
Norwegian School of Economics
Bergen, Spring 2021

Scheduling Sports Tournaments by

Mixed-Integer Linear Programming

and a Cluster Pattern Approach
Computational implementation using data from the International

Timetabling Competition 2021

Elias Subba and Ole Jacob Lygre Stordal

Supervisor: Mario Guajardo

Master thesis, Economics and Business Administration

Major: Business Analytics

NORWEGIAN SCHOOL OF ECONOMICS

This thesis was written as a part of the Master of Science in Economics and Business

Administration at NHH. Please note that neither the institution nor the examiners are

responsible – through the approval of this thesis – for the theories and methods used, or

results and conclusions drawn in this work.

i

Acknowledgements

Working on this thesis has been one of the brightest points during the Covid-19 pandemic,

and has helped us forget about the isolation and lack of human contact. Of course, working

on this thesis has been very challenging, and at times frustrating, but the satisfaction of

overcoming the problems we faced in this process made it worth every minute invested in

this project.

It is with genuine enthusiasm we would like to thank our supervisor Mario Guajardo. This

has been a unique occasion where we got the opportunity to work alongside a supervisor

with passion, knowledge, and a deep desire to help us getting the best results possible.

Without the excellent guidance and inspiring talks, we would never have been able to

produce results of the same calibre.

Lastly, we would like to thank Lok Subba for read-throughs and for providing a

interdisciplinary perspective.

Norwegian School of Economics

Bergen, June 2021

Ole Jacob Lygre Stordal Elias Subba

ii

Abstract

The International Timetabling Competition (ITC) has a long tradition of arranging

scientific competitions within the research area of timetabling and its applications. The

2020-2021 edition is devoted to sports timetabling. The aim of ITC 2021 is to stimulate

the development of solution approaches for the construction of round-robin timetables,

meaning that each team plays every other team a fixed number of times. Each instance

consists of a time-constrained double round-robin tournament. Further, the competition

considers two types of constraints: hard constraints represent fundamental properties of

the timetable that can never be violated, while soft constraints represent conditions that

are desirable to satisfy. The resulting problem is to find a timetable the penalties from

violated soft constraints.

In this thesis, we present a heuristic solution approach using a combination of Mixed-

Integer Linear Programming (MILP) and cluster patterns for generating timetables in

sports tournaments. Further, we examine how our solution approach perform on 45

experimental problem instances presented in the ITC 2021.

To the best of out knowledge, this is the first time a approach including clusters patterns,

has been tested on an experimental database.

The computational results show that our solution method is capable of generating a double

round robin timetable for most of the data instances. Further, it provides better results

in a shorter amount of time when compared to running the default MILP model.

Keywords – Sports Timetabling, Mixed-Integer Linear Programming, International

Timetabling Competition, Scheduling

Contents iii

Contents

1 Introduction 1

2 Problem Description 3
2.1 Principles of Scheduling . 3
2.2 International Timetabling Competition 2021 4

2.2.1 Capacity Constraints . 5
2.2.2 Game Constraints . 5
2.2.3 Break constraints . 6
2.2.4 Fairness Constraints . 6
2.2.5 Separation Constraints . 6

2.3 Research Questions . 7

3 Background 8
3.1 Sports Scheduling . 8
3.2 Terminology . 8
3.3 Round Robin Tournaments . 9

3.3.1 Competition Format . 10
3.4 Techniques Used for Sports Scheduling Problems 11

3.4.1 Two-Phased Approach . 12
3.4.2 Literature Review . 13

4 Model Formulation and Solution Approach 16
4.1 Model Formulation . 16
4.2 Solution Approach . 24

4.2.1 Heuristic . 24
4.2.2 Symmetrics . 25
4.2.3 Minimize Breaks . 27

5 Computation and Implementation 30
5.1 Data and Computation . 30
5.2 Implementation . 34

5.2.1 Clusters Patterns . 35

6 Results 38
6.1 Heuristic Results . 38

6.1.1 Features of the heuristic computation 40
6.1.1.1 Closer Examination of the Heuristics 40

6.2 Solution Approach . 42
6.2.1 Minimizing Breaks . 43

6.2.1.1 Minimize Consecutive Breaks 43
6.2.1.2 Minimizing Total Breaks 43
6.2.1.3 Heuristic . 45

7 Conclusion 46

References 47

iv Contents

Appendix 49
7.1 Detailed Model Formulation . 49
7.2 AMPL Heuristic Run-file . 55
7.3 Tables . 61

List of Figures v

List of Figures
3.1 Overview of the three-field notation for sports timetabling. (Van Bulck

et al., 2020b) . 10
3.2 2RR League with 6 teams, illustrating games of Team 2 (Van Bulck et al.,

2020b) . 11
5.1 Solution file for best objective value obtained for L4. Showing all matches

for the first two rounds . 33
6.1 Average reduction for the first heuristic run, using 12 partitions and 2

minutes per iteration . 41
6.2 Average reduction for the 2.- and 3. heuristic run 42

vi List of Tables

List of Tables
2.1 2RR schedule with 6 teams . 3
5.1 Overview of the structure, types and number of constraints 32
6.1 Overview of Heuristic Results . 39
6.2 Comparison of all runs . 40
6.3 8-hour consecutive break minimization in NEOS 43
6.4 Minimization of breaks under symmetric schemes 44
6.5 Heuristic break minimization, 40 minute iterations 45
7.1 8-hour run in Neos without objective function 62

1

1 Introduction

Sports timetabling problems can be seen as combinatorial optimization problems that

consist of creating a timetable defining against whom, where, and when a team will play

games. This topic has been widely researched since the 1970s (e.g. Campbell and Chen

(1976)), incrementally gaining more attention ever since, and has become a specialized field

with its own research conferences. Sports Timetabling problems feature a wide variety

of constraints and objectives, which makes it challenging to identify the relevant set of

papers for given problems. In addition, there is no generally accepted data format, which

leads to problem instances and their solutions rarely being shared. In order to mitigate

these issues, Van Bulck et al. (2020b) have gathered and classified different problems

presented in the literature during the last five decades, in their RobinX project.

The aim of ITC 2021 is to stimulate the development of solution approaches for the

construction of round-robin timetables, meaning that each team plays every other team a

fixed number of times.

The thesis aims to automate the process of generating a sports timetable and the instances

in the ITC 2021 are used to test our approach. Each instance contains a set of hard

constraints that reflect the fundamental properties of a timetable and can therefore

never be violated. Additionally, each team can have different preferences when it comes

to specific games in given rounds etc., which are referred to as soft constraints in the

literature. The main goal of this thesis is to create a mathematical model by using a

heuristic approach consisting of a mixed-integer linear programming (MILP) model and a

cluster pattern approach (referred to as CHAP).

The outline of this thesis is as follows. Section 2 provides a description of the ITC 2021.

Section 3 describes the basic principles and terminology in sports timetabling. Section 4

provides a detailed description of the MILP model and solution approach. As a potential

contribution to the field of sports timetabling, Section 4 also propose a heuristic approach

consisting of a MILP model combined with a cluster pattern (CHAP) approach. The aim

of the heuristic is to reduce the objective value, in a relatively short amount of time1.

1Compared to just running the default MILP model, which can take many weeks, e.g. Klotz and
Newman 2013

2

Utilizing team clusters can be considered a relatively new approach in sports scheduling,

and has not yet been tested on experimental instances. Section 5, contains computation

and implementation, where we describe the data structure, the preprocessing of data,

and the implementation of our model. Section 6 summarizes our results for the heuristic

approach before we present our concluding remarks in Section 7.

3

2 Problem Description

2.1 Principles of Scheduling

Timetable and schedule are referred to interchangeably in this thesis. In general, a schedule

is considered a tool for time management and as a list of time slots where events or tasks

are intended to take place. Since the 1950s, scheduling theory has become a distinct

academic field within operation research, aiming to create analytical frameworks in order

to optimize decision-making in real-life problems. Some classic examples of scheduling

problems are the Traveling Salesman Problem, which concerns a series of locations to be

visited while minimizing travelling distance. Another classic example considers a nursing

schedule problem, where nurses are assigned to shifts while having to respect several

constraints regarding limits on overtime and rotation of work shifts.

The ITC is a competition that aims to stimulate interest in scheduling as a field of research.

The competition was first hosted in 2002 and has ever since gathered a fair share of interest

in the scientific community. The type of problems featuring in ITC vary for each time

(e.g., university course timetabling problems in 2019), and this year the problem consists

of scheduling 2RR tournaments in sports. Table 2.1 illustrates an example of a timetable

for a 2RR tournament. In the competition, the set of all teams (T) and set of all slots (P)

start from 0, such that the first team and slot are Team 0 and Slot 0, respectively.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
Team 0 @T1 T5 T1 @T2 T4 @T4 T2 @T3 T3 @T5
Team 1 T0 T4 @T0 @T4 T3 T2 @T3 T5 @T5 @T2
Team 2 T3 @T3 @T5 T0 T5 @T1 @T0 T4 @T4 T1
Team 3 @T2 T2 @T4 @T5 @T1 T5 T1 T0 @T0 T4
Team 4 @T5 @T1 T3 T1 @T0 T0 T5 @T2 T2 @T3
Team 5 T4 @T0 T2 T3 @T2 @T3 @T4 @T1 T1 T0

Table 2.1: 2RR schedule with 6 teams

A feasible schedule must specify in which round any two teams face each other and on

whose venue. In table 2.1, the away games are denoted by @ (e.g., Team 0 plays away

against Team 1 in Slot 1).

4 2.2 International Timetabling Competition 2021

2.2 International Timetabling Competition 2021

In ITC 2021, we consider a time-constrained (compact) double round-robin tournament

(2RR) with an even number of teams, where time-constrained refers to the tournament

finishing using the least amount of time slots possible. 2RR describes that every team

in the league will play each other twice, once at their home venue and once at the away

venue, during the tournament. Thus, making the number of necessary time slots equal to

2(k − 1) teams.

The competition releases three sets of problem instances, in which each set of instances

includes 15 problems, giving a total of 45 problem instances. The number of constraints

in each instance range from 93 to 1486, where each constraint c ∈ C comes with unique

subsets and parameters. In other words, every single problem instance can be represented

as a large Mixed-Integer-Programming (MILP) problem. The competition considers four

different sets of capacity constraints (CA1-CA4), one set of game constraints (GA1), two

different sets of break constraints (BR1, BR2), one set of fairness constraints (FA2), and

one set of separation constraints (SE1). A more detailed description of these constraints

is given below and in the model formulation.

Timetables in sport often need to satisfy a large set of constraints. These constraints are

often grouped into soft and hard constraints. The hard constraints can never be violated,

such that a feasible solution can only exist if all the sets of hard constraints are respected.

Soft constraints, on the other hand, represent conditions that are desirable to satisfy. A

violated soft constraint will trigger a penalty with a weight specified in the XML file.

When the objective is to minimize soft constraints, the general objective function, γ,

states that each soft constraint violated c ∈ CS will trigger a penalty (pc = wc

∑nc

i=1 di)

that is equal to the sum of the elements of the deviation vector multiplied by the weight

wc. For all the instances in ITC 2021, the objective function sums over all the violated

soft constraints.

The constraints can be grouped into the following subsets.

2.2 International Timetabling Competition 2021 5

2.2.1 Capacity Constraints

Capacity constraints will force a team to play home or away, and regulate the number

of games played by a group of teams. Four different capacity constraints are considered

in the competition. The CA1 can e.g. be interpreted as preferences of playing at least a

given number of home games in the most lucrative time slots, in order to increase ticket

revenues. CA2 can be seen as a generalization of CA1, where one could model top and

bottom teams, to avoid that bottom teams play all initial games against top teams. The

ITC 2021 considers at most two CA3 hard constraints per instance, which are used to limit

the maximal length of home stands (and/or away trips) by forbidding consecutive home

breaks (and/or consecutive away breaks). Moreover, there can be many soft constraints

that limit the total number of consecutive games against certain strength groups.

While CA2 and CA3 define restrictions for each team in different subsets of T (set of all

teams), CA4 considers these subsets as single entities. CA4 is usually used to limit the

total number of games between top teams over the lifespan of the tournament, known as

global mode in the ITC 2021. It can also be used to limit the number of games per time

slot, referred to as every mode. The latter could be the case of two teams sharing the

same stadium, where you simply limit the number of home games for the respective teams

in each round. Note that the capacity constraints are limit the number of games, while if

you want to regulate specific games in a given time slot, then the game constraints are to

be used.

2.2.2 Game Constraints

Game constraint, GA1, deals with fixed or forbidden games. For a given time slot a given

match could be forbidden, or fixed. For instance, broadcasters often want to have a “top

match” or a “classical match” in a given time slot, especially towards the end of the season,

where they would try to fix a match between title contenders. On the other hand, police

will often forbid a “high risk” match to occur in a given time slot (Van Bulck et al., 2020b).

The latter could be the case if you have several teams in a city, and you would then try to

avoid two teams playing the same day due to the risk of clashes between rival hooligans.

6 2.2 International Timetabling Competition 2021

2.2.3 Break constraints

Break Constraints regulate when breaks occur, as well as the frequency. A team has

a break when it has the same home-away status as in the previous game. The break

constraints are either used to limit the number of breaks over a given set of rounds for

given teams or to limit the total number of breaks in the competition. Usually, one would

like to avoid breaks as they can affect the game attendance (Forrest and Simmons, 2006),

and can be perceived as unfair due to the home-away effect (Pollard and Pollard, 2005)

BR1 can forbid breaks at the beginning (end) of the season or limit the total amount

of breaks per team. BR2, on the other hand, can limit the total number of breaks in a

tournament.

2.2.4 Fairness Constraints

Fairness constraints (FA2) are used to increase fairness in a competition. An unequal

amount of home games a team has played before a certain match can give an advantage

for one of the teams. These constraints can be used to balance the number of home

matches so they have a relatively equal amount of home matches before a given match.

The allowed difference of home matches played, to a certain point, is specified in the

constraints.

