
 
 

Density Forecasting of the 
EUR/NOK Exchange Rate 

An Evaluation of Out-of-Sample Forecasting Performance of 
Empirical Exchange Rate Models 

Sigurd Blom Breivik and Peder Vinje Samuelsen 

Supervisor: Gernot Doppelhofer 

Master thesis, Economics and Business Administration 

Major: Financial Economics 

NORWEGIAN SCHOOL OF ECONOMICS 

 

 

 

 

 

This thesis was written as a part of the Master of Science in Economics and Business 

Administration at NHH. Please note that neither the institution nor the examiners are 

responsible − through the approval of this thesis − for the theories and methods used, or results 

and conclusions drawn in this work. 

Norwegian School of Economics  

Bergen, Spring 2021 

 



 2 

Acknowledgements 

This thesis is written as the final part of our Master of Science in Economics and Business 

Administration at Norwegian School of Economics, with majors in Financial Economics.  

We would like to express our gratitude to our supervisor Professor Gernot Doppelhofer for the 

good cooperation throughout the semester. His guidance and constructive feedback have 

proven valuable for our progress throughout the writing process. 

 

 

Norwegian School of Economics 

Bergen, June 2021 

 

  

_______________________________ 

Sigurd Blom Breivik 

_______________________________ 

Peder Vinje Samuelsen 

  



 3 

Abstract 

This thesis investigates the predictive ability of fundamental economic and financial indicators 

on the EUR/NOK exchange rate. In doing so, we explore the emerging field of density 

forecasting, in addition to the standard point forecasting literature. Using a set of well-

established empirical models, we construct short-term pseudo out-of-sample forecasts for the 

exchange rate. The results are benchmarked against a naïve random walk model, using a range 

of evaluation statistics grounded in the literature. The empirical analysis reveals that no models 

significantly outperform the random walk model using neither a point nor density forecast 

approach. However, we find evidence that fundamental models outperform in terms of 

forecasting appreciation tail risk at the one-month horizon. Furthermore, we find that a simple 

normal distribution is a better fit compared to an empirically backed skewed t-distribution 

derived from quantile regression. Our findings add to the growing strand of literature 

investigating the Meese & Rogoff puzzle from a density forecast perspective. 
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1. Introduction 

The foreign exchange (FX) market plays a critical role within macroeconomics and 

international finance. Li (2016) highlights the facilitation of currency conversion, exchange 

rate risk management, and speculation as the three main functions of the market. The 

facilitation of currency conversion enables businesses and individuals to perform transactions 

outside their local currency, allowing them to make investments abroad and import and export 

goods and services. This allows countries to access goods, services, and markets that may 

otherwise have been unavailable to them. Usually, settlement of a trade deal will occur weeks 

to months after the deal was agreed. This exposes the transaction parties to currency risk. The 

facilitation of exchange rate risk management allows the parties to use the FX market to hedge 

their exposure and safeguard their interests. For this function to operate appropriately, the 

hedger must be able to pass the risk onto an entity that is better able to bear it. The facilitation 

of speculation provides a market for the hedger to do this. The FX market is the most liquid 

financial market globally, with a daily trading volume of $6.6 trillion as of April 2019 (BIS, 

2019), and it is open Monday through Friday. This makes the FX market highly attractive to 

speculating entities that are willing to take on risk in an attempt to profit from currency 

fluctuations. 

The mechanisms outlined above make exchange rate forecasting of great importance to 

investors, speculators, and policymakers alike. For investors and speculators, exchange rate 

forecasting can be an essential tool to design trading or hedging strategies that helps maximize 

return and minimize risk. It is vital to understand the uncertainty associated with the forecast 

to design effective strategies. Thus, investors and speculators are concerned not only with the 

expected outcome but the entire probability distribution. This includes the variance, any 

asymmetric 'leaning,' and the fatness of the outer tails. As stated shrewdly by Crnkovic & 

Drachman (1997, p. 47): "At the heart of market risk measurement is the forecast of the 

probability density functions (PDF) of the relevant market variables… a forecast of a PDF is 

the central input into any decision model for asset allocation and/or hedging… therefore, the 

quality of risk management will be considered synonymous with the quality of PDF forecasts." 

For policymakers like central banks, exchange rate forecasting is important because future 

exchange rate dynamics may impact interest rate policies and currency intervention decisions.  

Given the importance of accurate exchange rate forecasts, knowing what drives exchange rates 

is essential to the forecaster. In the last several decades, economists have applied standard 
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economic theory to develop a wide range of fundamental exchange rate determination models 

that incorporates macroeconomic and financial indicators as predictor variables. Yet, the 

performance of such models has been under scrutiny since Meese & Rogoff (1983) published 

their highly influential research paper 'Empirical exchange rate models of the seventies: Do 

they fit out of sample?' . Using various fundamental exchange rate determination models to 

forecast several dollar-related currency pairs during the post-Bretton Woods era, the authors 

demonstrate that a naïve random walk model performs just as well in out-of-sample 

forecasting. The 'Meese & Rogoff puzzle' has since inspired an extensive body of literature 

that attempts to outcompete a driftless random walk model in out-of-sample analysis, with 

results varying greatly depending on econometric approach, sample period, currency pair, and 

forecast horizon. The results have led institutions like the Bank of Canada, the European 

Central Bank, and Statistics Norway to assume unchanged exchange rates in their predictions 

(Hungnes, 2020).  

The vast majority of the Meese & Rogoff puzzle literature assesses the forecast accuracy of a 

simple point forecast. However, as previously outlined, understanding the uncertainty 

associated with a forecast can be vital. In this thesis, we therefore go beyond point forecasting 

to discuss a distinct part of the literature that deals with out-of-sample density forecasting. 

Prior research such as Wang & Wu (2012) applies a semiparametric method to generate out-

of-sample exchange rate intervals for ten dollar-related OECD currency pairs. They find that, 

compared to a random walk model, fundamental models generate tighter forecast intervals 

which cover the realized exchange rates equally well. Gaglianone & Marins (2017) construct 

point and density forecasts at horizons of up to twelve months for the BRL/USD currency pair, 

using various statistical and economics-driven models. They find that fundamental economic 

indicators are useful when modeling exchange rate appreciation. In summary, the findings 

indicate that, while economic and financial indicators may have limited predictive value for 

point forecasting, they could have a predictive value when forecasting exchange rate 

probability distributions. 

Several research papers have been written on the topic of the relationship between fundamental 

economic indicators and the Norwegian krone exchange rate. However, most of the literature 

approaches the topic from an ex-post analysis perspective, i.e., models are tested in-sample1 

 

1 In-sample prediction refers to predictions made inside the data sample in which the parameter estimates are obtained.  
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instead of out-of-sample (see, e.g., Akram, 2019 and Martinsen, 2017). Furthermore, the vast 

majority of the literature investigating the Meese & Rogoff puzzle on the Norwegian krone 

exchange rate approaches the puzzle from a point forecast perspective rather than density 

forecast perspective (see, e.g., Akram, 2004). In this thesis, we aim to apply the distinct body 

of literature investigating the Meese & Rogoff puzzle from a density forecast perspective to 

the krone-related currency pair that involves Norway's most important trading partner, the EU. 

This leads us to the following research question: 

Can out-of-sample density forecasts based on fundamental exchange rate models 

outperform a naïve random walk model in forecasting the EUR/NOK exchange rate? 

Specifically, we apply a series of empirically grounded exchange rate models to forecast the 

exchange rate at horizons ranging from one to twelve months. To assess whether density 

forecasts of the EUR/NOK exchange provide an informational advantage relative to standard 

point forecasts, we consider both approaches. The forecasting performance of the respective 

approaches are evaluated by use of a range of well-established statistical tests.  

The EUR/NOK currency pair is interesting to consider for several reasons. First of all, the EU 

is Norway's most important trading partner. This makes the exchange rate particularly relevant 

for Norges Bank's decisions regarding interest rate policy and currency intervention. 

Furthermore, it makes the currency pair particularly relevant with regards to Norwegian import 

and export businesses' hedging strategies. As one of the most liquid krone-related currency 

pairs, the EUR/NOK is also suitable for investment and speculation purposes. Additionally, 

the NOK has depreciated significantly against the Euro and other currencies since 2013, 

puzzling economists across the country. This has implications for monetary policies and 

expectations of market participants. Thus, investigating the predictive value of fundamental 

economic and financial indicators on the EUR/NOK exchange rate may be of interest to 

various entities and for a wide range of applicational purposes. 

The next chapter presents the theories that build the foundation of the empirical work. These 

theories are interest rate parity, purchasing power parity, the monetary model of exchange rate 

determination, the Taylor rule model of exchange rate determination, and the behavioral 

exchange rate model. In chapter 3, the econometric methodology is presented. Using ordinary 

least squares and quantile regression, we estimate point and density forecasts for the 

EUR/NOK exchange rate at the one-, three-, six- and twelve-month horizon. A series of test 
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statistics are then applied to evaluate the forecast accuracy of the various model specifications. 

We evaluate the point forecast accuracy, the directional change accuracy, the performance of 

the full-density forecast, and the risks associated with the tails of the distributions. Chapter 4 

presents the data variables included in the various models and explains how the data are 

transformed for analysis purposes. The aforementioned chapters culminate in an empirical 

analysis presented in chapter 5. Finally, the thesis is summarized and concluded in chapter 6. 
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2. Theory 

This chapter presents the underlying theories that build the foundation of the empirical work. 

Although the forecasting performance of such theoretical models have come under scrutiny 

since Meese & Rogoff (1983) published their highly influential paper, they remain helpful in 

providing understanding and insight into the long-term and short-term drivers of exchange 

rates. Additionally, the literature investigating such models from a density forecast perspective 

remains limited. We will present the theories about interest rate parity, purchasing power 

parity, the monetary model, the Taylor rule model, and the behavioral exchange rate model. 

However, first, we give a brief introduction to the foreign exchange market. 

2.1 The Foreign Exchange Market 

The foreign exchange market is the biggest financial market in the world, with a daily volume 

of about $6.6 trillion as of April 2019 (BIS, 2019). The market operates around the clock from 

Monday through Friday and enables businesses to perform transactions outside their local 

currency, thus facilitating international trade. Contrary to, e.g., the equity market, trading does 

not take place in a central marketplace and is instead conducted over-the-counter. The trading 

occurs through a worldwide linkage of bank currency traders, non-bank dealers, and FX 

brokers that trade through telephones, computer terminals, and automated dealing systems 

(Kumar, 2014). Although trading desks are closed on the weekends, it is still possible to 

execute a transaction through, e.g., a bank. The bank will then supply the buyer from a stock 

obtained prior to the weekend at a rate where the bank makes a slight profit.   

Foreign exchange transactions occur either in the spot market or the forward market. 

Transactions in the spot market occur at the prevailing exchange rate; the spot rate and 

deliveries are almost instant. In the forward market, foreign exchange is bought and sold for 

delivery at a future date. The forward rate of exchange is settled today but may deviate from 

the prevailing spot rate with quotes at either a premium or a discount.  

2.2 Interest Rate Parity 

Historically, one of the most popular trading strategies in the foreign exchange market has 

been the carry trade. A currency carry trade is carried out by borrowing a currency in a country 
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with low interest rates to fund a currency in a country with high interest rates. This trade 

implies a fundamental relationship between exchange rates and interest rates and has given 

rise to several theories, one of which is the interest rate parity theory. Interest rate parity is a 

no-arbitrage condition that seeks to explain movements in the exchange rate on the back of 

the interest rates available on bank deposits in the two respective countries. This no-arbitrage 

condition exists in two forms elaborated on in the following subsections.  

2.2.1 Covered Interest Rate Parity 

The first form is covered interest rate parity. Interest rate parity is covered when the no-

arbitrage condition is satisfied using a forward contract that hedges exchange rate risk. In this 

situation, an investor will be indifferent between investing domestically or abroad, as the 

forward exchange rate sustains equilibrium so that the return on domestic deposits is equal to 

the return on foreign deposits. The potential for arbitrage profits is thereby eliminated. The 

equation below represents covered interest rate parity, with 𝑖𝑑 and 𝑖𝑓 being the domestic and 

foreign money market rate, respectively, 𝑆𝑡 the spot rate and, 𝐹𝑡 the forward rate.  

(1 + 𝑖𝑑) =  
𝐹𝑡

𝑆𝑡
(1 + 𝑖𝑓) 

The return on domestic deposits on the left side of the equation is equal to the return on foreign 

deposits on the right side of the equation, expressed in domestic currency. Note that here and 

in the following, we adopt a currency convention where the domestic currency is expressed 

per unit of foreign currency. That is, an increase (decrease) in the exchange rate implies a 

depreciation (appreciation) of the domestic currency.  

2.2.2 Uncovered Interest Rate Parity 

Uncovered interest rate parity is the second form of the no-arbitrage condition. Interest rate 

parity is uncovered when the no-arbitrage condition is satisfied without using a forward 

contract to hedge exchange rate risk. Instead, a risk-neutral investor will be indifferent between 

investing domestically or abroad because the spot rate is expected to adjust so that the return 

on domestic deposits is equal to the return on foreign deposits, measured in domestic terms at 

a future date. The potential for arbitrage profits is thereby eliminated also in this situation. The 

equation below represents uncovered interest rate parity, with 𝐸𝑡(𝑆𝑡+𝑘) being the expected 

future spot exchange rate a time 𝑡 + 𝑘. 
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(1 + 𝑖𝑑) =  
𝐸𝑡(𝑆𝑡+𝑘)

𝑆𝑡
(1 + 𝑖𝑓) 

Again, the return on domestic deposits on the left side of the equation is equal to the return on 

foreign deposits on the right side of the equation, expressed in domestic currency.  

Covered and uncovered interest rate parity rests on the assumptions that capital flows freely 

between countries and that assets are perfectly interchangeable. Given these assumptions, 

investors would be expected to hold the assets that offer more significant returns, regardless 

of the assets being domestic or foreign. Thus, arbitrage opportunities are immediately traded 

away so that a single investor will expect to earn equivalent returns domestically and abroad.  

2.2.3 Empirical Evidence of Interest Rate Parity 

Empirically, covered interest rate parity generally holds for freely traded currencies. However, 

due to the presence of market imperfections such as transaction costs, tax implications, and 

counterparty risk, studies find evidence of short-term deviations, indicating that it does not 

hold with precision (Levich, 2011). As for uncovered interest rate parity, previous empirical 

studies largely reject its validity at short horizons. The evidence is more supportive at longer 

horizons with, e.g., Chinn & Meredith (2004) finding evidence supporting uncovered interest 

rate parity at horizons longer than one year. A large body of newer literature has suggested 

potential explanations for why the same is not observed at shorter horizons. These 

explanations include the potential presence of time-varying risk premia. Ismailov & Rossi 

(2017) provide empirical evidence that uncovered interest rate parity holds at short horizons 

when uncertainty is 'not exceptionally high' and breaks down during periods of high 

uncertainty. 

2.3 Purchasing Power Parity 

The concept of purchasing power parity has existed since the 16th century but was molded into 

its current form by Swedish economist Karl Gustav Cassel in 1916. Cassel was an advocate 

for restoring the gold standard and the system of fixed exchange rates in the aftermath of 

World War I as a means to restore international trade and further stable and balanced growth. 

In his writings around this time, he recommended fixing exchange rates at a level 

corresponding to purchasing power parity, arguing it would prevent trade imbalances between 

nations (Rogoff, 1996). Although not formulated by Cassel as a theory of exchange rate 
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determination, the doctrine has proven integral to understanding the relationship between price 

levels and foreign exchange rates. 

Purchasing power parity is based on the law of one price, which states that identical goods 

sold in different locations must sell at the same price under the assumptions of free 

competition, price flexibility, and no trade frictions. Given these assumptions, market 

participants would be expected to buy goods in cheap areas to profit in expensive areas. Thus, 

arbitrage opportunities should be traded away and result in equal prices at all locations. As 

with interest rate parity, purchasing power parity exists in two forms, both of which are 

detailed below. 

2.3.1 Absolute Purchasing Power Parity 

The first form is absolute purchasing power parity. This condition states that the foreign 

exchange rate is expected to adjust so that the price level of a basket of goods domestically is 

equal to the price level of an equivalent basket of goods abroad, measured in a common 

currency. Mathematically, absolute purchasing power parity can thus be expressed as:  

𝑃𝑑 = 𝑆 × 𝑃𝑓, 

where 𝑃𝑑 is the domestic price index, 𝑃𝑓 the foreign price index, and 𝑆 the spot rate. The price 

level of a domestic basket of goods on the left side of the equation is equal to the price level 

of a foreign basket of goods on the right side of the equation. 

2.3.2 Relative Purchasing Power Parity 

The second form is relative purchasing power parity, which is a dynamic form of purchasing 

power parity that relates relative changes in inflation rates to the exchange rate. In other terms, 

relative purchasing power parity states that the foreign exchange rate is expected to adjust with 

the relative change in price level between two countries. Mathematically, the relationship can 

be expressed as: 

𝑆𝑡

𝑆0
=

(𝑃𝑡
𝑑 𝑃0

𝑑⁄ )

(𝑃𝑡
𝑓

𝑃0
𝑓

⁄ )
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The change in the spot rate from time 0 to 𝑡 on the left side of the equation is equal to the 

relative change in price level between the domestic and foreign countries on the right side of 

the equation. 

2.3.3 Empirical Evidence of Purchasing Power Parity 

Absolute purchasing power parity does not have much empirical support, partly explained by 

difficulties in obtaining comparable baskets of goods across countries2. Support for relative 

purchasing power parity has also proven weak in the short term. In contrast, studies find 

evidence of its significance in the long term but suggest that real exchange rates adjust to the 

purchasing power parity level at a prolonged rate.  According to Rogoff (1996), consensus 

tends to estimate a half-life of adjustment of three to five years. Dornbusch's (1976) theory of 

exchange rate overshooting, which explains short-term deviations from purchasing power 

parity by the stickiness of goods' prices compared to the flexible prices of financial 

instruments, has been one suggested explanation for this result. However, as shown by Rogoff, 

one would expect to observe a half-life of adjustment of one to two years if this was the case. 

Studies on Norwegian quarterly data find support for purchasing power parity in the long-term 

with a half-life of adjustment of around 18 months (Akram, 2000, 2002, as cited in Akram et 

al., 2003). 

2.4 The Monetary Model 

The monetary model of exchange rate determination appeared in its modern form after the 

collapse of the fixed exchange rate system in the 1970s, when proponents of the monetary 

approach to the balance of payments developed its parallel for floating exchange rates. The 

model exists in several forms, but all have in common that they can be regarded as asset market 

view models of exchange rate determination. This means that exchange rates are viewed as 

relative prices of assets priced in a forward-looking fashion, i.e., allowing for the inclusion of 

non-observable factors among the fundamentals. Today, the monetary model of exchange rate 

determination is a standard workhorse within fundamental exchange rate forecasting.  

