1 

Subsample for each tree (Colsample_bytree) 0.5 to 1 

Table 4.1: XGBoost Hyperparameters and Grid Search 

 

4.3.4 Tuning of KNN 

As introduced in the theory chapter, setting the right number of neighbours, K, is crucial for 

getting a good result with this method. K is also the only hyperparameter that is set and the 

final value used is closely tied to the bias-variance trade-off.  

In order to find the optimal number of K, we used cross validation with different values for K  

to find the iteration with the lowest error rate.  
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4.3.5 Tuning of Neural Network 

The Neural Network is the most complex method applied on the dataset. For this model, we 

have chosen to only tune one hyperparameter, the number of neurons. In other words, the 

Neural Network will have a single hidden layer, where we tune the number of neurons in this 

layer. The type of Neural Network used for our model is a layered feedforward, as shown in 

figure 2.4 in chapter 2. We tuned the network with neurons ranging from 1 and 6 as our highest 

value. 

 Evaluation of Model Performance 

When looking at the performance of a model, there are several different methods to choose 

from. Depending on the type of problem you are dealing with, some evaluation metrics may 

perform better than others. As we in our case are handling a binary classification problem, we 

have chosen two popular metrics within this field; Accuracy derived from a Confusion Matrix 

and Receiver Operatic Characteristic Area Under the Curve, also known as ROC AUC. While 

ROC AUC will be our main evaluation metric of choice in this thesis, the Confusion Matrix 

will provide us with information on how well each model performed specifically on the dataset 

given a certain threshold.  

The Confusion Matrix displays how well each of the models were able to classify the 

predictions made on the dataset. This is done by dividing the results into four categories, where 

two of these classes are correctly predicted. “True positive” and “True negative” is where our 

model will correctly have predicted from the dataset, whereas “False positive” and “False 

negative” shows us where our model made the wrong predictions. The two types of errors are 

often referred to as Type-I and Type-II error respectively.  
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 ACTUAL POSITIVE 

CLASS 

ACTUAL NEGATIVE 

CLASS 

PREDICTED POSITIVE 

CLASS 

True positive (Tp) False negative (Fn) 

PREDICTED NEGATIVE 

CLASS 

False positive (Fp) True negative (Tn) 

Table 4.2: Example of a Confusion Matrix 

 

From our Confusion Matrix we are able to get an accuracy of the correct percentage of 

predictions made by the model, given by: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑝 + 𝑇𝑛

𝑇𝑝 + 𝑇𝑛 + 𝐹𝑛 + 𝐹𝑝
(4.1) 

 

The advantages of using this metric for evaluation is that the requirement for computational 

power is low and it is easy to understand for everyone, not just professionals within the field. 

Another reasoning for using the Confusion Matrix in conjunction with the accuracy derived 

from it is to validate that the models are actually predicting both defaults and non-defaults. 

The importance of this can be illustrated by imagining a heavily imbalanced dataset. Assume 

we have a dataset with 20 000 observations and 19 000 of them being non-default. Simply by 

predicting every observation to be non-default, we would achieve an accuracy of 95%.  

The ROC AUC is widely used to assess the performance of classification problems. The ROC 

graph can be plotted with Specificity on the X-axis and Sensitivity on the Y-Axis, which are 

given by (Fawcett, 2006): 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 (4.2) 
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Figure 4.1: Example of ROC AUC plot 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
(4.3) 

 

The advantage of using the ROC AUC curve compared to only using the Confusion Matrix is 

that it provides a better overall view for the model. From the Confusion Matrix alone, you can 

only see the Sensitivity and Specificity for a single point, while the ROC AUC curve shows 

the Specificity and Sensitivity for various thresholds. When plotting the ROC AUC curve, the 

X axis is usually labelled 1-Specificity. In essence, we are plotting the True Positives versus 

the True Negatives. 

 

 

 

 

 

 

 

 

 

The figure above shows the plotted ROC AUC curve in black. The highest possible value to 

achieve is up in the left corner, where we would correctly predict everything and in turn have 

no False Positives. The grey line is where X = Y and can be classified as a random 

performance. In other words, this can occur if the model is just blindly guessing (Fawcett, 

2006). Any curve that is below this grey line will therefore perform worse than guessing and 

could be a case of not being able to properly handle the information (Fawcett, 2006). 
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The reasoning for using the ROC AUC curve as our main deciding tool is due to the nature of 

the credit market. Instead of just giving a snapshot of a singular threshold, ROC AUC displays 

multiple thresholds. The consequence of issuing credit to a consumer who defaults has a 

greater cost to the bank compared to denying credit for a customer who does not the default. 

