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Abstract  

In this paper, we use a reformulation of the symmetric and the asymmetric travelling salesman problem 
more suitable for Lagrangean relaxation and analyse the new approach on examples from TSP Lib.  
Furthermore the Lagrangean relaxed subproblems are travelling salesman alike which means that 
almost all that is known on the travelling salesman polytope can be used when the subproblems are to 
be solved. 

Keywords: Travelling Salesman, Lagrangean Relaxation, Mathematical Programming 

 

1. Introduction  

The travelling Salesman problem is probably one of the most well-known and well-studied combinatorial 
optimization problems. Over the years, many authors, using various mathematical programming 
methods, have approached the problem. Early on, Dantzig et.al solved the 42-city problem using a 
cutting plane method.  The polyhedral properties of the travelling salesman problem is also well known 
and has led to approaches such as the studies by Grötschel, Reinhart, Padberg and Rinaldi and more 
recent by Cook and his associates. There are several books written on the topic the most recent being    
“ In pursuit of the travelling salesman” by W.J.Cook.  According to the information on W.J Cooks 
website, the current world record in the solution of TSPs is a problem containing 85900 nodes and 
comes from an application in VLSI design. 

In this paper, we present a new Lagrangean approach for the symmetric and asymmetric travelling 
salesman problem based on a reformulation of the problems that leads to a Lagrangean relaxation with 
only one single Lagrangean multiplier. Hence, the search for the optimal Lagrangean multiplier value 
consists of a simple one dimensional search procedure. If we only are interested in finding the optimal 
solution to the original problem, we can restrict the search for the multiplier value among the cost 
coefficients that exists in the original cost matrix. However if we also would like to find the optimal 
multiplier value, which has the economic interpretation of being the market price needed in order for all 
nodes to be visited, we need to extend the search to multiplier values not necessarily  present in the 
original cost matrix. The subproblems that need to be solved in the iterative process are travelling 
salesman alike problems with a much smaller set of arcs/edges than the number that is present in the 
original problem. 

The paper is organised as follows. In section 2 the standard formulation of the symmetric and the 
asymmetric travelling salesman problems are presented followed by the reformulation that is to be used 
in the rest of the article. Section 3 gives a short description of Lagrangean relaxation in general and its 
properties. We also describe the Lagrangean relaxation subproblems for the reformulated models.  In 
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section 4 we illustrate the procedure on two small examples taken from the literature and point out a 
slightly modification of our Lagrangean approach in which the optimal Lagrangean multiplier have an 
interesting economic interpretation. Section 5 is devoted to an economic interpretation of the optimal 
Lagrangean multiplier as the market price in a salesman market. Section 6 gives the computational 
results obtained on a few problem instances taken from TSPlib. Finally, in section 6 we give conclusions 
that can be made from our investigation. 

 

2. The formulation of the Travelling Salesman problem and a reformulation more suitable for 
Lagrangean relaxation 

The standard formulation of the asymmetric travelling salesman problem is as follows 

𝑀𝑀𝑀∑ ∑ 𝑐𝑖𝑖𝑥𝑖𝑖𝑛
𝑖=1

𝑚
𝑖=1       (1) 

Subject to 

∑ 𝑥𝑖𝑖𝑛
𝑖=1 = 1 ∀ 𝑗 ∈ 𝐽           (2) 

∑ 𝑥𝑖𝑖𝑛
𝑖=1 = 1 ∀ 𝑀 ∈ 𝐼  (3) 

 𝑀𝑛 𝑠𝑠𝑠𝑐𝑠𝑐𝑠𝑠𝑠  (4) 

𝑥𝑖𝑖  ∈ {0,1}, (5) 

where 

𝑐𝑖𝑖 = the distance from customer i to customer j 

𝑥𝑖𝑖 = 1 if the arc ij is used in the Hamiltonian tour 0 otherwise 

Equation (2) guarantees that all nodes have an incoming link. Constraint (3) is the requirement that all 
nodes have an outgoing link and (4) is the requirement that no subcycles are allowed and (5) are the 
integral requirements. In the sequel, we will use the following reformulation of the symmetric travelling 
salesman problem. 

