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Abstract 

Machine learning models have demonstrated huge improvement in examining complex patterns, 

which allow them to make predictions about the unobserved data. While the accuracy of these 

models increases over time, so does complexity, which makes them extremely difficult to 

interpret.   

 

There are many problems where accuracy is the main focus of machine learning applications, but 

some cases also require model interpretability. This thesis seeks to present and apply some of the 

most prominent methods in the relatively new field of interpretable machine learning. In our 

application, we use these methods to interpret a random forest model which is predicting the 

monthly rent in a dataset about German real estate. Through this interpretation, we discovered 

that methods such as Permutation Feature Importance, Partial Dependence Plots, and ALE Plots 

visualize the mechanisms of the random forest in an easily understandable way. We also 

analyzed individual predictions with the LIME algorithm and Shapley Values and found that 

they can provide interpretable explanations of how those predictions were produced. However, 

while experimenting with the LIME model, we have noticed slightly unstable results produced 

by this algorithm. So, we offer our solution to this problem by using K-Nearest Neighbours as a 

sampling method for LIME instead of its own random perturbation technique for sampling 

observations. 

 

In summary, based on our findings, we conclude that the interpretable machine learning methods 

can provide comprehensible explanations of model mechanisms, but they still have some 

limitations when it comes to explaining the more complicated processes in the model. 
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1. Introduction 
 

In the age of big data, Machine Learning (ML) has been flourishing. Sophisticated models that are 

being trained on large datasets are often able to predict unknown variables with impressive 

accuracy. Therefore, they are being applied to solve problems such as image recognition, fraud 

detection, content recommendations, and health diagnosis, just to name a few. 

 

The task of improving model accuracy increases model complexity in the form of additional model 

parameters, which makes it harder for humans to understand how the model transforms input to 

output. This problem is known as the accuracy-interpretability trade-off. The trade-off can be 

problematic in cases where both interpretability and high accuracy are necessary.  

 

For instance, in the healthcare sector, a lack of interpretability in ML models can potentially have 

life-threatening consequences or cause injuries. Examples are when a model recommends the 

wrong drug for a patient or fails to notice a tumour on a radiological scan (Nicholson Price II, 

2019). To prevent such scenarios, there are regulations like The European Union's General Data 

Protection Regulation (GDPR) that requires organizations that use patient data for ML modelling 

to provide on-demand explanations of model outcomes (Ahmad, Ecker, Mckelvey and Teredesai, 

2018). Similarly, in the banking industry, there are laws governing decisions that are based on ML. 

In the United States, if an institution is using a model to determine whether to accept credit 

applicants, it must be able to provide a clear explanation for refusals (Babel, Buehler, Pivonka, 

Richardson, and Waldron, 2019). 

 

The cases discussed above are just a few of the many scenarios where interpretability is required 

in ML projects. This thesis will present some methods that can provide interpretability to ML 

models and demonstrate their usefulness on a dataset about German Real Estate. We start by 

introducing the concepts and terminology that are necessary to understand the Interpretable 

machine learning methods and review some of the literature on the topic. Next, Chapter. 2 will 

provide detailed explanations of our chosen methods. Then we apply these methods to German 

Real Estate Data in Chapter. 3. Finally, we end the thesis by discussing our findings. 



 

1.1 Terminology 
 

This section will define the Interpretable Machine learning concepts that are central in this thesis. 

 

Black Box Model is referred to a machine learning model for which we can only understand the 

inputs and outputs but not the internal mechanisms. Examples are random forest, deep neural 

networks, etc. 

 

Interpretable Machine Learning (IML) are methods and models that make the mechanisms of 

an ML model comprehensible for humans. Elshawi, Al-Mallah, and Sakr (2019) defined machine 

learning interpretability “… as the degree to which machine learning user can understand and 

interpret the prediction made by a machine learning model”. 

 

Inherently Interpretable Models are models that can be interpreted by looking at parameters or 

feature summary statistics. Examples are Linear regression and simple decision trees. 

 

Model-agnostic methods are tools that can be used to understand any ML model, and they are 

applied after the model has been trained. All methods discussed in chapter 2 and applied in chapter 

3 are model agnostic. 

 

Surrogate models are defined as follows: if the outcome of interest is hard to measure in terms of 

expensiveness or time, as an alternative, a cheap and fast surrogate model of the outcome can be 

applied instead. The main goal of the surrogate models is to approximate the predictions of the 

underlying machine learning model as precisely as possible while being interpretable (Molnar, 

2021). 

