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Abstract 

This paper considers the problem of point prediction based on a predictive 

distribution, representing the uncertainty about the outcome.  The issue 

explored is the reporting of a single characteristic, typically the mean, the 

median or the mode, in the context of a skewed distribution and 

asymmetric loss. Special attention is given to the two-piece normal 

distribution and asymmetric piecewise linear and quadratic loss. The 

practical context for the issue is the yearly reporting of remaining 

petroleum resources given by the authorities to stakeholders that may ask 

for just a single number.3 
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Best estimate reporting with asymmetric loss 

Consider the problem of point prediction based on a predictive distribution, representing 

the uncertainty about the outcome. The context may be  

- individual: gamble on outcome with loss/gain 

- business: budget a future uncertain outcome 

- national: report an anticipated economic state 

The predictive distribution may originate from individual beliefs, a single expert or a panel 

of experts. The tools for derivation may range from none at all to sophisticated analytic 

models and methods. Examples of all three contexts may be prediction of the oil price at a 

certain future point or period in time. Often such predictions are reported periodically 

based on updated knowledge, as a time series of predictions. In each epoch the predictions 

problem is the same, based on the current predictive distribution, in some cases just 

updates from new data. Another example of national importance is the periodic reporting 

of remaining oil reserves in a continental shelf, discovered and undiscovered, as basis for 

the political process of planning for the future. Since we have both depletion and new 

discoveries, the situation is sequentially slightly different, but at a given point in time it is 

essentially the same. 

The question of remaining oil deposits relates to many fields of knowledge. To establish the 

predictive distribution experts from |the relevant disciplines are given the opportunity to 

express the expectations and uncertainties related to their field of knowledge. This is then 

combined by simulations, giving a single predictive distribution, representing the current 

best knowledge of the uncertainties of the remaining deposits. This distribution may be 

useful in various contexts, by planners and politicians. Some may comprehend this 

distribution as is, but many requests an estimate given as a single number, to be used as 

input to planning calculation or just as a political argument. The common practice of 

reporting the mean (expected value) of the distribution has some implications that are not 

always taken serious. 

The predictive distribution may typically look like this, i.e. skewed with a long right tail. 
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The Mean (M2), Median (M1) and Mode (M0) will then be located as indicated M0 ≤ M1 ≤ M2. 

This means that the reporting of the mean could be far from the most likely outcome, the 

Mode. 

The art of guessing the outcome may be judged in terms of a loss function L where L(x,y) 

denotes the loss of guessing x when the outcome turns out to be y. With a given loss 

function we may then guess/choose the action x that minimizes the expected loss 

calculated from the predictive distribution F. We will tacitly assume that this distribution is 

of continuous type, unimodal and that the expectation exists. It is a well-known fact that 

the optimum x is  

x= M2  for L(x,y) = (y-x)2   (quadratic error loss) 

x= M1  for L(x,y) = |y-x|           (linear error loss) 

  x= M0  for L(x,y) = (x,y)       (0-1 error loss) 

This is so whatever the distribution of y. If the predictive distribution is derived in a 

Bayesian context, the corresponding prediction is commonly referred to as a Bayes 

estimate.  

What is the possible impact of this for practice? An individual decision maker may possibly 

have an idea of his/her possible losses and choose action accordingly. The same may be 

true for a business. For a provider of knowledge to other parties the problem is what to 

report. The opportunities are: 

i. Report the whole distribution, from which different characteristics can be 

derived (and reported as well). 

ii.  Report some key characteristics (Mean, Median, Mode, Quantiles) 

iii. Report just one key characteristic 

With extensive reporting it may be a risk that the users just look at the quantity they are 

mostly used to, typically the mean, regardless of this being the most relevant or not. The 

provider should therefore imagine the context the report is likely to be used and emphasize 

the relevant characteristics, and even refrain from reporting some less relevant ones. 

Clearly there are contexts where the mean is of minor relevance, but the median and/or 

mode are.   