𝑀𝑀𝑀∑ ∑ 𝑐𝑖𝑖𝑥𝑖𝑖𝑛
𝑖=1

𝑛
𝑖=1       (1) 

Subject to 

∑ 𝑥𝑖𝑖𝑛
𝑖=1 ≤ 1     ∀𝑗 ∈ 𝐽 (6) 

∑ 𝑥𝑖𝑖𝑛
𝑖=1 ≤ 1     ∀𝑀 ∈ 𝐼                   (7) 

∑ ∑ 𝑥𝑖𝑖𝑛
𝑖=1

𝑛
𝑖=1 = 𝑀                        (8)  

𝑀𝑛 𝑠𝑠𝑠𝑐𝑠𝑐𝑠𝑠𝑠                                 (4) 

𝑥𝑖𝑖  ∈ {0,1}                                     (5) 
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The formulations are clearly equivalent and if the asymmetric travelling salesman problem were to be 
solved by any regular method, the reformulation makes no sense. However as we shall show if the 
solution approach is based on Lagrangean relaxation this formulation yields a procedure to identify the 
core of the problem. 

The normal formulation of the symmetric travelling salesman problem is as follows 

Min∑ 𝑤(𝑠)𝑥(𝑠)𝑒∈𝐸         (9) 

Subject to 

∑ 𝑥(𝑠) = 2  𝑓𝑛𝑓 𝑎𝑠𝑠 𝑣 ∈ 𝑉𝑒∈𝛿(𝑣)         (10) 

∑ 𝑥(𝑠) ≤ |𝑈| − 1𝑒∈𝐸    𝑓𝑛𝑓 𝑈 𝑠𝑠𝑀𝑀𝑏 𝑎 𝑠𝑠𝑠𝑠𝑠𝑠 𝑛𝑓 𝑉, 3 ≤ |𝑈| ≤ |𝑉| − 1, (11) 

where 𝛿(𝑣) are the edges connected to node 𝑣 

𝑥(𝑠) ∈ {0,1}         (12) 

Also here we make the corresponding reformulation of the problem 

Min∑ 𝑤(𝑠)𝑥(𝑠)𝑒∈𝐸         (9) 

Subject to 

∑ 𝑥(𝑠) ≤ 2  𝑓𝑛𝑓 𝑎𝑠𝑠 𝑣 ∈ 𝑉𝑒∈𝛿(𝑣)         (13) 

∑ 𝑥(𝑠) = |𝑉|  𝑒∈𝐸         (14) 

∑ 𝑥(𝑠) ≤ |𝑈| − 1𝑒∈𝐸    𝑓𝑛𝑓𝑈 𝑠𝑠𝑀𝑀𝑏 𝑎 𝑠𝑠𝑠𝑠𝑠𝑠 𝑛𝑓 𝑉, |3| ≤ |𝑈| ≤ |𝑉| − 1   (11) 

𝑥(𝑠) ∈ {0,1}         (15) 

In addition, in this case, the formulations are clearly equivalent and if the symmetric travelling salesman 
problem were to be solved by any regular method, the reformulation makes no sense. However as we 
shall show if the solution approach is based on Lagrangean relaxation this formulation yields anefficient 
relaxation procedure to identify the core problem. 

 

3. Lagrangean Relaxation 

The Lagrangean sub problems for the reformulated travelling salesmen problems are  Max L(u) subject 
to u≥0  Where L(u) is defined by the following optimization problem 

𝐿(𝑠) = 𝑀𝑀𝑀∑ ∑ 𝑐𝑖𝑖𝑥𝑖𝑖𝑛
𝑖=1

𝑛
𝑖=1 − 𝑠( ∑ ∑ 𝑥𝑖𝑖𝑛

𝑖=1
𝑛
𝑖=1 − 𝑀)     (16) 

Subject to 

∑ 𝑥𝑖𝑖𝑛
𝑖=1 ≤ 1     ∀𝑗 ∈ 𝐽  (6) 

∑ 𝑥𝑖𝑖𝑛
𝑖=1 ≤ 1     ∀𝑀 ∈ 𝐼                  (7) 
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∑ ∑ 𝑥𝑖𝑖𝑛
𝑖=1

𝑛
𝑖=1 ≤ 𝑀                        (8)  