 

Global Surrogate Methods interpret the entire model behaviour. Because of humans limited 

working memory, we can never fully understand complicated models such as deep neural networks 

or Random Forests. But global methods can give us insight into which features are most important 

in the model, the general effect of each of them, and how they interact. 

 



Local Surrogate Methods interpret the predictions of a single observation or a group of similar 

observations. Models that are very complicated at the global level might be easier to understand at 

a local level. 

 

1.2 Literature Review 
 

Some of the models that are inherently interpretable such as linear regression have been used by 

academics since the beginning of the 19th century, but research in the IML field really started 

growing in popularity around 2015. After this, many model-agnostic methods have been 

developed, and open-source software implementations such as iml and Dalex for R and 

InterpretML for Python have been introduced (Bischl, Casalicchio, and Molnar, 2020). 

 

Guestrin, Ribeiro, and Singh (2016) argue that an advantage of using model-agnostic methods 

instead of just using interpretable models is that it separates the model from the explanation. 

Separating interpretability from the model allows the model to be as flexible as needed for the 

problem at hand, enabling the use of any machine learning method such as neural networks or 

random forests. This also makes it easier to switch between models without having to learn a new 

form of explanation. Moving from one interpretable model to another, for instance, from linear 

regression to a simple decision tree, requires changing the explanations. Model-agnostic methods 

avoid this problem because the way the explanations are presented is the same for all models. 

 

Guestrin et al. (2016) further argue that there are still some challenges for model-agnostic 

explanations. For instance, getting a comprehensive global understanding may be very 

challenging if the model is very complex. In some cases, strictly accurate explanations are 

needed, and using a black-box model may be inadequate or even illegal. Interpretable models 

might also be preferable when interpretability is more important than accuracy or when black-

box models are not more accurate than interpretable ones. 

 

Model-agnostic methods have been applied to solve problems and gain insight into many fields.  

Arash Khoda Bakshi and Mohammed M. Ahmed (2020) used random forest and IML methods 

such as Partial Dependence Plots (PDP) and Accumulated local effects (ALE), among others, to 



study real-time traffic-related crash contributing factors. By using these tools, they discovered the 

causal effects of significant predictors of crash risk, demonstrating how the accuracy-

interpretability trade-off can be alleviated when modelling for active traffic management.  

 

Eui-Jin Kim, Youngseo Kim, and Dong-Kyu Kim (2020) used a machine learning approach to 

predict trip purposes of transit passengers by using spatio-temporal features extracted from smart 

card data and geographic information data. IML methods such as feature importance, feature 

interactions, and ALE were used to understand the decision-making process of the model.  They 

revealed that temporal features of travel, like the length of the activity, the trip sequence, and the 

departure time were the most important factors in predicting trip purpose. Spatial features mainly 

affected prediction through interaction effects with temporal features. The authors suggested that 

their findings could be used by transit authorities to determine what type of data should be collected 

by smart card systems. 

 

Ramirez, Villanueva, and Blazquez (2020) state that Alzheimer's Disease is the most common 

form of dementia which is very common among the elderly. Moreover, mild cognitive 

impairment (MCI) is an intermediate stage between the expected decline of normal aging and the 

pathological decline caused by dementia. Therefore, it is very crucial to identify risk elements of 

MCI as early as possible. In order to clarify which features are most important, authors build a 

random forest that computes feature importances based on Gini impurity. But the authors argue 

that Gini importances are biased as they weigh continuous and high-cardinality categorical 

variables higher. In order to solve this problem, the authors implement the permutation-based 

feature importance method. They reveal that the most important risk factors are subjective 

cognitive decline (SCD), diet features (sweets and white fish), hours of sleep during the day, and 

APOE (risk gene called apolipoprotein E). In the next step, PDP plots are used to further 

examine the effect of each of the four features on the predictions. Finally, the authors argue that 

their study aims to solve two problems: first, reducing complexity in order to gain 

interpretability, and second, to provide a methodology that can be used as a prognosis support 

tool that will help practitioners to identify elderly who has a high risk of developing MCI in 5 

years. 

 



Katuwal and Chen (2016) argued that the adoption of complex machine learning models in 

healthcare had been delayed because of less interpretability, leading to less trust among clinicians. 

In their research, they used the random forest model to predict the Intensive Care Unit (ICU) 

mortality rate and interpreted the relative effect of features on the individual predictions, using 

Local Interpretable Model-agnostic Explanations (LIME). The random forest model yielded 80% 

balanced accuracy on the test data. The authors revealed that for the randomly selected test 

subjects, the four most important features were temperature, total CO2, atrial fibrillation, and 

lactate level to predict ICU mortality rate. As these results were consistent with the modern medical 

understanding, authors suggest that simplifying complex models by interpretable models is one of 

the ways to overcome the black-box problem in healthcare machine learning studies. 