It is interesting to note that a many central banks nowadays use so-called fan-charts when 

reporting projections of inflation and other macroeconomic variables for several periods 

ahead, a practice initiated by the Bank of England, see Britton, Fisher &Whitley (1997). Fan 

chart is a generic term, and may be displayed using the mean, median or mode as point of 

departure and displayed as the central line. Bank of England reports a modal fan chart while 

other central banks, e.g. Sweden and Poland use median/quantile based fan charts, see 

Kowalczyk (2013). There seem to be a consensus that charts based on the mean do not 

provide the appropriate message to the users of these reports.  If we are just considering 

the choice of one-point reporting, we should nevertheless take into account the preferred 

type of more extensive reporting. If we offer a modal fan chart for the more sophisticated 

reader the one-point prediction for the novice should be the mode as well. 
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The loss functions above are symmetric. In many cases the loss of over-prediction is larger 

than the loss of under-prediction. A recent detailed and deep going account of issues 

related to point forecast and their relationship to loss functions is given in a series of papers 

by Gneiting (2008, 2011,a,b) with many references to the literature, which goes back at 

least to the 1960’s.  We will here limit ourselves to asymmetric losses that generalize the 

first two above, namely piecewise linear loss and piecewise quadratic loss.  A natural 

generalization of the one-point 0-1 loss is to define no loss in an interval around the true 

value. A symmetric interval gives rise to an optimal prediction being the midpoint in the so-

called modal interval. This may be generalized to an asymmetric interval. We will not 

pursue this, but make comparisons directly with the mode itself.      

The asymmetric piecewise linear loss function is defined as follows: For 0 < < 1 let 

L(x,y)=  |y-x|           if x≤ y 

          = (1-) |y-x|    if x ≥y 

With this loss function the optimal point prediction is the -quantile of the predictive 

distribution, i.e.  q so that F(q) = , where F denotes the cumulative distribution.  

Here the ratio represents the relative size of losses from over- and under-

prediction of the same size respectively.  For =½ we are back to the median, and for  < ½ 

we predict less than the median. In fact the -quantile is optimal for a wider class of loss 

distributions named the generalized piecewise linear loss function (GPL). Moreover, if the 

-quantile is optimal whatever F, the loss function L must be of GPL type, provided some 

reasonable conditions on L. 

One may ask the fundamental question: Is the mean optimal under a wider class of loss 

functions than the quadratic, whatever the predictive distribution? Insights to this are given 

by Granger (1969), Savage (1971) and Banerjee, Guo & Wang (2005). It turns out that the 

mean is optimal if and only if the loss function is of so-called Bregman type (under 

reasonable regularity conditions). It should be noted that the only one in this class which 

depends on the prediction error only is the quadratic loss function.    

We are mainly interested in the consequences of using the mean in case of asymmetric loss 

when the mean is not optimal, but optimal in the symmetric limit. This way we may 

challenge the indiscriminate use of the mean by some rhetoric questions. Imagine the 

following dialogue:  

- “You report the mean only?” 

- “Yes! I have heard that this is optimal!”  

- “Well, that’s true in a sense, but do your stakeholders regard over-prediction and 

under-prediction equally worse?”  

- “No!  Over-prediction would be more regrettable!”  

- “Then the main reason for reporting the mean vanishes, but points to good 

alternatives!” 
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The idea of the challenger is to argue from the imagined premises of the reporter, by 

modifying the loss function for which the mean is optimal. To avoid confusion the main 

rationale (linear loss) for quantiles is kept out of the discussion.   

The asymmetric piecewise quadratic loss function is defined by 

L(x,y)=  (y-x)2           if x≤ y 

          = (1-) (y-x)2    if x ≥y 

Again  < ½ corresponds to over-prediction being the most serious.  The point prediction 

that minimizes the expected loss is now given implicitly by the solution of the following 

equation 

𝑥 = 𝜇 +
2𝛼−1

𝛼
(𝑥𝐹(𝑥) − 𝐹1(𝑥))   

where 𝐹1(𝑥) = ∫ 𝑦𝑑𝐹(𝑦)
𝑥

−∞
   and   𝜇 = 𝐸𝑌 = 𝐹1(+∞).  This formula appears maybe first in 

the Econometrica paper of Newey and Powell (1987), where  the solution is given the name 

expectile and properties that resembles that of quantiles are pointed out.  