𝑀𝑛 𝑠𝑠𝑠𝑐𝑠𝑐𝑠𝑠𝑠                                 (4) 

𝑥𝑖𝑖  ∈ {0,1}                                   (5) 

 

For the asymmetric Lagrangean relaxed travelling salesman problem 

and 

L(u)=Min∑ 𝑤(𝑠)𝑥(𝑠)𝑒∈𝐸 − 𝑠(∑ 𝑥(𝑠) − |𝑉|)  𝑒∈𝐸  (17) 

Subject to 

∑ 𝑥(𝑠) ≤ 2  𝑓𝑛𝑓 𝑎𝑠𝑠 𝑣 ∈ 𝑉𝑒∈𝛿(𝑣)      (13) 

∑ 𝑥(𝑠) ≤ |𝑉|  𝑒∈𝐸      (18) 

∑ 𝑥(𝑠) ≤ |𝑈| − 1𝑒∈𝐸    𝑓𝑛𝑓 𝑈 𝑠𝑠𝑀𝑀𝑏 𝑎 𝑠𝑠𝑠𝑠𝑠𝑠 𝑛𝑓 𝑉, 3 ≤ |𝑈| ≤ |𝑉| − 1  (11) 

𝑥(𝑠) ∈ {0,1}      (15) 

For the symmetric travelling salesman problem. 

The Lagrangean  relaxation approach presented above has the property that the duality gap is closed. To 
see this we just have to note the following. 

Let P be defined as the polytope defined by the original constraint set for the respective problem i.e. 
either the polytope for the asymmetric problem defined by the constraints (2), (3), (4), and (5) or 
alternatively for the symmetric problem the polytope defined by the constraints (10), (11), and (12). 

Let PU be the polytope  of the feasible set for the Lagrangean relaxed asymmetric travelling salesman 
problem  defined by the constraints (6), (7), (4), (5), and (8) or alternatively for the symmetric problem 
the polytope defined by the constraints (11), (13), (15), and (18) . 

Now for the asymmetric problem we have that  

𝐶𝑛𝑀𝑣{𝑃𝑈} ∩ 𝐶𝑛𝑀𝑣 ���𝑥𝑖𝑖

𝑛

𝑖=1

𝑚

𝑖=1

= 𝑀� 

 

which obviously is equal to 𝐶𝑛𝑀𝑣{𝑃} for the asymmetric problem. 

Likewise for the symmetric problem we have that 

𝐶𝑛𝑀𝑣{𝑃𝑈} ∩ ��𝑥(𝑠) = |𝑉|  
𝑒∈𝐸

� 
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Which is equal to 𝐶𝑛𝑀𝑣{𝑃} for the symmetric problem. From these observation we know that the 
proposed Lagrangean relaxations has no duality gap. 

Apart from this the optimal Lagrangean multiplier value u* has a meaningful economic interpretation. In 
fact the optimal multiplier value 𝑠∗ corresponds to the market price that has to be payed in order for all 
customer demands to be fulfilled. Note that in both cases, we have only one Lagrangean multiplier to 
search for. This means that any one-dimensional search procedure can be used. It should also be noted 
that it is easy to get an initial estimate on u since we know that all nodes have to be visited. Hence a 
minimal u can in the asymmetric case be found by scanning over all outgoing and incoming links to all 
node to obtain obtained by 𝑚𝑎𝑥�𝑚𝑀𝑀𝑖(𝑐𝑖𝑖�,𝑚𝑀𝑀𝑖(𝑐𝑖𝑖)) and in the symmetric case this conservative 
estimate of u is  the maximum of the second least costly edge attached to any of the nodes. 

Also note that, in the subproblems only arcs ij, or edges e with negative coefficients are of interest. 
Hence the subproblems will in most cases, have a much smaller number of edges, arc, links than that are 
present in the original problem. 

In addition, the potential candidates for optimal u values are finite and limited to the values present in 
the distance matrices. This means that no complicated multiplier search procedure is needed. 

In order to get an efficient Lagrangean implementation it is obviously not optimal to start with the 
conservative estimates of u presented above. A better alternative is to use a “guestimate” where the 
starting u is chosen to get a significant reduction in the number of edges, links, and arcs in the first 
studied subproblem.  If the “guestimate” turned out to be too high. We have obtained an optimal 
solution to the problem. 