 

In their case study of individuals with a risk of hypertension, Elshawi, Al-Mallah, and Sakr (2019) 

revealed that the LIME technique suffered from the instability of results. Although the LIME 

algorithm fits a local regression model, which was easy to interpret, explanations provided by the 

model were not stable because of the random perturbation during the sampling process. 

 

Ariza-Garzon, Arroyo, Caparrini, and Segovia-Vargas (2020) argued that it is possible to have a 

machine learning credit scoring model to be both accurate and transparent. They built a black box 

machine learning model which assesses the credit risk of a customer based on nine features. In the 

next step, Shapley Values are used to explain the findings of the machine learning model.  Authors 

note that quantitative variables were more important than qualitative ones (70% and 30%). FICO 

score (information from the Fair Isaac Corporation credit bureau: defined between 300 and 850) 

and loan amount were the most important quantitative variables in defining the credit risk of 

customers. On the other hand, in the case of categorical variables, the purpose of the loan, 

specifically credit card loan, and home ownership were the most influential variables. The authors 

also reveal that the same feature values do not influence each individual observation in the same 

manner, emphasizing the importance of interpretability on a local scale. For example, home 

improvement as a purpose of the loan can either decrease or increase the default chance, while the 

purpose: small business always leads to an increase in the default probability. Finally, according 

to the authors, their methodology is suitable for credit risk models where interpretability and 

transparency are required. This is done by adjusting Shapley Values for categories of categorical 



variables and quantitative variables in order to better account for each combination between feature 

values.  

 

 

2. Methodology 
 

In this chapter, we will explain and discuss the methods we have used in Chapter. 3 for analyzing 

German Real Estate Data. This includes the Random Forest model, methods for feature selection, 

and of course, the global and the local IML techniques. Many of our chosen methods are visual 

in their nature. Therefore, we will provide examples of plots using 50 observations simulated 

from the following model:  

 

𝑦 = 𝑔(𝑥1, 𝑥2, 𝑥3) = 5.5𝑥1
2 + 30𝑥2 + 𝑥3

0.5 + 𝑥1𝑥3 + 𝜀 

 

where 𝑥1~𝑁(10, 32), 𝑥2~𝑃(𝑛) {
0.5 𝑓𝑜𝑟 𝑛 = 1
0.5 𝑓𝑜𝑟 𝑛 = 0

, 𝑥3~𝑁(50, 102) and 𝜀~𝑁(200, 502). We fitted 

a random forest to this data, and we will demonstrate the IML methods applied to that model in 

this section. Predictions of the random forest will be denoted as 𝑓(𝑥1, 𝑥2, 𝑥3). 

 

2.1 Random Forest 
 

In our analysis of IML methods, we will be using random forests as a reference black-box model. 

There are a couple of reasons why we want to further interpret random forests. First, random 

forest is one of the most widespread machine learning models used in real-world cases. Random 

forests offer increased flexibility as they can be used both in classification and regression 

problems with a high degree of accuracy. Moreover, random forests have low risks of overfitting 

as averaging through uncorrelated trees offers lower variance and prediction error. But along 

with their benefits, random forests bring in quite a few challenges, such as being computationally 

expensive in some cases and having less interpretability. (IBM CE,2020) 

To describe random forests, we will briefly discuss decision trees as they are building blocks of 

the random forest model. Decision trees usually start with a binary question such as "Will it rain 



today?" and from there, additional questions are asked to determine the features and divide the 

values into different decision nodes. Each question helps us to arrive at a certain final decision 

which is represented by a leaf node. At each decision node, the algorithm goes through all 

possible features and selects the one that generates the best split to subset the data. (IBM 

CE,2020). 

 
Figure 0.1: Regression tree for predicting y using the simulated dataset 

The point along the tree where predictor space is split are referred to as internal or decision 

nodes. For example, on the left-hand side of Figure 2.1, the split is done based on whether the 

feature x1 is less than 8.4. This point is called the decision node, and there are a total of 3 

decision nodes. Furthermore, nodes with no further split are called leaf or terminal nodes. The 

number in each leaf indicates the mean of the response of observations that belong there. There 

are a total of 4 leaves in this decision tree. 

 

Decision trees can be used both for regression and classification problems. The process of 

constructing a regression tree can be summed up in two steps: 

 

1. The predictor space, which is the set of possible values for the features 𝑋1, 𝑋2, . . . , 𝑋𝑝 is 

divided into J distinct and non-overlapping regions, 𝑅1, 𝑅2, . . . , 𝑅𝐽. 