2.2.5 Separation Constraints

In order to regulate the symmetry and the number of time slots between consecutive

meetings involving the same teams, one would use separation constraints. In a 2RR

tournament, every encounter is played two times, with the difference being the home-away

status of the teams (Van Bulck et al., 2020a). E.g.if Arsenal was to meet Chelsea at

home in the first round of EPL2, one would make sure that they do not meet again in the

immediate future. Through the SE1 constraint, organizers may request that two matches

containing the same opponents are separated by at least a given number of time slots.

2the English Premier League

2.3 Research Questions 7

2.3 Research Questions

In light of the ITC 2021, we attempt to formulate MILP models for all the 45 problem

instances. Furthermore, we would like to introduce a cluster pattern approach with the

purpose of finding good solutions within an acceptable time limit.

The following research questions are formulated:

1. How can we generate a timetable for a sports competition when many- and perhaps

conflicting conditions are present?

2. How will a heuristic cluster pattern approach perform on the experimental instances?

8

3 Background

In this section, we elaborate on the background of sports timetabling, where we provide

a literature review and methodological aspects that concerns how similar problems are

modeled. Lastly, we also mention some of the practical aspects of sports timetabling.

3.1 Sports Scheduling

Over the last decades, the interest in sports, in general, has increased rapidly. The large

tournaments are followed by millions of fans all over the world, which are eager to get

their hands on the latest news regarding their favorite teams. This has lead to sports

evolving into a large industry, with the largest tournaments playing a big part in the

increasingly globalizing economy. These big tournaments bring thousands of jobs, urban

regeneration, and economic opportunities to their hosts (Kendall et al., 2010).

Football, in particular, has become one of the largest subsets of the sporting industry,

and with the large size comes many stakeholders. There are millions of fans that demand

fairness in the competition. In order to stay competitive in the league, the teams are

willing to invest millions of dollars into players, stadiums, advertising, merchandising and

broadcasting rights. Furthermore, the organizers, airlines, police, media , and players

also play a vital part in the tournaments and want to have their say in the scheduling

of the tournaments. As a result of this, the interest in sports scheduling have increased

intact with the size of the sport. Over the last decades, academic papers on the topic of

sports timetabling has increased in numbers of publications and evolved into a large field

of research of its own (Goossens, 2018).

3.2 Terminology

In order to make it easier to understand the content of the thesis, we introduce the

basic terminology in sports timetabling. The RobinX paper (Van Bulck et al., 2020b)

summarises the general terminology that is used within the field of sports scheduling

problems. Below we elaborate on the concepts relevant for understanding the nature of

the ITC 2021 problem instances.

3.3 Round Robin Tournaments 9

The problem instances consist of a set of slots S, a set of teams T , and an ordered multiset

of games G. Every k ∈ S represents a time period or a game day, where every team

can play at most one game. If the team does not play a game in a time slot, we say

that the team has a bye. The multiset G consists of ordered pairs (i, j), where every

i ∈ T represents the home team, and j ∈ T represents the away team. The variable xi,j,k

represents which home team i, hosts the venue for the away team j, in the time slot k.

Breaks are a fundamental element of sports timetabling. We say that a team has a break

if they play two home games in a row or if a team plays two away games in a row. In other

words, a break occurs if a team plays two consecutive games with the same home-away

status. In this competition, a break takes place in the time slot of the second occurrence

(E.g., Team1 plays a home game in slot 1, home-game slot 2, a break occurs in slot 2.).

In essence, we aim to create schedules that maximize the demands of the different

stakeholders. Goossens (2018) explains that a schedule is a combination of a Home- and

Away Pattern (HAP) and a timetable. The HAP is a sequence that determines if a team

plays home or away in a certain round. For example, if Team 1 has a HAP = (0,1,0,1),

it means that Team 1 plays away-home-away-home. The timetable, on the other hand,

determines which teams are set to play each other in each round. Ultimately, these two

components make up a complete timetable. It is important to note that the schedule

needs to be created by complementary patterns. For every time slot in the tournament,

patterns must be compatible, meaning that for every team that plays a home game, an

opponent must play an away game.

3.3 Round Robin Tournaments

The problem instances are using the format Double Round Robin, hereby referred to as

2RR. In a 2RR tournament, every team plays each other two times over the tournament,

while the home/away status is alternating between the two games. According to Kendall

et al. (2010), 2RR tournaments are one of the most researched tournament formats, as

the format is common practice for many of the biggest sports tournaments in the world.

10 3.3 Round Robin Tournaments

3.3.1 Competition Format

As previously mentioned the RobinX paper (Van Bulck et al., 2020b) created a uniform

three-field system to describe the structure of sporting tournaments.

Figure 3.1: Overview of the three-field notation for sports timetabling. (Van Bulck
et al., 2020b)

Starting with the α field, all the problem instances are using α1 = 2RR and α2 = C.

This means that the entirety of our tests is performed on compact 2RR tournaments. A

compact tournament means that the number of rounds in a tournament is restricted to

the bare minimum, which equals n(2− 1), where n represents the number of teams. In

some of the instances, we deal with problems where α3 = P . This means that the game

mode is phased. In a phased tournament, the competition consists of two consecutive

1RR’s so that the teams are required to meet one time in each half of the season.

When scheduling a 2RR tournament, it is common to structure the competition using

a symmetric scheme (Goossens and Spieksma (2012)). The most common symmetric

schemes are Mirrored -, Inverted -, English- and French scheme, which are expressed in

the α3 field as M,I,E,F. Though our problems are not originally subjected to any of these

symmetric schemes, we find it appropriate to present the ideas behind them as we perform

some experiments based on these schemes.

In a mirrored tournament, we start by creating a solution for the first half of the season.

Then, the second half is created as close to identical to the first half, with the only

difference being the home-away status of the teams is reversed. The Inverted scheme is

3.4 Techniques Used for Sports Scheduling Problems 11

based upon the same principle, where they begin to create the first half of the season.

Then, the second half of the season is created, but unlike the mirrored format, the meetings

in the second half are in reversed order of the meetings in the first half. The English-

and French scheme have also been used in many European competitions (Goossens and

Spieksma (2012)). Tournaments that are scheduled using the French scheme, the games

in the first and last time slots are equal along with the games in slot n− 1 + k and slot

t+ 1 where k = 1, 2..., n− 2, with the team playing at home being inverted. Finally, in

the English scheme, meetings in the last time slot of the first half are equal to the first

meeting in the second half. The slot n+ k in the second half also corresponds to slot k in

the first half for slots k = 1, 2..., n − 2. These 4 schemes were also used by Durán and

M. Guajardo (2017) when scheduling the South American qualifiers of the FIFA world

cup 2018.

Figure 3.2: 2RR League with 6 teams, illustrating games of Team 2 (Van Bulck et al.,
2020b)

The purpose of the symmetric schemes is to implement fairness into the competition, as

leagues that are using symmetry have a considerable amount of games between mutual

meetings.

The β-field lists the constraints and are divided into five classes, which were elaborated in

the previous chapter. Lastly, the γ-field refers to the objective function in use. As the

competition only considers problems revolving around the minimization of soft constraints,

we do not elaborate further on the other problem formats.

3.4 Techniques Used for Sports Scheduling Problems

Kendall et al. (2010) summarise over 160 journals on the topic of sports scheduling up

until 2010, where they review different literature and modeling techniques. They argue

12 3.4 Techniques Used for Sports Scheduling Problems

that when it comes to solving real-life problems, the choice of methodology is crucial in

order to obtain acceptable results. The authors further claim that one of the most common

practices is to develop an integer program (IP) that aims to maximize or minimize an

objective function. IP models can be very effective at solving sports scheduling problems,

and in a round-robin tournament they found that most problems use the following variable

definition:

xi,j,k

1 if team i plays against team j in round k

0 otherwise
(3.1)

With an n number of teams, where the teams i, j = 1...n, and time slots k = 1...s.

A 2RR tournament can be formulated using the following constraints:

s∑
k=1

(xi,j,k) = 1 ∀i, j i 6= j (3.2)

n∑
j=1

(xi,j,k + xj,i,k) = 1 ∀i, k (3.3)

These constraints set the base for the vast majority of IP models. The first constraint

forces each team to play against every other team once at home during the tournament,

while the second constraint subjects all teams to only being able to play one game every

round.

3.4.1 Two-Phased Approach

Goossens (2018) argues that as new effective algorithms and hybrid models (e.g., Rasmussen

2006) have emerged over the last decade, so has the size of the problems. The debate for

more solution approaches is open, and one of the most important additions to the field of

research is the two-phased approach, also known as the decomposing method, introduced

by Nemhauser et al. (1998). This approach is based around the principle of first break,

then schedule, which in the first phase assigns a team to a HAP. Subsequently, the second

phase consists of deciding the opponents for each team in each time slot, subject to their

HAP. By subsequently solving the two phases, an optimal solution is not guaranteed, and

3.4 Techniques Used for Sports Scheduling Problems 13

typically there should be room for improvement.

The first phase can be modeled by the following formulation:

hi,p

1 if team i is assigned to pattern p

0 otherwise
(3.4)

∑
p

hi,p = 1 ∀i (3.5)

∑
i

hi,p = 1 ∀p (3.6)

The last two constraints force each team to be assigned to home and away patterns. After

the solver has assigned each team to a pattern, equations (3.4), (3.5), and (3.6) can be

used to model the second phase, with the exception that xi,j,k takes the value allowed by

the HAPs of team i and j.

The formulations above only represent the main ideas behind the two phases. In reality,

there exist many different methods on how the patterns can be generated, and how

the phases can be structured and solved. E.g., Nemhauser et al. (1998) used integer

programming to solve phase I and II but added a third enumeration phase when scheduling

the major college basketball conference.

3.4.2 Literature Review

There is no secret that solving large MILP models can be a daunting task. When we

started working on our thesis, we ran the original model on 10 instances and were only

able to produce one feasible solution. This is a common case in sports scheduling, and

Durán et al. (forthcoming) also claim that some of their instances could run for days

without even finding a feasible solution. When the search parameters are too wide to

produce acceptable results in a reasonable time, variations of the two-phased approach

have been used to address these problems, as it greatly reduced the size of the MILP

models (Kendall et al., 2010).

The decomposing method by (Nemhauser et al., 1998), where MILP models are combined

with a heuristic search process through a large pool of predefined HAPs, has laid the

14 3.4 Techniques Used for Sports Scheduling Problems

foundation for scheduling in many important football tournaments. Hausken et al. (2013)

scheduled the Norwegian football league while building on the same principles, where they

created an algorithm that aimed to generate complimentary HAPs with a low number of

breaks. They further created a MILP model that would match each team to a pattern

while minimizing the total amount of breaks in the tournament. Bartsch et al. (2006)

scheduled both the German Bundesliga and the Austrian Football Bundesliga, while

Recalde et al. (2013) scheduled the Ecuadorian Serie A, all based on the same principles

of an iterative search process of predefined H-A patterns. Similar techniques has also

been used to professional football leagues in Chile (Durán et al. 2007, Durán et al. 2012,

Alarcón et al. 2017), Ecuador (Recalde D, 2013), Denmark (Rasmussen, 2008), Honduras

(Fiallos et al., 2010).

When (Goossens and Spieksma, 2009) elaborate on their experience from scheduling the

07-08 season in the Belgium football league, they mention some additional advantages

the decomposition method brings when working on real-life problems. As opposed to

theoretical problems, in real-life problems, the participating teams often want to suggest

minor adjustments in the schedule. The authors further argue that the "first-break-then-

schedule" approach is robust to changes, allowing teams to make some minor adjustments

without having the rebuild the entire schedule from scratch. Further, the constraints

regarding breaks often originate from the police or stadium unavailability and are not

likely to change, meaning that once a feasible set of HAPs has been generated, the process

does not have to be repeated.

In the forthcoming paper of Durán et al. (2021), they describe their work when scheduling

Argentina’s professional football league, Superliga. They explain that they formed an

IP model and used a decomposition approach, but unlike any other previous work, it

was based on the assignment of cluster patterns (CHAP) instead of HAPs. As explained

earlier, the teams’ HAPs are vectors that explain the home-away status for every game

and every team in the tournament. The CHAPs, on the other hand, expands on the

methodology and can be described as HAPs only for subsets of the teams. By using this

approach, they were able to find high quality solutions within a few seconds or minutes,

even solving to optimality in some instances. Ultimately they concluded that a heuristic

CHAP approach could improve the results in more general sports scheduling problems.

3.4 Techniques Used for Sports Scheduling Problems 15

We believe that the ITC2021 competition is a perfect opportunity to experiment on how

a CHAP approach could be applied in more general sports scheduling problems.

16

4 Model Formulation and Solution Approach

In this section, the instances are modeled as an optimization problem using the mixed-

integer linear programming (MILP) approach. First, we present our MILP model. Second,

we implement a heuristic approach based on MILP and a cluster pattern approach, referred

to as CHAP.

In general, our approach is based on MILP modeling followed by some adjustments

as we use different strategies within this approach to run the modeling in exact or in

approximated form, depending on if we are only searching for feasibility or optimality. We

adjust the model to run in different ways, which are more or less constrained and with

slightly different objective functions.

4.1 Model Formulation

Sets

T : Set of all teams

T 1
c : First indexed subset of teams for every constraint

T 2
c : Second indexed subset of teams for every constraint

P : Set of all rounds

Sc : Indexed Subset rounds for every constraint

Gc : Indexed multiset of ordered pairs (i,j) for every constraint

C : Set of all Constraints

The logic behind the definition of the subsets of all constraints, C, is as follows. If we use

CA2HHA as an example, the first letter indicates whether the respective constraint is a

hard or soft constraint, followed by mode HA, H or A. So, CA2HHA concerns the CA2

hard, home and away constraints.