If the” guestimate” turned out to be too low. We have obtained a lower bound on the optimal solution 
and since the optimal solution to the subproblems does not contain any subcycles and has less than| n| 
or |V| edges, arcs the solution must be a set of disconnected strings and some isolated nodes. In order 
to obtain an upper bound a simple assignment or matching heuristic can be used to connect the 
disconnected strings. 

A further important property of the approach is that in case we have solved the subproblem for a u 
multiplier that is non-optimal the multiplier is increased to the next potential candidate level found in 
the distance matrix. This means that we get a new subproblem with more variables than in the 
subproblem recently solved.  We have obtained at least one variable with a 0 cost in the objective 
function. Since the new subproblem is a relaxation of the former subproblem the old solution is still 
feasible and might be optimal for the new subproblem. If it is not optimal to the new subproblem, an 
optimal solution to the new subproblem must contain at least one of the newly introduced variables 
having a zero coefficient. This fact can be used when solving the new subproblem. 

 

4. An illustrative Example 

To illustrate how our semi-Lagrangean scheme works we use two small examples one for a symmetric 
problem, taken from Dantzig et al. (1959)  and one for an asymmetric problem taken from Christofides 
book. 
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The cost matrix for the asymmetric example is 

Variable costs 𝑐𝑖𝑖 

 1 2 3 4 5 6 7 8 

1 - 76 43 38 51 42 19 80 

2 42 - 49 26 78 52 39 87 

3 48 28 - 36 53 44 68 61 

4 72 31 29 - 42 49 50 38 

5 30 52 38 47 - 64 75 82 

6 66 51 83 51 22 - 37 71 

7 77 62 93 54 69 38 - 26 

8 42 58 66 76 41 52 83 - 

 

In the example we have 𝑚𝑎𝑥�𝑚𝑀𝑀𝑖(𝑐𝑖𝑖�,𝑚𝑀𝑀𝑖(𝑐𝑖𝑖)) = 41. Hence, the minimal possible semi-Lagrangean 
price is 41. 

The subproblem for u=41 has value -95 giving a lower bound of 328-95=233. 

The subproblem solution consists of two disconnected strings 65178 and 324. Searching for a feasible 
tour in the reduced graph is unsuccessful. For the next u=42 the solution to the subproblem solution 
remains the same and the bound is increased to 235. Now the search for a feasible tour in the reduced 
graph yields the tour 176532481 with value 251, and hence the upper bound is 251. 

Continuing to increase the Lagrangean price to 43, 44, 47, 48, 50, 51, 52, 53, 54, and 58 yields increasing 
lower bounds. For instance for u=50 the new lower bound is 242 and for u=54 the lower bound is 250. 

For u=58 the lower bound is 251 and hence optimality of the tour found in the first reduced subgraph is 
the optimal tour. Note that, since the subproblem solution obtained in iteration 1 for u=42 is feasible in 
all subsequent subproblems with increased u, we know that we need to increase u with at least 251-
235=16 units in order for the subproblem sub string solution 65178 and 324 not to be the optimal 
solution to the subproblem. This is based on the fact that the string consist of 6 arcs and the lower 
bound will increase by 2 units for each increase in the Lagrangean multiplier value u. Hence after solving 
the subproblem for u=42 we can jump immediately to the value u=50. It is remarkable that although we 
already have found the optimal solution in the subgraph generated in the second iteration with u=42, 
the number of allowable arcs is 36% of the original number of arcs, hence a reduction of 64% in the 
number of arcs. In the subgraph with u=58 this reduction is only 28%. We will come back to this in a 
comment later. 

 



7 
 

The example with a symmetric travelling salesman problem has the following distance matrix 

 1 2 3 4 5 6 7 8 9 

2 28 

3 57 28 

4 72 45 20 

5 81 54 30 10 

6 85 57 28 20 22 

7 80 63 57 72 81 63 

8 113 85 57 45 41 28 80 

9 89 63 40 20 10 28 89 40 

10 80 63 57 45 41 63 113 80 40 

 

The minimum possible value of u=63. The optimal solution to the subproblem has value -289 and consist 
of a simple string 12345968 leaving nodes 7 and 10 exposed. Hence, the lower bound is 630-289=341.  