 

2 Issues relate e.g. to differences in quality, purchasing patterns and labor costs, absence of international trade for certain 

goods, and country specific costs.  
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Following Zhang et al. (2007), the model rests on two distinct assumptions. The first one is 

that purchasing power parity holds continuously over time. This relationship can be expressed 

as:  

𝑠𝑡 = 𝑝𝑡 − 𝑝𝑡
∗ + 𝑐 + 𝜀𝑡, 

where 𝑐 is a constant, 𝑠𝑡 the logarithm of the exchange rate expressed in units of domestic 

currency, 𝑝 and 𝑝∗ the domestic and foreign price levels, and 𝜀 the error term. The equation 

implies that absolute purchasing power parity holds if 𝑐 = 0, while relative purchasing power 

holds if 𝑐 ≠ 0.  

The second assumption is that of money market equilibrium. The money market is said to be 

in equilibrium at the given interest rate that balances the quantity of money demanded to the 

quantity of money supplied.  The monetary model assumes a stable money demand function 

where the equilibrium condition depends on the logarithm of real income 𝑦, the logarithm of 

the price level 𝑝, and the nominal interest rate 𝑖. Domestically, money market equilibrium3 is 

thus expressed as follows:  

𝑚𝑡 = 𝑝𝑡 + 𝛽2𝑦𝑡 − 𝛽3𝑖𝑡 + 𝜇𝑡, 

with 𝑚 being the logarithm of money demanded4, 𝛽2 the income elasticity of money 

demanded, 𝛽3 the semi-elasticity of interest rates, and 𝜇 the error term. The same equation 

applies to foreign countries but with variables denoted by an asterisk: 

𝑚𝑡
∗ = 𝑝𝑡

∗ + 𝛽2
∗𝑦𝑡

∗ − 𝛽3
∗𝑖𝑡

∗ + 𝜇𝑡
∗ 

From here, monetary models of exchange rate determination go in different directions. Two 

of the main types will be examined further in the following subsections. 

 

3 The equation is obtained by taking the natural logarithm of Cagan's (1956) semi-logarithmic demand for money function 
𝑀𝑡

𝑃𝑡
⁄ = 𝑌𝑡

𝑘𝑒−𝜆𝑖𝑡 and solving for 𝑚. 

4 In equilibrium, money demand is assumed to be equal to the respective money supply. 

(1) 

(2) 

(3) 
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2.4.1 Flexible Price Monetary Model 

By rearranging equations (2) and (3) to solve for the domestic and foreign price levels and 

substituting for the price levels in equation (1), one obtains the flexible price monetary model 

of exchange rate determination. Here, 𝑐 is an arbitrary constant and 𝜀𝑡
∗ a disturbance term.  

𝑠𝑡 = 𝑚𝑡 − 𝑚𝑡
∗ − 𝛽2𝑦𝑡 + 𝛽2

∗𝑦𝑡
∗ + 𝛽3𝑖𝑡 − 𝛽3

∗𝑖𝑡
∗ + 𝑐 + 𝜀𝑡

∗5 

The equation above implies that a relative increase in domestic to foreign money supply will 

depreciate the exchange rate. The opposite is true for a relative increase in domestic to foreign 

real income. Excess demand for the domestic money stock reduces expenditure, causing prices 

to fall until money market equilibrium is achieved. This implies an appreciation of the 

exchange rate through the purchasing power parity mechanisms. A relative increase in 

domestic interest rates reduces domestic demand for the money stock, leading to depreciation. 

The flexible price monetary model assumes that prices of goods behave in the same way as 

prices in financial markets, i.e., changing market conditions reflect goods' prices immediately. 

The model furthermore assumes that uncovered interest rate parity continuously holds. 

2.4.2 Sticky-Price Monetary Model 

After the transition to the floating exchange rate regime, real exchange rates experienced high 

volatility, sowing doubt over the assumption of continuous purchasing power parity. This led 

to the development of the sticky price monetary model of exchange rate determination by 

Dornbusch (1976). The model sought to explain features of exchange rate behavior that 

deviated from the predictions of the flexible price monetary model, including the unexpected 

occurrence of an immediate depreciation in the exchange rate following a monetary expansion.  

Contrary to the flexible price model, Dornbusch's model centers around the concept of goods' 

prices being sticky in the short run. This is captured in a framework in which prices of domestic 

goods are sticky, while domestic currency prices of foreign goods move freely with the 

exchange rate. Thus, the model outputs a long-run equilibrium that the exchange rate is 

expected to adjust towards over time, but the exchange rate may overshoot its long-run 

 

5 Note that the monetary model is sometimes specified without the interest rate differential. It may also be specified with an 

inflation differential. For reference, see, e.g., Meese & Rogoff (1983) and Wang & Wu (2012). 
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equilibrium level in the short-run. Compared to the flexible price model in section 2.4.1, this 

implies that the sign of the interest rate differential is interpreted differently in the short run. 

In the sticky-price model, an increase in interest rates must offset a cut in the money supply 

for the money market to clear. Raised interest rates lead to capital inflow and an appreciating 

nominal exchange rate. Since prices are sticky, this also implies an appreciation of the real 

exchange rate. Domestic interest rates decline in accordance with the changing money market 

equilibrium as domestic prices begin to fall. Thus, the exchange rate converges on its long-run 

equilibrium. 

2.4.3 Empirical Evidence of Monetary Models 

Various techniques and research methodologies have been applied to test the empirical 

significance of monetary models in the last several decades. The results have generally been 

mixed, depending on the currency pair and sample period used. Meese & Rogoff (1983) show 

that a naïve random walk model outperforms the flexible and sticky-price monetary models in 

short-term out-of-sample prediction. Mark (1995), on the other hand, finds that monetary 

models outperform when the forecast horizon is longer. The evidence relating to monetary 

models are more supportive in short-term forecasting when advanced cointegration techniques 

and error-correction models6 are applied. MacDonald & Taylor (1994), e.g., find that a 

dynamic monetary error correction model that allows for flexible short-run dynamics, 

outperforms random walk mechanisms on forecasting horizons of up two twelve months in 

out-of-sample prediction of the sterling-dollar exchange rate. 

2.5 The Taylor Rule Model 

Most research on out-of-sample exchange rate predictability until the mid-2000s was based 

on empirical exchange rate models akin to those presented in section 2.4. Thus, a disconnect 

had risen against literature on monetary policy evaluation, which had its basis in the Taylor 

rule framework. The Taylor rule was proposed by John B. Taylor (1993) as a targeting 

monetary policy technique to stabilize economic activity. Engel & West (2005) used the 

 

6 For a discussion of cointegration and error correction specifications, see sections 3.2.1 and 4.2.2. 
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framework to derive the exchange rate as a present value asset price. Since then, a growing 

strand of the literature has used the Taylor rule to model exchange rate predictability.  

2.5.1 Asymmetric Taylor Rule Model with Smoothing 

In Taylor's original formulation, the rule states that the central bank sets the nominal interest 

rate as a response to a divergence in observed inflation from the target inflation rate and in 

observed GDP from potential GDP, i.e., it can be specified as: 

𝑖𝑡̃ = 𝜋𝑡 + 𝜙(𝜋𝑡 − 𝜋̃) + 𝛾𝑦𝑡 + 𝑟̃, 

where 𝑖̃𝑡 is the short-term nominal interest rate target, 𝜋𝑡 the inflation rate, 𝜋̃ the inflation rate 

target, 𝑦𝑡 the output gap, and 𝑟̃ the real interest equilibrium rate. Following Molodtsova & 

Papell (2009), 𝜋̃ and 𝑟̃  can be combined into a constant7 term 𝜇 = 𝑟̃  - 𝜙𝜋̃, leading to 

𝑖𝑡̃ = 𝜇 + 𝜆𝜋𝑡 + 𝛾𝑦𝑡, 

where 𝜆 = 1 + 𝜙. For the foreign country, it is commonly assumed that the central bank also 

targets the exchange rate level that makes purchasing power parity hold. If the exchange rate 

depreciates from equilibrium, the foreign central bank increases the nominal interest rate and 

vice versa. Thus, the real exchange rate 𝑞𝑡 is included in the Taylor rule for the foreign country. 

𝑖̃𝑡 = 𝜇 + 𝜆𝜋𝑡 + 𝛾𝑦𝑡 + 𝛿𝑞𝑡 

No distinction is made between the actual nominal interest rate and the target interest rate in 

the original Taylor rule. The target rate is assumed to be achieved within one period. However, 

according to Molodtsova & Papell (2009), it has become common practice to adjust this 

assumption so that the interest rate only partially adjusts within one period. The interest rate 

𝑖𝑡 is then assumed to adjust to the target rate as in the following formula: 

𝑖𝑡 = (1 − 𝜌)𝑖𝑡̃ + 𝜌𝑖𝑡−1 + 𝑣𝑡 

By substituting equation (5) into equation (6), the following is obtained: 

 

7 Note that rolling window regression allows the constant to be time-varying (Molodtsova & Papell, 2009).  

(4) 

(5) 

(6) 
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𝑖𝑡 = (1 − 𝜌)(𝜇 + 𝜆𝜋𝑡 + 𝛾𝑦𝑡 + 𝛿𝑞𝑡) + 𝜌𝑖𝑡−1 + 𝑣𝑡 

The interest rate differential function is constructed by subtracting equation (7) of the foreign 

country from equation (4) of the domestic country, yielding: 

𝑖𝑡 − 𝑖𝑡
∗ = 𝛼 + 𝛼𝑑𝜋𝜋𝑡 − 𝛼𝑓𝜋𝜋𝑡

∗ + 𝛼𝑑𝑦𝑦𝑡 − 𝛼𝑓𝑦𝑦𝑡
∗ − 𝛼𝑞𝑞𝑡

∗ + 𝜌𝑑𝑖𝑡−1 − 𝜌𝑓𝑖𝑡−1
∗ + 𝜂𝑡, 

where * denotes foreign variables, 𝑑 are domestic coefficients, 𝑓 are foreign coefficients, 𝛼 is 

a constant, 𝛼𝜋 =  𝜆(1 − 𝜌),  𝛼𝑦 =  𝛾(1 − 𝜌) and 𝛼𝑞 =  𝛿(1 − 𝜌). 

 

Molodtsova & Papell (2009) show that equation (8) can be combined with a series of 

predictions to construct an exchange rate forecasting equation. The first prediction is that 

higher inflation in the domestic country will lead to exchange rate appreciation. Vice versa, 

higher inflation in the foreign country will lead to an exchange rate depreciation. Second, an 

increase in the output gap domestically will cause the central bank to raise interest rates, 

leading to an appreciation of the currency. If the output gap increases in the foreign country, 

raised foreign interest rates will depreciate the domestic currency. Third, an increase in the 

real exchange rate in the foreign country is predicted to lead to higher interest rates in the 

foreign country, causing a depreciation of the domestic currency. Finally, if the interest rate 

smoothing assumption hold, an increase in the lagged interest rate is predicted to lead to higher 

current and future interest rates. According to the uncovered interest parity, raised interest 

rates will result in an immediate appreciation of the domestic currency and forecasted 

depreciation. However, empirical evidence suggests that both an immediate and forecasted 

appreciation is a more reasonable assumption. Gourincha & Tornell (2004), e.g., provide 

survey evidence that investors tend to underestimate the persistence of interest rate shocks. 

This causes the currency to appreciate for longer than uncovered interest rate parity predicts, 

as investors gradually revise their beliefs about the persistence of the shock. The exchange 

rate forecasting equation can then be constructed as: 

 

∆𝑠𝑡+1 = 𝜔 − 𝜔𝑑𝜋𝜋𝑡 + 𝜔𝑓𝜋𝜋𝑡
∗ + 𝜔𝑑𝑦𝑦𝑡 − 𝜔𝑓𝑦𝑦𝑡

∗ − 𝜔𝑞𝑞𝑡
∗ − 𝜔𝑑𝑖𝑖𝑡−1 − 𝜔𝑓𝑖𝑖𝑡−1

∗ + 𝜂𝑡, 

 

where 𝑠𝑡 is the log of the nominal exchange rate expressed in domestic currency terms.   

(8) 

(7) 

(9) 
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2.5.2 Taylor Rule Model Variations 

Equation (9) expresses an exchange rate determination model with asymmetric Taylor Rule 

fundamentals and interest rate smoothing. It can be altered to produce several different 

variations with slightly different interpretations. In our empirical analysis, four different 

variations are used: a model with asymmetric Taylor Rule fundamentals with and without 

smoothing and a model with symmetric Taylor Rule fundamentals with and without 

smoothing. The fundamentals are symmetric if the foreign central bank does not target the 

exchange rate level for which purchasing power parity holds, in which case 𝛿 = 𝛼𝑞 = 0. If 

the actual nominal interest rate is assumed to adjust to the target rate within the same period, 

the model is specified without smoothing, in which case 𝜌𝑑 = 𝜌𝑓 = 0. Additionally, the model 

can be specified as homogenous or heterogeneous. The model is homogenous if the inflation-

, output gap- and interest rate smoothing coefficients are the same domestically and abroad, 

i.e., 𝛼𝑑𝜋 = 𝛼𝑓𝜋, 𝛼𝑑𝑦 = 𝛼𝑓𝑦, and 𝜌𝑑 = 𝜌𝑓, and heterogenous otherwise. Finally, the constant 

𝛼 = 0 if the inflation-, inflation target-, interest rate smoothing-, and equilibrium real interest 

rate coefficients are the same between the domestic and foreign country. 

2.5.3 Empirical Evidence of Taylor Rule Models 

Compared to the models and theories explored earlier in this chapter, Taylor rule fundamentals 

have generally been found to improve forecasting ability in out-of-sample exchange rate 

forecasting in the short term. E.g., using 16 different Taylor rule variations, Molodtsova & 

Papell (2009) find evidence of short-term out-of-sample exchange rate predictability in eleven 

currency pairs. The evidence is more assertive with Taylor rule models than with conventional 

models. A symmetric model with heterogenous coefficients, smoothing, and a constant 

achieve the most robust results. However, beyond forecasting horizons of six months, the 

exchange rate predictability is generally found to be relatively poor. Furthermore, evidence of 

short-term exchange rate predictability is not without controversy. Rogoff & Stavrakeva 

(2008) argue that evidence of short-term exchange rate predictability in structural models is 

overstated due to misinterpretations of "new out-of-sample tests for nested models, 

overreliance on asymptotic test statistics and failure to sufficiently check robustness to 

alternative time windows" (p. 1). 
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2.6 Behavioural Equilibrium Exchange Rate Model 

As pointed out in section 2.3.3, high volatility and slow mean reversions have raised questions 

about the usefulness of purchasing power parity as an isolated measure of the equilibrium 

exchange rate. Several approaches have been suggested to model the sources of these 

violations. One such approach is the behavioral equilibrium exchange rate (BEER) approach 

developed by Clark & MacDonald (1998). The principle of the BEER approach is that 

fundamental macroeconomic factors explain the slow mean reversion observed in empirical 

tests of purchasing power parity. The approach is not based on any specific model and, as 

such, various metrics may be employed during estimation.  

Following Alstad (2010), the BEER approach is based on real uncovered interest rate parity: 

𝐸𝑘(𝑞𝑡+𝑘) − 𝑞𝑡 = 𝑟𝑡,𝑘 − 𝑟𝑡.𝑘
∗ , 

where 𝑞 is the logarithm of the real exchange rate, 𝑟𝑡,𝑘 the k-period real domestic interest rate, 

and 𝑟𝑡.𝑘
∗  the real foreign interest rate. Under the assumption that there is a long-run linear 

relationship between the exchange rate and economic fundamentals, the expected real interest 

rate can be written as: 

𝐸(𝑞) = 𝐸(𝛼 + 𝛽′𝑀), 

where 𝑀 is a vector of economic fundamentals, 𝛼 a constant, and 𝛽′ a vector of reduced-form 

coefficients. Thus, the model is equivalent to purchasing power parity if 𝛽 = 0, as the long-

run real exchange rate is expected to be constant. This is when the long-run economic variables 

are at their equilibrium levels. Deviations in the real exchange rate from the constant level are 

called total misalignments, while deviations from the equation at any point in time are referred 

to as current misalignments. Alstad shows that inserting equation (11) into (10) yields: 

𝑞 = 𝛼 + 𝛽′𝐸(𝑀) − (𝑟 − 𝑟∗) 

Under the BEER approach, the logarithm of the real exchange rate thus depends on the 

constant 𝛼, a vector of economic fundamentals 𝑀, and an interest differential (𝑟 − 𝑟∗). As 

pointed out earlier, various metrics may be employed during estimation. What variables to 

include in the vector of economic fundamentals is primarily an empirical question. Section 4.1 

presents the data variables we have chosen to include in this thesis and briefly reviews the 

(10) 

(11) 
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empirical evidence associated with each variable in earlier analyses of the Norwegian krone 

exchange rate. 
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3. Methodology 

This chapter presents the methodology applied in the empirical analysis and explains the 

underlying econometric theory. First, we present the general forecasting framework applied to 

estimate the point- and density forecasts, derived from ordinary least squares and quantile 

regression. Next, we provide a brief description of the point forecasting procedure and the 

underlying statistical assumptions of ordinary least squares. Following that, we introduce the 

concept of density forecasting and present a step-by-step approach to how the forecasted 

densities are generated. Furthermore, we present regression diagnostics applied to investigate 

whether the statistical assumptions of OLS and quantile regression hold. Finally, we give an 

overview of the methods and statistics used to evaluate the forecasts. 

3.1 Forecasting Framework 

This subsection discusses the forecasting framework applied in the empirical analysis. 

Consistent with the Meese & Rogoff puzzle literature, we apply pseudo-out-of-sample 

forecasting. The models are estimated using rolling-window estimation with a window size of 

120 observations. The point and density forecasts are then forecasted using a direct forecasting 

method for horizons of one-, three-, six- and twelve months. Finally, the output for the 

structural models is benchmarked against a driftless random walk model. The forecasting 

methodology and the choices we have made are detailed further in the following. 

3.1.1 Pseudo Out-of-Sample Forecasting 

It is well established within the forecasting literature that a good in-sample fit of a forecasting 

model does not necessarily translate into good out-of-sample performance. A common cause 

for this is that data has been overfitted, i.e., the model is fitted with more parameters than what 

can be justified by the underlying structure of the data. Overfitting causes noise from the 

estimation period to be extracted to the fitted model, often leading to higher error rates out-of-

sample. The out-of-sample forecasting method aims to address this issue. In true out-of-sample 

forecasting, forecasts for the future are constructed in real-time using a model where 

parameters are estimated by data available up until and including today. Given the time-

consuming nature of this exercise, one typically relies on pseudo out-of-sample forecasting, 

where one simulates this exercise using an historical date 𝑇0 < 𝑇 rather than today's date 𝑇 as 
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the starting point for the forecast period. The forecast is then computed for the date 𝑇 + ℎ and 

repeated for all dates in the forecast period. 