Variables

We use the most common approach (Kendall et al., 2010) and introduce the family of

variables x that define which teams play against each other, in round k, where i represents

4.1 Model Formulation 17

the home team and j the away team, if a feasible solution is found. For the purpose of

handling the break constraints, we introduce the variables h and a, which determines

in which time slots k, team i have a home or away break. In addition, we introduction

variables d that counts the number of deviations for the soft constraints. A detailed model

is locate in the appendix.

xi,j,k

1 if team i plays against team j in round k

0 otherwise

hi,k

1 if team i has a home break in round k

0 otherwise

ai,k

1 if team i has an away break round k

0 otherwise

Constraints

The constraints (4.1),(4.2),(4.3),(4.4), and (4.5) represent the base of our models and are

present in all of the 45 problem instances. Constraint (4.6) and (4.7) are present in the

problems containing a phased game mode.

xi,i,k = 0 ∀i ∈ T, k ∈ P (4.1)∑
j∈T

(xi,j,k + xj,i,k) = 1 ∀i ∈ T, k ∈ P (4.2)

∑
k∈P

xi,j,k = 1 ∀i ∈ T, j ∈ T : i 6= j (4.3)

∑
j∈T

(xi,j,k−1 + xi,j,k)− bi,k ≤ 1 ∀i ∈ T, k ∈ P : k > 0 (4.4)

∑
j∈T

(xj,i,k−1 + xj,i,k)− ai,k ≤ 1 i ∈ T, k ∈ P : k > 0 (4.5)

|P |/2∑
k=1

(xi,j,k + xj,i,k) = 1 ∀k ∈ P, i ∈ T, j ∈ T : i 6= j (4.6)

|P |∑
k=(|P |/2)+1

(xi,j,k + xj,i,k) = 1 ∀k ∈ P, i ∈ T, j ∈ T : i 6= j (4.7)

18 4.1 Model Formulation

xi,j,k ∈ {0, 1} ∀i, j ∈ T, k ∈ P (4.8)

hi,k ∈ {0, 1} ∀i ∈ T, k ∈ P (4.9)

ai,k ∈ {0, 1} ∀i ∈ T, k ∈ P (4.10)

Constraints (4.1-4.3) make up the base for a 2RR season (Kendall et al., 2010). Constraint

(4.1) is included for ease of notation and implementation of the code. Constraint (4.2)

forces each team to play exactly one game per round, while constraint (4.3) ensures that

each team meets during a season. Some of the instances are phased, meaning that the

overall structure of the league is constructed using two consecutive 1RR‘s. Constraint

(4.6) and (4.7) force each pair of teams to play one time in the first half of the season and

one time in the second half of the season. In ITC 2021 breaks are defined as playing a

game with the same home-away status as in the previous game. E.g., if a team is playing

home in Slot 2, as well as playing home in Slot 3, the team enters a break in Slot 3.

Constraint (4.4) and (4.5), ensure that the correct values are assigned to the home and

away break variables. Constraints (4.8-4.10) define the variables as binary variables.

Capacity Constraints

As mentioned in the problem description, capacity constraints aim to control the number

of home and away games played by a team and regulates the total number of games played

by a team or group of teams.

The set of CA1 put restrictions on the number of games a given subset of teams can play

in a given subset of slots. E.g., a team from T 1
c can only play maxc games in the specified

subset of slots Sc. Constraints (4.11) and (4.12) limit the number of home(H) or away(A)

games for each team i in T 1
c during a subset of slots defined in Sc for all hard constraints.

∑
k∈Sc

∑
j∈T

xi,j,k ≤ maxc ∀c ∈ CA1HH , i ∈ T 1 : i 6= j (4.11)

∑
k∈Sc

∑
j∈T

xj,i,k ≤ maxc ∀c ∈ CA1HA, i ∈ T 1 : i 6= j (4.12)

∑
k∈Sc

∑
j∈T

xi,j,k −maxc ≤ dCA1
i,c ∀c ∈ CA1SH , i ∈ T 1 : i 6= j (4.13)

∑
k∈Sc

∑
j∈T

xj,i,k −maxc ≤ dCA1
i,c ∀c ∈ CA1SA, i ∈ T 1 : i 6= j (4.14)

4.1 Model Formulation 19

(4.13) and (4.14) defines the soft version of the constraints, in which the number of home

and away games exceeding maxc for each constraint, is counted.

The set of CA2 constraints can be seen as a generalization of CA1, where the constraints

also specify the opponent team. E.g. Team i from T 1
c can only play maxc games in the

specified subset of slots Sc, against the teams j in T 2
c . CA2 constraints also contain an

extra mode, HA, which considers the total amount of games played (both home and

away).

∑
k∈Sc

∑
j∈T 2

c

(xi,j,k + xj,i,k) ≤ maxc ∀c ∈ CA2HHA, i ∈ T 1
c (4.15)

∑
k∈Sc

∑
j∈T 2

c

xi,j,k ≤ maxc ∀c ∈ CA2HH , i ∈ T 1
c (4.16)

∑
k∈Sc

∑
j∈T 2

c

xj,i,k ≤ maxc ∀c ∈ CA2HA, i ∈ T 1
c (4.17)

∑
k∈Sc

∑
j∈T 2

c

(xi,j,k + xj,i,k)−maxc ≤ dCA2
i,c ∀c ∈ CA2SHA, i ∈ T 1

c (4.18)

∑
k∈Sc

∑
j∈T 2

c

xi,j,k −maxc ≤ dCA2
i,c ∀c ∈ CA2SH , i ∈ T 1

c (4.19)

∑
k∈Sc

∑
j∈T 2

c

xj,i,k −maxc ≤ dCA2
i,c ∀c ∈ CA2SA, i ∈ T 1

c (4.20)

Constraints (4.15-4.17) model the hard version of the three different modes HA, H, and A

in CA2, while constraints (4.18-4.20) define the deviations, which equal the number of

games (HA, H or A) more than maxc.

CA3 states that each team i in T 1
c plays at most maxc home games, away games, or games

against teams j in T 2
c , in each sequence of intpc time slots. E.g., Team 0 (from T 1

c) plays

at most two consecutive matches against Team 1, 2, and 3 (from T 2
c) in each sequence

of 3 (intpc time slots). Eg., if a match x0,1,1 (Team 0 plays at home against Team 1 in

round 1), then Team 0 can only play one more game against Team 2 or 3, in the following

two rounds (sequence of 3).

∑
j∈T 2

c

k+intpc−1∑
l=k

(xi,j,l + xj,i,l) ≤ maxc (4.21)

20 4.1 Model Formulation

∀c ∈ CA3HHA, i ∈ T 1
c , k ∈ P : k ≤ |k|+ 1− intpc∑

j∈T 2
c

k+intpc−1∑
l=k

xi,j,l ≤ maxc (4.22)

∀c ∈ CA3HH , i ∈ T 1
c , k ∈ P : k ≤ |k|+ 1− intpc∑

j∈T 2
c

k+intpc−1∑
l=k

xj,i,l ≤ maxc (4.23)

∀c ∈ CA3HA, i ∈ T 1
c , k ∈ P : k ≤ |k|+ 1− intpc∑

j∈T 2
c

k+intpc−1∑
l=k

(xi,j,l + xj,i,l)−maxc ≤ dCA3
i,k,c (4.24)

∀c ∈ CA3SHA, i ∈ T 1
c , k ∈ P : k ≤ |k|+ 1− intpc∑

j∈T 2
c

k+intpc−1∑
l=k

xi,j,l −maxc ≤ dCA3
i,k,c (4.25)

∀c ∈ CA3SH , i ∈ T 1
c , k ∈ P : k ≤ |k|+ 1− intpc

∑
j∈T 2

c

k+intpCA3S−1∑
l=k

xj,i,l −maxc ≤ dCA3
i,k,c (4.26)

∀c ∈ CA3SA, i ∈ T 1
c , k ∈ P : k ≤ |k|+ 1− intpc

Constraints (4.21-4.23) forces each team i in T 1
c to play at most maxc HA/H/A games

against teams j in T 2
c for each sequence of intpc time slots, while (4.24-4.26) count the

number of games (HA, H or A) that exceeds maxc number of games.

As mentioned earlier, CA4 is divided into modes referred to as global and every. For given

subsets of teams i in T 1
c and k in T 2

c , the global mode is used to limit the total number of

games in the tournament, while the every mode limits the total number of games during

each slot in a given subset of Sc. E.g., if we have a subset of rounds (1,2,3), global mode

limits the total number of games in the tournament, while every limits the number of

games in each of the rounds 1, 2, and 3.

∑
i∈T 1

c

∑
j∈T 2

c

∑
k∈Sc

(xi,j,k + xj,i,k) ≤ maxc ∀c ∈ CA4gHHA (4.27)

∑
i∈T 1

c

∑
j∈T 2

c

∑
k∈Sc

xi,j,k ≤ maxc ∀c ∈ CA4gHH (4.28)

4.1 Model Formulation 21

∑
i∈T 1

c

∑
j∈T 2

c

∑
k∈Sc

xj,i,k ≤ maxc ∀c ∈ CA4gHA (4.29)

∑
i∈T 1

c

∑
j∈T 2

c

∑
k∈Sc

(xi,j,k + xj,i,k)−maxc ≤ dCA4g
c ∀c ∈ CA4gSHA (4.30)

∑
i∈T 1

c

∑
j∈T 2

c

∑
k∈Sc

xi,j,k −maxc ≤ dCA4g
c ∀c ∈ CA4gSH (4.31)

∑
i∈T 1

c

∑
j∈T 2

c

∑
k∈Sc

xj,i,k −maxc ≤ dCA4g
c ∀c ∈ CA4gSA (4.32)

Equations (4.27-4.29) forces teams i in T 1
c to play at most maxc HA/H/A games against

teams j in T 2
c during time slots Sc. Equations (4.30-4.32) counts the number of games

(HA/H/A) more than maxc.

For mode every we have the following constraints:

∑
i∈T 1

c

∑
j∈T 2

c

(xi,j,k + xj,i,k) ≤ maxc ∀c ∈ CA4eHHA, ∀k ∈ Sc (4.33)

∑
i∈T 1

c

∑
j∈T 2

c

xi,j,k ≤ maxc ∀c ∈ CA4eHH ,∀k ∈ Sc (4.34)

∑
i∈T 1

c

∑
j∈T 2

c

xj,i,k ≤ maxc ∀c ∈ CA4eHA,∀k ∈ Sc (4.35)

∑
i∈T 1

c

∑
j∈T 2

c

(xi,j,k + xj,i,k)−maxc ≤ dCA4e
k,c ∀c ∈ CA4eSHA, k ∈ Sc (4.36)

∑
i∈T 1

c

∑
j∈T 2

c

xi,j,k −maxc ≤ dCA4e
k,c ∀c ∈ CA4eSH ,∀k ∈ Sc (4.37)

∑
i∈T 1

c

∑
j∈T 2

c

xj,i,k −maxc ≤ dCA4e
k,c ∀c ∈ CA4eSA,∀k ∈ Sc (4.38)

Constraints (4.33-4.35) force teams i in T 1
c to play at most maxc games (HA/H/A) against

teams j in T 2
c during each time slot k in Sc. The latter three constraints (4.36-4.38) count

the number of games (HA/H/A) more than maxc, for teams in T 1
c against opponents in

T 2
c , during each time slot in Sc.

Game Constraints

GA1 specifies that at least minc and at most maxc games from Gc take place during

time slots k in Sc. Where Gc is a multiset of games that consist of ordered pairs (i,j)

in which i is the home team providing the venue where the game is played, and j is the

22 4.1 Model Formulation

away team. E.g., G(0,1) cannot take place during Slot 2, as there are other major events

on/around the venue of Team 0. On the other hand, G(0,1) must be played on Slot 2 due

to broadcasting requirements.

minc ≤
∑

(i,j)∈Gc

∑
k∈Sc

xi,j,k ∀c ∈ GA1H (4.39)

∑
(i,j)∈Gc

∑
k∈Sc

xi,j,k ≤ maxc ∀c ∈ GA1H (4.40)

minc −
∑

(i,j)∈Gc

∑
k∈Sc

xi,j,k ≤ dGA1
c ∀c ∈ GA1S (4.41)

∑
(i,j)∈Gc

∑
k∈Sc

xi,j,k −maxc ≤ dGA1
c ∀c ∈ GA1S (4.42)

The two constraints (4.39,4.40) concerns upper- and lower bounds for the hard version of

the game constraints. The constraints force at least minc and at most maxc games from

the multiset Gc to take place during time slots Sc. The latter two equations (4.41,4.42)

concern the soft versions of the constraints and trigger a deviation for the sum of games

from Gc outside the interval of maxc - minc for time slots Sc.

Break Constraints

BR1 can be used to avoid breaks at the beginning (end) of the season and limit the total

number of breaks for each team. The following constraints (4.43-4.45) forces each team i

in T 1
c to have maximum intpc breaks (HA, H or A) during k slots in Sc

∑
k∈Sc

(hi,k + ai,k) ≤ intpc ∀c ∈ BR1HHA, i ∈ T 1
c (4.43)

∑
k∈Sc

hi,k ≤ intpc ∀c ∈ BR1HH , i ∈ T 1
c (4.44)

∑
k∈Sc

ai,k ≤ intpc ∀c ∈ BR1HA, i ∈ T 1
c (4.45)

∑
k∈Sc

(hi,k + ai,k)− intpc ≤ dBR1
i,c ∀c ∈ BR1SHA, i ∈ T 1

c (4.46)

∑
k∈Sc

hi,k − intpc ≤ dBR1
i,c ∀c ∈ BR1SH , i ∈ T 1

c (4.47)

4.1 Model Formulation 23

∑
k∈Sc

ai,k − intpc ≤ dBR1
i,c ∀c ∈ BR1SA, i ∈ T 1

c (4.48)

Constraints (4.46-4.48) count the deviations, which occurs when a team in T 1
c have more

than intpc breaks (HA, H or A) during the round(s) defined in Sc.

BR2 sums over all breaks (HA the only mode we consider) for teams i in T , which should

be less or equal to intpc during time slots k in P . Constraint (4.49) puts a restriction on

the total number of breaks in the season, while constraint (4.50) counts the total number

of breaks exceeding intpc.

∑
i∈T

∑
k∈P

(hi,k + ai,k) ≤ intpc ∀c ∈ BR2HHA (4.49)

∑
i∈T 1

c

∑
k∈Sc

(hi,k + ai,k)− intpc ≤ dBR2
c ∀c ∈ BR2SHA (4.50)

Fairness Constraints

FA2, states that the number of home games (the only mode we consider) played by any

two teams up until a given round should not exceed a given maximum. Thereby keeping a

balance between the number of home games played in each round, for each pair of teams.