Therefore, we believe that ROC AUC will be a better tool to rank our models.  
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5. Results 

In this part of the thesis, we will present the results from each model in an increasing order 

based on the ROC AUC value. As mentioned earlier, the ROC AUC will be the evaluation 

metric we use to evaluate the performance of the model. The Confusion Matrix will be a 

complementary tool. The main reason for this is that the Confusion Matrix provides a snapshot 

of how the model performed on this training and test data, while ROC AUC gives a better 

overall view of the model performance, as it looks at the Specificity and Sensitivity across 

various thresholds.  

Additionally, we will show the final values of the tuning of the hyperparameters for each 

model. 

5.1.1 Decision Tree 

The Decision Tree performed the worst out of all the models, slightly behind the KNN. This 

is to be expected as the Decision Tree is only made up by one single tree, unlike Random and 

Forest XGBoost. This translates to a high amount of variance as even small changes in the 

training data can highly affect the outcome of this model.  

 

 

Figure 5.1: ROC for the Decision Tree 
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5.1.2 KNN 

KNN performed similarly to the Decision Tree and was only slightly better measured by the 

ROC AUC. While one would naturally expect the Decision Tree to perform bad, it might come 

as a bit of a surprise how KNN performs close to the same and being way behind the other 

machine learning methods One reason for this is that the dataset is somewhat unbalanced, and 

this can affect KNN to some extent. While the dataset is not heavily imbalanced, the number 

of non-defaults makes up for around 77% of the dataset, which still is a significant amount. A 

study done in 2015 by Beckmann et al., confirmed that imbalanced datasets indeed affects the 

performance of classifier algorithms such as KNN (Beckmann et al., 2015). 

By repeated cross-validation of KNN, we arrived at the value 21 for number of neighbours K. 

The value of K is chosen based on the highest accuracy achieved, which can be seen in the 

plot below. 

 

Figure 5.2: Cross-validation for KNN 

 

Despite KNNs modelling simplicity, the computational time is significant, and even on par or 

slower compared to some of the more complex models. Combined with its low predicting 

power based on our empirical results, the overall performance is low. 
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Figure 5.3: ROC curve for KNN 

 

5.1.3 Logistic Regression 

The Logistic Regression performs substantially better than both KNN and the Decision Tree 

and is very close to the top three models of this thesis. The simplicity and speed of the model 

is a clear advantage, and the model is still able to perform among the best ones.  

 

Figure 5.4: ROC for the Logistic Regression 
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5.1.4 Neural Network 

The Neural Network performed almost identical to the Logistic Regression. Neural Network 

is often praised for its great ability to classify; however, the model did perform the best out 

of our chosen methods. It is important to note that this was a neural network with only one 

hidden layer. Increasing the number of hidden layers could potentially have increased its 

prediction power, but due to the computational time and power required to properly do this it 

was not a feasible solution. The computational time with two hidden layers and 3 neurons in 

each layer reached over 24 hours before we decided to stop. With 1-4 neurons in layer 1 and 

up to 2 neurons in the second layer, the computational time was shorter, but the result worse 

compared to a single layer with 3 neurons. Consequently, we decided to tune the neural 

network only using a single layer and grid search the optimal number of neurons in this 

layer. The final number of neurons was set to 3. 

 

 

Figure 5.5: ROC for the Neural Network 
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5.1.5 XGBoost 

XGBoost was the method with the highest number of hyperparameters to tune. The model 

performance was almost perfectly in-between the Neural Network and Random Forest, with 

0.009 ahead and 0.01 behind respectively.  

 

Figure 5.6: ROC for XGBoost 

 

5.1.6 Random Forest 

The best performing model on our dataset was the Random Forest. The method had an ROC 

AUC score of 0.789. We believe that the reasoning for Random Forest performed the best 

might be due to its ability to reduce overfitting by selecting only a random number of 

predictors per split. This in turn, as presented in chapter 2.8.3 , reduce the correlation. As only 

a few predictors are chosen per split, the variation is also decreased, contributing to better 

predictions as well. 
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Figure 5.7: ROC for Random Forest 

 Summary of Performance 

The table 5.1 resents the final results of all the models, ranked in an increasing order by ROC 

AUC score. We have also added the final values of the hyperparameters used for each of the 

models. The accuracy is gathered from the Confusion Matrix from each of the methods, with 

the best score in bold.  