3.1.2 Rolling Window Estimation 

There are a few different options to consider when specifying a model for pseudo out-sample 

forecasting. Among other things, this involves deciding on a forecasting scheme. Recursive- 

and rolling window estimation are the most common options in practice. In a recursive 

approach, sample data from 𝑡 = 1, … , 𝑇 is used to estimate the forecast model, where 𝑇 is the 

time period where the ℎ-step ahead forecast is conducted. When the forecast from period 𝑇 is 

made, the sample is increased by one observation, and the model is re-estimated for period 

𝑇 + 1, and so on. The starting point of the sample data is anchored to 𝑡 = 1, meaning that the 

estimation window expands as 𝑇 increases. This is where recursive window estimation differs 

from rolling window estimation. In rolling window estimation, the estimation window is fixed 

to a set number of sample observations. Thus, the forecast model for period 𝑇 + 1 is estimated 

using sample data from 𝑡 = 2, … , 𝑇 + 1, rather than 𝑡 = 1, … , 𝑇 + 1. 

Rolling window estimation is advantageous in cases where the independent variable's ability 

to forecast the dependent variable is time-varying, as it only uses the most recent observations 

to forecast the parameters. A growing strand of the literature concludes that the predictive 

content of financial and macroeconomic time series is time-varying (Rossi, 2013). In Norway, 

suggestions have been made that the weak Norwegian krone exchange rate observed in recent 

years results from increased climate transition risk (Kapfhammer et al., 2020), causing the 

currency to decouple from the oil price. Given the above, we opt to use rolling window 

estimation in this thesis. 

There are no general guidelines for how many observations to include in the estimation 

window. In the literature on out-of-sample exchange rate forecasting, the number of 

observations ranges from a few dozen to several hundred. In general, fewer observations will 

allow the models to adapt more quickly to structural changes in the predictive content. 

However, too few observations could also cause the coefficient parameters to be estimated 

unreliably. Hence, we use 120 observations in this thesis, i.e., ten years of data. This is line 

with, e.g., Molodtsova & Papell (2009). 
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3.1.3 Direct Forecasting 

In addition to the forecast estimation scheme, a forecaster also faces options concerning the 

forecasting method itself. In their influential paper, Meese & Rogoff (1983) use future realized 

fundamentals to prove that fundamental models do not forecasts exchange rates better than a 

random walk model. However, given that a pseudo out-of-sample model simulates out-of-

sample forecasting, one would typically only use the information available at the time period 

the multiple step-ahead forecasts are made. The forecaster is then faced with the choice of 

making a direct forecast using lagged fundamental variables or using an iterative forecast 

method. In the direct forecast method, the multiple step-ahead forecast is made directly, 

without forecasting the intermediary horizons. Thus, the forecasted value is obtained using 

only lagged fundamentals that are available at the time the forecast is made as predictors. In 

the iterative forecast method, the predictors for the next period are estimated using an 

autoregressive process. The forecasted predictors are then used as inputs to forecast the 

dependent variable. The process is iterated for all time periods until the multiple step-ahead 

forecast for the given forecast horizon is obtained. Rossi (2013) notes that, for single equation 

linear models, the choice of independent variables matters more than the forecasting method. 

Furthermore, iterative forecasts are more susceptible to model misspecification (Marcellino et 

al., 2006). Hence, we use direct forecasting with lagged fundamentals in this thesis.  

The forecast horizon in the literature ranges from short horizons of one month to long horizons 

of around five years. As described in section 2, the empirical evidence supporting fundamental 

model's predictability of exchange rates varies depending on the forecast horizon. It is 

generally advised to select a forecast horizon suited to the given model, which for a Taylor 

rule model could mean twelve months and for a purchasing power parity model could mean 

60 months. However, given the relatively short estimation window and the use of first-

differenced predictors at a monthly frequency, we opt to limit the forecast horizon to up to 

twelve months in this thesis. 

3.1.4 Random Walk Model 

Building on Meese & Rogoff's (1983) findings, it has become standard within the literature to 

use a driftless random walk model as a benchmark for testing exchange rate models. This is 

also considered the toughest benchmark to beat (Rossi, 2013). Hence, this is what we use as 

the benchmark in this thesis. A random walk is a time series process consisting of a succession 
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of random steps. At time 𝑡, 𝑦 is obtained by taking the previous value 𝑦𝑡−1 and adding an 

independent random variable 𝑒𝑡 with a zero mean.  

𝑦𝑡 = 𝑦𝑡−1 + 𝑒𝑡 

By using repeated substitution and taking the expected value of both sides, it can be shown 

that 𝐸(𝑦𝑡) = 𝐸(𝑦0) for all 𝑡 ≥ 1, i.e., the best prediction of 𝑦𝑡 is simply the previous value 

𝑦𝑡−1. 

𝑦𝑡 = 𝑒𝑡 + 𝑒𝑡−1 + ⋯ + 𝑒1 + 𝑦0 

𝐸(𝑦𝑡) = 𝐸(𝑒𝑡) + 𝐸(𝑒𝑡−1) + ⋯ + 𝐸(𝑒1) + 𝐸(𝑦0) =  𝐸(𝑦𝑡) = 𝐸(𝑦0) for all 𝑡 ≥ 1 

Unlike the mean, the variance of a random walk process depends on 𝑡. Following 

Wooldridge (2018), the variance can be computed by assuming 𝑦0 is non-random so that 

𝑉𝑎𝑟(𝑦0) = 0. Assuming 𝑒𝑡 is independent and identically distributed, it can be shown that 

the variance of a random walk model increases as a linear function of time.  

𝑉𝑎𝑟(𝑦𝑡) = 𝑉𝑎𝑟(𝑒𝑡) + 𝑉𝑎𝑟(𝑒𝑡−1) + ⋯ 𝑉𝑎𝑟(𝑒1) = 𝜎𝑒
2𝑡 

The above implies that a random walk process is non-stationary. It displays highly persistent 

behavior, as no matter how far into the future we try to predict 𝑦𝑡+ℎ, today's value 𝑦𝑡 will 

always be the best prediction. Importantly, as the variance increases with time, the confidence 

interval of a random walk model will grow larger as ℎ increases.  

3.2 Point Forecasting with OLS and Underlying 
Assumptions 

The point forecast models in section 5 are estimated using ordinary least squares (OLS). This 

is a method for estimating the unknown parameters in a linear regression model that in its 

simplest form can be expressed as 𝑦𝑡+ℎ = 𝛼 + 𝛽𝑥𝑡 + 𝜀𝑡+ℎ, where 𝛼 and 𝛽 are the true, 

unobserved parameters and 𝜀𝑡+ℎ is the error term. The method involves solving an 

optimization problem that minimizes the sum of the squared differences between the observed 

values and the predicted values. In other terms, OLS solves for the parameters 𝛼̂ and 𝛽̂ that 

minimizes the sum of squared errors.  Under a specific set of assumptions, the OLS estimator 

is, according to the Gauss-Markov theorem, the best unbiased linear estimator of the real 
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values 𝛼 and 𝛽 (Wooldridge, 2018). In the following subsections, these assumptions will be 

presented. The statistics used to test the relevant OLS assumptions are outlined in section 3.4. 

3.2.1 Assumption 1: Linearity, Stationarity and Weak Dependence 

"The stochastic process {(𝑥𝑡1, 𝑥𝑡2, … , 𝑥𝑡𝑘, 𝑦𝑡): 𝑡 = 1,2, … , 𝑛} follows the linear model 

𝑦𝑡 = 𝛽0 + 𝛽1𝑥𝑡1 + ⋯ + 𝛽𝑘𝑥𝑡𝑘 + 𝑢𝑡 

where {𝑢𝑡: 𝑡 = 1,2, … , 𝑛} is the sequences of errors or disturbances. Here, 𝑛 is the number of 

observations" (Wooldridge, 2018, p. 370). 

The first assumption states that the time series process follows a model that is linear in its 

parameters. For some time-series problems, this assumption is not satisfied. In this case large 

sample properties of OLS must be applied. The above assumption is then extended to include 

that {(𝑥𝑡, 𝑦𝑡): 𝑡 = 1,2, … , 𝑛} is stationary and weakly dependent. This implies that the law of 

large numbers and the central limit theorem can be applied to sample means8. 

Stationarity intuitively means that the statistical properties of a time series process do not 

change over time. In mathematical terms, (Wooldridge, 2018) defines the stochastic process  

{𝑥𝑡: 𝑡 = 1,2, … , 𝑛} as stationary "if for every collection of time indices 1 ≤ 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑚, 

the joint distribution of (𝑥𝑡1
, 𝑥𝑡2

, … , 𝑥𝑡𝑚
) is the same as the joint distribution of 

(𝑥𝑡1+ℎ, 𝑥𝑡2+ℎ, … , 𝑥𝑡𝑚+ℎ) for all integers ℎ ≥ 1" (p. 367). If the stochastic process has a finite 

second moment, a weaker form of stationarity suffices. The stochastic process is then said to 

be covariance stationary if "(i) 𝐸(𝑥𝑡) is constant, (ii) 𝑉𝑎𝑟(𝑥𝑡) is constant and (iii) for any 

𝑡, ℎ ≥ 1, 𝐶𝑜𝑣(𝑥𝑡 , 𝑥𝑡+ℎ) depends only on ℎ and not on 𝑡" (p. 367). The use of non-stationary 

time series in OLS regression may lead to spurious results, as inference cannot be drawn from 

a time series if the statistical properties are time-variant. However, a regression model with 

two non-stationary variables will not generate spurious results if there is a linear relationship 

between the variables that in itself is stationary. If such a relationship is present, the variables 

are said to be cointegrated. We return to the topic of cointegration in section 4.2.2. 

 

8 This means that the sampling distribution of the sample means approximates a normal distribution as the sample size grows 

regardless of the variable's distribution in the population. 
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The concept of weak dependence deals with how strongly related the random variables 𝑥𝑡 and 

𝑥𝑡+ℎ are allowed to be as the time distance ℎ increases. According to (Wooldridge, 2018), a 

time series process {𝑥𝑡: 𝑡 = 1,2, … } is, loosely speaking, "said to be weakly dependent if 𝑥𝑡 

and 𝑥𝑡+ℎ are 'almost independent' as ℎ increases without bound" (p. 368). A covariance 

stationary time series is said to be weakly dependent if "if the correlation between 𝑥𝑡 and 𝑥𝑡+ℎ 

goes to zero 'sufficiently quickly' as ℎ → ∞" (p. 368). Most economic time series are highly 

persistent and must be transformed to satisfy the weak dependence criteria. Often, this requires 

first differencing the time series process. When a time-series process upon first differencing 

exhibits weak dependence, it is said to be integrated of order one, or I(1). When a time-series 

process naturally exhibits weak dependence, it is said to be integrated of order zero, or I(0). 

3.2.2 Assumption 2: No Perfect Multicollinearity 

"In the sample (and therefore in the underlying time series process), no independent variable 

is constant nor a perfect linear combination of the others" (Wooldridge, 2018, p. 340). 

The above assumption implies that OLS cannot estimate a model that suffers from perfect 

multicollinearity. Perfect multicollinearity arises if two or more independent variables exhibit 

a perfect linear relationship, i.e., they are perfectly predictable and not random. When this 

occurs, regression coefficients cannot be determined, and standard errors become infinite. 

Thus, no inference is obtained from the regression model. Although independent variables 

cannot be perfectly correlated under this assumption, they can be near perfectly correlated.  

3.2.3 Assumption 3: Zero Conditional Mean 

"For each 𝑡, the expected value of the error 𝑢𝑡 , given the explanatory variables for all time 

periods, is zero. Mathematically, 𝐸(𝑢𝑡|𝑋) = 0, 𝑡 = 1,2, … , 𝑛" (Wooldridge, 2018, p. 340). 

This assumption implies that the error term 𝑢 in any given time period 𝑡 must be uncorrelated 

with each explanatory variable in all time periods. When this assumption is satisfied, 

explanatory variables are strictly exogenous. Under large sample properties of OLS, the 

assumption is relaxed to require only that the explanatory variables are contemporaneously 

exogenous. Explanatory variables are said to be contemporaneously exogenous when the error 

term 𝑢 in the given time period 𝑡 is uncorrelated with the explanatory variables in the same 

time period, i.e., no restrictions are placed on how 𝑢𝑡 relates to the explanatory variables in 

other time periods. Contemporaneous exogeneity, in other words, requires 𝑢𝑡 to have zero 



 32 

conditional mean and to be uncorrelated with 𝑥𝑡𝑗. Mathematically, this can be expressed as 

𝐸(𝑢𝑡) = 0, 𝐶𝑜𝑣(𝑥𝑡𝑗 , 𝑢𝑡) = 0, 𝑗 = 1, … , 𝑘. 

3.2.4 Assumption 4: Homoskedasticity 

"Conditional on 𝑋, the variance of 𝑢𝑡 is the same for all 𝑡: 𝑉𝑎𝑟(𝑢𝑡|𝑋) = 𝑉𝑎𝑟(𝑢𝑡) = 𝜎2, 𝑡 =

1,2, … , 𝑛" (Wooldridge, 2018, p. 342). 

The fourth assumption means that the variance of the error term is consistent across all 

observations, i.e., the variance does not depend on 𝑋. This condition, which is known as 

homoskedasticity, is fulfilled when 𝑢𝑡 and 𝑋 are independent, and 𝑉𝑎𝑟(𝑢𝑡) is constant over 

time. When the condition is not fulfilled, the errors are heteroskedastic. Heteroskedasticity 

causes the estimators of the variances to be biased. Thus, the standard errors, and the test 

statistics that utilize these standard errors, are invalidated. Under large sample properties of 

OLS, the assumption is relaxed to require only that the errors are contemporaneously 

homoscedastic. That is, conditioning is only on the current time period and not across all 

observations. Mathematically, this is expressed as 𝑉𝑎𝑟(𝑢𝑡|𝑥𝑡) = 𝜎2. 

3.2.5 Assumption 5: No Serial Correlation 

"Conditional on 𝑋, the errors in two different time periods are uncorrelated: 

𝐶𝑜𝑟𝑟(𝑢𝑡 , 𝑢𝑠|𝑋) = 0, for all 𝑡 ≠ 𝑠" (Wooldridge, 2018, p. 342). 

The above implies that conditional on 𝑋, one observation of the error term should not have 

predictive value over the following observation. When this assumption is not satisfied, the 

errors are said to suffer from serial correlation or autocorrelation. This causes incorrect 

standard errors and thereby invalidates t-statistics and F-statistics. The interpretation under 

large sample properties of OLS is nearly identical, except conditioning is only on the 

explanatory variables in the same time periods as 𝑢𝑡 and 𝑢𝑠, i.e., for all 𝑡 ≠

𝑠, 𝐸(𝑢𝑡 , 𝑢𝑠|𝑥𝑡 , 𝑥𝑠) = 0. 

3.2.6 Assumption 6: Normality 

"The errors 𝑢𝑡 are independent of 𝑋 and are independently and identically distributed as 

𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎2)" (Wooldridge, 2018, p. 344). 
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Under classical linear model assumptions, a final assumption is needed to validate OLS 

standard errors, t-statistics, and F-statistics. This assumption implies that the error terms are 

normally distributed, while the ratio of each coefficient to its standard error is t-distributed. 

Note that a similar assumption is not required under large sample properties of OLS, as 

assumption one through five allows the use of central limit theorems to show that the OLS 

estimators will approximate a normal distribution in large samples.  

3.2.7 Inference 

Under classical linear model assumptions, assumptions one through three implies that the OLS 

coefficient estimator is unbiased. When assumptions four and five also hold, the OLS 

estimator of the variance is unbiased, meaning standard tools for OLS inference can be used. 

Under assumptions one through five, the OLS estimators are the best linear unbiased 

estimators of the real values. Adding assumption six, t-statistics and F-statistics can also be 

used. Under large sample properties of OLS, assumptions one through three implies that the 

OLS estimator is consistent. Under assumptions one through five, the OLS estimators are 

asymptotically normally distributed. Furthermore, standard errors, t-statistics, F-statistics, and 

LM-statistics are asymptotically valid. Although the OLS estimators are consistent when large 

sample properties hold, they are not necessarily the best unbiased estimators of the real values.  

3.3 Density Forecasting 

In general, a density forecast can be defined as an estimate of the probability distribution of 

the possible future values of the dependent variable 𝑦. While a point forecast measures the 

best estimate of 𝑦, a density forecast provides a complete description of the uncertainty 

associated with this estimate (Rossi, 2014). The following subsection starts with a presentation 

of the general approaches to construct density forecasts. Next, we provide a brief summary of 

empirical evidence concerning the distribution of exchange rate returns. Finally, we present 

the chosen procedures to estimate the densities. 

3.3.1 Parametric, Non-Parametric and Semi-Parametric 
Distributions 

We can distinguish between two general approaches to construct density forecasts. One is a 

parametric approach, where parameter estimation of the densities is based on the assumed 



 34 

probability distribution (Zhang, et al., 2020). The normal distribution is a commonly used 

parametric model. This distribution requires two input parameters: the mean 𝜇, and the 

standard deviation 𝜎. The parameters are typically estimated through linear models, such as 

OLS. Here, the estimated mean 𝜇̂ is the point forecast, and the estimated standard deviation 

𝜎̂  is the standard deviation of the in-sample forecast errors. Parametric models are easy to 

work with, estimate, and interpret. A potential drawback of parametric models is that they are 

rigid and may be inadequate if the relationship between random variables does not follow the 

prespecified distribution (Mahmoud, 2021). 

A second approach, which has received increasing attention, is to construct the densities by 

the use of non-parametric models. The idea behind non-parametric density estimation is to 

treat the data set as if it were drawn from some unspecific or unknown empirical distribution 

function. Non-parametric models have the advantage of being more flexible compared to 

parametric models (Mahmoud, 2021). A common method to construct a non-parametric 

density forecast is by the use of quantile regression, followed by a smoothing procedure to 

obtain the densities (van der Meer et al., 2018). This method is detailed in the next section. 

A potential disadvantage of the non-parametric approach is that the constructed densities will 

be completely dependent on the data sample. This represents a drawback if the sample size is 

too small, or in general not representative of the entire population. In addition, the power of 

statistical tests based on non-parametric densities is known to decrease as the number of 

explanatory variables increases. This is known as the "curse of dimensionality" (Härdle et al., 

2004). 

Consequently, a third way of constructing density forecasts has emerged, which combines the 

features of the parametric and non-parametric approach. This is known as a semi-parametric 

approach. Semi-parametric models overcome some of the drawbacks of non-parametric 

models, while still providing more flexibility compared to parametric models (Mahmoud, 

2021). 