Constraint (4.51) forces each pair of teams (i,j) in team group T 1
c to have a difference of

played home games that is not larger than intpc after each k in Sc.

∑
0≤l≤k

∑
h∈T 1

c

(xi,h,l − xj,h,l) ≤ intpc ∀c ∈ FA2H , k ∈ Sc, i, j ∈ T 1
c : i 6= j (4.51)

∑
0≤l≤k

∑
h∈T 1

c

(xi,h,l − xj,h,l)− intpc ≤ dFA21

i,j,c (4.52)

∀c ∈ FA2S, k ∈ Sc, i, j ∈ T 1
c : i < j∑

0≤l≤k

∑
h∈T 1

c

(xj,h,l − xi,h,l)− intpc ≤ dFA22

i,j,c

∀c ∈ FA2S, k ∈ Sc, i, j ∈ T 1
c : i < j

Constraint (4.52) makes each pair of teams in T 1
c to trigger a deviation equal to the largest

difference in played home games more than intpc over all k in Sc.

Separation Constraints

24 4.2 Solution Approach

Separation constraints regulate the number of rounds between two matches involving the

same opponents, as well as regulating the symmetry of the timetable.

SE1, constraint (4.53), states that each pair (i,j) of teams in T 1
c should have at least minc

time slots between two matches involving the same opponents.

k̄+minc∑
k=k̄

(xi,j,k̄ − xj,i,k̄) ≤ 1 ∀c ∈ SE1H , k ∈ P, i, j ∈ T 1
c : i < j (4.53)

k̄+n∑
k=k̄

(xi,j,k̄ − xj,i,k̄)− 1 ≤ dSE1
i,j,c,n ∀n ∈ minc, c ∈ SE1S, k ∈ P, i, j ∈ T 1

c : i < j (4.54)

For constraint (4.54) each pair of teams (i,j) in T 1
c , should trigger a deviation equal to

slots less than n = 1..minc for all consecutive mutual games.

Objective Function

The objective function aims to minimize the total penalty obtained from violated soft

constraints with their corresponding weights, while still respecting all hard constraints.

The parameter wc represents the weighted cost of violating a soft constraint.

min
∑
i∈T

∑
c∈CA1S

w1d
CA1
i,c +

∑
i∈T

∑
c∈CA2S

w2d
CA2
i,c +

∑
i∈T

∑
c∈CA3S

w3d
CA3
i,k,c +

∑
c∈CA4gS

w4d
CA4g
c +

∑
i∈T

∑
k∈P

∑
c∈CA4eS

w5d
CA4e
i,k,c +

∑
c∈GA1S

w6d
GA1
c +

∑
i∈T

∑
c∈BR1S

w7d
BR1
i,c +

∑
c∈BR2S

w8d
BR2
c +

∑
i,j∈T

∑
c∈FA2S

w9d
FA2
i,j,c +

∑
i,j∈T

∑
c∈SE1S

w10d
SE1
i,j,c

4.2 Solution Approach

4.2.1 Heuristic

It is well known, in the sports scheduling literature, that solving MILP models are hard

and you will not always find a feasible solution, and Durán et al. (forthcoming) also claim

that some of their instances could run for days without even finding a feasible solution.

To deal with this, we implement a heuristic approach where we would like to run an

4.2 Solution Approach 25

approximate model. Within this heuristic approach, we have different strategies when

searching for feasibility and optimality, which we explain in section 4.2.

The main idea of the CHAP is to break the overall problem into smaller sub-problems

by eliminating variables in the iterations. A HAP, as it appears in the literature, fixes

the home-away status for every team throughout the season. CHAP, on the other hand,

only fixes the home-away status for a subset of the teams. Our CHAP approach is based

on running multiple iterations with several cluster patterns, giving us the benefit of

diversification. This results in us having a more general approach where there could be

several clusters, which helps reduce the dimension of the problem.

CHAP enables us to eliminate many variables, e.g., if a team is scheduled to play at

home in round 1, all variables including this team playing away in round 1 are eliminated.

This ensures that some constraints are satisfied, particularly BR2, which is hard to work

with when fixing the HAP for a team. For the implementation of CHAP, we include the

following constraint (4.55).

∑
j∈Ct

xjik = pitk ∀i, t, k (4.55)

pi,t,k

1 if team is to play against teams of set Ct in round k

0 otherwise

Where pi,t,k is a binary parameter representing the CHAP. Ct is a subset of teams,

representing a cluster. In general, for Ct ⊂ T , the number of clusters is predetermined to

be n.

4.2.2 Symmetrics

When dealing with breaks, it is well known in the sports scheduling literature and practices

that schemes can be quite helpful, as they allow you to have fewer breaks in a tournament.

Goossens and Spieksma (2012), show that some form of symmetry is present in 20 out

of the 25 European football leagues in their survey of the schedules in the respective

leagues. Moreover, Durán and M. Guajardo (2017) obtained schedules that eliminated

26 4.2 Solution Approach

double-round breaks when running the base formulation in combination with various

symmetry-related constraints. When running with the French scheme, they were able to

satisfy all constraints. Thus, we include the following schemes in some of the iterations.

In the English scheme, meetings in the last time slot of the first half are equal to the first

meetings in the second half. The slot n+ k in the second half also corresponds to slot k

in the first half for slot k = 1, 2..., n− 2, and can be incorporated in the model using the

following constraints:

xi,j,|T |−2 = xj,i,|T |−1 ∀i ∈ T, j ∈ T : i 6= j (4.56)

xi,j,k = xj,i,k+|T | ∀i ∈ T, j ∈ T, k ∈ S : i 6= j, k ≤ |T | − 3 (4.57)

When an iterations includes the French Scheme, meetings in the first and last time-slots

are equal along with the meetings in slot n− 1 + k and slot t+ 1 where k = 1, 2..., n− 2,

with the home advantages being inverted.

xi,j,0 = xj,i,|S|−1 ∀i ∈ T, j ∈ T : i 6= j (4.58)

xi,j,k = xj,i,k−1+(|S|/2) ∀i ∈ T, j ∈ T, k ∈ S : i 6= j, k ≥ 1, k ≤ (|S|/2)− 1 (4.59)

In a mirrored tournament, we start by creating a solution for the first half of the season.

Then, the second half is created as close to identical to the first half, with the only

difference being that the home-away status of the teams is reversed.

xi,j,k = xj,i,k+card(T)−1 ∀i ∈ T, j ∈ T, k ∈ S : i 6= j, k ≤ (|S|/2)− 1 (4.60)

The Inverted scheme is based upon the same principle of first creating the first half of the

season. Then, the second half of the season is created, but unlike the mirrored format,

the meetings in the second half are in reversed order of the meetings in the first half.

xi,j,k = xj,i,2∗(|T |−3−k) ∀i ∈ T, j ∈ T, k ∈ S : i 6= j, k ≥ 1, k ≤ (|S|/2)− 1 (4.61)

It is important to note that the iterations with the symmetric schemes are not guaranteed

to work, and there might arise some situations where they conflict with the other hard

4.2 Solution Approach 27

constraints in the problem instances. However, we believe it is worth searching within

these logical conditions as it might leave out undesirable nodes in the search progress.

Additionally, we also believe it is worthy because it is promising in terms of the number

of breaks and it will cut the feasibility space. However, this may come with the cost of

cutting the optimal solution.

Since it can be hard to even find a feasible solution, instead of the objective function

originally presented in section 4.1, we also include some alternative objective functions. In

the following paragraph 4.2.3, we are running with feasibility with the purpose of finding

a solution that satisfies all constraints.

4.2.3 Minimize Breaks

In general, the break constraints are complicated, which is well known in the sports

literature, e.g., Cocchi et al. (2018) and Durán and M. Guajardo (2017). During our

preliminary test, we experienced some challenges when dealing with breaks directly as

a hard constraint. Thus we relax that constraint to get to a decent number of breaks

by optimizing this number. In the following parts, we explain our strategies for the

minimization of breaks.

Minimize Consecutive Breaks

When the CA3 hard constraints are present, the set contains two logical constraints. (i)

In every sequence of 3 games, no team can play more than two home games. (ii) In

every sequence of 3 games, no team can play more than two away games. In our first

computational attempt, we quickly realized that the combination of these two constraints

was quite time-consuming, and therefore motivates what follows.

After some experimentation, we found that the CA3 hard constraint would be satisfied by

avoiding two consecutive breaks, and some slight adjustments are made, before starting a

new search process.

First, we exclude the troubling hard constraints and introduce the auxiliary variables,

hhi,k and aai,k, that take the value of 1, if a team has two consecutive home or away

breaks, respectively. 0 otherwise.

28 4.2 Solution Approach

hhi,k

1 if team i plays has two consecutive home breaks ending in round k

0 otherwise

aai,k

1 if team i plays has two consecutive away-breaks ending in round k

0 otherwise

We then introduce four new constraints that make hhi,k and aai,k take the value of 1 if a

team has two consecutive home or away breaks, respectively. 0 otherwise.

∑
j∈T

(xi,j,k−2 + xi,j,k−1 + xi,j,k)− 2 ≤ hhi,k ∀i ∈ T, k ∈ P : k > 1 (4.62)

∑
j∈T

(xi,j,k−2 + xi,j,k−1 + xi,j,k)− 2 ≤ aai,k ∀i ∈ T, k ∈ P : k > 1 (4.63)

hhi,k ∈ {0, 1} ∀i ∈ T, k ∈ P (4.64)

aai,k ∈ {0, 1} ∀i ∈ T, k ∈ P (4.65)

After implementing the changes presented above, we use the following objective function

to minimize the total number of breaks until reaching an objective value of 0.

minimize
∑
i∈U

∑
k∈P

(hhi,k + aai,k) (4.66)

Ultimately, the steps conducted in this subsection should help us resolve any problems

where the CA3 hard constraints serve as the only bottleneck. It is worth noting that the

situation is different for every instance and that this strategy might not work in every

case. However, we believe that every step that could help us achieve feasibility faster

should be considered.

Minimize Total Breaks

In addition to the CA3 hard constraints, satisfying the BR2 hard constraint can also be

quite time-consuming. In this section, we describe our strategy when the BR2 constraint

serves as the major bottleneck in the problem instances.

First, we remove the BR2 hard constraints and present the objective function below. In a

4.2 Solution Approach 29

2RR tournament, home and away breaks are considered to be co-existing, meaning that

there has to exist an away break for every home break. Therefore, we only minimize home

breaks, as this might slightly help lower the computation time, as opposed to minimizing

(hi,k + ai,k).

minimize
∑
i∈U

∑
k∈P

hi,k (4.67)

The intuition is that this can help solve some of the instances where it has proven difficult

to reach the allowed number of breaks. However, all of the instances are unique, and there

is a high chance that a conflict arises between the BR2 constraint and the rest of the hard

constraints that can force the incumbent objective to move slowly or not at all. When

trying to solve this, we perform four runs while minimizing hi,k, with each run subjecting

the model to one of the symmetric schemes presented earlier.

30

5 Computation and Implementation

In this section, we briefly describe the data used in the ITC 2021, along with the data

processing. Additionally, we elaborate on decisions made when searching for optimality.

5.1 Data and Computation

In total, we used four computers (with Windows 10, version 20H2) to run our models. We

had two laptops at our disposal with an AMD 2.10 GHz 8 threads, 8 GB RAM, and Intel

2.1 GHz 4 threads, respectively. Additionally, we made use of the VMware desktop as

provided by NHH, where we both had an account limited to 4GB RAM, and a 2.5 GHz

CPU with 2 threads.

In addition to the computers, we also used NEOS (Dolan, 2001) with solver GUROBI

(Gurobi Optimization, LLC, 2021), which allows for multiple instances to be solved

simultaneously . The server is completely free3, but does however have some limitations.

Every job submitted to NEOS is limited to 3 GB of RAM and a maximum run time of 8

hours. The server contains multiple computers with different versions of the Intel Xeon

CPU with 2.2-2.8 GHz, limited to 4 threads.

NEOS is not able to handle complex run codes, thus we perform all of the heuristic

computations on the original four computers at our disposal.

Data

ITC 2021 uses the data format from RobinX, where the problem instances and solutions

are stored in XML format. XML is usually preferred over plain text-only file formats

due to the structured way of storing data and still being human-readable. Moreover, the

set-up cost to work with XML is low, as most programming languages provide parsers to

read and write XML files.

Moreover, the data in all instances are artificial but are thought to reflect the structure of

tournaments within different sports. One instance can e.g., reflect the English Premier

League, where you have 20 teams and 38 time slots. Table 5.1 contains all of the 45

3Developed by Wisconsin Institute of Discovery at the University of Wisconsin, Madison. They also
welcome contribution to keep the optimizations flowing and to keep their services as available and free as
possible

5.1 Data and Computation 31

instances and gives an overview of the structure, types, and the number of constraints

used in each of them.