Since  𝑥𝐹(𝑥) > 𝐹1(𝑥) it follows, as expected, that 𝑥 < 𝜇 for 𝛼 < 1/2, when over-prediction 

is the most serious.  If we use  𝜌 =
1−𝛼

𝛼
 as parameter we have 𝛼 =

1

1+𝜌
  and the coefficient 

2𝛼−1

𝛼
= 1 − 𝜌. 

In the case of F being a location-scale family of distributions, i.e. of form  

𝐹(𝑥) = 𝐺(
𝑥 − 𝜇

𝜏
) 

where G is its standardized distribution with 𝜏 as scale parameter, we may write the 

equation on parameter-free form with 𝑧 =
𝑥−𝜇

𝜏
 as 

𝑧 =
2𝛼 − 1

𝛼
(𝑧𝐺(𝑧) − 𝐺1(𝑧)) 

Examples of this are the Gaussian distribution and the Logistic distribution. With symmetric 

distribution it follows, by 𝐺(−𝑧) = 1 − 𝐺(𝑧)  and  𝐺1(−𝑧) = 𝐺1(𝑧), that when z is the 

solution for  (𝛼, 1 − 𝛼) the –z is the solution for (1 − 𝛼, 𝛼). 

The equation may be easily solved by a simple univariate solver, like uniroot in the package 

R. We may also compute the solution iteratively by  

𝑧𝑛+1 =
2𝛼−1

𝛼
(𝑧𝑛𝐺(𝑧𝑛) − 𝐺1(𝑧𝑛))   with    𝑧0 = 0 

This is easily accomplished in spreadsheet, but some care must be taken to assure 

convergence in specific applications. Sometimes non-convergence is solved by choosing 

alternative starting values. 

In the case of F being a scale family of distributions parameterized by its expectation  , i.e. 

of form  
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𝐹(𝑥) = 𝐻(
𝑥

𝜇
) 

where G is its standardized distribution with expectation one, we may write the equation 

on parameter-free form with 𝑧 = 𝑥/𝜇 as 

𝑧 = 1 +
2𝛼 − 1

𝛼
(𝑧𝐻(𝑧) − 𝐻1(𝑧)) 

An example of this is the exponential distribution. The corresponding iterative scheme will 

be 

𝑧𝑛+1 = 1 +
2𝛼−1

𝛼
(𝑧𝑛𝐻(𝑧𝑛) − 𝐻1(𝑧𝑛))   with    𝑧0 = 1 

Note that the move away from the mean now is multiplicative instead of additive as above. 

  



7 
 

Example 1:   Normal distribution N(, 2) 

Take 𝑧 =
𝑥−𝜇

𝜎
 and note that 𝐺(𝑧) = Φ(𝑧) and 𝐺1(𝑧) = −𝜙(𝑧),  where Φ(𝑧) and 𝜙(𝑧) are 

the standard Gaussian cumulative distribution and density respectively. We therefore have 

𝑧 =
2𝛼 − 1

𝛼
(𝑧Φ(𝑧) + 𝜙(𝑧)) 

with recursion accordingly. The solution may be illustrated graphically by plotting the right 

hand side of the equation f(z) as function of z and see where it crosses the 45 degree line z. 

In Figure 1 this is illustrated for =0.4 and =0.6. We also give the optimal z for various 

=0.1, 0.2,…, 0.9. 

 

The computations also show that by doubling the losses on one side we have to move the 

optimal guess about 26% of the standard deviation from the expectation to the other side. 

With four times the size of loss to one side we have to move the optimal, prediction about 

55% of the standard deviation to the other side.  

Example 2:  Exponential distribution( 

In this case take  𝑧 = 𝑥/𝜇. We now get 𝐻(𝑧) = 1 − 𝑒−𝑧 and 𝐻1(𝑧) = 1 − 𝑒−𝑧 − 𝑧𝑒−𝑧 , so 

that 𝑧 = 1 +
2𝛼−1

𝛼
(𝑧 − 1 − 𝑒−𝑧), which can be rearranged to   

𝑧 = 1 +
2𝛼 − 1

1 − 𝛼
𝑒−𝑧. 