3.3.2 Density Estimation 

The empirical literature on the distribution of exchange rate returns generally agrees that daily 

exchange rate returns are more peaked and exhibit more probability mass in the tails compared 

to a normal distribution. This is shown irrespective of the exchange rate regime (de Vries & 

Leuven, 1994). However, Coppes (1995) argues that monthly exchange rate returns are shown 
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to be more normally distributed. In light of the, to some extent, inconclusive empirical 

literature regarding the distribution of monthly exchange rate returns, we consider two types 

of densities for each model.  

The first density is a normal distribution, where the probability density function (PDF) can be 

defined as: 

𝑓(𝑦;  𝜇, 𝜎) =
1

𝜎
Φ (

𝑦−𝜇

𝜎
), 

  

where Φ( . ) is the PDF of the standard normal distribution, 𝜇 the location parameter, and 𝜎 

the scale parameter. The parameters are estimated using OLS, with the general equation: 

  

𝑠𝑡+ℎ − 𝑠𝑡 = 𝛼 +  𝛽𝑥𝑡 + 𝜀𝑡+ℎ, 

where the dependent variable 𝑠𝑡+h − 𝑠𝑡 is the ℎ-month-ahead exchange rate return,  𝑥𝑡 a vector 

of explanatory variables, and 𝜀𝑡+h the error term. The estimate of the location parameter is the 

point forecast 𝜇̂𝑡+ℎ = 𝛼 +  𝛽𝑥𝑡, and the estimate of the scale parameter is the standard 

deviation of the in-sample errors, 𝜎̂𝑡+h = √𝑉𝑎𝑟(𝜀𝑡+h).  

 

To account for the possibility of monthly exchange rate returns not being normally distributed, 

we consider a second approach to estimate the densities. Here, we follow the same procedure 

as in Adrian et al. (2019), where they use a two-step semi-parametrical approach to construct 

density forecasts for US output growth. The same method has also been employed by De 

Santis & Van der Veken (2020) for a risk assessment of US output growth and Yapi (2020) 

for exchange rates. In the following, we present a thorough explanation of the procedure.  

 

The first step is to estimate the conditional quantiles. This is conducted by use of the quantile 

regression framework put forward by Keonker & Bassett (1978). Quantile regression differs 

from OLS, as it is based on asymmetric minimization of the weighted absolute errors. Koenker 

& Bassett argue that quantile regression estimators are more robust and efficient compared to 

OLS in a non-gaussian setting.  

Let  𝑦𝑡+h denote the ℎ-month-ahead exchange rate return (𝑠𝑡+h − 𝑠𝑡),  and 𝑥𝑡 the vector of 

explanatory variables. We model the different quantiles of the exchange rate return’s 

conditional distribution independently by estimating: 
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𝛽̂𝜏 = argmin
𝛽𝜏

∑(𝜏 ∗ 𝟙(𝑦𝑡+h≥𝑥𝑡𝛽)|𝑦𝑡+h − 𝑥𝑡𝛽| + (1 − 𝜏) ∗ 𝟙(𝑦𝑡+h< 𝑥𝑡𝛽)|𝑦𝑡+h − 𝑥𝑡𝛽|),

𝑇−h

𝑡=1

 

where the indicator function  𝟙(𝑦𝑡+h≥𝑥𝑡𝛽) = {
1,   𝑖𝑓 𝑦𝑡+h ≥ 𝑥𝑡𝛽
0,   𝑖𝑓  𝑦𝑡+h < 𝑥𝑡𝛽

  

The predicted values from these quantile regressions 𝑄̂𝑦𝑡+h|𝑥𝑡
(𝜏|𝑥𝑡) = 𝑥𝑡𝛽̂𝜏 corresponds to the 

quantiles 𝜏 of the predictive distribution of 𝑦𝑡+h conditional on  𝑥𝑡 .   For a low (high) level of 

𝜏, the 𝜏th conditional quantile of the exchange rate return (𝑥𝑡𝛽̂𝜏) describes the behavior of the 

dependent variable 𝑦𝑡+h at the left (right) tail of the distribution.  

In the second step, the conditional quantiles 𝑄̂𝑡(𝜏|𝑥𝑡) obtained from the quantile regressions 

are used to fit a skewed t-distribution. The PDF of the skewed t-distribution can be denoted: 

𝑓(𝑦;  𝜇,  𝜎,  𝛼,  𝜈) =
2

𝜎
𝑡 (

𝑦−𝜇

𝜎
; 𝜈) 𝑇 (𝛼

𝑦−𝜇

𝜎 √
𝜈+1

𝜈+(
𝑦−𝜇

𝜎
)

; 𝜈 + 1), 

where 𝑡(∙) and 𝑇(∙) respectively denote the PDF and CDF of the student t-distribution. The 

skewed t-distribution has four parameters, where 𝜇 is the location parameter, 𝜎 the scale 

parameter, 𝛼 the shape parameter, and 𝜈 the fatness parameter. The shape parameter 𝛼 is where 

the skewed t-distribution differs from the student's t-distribution.  

An advantage of using the skewed t-distribution is that it provides flexibility. For example, 

when 𝛼 = 0, the skewed t-distribution reduces to a t-distribution. When  𝛼 = 0 and 𝜈 = ∞, it 

reduces to a normal distribution, and when  𝜈 = ∞ and 𝛼 ≠ 0,  the distribution is skewed 

normal. 

To obtain the parameter estimates of the skewed t-distribution, the method uses an 

optimization procedure where the estimates of the 5th, 25th, 75th, and 95th quantile from 

quantile regression serve as input variables. The optimization procedure minimizes the 

squared distance between the estimated conditional quantiles and the inverse cumulative 

density function of the skewed t-distribution. The equation is defined as: 

{μ̂t+h, 𝜎̂𝑡+ℎ, 𝛼̂𝑡+ℎ, 𝜈̂𝑡+ℎ} =  argmin
𝜇, 𝜎, 𝛼, 𝜈

∑ (𝑄̂yt+h
(𝜏|𝑥𝑡) −  𝐹−1(𝜏,  𝜇,  𝜎,  𝛼,  𝜈))

2

𝜏

, 
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where 𝐹 is the cumulative probability distribution function of the skewed t-distribution and 𝑓 

is the associated probability density function. 

3.4 Regression Diagnostics 

In section 3.2, we presented both the classical linear model assumptions and the large sample 

assumptions of OLS. Due to the nature of the time-series data that underlies the empirical 

models, we appeal to large sample properties of OLS in this thesis. Furthermore, as we do not 

attempt to verify the causality of the explanatory variables, we are mainly concerned with the 

OLS estimators being consistent, i.e., that assumption one through three of large sample 

properties of OLS holds. Out of these three, it is primarily the stationarity assumption that is 

tangible to test. For this purpose, we apply the augmented Dickey-Fuller and KPSS tests.   

3.4.1 Augmented Dickey-Fuller Test 

A time series that contains a unit root displays a systematic, unpredictable pattern. Unit roots 

are, in other words, a cause of non-stationarity, meaning a time series variable can be tested 

for stationarity by assessing whether or not it possesses a unit root. Several tests are available 

for this purpose, with the most common one being the Dickey-Fuller test. The Dickey-Fuller 

test tests whether 𝜌 = 1 in the model 𝑦𝑡 = 𝛼 + 𝜌𝑦𝑡−1 + 𝑒𝑡, in which case 𝑦𝑡 has a unit root. 

A convenient way of re-writing this equation is to detrend the model to the form  

Δ𝑦𝑡 = 𝛼 + 𝜃𝑦𝑡−1 + 𝑒𝑡, 

and define 𝜃 = 𝜌 − 1 (Wooldridge, 2018). Given 𝐸(𝑒𝑡|𝑦𝑡−1, 𝑦𝑡−2, … , 𝑦0) = 0, the Dickey-

Fuller test can then be applied to test 𝐻0: 𝜃 = 0 against 𝐻𝐴: 𝜃 ≠ 0. At the 5% significance 

level, the null hypothesis of a unit root presence is rejected in favor of the alternative 

hypothesis that the data is stationary at a critical value of 𝑡𝜃̂ < −2,86. 

In models with more complicated dynamics, the Dickey-Fuller test can be extended to clean 

up serial correlation in Δ𝑦𝑡. The above formula is then augmented to include lags, e.g.: 

Δ𝑦𝑡 = 𝛼 + 𝜃𝑦𝑡−1 + 𝛾1Δ𝑦𝑡−1 + 𝑒𝑡, 

where |𝛾1| < 1. The null hypothesis of a unit root presence is tested by regressing Δ𝑦𝑡 on 

𝑦𝑡−1, Δ𝑦𝑡−1, … , Δ𝑦𝑡−𝑝. The number of lags included determines how many time-delayed 
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expressions are required before the serial correlation in the error term is equal to zero. There 

are no hard rules to follow regarding how many lags to include. The data used in this thesis is 

monthly, in which case Wooldridge (2018) suggests one might include twelve lags. 

3.4.2 Kwiatkowski-Phillips-Schmidt-Shin Test 

Like the augmented Dickey-Fuller test, the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test 

is a type of unit root test that tests a time series for stationarity. Unlike the augmented Dickey-

Fuller test, the KPSS test can test for stationarity around a deterministic trend. This makes the 

test useful as a complementary diagnostic tool when testing for stationarity. Following 

Syczewska (2010), the KPSS model takes the form of: 

𝑦𝑡 = 𝜉𝑡 + 𝑟𝑡 + 𝜀𝑡, 

where 𝑟𝑡 =  𝑟𝑡−1 + 𝑢𝑡 . In this equation, 𝜉 is a deterministic trend and 𝑟𝑡 a random walk process, 

while 𝜀𝑡 and 𝑢𝑡 are error terms that by assumption are identically distributed independent 

random variables with an expected value of zero and constant variation.  

The KPSS test is applied to test the 𝐻0: 𝜎𝑢
2 = 0 against 𝐻𝐴: 𝜎𝑢

2 ≠ 0. If 𝜉 = 0, 𝑦𝑡 is stationary 

around the constant 𝑟0 under the null hypothesis, while 𝜉 ≠ 0 implies that 𝑦𝑡 is stationary 

around a linear trend. Here, we test the latter null hypothesis, in which case, the 𝐿𝑀-statistic 

is defined mathematically as follows:  

𝐿𝑀 = ∑ 𝑆𝑡
2𝑡

𝑖=1 /𝜎𝜀
2, 

where 𝑆𝑡 is a partial sum of errors. At the 5% significance level, the null hypothesis that the 

time series process is stationary is rejected in favor of the alternative hypothesis that a unit 

root is present at a critical value of 𝐿𝑀 > 0,463. 

3.5 Point Forecast Evaluation 

The forecast evaluation in the empirical analysis in this thesis is two-fold. We start by 

conducting a standard point forecast evaluation, followed by a density forecast evaluation. In 

this section, we outline the point forecast evaluation methodology. The first step is to compute 

the root mean squared error for every model and compare that to the random walk model. We 

then use the Diebold-Mariano test to assess the statistical significance of the results. 
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Additionally, we use the Pesaran-Timmermann test to assess whether the models are able to 

predict the directional change of the EUR/NOK exchange rate. The test statistics are detailed 

further below. 

3.5.1 Root Mean Square Error 

The root mean square error (RMSE) is a relative performance measure of point forecasts. It is 

defined as the square root of the mean squared error, which measures the average squared 

difference between fitted and observed values. RMSE is defined mathematically as follows: 

𝑅𝑀𝑆𝐸 = √∑ (𝑦̂𝑡−𝑦𝑡)2𝑇
𝑡=1

𝑇
, 

where 𝑦̂𝑡 is the point forecast made in period 𝑡 − ℎ, and 𝑦𝑡 is the observed value. Given that 

the errors are squared, equivalent errors with differentiated signs are equally weighted. This 

means that the RMSE is always positive. Thus, a lower RMSE also indicates a better fit. 

3.5.2 Diebold-Mariano Test 

Historically, assessments of forecast accuracy of point estimates revolved around comparing 

error measures like mean squared error and mean absolute errors between a forecast model 

and a benchmark model. However, limited attention was given to the issue of statistical 

significance. This was the basis of Diebold and Mariano's Comparing Predictive Accuracy 

(1995) paper, in which they proposed a general statistical test for comparing forecast accuracy. 

This test, known simply as the Diebold-Mariano test, has since gained wide traction in the 

forecasting literature. 

The Diebold-Mariano test is based on a sample path of loss differentials {𝑑𝑡}𝑡=1
𝑇 . If mean 

squared error is used as the loss function, then 𝑑𝑡 = 𝑒𝑡
2 − 𝑒̆𝑡

2, i.e., the loss differential is 

defined as the difference between the forecast error 𝑒𝑡
2 and the benchmark error 𝑒̆𝑡

2. A key 

assumption is that this loss differential is a covariance stationary time series. The 𝐷𝑀 statistic 

used to test 𝐻0: 𝐸(𝑒𝑡
2 − 𝑒̆𝑡

2) = 0 against 𝐻𝐴: 𝐸(𝑒𝑡
2 − 𝑒̆𝑡

2) ≠ 0 is defined as follows: 

𝐷𝑀 =
𝑑̅

√
2𝜋𝑓𝑑(0)

𝑇

, 
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where 𝐷𝑀 under the 𝐻0 asymptotically converge to a standard normal distribution 𝑁(0,1). 

The null hypothesis is rejected in favor of the alternative hypothesis that the forecast model 

has different levels of accuracy if the DM statistic falls outside the range of (−𝑧𝛼

2
,  𝑧𝛼

2
). The 

𝑧-value is the critical value from a standard normal distribution corresponding to half the 

desired significance level 𝛼. At a 5% significance level, this corresponds to 𝑧 = ±1,96. 

3.5.3 Pesaran-Timmermann Test 

It is often of interest to predict the proper directional movement of a time series in a financial 

context. This might not always coincide with returning small forecast errors. Hence, we find 

it beneficial to include a directional forecast accuracy test in our empirical analysis. For this, 

we utilize the Pesaran-Timmermann (1992) test, which is prominent within the literature.  

The test first defines 𝑦𝑡 as the return series of the actual value at time 𝑡, 𝑦̂𝑡 as the predictor 

value of 𝑦𝑡 based on information available at time 𝑡 − ℎ, and 𝑛 as the total number of 

observations in the forecast series. Then, the following dummy variables are calculated: 

𝑌𝑡 = 1 if 𝑦𝑡 > 0 and 𝑌𝑡 = 0 if 𝑦𝑡 ≤ 0 

𝑌̂𝑡 = 1 if 𝑦̂𝑡 > 0 and 𝑌̂𝑡 = 0 if 𝑦̂𝑡 ≤ 0 

𝑍𝑡 = 1 if 𝑦𝑡𝑦̂𝑡 > 0 and 𝑌𝑡 = 0 if 𝑦𝑡𝑦̂𝑡 ≤ 0 

Next, the test denotes 𝑃𝑦 =
1

𝑛
∑ 𝑌𝑡

𝑛
𝑡=1  and 𝑃𝑦̂ =

1

𝑛
∑ 𝑌̂𝑡

𝑛
𝑡=1 . This corresponds to the proportion 

of time that the actual dependent variable and its respective forecast is greater than zero. Under 

the assumption that 𝑦𝑡 and 𝑦̂𝑡 are independently distributed, the amount of correct sign 

predictions is binomially distributed with 𝑛 trials. The success probability is equal to:  

𝑃∗ = 𝑃𝑦𝑃𝑦̂ + (1 − 𝑃𝑦)(1 − 𝑃𝑦̂) 

The respective sample estimators equal: 

𝑃̂𝑦 =
1

𝑛
∑ 𝑦𝑡

𝑛
𝑡=1 , 𝑃̂𝑦̂ =

1

𝑛
∑ 𝑦̂𝑡

𝑛
𝑡=1  and 𝑃̂∗ = 𝑃̂𝑦𝑃̂𝑦̂ + (1 − 𝑃̂𝑦)(1 − 𝑃̂𝑦̂) 

Under the 𝐻0 that 𝑦𝑡 and 𝑦̂𝑡 are independently distributed, and thus that 𝑦̂𝑡 has no power in 

forecasting 𝑦𝑡, the test statistic is:  

𝑃𝑇 =
𝑃̂−𝑃̂∗

√𝑣𝑎𝑟(𝑃̂)−𝑣𝑎𝑟(𝑃̂)
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The null hypothesis is rejected in favor of the alternative hypothesis that 𝑦̂𝑡 has power in 

forecasting 𝑦𝑡 if 1 − 𝑧 < 𝑎, where 𝑧 is the critical value from a standard normal distribution 

corresponding to the 𝑃𝑇 statistic and 𝑎 is the desired significance level. At a 5% significance 

level, the critical 𝑧-value above which the null hypothesis is rejected is 1,64.  

3.6 Density Forecast Evaluation 

This section presents the density forecast evaluation framework adopted in the empirical 

analysis. Evaluating density forecasts might appear to be a difficult task, as the true sequence 

of density forecasts is never observed. However, there exist several reliable methods that are 

constructed for this purpose. We start by deriving the Probability Integral Transforms, which 

serves as input for the following calibration tests. These tests are the Anderson-Darling test 

and the Berkowitz test. We then outline the logarithmic score and a subsequent test statistic 

used to evaluate the relative performance of the forecasted densities. Finally, we describe risk 

measures to quantify appreciation and depreciation tail risk and a statistical test to evaluate 

these measures. The framework is detailed in the following.  

3.6.1 The Probability Integral Transform 

Diebold et al. (1998) put forward a widely used method to evaluate density forecasts by the 

use of the Probability Integral Transform (PIT). A PIT is the cumulative probability evaluated 

at the actual, realized value of the dependent variable. It measures the likelihood of observing 

a value less than the actual realized value, where the probability is measured by the density 

forecast (Rossi, 2014). 

Let the realization of the dependent variable 𝑦 be denoted by 𝑌𝑡. The forecasted density for 

the dependent variable is denoted 𝑓𝑡, where the forecast was made in period 𝑡 − ℎ. The PIT 𝑢𝑡 

is then given by: 

𝑢𝑡 = 𝐹̂𝑡(𝑌𝑡) =  ∫ 𝑓𝑡
𝑌𝑡

−∞
(𝑞)𝑑𝑞, 

where 𝐹̂𝑡 denotes the forecasted cumulative distribution function associated with 𝑓𝑡.  