32 5.1 Data and Computation

Instance Teams Classification Constraints
Early 1 16 P | BR1, BR2, CA1, CA2, CA4, FA2, GA1, SE1 206
Early 2 16 P | BR1, BR2, CA1, CA3, FA2, GA1 168
Early 3 16 P | BR1, BR2, CA1, CA2, CA3, FA2, GA1 335
Early 4 18 P | BR1, BR2, CA1, CA2, CA4, GA1, SE1 441
Early 5 18 P | BR1, BR2, CA1, CA2, CA3, CA4, GA1, SE1 803
Early 6 18 P | BR2, CA1, CA2, CA3, CA4, FA2, GA1, SE1 999
Early 7 18 NULL | BR1, BR2, CA1, CA2, CA4, GA1, SE1 1343
Early 8 18 NULL | BR1, CA1, CA2, CA3, CA4, FA2, GA1 653
Early 9 18 NULL | BR1, BR2, CA1, CA2, CA3, FA2, GA1 193
Early 10 20 P | BR1, BR2, CA1, CA2, CA3, CA4, SE1 1270
Early 11 20 NULL | BR1, BR2, CA1, CA2, CA3, CA4, GA1, SE1 1363
Early 12 20 P | BR1, BR2, CA1, CA2, CA3, CA4, GA1 214
Early 13 20 NULL | BR1, BR2, CA1, CA2, CA3, GA1 532
Early 14 20 NULL | BR1, BR2, CA1, FA2, GA1 113
Early 15 20 NULL | BR1, BR2, CA1, CA2, CA3, CA4, FA2, GA1 1412
Middle 1 16 P | BR1, BR2, CA1, CA2, CA4, SE1 1146
Middle 2 16 P | BR1, BR2, CA1, CA2, CA3, CA4, GA1, SE1 1486
Middle 3 16 NULL | BR1, BR2, CA1, CA2, CA3, CA4, GA1, SE1 1459
Middle 4 18 P | BR1, CA1, CA2, CA3, CA4, GA1 265
Middle 5 18 P | BR1, BR2, CA1, CA2, CA3, FA2, GA1 349
Middle 6 18 P | BR1, BR2, CA1, CA2, CA3, CA4, GA1, SE1 325
Middle 7 18 NULL | BR1, BR2, CA1, CA2, CA3, CA4, GA1, SE1 626
Middle 8 18 NULL | BR1, CA1, CA2, CA3, CA4, GA1 286
Middle 9 18 NULL | BR1, BR2, CA1, CA2, CA3, CA4, GA1, FA2, GA1 296
Middle 10 20 P | BR1, BR2, CA1, CA2, CA4, GA1 912
Middle 11 20 P | BR1, CA1, CA2, CA4, GA1 1225
Middle 12 20 P | BR1, BR2, CA1, CA2, CA3, FA2, GA1, SE1 314
Middle 13 20 NULL | BR1, CA1, CA2, CA3, FA2, GA1, SE1 578
Middle 14 20 NULL | BR1, BR2, CA1, CA2, CA3, CA4, GA1, SE1 881
Middle 15 20 NULL | BR1, BR2, CA1, CA2, CA3, FA2, GA1, SE1 237
Late 1 16 NULL | BR1, CA1, CA2, CA3, CA4, FA2 GA1 778
Late 2 16 NULL | BR1, BR2, CA1, CA2, CA3, CA4, GA1 1323
Late 3 16 NULL | BR1, BR2, CA1, CA2, CA3, CA4, FA2, GA1, SE1 576
Late 4 18 P | BR1, CA1, CA4, GA1, SE1 139
Late 5 18 P | BR2, CA1, CA2, CA3, CA4, FA2, GA1 924
Late 6 18 P | BR1, BR2, CA1, CA2, CA4, FA2, GA1, SE1 331
Late 7 18 NULL | BR1, BR2, CA1, CA2, CA3, GA1, SE1 873
Late 8 18 P | BR1, BR2, CA1, CA2, CA3, GA1, SE1 314
Late 9 18 NULL | BR1, BR2, CA1, CA2, CA3, FA2, GA1 505
Late 10 20 P | BR1, BR2, CA1, CA2, CA3, CA4, GA1, SE1 936
Late 11 20 P | BR1, BR2, CA1, CA2, CA3, FA2, GA1 419
Late 12 20 NULL | BR1, BR2, CA1, CA2, CA3, CA4, SE1 1262
Late 13 20 NULL | BR2, CA1, CA2, CA3, CA4, FA2, GA1, SE1 313
Late 14 20 NULL | BR1, CA1, CA2, CA3, CA4, FA2, GA1 1110
Late 15 20 NULL | BR1, BR2, CA1, CA3, FA2, GA1 93

Table 5.1: Overview of the structure, types and number of constraints

5.1 Data and Computation 33

To ensure that our solutions are indeed feasible and that the objective values are computed

are correctly, we use a Solution Validator provided by ITC 2021. The Validator also

enable us to see the penalty obtained from each of the violated constraints.

At the end of .run files, we include some lines to write the solution output into .csv -files.

Thus, we can paste the final timetables, from Excel, into the Validator. Subsequently, we

generate our solution file (XML) and validate our computations. Figure 5.1, is an example

of a solution file in XML format, where only the final timetable with the corresponding

objective value had to be submitted, for each instance. Under MetaData we could

have included additional information such as solution method and any remarks such as

computational time.

Figure 5.1: Solution file for best objective value obtained for L4. Showing all matches
for the first two rounds

34 5.2 Implementation

5.2 Implementation

As mentioned earlier, the data is stored in a structured and human-readable way. However,

we still need to structure the data into the format needed for implementation in AMPL.

We generate the default MILP model for each instance. When it comes to the different

strategies for obtaining feasibility and optimality, we manually adjust these files and

include the relevant constraints and/or objective functions for the respective instances.

In AMPL, three files are needed for each run, namely a .mod, a .dat and a .run file.

The .run file remains more or less the same for each run, with some minor adjustments

regarding the name of the model used in the run, input data, run time, and the number

of partitions. While the .mod and .dat files are different for each instance and strategy.4,

which is why we create an R-script to generate all the .dat and .mod files needed to run

the default MILP model for each instance. To read the XML files, we considered several

parsers, such as xml.etree.ElementTree for Python, and tinyxml2 for C++), but ended up

using XML in R, in Rstudio (RStudio Team, PBC, 2021), as we have more experience

with the programming language R.

After the parsing, the data is stored in a list of lists. Further, we extract the data for

each type of constraint (CA1,..., CA4, GA1, BR1, etc.) and convert it into separate

data frames, also referred to as tables. We still had some difficulties obtaining the data

needed when stored like this. In order to extract the relevant data, we distinguish, not

only between hard and soft constraints, but also between the different modes.(H, A, HA,

mode every, global in CA4 etc.) If we take CA1 as an example, we filter this type of

constraint into four new tables, as it has two modes, home (H) and away (A), and can be

both soft and hard. To get a better picture of the filtering, we refer to how the different

constraints are divided between different modes. This is the logic behind the filtering,

which makes it easier for us to obtain the data we need from each constraint. Some of the

constraints contain several teams or slots in a cell (like an excel cell). Thus, we extract

the teams and slots into separate tables. E.g., TCA1HH
1 contains the teams for the CA1

Hard (type) Home (mode) constraint 1, while TCA1HH
2 contains the teams for CA1 Hard

4In the .mod files, the variables, and objective function remain the same when running the original
MILP model in all instances. As mentioned, we also use different strategies where we make some
adjustments to the default MILP by using slightly different objective functions and including some new
variables

5.2 Implementation 35

Home (mode) constraint 2, etc.

When the data is stored as intended, we create for loops that iterates through every row

(constraint) and collects the data needed. All the sets are defined in the first loop, while

the corresponding data are extracted in the second loop. The third loop defines all the

constraints with the corresponding data. Moreover, the output from the first and third

loop is stored in a .mod file, while the output from the second loop is store in a .dat file.

One of the main considerations when writing the R-script is that it should require few

modifications between each instance. Thus, we write an R-scrip such that the only

modifications needed between each run (between each instance) are the name of the XML

file and changing to the corresponding working directory. Running the R-script, which

resulted in the files needed for our runs AMPL, only took a couple of minutes (or less)

per instance.

5.2.1 Clusters Patterns

In this section, we explain our strategies when searching for optimality.

When minimizing the original objective function, the feasible solutions serve as input for

our mathematical solver while we search for optimality. However, simply altering the

objective function and running the models are not likely to provide any remarkable results,

as MILP problems in sports scheduling can take many weeks to solve (Klotz and Newman,

2013). Therefore, we need a method to speed up the process of finding a solution.

When limiting the search to a specific CHAP, the area left to search decreases significantly,

and if we already have found a feasible solution, there might exist a better solution within

the CHAPs of the teams. However, simply exploring the current CHAPs of the teams will

most likely cut off many good solutions from the search area.

We start by creating partitions for the teams, where T, set containing all teams, is divided

into three arbitrary groups. The partitions were created using a random permutation

of the integer numbers 0 to 15 (17/19) in Rstudio 5. Subsequently, we write CHAPs

for the feasible solutions achieved. A pseudo-code describing Algorithm 1 is presented

5Using the sample() function and then ranking the random numbers using rank() from the programming
language R.

36 5.2 Implementation

below, where the cluster combination defines which cluster constraints are included in

each iteration.

The algorithm starts from an initial feasible solution and then test running by fixing the

CHAP in iterative runs. The difference from one to another run is given by different

partitions and different combinations of the constraint (4.55) used to fix the CHAP. As we

are using n = 3 clusters, we have three cluster constraints. Thus, we include the binary

parameters on1, on2, and on3 to determine whether the respective cluster constraints are

used in a run. E.g., cluster combination {1,1,1} implies that all three cluster constraints

are used in the run, while {1,1,0} indicates that only cluster constraints 1 and 2 are

included.

Algorithm 1
1: procedure Minimize objective value
2: Write CHAP for the feasible solution;
3: for All Sets of Partitions do
4: for Cluster Combinations:{1,1,1},{1,1,0},{1,0,1},{0,1,1} do
5: Minimize Soft Constrains under Cluster Combination;
6: Run for model until proven optimally or expired time-limit;
7: if Incumbent Objective Improved then
8: Update Initial Solution;
9: Re-Write CHAP;
10: end if
11: Go to the next iteration
12: end for
13: end for
14: Return Best solution obtained;

In total, only four combinations of the cluster constraints are used, as setting all the

parameters equal to zero results in running the original model without the cluster

constraints. Moreover, combinations with more zeroes than ones (e.g., on1=1, on2=0,

on3=0) are not considered as it implies more freedom, and leads to a larger feasible space

to search for candidate solutions6. The explicit . run file, including Algorithm 1, can be

found in the Appendix 7.2.

There are numerous ways to experiment with Algorithm 1 above in terms of finding out

what yields the best results. As the run with 12 partition sets made quite the impact, we

expand to 85 partition sets while exploring with different cardinalities of sets within the
6Larger feasible space leads to a harder instance and might reduce the chance of finding better

solutions in less than the 2 min (time per run)

5.2 Implementation 37

partitions7. Furthermore, we experiment a bit with the amount of time allocated to each

iteration. To better identify how an increase of time impacts the minimization process, we

start by using only 5 seconds per iteration before increasing the time limit to 4 minutes

per iteration.

7Different number of teams in each cluster

38

6 Results

In this section, we present the results from the MILP model presented in Section 4.1.

We start by giving a summary of the best objective values obtained. Then, we provide

a feature of the heuristic approach and a closer examination of the performance in the

different runs. Lastly, we present our results from the strategies used to find feasible

solutions.

6.1 Heuristic Results

As earlier mentioned, we test our heuristic approach on all of the 45 instances from the

ITC 2021.

We start running the instances without an objective function, with the purpose of finding

a feasible solution. Subsequently, we run the heuristic approach, starting from already

feasible solutions, with the aim of reducing the objective values. Table 6.1 presents the

best objective value achieved after running three heuristic- and two vanilla runs in each

instance.

When scheduling the instances using the strategies presented in Chapter 4, we are able

to obtain a feasible solutions for 40 out the 45 problem instances (Early 13/15, Middle

13/15, Late 14/15). The heuristic approach was also able to prove optimality for one of

the instances (Late 4), reaching an objective value of 0.

6.1 Heuristic Results 39

Instance Teams Constraints Best Objective
Early 1 16 206 1209
Early 2 16 168 461
Early 3 16 335 2245
Early 4 18 441 2360
Early 5 18 803 NA
Early 6 18 999 5660
Early 7 18 1343 7879
Early 8 18 653 5639
Early 9 18 193 5843
Early 10 20 1270 NA
Early 11 20 1363 7149
Early 12 20 214 1955
Early 13 20 532 414
Early 14 20 113 4884
Early 15 20 1412 6297
Middle 1 16 1146 NA
Middle 2 16 1486 NA
Middle 3 16 1459 12504
Middle 4 18 265 82
Middle 5 18 349 3888
Middle 6 18 325 3050
Middle 7 18 626 5010
Middle 8 18 286 371
Middle 9 18 296 2315
Middle 10 20 912 2024
Middle 11 20 1225 3868
Middle 12 20 314 4142
Middle 13 20 578 3001
Middle 14 20 881 1712
Middle 15 20 237 4363
Late 1 16 778 2987
Late 2 16 1323 6035
Late 3 16 576 3739
Late 4 18 139 0
Late 5 18 924 NA
Late 6 18 331 2436
Late 7 18 873 2638
Late 8 18 314 2843
Late 9 18 505 2220
Late 10 20 936 3256
Late 11 20 419 311
Late 12 20 1262 6916
Late 13 20 313 5641
Late 14 20 1110 2400
Late 15 20 93 6925

Table 6.1: Overview of Heuristic Results

40 6.1 Heuristic Results

6.1.1 Features of the heuristic computation

As mentioned earlier, the results presented in Table 6.1 come from multiple heuristic- and

Vanilla runs. The Vanilla-run refer to running the original MILP model (as defined in

Section 4.1) in NEOS. While working on the instances, we experience that it seemingly

becomes harder to improve the objective value as we find better solutions, thus making it

hard to draw any scientific conclusions based on the runs that are not using the same

starting point.

Thus, we replicate the first heuristic run using a vanilla approach. Even though the

heuristic in some occurrences uses a computation time of 96 minutes (48 iterations * 2

minutes), the realized time spent in computation, on average, ended at 68 minutes. The

reduced computation time is due to the fact that some iterations are able to locate the

best solution within the CHAP before the time limit expires. Thus, we set the time limit

to 68 minutes for all the vanilla runs in order to get a better sense of how the heuristic

method compares to a vanilla approach.

Run 1 Run 1 Run 2 Run 3 Run 4
Heuristic Vanilla Heuristic Heuristic Vanilla

Avg. Time 68 min 68 min 21 min 168 min 480 min
Avg. Reduction 24.72% 9.52% 2.27% 10.07% 16.53%
(%)/Min 0.36%/min 0.14%/min 0.10%/min 0.05%/min 0.03%/min

Table 6.2: Comparison of all runs

As mentioned in Chapter 3, Durán et al. (forthcoming) found good solutions in a relatively

short time frame when using a decomposition approach based on CHAP created from

geographical attributes. Based on the ideas from this article, we decide to implement a

similar CHAP approach to see how effective the approach will be when the clusters are

completely randomized.