 

Note the obvious special cases z=0 for =0 and x tending to infinity when  tends to one. 

Example 3: Lognormal distribution  

With logY  distributed Normal(,2) we have for Y itself 
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Mean= 𝜇 = 𝑒𝜃+1/2𝜏2
, Median= 𝑒𝜃 and Mode = 𝑒𝜃−𝜏2

 

𝐹(𝑥) = Φ(
𝑙𝑜𝑔𝑥−𝜃

𝜏
)  and    𝐹1(𝑥) = 𝜇 ∙ Φ(

𝑙𝑜𝑔𝑥−𝜃

𝜏
− 𝜏) 

so that 

𝑥 = 𝜇 +
2𝛼 − 1

𝛼
(Φ (

𝑙𝑜𝑔𝑥 − 𝜃

𝜏
) − 𝜇 ∙ Φ (

𝑙𝑜𝑔𝑥 − 𝜃

𝜏
− 𝜏)) 

with recursion  

𝑥𝑛+1 = 𝜇 +
2𝛼 − 1

𝛼
(Φ (

𝑙𝑜𝑔𝑥𝑛 − 𝜃

𝜏
) − 𝜇 ∙ Φ (

𝑙𝑜𝑔𝑥𝑛 − 𝜃

𝜏
− 𝜏)) 

As an illustration take 𝜃 = 0   and 𝜏 = 1 so that  

Mean= 𝜇 = 𝑒0.5 = 1.6487, Median= 𝑒0 = 1 and Mode= 𝑒−1 = 0.3679. 

𝑥𝑛+1 = 𝜇 +
2𝛼 − 1

𝛼
(Φ(𝑙𝑜𝑔𝑥𝑛) − 𝑒0.5 ∙ Φ(𝑙𝑜𝑔𝑥𝑛 − 1)) 

 

It is of interest to see to what extent the optimal prediction is shifted from the expectation 

towards the median and the mode for increasing loss attached to over-prediction over 

under-prediction. We may phrase this conversely by asking how large the difference has to 

be to give the median or the mode as optimal. In the example above we have  

  X 

1 0.50 1.6787 

2 0.33 1.2650 

3 0.25 1.0846 

4 0.20 0.9332 

 

We get exactly x=1 (Median) for =3.72 with =0.2118 and exactly x=0.3679 (Mode) for 

=62.37 with =0.01578.  Consequently we see that the Median is superior when the loss 

of over-prediction is 3.7 times larger than for under-prediction of a given size. From this it 

looks like an extreme unbalance in losses is required to make the Mode optimal. We shall 

see that this is not so in general for any choice of parameters in the lognormal distributions.  
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In connection with the examples above we could also ask the questions: For which  will 

the Mode be superior to the Mean, and for which  will the Mode be superior to the 

Mean?  

Example 4: A Lognormal fit to NPD data 

The Norwegian Petroleum Directorate NPD provides periodically estimates of the remaining 

deposits, discovered and undiscovered, on the Norwegian Shelf. Based on an established 

predictive distribution they have reported (in some units): Mean=2980 and (5%, 95%)–

Quantiles, her named (Lower, Upper)= (935, 5420). This is all we know, but experience tells 

that such distributions are skewed to the right, maybe similar to the lognormal. However, 

with this data it is apparent a lognormal with the given mean cannot be found that gives 

good fit to both tails, even if we choose the three-parameter (translated) lognormal. Here 

the context of reporting an over-prediction error is the most serious, and a good fit to the 

right tail of the distribution is the most important.  We therefore assume a lognormal 

distribution and use the reported Mean=2980 and Upper=5420 to fix the parameters 

in the corresponding normal distribution. We obtained = (7.913, 0.416). This gives a 

lognormal distribution with Median=2738 and Mode=2298. Alternatively we could fit a 

three-parameter lognormal by stipulating the minimum possible value. With the given data 

a reasonable choice is min=60, and then we get the excess fitted to a lognormal distribution 

with (= (7.890, 0.424).  However, this does not make any difference for the points 

made here. In the graph below we displayed the determination of the optimal x for the 

cases =0.1, 0.2, 0.3, 0.4, 0.5 with an overlaid lognormal distribution. 