Theory suggests that if the series of PITs {𝑢𝑡}𝑡=1
𝑇  are independent, identically distributed, and 

uniform over the interval (0,1), the forecasted densities are correctly specified (Diebold et al., 

1998). This can be denoted as {𝑢𝑡}𝑡=1
𝑇  ~ 𝑖. 𝑖. 𝑑.  𝑈(0,1). When this is the case, densities are 
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referred to as perfectly calibrated, meaning that the density forecast coincides with the true 

sequence of densities associated with the predicted variable (Knüppel, 2015).  For ℎ > 1, it is 

standard practice in the literature to omit the independence assumption as it well-known that 

multi step-ahead forecasts produce serially correlated forecast errors, leading to serially 

correlated PITs (Hall & Mitchell, 2007). Hall & Mitchell argue that even in the presence of 

serial correlation, the multi-step ahead density forecasts can be correctly specified.  

3.6.2 Anderson-Darling Test 

The uniformity property means that no matter whether we consider high or low realizations of 

the variable we are forecasting, the probability that the value is higher (lower) than the 

forecasted value is, on average, the same over time (Rossi, 2014). It then follows that a 

histogram of the PIT series takes the shape of a rectangle, and the subsequent empirical CDF 

follows a straight 45-degree line. As uniformity is a common property that must be in place 

for all forecast horizons in order for the density forecasts to be evaluated as well-calibrated, 

we devote a test solely for this property.   

The Anderson-Darling test assesses whether the PITs of the realized dependent variable with 

respect to the forecast densities follow 𝑈(0,1). Simulation exercises have documented the 

Anderson-Darling test's power advantage compared to other statistical tests for uniformity, 

such as the Kolmogorov-Smirnov test (Rossi, 2014). 

The test statistics is defined as: 

𝐴2 =  − 𝑇 −
1

𝑇
∑ (2𝑡 − 1)[ln 𝑈(𝑢𝑡) + ln(1 − 𝑈(𝑢𝑇+1−𝑡))] 𝑇

𝑡=1 , 

where 𝑈(∙) is the CDF of the uniform distribution. The null hypothesis that the data follow 

𝑈(0,1) is rejected in favor of the alternative hypothesis that the data do not follow 𝑈(0,1) if 

the test statistic is greater than the critical value corresponding to the desired significance level 

of the theoretical uniform distribution.  

3.6.3 Berkowitz Test 

Berkowitz (2001) argues that a drawback of statistical tests for uniformity is that they are not 

sufficiently powerful for small samples and do not account for the 𝑖. 𝑖. 𝑑 property. He proposed 

a test based on the inverse normal of the PITs, which is a joint test for the uniformity and the 
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𝑖. 𝑖. 𝑑 property. Let the inverse normal of the PITs be denoted 𝑧𝑡 = Φ−1(𝑢𝑡) =  Φ−1 (𝐹̂𝑡(𝑌𝑡)), 

where Φ−1 is the inverse normal of the standard normal distribution function. Under the null 

hypothesis, it follows that the sequence {𝑧𝑡}𝑡=1
𝑇 ~ 𝑖. 𝑖. 𝑑.  𝑁(0,1).  

The test is conducted using a first-order autoregressive model: 

zt =  𝜇 + 𝜌𝑧𝑡−1 + 𝜀𝑡 ,  with 𝑡 = 1,2, … , 𝑇 and 𝜀𝑡 ~ 𝑁(0, 𝜎2) 

If the null hypothesis is true, we have that  𝜇 = 0,  𝜌 = 0 𝑎𝑛𝑑 𝑣𝑎𝑟(𝜀𝑡) = 1. The test statistic 

is based on the log-likelihood function, defined as: 

ln 𝐿 = −
1

2
log(2𝜋) −

1

2
log (

𝜎2

1−𝜌2) −
(𝑧1−(

𝜇

1−𝜌
))

2

2𝜎2

1−𝜌2

−
𝑇−1

2
log(2𝜋) −

𝑇−1

2
log(𝜎2) − ∑ (

(𝑧𝑡−𝜇−𝜌𝑧𝑡−1)2

2𝜎2 )𝑇
𝑡=2

  

To test whether {𝑧𝑡}𝑡=1
𝑇 =  ~ 𝑖. 𝑖. 𝑑.  𝑁(0,1),  Berkowitz suggests using the joint test statistic: 

𝛽̂ 
𝑖𝑛𝑑 = (ln 𝐿(𝜇,̂ 𝜎,̂ 𝜌̂) − ln 𝐿(0, 1, 0)), 

which converges to a 𝜒2(3)-distribution under the null hypothesis. For h > 1, a modified 

version of the test is used by practitioners (Knüppel, 2015), which relaxes the independence 

property. Here, we use the test statistics: 

𝛽̂ = 2 (ln 𝐿(𝜇,  ̂𝜎,̂ 𝜌̂) − ln 𝐿 (0, √1 − 𝜌̂2 ,  𝜌̂)) ,   

which now converges to a 𝜒2(2)-distribution under the null hypothesis.  

3.6.4 Logarithmic Score 

Another approach to evaluate density forecasts is by the use of scoring rules. Scoring rules 

measure the quality of the density forecasts by assigning a numerical score to the density 

forecast based on how well it forecasts the dependent variable. If the observed dependent 

variable falls within an area with high (low) predictive density, this gives a subsequent high 

(low) score. A benefit of using scoring rules is that it allows us to rank competing models 

(Gneiting et al., 2007).  
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One of the most used scoring rules to evaluate density forecasts is the logarithmic score, 

originally proposed by Good (1952). To evaluate a series of density forecasts, the logarithmic 

score is defined as: 

𝑆𝑙(𝑓𝑡(𝑌𝑡)) = ln(𝑓𝑡(𝑌𝑡)), 

where ln (𝑓𝑡(𝑌𝑡)) is the natural logarithm of the density forecast made at time 𝑡 − ℎ, evaluated 

at the observed value of the dependent variable. Based on a sequence of two competing density 

forecasts 𝑓𝑡 and 𝑔̂𝑡 , we can evaluate their predictive performance by their average score (Diks 

et al., 2011): 

T−1 ∑ log 𝑓𝑡
𝑇
𝑡=1 (𝑌𝑡) and 𝑇−1 ∑ log 𝑔̂𝑡

𝑇
𝑡=1 (𝑌𝑡) 

A higher score implies a better model. To test if the predictive performance of the two 

competing models is significantly different, we can use a test statistic based on their average 

log score difference: 

𝑑𝑡
𝑙 = log 𝑓𝑡 (𝑌𝑡) −  log 𝑔̂𝑡 (𝑌𝑡). 

The null hypothesis is given by 𝐻0:  𝔼(𝑑𝑡
𝑙) = 0 for all 𝑡,   𝑡 + 1, …  ,  𝑇. Let 𝑑  

𝑙
 denote the 

sample average of the log score differences, that is 𝑑 

𝑙
= 𝑛−1 ∑ 𝑑𝑡

𝑙𝑇
𝑡=1 . In order to test 𝐻0 

against the alternative 𝐻𝑎: 𝔼(𝑑𝑡
𝑙 ) ≠ 0, we use a Diebold & Mariano (1995) type statistic: 

t =
𝑑 

𝑙

√𝜎̂ 2

𝑛
 

, 

where 𝜎̂ 
2 is a heteroskedasticity and autocorrelation-consistent (HAC) variance estimator of   

𝜎 
2 = 𝑉𝑎𝑟(√𝑇 𝑑 

𝑙
). 

3.6.5 Expected Shortfall and Longrise 

Risk measures such as Value-at-Risk are commonly applied to quantify the risk associated 

with extreme outcomes, so-called tail risk. Coverage tests such as the Kupiec test or 

Christoffersen test are often applied to assess the reliability of these risk measures. However, 

a drawback of such tests is their inability to account for extreme losses and some mathematical 
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properties9. A more frequently used risk measure in recent years is Expected Shortfall (ES), 

defined as the average loss beyond the VaR level: 

𝐸𝑆𝑡+h =
1

𝜋
∫ 𝐹̂𝑦𝑡+h|𝑥𝑡

−1
𝜋

0

(𝜏|𝑥𝑡)𝑑𝜏, 

where 𝜋 is the risk level and 𝐹̂𝑦𝑡+h|𝑥𝑡

−1 (𝜏|𝑥𝑡) the estimated CDF. This corresponds to the 

appreciation tail risk of the currency. For exchange rates, we are also interested in the right 

tail of the distributions. Adrian et al. (2019) named this counterpart as Expected Longrise (EL), 

defined as: 

𝐸𝐿𝑡+h =
1

𝜋
∫ 𝐹̂𝑦𝑡+h|𝑥𝑡

−1
1

1−𝜋

(𝜏|𝑥𝑡)𝑑𝜏 

We consider 5% ES and EL. To evaluate whether the forecasted ES and EL are well specified, 

we use the conditional calibration test of Nolde & Ziegel (2017). For the pair VaR and ES at 

risk level 𝜏 ∈ (0,1), the test chooses the strict identification function: 

𝑉(𝑌,  𝑣,  𝑒) =  (
𝜏 − 𝟙{𝑌≤𝑣}

𝑒 − 𝑣 + 𝟙{𝑌≤𝑣}(𝑣 − 𝑌)/𝜏
), 

where 𝑒 is the expected shortfall, 𝑣 the Value-at-Risk, and 𝑌 the observed value. The test's 

expectation is zero, if and only if, 𝑣 and 𝑒 equal the true VaR and ES of the observed value 𝑌. 

The two-sided conditional calibration backtest of the forecast for the VaR, 𝑣̂𝑡, and for the ES, 

𝑒̂𝑡 is based on the hypotheses: 

 ℍ0
2𝑠 = 𝔼[𝑉(𝑌𝑡+h, 𝑣̂𝑡 , 𝑒̂𝑡)] = 0 agains𝑡 𝔼[𝑉(𝑌𝑡+h, 𝑣̂𝑡 , 𝑒̂𝑡)] ≠ 0,  and 

Nolde & Ziegel (2017) propose to use the Wald-type test statistics: 

𝑇𝐶𝐶 = 𝑇 (
1

𝑇
∑ 𝑉(𝑌𝑡 , 𝑣̂𝑡 , 𝑒̂𝑡)𝑇

𝑡=1 )
𝑇

∆̂𝑇
−1 (

1

𝑇
∑ 𝑉(𝑌𝑡 , 𝑣̂𝑡 , 𝑒̂𝑡)𝑇

𝑡=1 ),  

 

9 Value-at-Risk tests fail to account for the so-called subadditivity property. For further reading, see Chen (2018). 
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where ∆̂𝑇
−1=

1

𝑇
∑ 𝑉(𝑌𝑡 , 𝑣̂𝑡 , 𝑒̂𝑡))(𝑉(𝑌𝑡 , 𝑣̂𝑡 , 𝑒̂𝑡))

𝑇
 𝑇

𝑡=1 is a consistent estimator of the covariance of 

the two-dimensional vector 𝑉(𝑌𝑡 , 𝑣̂𝑡 , 𝑒̂𝑡). Under ℍ0, the test statistic asymptotically follows a 

𝜒2
2 distribution. 
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4. Data 

This section presents the data variables included in our exchange rate models. We give a brief 

explanation on why the data is included, state their expected effect on the exchange rate, and 

explain how the data is transformed for analysis purposes. The data are summarized below. 

For plots c-f, Norwegian data is represented by a blue line and Eurozone data by a green line. 

 

Figure 1: Summary of data used for independents variables (lhs) and the 

dependent variable (rhs). 

4.1 Variables 

The data is selected based on exchange rate theory and empirical findings. We have selected 

April 1st, 2001 as the starting point to avoid a structural break in the model associated with the 

introduction of the floating exchange rate regime in Norway on March 29th, 2001. The dataset 

includes monthly observations up to and including December 1st, 2020, yielding 237 
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observations. All data is secondary data originated for other initial purposes than this thesis. 

The data sources are presented in appendix I. 

4.1.1 EUR/NOK 

The dependent variable in all models in this thesis is the nominal EUR/NOK exchange rate. 

We apply a currency convention where NOK is expressed per unit of EUR. Bernhardsen & 

Røisland (2000) point out that the krone exchange rate is a non-unambiguous size that depends 

on the currency against which it is measured. The exchange rate should thus be measured 

against a basket of currencies rather than a single currency when quantifying its international 

value. However, in this thesis, the goal is not to quantify the international value but rather 

assess the forecasting ability of a tradeable currency pair. The EUR/NOK currency pair is 

chosen for the following reasons: (i) it is one of the most liquid currency pairs involving the 

Norwegian krone, (ii) the Euro area is Norway's largest and most important trading partner, 

and (iii) as Norway is part of the European economic area, comparable and consistent 

economic indicators are widely available. As stated by Rossi (2013), it is standard within the 

out-of-sample forecasting literature to use nominal exchange rates over real ones. In the 

following subsections, we adopt the variable name 𝑒𝑢𝑟𝑛𝑜𝑘 for the EUR/NOK exchange rate. 

4.1.2 Brent Crude Oil Price 

According to economic theory, an increase in commodity prices should lead to a real 

appreciation of a commodity-exporting country's currency. As Torvik (2016) explains, rising 

commodity prices lead to higher revenues for the commodity-exporting country. Since 

production opportunities are fixed, consumption opportunities rise beyond the total production 

value of the shielded and exposed sectors. As such, the country will want to consume more of 

both shielded and exposed goods. However, as the country must produce everything it 

consumes of shielded goods, companies in sectors shielded from foreign competition must 

receive a signal to increase employment to facilitate the increased demand. This can only 

happen if the prices of shielded goods increase relative to the prices of exposed goods. An 

increase in the oil price should therefore be expected to lead to a real appreciation of the 

Norwegian krone. Alendal (2010) also points to an increased demand for oil-related stocks on 

Oslo Børs, expectations of rising interest rates associated with an expected increase in 

economic activity, and pure psychological effects as factors that could lead to higher demand 

for the Norwegian krone as the oil price rises, thereby causing an exchange rate appreciation.  
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The above discussion would suggest an inverse relationship between the NOK/EUR exchange 

rate and the oil price. The empirical evidence is also broadly supportive of commodity prices 

as predictors of exchange rates in in-sample estimation, see, e.g., Chen & Rogoff (2003). 

While this also holds for Norwegian data, Akram (2004) finds that the relationship is non-

linear (2004), i.e., the strength of the correlation depends on the level and the trend in oil 

prices. Akram furthermore finds that an equilibrium correction model incorporating the non-

linear relationship outperforms a random walk model in out-of-sample forecasting at a twelve-

quarter horizon. The above findings lead us to include the oil price in the BEER model 

specification. We use the variable name 𝑜𝑖𝑙 to reference the Brent crude oil price in following 

subsections.  

4.1.3 CBOE Volatility Index 

Uncertainty in financial markets is another factor that is well documented to affect currencies, 

see, e.g., De Bock & de Carvalho Filho (2013). Investors will typically flee to assets that serve 

as a reliable and stable store of value during market turbulence. Within the foreign exchange 

market, currencies exhibiting such properties are referred to as safe-haven currencies. In 

contrast, currencies that tend to fluctuate or depreciate erratically against other currencies are 

referred to as soft currencies. Previous empirical work finds that the Norwegian krone tends 

to depreciate during times of increased volatility in the foreign exchange market, see, e.g., 

Bernhardsen and Røisland (2000). While not usually included amongst the major safe-haven 

currencies, the Euro is generally considered a safe haven alternative. Ronaldo and Söderlind 

(2010), e.g., find that the Euro exhibits safe haven characteristics during crises. As such, we 

expect to see a positive relationship between the EUR/NOK exchange rate and volatility in 

financial markets. Thus, we include a volatility measure in the BEER model specification. 

Several indices are constructed to measure volatility in various currency pairs and broader 

financial markets. Indices commonly used in exchange rate models of the Norwegian krone 

are, e.g., the S&P 500 options-based implied volatility index (VIX), the global risk indicator 

(GRI), and various options-based indices measuring implied volatility in major currency pairs, 

such as Deutsche Bank's currency volatility index (CVIX). As pointed out by Akram (2019), 

the krone may have more in common with emerging market currencies than the world's major 

currencies. Akram furthermore points out that the implied volatility of emerging market 

currencies covaries with overall economic uncertainty as measured by equity options. As a 
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result, we choose to use the VIX as the uncertainty measure in the BEER model specification. 

In later subsections, the CBOE volatility index is referenced by the variable name 𝑣𝑖𝑥. 

4.1.4 Three-Month Interbank Rates 

We have previously elaborated on how interest rates are theorized to affect exchange rates in 

our review of uncovered interest parity and how its positioned as a central assumption in 

several theories of exchange rate determination. Thus, we include an interest rate differential 

in several of the models specified in the empirical analysis. As Bernhardsen and Røisland 

(2000) point out, it is vital to be aware that the interest rate differential is an endogenous 

variable. This is because the central bank takes the exchange rate into account when 

determining the policy rate. As such, the coefficient must be interpreted with caution. 

Earlier empirical work primarily utilizes three-month or twelve-month interbank rates to 

construct interest rate differentials, with Bernhardsen (2012) finding a broad impact from the 

policy rate to money market rates both in Norway and abroad. Due to comparably better data 

access for three-month interbank rates, we have chosen to use the former in our exchange rate 

model, i.e., three-month NIBOR for Norway and three-month EURIBOR for the Eurozone. 

The (𝑖 − 𝑖∗) variable is constructed by subtracting the EURIBOR rate from the NIBOR rate.  

4.1.5 Harmonized Consumer Price Indices 

As elaborated on in the theory section, relative purchasing power parity, which underlies 

several theories of exchange rate determination, states that the foreign exchange rate is 

expected to adjust with the relative change in price level between two countries. Additionally, 

models using Taylor rule fundamentals and certain monetary model specifications incorporate 

an inflation differential. Thus, measures of the price levels in Norway and the Eurozone are 

required to construct variables for price differences and inflation differences. This thesis 

utilizes the harmonized consumer price indices for Norway and the Eurozone for this purpose. 

The harmonized consumer price index (HCPI) is a statistic designed for consistent 

comparisons of price developments between European countries (Statistics Norway, 2021).  

The price differential variable (𝑝 − 𝑝∗) is constructed by subtracting the log-transformed 

HCPI for the Eurozone from Norway's log-transformed HCPI. The inflation differential 

variable (𝜋 − 𝜋∗) is constructed by subtracting the annual percentage change in the HCPI for 
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the Eurozone from the annual percentage change in Norway's HCPI. Note that both indices 

have been seasonally adjusted. 

4.1.6 M3 Money Supply Indices 

Referring back to section 2.4, the monetary model of exchange rate determination includes a 

money demand differential variable. Money demand is assumed to be equal to the respective 

money supply in equilibrium. Hence, we need a measure for the money supply in Norway and 

the Eurozone. The most common money supply measures are the M1, M2, and M3 monetary 

aggregates. Both the Norwegian and European Central Bank follow the principles of "Manual 

on MFI Balance Sheet Statistics," making the metrics comparable for cross-country analysis 

purposes. The ECB defines M1 as the "sum of currency in circulation and overnight deposits" 

(n.d.). M2 additionally includes "deposits with an agreed maturity of up to two years and 

deposits redeemable at notice of up to three months." Finally, "M3 is the sum of M2, 

repurchase agreements, money market fund shares/units and debt securities with a maturity 

of up to two years". The literature offers no specific guidelines on which definition to use, but 

we have opted to use M3 in this thesis due to comparably better data access. The (𝑚 − 𝑚∗) 

variable is constructed by subtracting the log-transformed M3 index for the Eurozone 

Norway's log-transformed M3 index. 