6.1.1.1 Closer Examination of the Heuristics

In this paragraph, we present a more detailed description of the results obtained from the

heuristic runs.

The 1. Heuristic run is conducted using 12 partitions of CHAP combinations, where each

iteration has a time limit of 2 minutes. Figure 6.1 illustrates the relationship between the

6.1 Heuristic Results 41

average reduction for all instances and the number of partitions.

Figure 6.1: Average reduction for the first heuristic run, using 12 partitions and 2
minutes per iteration

The 1. Heuristic run is on average able to reduce the objective value by 24.7%. The

reduction is also declining as the heuristic iterates over more of the partitions, suggesting

that the minimization process gradually becomes harder as the objective improves.

The 1. Vanilla run presented in Table 6.2, is on average able to reduce the objectives

by 9.52% with a computation time of 68 minutes. The 1. Heuristic runs, which use

the same starting point, are able to make a reduction of 16.01% only using 4 partitions

(approximately 16 minutes), meaning that a the heuristic approach outperforms the vanilla

run in the minimization process.

The 2.- and 3. Heuristic runs are both conducted using 85 partitions. The difference to

note between the runs is that the 2. run only uses 5 seconds per iteration, while the 3. run

uses 4 minutes per iteration. Figure 6.2 illustrates the relationship between the average

reduction in the objective function and the number of partitions for the 2.- and 3. run.

42 6.2 Solution Approach

Figure 6.2: Average reduction for the 2.- and 3. heuristic run

As the starting values for the 2.- and 3. runs are different, we are not able to draw

scientific conclusion based on this comparison. However, ther is an indication we would

like to highlight. The 2. and 3. run, on average, decreases the objective value by 2.27%

and 10.07%, respectively. It is interesting to see how well the 2. heuristic performs when

only using 5 seconds per iteration, as opposed to 4 minutes, suggesting that the heuristic

CHAP approach can work well, even with a low time limit.

6.2 Solution Approach

In Chapter 4, we presented our methodology for finding feasible solutions for the problem

instances. Overall the level of difficulty varies across the instances. While some instances

are solved in a matter of seconds, others would require multiple days of run time without

being able to satisfy the hard constraints when using the vanilla approach.

As presented in the previous chapter, we start running without an objective function and

use min 0 as a practicality in our code. Table 7.1 in the appendix gives an overview of

the instances where a feasible solution has been found during an 8-hour run in NEOS

without an objective function. During the 8 hour run, we achieve feasibility for 8/15 Early

instances, 12/15 Middle instances, and 10/15 Late instances, overall achieving feasibility

for 30/45 instances.

6.2 Solution Approach 43

For the remaining 15 instances, we implemented the following strategies with the purpose

of finding feasibility.

6.2.1 Minimizing Breaks

As earlier mentioned, we minimize consecutive breaks and the total number of breaks in

order to satisfy the BR2 and CA3 hard constraints.

6.2.1.1 Minimize Consecutive Breaks

In total, there are 4 instances where we experience difficulties when trying to satisfy the

CA3 hard constraints, which did not allow any teams to have consecutive breaks. Table

6.3 display the results after minimizing consecutive breaks (hhi,k + aai,k), in NEOS with

a time limit set to 8 hours. In the end, we manage to satisfy the CA3 hard constraints for

two of the instances tested.

Early 5 Early 11 Early 12 Middle 2
Early 3 0 0 13

Table 6.3: 8-hour consecutive break minimization in NEOS

As there are no other conflicting hard constraints in Early 12, we obtain feasibility for this

instance based solely on this run. For the Early 11, we are able to reach zero consecutive

breaks. However, as the requirement of the total number of breaks, BR2, are not met, the

solution is kept and passed along to the break minimization process.

For the remaining instances Early 5, and Middle 2, we are not able to reach the criteria

of zero consecutive breaks.

6.2.1.2 Minimizing Total Breaks

As previously mentioned, the BR2 constraint sets an upper bound on the total number of

breaks in the tournament. Based on our experiences, the BR2 condition is the hardest

one to satisfy out of the hard constraints.

Table 6.4 presents the results when minimizing breaks. The upper bound of the BR2 hard

constraint is denoted in the parenthesis. The runs are conducted in NEOS using the four

schemes presented in Chapter 4. The NA denotes the occurrences where the model did

44 6.2 Solution Approach

not find any feasible solutions during an 8-hour run. The denotation I is used, if the hard

constraints are incompatible with the schemes.

No scheme French English Mirrored Inverted
Early 1 56*
(78)
Early 2 60*
(76)
Early 4 136 100 96 108 80*
(88)
Early 5 NA I I NA NA
(88)
Early 10 160 NA NA NA NA
(96)
Early 11 184 NA NA NA I
(98)
Middle 1 NA I I I I
(78)
Middle 2 NA NA I I I
(78)
Middle 10 NA I 42*
(100)
Late 2 NA 140 I NA NA
(78)
Late 5 196 NA NA NA NA
(88)
Late 10 NA NA 136 146 120
(100)
Late 11 148 I 42*
(78)
Late 12 194 NA 140 160 I
(98)

Table 6.4: Minimization of breaks under symmetric schemes

The method allows us to obtain feasibility for 5 out of 14 instances. However, the main

takeaway from the table is how efficient it is to search inside the symmetric schemes for

some of the instances in this process. For Middle 10 and Late 11, we manage to obtain a

very low number of breaks, far within the upper bound of BR2 hard for the respective

instances. Furthermore, for the instances with solutions exceeding the upper bounds,

searching within the symmetric schemes provides better results for 54 % of the instances.

We are not able to obtain feasible solutions for all of the instances using this approach.

However, we are able to lower the total number of breaks for several instances. In a last

6.2 Solution Approach 45

attempt to obtain feasibility for the infeasible instances, we use the best solution obtained,

from Table 6.4, and use it as an initial solution in a heuristic break minimization process.

6.2.1.3 Heuristic

In a last attempt to satisfy the BR2 hard constraint, we use the heuristic CHAP approach

to minimize the total number of breaks in the tournament. The best solution obtained

in the previous section will serve as starting values for the variables. Table 6.4, presents

the results when improving the number of breaks obtained in the last paragraph. This

strategy enables us to obtain feasible solutions for an additional 4 instances, denoted by ∗.

Starting Value Results Reduction (%)
Early 5 NA NA NA
Early 10 160 132 -17.50%
Early 11 172 82* -52.33%
Middle 1 NA 102 NA
Middle 2 NA NA NA
Late 2 140 68* -51.43%
late 5 196 152 -22.45%
Late 10 120 96* -20.00%
Late 12 140 64* -54.29%

Table 6.5: Heuristic break minimization, 40 minute iterations

When examining the 6.5, we see that the heuristic approach works well when a longer

time limit is allocated to each iteration. This results in us having feasible results for 4

additional problems. For the instances that have a feasible starting point (when excluding

BR2) prior to the heuristics, we see a major reduction in the total number of breaks,

averaging a decrease of 31.13%. This gives us reason to believe that our algorithm could

potentially perform well in break-minimization problems.

46

7 Conclusion

In this paper, we have outlined the problem of generating a schedule for sports tournaments

and proposed our solution approach while testing it on the data instances of the ITC

2021.8 As with most sports scheduling problems, the process of finding good solutions

has been difficult as we consider many conditions regarding sporting fairness and criteria

requested by stakeholders (e.g., clubs, broadcasters, government), resulting in many and

perhaps conflicting constraints.

The main contribution of this thesis lies in the implementation of a heuristic solution

approach using a combination of Mixed-Integer Linear Programming (MILP) and cluster

patterns, referred to as CHAP9. Our CHAP approach is based on running multiple

iterations with multiple cluster patterns, giving us the benefit of diversification. As the

CHAP approach is relatively new in the field of sports scheduling, our work shows that the

methodology can provide satisfactory sports schedules for experimental problem instances.

Although (Durán et al. Forthcoming) originally constructed the CHAPs based on

geographical attributes, it is interesting to see the computational advantages that come

with our solution approach, even though the clusters are completely randomized. Therefore,

we believe it could be worthwhile to conduct further research on how a similar solution

approach would perform in real-life problems, where machine learning algorithms can be

applied in the process of defining team clusters.

While RobinX features the majority of the most common constraints in sports scheduling,

this thesis can also serve as an informative paper for those who are eager to learn about

the fundamentals of sports scheduling.

8As mentioned, each instance is thought to reflect a league/tournament within different sports
9Derived from HAP, Home-Away Patterns

References 47

References
Alarcón, F., Durán, G., Guajardo, M., Miranda, J., Muñoz, H., Ramírez, L., Ramírez, M.,

Sauré, D., Siebert, M., Souyris, S., Weintraub, A., and Wolf-Yad, R. (2017). Operations
Research Transforms the Scheduling of Chilean Soccer Leagues and South American
World Cup Qualifiers. Interfaces, 47(1):52–69.

Bartsch, T., Drexl, A., and Kröger, S. (2006). Scheduling the professional soccer leagues
of austria and germany. Computers and Operations Research, 33(7):1907–1937.

Campbell, R. and Chen, D.-S. (1976). A minimum distance basketball scheduling problem.
Management Science in Sports, 4:15–25.

Cocchi, G., Galligari, A., Nicolino, F. P., Piccialli, V., Schoen, F., and Sciandrone, M.
(2018). Scheduling the italian national volleyball tournament. INFORMS Journal on
Applied Analytics, pages 271–284.

Dolan, E. D. (2001). The neos server 4.0 administrative guide.

Durán, G., Guajardo, M., Gutiérrez, F., Marenco, J., Sauré, D., and Zamorano, G. (2021).
Scheduling the main professional football league of argentina. INFORMS Journal on
Applied Analytics, Forthcoming.

Durán, G., Guajardo, M., Miranda, J., Sauré, D., Souyris, S., Weintraub, A., and Wolf,
R. (2007). Scheduling the chilean soccer league by integer programming. Interfaces,
37(6):539–552.

Durán, G., Guajardo, M., and Wolf-Yadlin, R. (2012). Operations research techniques for
scheduling chile’s second division soccer league. Interfaces, 42(3):273–285.

Durán, G. and M. Guajardo, D. S. (2017). Scheduling the south american qualifiers to the
2018 fifa world cup by integer programming. European Journal of Operational Research,
262(3):1109–1115.

Fiallos, J., Pérez, J., Sabillón, F., and Licona, M. (2010). Scheduling soccer league of
honduras using integer programming. IIE Annual Conference and Expo 2010 Proceedings.

Forrest, D. and Simmons, R. (2006). New issues in attendance demand: The case of the
english football league. Journal of Sports Economics, 7(3):247–266.

Goossens and Spieksma, D.R., F. (2012). Soccer schedule in europe: an overview. Journal
of Scheduling, 15(5):641–651.

Goossens, D. (2018). Optimization in sports league scheduling: Experiences from the
belgian pro league soccer. Operations Research and Enterprise Systems, 884:3–19.

Goossens, D. and Spieksma, F. (2009). Scheduling the belgian soccer league. Interfaces,
39:109–118.

Gurobi Optimization, LLC (2021). Gurobi optimizer reference manual.

Hausken, M. D., Anderson, H., Fagerholt, K., and Flatberg, T. (2013). Scheduling
the norwegian football league. International Transactions in Operational Research,
20(1):59–77.

48 References

Kendall, G., Kunst, S., Ribero, C. C., and Urrutia, S. (2010). Scheduling in sports: An
annotated bibliography. Computers and Operations Research, 37(1):1–19.

Klotz, E. and Newman, A. M. (2013). Practical guidelines for solving difficult mixed
integer linear programs. Surveys in Operations Research and Management Science,
18(1):18–32.

Nemhauser, G.L., Trick, and M.A (1998). Scheduling a major college basketball conference.
Operations Research, 46:1–8.

Pollard, R. and Pollard, G. (2005). Long-term trends in home advantage in professional
team sports in north america and england (1876-2003). Journal of sports sciences,
23:50–337.

Rasmussen, R. (2008). Scheduling a triple round robin tournament for the best danish
soccer league. European Journal of Operational Research, 185:795–810.

Rasmussen, R. V. (2006). Hybrid IP/CP Methods for Solving Sports Scheduling Problems.
PhD thesis, University of Aarhus.

Recalde, D., Torres, R., and Vaca, P. (2013). Scheduling the professional ecuadorian
football league by integer programming. Computers and Operations Research,
40(10):2478–2484.

Recalde D, Torres R, V. P. (2013). Scheduling the professional ecuadorian football league
by integer programming. Computers and Operations Research, 40(10):2478–2484.

RStudio Team, PBC (2021). Rstudio: Integrated development environment for r.

Van Bulck, D., Goossens, D., Beliën, J., and Davari, M. (2020a). Problem description and
file format.

Van Bulck, D., Goossens, D., Schönberger, J., and Guajardo, M. (2020b). A three-field
classification and unified data format for round-robin sports timetabling. European
Journal of Operatinal Research, 280:568–580.