 

The computations show that =0.371 with =2.155 makes the Median optimal, and 

=0.169 with =5.917 makes the Mode optimal. So, if we the loss by over-prediction of a 

given size is twice that of under-prediction of the same size, the Median is optimal. Similarly 

it takes about five times more to make the Mode optimal. In the given context this is not an 

unreasonable unbalance between the two.    
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 Asymmetric squared loss  and the Two-piece Normal distribution 

In situations where both tails of the distribution are relevant, and we know they are 

different, we may want to model them separately, in conjunction with some centrality 

measure, say mean, median or mode. An opportunity of this kind is offered by so-called 

two-piece normal distribution, sometimes referred to as the Fechner distribution. This is 

defined by the density 

𝑓(𝑦) = 𝐴 ∙ 𝑒
−

1

2𝜎1
2(𝑦−𝜃)2

         𝑦 ≤ 𝜃

= 𝐴 ∙ 𝑒
−

1

2𝜎2
2(𝑦−𝜃)2

         𝑦 ≥ 𝜃

          

where =
1

√2𝜋(𝜎1+𝜎2)/2
 . We see that this is two pieces of possible different normal 

distributions, scaled to give a common value 𝑓(𝜃) = 𝐴 at the mode  𝜃. The probabilities of 

the left and right pieces will be 
𝜎1

𝜎1+𝜎2
 and 

𝜎2

𝜎1+𝜎2
 respectively. For 𝜎1 < 𝜎2 we have positive 

skewness,  i.e. longer right tail.  

 

 

The expressions for the expectation and the variance are 

𝐸𝑌 = 𝜃 + √
2

𝜋
(𝜎2 − 𝜎1)                   𝑣𝑎𝑟(𝑌) = (1 −

2

𝜋
) (𝜎2 − 𝜎1)2 + 𝜎1𝜎2 

The cumulative distribution may be expressed in terms of the cumulative standard normal 

as 

𝐹(𝑦) =
2𝜎1

𝜎1 + 𝜎2
 Φ(

𝑦 − 𝜃

𝜎1
)                                𝑦 ≤ 𝜃

=
2𝜎2

𝜎1 + 𝜎2
 Φ (

𝑦 − 𝜃

𝜎2
) +

𝜎1 − 𝜎2

𝜎1 + 𝜎2
          𝑦 ≥ 𝜃

          

From this follows expressions for the quantiles in terms of standard normal quantiles: The 

left quantile 𝑦𝑝 = 𝜃 + 𝜎1 ∙ 𝑧𝑞  with 𝑞 = 𝑝 ∙
𝜎1+𝜎2

2𝜎1
 and the right quantile 𝑦1−𝑝 = 𝜃 + 𝜎2 ∙ 𝑧1−𝑞 

with 𝑞 = 𝑝 ∙
𝜎1+𝜎2

2𝜎2
. The median may be expressed as 
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𝑚𝑒𝑑(𝑌) = 𝜃 + 𝜎1Φ−1 (1 −
𝜎1 + 𝜎2

4𝜎1
)             𝜎1 > 𝜎2

= 𝜃 + 𝜎2Φ−1 (1 −
𝜎1 + 𝜎2

4𝜎2
)              𝜎1 < 𝜎2

          

The quantile functions may now be used for the analysis of optimal one-point prediction 

with asymmetric linear loss. For the asymmetric squared loss we need the function 𝐹1(x) as 

well. However, in practice we do not need the explicit analytic expression. We may just do 

the numeric integration based on the density.  

The two-piece normal distribution has some added advantages over the lognormal 

distribution for modelling this kind of data, besides the opportunity to fit both tails 

individually. We know that the predictive distribution is established by some kind of 

aggregation, and then we expect that there will be central limit effect that points towards 

normality. However, we see that such distributions may nevertheless be fairly skew, mainly 

due to more extreme underlying skewness and dependencies of the aggregates.  Still it is 

attractive to at least having a skew distribution with symmetry and normality as a limit, i.e. 

when the defining standard deviations become equal.     
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Example 5: Two-piece normal distribution 

Let us see how the optimal prediction is affected by the combination of asymmetric loss 

and skewness of the distribution by taking  𝜎1 = 1    and vary 𝜎2  for the case of mode==0. 