4.1.7 Manufacturing Indices 

Finally, the monetary exchange rate model includes a variable for differences in real income 

domestically and abroad. GDP differences could function as a proxy for this variable; 

however, lack of data at monthly intervals and otherwise short time series complicates this. 

Instead, we utilize an index of industrial production, in line with, e.g., Reese & Rogoff (1983). 

In Norway, mainland GDP is often used to assess the economic situation, as revenues from 

oil, gas, and shipping companies can vary greatly without impacting unemployment 

significantly. Given this, we use a manufacturing index that excludes oil and gas extraction, 

mining, and power supply. The resulting index correlates closely with GDP and should thus 

be an adequate proxy for real income. The (𝑦 − 𝑦∗) variable is constructed by subtracting the 

log-transformed manufacturing index for the Eurozone from Norway's log-transformed 

manufacturing index. The indices have been seasonally adjusted.  

We face similar problems when attempting to use GDP measures to construct the output gap 

differential variable included in models with Taylor rule fundamentals. Hence, the 
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manufacturing index is also used to construct the (𝑦𝑔𝑎𝑝 − 𝑦𝑔𝑎𝑝
∗ ) variable. For this, we use a 

Hodrick-Prescott filter. The Hodrick-Prescott (HP) filter is a data-smoothing technique that is 

commonly used to separate short-term fluctuations from a long-term trend. The long-term 

trend's sensitivity to short-term fluctuations is decided by the multiplier 𝜆. For data at a 

monthly frequency, the lambda is commonly set to 𝜆 = 14 400. Hence, this is also what is 

used in this thesis. A problem with the HP-filter is that the short-term fluctuations converge 

on the long-term trend at the end of the sample, which can reduce the validity of the output 

gap measure. A common way of dealing with this, is to use an ARIMA forecast model to 

extend the time series. However, the usefulness of such an extension is limited by uncertainty 

over how many forecasts are needed and sensitivity to this number (Apel et al., 1996). 

Molodtsova & Papell (2009)  presented one of the most prominent research papers on monthly 

out-of-sample forecasting of exchange rates with Taylor rule fundamentals. They find 

evidence that Taylor rule models outperform a random walk model in forecasts of several 

dollar-related currency pairs without addressing the endpoint issue of HP-filters.  Given the 

above, we use the manufacturing indices without extending the data. By subtracting the 

observed data points from the long-term trend, we get a measure of the output gap. The 

differential is obtained by subtracting the output gap of the Eurozone from that of Norway. 

4.2 Data Transformations 

As discussed in section 3.2.1, using non-stationary time series may lead to spurious results. 

Hence, the concept of stationarity in time series is essential. This section presents the results 

of the augmented Dickey-Fuller and KPSS tests outlined in section 3.4 and discusses the 

choices we have made with regards to data transformations and model specifications.  

4.2.1 Stationarity Tests 

Recall that for the augmented Dickey-Fuller test, the null hypothesis of a unit root presence is 

rejected in favor of the alternative hypothesis that the data is stationary at a critical value of 

𝑡𝜃̂ < −2,86. The number of lags included in the test follows Wooldridge's (2018) suggestion 

that one might include twelve lags on monthly data. For the KPSS test, the null hypothesis of 

stationarity is rejected in favor of the alternative hypothesis that a unit root is present at the 

critical value of 𝐿𝑀 > 0,463. In other words, to conclude that a time series is stationary, we 

wish to see a 𝑝-value below 0,05 for the augmented Dickey-Fuller test and above 0,05 for the 
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KPSS test. The critical values of the tests are summarized in the table below, with 𝑝-values 

presented in parenthesis beneath the critical value. As a reminder, (𝑖 − 𝑖∗) is the interest rate 

differential, (𝑝 − 𝑝∗) the price differential, (𝜋 − 𝜋∗) the inflation differential, (𝑚 − 𝑚∗) the 

money supply differential, (𝑦 − 𝑦∗) the proxy real income differential, and (𝑦𝑔𝑎𝑝 − 𝑦𝑔𝑎𝑝
∗ ) the 

output gap differential. 'Data' denotes absolute level data, while 'FD' denotes first-differenced 

data. Grey cells indicate results that are statistically significant at the 5% level. 

Stationarity Tests       

 
ADF KPSS 

Variable Data FD Data FD 

𝑒𝑢𝑟𝑛𝑜𝑘 
-1.74 -4.47 1.06 0.21 

(-0.68)  (0.01)  (0.01)  (0.10)  

𝑒𝑢𝑟𝑛𝑜𝑘 

𝑙𝑎𝑔 =  3 

  -4.48   0.28 

  (0.01)    (0.10)  

𝑒𝑢𝑟𝑛𝑜𝑘 

𝑙𝑎𝑔 =  6 

  -4.71   0.27 

  (0.01)    (0.10)  

𝑒𝑢𝑟𝑛𝑜𝑘 

𝑙𝑎𝑔 =  12 

  -3.97   0.34 

  (0.01)    (0.10)  

𝑜𝑖𝑙 
-1.70 -4.98 0.45 0.16 

(0.70)  (0.01)  (0.06)  (0.10)  

𝑣𝑖𝑥 
-2.14 -6.00 0.16 0.06 

(0.52)  (0.01)  (0.10)  (0.10)  

(𝑖 − 𝑖∗) 
-2.17 -4.11 0.12 0.08 

(0.50)  (0.01)  (0.10)  (0.10)  

(𝑝 − 𝑝∗) 
-1.13 -3.84 1.56 0.06 

(0.92)  (0.02)  (0.01)  (0.10)  

(𝜋 − 𝜋∗) 
-2.17 -5.01 1.56 0.06 

(0.50)  (0.01)  (0.01)  (0.10)  

(𝑚 − 𝑚∗) 
-2.96 -3.40 1.50 0.09 

(0.17)  (0.06)  (0.01)  (0.10)  

(𝑦 − 𝑦∗) 
-2.43 -3.57 0.63 0.06 

(0.39)  (0.04)  (0.02)  (0.10)  

(𝑦𝑔𝑎𝑝 −

𝑦𝑔𝑎𝑝
∗ ) 

-3.85 -4.71 0.03 0.06 

(0.02)  (0.01)  (0.10)  (0.10)  
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Table 1: Summary of the augmented Dickey-Fuller and KPSS tests. A p-

value below 0,05 for the ADF test and above 0,05 for the KPSS test 

indicates that the time-series are stationary. 

Although the KPSS test cannot reject the null hypothesis of stationarity in the raw data for the 

𝑜𝑖𝑙, 𝑣𝑖𝑥, and (𝑖 − 𝑖∗) variables, we cannot reject the null hypothesis of unit root presence in 

the same variables using the augmented Dickey-Fuller test. These results indicate the time-

series are trend stationary but not strict stationary. A simple way of removing a trend is to 

first-difference the data. Upon doing this, the results of both the augmented Dickey-Fuller tests 

and KPSS tests indicate that the mentioned variables are stationary. Thus, the first-difference 

transformations allow us to avoid problems with spurious results in OLS regression. 

Meanwhile, the 𝑒𝑢𝑟𝑛𝑜𝑘, (𝜋 − 𝜋∗), (𝑚 − 𝑚∗), (𝑦 − 𝑦∗), and (𝑝 − 𝑝∗) variables tests 

negatively for stationarity in both the augmented Dickey-Fuller test and the KPSS tests. All 

the mentioned variables are thus first-differenced and re-tested. Since we forecast the 

EUR/NOK exchange rate for multiple horizons, the 𝑒𝑢𝑟𝑛𝑜𝑘 variable is tested across all 

corresponding lag lengths. Upon first-differencing, all the above variables reject the 

augmented Dickey-Fuller test's null hypothesis of a unit root presence and fail to reject the 

KPSS test's null hypothesis of stationary. We thus conclude that these variables are I(1) and 

exhibit weak dependence upon being first-differenced. However, note that the (𝑚 − 𝑚∗) 

variable is only significant at the 10% level. Contrary to the other variables, (𝑦𝑔𝑎𝑝 − 𝑦𝑔𝑎𝑝
∗ ) is 

also stationary in its original form.  

4.2.2 Model Specifications 

Most empirical literature concerning in-sample prediction of exchange rates includes an error-

correction term. A prerequisite for the use of error-correction models is that cointegration is 

present. As explained in section 3.2.1, cointegration is present when a linear combination of 

non-stationary variables is stationary. This allows for models to be estimated in levels, 

allowing inference of long-run relationships. Rossi (2013) summarizes the prominent 

literature within the out-of-sample forecasting literature pre-2013. Here, the choice of model 

specification is more mixed between error-correction and first-difference specifications. 

Moreover, some simply assume stationarity based on the underlying theory of exchange rate 

models. The common trait is that no model specification significantly outperforms the others. 
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In light of these findings and to achieve consistency across all models, we solely rely on first-

difference specifications in this thesis. 
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5. Empirical Analysis 

This section presents the results of the empirical analysis. We start by summarizing the 

selected models before moving onto the point forecast evaluation. Here, the root-mean-square 

error calculations are presented, along with the Diebold-Mariano and Pesaran-Timmermann 

test statistics. Following that, we elaborate on the results of the density forecasting evaluation.  

5.1 Summary of Model Specifications 

Building on the discussion in the theory-, methodology- and data section, we specify twelve 

distinct models subject to the empirical analysis. These models are summarized in the table 

below. The dependent variable for all models can be denoted ∆𝑠𝑡+ℎ, where 𝑠 is the log of the 

𝑒𝑢𝑟𝑛𝑜𝑘 exchange rate and ℎ = 1, 3, 6, 12 months. 

Models of the Exchange Rate    

Model  Explanatory variables 

Driftless random walk model  

Taylor rule model (symmetric w/o smoothing) ∆(𝜋 − 𝜋∗ );  ∆(𝑦𝑔𝑎𝑝 − 𝑦𝑔𝑎𝑝
∗  ) 

Taylor rule model (asymmetric w/o smoothing) ∆(𝜋 − 𝜋∗ );  ∆(𝑦𝑔𝑎𝑝 − 𝑦𝑔𝑎𝑝
∗  ); ∆𝑞 

Taylor rule model (symmetric w/ smoothing)  ∆(𝜋 − 𝜋∗ );  ∆(𝑦𝑔𝑎𝑝 − 𝑦𝑔𝑎𝑝
∗  ); (𝑖𝑡−1 − 𝑖𝑡−1

∗ ) 

Taylor rule model (asymmetric w smoothing)  ∆(𝜋 − 𝜋∗ );  ∆(𝑦𝑔𝑎𝑝 − 𝑦𝑔𝑎𝑝
∗  );  ∆𝑞; (𝑖𝑡−1 − 𝑖𝑡−1

∗ ) 

Relative purchasing power parity  ∆(𝑝 − 𝑝∗ ) 

Uncovered interest rate parity ∆(𝑖 − 𝑖∗ ) 

BEER model ∆(𝑖 − 𝑖∗ );  ∆𝑏𝑟𝑒𝑛𝑡𝑝; ∆𝑣𝑖𝑥 

Monetary model (w/o interest rates, w/o inflation) ∆(𝑚 − 𝑚∗ );  ∆(𝑦 − 𝑦∗ ) 

Monetary model (w/ interest rate, w/o inflation) ∆(𝑚 − 𝑚∗ );  ∆(𝑦 − 𝑦∗ );  ∆(𝑖 − 𝑖∗ ) 

Monetary model (w/o interest rates, w/ inflation) ∆(𝑚 − 𝑚∗ );  ∆(𝑦 − 𝑦∗ );  ∆(𝜋 − 𝜋∗ ) 

Monetary model (w/ interest rates, w/ inflation) ∆(𝑚 − 𝑚∗ );  ∆(𝑦 − 𝑦∗ );  ∆(𝑖 − 𝑖∗ );   ∆(𝜋 − 𝜋∗ ) 
 

Table 2: Summary of model specifications. 

The first model is the driftless random walk model, the benchmark of the empirical analysis. 

In levels, the predicted exchange rate 𝑠̂𝑡+ℎ = 𝑠𝑡. By subtracting 𝑠𝑡 from both sides of the 



 57 

equation, we arrive at the first-difference specification which is simply ∆𝑠̂𝑡+ℎ = 𝑠̂𝑡+ℎ − 𝑠𝑡 =

0. Thus, the random walk will always forecast an unchanged exchange rate. Next, we consider 

four different models with Taylor-rule fundamentals. We test the model with asymmetric 

Taylor rule fundamentals and smoothing presented in section 2.5 and also include variations 

with and without the real exchange rate and the smoothing factor. Furthermore, we specify 

models for relative purchasing power parity and uncovered interest rate parity, respectively. 

Referring back to section 2.6, we also construct a BEER model. Building on the discussion of 

earlier empirical evidence of factors affecting the Norwegian krone exchange rate, we include 

the oil price and VIX as variables in addition to the interest rate differential. Papers such as 

Akram (2019) and Martinsen (2017) include more explanatory variables in their in-sample 

estimations. However, in addition to the overfitting issue described in section 3.1.1, Rossi 

(2013) finds that out-of-sample predictability is most apparent when only a small number of 

predictors are considered. As such, we only include the three aforementioned variables. 

Finally, we consider the monetary model derived in section 2.4.1, and three additional 

variations with and without interest rate and inflation differentials.  

5.2 Point Forecast Evaluation 

The model evaluation begins by assessing the standard point forecasts estimated by the above 

models. The point forecast is obtained from the mean response of the OLS-estimated 

parameters across all models, time periods, and forecast horizons. The figure below presents 

example outputs of the point forecasts from the PPP model and the random walk model. 

 

 

a) Random Walk b) PPP 
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Figure 2: Point forecasts of selected exchange rate models. The graphs are 

constructed by adding the forecasted exchange returns to the level of the 

EUR/NOK at the time period the forecast is made. 

5.2.1 Diebold-Mariano Test 

To assess whether the models can beat the random walk model, we return to the Diebold-

Mariano test statistic. Recall that the Diebold-Mariano test is based on a loss differential that 

must first be computed. Here, we utilize the root mean square error (RMSE). The resulting 

computations are presented in the table below for the forecast horizons of one, three, six, and 

twelve months. Grey cells denote models that achieve a lower RMSE than the benchmark. 

Root Mean Square Error     

Model h = 1 h = 3 h = 6 h = 12 

RW 0.0214 0.0338 0.0427 0.0641 

Taylor rule 
symmetric 

no smoothing 
0.0219 0.0341 0.0439 0.0651 

Taylor rule 
asymmetric 

no smoothing 
0.0217 0.034 0.0437 0.0655 

Taylor rule 
symmetric 
smoothing 

0.022 0.0343 0.044 0.0655 

Taylor rule 
asymmetric 

smoothing 
0.0218 0.0341 0.0439 0.0664 

c) BEER 
d) Asymmetric Taylor rule 

fundamentals and smoothing 



 59 

PPP 0.0215 0.0338 0.0423 0.0634 

UIRP 0.0213 0.0346 0.0423 0.0632 

BEER 0.0206 0.035 0.0432 0.0638 

Monetary 
no interest rates 

 no inflation 
0.0219 0.0338 0.0412 0.0625 

Monetary 
interest rates 

 no inflation 
0.0215 0.0349 0.0417 0.063 

Monetary 
no interest rates 

 inflation 
0.0219 0.0343 0.0428 0.0648 

Monetary 
interest rates 

 inflation 
0.0215 0.0355 0.0434 0.0654 

          
Table 3: Summary of RMSE results. A lower RMSE indicates a better fit. 

In total, five models generate forecasts that achieve a lower value than the random walk model, 

and the results vary notably across different forecast horizons. Moreover, the deviations from 

the benchmark are generally minor, which raises the question of whether the results are 

statistically significant. Thus, we calculate the Diebold-Mariano test statistic, the results of 

which are presented in the table below. Recall that the null hypothesis that the forecast errors 

and benchmarks errors are the same is rejected in favor of the alternative hypothesis that the 

forecast model has a different level of accuracy at a critical value of 𝑧 = ±1,96, for the 5% 

significance level. The 𝑝-values are presented in parenthesis beneath the 𝑧-values. 

Diebold-Mariano Test       

Model h = 1 h = 3 h = 6 h = 12 

Taylor rule 
symmetric 

no smoothing 

-0.52 -0.69 -1.12 -0.70 

(0.60) (0.49) (0.26) (0.49) 

Taylor rule 
asymmetric 

no smoothing 

-0.34 -0.24 -0.98 -0.94 

(0.74) (0.81) (0.33) (0.35) 

Taylor rule 
symmetric 

smoothing 

-0.62 -0.96 -1.35 -1.01 

(0.53) (0.34) (0.18) (0.32) 

Taylor rule 
asymmetric 

smoothing 

-0.52 -0.41 -1.17 -1.42 

(0.60) (0.68) (0.24) (0.16) 



 60 

PPP 
-0.28 0.21 0.39 0.64 

(0.78) (0.84) (0.70) (0.52) 

UIRP 
0.41 -1.23 0.82 0.92 

(0.68) (0.22) (0.42) (0.36) 

BEER 
1.70 -0.96 -0.43 0.25 

(0.09) (0.34) (0.67) (0.80) 

Monetary 
no interest rates 

 no inflation 

-0.57 0.15 1.39 0.77 

(0.57) (0.88) (0.17) (0.44) 

Monetary 
interest rates 

 no inflation 

-0.16 -1.43 1.01 0.52 

(0.87) (0.15) (0.32) (0.60) 

Monetary 
no interest rates 

 inflation 

-0.62 -0.88 -0.07 -0.30 

(0.54) (0.38) (0.95) (0.76) 

Monetary 
interest rates 

 inflation 

-0.16 -1.94 -0.62 -0.61 

(0.88) (0.05) (0.53) (0.54) 

          
Table 4: Summary of Diebold-Mariano test statistics. At the 5% significance 

level, the null hypothesis that a model has the same forecast accuracy as 

the naïve random walk model is rejected at a critical value of 𝑧 = ±1,96. 

As shown in the table, no model specification is significant at the 5% level. Even at the 10% 

level, only one specification is significant. The results are detailed in the following.  