49

Appendix

7.1 Detailed Model Formulation

Sets

T : Set of all teams

T 1
c : First indexed subset of teams for every constraint

T 2
c : Second indexed subset of teams for every constraint

P : Set of all rounds

Sc : Indexed Subset rounds for every constraint

Gc : Indexed Set of pairs (i,j) for every constraint

C : Set of Constraints

CA1 ⊆ C : Capacity 1, Subset of Constraints

CA2 ⊆ C : Capacity 2,Subset of Constraints

CA3 ⊆ C : Capacity 3,Subset of Constraints

CA4g ⊆ C : Capacity 4, Mode = Global, Subset of Constraints

CA4e ⊆ C : Capacity 4,Mode = Every, Subset of Constraints

GA1 ⊆ C : Game 1, Subset of Constraints

BR1 ⊆ C : Break 1, Subset of Constraints

BR2 ⊆ C : Break 2,Subset of Constraints

FA2 ⊆ C : Fairness 2, Subset of Constraints

SE1 ⊆ C : Separation 1, Subset of Constraints

CA1HH ⊆ C : Subset of CA1 Hard Constraints, Mode = Home

CA1HA ⊆ C : Subset of CA1 Hard Constraints, Mode = Away

CA1SH ⊆ C : Subset of CA1 Soft Constraints, Mode = Home

CA1SA ⊆ C : Subset of CA1 Soft Constraints, Mode = Away

CA2HH ⊆ C : Subset of CA2 Hard Constraints, Mode = Home

CA2HA ⊆ C : Subset of CA2 Hard Constraints, Mode = Away

50 7.1 Detailed Model Formulation

CA2HHA ⊆ C : Subset of CA2 Hard Constraints, Mode = Home/Away

CA2SH ⊆ C : Subset of CA2 Soft Constraints, Mode = Home

CA2HA ⊆ C : Subset of CA2 Soft Constraints, Mode = Away

CA2SHA ⊆ C : Subset of CA2 Soft Constraints, Mode = Home/Away

CA3HH ⊆ C : Subset of CA3 Hard Constraints, Mode = Home

CA3HA ⊆ C : Subset of CA3 Hard Constraints, Mode = Away

CA3HHA ⊆ C : Subset of CA3 Hard Constraints, Mode = Home/Away

CA3SH ⊆ C : Subset of CA3 Soft Constraints, Mode = Home

CA3HA ⊆ C : Subset of CA3 Soft Constraints, Mode = Away

CA3SHA ⊆ C : Subset of CA3 Soft Constraints, Mode = Home/Away

CA4gHH ⊆ C : Subset of CA4 Hard Constraints, Mode1 = Home, Mode2 = Global

CA4gHA ⊆ C : Subset of CA4 Hard Constraints, Mode1 = Away, Mode2 = Global

CA4gHHA ⊆ C : Subset of CA4 Hard Constraints, Mode1 = Home/Away, Mode2 = Global

CA4gSH ⊆ C : Subset of CA4 Soft Constraints, Mode1 = Home, Mode2 = Global

CA4gHA ⊆ C : Subset of CA4 Soft Constraints, Mode1 = Away, Mode2 = Global

CA4gSHA ⊆ C : Subset of CA4 Soft Constraints, Mode1 = Home/Away, Mode2 = Global

CA4eHH ⊆ C : Subset of CA4 Hard Constraints, Mode = Home, Mode2 = Global

CA4eHA ⊆ C : Subset of CA4 Hard Constraints, Mode = Away, Mode2 = Global

CA4eHHA ⊆ C : Subset of CA4 Hard Constraints, Mode = Home/Away, Mode2 = Global

CA4eSH ⊆ C : Subset of CA4 Soft Constraints, Mode = Home, Mode2 = Global

CA4eHA ⊆ C : Subset of CA4 Soft Constraints, Mode = Away, Mode2 = Global

CA4eSHA ⊆ C : Subset of CA4 Soft Constraints, Mode = Home/Away, Mode2 = Global

GA1H ⊆ C : Subset of GA1 Hard Constraints

GA1S ⊆ C : Subset of GA1 Soft Constraints

BR1HH ⊆ C : Subset of BR1 Hard Constraints, Mode = Home

BR1HA ⊆ C : Subset of BR1 Hard Constraints, Mode = Away

BR1HHA ⊆ C : Subset of BR1 Hard Constraints, Mode = Home/Away

BR1SH ⊆ C : Subset of BR1 Soft Constraints, Mode = Home

7.1 Detailed Model Formulation 51

BR1HA ⊆ C : Subset of BR1 Soft Constraints, Mode = Away

BR1SHA ⊆ C : Subset of BR1 Soft Constraints, Mode = Home/Away

BR2H ⊆ C : Subset of BR2 Hard Constraints

BR2S ⊆ C : Subset of BR2 Soft Constraints

FA2H ⊆ C : Subset of FA2 Hard Constraints

FA2S ⊆ C : Subset of FA2 Soft Constraints

SE1H ⊆ C : Subset of SE1 Hard Constraints

SE1S ⊆ C : Subset of SE1 Soft Constraints

Variables & parameters

xi,j,k : 1 if team i plays home against team j in round s, 0 otherwise

hi,k : 1 if team i plays home break in round s, 0 otherwise

ai,k : 1 if team i plays away break in round s, 0 otherwise

dCA1
i,c : Number of deviations for every team in CA1 Soft constraints

dCA2
i,c : Number of deviations for every team in CA2 Soft constraints

dCA3
i,k,c : Number of deviations for every team in every sequence of CA3 Soft constraints

dCA4g
c : Number of deviations in CA4g Soft constraints

dCA4e
i,k,c : Number of deviations for round CA4e Soft constraints

dGA1
c : Number of deviations in GA1

dBR1
i,c : Number of deviations for every team in BR1 Soft constraints

dBR2
c : Number of deviations in BR2 Soft constraints

dFA2
i,j,c : Number of deviations for every team in FA2 Soft constraints

dSE1
i,j,c : Number of deviations for every pair of teams in SE1 Soft constraints

maxc : Max amount of games played in constraint

minc : Min amount of games played in constraint

intpc : Sequence of slots in constraint

wc : vector of weighted cost of broken constraints

52 7.1 Detailed Model Formulation

Objective Function

min
∑
i∈T

∑
c∈CA1S

w1d
CA1
i,c +

∑
i∈T

∑
c∈CA2S

w2d
CA2
i,c +

∑
i∈T

∑
c∈CA3S

w3d
CA3
i,k,c +

∑
c∈CA4gS

w4d
CA4g
c +

∑
i∈T

∑
k∈P

∑
c∈CA4eS

w5d
CA4e
i,k,c +

∑
c∈GA1S

w6d
GA1
c +

∑
i∈T

∑
c∈BR1S

w7d
BR1
i,c +

∑
c∈BR2S

w8d
BR2
c +

∑
i,j∈T

∑
c∈FA2S

w9d
FA2
i,c +

∑
i,j∈T

∑
c∈SE1S

w10d
SE1
i,j,c

Subject to

xi,i,k = 0 ∀i ∈ T, k ∈ P (7.1)∑
j∈U

(xi,j,k + xj,i,k) = 1 ∀i ∈ T, k ∈ P (7.2)

∑
k∈P

xi,j,k = 1 ∀i, j ∈ T : i 6= j (7.3)

∑
j∈T

(xi,j,k−1 + xi,j,k)− bi,k ≤ 1 ∀i ∈ T, k ∈ P : k > 0 (7.4)

∑
j∈T

(xj,i,k−1 + xj,i,k)− ai,k ≤ 1 i ∈ T, k ∈ P : k > 0 (7.5)

|P |/2∑
k=1

(xi,j,k + xj,i,k) = 1 ∀k ∈ P, i, j ∈ T : i 6= j (7.6)

|P |∑
k=(|P |/2)+1

(xi,j,k + xj,i,k) = 1 ∀k ∈ P, i, j ∈ T : i 6= j (7.7)

∑
k∈Sc

∑
j∈T

xi,j,k ≤ maxc ∀c ∈ CA1HH , i ∈ T 1 : i 6= j (7.8)

∑
k∈Sc

∑
j∈T

xj,i,k ≤ maxc ∀c ∈ CA1HA, i ∈ T 1 : i 6= j (7.9)

∑
k∈Sc

∑
j∈T

xi,j,k −maxc ≤ dCA1
i,c ∀c ∈ CA1SH , i ∈ T 1 : i 6= j (7.10)

∑
k∈Sc

∑
j∈T

xj,i,k −maxc ≤ dCA1
i,c ∀c ∈ CA1SA, i ∈ T 1 : i 6= j (7.11)

∑
k∈Sc

∑
j∈T 2

c

(xi,j,k + xj,i,k) ≤ maxc ∀c ∈ CA2HHA, i ∈ T 1
c (7.12)

∑
k∈Sc

∑
j∈T 2

c

xi,j,k ≤ maxc ∀c ∈ CA2HH , i ∈ T 1
c (7.13)

7.1 Detailed Model Formulation 53

∑
k∈Sc

∑
j∈T 2

c

xj,i,k ≤ maxc ∀c ∈ CA2HA, i ∈ T 1
c (7.14)

∑
k∈Sc

∑
j∈T 2

c

(xi,j,k + xj,i,k)−maxc ≤ dCA2
i,c ∀c ∈ CA2SHA, i ∈ T 1

c (7.15)

∑
k∈Sc

∑
j∈T 2

c

xi,j,k −maxc ≤ dCA2
i,c ∀c ∈ CA2SH , i ∈ T 1

c (7.16)

∑
k∈Sc

∑
j∈T 2

c

xj,i,k −maxc ≤ dCA2
i,c ∀c ∈ CA2SA, i ∈ T 1

c (7.17)

∑
j∈T 2

c

k+intpc−1∑
l=k

(xi,j,l + xj,i,l) ≤ maxc (7.18)

∀c ∈ CA3HHA, i ∈ T 1
c , k ∈ P : k ≤ |k|+ 1− intpc∑

j∈T 2
c

k+intpc−1∑
l=k

xi,j,l ≤ maxc (7.19)

∀c ∈ CA3HH , i ∈ T 1
c , k ∈ P : k ≤ |k|+ 1− intpc∑

j∈T 2
c

k+intpc−1∑
l=k

xj,i,l ≤ maxc (7.20)

∀c ∈ CA3HA, i ∈ T 1
c , k ∈ P : k ≤ |k|+ 1− intpc∑

j∈T 2
c

k+intpc−1∑
l=k

(xi,j,l + xj,i,l)−maxc ≤ dCA3
i,k,c (7.21)

∀c ∈ CA3SHA, i ∈ T 1
c , k ∈ P : k ≤ |k|+ 1− intpc∑

j∈T 2
c

k+intpc−1∑
l=k

xi,j,l −maxc ≤ dCA3
i,k,c (7.22)

∀c ∈ CA3SH , i ∈ T 1
c , k ∈ P : k ≤ |k|+ 1− intpc

∑
j∈T 2

c

k+intpCA3S−1∑
l=k

xj,i,l −maxc ≤ dCA3
i,k,c (7.23)

∀c ∈ CA3SA, i ∈ T 1
c , k ∈ P : k ≤ |k|+ 1− intpc∑

i∈T 1
c

∑
j∈T 2

c

∑
k∈Sc

(xi,j,k + xj,i,k) ≤ maxc ∀c ∈ CA4gHHA (7.24)

∑
i∈T 1

c

∑
j∈T 2

c

∑
k∈Sc

xi,j,k ≤ maxc ∀c ∈ CA4gHH (7.25)

∑
i∈T 1

c

∑
j∈T 2

c

∑
k∈Sc

xj,i,k ≤ maxc ∀c ∈ CA4gHA (7.26)

54 7.1 Detailed Model Formulation

∑
i∈T 1

c

∑
j∈T 2

c

∑
k∈Sc

(xi,j,k + xj,i,k)−maxc ≤ dCA4g
c ∀c ∈ CA4gSHA (7.27)

∑
i∈T 1

c

∑
j∈T 2

c

∑
k∈Sc

xi,j,k −maxc ≤ dCA4g
c ∀c ∈ CA4gSH (7.28)

∑
i∈T 1

c

∑
j∈T 2

c

∑
k∈Sc

xj,i,k −maxc ≤ dCA4g
c ∀c ∈ CA4gSA (7.29)

∑
i∈T 1

c

∑
j∈T 2

c

(xi,j,k + xj,i,k) ≤ maxc ∀c ∈ CA4eHHA,∀k ∈ Sc (7.30)

∑
i∈T 1

c

∑
j∈T 2

c

xi,j,k ≤ maxc ∀c ∈ CA4eHH , ∀k ∈ Sc (7.31)

∑
i∈T 1

c

∑
j∈T 2

c

xj,i,k ≤ maxc ∀c ∈ CA4eHA,∀k ∈ Sc (7.32)

∑
i∈T 1

c

∑
j∈T 2

c

(xi,j,k + xj,i,k)−maxc ≤ dCA4e
k,c ∀c ∈ CA4eSHA, k ∈ Sc (7.33)

∑
i∈T 1

c

∑
j∈T 2

c

xi,j,k −maxc ≤ dCA4e
k,c ∀c ∈ CA4eSH ,∀k ∈ Sc (7.34)

∑
i∈T 1

c

∑
j∈T 2

c

xj,i,k −maxc ≤ dCA4e
k,c ∀c ∈ CA4eSA,∀k ∈ Sc (7.35)

minc ≤
∑

(i,j)∈Gc

∑
k∈Sc

xi,j,k ∀c ∈ GA1H (7.36)

∑
(i,j)∈Gc

∑
k∈Sc

xi,j,k ≤ maxc ∀c ∈ GA1H (7.37)

minc −
∑

(i,j)∈Gc

∑
k∈Sc

xi,j,k ≤ dGA1
c ∀c ∈ GA1S (7.38)

∑
(i,j)∈Gc

∑
k∈Sc

xi,j,k −maxc ≤ dGA1
c ∀c ∈ GA1S (7.39)

∑
k∈Sc

(hi,k + ai,k) ≤ intpc ∀c ∈ BR1HHA, i ∈ T 1
c (7.40)

∑
k∈Sc

hi,k ≤ intpc ∀c ∈ BR1HH , i ∈ T 1
c (7.41)

∑
k∈Sc

ai,k ≤ intpc ∀c ∈ BR1HA, i ∈ T 1
c (7.42)

∑
k∈Sc

(hi,k + ai,k)− intpc ≤ dBR1
i,c ∀c ∈ BR1SHA, i ∈ T 1

c (7.43)

∑
k∈Sc

hi,k − intpc ≤ dBR1
i,c ∀c ∈ BR1SH , i ∈ T 1

c (7.44)

∑
k∈Sc

ai,k − intpc ≤ dBR1
i,c ∀c ∈ BR1SA, i ∈ T 1

c (7.45)

7.2 AMPL Heuristic Run-file 55

∑
i∈T 1

c

∑
k∈Sc

(hi,k + ai,k) ≤ intpc ∀c ∈ BR2HHA (7.46)

∑
i∈T 1

c

∑
k∈Sc

(hi,k + ai,k)− intpc ≤ dBR2
c ∀c ∈ BR2SHA (7.47)

∑
0≤l≤k

∑
h∈T 1

c

(xi,h,l − xj,h,l) ≤ intpc ∀c ∈ FA2H , k ∈ Sc, i, j ∈ T 1
c : i 6= j (7.48)