In the following plot we have the optimal x for each of the cases =0.1, 0.2, 0.3, 0.4, 0.5 

plotted for 𝜎2 in the range from 1.0 to 4.0. For  𝛼 = 0.5 the optimal prediction is the 

expectation, which comes out as a straight line in 𝜎2, as expected. We see that the other 

cases come out as approximately straight lines as well. In the graph we have drawn the 

zero-line corresponding to the mode. The median curve (not drawn) will also be 

approximately a straight line, starting at (1,0) with slope 2/3 ending at  (4,2). The 

calculations of the optimal predictions are performed by the iterative scheme of the kind 

above.  Convergence was reached in the cases of not too large asymmetry of losses (cases 

in blue), while special attention had to given to the cases of large asymmetry (cases in red). 

With a slight modification of the graph we see more directly the size of the push away from 

the mean.  

   

From the graph we see the combinations of asymmtry of both loss and distribution that 

lead to predictions below, around and above the mode respectively.   For instance we are 

at the mode for combinations (𝛼, 𝜎2) = (0.3, 1.5), (0.2, 2.0), (0.1, 3.0).  Here it is worthwhile 

to be remained that I the former case of little asymmetry the mean and the mode are not 

much different, but in the latter case of large asymmetric distribution they are very 

different, and it takes more asymmetry of the loss to be pushed all the way to the mode.  

Consequently we have the following important conclusion in this context: The mode may 

be a good replacement for the mean both in case of small joint asymmetry and large joint 

asymmtry (but for slightly different reasons).  
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Example 6: A two-piece normal fit to NPD data 

Consider again the data from The Norwegian Petroleum Directorate where they reported a 

predictive distribution with (5%, 95%)–quantiles (Lower, Upper)= (935, 5420) and 

Mean=2980. Fitting a two-piece normal distribution to this gave the following: 

𝜃 = 2383,    𝜎1 = 977 , 𝜎2 = 1725 

From this we obtain the Median=2858. The fitted distribution looks like this: 

 

The corresponding analysis of optimal one point prediction gave the following plot: 

 

We see that Median is optimal for about =0.45 corresponding to=1.22, and Mode is 

optimal for about =0.25 corresponding to =3.00.  A more detailed analysis computing the 

actual losses shows that: Median is better than Mean for <0.472 (corresponding to 

>1.12), Mode is better than Mean for <0.365 (corresponding to >1.74), and Mode is 

better than Median for <0.339 (corresponding to >1.95).  This means that Mean is 

outperformed by the Median even for the minor increase of 12% in the losses of over-

prediction in comparison with under-prediction of the same size and that the Mean is 

outperformed by the Mode for a 74% increase.  At 95% increase the Mode also 

outperforms the Median.  
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Some questions of interest now are:  What is a reasonable value of Is it possible to elicit 

 for a well-defined group of stakeholders? What should guide the reporter when there are 

several groups of stakeholders with differing interests and views? What should guide us 

when the stakeholders are not clearly defined?   Should we give priority to some (more 

important) stakeholders?  

In some cases it may be possible to imagine that all (important) stakeholders incur a loss 

corresponding to an  beyond a certain size that makes the mean less valuable than the 

mode. In the case of reporting remaining oil reserves the main stakeholders are the 

politicians and planners, although it is the population at large, at the end, that suffer the 

losses by decisions based on mistaken reporting. If weimagine a doubled loss for over-

prediction over under-prediction of the same size, then our analysis provides strong 

arguments for reporting the mode instead of the mean, but the mode is reasonable also for 

situations with asymmetry far less than that. This is so both when given alone as a one-

point prediction and in conjunction with some measure of uncertainty.  preferably a modal 

interval, just as the (5%, 95%) quantile range goes with the median. The difference between 

the two is that the modal interval explicitly takes into account the skewness of the 

distribution. In case of reporting an economic quantity several stages ahead this may be 

extended to a modal fan chart.      
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