Random Forest performed best out of all the models, with XGBoost close behind. Logistic 

Regression and Neural Network performed almost equally and were not far behind the top two 

models.   
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Machine Learning 

Method 

ROC AUC Score Accuracy Hyperparameters used 

Random Forest 0.789 81.85% Number of Trees = 140 

Number of predictors 

per split = 7 

Max. depth = 10 

XGBoost 0.779 81.95% Loss Reduction = 3 

Max. depth = 4 

Learning Rate = 0.0752 

Min. Sum of Instance 

W.  = 4.7 

Subsample Ratio = 0.8 

Subsample for each Tree 

= 0.772  

Neural Network 0.774 81.56% Number of Neurons = 3 

Logistic Regression 0.766 81.05%  

Decision Tree 0.647 82.02% Max depth = 1 

KNN 0.632 80.56 % Number of K = 21 

Table 5.1: Summary of Performance 

 Variable Importance 

The variable importance reveals which of the variables the models relied most upon in their 

predictions. We have found the most important features for the following four models: 

Decision Tree, Random Forest, XGBoost and Neural Network. Variable importance cannot 

be derived directly from the KNN and the Logistic Regression, and these have not been 

included. As the dataset only contains 24 variables, we will list the top three most important 

ones for each model. Pay_1 and Pay_2 were the variables that appeared the most, by making 

the top three most important predictors in three of the four models.  
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Model Most important variables 

Decision Tree 1. Pay_1 

2. Pay_2 

3. Pay_3 

Random Forest 1. Pay_1 

2. Pay_2 

3. Bill_amt1 

XGBoost 1. Pay_1 

2. Pay_2 

3. Pay_amt3 

Neural Network 1. Pay_amt2 

2. Pay_amt1 

3. Pay_amt3 

 

Table 5.2: Variable Importance 
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6. Discussion 

From the results we can see that the top performing machine learning methods performs well 

on a somewhat difficult dataset. The main question still remains unanswered: Can machine 

learning be implemented to determine whether or not to grant credit? One of the known 

drawbacks of machine learning is the interpretability of some of the more advanced models. 

While the methods have increased significantly in popularity over the years, the 

interpretability has remained the same. Under GDPR article 22, if the consumer is denied by 

an automated process without a clear reason as to what caused the rejection. If a prediction is 

made by a Random Forest or XGBoost model, it can be difficult to interpret why the 

application was denied or granted. 

The increasing amount of data being created and collected is a positive sign from an analytical 

standpoint. Still, one should note that more data does not necessarily increase accuracy on 

predictions alone. For the data to be good, it should both be of a significant quantity and quality 

to ensure good predictions are being made.  

We would have liked to create a reference score based on the regular methods as well for this 

dataset, but this was unfortunately not feasible due to the variables the dataset is made up by. 

Traditional scoring methods rely on, as presented in the theory chapter, on financial data. This 

includes data such as income, equity, solidity and so on. Our dataset consists mostly of 

behavioral variables, e.g. late payment and amount paid last bill. Another factor is that we 

simply do not know the exact formula behind the decision of extending credit, and even if we 

did, we do not think its method would be applicable due to the nature of the variables. From 

the variable importance analysis, these variables also turned out to be the most predictive 

variables in most of the models. Therefore, not being able to implement them in a regular 

model would heavily decrease prediction accuracy. As machine learning has been widely used 

in many professional fields such as science, healthcare and finance, we see no reason as to 

why it should not predict as good or even better. 
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7. Conclusion 

Random Forest, XGBoost and the Neural Network were the top three performers of the dataset 

with ROC AUC scores of 0.789, 0.779 and 0.776 respectively. The Logistic Regression 

followed closely behind these with a score of 0.765, while KNN and the Decision Tree were 

far behind at 0.632 and 0.647. 

Machine learning algorithms have already been deployed and used in various professional 

fields; however, it is uncertain when or if it will be deployed in the credit market. The GDPR 

law does not allow banks and financial institution to deny credit applications based on an 

automated process. As machine learning falls under this category, the law would have to be 

altered or removed for machine learning to be used as a legal method to grant credit. In theory, 

machine learning can be applied to either of the two IRB Approaches to help determine both 

the capital requirement of the banks and risk assessment of the borrowers. Currently machine 

learning cannot be used as a standalone method to grant or deny loans. 
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Appendix 

A1 KNN – ROC and Confusion Matrix 
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A2 Decision Tree – ROC and Confusion Matrix 

 

 

A3 Logistic Regression – ROC and Confusion Matrix 
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A4 – Neural Network – ROC and Confusion Matrix 
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A5 – XGBoost – ROC and Confusion Matrix 
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A6 – Random Forest – ROC and Confusion Matrix 
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