∑
0≤l≤k

∑
h∈T 1

c

(xi,h,l − xj,h,l)− intpc ≤ dFA21

i,j,c

∀c ∈ FA2S, k ∈ Sc, i, j ∈ T 1
c : i < j (7.49)∑

0≤l≤k

∑
h∈T 1

c

(xj,h,l − xi,h,l)− intpc ≤ dFA22

i,j,c (7.50)

∀c ∈ FA2S, k ∈ Sc, (i, j) ∈ T 1
c : i < j (7.51)

k̄+minc∑
k=k̄

(xi,j,k̄ − xj,i,k̄) ≤ 1 ∀c ∈ SE1H , k ∈ P, i, j ∈ T 1
c : i < j (7.52)

k̄+minc∑
k=k̄

(xi,j,k̄ − xj,i,k̄)− 1 ≤ dSE1
i,c ∀c ∈ SE1S, k ∈ P, i, j ∈ T 1

c : i < j (7.53)

7.2 AMPL Heuristic Run-file

reset;

model insert.mod;

data subsets.dat;

data initial_sol.dat;

data d_sol_A_Cluster1.dat;

data d_sol_A_Cluster2.dat;

data d_sol_A_Cluster3.dat;

option solver gurobi;

option gurobi_options 'outlev =1 timelim =120 logfile=RunProgress.log ';

option eexit -19999;

param bestOF; #best objective value found so far

let bestOF :=100000000; #a very high number to start with

param currentOF;

param npartitions;

let npartitions :=69; #Number of partitions tried

param partitionfile symbolic;

param cluster1patternfile symbolic;

56 7.2 AMPL Heuristic Run-file

param cluster2patternfile symbolic;

param cluster3patternfile symbolic;

param solreportfile symbolic;

param nsols; #number of candidate solutions found

let nsols :=0;

for {ipar in 1.. npartitions} { #start a cycle from instance i = 1 to instance i = ninst

let partitionfile := "set_partition "& ipar &".dat";

data (partitionfile); #input data of this file

let cluster1patternfile :=" Cluster1Pattern_ "& ipar &".dat";

let cluster2patternfile :=" Cluster2Pattern_ "& ipar &".dat";

let cluster3patternfile :=" Cluster3Pattern_ "& ipar &".dat";

HERE RE-WRITING CLUSTER PATTERNS OF THE BEST SOLUTION

if (ipar >=1) then{ #ONLY NEEDED when >=1, because for ipar=1 it was given as input

reset data TuplasA_CLUSTER1 , TuplasA_CLUSTER2 ,TuplasA_CLUSTER3;

####################### WIRITING CLUSTER AWAY PATTERN ##############

print "set TuplasA_CLUSTER1 :=" > (cluster1patternfile);

print "set TuplasA_CLUSTER2 :=" > (cluster2patternfile);

print "set TuplasA_CLUSTER3 :=" > (cluster3patternfile);

for{i in T}{

for{k in S}{

for{j in TeamsCLUSTER1:j<>i}{

if(x[j,i,k] = 1) then{

print "(",i, ",",k, ")" > (cluster1patternfile);

}

}#j

for{j in TeamsCLUSTER2:j<>i}{

if(x[j,i,k] = 1) then{

print "(",i, ",",k, ")" > (cluster2patternfile);

}

}#j

for{j in TeamsCLUSTER3:j<>i}{

if(x[j,i,k] = 1) then{

print "(",i, ",",k, ")" > (cluster3patternfile);

}

}#j

}#for k

} #for i

print ";" > (cluster1patternfile);

print ";" > (cluster2patternfile);

print ";" > (cluster3patternfile);

}#if re-writting

data (cluster1patternfile);

data (cluster2patternfile);

data (cluster3patternfile);

7.2 AMPL Heuristic Run-file 57

########### FINISH RE-WRITING , NOW READY TO RUN

FIRST RUN WITH PATTERN CONSTRAINTS ON ALL CLUSTERS

let on1 :=1; #constraint on cluster 1 used

let on2 :=1; #constraint on cluster 2 used

let on3 :=1; #constraint on cluster 3 used

display bestOF ,ipar ,on1 ,on2 ,on3;

solve;

if (solve_result <> "infeasible ") then {

let currentOF := soft_constraints;

if(currentOF < bestOF) then{

let bestOF := currentOF;

let nsols :=nsols +1;

let solreportfile := "sol_variables "& nsols &".txt";

display soft_constraints ,x >(solreportfile);

display a >(solreportfile);

display h >(solreportfile);

HERE RE-WRITING CLUSTER PATTERNS OF THE BEST SOLUTION SO FAR

let cluster1patternfile :=" Cluster1Pattern_ "& ipar&"_sol"& nsols &".dat";

let cluster2patternfile :=" Cluster2Pattern_ "& ipar&"_sol"& nsols &".dat";

let cluster3patternfile :=" Cluster3Pattern_ "& ipar&"_sol"& nsols &".dat";

reset data TuplasA_CLUSTER1 , TuplasA_CLUSTER2 ,TuplasA_CLUSTER3;

####################### WIRITING CLUSTER AWAY PATTERN ##############

print "set TuplasA_CLUSTER1 :=" > (cluster1patternfile);

print "set TuplasA_CLUSTER2 :=" > (cluster2patternfile);

print "set TuplasA_CLUSTER3 :=" > (cluster3patternfile);

for{i in T}{

for{k in S}{

for{j in TeamsCLUSTER1:j<>i}{

if(x[j,i,k] = 1) then{

print "(",i, ",",k, ")" > (cluster1patternfile);

}

}#j

for{j in TeamsCLUSTER2:j<>i}{

if(x[j,i,k] = 1) then{

print "(",i, ",",k, ")" > (cluster2patternfile);

}

}#j

for{j in TeamsCLUSTER3:j<>i}{

if(x[j,i,k] = 1) then{

print "(",i, ",",k, ")" > (cluster3patternfile);

}

}#j

}#for k

} #for i

print ";" > (cluster1patternfile);

58 7.2 AMPL Heuristic Run-file

print ";" > (cluster2patternfile);

print ";" > (cluster3patternfile);

data (cluster1patternfile);

data (cluster2patternfile);

data (cluster3patternfile);

########### FINISH RE-WRITING , NOW READY TO RUN AGAIN

}#if bestOF

}# if infeasible

SECOND: RUN WITH PATTERN CONSTRAINTS ON CLUSTERS 1 AND 2

let on1 :=1; #constraint on cluster 1 used

let on2 :=1; #constraint on cluster 2 used

let on3 :=0; #constraint on cluster 3 used

display bestOF ,ipar ,on1 ,on2 ,on3;

solve;

if (solve_result <> "infeasible ") then {

let currentOF := soft_constraints;

if(currentOF < bestOF) then{

let bestOF := currentOF;

let nsols :=nsols +1;

let solreportfile := "sol_variables "& nsols &".txt";

display soft_constraints ,x >(solreportfile);

display a >(solreportfile);

display h >(solreportfile);

HERE RE-WRITING CLUSTER PATTERNS OF THE BEST SOLUTION SO FAR

let cluster1patternfile :=" Cluster1Pattern_ "& ipar&"_sol"& nsols &".dat";

let cluster2patternfile :=" Cluster2Pattern_ "& ipar&"_sol"& nsols &".dat";

let cluster3patternfile :=" Cluster3Pattern_ "& ipar&"_sol"& nsols &".dat";

reset data TuplasA_CLUSTER1 , TuplasA_CLUSTER2 ,TuplasA_CLUSTER3;

####################### WIRITING CLUSTER AWAY PATTERN ##############

print "set TuplasA_CLUSTER1 :=" > (cluster1patternfile);

print "set TuplasA_CLUSTER2 :=" > (cluster2patternfile);

print "set TuplasA_CLUSTER3 :=" > (cluster3patternfile);

for{i in T}{

for{k in S}{

for{j in TeamsCLUSTER1:j<>i}{

if(x[j,i,k] = 1) then{

print "(",i, ",",k, ")" > (cluster1patternfile);

}

}#j

for{j in TeamsCLUSTER2:j<>i}{

if(x[j,i,k] = 1) then{

print "(",i, ",",k, ")" > (cluster2patternfile);

}

}#j

7.2 AMPL Heuristic Run-file 59

for{j in TeamsCLUSTER3:j<>i}{

if(x[j,i,k] = 1) then{

print "(",i, ",",k, ")" > (cluster3patternfile);

}

}#j

}#for k

} #for i

print ";" > (cluster1patternfile);

print ";" > (cluster2patternfile);

print ";" > (cluster3patternfile);

data (cluster1patternfile);

data (cluster2patternfile);

data (cluster3patternfile);

########### FINISH RE-WRITING , NOW READY TO RUN AGAIN

}#if bestOF

}# if infeasible

THIRD: RUN WITH PATTERN CONSTRAINTS ON CLUSTERS 1 AND 3

let on1 :=1; #constraint on cluster 1 used

let on2 :=0; #constraint on cluster 2 used

let on3 :=1; #constraint on cluster 3 used

display bestOF ,ipar ,on1 ,on2 ,on3;

solve;

if (solve_result <> "infeasible ") then {

let currentOF := soft_constraints;

if(currentOF < bestOF) then{

let bestOF := currentOF;

let nsols :=nsols +1;

let solreportfile := "sol_variables "& nsols &".txt";

display soft_constraints ,x >(solreportfile);

display a >(solreportfile);

display h >(solreportfile);

HERE RE-WRITING CLUSTER PATTERNS OF THE BEST SOLUTION SO FAR

let cluster1patternfile :=" Cluster1Pattern_ "& ipar&"_sol"& nsols &".dat";

let cluster2patternfile :=" Cluster2Pattern_ "& ipar&"_sol"& nsols &".dat";

let cluster3patternfile :=" Cluster3Pattern_ "& ipar&"_sol"& nsols &".dat";

reset data TuplasA_CLUSTER1 , TuplasA_CLUSTER2 ,TuplasA_CLUSTER3;

####################### WIRITING CLUSTER AWAY PATTERN ##############

print "set TuplasA_CLUSTER1 :=" > (cluster1patternfile);

print "set TuplasA_CLUSTER2 :=" > (cluster2patternfile);

print "set TuplasA_CLUSTER3 :=" > (cluster3patternfile);

for{i in T}{

for{k in S}{

for{j in TeamsCLUSTER1:j<>i}{

if(x[j,i,k] = 1) then{

60 7.2 AMPL Heuristic Run-file

print "(",i, ",",k, ")" > (cluster1patternfile);

}

}#j

for{j in TeamsCLUSTER2:j<>i}{

if(x[j,i,k] = 1) then{

print "(",i, ",",k, ")" > (cluster2patternfile);

}

}#j

for{j in TeamsCLUSTER3:j<>i}{

if(x[j,i,k] = 1) then{

print "(",i, ",",k, ")" > (cluster3patternfile);

}

}#j

}#for k

} #for i

print ";" > (cluster1patternfile);

print ";" > (cluster2patternfile);

print ";" > (cluster3patternfile);

data (cluster1patternfile);

data (cluster2patternfile);

data (cluster3patternfile);

########### FINISH RE-WRITING , NOW READY TO RUN AGAIN

}#if bestOF

}# if infeasible

FOURTH: RUN WITH PATTERN CONSTRAINTS ON CLUSTERS 2 AND 3

let on1 :=0; #constraint on cluster 1 used

let on2 :=1; #constraint on cluster 2 used

let on3 :=1; #constraint on cluster 3 used

display bestOF ,ipar ,on1 ,on2 ,on3;

solve;

if (solve_result <> "infeasible ") then {

let currentOF := soft_constraints;

if(currentOF < bestOF) then{

let bestOF := currentOF;

let nsols :=nsols +1;

let solreportfile := "sol_variables "& nsols &".txt";

display soft_constraints ,x >(solreportfile);

display a >(solreportfile);

display h >(solreportfile);

HERE RE-WRITING CLUSTER PATTERNS OF THE BEST SOLUTION SO FAR

let cluster1patternfile :=" Cluster1Pattern_ "& ipar&"_sol"& nsols &".dat";

let cluster2patternfile :=" Cluster2Pattern_ "& ipar&"_sol"& nsols &".dat";

let cluster3patternfile :=" Cluster3Pattern_ "& ipar&"_sol"& nsols &".dat";

reset data TuplasA_CLUSTER1 , TuplasA_CLUSTER2 ,TuplasA_CLUSTER3;

7.3 Tables 61

####################### WIRITING CLUSTER AWAY PATTERN ##############

print "set TuplasA_CLUSTER1 :=" > (cluster1patternfile);

print "set TuplasA_CLUSTER2 :=" > (cluster2patternfile);

print "set TuplasA_CLUSTER3 :=" > (cluster3patternfile);

for{i in T}{

for{k in S}{

for{j in TeamsCLUSTER1:j<>i}{

if(x[j,i,k] = 1) then{

print "(",i, ",",k, ")" > (cluster1patternfile);

}

}#j

for{j in TeamsCLUSTER2:j<>i}{

if(x[j,i,k] = 1) then{

print "(",i, ",",k, ")" > (cluster2patternfile);

}

}#j

for{j in TeamsCLUSTER3:j<>i}{

if(x[j,i,k] = 1) then{

print "(",i, ",",k, ")" > (cluster3patternfile);

}

}#j

}#for k

} #for i

print ";" > (cluster1patternfile);

print ";" > (cluster2patternfile);

print ";" > (cluster3patternfile);

data (cluster1patternfile);

data (cluster2patternfile);

data (cluster3patternfile);

########### FINISH RE-WRITING , NOW READY TO RUN AGAIN

}#if bestOF

}# if infeasible

}#ipar

display bestOF;

7.3 Tables

62 7.3 Tables

Feasible solution found Feasible Solution Not Found
Early 3 1

6 2
7 4
8 5
9 10
13 11
14 12
15

Middle 3 1
4 2
5 10
6
7
8
9
10
11
12
13
14
15

Late 1 2
3 5
4 10
6 11
7 12
8
9
13
14
15

Table 7.1: 8-hour run in Neos without objective function