Continuing to increase the Lagrangean price gives continuously increasing lower bounds. For u=80 the 
new lower bound is 375 and the solution consist of a single string 1234685910. However searching for a 
complete tour in the reduced graph gives the tour 123451098671 with value 378. 

For u=81 the lower bound is increase to 376. 

For u=85 the bound is 378 and optimality of the tour 123451098671 is proven. 

Note that also in this example we had to increase the Lagrangean price above the cost of the most 
expensive edge in the tour to prove optimality. 

The reason for this is, in both examples that the subproblems have no constraints that require 
connectivity or requirements that all nodes should be visited. 

In order to get a relaxation that has the property that the optimal Lagrangean multiplier has a value that 
is equal to the most expensive link/edge in the tour we need a stronger relaxation. Such relaxations can 
be obtained by requiring  that we have equality in at least one of the inequality constraints requiring 
that a node has two edges connected to it (in the symmetric case), or that at least one arc is leaving or 
alternatively entering that node (in the asymmetric case). 
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To illustrate this lets again look at the symmetric example presented above. 

For u=80 the smallest u value for which we could find a feasible tour, the subproblem solution consists 
of the isolated node 7 and the string with the two end nodes 1 and 10. Hence, a stronger relaxation can 
be obtained by requiring that one of the nodes 7, 1, or 10 shall have two edges connected to it. All of 
these three possible restrictions lead to an increase in the lower bound. The strongest restricted 
relaxation is the one where node 7 is selected as the node for which two edges have to be connected. 
Here, the restricted Lagrangean relaxation yields a lower bound of 378 and optimality is verified.  Note 
that in order for this restricted relaxation to be true also the edges with positive costs connected to 
node 7 have to be included in the subproblem. This can be seen by adding this restriction for u=79. 
When the restricted subproblem is solved the lower bound will be larger than 378 if not also the edges 
with positive costs connected to node 7 are included in the restricted subproblem. An interesting 
observation is that when u=80 the restricted subproblem solution consists of edges which are non-
positive . Hence, the restricted Lagrangean has an optimal multiplier value equal to the most costly edge 
in the optimal tour. 

 

Likewise, for the asymmetric problem with u=41  the arcs which has caused the value to be chosen to be 
u=41 is of importance in this sense. In the example, this leads to four possibilities. These are one of  the 
restriction requiring that exactly one arc leaves node 4, the requirement that exactly one arc leave node 
8, the requirement that exactly one arc enters node 6 or the requirement that exactly one arc enters 
node 3. All the possible restrictions give a stronger relaxation and for most of them a slightly better 
lower bound. However, the one that requires that exactly one arc leaves node 8 leads to a relaxation 
which gives us a lower bound of 251 and the optimal solution. Hence, this stronger relaxation has the 
property that the optimal  Lagrangean multiplier is identical to the most expensive arc in the tour.  Note, 
that if we allow arcs with a positive objective function value to be present in the stronger relaxation 
optimality can be proven with a smaller u value.  

 
 

5. An Economic interpretation of the optimal Semi-Lagrangean multiplier 

  The reformulated travelling salesman problem can be thought of as a problem in which we try to 
minimize the cost of serving a market with a total demand of |𝑉| . The demand is distributed 
geographically with |𝑉|  customers each having a demand of one unit. The market shall be served by one 
saleman making a sales tour to all customers. 

Min∑ 𝑤(𝑠)𝑥(𝑠)𝑒∈𝐸         (9) 

Subject to 

∑ 𝑥(𝑠) ≤ 2  𝑓𝑛𝑓 𝑎𝑠𝑠 𝑣 ∈ 𝑉𝑒∈𝛿(𝑣)         (13) 

∑ 𝑥(𝑠) = |𝑉|  𝑒∈𝐸         (14) 

∑ 𝑥(𝑠) ≤ |𝑈| − 1𝑒∈𝐸    𝑓𝑛𝑓 𝑈 𝑠𝑠𝑀𝑀𝑏 𝑎 𝑠𝑠𝑠𝑠𝑠𝑠 𝑛𝑓 𝑉, |3| ≤ |𝑈| ≤ |𝑉| − 1   (11) 

𝑥(𝑠) ∈ {0,1}         (15) 
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When we Lagrangean relax the constraint stipulating the total demand we can look at the Lagrangean 
multiplier as a search for the market price in this market. The optimal Lagrangean multiplier value has 
then the economic interpretation as the market price necessary in order to fulfill all customer demands 
on a single tour. 