The Taylor rule models generally perform quite poorly. No model achieves a lower RMSE 

than the driftless random walk model at any forecast horizon. The discrepancy is especially 

large at the six- and twelve-month horizons. Furthermore, the Diebold-Mariano test statistics 

show that we cannot conclude that any model incorporating Taylor rule fundamentals has a 

different level of forecast accuracy than the benchmark model. The result contrasts 

Molodtsova and Papell (2009), who find evidence of short-term exchange rate predictability 

using Taylor rule fundamentals, and more so than for other structural specifications. However, 

as noted in section 2.5.3, the finding has been criticized by Rogoff & Stavrakeva (2008). 

Table 3 shows that the relative purchasing power parity and uncovered interest rate parity 

models perform slightly better than the models with Taylor rule fundamentals. The PPP model 

achieves a lower RMSE than the benchmark at the six- and twelve-month horizons. The same 

is true for the UIRP model, which additionally achieves a lower RMSE at the one-month 
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horizon. However, the Diebold-Mariano test statistics show that no result is statistically 

significant. Thus, we are again unable to conclude that the models have different levels of 

forecast accuracy than the random walk model at any forecast horizon. The results align with 

the large body of existing literature that does not find support for relative purchasing power 

parity and uncovered interest rate parity at forecast horizons of twelve months and shorter.  

The BEER model achieves a lower RMSE than the benchmark model at the one- and twelve-

month forecast horizons. From the Diebold-Mariano test statistics, we cannot conclude that 

the model has a different level of forecast accuracy than the random walk model at horizons 

longer than three months. However, at the one-month horizon, the model achieves a test result 

that is significant at the 10% level. The result suggests that a model incorporating the oil price, 

volatility in financial markets, and an interest rate differential has out-of-sample predictability 

over the EUR/NOK exchange at a one-month horizon. However, the evidence is weak, as the 

result is not statistically significant at the 5% level. Unlike Akram (2004), we do not find clear 

evidence that a BEER model incorporating the oil price outperforms a random walk model at 

the twelve-month horizon. Differences in the forecasting method may explain this.  

The individual monetary models vary significantly in their predictive performance relative to 

the benchmark. Without an interest rate and inflation differential, the monetary model achieves 

a lower RMSE than the driftless random walk model at the six- and twelve-month horizons. 

The corresponding model with the interest rate differential also achieves a lower RMSE at the 

six-month horizon. Other specifications of the monetary model are unable to achieve a lower 

RMSE. Regardless, we cannot conclude that any monetary model has better forecast accuracy 

than the driftless random walk model from the Diebold-Mariano test statistics. The results are 

in line with Meese and Rogoff (1983), who do not find evidence of short-term predictability 

in monetary models at horizons of up to one year.  

In summary, the results are mainly in line with the extensive body of literature, beginning with 

Meese and Rogoff (1983), which concludes that it is practically difficult to outperform a 

driftless random walk model in out-of-sample forecasting. Several of the classic exchange rate 

models achieve a lower RMSE than the benchmark at various forecast horizons but none of 

the results are statistically significant at the 5% level. We do, however, find weak evidence 

supporting the theory that a BEER model that incorporates commodity price and currency 

volatility dynamics performs better than a driftless random walk model at a one-month forecast 

horizon. The finding lends support to the body of literature that concludes that there is a link 
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between the oil price, uncertainty, and the Norwegian krone exchange rate (see, e.g., Akram, 

2019). 

5.2.2 Pesaran-Timmermann Test 

Next, we turn to the question of whether the models accurately forecast the direction of change 

for the EUR/NOK exchange rate. For this, we use the Pesaran-Timmermann test, introduced 

in section 3.5.3. Table 5 below presents the directional accuracy for each model specification, 

i.e., the percentage of exchange rate changes forecasted in the same direction as the observed 

change. Furthermore, the 𝑝-value is presented in parenthesis below the directional forecast 

accuracy value. Recall that the null hypothesis of the Pesaran-Timmermann test is that the 

independent variables do not forecast the sign of the dependent variable, while the alternative 

hypothesis is that the independent variables do forecast the sign of the dependent variable. 

Grey-colored cells indicate results that are statistically significant at the 5% level. 

Pesaran-Timmermann Test     

Model h = 1 h = 3 h = 6 h = 12 

Taylor rule 
symmetric 

no smoothing 

0.54 0.54 0.56 0.63 

(0.19) (0.29) (0.31) (0.17) 

Taylor rule 
asymmetric 

no smoothing 

0.53 0.55 0.54 0.62 

(0.22) (0.19) (0.43) (0.15) 

Taylor rule 
symmetric smoothing 

0.49 0.51 0.59 0.61 

(0.60) (0.51) (0.11) (0.24) 

Taylor rule 
asymmetric 

smoothing 

0.51 0.50 0.55 0.57 

(0.42) (0.52) (0.24) (0.34) 

PPP 
0.48 0.56 0.64 0.63 

(0.71) (0.16) (0.02) (0.30) 

UIRP 
0.54 0.51 0.56 0.56 

(0.20) (0.51) (0.31) (0.85) 

BEER 
0.56 0.49 0.58 0.57 

(0.10) (0.67) (0.16) (0.59) 

Monetary 
no interest rates 

 no inflation 

0.48 0.53 0.59 0.61 

(0.73) (0.41) (0.11) (0.24) 
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Monetary 
interest rates 

 no inflation 

0.52 0.53 0.59 0.61 

(0.38) (0.35) (0.10) (0.24) 

Monetary 
no interest rates 

 inflation 

0.48 0.51 0.59 0.61 

(0.74) (0.51) (0.11) (0.24) 

Monetary 
interest rates 

 inflation 

0.52 0.51 0.56 0.61 

(0.36) (0.47) (0.25) (0.13) 

          
Table 5: Summary of directional forecast accuracy. At the 5% significance 

level, the null hypothesis that the independent variables do not forecast the 

sign of the dependent variable is rejected at a p-value below 0,05. 

As illustrated by the above table, all models achieve a directional forecast accuracy above 50% 

on at least one horizon. However, only one result is statistically significant at the 5% level.  

The relative purchasing power parity model achieves the highest directional forecast accuracy 

at the three-, six- and twelve-month horizons. However, it is only at the six-month horizon 

that we can reject the null hypothesis that the independent variable does not forecast the sign 

of the dependent variable. The result indicates that a price differential has predictive value for 

forecasting the direction of change in the EUR/NOK exchange rate at a six-month horizon.  

The monetary model specified with an interest rate differential and without an inflation 

differential also achieves a statistically significant result at the six-month horizon. However, 

we can only reject the null hypothesis that the independent variable does not forecast the sign 

of the dependent variable at the 10% significance level. Additionally, we fail to reject the null 

hypothesis at the same significance level for other monetary model specifications. Thus, we 

only find weak evidence supporting a model incorporating monetary fundamentals being able 

to forecast the direction of change in the EUR/NOK exchange rate at a six-month horizon. 

No other models achieve a statistically significant test result at any forecast horizon. The 

directional forecast accuracy varies between 48 and 56% percent at the one-month horizon. 

Here, the BEER model is closest to being statistically significant at the 10% level with a 𝑝-

value just above 0,10. The results are not materially different at the three-month horizon, 

where the directional forecast accuracy fluctuates between 49 and 56%. However, at the six-

month horizon, the accuracy generally improves. The Taylor rule model specified with 

symmetric fundamentals and interest rate smoothing achieves a directional forecast accuracy 

of 59%. With a 𝑝-value of 0,11, the result narrowly falls short of being statistically significant 
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at the 10% level. Generally, the directional forecast accuracy improves further at the twelve-

month horizon. However, none of the models achieve a statistically significant test result. 

How do the results compare against other empirical evidence? Cheung et al. (2005) run 216 

direction of change statistics on five dollar-related currency pairs, using a set of economics- 

and productivity-based models. They find that 50 of the statistics achieve a significantly better 

directional forecast accuracy than 50% at the 10% level. Furthermore, they note that a model's 

ability to predict the direction of change correctly seems currency-specific and that the models 

are generally more successful at longer horizons. Compared to Cheung et al., we achieve a 

notably smaller share of statistics with a significantly better directional forecast accuracy than 

50% at the 10% level. On the other hand, similar to Cheung et al., we observe that the results 

to some extent achieve greater directional accuracy at longer horizons. Additionally, we find 

that a purchasing power parity model achieves the best results out of all the models tested and 

that a monetary model performs better than an interest rate parity model. These results are 

consistent with Cheung et al. However, note that Cheung et al. does not test Taylor rule models 

in their paper. 

5.3 Density Forecast Evaluation 

We introduce the density forecast evaluation section by illustrating graphically some of the 

forecasted densities. Next, we turn to the Probability Integral Transforms and Anderson-

Darling Test, followed by the Berkowitz test and logarithmic scores. Finally, we present the 

tail risk measures and the corresponding conditional calibration tests.  

 

 

   

Skewed t-Distribution 
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Figure 3: Visual representation of forecasted densities. 

Figure 3 illustrates the estimated densities for some arbitrary selected months for ℎ = 1 and 

ℎ = 6. The dashed lined represent the observed value. From the skewed t-distribution derived 

from quantile regression, we can observe that most models are right-skewed, while some 

models are more symmetric. The peak of the skewed t-distributions corresponds to the 

outcome with the highest probability mass. If the skewness parameter 𝛼 of the forecasted 

density is greater (smaller) than zero, this indicates more uncertainty associated with the right 

(left) side of the distribution relative to the peak. In the case where the peak corresponds to a 

forecasted exchange rate return of zero, a positive (negative) skew corresponds to a higher 

probability of depreciation (appreciation) of the exchange rate. Furthermore, a common trait 

of the skewed t-distributions is that they are leptokurtic, i.e., their peaks are higher and tails 

"fatter"10 compared to the normally distributed densities. This is in line with the description of 

de Vries, Leuven (1994) of daily exchange rate returns. From the width of the distributions, 

we can also observe that for ℎ = 6, the uncertainty concerning the future value of the exchange 

rate return is higher compared to ℎ = 1. This corresponds to a larger scale parameter 𝜎̂.  We 

are able to visually inspect the densities across time by the construction of a three-dimensional 

plot. 

 

10 "Fatter" tails indicate a higher probability of extremal outcomes.  

Normal Distribution 
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Figure 4: 3D plot of forecasted densities for the UIRP model at the one-

month horizon. 

The 3D plot shows the forecasted densities from the UIRP model for ℎ = 1. We can observe 

that the aforementioned properties of the densities in general are very similar across the whole 

out-of-sample period. The skewed t-distribution often exhibits a right-skew, meaning that 

there is more uncertainty concerning outcomes associated with a weaker Norwegian krone 

relative to what is forecasted by the peak of the distribution. The peak is also in general higher 

for the skewed t-distribution compared the normal distribution. The normal distribution shows 

small variations across time, with exception of the higher peak starting from the middle of 

2018. This is a result of smaller in-sample standard deviations of the errors, as the volatile 

period during the global financial crisis no is longer a part of the in-sample estimation window.  

5.3.1 Probability Integral Transforms and Anderson-Darling Test 

Figure 5 presents histograms of the probability integral transforms (PIT) of the monetary 

model without interest rate and inflation differentials for ℎ = 1 and ℎ = 6. The red horizontal 

lines specify the confidence intervals for the Anderson-Darling (AD) test.  If the top of the 

histogram bins falls within the confidence interval, the AD-test suggests that we cannot reject 

the null hypothesis that the PIT-series follow a uniform distribution.  
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Figure 5: Histogram of the PITs of the monetary model without interest 

rates and inflation for the one- and six-month horizon. A perfectly calibrated 

histogram of a PIT-series takes the shape of a rectangle. 

For ℎ = 1, the height of all the histogram bins falls within the confidence interval for both the 

skewed t-distribution and the normal distribution, meaning that we cannot reject the AD test 

null hypothesis of uniformity. However, recall that we cannot conclude that the forecasted 

distributions from these models are well calibrated for the one-month horizon before the 𝑖. 𝑖. 𝑑. 

assumption is tested. For ℎ = 6, there is a lacking number of observations that fall within the 

lower part of the distribution for both models.  The AD test thus rejects the null hypothesis of 

uniformity. This indicates that the forecasted distributions from this model is not well 

calibrated for the six-month horizon. The following table shows the AD test results. The values 

presented are the associated p-values. The null hypothesis that the histogram of a sequence of 

PITs follow a uniform distribution is rejected if 𝑝 ≤ 0,05. Grey cells indicate results that are 

statistically significant.  

 

 

a) Monetary model 1        

h=1, normal distribution 

b) Monetary model 1        

h=1, skewed t-distribution 

c) Monetary model 1        

h=6, normal distribution 

d) Monetary model 1        

h=6, skewed t-distribution 
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Anderson-Darling Test  

 
Normal Distribution Skewed t-Distribution 

Model h = 1 h = 3 h = 6 h = 12 h = 1 h = 3 h = 6 h = 12 

RW 0.38 0.02 0.00 0.00         

Taylor rule 
symmetric 

no smoothing 
0.51 0.06 0.00 0.00 0.09 0.02 0.00 0.00 

Taylor rule 
asymmetric 

no smoothing 
0.40 0.05 0.00 0.00 0.13 0.01 0.00 0.00 

Taylor rule 
symmetric 
smoothing 

0.46 0.07 0.00 0.00 0.10 0.01 0.00 0.00 

Taylor rule 
asymmetric 

smoothing 
0.34 0.04 0.00 0.00 0.10 0.01 0.00 0.00 

PPP 0.72 0.12 0.01 0.00 0.29 0.05 0.00 0.00 

UIRP 0.54 0.06 0.00 0.00 0.12 0.02 0.00 0.00 

BEER 0.48 0.07 0.00 0.00 0.33 0.01 0.00 0.00 

Monetary 
no interest rates 

 no inflation 
0.64 0.07 0.00 0.00 0.12 0.03 0.00 0.00 

Monetary 
interest rates 

 no inflation 
0.43 0.06 0.00 0.00 0.24 0.02 0.00 0.00 

Monetary 
no interest rates 

 inflation 
0.52 0.07 0.00 0.00 0.11 0.01 0.00 0.00 

Monetary 
interest rates 

 inflation 
0.35 0.06 0.00 0.00 0.19 0.02 0.00 0.00 

Table 6: Summary of Anderson-Darling test results. A p-value greater than 

0,05 indicates that we cannot reject the null hypothesis of uniformity.  

The Anderson-Darling (AD) test suggest that for ℎ = 1, the test cannot reject the null 

hypothesis of uniformity for any of the models, irrespective of the density type. For ℎ = 3 

with the normal distribution, no model is rejected, with the exception of the asymmetric Taylor 

rule model with smoothing and the random walk model. For this forecast horizon, the skewed 

t-distribution performs worse compared to the normal distribution. The only model not 

rejected is the PPP model. For ℎ = 6 and ℎ = 12, the test rejects all of the models for both 



 69 

distributions, indicating that these densities are not well calibrated. Referring back to section 

3.6.1, the literature commonly omits the independence assumption for ℎ > 1. Thus, the AD 

test suggests that most of the models for  ℎ = 3 with a normal distribution are, in fact, well 

calibrated. This means that, according to the AD test, we cannot reject that the density 

forecasts coincide with the true sequence of densities for the predicted variable. 

5.3.2 Berkowitz Test 

Berkowitz (2001) argues that his test has higher power compared to uniformity tests such as 

the AD-test. In addition, for ℎ = 1, it also tests the 𝑖. 𝑖. 𝑑. property. The table below presents 

the results of the test. Similar to the AD test, the cells show the p-values of the test. For ℎ = 1, 

the null hypothesis that the histogram of a given PIT sequence follows a uniform distribution 

and is 𝑖. 𝑖. 𝑑. is rejected if 𝑝 ≤ 0,05. For ℎ > 1, recall that we use a modified version of the 

test where the independence property does not need to be satisfied in order for the test to be 

significant.  

Berkowitz Test  

 
Normal Distribution Skewed t-Distribution 

Model h = 1 h = 3 h = 6 h = 12 h = 1 h = 3 h = 6 h = 12 

RW 0.43 0.00 0.00 0.00         

Taylor rule 
symmetric 

no smoothing 
0.26 0.02 0.00 0.00 0.06 0.01 0.00 0.00 

Taylor rule 
asymmetric 

no smoothing 
0.60 0.01 0.00 0.00 0.04 0.01 0.00 0.00 

Taylor rule 
symmetric 
smoothing 

0.27 0.02 0.00 0.00 0.07 0.00 0.00 0.00 

Taylor rule 
asymmetric 

smoothing 
0.51 0.01 0.00 0.00 0.11 0.00 0.00 0.00 

PPP 0.66 0.07 0.00 0.00 0.23 0.04 0.00 0.00 

UIRP 0.57 0.01 0.00 0.00 0.17 0.01 0.00 0.00 

BEER 0.46 0.01 0.00 0.00 0.23 0.00 0.00 0.00 



 70 

Monetary 
no interest rates 

 no inflation 
0.26 0.03 0.00 0.00 0.10 0.02 0.00 0.00 

Monetary 
interest rates 

 no inflation 
0.25 0.01 0.00 0.00 0.15 0.02 0.00 0.00 

Monetary 
no interest rates 

 inflation 
0.27 0.02 0.00 0.00 0.07 0.01 0.00 0.00 

Monetary 
interest rates 

 inflation 
0.24 0.00 0.00 0.00 0.09 0.00 0.00 0.00 

Table 7: Summary of Berkowitz test results. A p-value greater than 0,05 

indicates that we cannot reject the null hypothesis. 

The test results suggest that all of the models coupled with a normal distribution are well 

calibrated for ℎ = 1. For ℎ > 1, all models are rejected except for the PPP model at the three-

month horizon. For the skewed t-distribution, only the asymmetric Taylor rule model without 

smoothing can be rejected by the test for ℎ = 1. For ℎ > 1, all models are rejected. 

In summary, the PIT-based AD and Berkowitz tests suggest that for ℎ = 1, the density 

forecasts are generally well calibrated for both the normal and skewed t-distributions, as both 

the uniformity and 𝑖. 𝑖. 𝑑. assumptions are satisfied. Thus, we cannot reject that these density 

forecasts coincide with the true sequence of predicted densities. This implicates that all models 

provide a good description of the uncertainty surrounding the one-month exchange rate return. 

For the normal distribution at the three-month horizon, the results are more ambiguous. The 

PPP model is the only model not rejected in either test. Most other models are rejected by the 

Berkowitz test, but not the AD-test, meaning we only find weak evidence that models are well 

calibrated at this horizon. For the skewed t-distribution, all models are rejected in both tests, 

except for the PPP model in the AD test. The above results may indicate that a PPP-model 

provides a more accurate description of the uncertainty associated with the future outcome of 

EUR/NOK exchange rate return at this horizon compared to the other models. For ℎ > 3, both 

the tests suggest that all models perform poorly in terms of accurately describing this 

uncertainty.  