L(u)=Min∑ 𝑤(𝑠)𝑥(𝑠)𝑒∈𝐸 − 𝑠(∑ 𝑥(𝑠) − |𝑉|)  𝑒∈𝐸  (17) 

Subject to 

∑ 𝑥(𝑠) ≤ 2  𝑓𝑛𝑓 𝑎𝑠𝑠 𝑣 ∈ 𝑉𝑒∈𝛿(𝑣)    

∑ 𝑥(𝑠) ≤ |𝑉|  𝑒∈𝐸      (18) 

∑ 𝑥(𝑠) ≤ |𝑈1 − 1𝑒∈𝐸    𝑓𝑛𝑓 𝑈 𝑠𝑠𝑀𝑀𝑏 𝑎 𝑠𝑠𝑠𝑠𝑠𝑠 𝑛𝑓 𝑉, |3| ≤ |𝑈| ≤ |𝑉| − 1  

𝑥(𝑠) ∈ {0,1} 

For a lower price than u*, the optimal Lagrangean price the salesman will not serve all customers on a 
single tour. 

In the symmetric TSP used above for illustration the optimal Lagrangean price is u=85 and the profit 
obtained in the market is 850-378=472. 

If we look at the problem in which node 7 is not included the optimal Lagrangean price will be 80 and 
the profit in this reduced market 720-295=425. 

In the asymmetric illustrative example we get for the optimal multiplier value u*=58 we get the tour 
with cost 251 and the profit 464-251=113. 

 
6. Computational results 

In the computational tests we have performed we proceeded as follows. First, a heuristic is used to find 
a feasible solution with a good objective function value. We then select the Lagrangean multiplier to 
equal the most expensive arc in the feasible solution and solve the subproblem in the reduced graph 
obtained. Also, in the reduced graph we use a heuristic to find out if it contains a feasible tour with a 
lower objective function value than the value of the feasible tour we started off from. Based on the 
value of the feasible solution and the lower bound obtained from the subproblem, we can calculate the 
minimum increase necessary for the subproblem to give a bound necessary to either prove that our 
feasible solution is optimal or being able to generate a better feasible tour. This calculation is based on 
the fact that the feasible solution obtained when solving the subproblem remains feasible when we 
increase the value of the Lagrangean multiplier. Hence the increase in lower bound depends on the 
number of arcs contained in the subproblem solution. We have tested the procedure o a set of 
problems from TSPlib and the results are presented in the table below. 

The calculations are used using CPLEX and we have not tried to develop an efficient code but used 
standard software. We have not used the fact that the optimal solution to the subproblem solved for a 
certain multiplier value u is feasible in the subsequent subproblems with larger multiplier values. The 
heuristic used to find feasible solution is Helsgauns LKH heuristic.  
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The computational results are presented in the table found below. 

 

Note that in all problems the restricted relaxations obtained by requiring that an exposed node have to 
be visited or an end of a string shall have one more connection leads to the fact that optimality of the 
feasible solution found by the heuristic is proved. 

 

7. Conclusions 

In this paper, we have presented a Lagrangean relaxation method for the travelling salesman problem. 
We use a reformulation more suitable for Lagrangean relaxation. The optimal Lagrangean multiplier 
value has an interesting economic interpretation the market price needed in order to get all nodes 
visited. The number of potential Lagrangean multipliers is bounded and hence no subgradient search 
method needs to be used.  In order for this approach to be computationally tractable, a special purpose 
code has to be developed for solving the subproblems and using the fact that the solution obtained in 
an earlier iteration of the procedure remains feasible when the multiplier value is increased. It should 
also be noted that once a subproblem has been solved based on a multiplier  value obtained from a 
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feasible solution one can easy construct a more restricted relaxation in which the optimal multiplier 
value is equal to the cost of the most costly edge in the tour. 
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