5.3.3 Logarithmic Scores 

This section presents the logarithmic score for the predictive densities. As the AD test and the 

Berkowitz test are ‘absolute’ tests, we cannot conclude whether or not one model performs 

better than the other if not rejected. The logarithmic score allows us to evaluate the relative 
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performance of the models. The scores are presented in the table below. Grey cells represent 

logarithmic scores that are higher than that of the random walk model.  

Logarithmic Scores  

 
Normal Distribution Skewed t-Distribution 

Model h = 1 h = 3 h = 6 h = 12 h = 1 h = 3 h = 6 h = 12 

RW 2.41 1.95 1.71 1.30     

Taylor rule 
symmetric 

no smoothing 
2.38 1.92 1.67 1.28 2.32 1.87 1.57 1.24 

Taylor rule 
asymmetric 

no smoothing 
2.39 1.93 1.68 1.27 2.27 1.88 1.59 1.13 

Taylor rule 
symmetric 

smoothing 
2.37 1.92 1.67 1.27 2.32 1.87 1.56 1.22 

Taylor rule 
asymmetric 
smoothing 

2.38 1.92 1.67 1.25 2.29 1.86 1.60 1.10 

PPP 2.40 1.93 1.71 1.30 2.38 1.99 1.67 1.29 

UIRP 2.41 1.90 1.70 1.30 2.38 1.96 1.65 1.25 

BEER 2.44 1.89 1.68 1.29 2.41 1.92 1.62 1.27 

Monetary 
no interest rates 

 no inflation 
2.38 1.93 1.73 1.29 2.31 1.95 1.65 1.27 

Monetary 
interest rates 
 no inflation 

2.40 1.90 1.72 1.28 2.37 1.92 1.68 1.27 

Monetary 
no interest rates 

 inflation 
2.38 1.92 1.70 1.26 2.29 1.91 1.62 1.23 

Monetary 
interest rates 

 inflation 
2.40 1.87 1.68 1.24 2.33 1.86 1.62 1.19 

Table 8: Summary of logarithmic scores. A higher score implicates a better 

model. 

At first glance, we can observe that the logarithmic scores between the models show small 

variations. Among the Taylor rule models, the asymmetric Taylor rule model without 

smoothing with a normal distribution performs the best for the one-, three- and six-month 
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forecast horizons. The other Taylor rule models generally show very similar results across all 

forecast horizons. However, none of these models achieve log scores higher than the random 

walk. We can clearly observe that the skewed t-distributions achieve lower logarithmic scores 

compared to the normal distributions.  

Among the PPP, UIRP and BEER model with a normal distribution, the latter performs the 

best at a one-month forecasting horizon and is the only model which achieves a higher score 

compared to the random walk. For the three- and six-month horizons, the PPP model performs 

best of the three models, while the results are more similar for the twelve-month forecast 

horizon. Interestingly, for the three-month forecasting horizon, several of the models achieve 

a higher score with the skewed t-distribution.  

Concerning the monetary models, the most noteworthy are the two first specifications, which 

both show a higher score at the six-month forecast horizon compared to the random walk. 

Furthermore, at the three-month horizon, these specifications achieve a higher score with the 

skewed t-distribution than the normal distribution. However, for every other horizon and 

model specification, the normal distribution performs the best.  

In general, the above results argue in favor of the normal distribution providing a more 

accurate description of the predictive densities for the monthly EUR/NOK exchange rate 

returns. However, the results are not completely unambiguous, as some models achieve a 

higher score with the skewed t-distribution. Referring back to the literature on the distribution 

of exchange rate returns, Coppes (1995) argues that monthly exchange rate returns are more 

normally distributed, while that of daily exchange rate returns are more leptokurtic. Thus, our 

results largely support Coppes' findings on the distribution of monthly exchange rate returns.  

To evaluate the significance of the logarithmic scores, we return to the test statistics outlined 

in section 3.6.4. The table below presents the resulting test statistics and the associated p-

values. The test statistics represents the average log-score difference between the respective 

fundamental models and the random walk. A positive value (grey cells) means that the given 

fundamental model achieves a higher log-score, while the p-values indicate whether the 

average log-score difference is significantly different from zero.  
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Test Statistics for Logarithmic Scores 

 
Normal Distribution Skewed t-Distribution 

Model h = 1 h = 3 h = 6 h = 12 h = 1 h = 3 h = 6 h = 12 

Taylor rule 
symmetric 

no smoothing 

-0.04 -0.03 -0.03 -0.03 -0.09 -0.09 -0.14 -0.06 

(0.14) (0.01) (0.28) (0.94) (0.14) (0.14) (0.09) (0.36) 

Taylor rule 
asymmetric 

no smoothing 

-0.03 -0.03 -0.03 -0.03 -0.14 -0.07 -0.11 -0.17 

(0.21) (0.03) (0.33) (0.85) (0.11) (0.32) (0.17) (0.07) 

Taylor rule 
symmetric 

smoothing 

-0.04 -0.04 -0.04 -0.03 -0.09 -0.08 -0.15 -0.09 

(0.18) (0.01) (0.15) (0.76) (0.06) (0.21) (0.06) (0.13) 

Taylor rule 
asymmetric 

smoothing 

-0.03 -0.03 -0.03 -0.05 -0.12 -0.09 -0.11 -0.20 

(0.17) (0.03) (0.22) (0.58) (0.01) (0.25) (0.13) (0.04) 

PPP 
-0.02 -0.02 0.00 0.00 -0.03 0.04 -0.04 -0.02 

(0.22) (0.16) (0.99) (0.99) (0.28) (0.52) (0.61) (0.84) 

UIRP 
-0.01 -0.05 -0.01 -0.01 -0.03 0.01 -0.06 -0.05 

(0.73) (0.04) (0.97) (0.94) (0.42) (0.91) (0.42) (0.54) 

BEER 
0.03 -0.06 -0.02 -0.02 0.00 -0.03 -0.08 -0.03 

(0.17) (0.14) (0.43) (0.73) (0.98) (0.74) (0.23) (0.70) 

Monetary 
no interest rates 

 no inflation 

-0.03 -0.02 0.02 -0.01 -0.11 0.00 -0.06 -0.04 

(0.06) (0.09) (0.62) (0.87) (0.04) (0.98) (0.45) (0.74) 

Monetary 
interest rates 

 no inflation 

-0.02 -0.06 0.01 -0.02 -0.05 -0.03 -0.03 -0.04 

(0.30) (0.07) (0.81) (0.72) (0.25) (0.52) (0.68) (0.76) 

Monetary 
no interest rates 

 inflation 

-0.04 -0.03 -0.01 -0.04 -0.13 -0.04 -0.09 -0.07 

(0.10) (0.01) (0.89) (0.74) (0.03) (0.52) (0.28) (0.33) 

Monetary 
interest rates 

 inflation 

-0.02 -0.07 -0.02 -0.06 -0.08 -0.09 -0.08 -0.11 

(0.36) (0.03) (0.54) (0.58) (0.09) (0.09) (0.21) (0.20) 

                  
Table 9: Summary of test statistics for logarithmic scores. A p-value below 

0,05 indicates that the average log-score difference between a given model 

and the random walk is significantly different from zero. 

Our findings suggest that no model significantly outperform the random walk model. The 

BEER model achieves the lowest p-value of the models with a positive average log-score 

difference. However, the p-value of 0,17 is not a statistically significant at conventional 

significance levels. The results are in line with Gaglianone & Marins (2016), who find that 
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none of the tested models significantly outperform the random walk in density forecasting of 

the BRL/USD exchange rate. As such, these findings suggest that the Meese & Rogoff puzzle 

extends to sphere of density forecasting.  

5.3.4 Expected Shortfall Conditional Calibration Test 

Although the evaluation of the full densities reveal that no models can beat the random walk, 

we consider the possibility that they are better at forecasting the risk associated with the tails 

of the distributions. To do so, we first consider the left tail of the distributions by estimating 

the 5% Expected Shortfall (ES) and Value-at-Risk, and apply the joint conditional calibration 

test (Nolde & Ziegel, 2017) to evaluate whether they are well specified. Note that this 

corresponds to appreciation tail risk. The table below presents the output of the test. A p-value 

greater than 0,05 (grey cells) indicates that the models forecast of the left tail of the 

distributions are well specified. 

Expected Shortfall Conditional Calibration Test 

 
Normal Distribution Skewed t-Distribution 

Model h = 1 h = 3 h = 6 h = 12 h = 1 h = 3 h = 6 h = 12 

RW 0.00 0.00 0.00 0.00         

Taylor rule 
symmetric 

no smoothing 
0.56 0.00 0.00 0.00 0.00 0.05 0.06 0.00 

Taylor rule 
asymmetric 

no smoothing 
0.61 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Taylor rule 
symmetric 

smoothing 
0.55 0.00 0.00 0.00 0.00 0.01 0.03 0.00 

Taylor rule 
asymmetric 

smoothing 
0.59 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

PPP 0.08 0.00 0.00 0.00 0.01 0.00 0.00 0.00 

UIRP 0.56 0.00 0.00 0.00 0.73 0.00 0.00 0.00 

BEER 0.00 0.63 0.00 0.00 0.00 0.44 0.01 0.00 

Monetary 
no interest rates 

 no inflation 
0.58 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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Monetary 
interest rates 

 no inflation 
0.72 0.17 0.00 0.00 0.00 0.00 0.00 0.00 

Monetary 
no interest rates 

 inflation 
0.57 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Monetary 
interest rates 

 inflation 
0.56 0.09 0.00 0.00 0.03 0.52 0.00 0.00 

Table 10: Summary of Expected Shortfall conditional calibration test. A p-

value below 0,05 indicates that the left tails are well specified. 

The results show that, for ℎ = 1 with a normal distribution, the only models that are rejected 

are the BEER model and the random walk model. Thus, most models outperform the random 

walk model in terms of forecasting appreciation tail risk at this horizon. For ℎ = 3, the BEER 

model and the second and fourth monetary model, cannot be rejected by the test, while the 

other models are rejected.  At the six- and twelve-month horizons, all models are rejected.    

For the skewed t-distribution, the only model not rejected for ℎ = 1 is the UIRP model. For 

ℎ = 3, the BEER model, the monetary model with interest rates inflation, and the symmetric 

Taylor rule model without smoothing are not rejected by the test. The latter is also the only 

model not rejected for ℎ = 6. For the twelve-month horizon, all models are rejected.  

Overall, the test reveals that the fundamental models with a normal distribution consistently 

outperform the random walk in forecasting the appreciation tail risk for ℎ = 1, while this is 

only the case for a few models for ℎ > 1. With the skewed t-distribution, only a few models 

at selected forecast horizons are able to outperform the benchmark. Also here, the results argue 

in favor of a normal distribution as compared to a skewed t-distribution at a one-month 

horizon. 

5.3.5 Expected Longrise Conditional Calibration Test 

We perform the same test procedure for the right tail of the distribution. Here we estimate the 

Expected Longrise (EL) outlined in section 3.6.5, and the 95% Value-at-Risk. We apply the 

joint conditional calibration test (Nolde & Ziegel, 2017) to test whether the models are able to 

forecast the right tail of the distribution, which corresponds to depreciation tail risk. The results 

of the test are presented in the table below. 
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Expected Longrise Conditional Calibration Test 

 
Normal Distribution Skewed t-Distribution 

Model h = 1 h = 3 h = 6 h = 12 h = 1 h = 3 h = 6 h = 12 

RW 0.28 0.31 0.11 0.32         

Taylor rule 
symmetric 

no smoothing 
0.27 0.22 0.10 0.14 0.04 0.08 0.03 0.17 

Taylor rule 
asymmetric 

no smoothing 
0.57 0.21 0.10 0.05 0.01 0.14 0.03 0.07 

Taylor rule 
symmetric 
smoothing 

0.41 0.22 0.10 0.08 0.03 0.07 0.04 0.13 

Taylor rule 
asymmetric 

smoothing 
0.75 0.22 0.10 0.06 0.00 0.10 0.03 0.06 

PPP 0.57 0.25 0.16 0.30 0.13 0.26 0.06 0.29 

UIRP 0.19 0.15 0.24 0.30 0.16 0.07 0.00 0.01 

BEER 0.41 0.18 0.10 0.13 0.14 0.03 0.00 0.07 

Monetary 
no interest rates 

 no inflation 
0.27 0.24 0.25 0.01 0.24 0.01 0.00 0.02 

Monetary 
interest rates 

 no inflation 
0.08 0.10 0.17 0.00 0.30 0.07 0.00 0.01 

Monetary 
no interest rates 

 inflation 
0.18 0.16 0.17 0.05 0.15 0.02 0.03 0.02 

Monetary 
interest rates 

 inflation 
0.08 0.09 0.15 0.01 0.26 0.01 0.11 0.00 

Table 11: Summary of Expected Longrise conditional calibration test. A p-

value below 0,05 indicates that the right tails are well specified. 

The results suggest that that, in general, most of the models do well in forecasting depreciation 

tail risk for all forecasting horizons with the normal distribution. Only three of the monetary 

models are rejected by the test. For the skewed t-distribution, the results are mixed depending 

on model and forecast horizon. Note that for ℎ = 1 with a normal distribution, the fundamental 

models appear to perform well in forecasting both tails of the distribution, while the random 

walk model only performs well in forecasting the right tail. Thus, fundamental models appear 
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to provide a better measure of the risk associated with extremal outcomes of the EUR/NOK 

exchange rate return compared to a random walk model at the one-month horizon. For  ℎ > 1, 

most of the models perform better in forecasting the depreciation tail risk as compared to the 

appreciation tail risk.  

5.3.6 Point Versus Density Forecasts – What Have We Learned? 

We devoted the first part of the empirical analysis to an evaluation of the point forecasts 

generated by the fundamental models. This analysis revealed that, in accordance with the 

empirical literature on the Meese & Rogoff puzzle, no model was able to significantly 

outperform the random walk model in pseudo out-of-sample forecasting. Furthermore, the 

models were generally unable to achieve a significantly better directional forecast accuracy 

than 50%. In light of these findings, we return to the question of whether density forecasts 

provide an informational advantage relative to standard point forecasts. The test statistics for 

the logarithmic scores shows that fundamental models do not have significantly better forecast 

performance compared to the random walk. However, the Anderson-Darling and Berkowitz 

tests reveal that, for the one-month forecast horizon, most of the densities provided a good 

description of the uncertainty associated with the forecasted exchange rate return. 

Furthermore, the fundamental models appear to provide a more accurate description of the 

risks associated with appreciation and depreciation tail risk compared to the random walk 

model at the same horizon. Decision makers such as investors, risk managers and central banks 

are often more concerned with the uncertainty associated with the exchange rate rather than 

the central estimate, as this has proven a particularly difficult exercise to forecast. Thus, it can 

be argued based on the findings in this paper, that density forecasting of exchange rates 

provide an informational advantage relative to point forecasting for these decisionmakers at 

the one-month horizon. 
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6. Conclusion 

This thesis investigated the predictability of fundamental economic and financial indicators 

on the EUR/NOK exchange rate from a pseudo out-of-sample perspective. The thesis deviates 

from the vast body of literature investigating the predictability of the Norwegian krone 

exchange rate in that it utilizes both a point and density forecasting methodology. In total, 

forecasts have been made for eleven exchange rate models selected on the grounds of standard 

economic theory, at forecast horizons of one, three, six, and twelve months. The thesis sought 

to evaluate whether fundamental exchange rate models could outperform a naïve random walk 

model in out-of-sample density forecasting of the EUR/NOK exchange rate. To do so, we 

benchmarked the fundamental models against the naïve random walk model using a wide 

range of empirically grounded statistics. Furthermore, to assess whether density forecasts of 

the EUR/NOK exchange provide an informational advantage relative to standard point 

forecasts, we considered both approaches. 

We first generated point forecasts for the selected models using ordinary least squares. A 

Diebold-Mariano test statistic was applied to investigate whether the empirical exchange 

models could achieve more accurate point forecasts than the naïve random walk model. No 

model achieved a forecast accuracy that was significantly better than the benchmark at the 5% 

significance level. Furthermore, a Pesaran-Timmermann test statistic was applied to test 

whether the empirical exchange rate models could accurately forecast the direction of change 

for the exchange rate. The models were generally found to be unable of achieving a 

significantly better directional forecast accuracy than 50%. Overall, the results are largely in 

line with the extensive body of Meese & Rogoff puzzle literature that concludes on the 

difficulty of outperforming a driftless random walk model in out-of-sample forecasting.  

Density forecasts were generated using two sets of distributions, the first one being a normal 

distribution. To account for the possibility of exchange rate returns not being normally 

distributed, we also estimated a skewed t-distribution derived from quantile regression. An 

evaluation of the density forecasts revealed that, in terms of calibration, most of the 

theoretically grounded models were well calibrated at the one-month forecast horizon, while 

they in general showed poor performance at the remaining horizons. The logarithmic score 

test statistics displayed that no model could significantly outperform the random walk. 

However, an analysis of the tail-risk of the distributions revealed that the fundamental models 

were significantly better at forecasting appreciation tail risk compared to the random walk 
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model. Most models presented fairly good results in relation to forecasting depreciation tail 

risk. This suggest that, although no model could outperform the random walk in a full-density 

evaluation, they can perform better in distinct parts of the distribution. In terms of the selected 

densities, the normal distribution generally provided a better description of the uncertainty 

associated with exchange rate returns compared to the skewed t-distribution.  

Based on the findings in the empirical analysis, a discussion was presented on whether density 

forecasting provide an informational advantage relative to standard point forecasting. The 

discussion highlighted that certain decisionmakers are more concerned with the uncertainty 

associated with an exchange rate forecast rather than a central estimate. The findings in this 

paper suggests that density forecasting provide an informational advantage relative to point 

forecasting for these decisionmakers at a one-month horizon. 

Possible extensions of this research include: (i) extending the conventional exchange rate 

models with additional predictors, (ii) using an alternative forecasting framework, and (iii) 

applying the methodology to alternative currency pairs and forecast horizons. First, several 

papers investigate the impact of incorporating additional fundamentals to conventional 

exchange rate models. Gloria (2010), e.g., provides evidence that incorporating commodity 

prices into a Taylor rule-based model improves forecasting performance for commodity-

exporting countries' currencies. Additionally, the BEER model might be specified with a 

variety of alternative or additional predictors. It could, e.g., be interesting to investigate the 

out-of-sample predictability of decomposed oil price dynamics (Akram, 2019) and climate 

transition risk (Kapfhammer et al., 2020). Second, as seen in section 3.1, a range of different 

options are available with regards to, e.g., forecasting methodology, model specification, and 

forecast horizon. Thus, a possible extension of this research is to test whether an alternative 

approach to the forecasting framework verifies the conclusions of this thesis. Third, the body 

of literature investigating the out-of-sample predictability of krone-related currency pairs from 

a density forecasting perspective remains very limited. Consequently, another possible 

extension of this research is to apply the methodology to alternative currency pairs.  
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