2. For every observation that is within the region 𝑅𝑗, we make the same prediction, which 

is simply the mean of the response values for the training observations in 𝑅𝑗. 

 



For example, let's say that after the first division, we end up with regions 𝑅1 and 𝑅2, and the 

response mean of training observations in the first region is 5, while the response mean of 

training observations in 𝑅2 is 10. Then for a given observation 𝑋 = 𝑥, 𝑖𝑓 𝑥 𝜖 𝑅1, we will predict a 

value of 5, and if 𝑥 𝜖 𝑅2, we will predict a value of 10. An important question is how to construct 

regions 𝑅1, … , 𝑅𝐽? Theoretically, regions can be any kind of shape. But to ensure more 

interpretability and less complexity, predictor space is divided into high-dimensional rectangles 

or “boxes”. The goal is to find boxes 𝑅1, . . . , 𝑅𝑗 that minimize the RSS, given by 

 

∑ ∑ (𝑦𝑖 − 𝑦̂𝑅𝑗
)

2

𝑖𝜖𝑅𝑗
𝐽
𝑗=1  (2.1) 

 

where 𝑦̂𝑅𝑗
 is the mean response for the training observations within the jth box. (Pal,2007) 

However, it is computationally impossible to consider every single piece of feature space in the J 

boxes. A top-down greedy method is to use as recursive binary splitting. This approach is called 

top-down because we start from the top of the tree where only one region exists and then 

subsequently split the predictive space into two branches each time. On the other hand, this 

approach is called greedy because, at a particular step, the best split is done rather than looking 

forward and coming up with a split that will lead to better results in the future. (Yiu, 2019) 

 

Random forests consist of multiple decision trees, which together create an ensemble. Each 

individual tree comes up with a prediction, and the final prediction of the random forest is 

decided through either averaging for regression or by the majority rule for classification. An 

ensemble of uncorrelated trees will always outperform any individual decision tree. The reason 

for this is as follows: the ensemble of trees protects each other from their individual errors (Yiu, 

2019). But there are two prerequisites for the high performance of random forest models: 1) there 

should be predictive power of features so that the model built using those features perform better 

than random guessing, 2) the predictions of individual trees should be uncorrelated from each 

other (at least very low correlation). (Yiu, 2019) So the question arising here is how the 

algorithm ensures that trees have a low correlation between them? The answer is the usage of the 

following two methods: Bagging (bootstrap aggregation) and feature randomness.  The bagging 

method was introduced in 1996 by Leo Breiman (Breiman cited in Yiu, 2019); random samples 



with replacement are generated from the dataset for each tree. This means that each tree will be 

estimated on a different subset of data. The second method for obtaining low correlation is the 

feature randomness of random forests. As explained above, in the decision trees, when a decision 

node is split, the algorithm goes through all features and picks the best one that offers the most 

separation. However, in random forests, each individual tree can select from only a random 

subset of features at each split, forced by the algorithm, which ensures further variation and 

ultimately lowers correlation amongst the trees (Yiu, 2019). 

 

2.2 Feature Selection by Recursive Feature Elimination 
 

Performing feature selection before fitting the machine learning model has several advantages. It 

can improve model performance by removing redundant variables that might add noise to the 

data and increase the risk of overfitting. This is also beneficial for the IML methods since we do 

not want to study features that are not associated with the target variable. Removing redundant 

variables also reduces the computational costs, which is very helpful when working with 

computationally expensive methods like Shapley Values or the H-Statistic that are described in 

sections 2.4.7 Shapley Values and 2.4.2 H-Statistic, respectively. 

 

The Recursive Feature Elimination (RFE) is a backward feature selection algorithm that fits a 

machine learning model to different subsets of predictors (Kuhn, 2019). First, it fits a model to 

all the predictors and ranks them by their importance to the model. Let 𝑆 be a sequence of 

ordered numbers where each number is a candidate value for numbers of features to retain (𝑆1 >

𝑆2 > ⋯ ). For each iteration, the  𝑆𝑖 most important features are retained for refitting the model, 

and the error is measured. The algorithm avoids the problem of overfitting by implementing a 

resampling method, which in our case is Cross-Validation. The method can be summarized as 

follows: 

 

 

 

 

 

 

 



Algorithm 2.1 Recursive Feature Elimination 

1. For each fold in the Cross-Validation: 

• Train the model on the training set using all 𝑝 features 

• Predict the held-back samples 

• Calculate feature importance and rank them 

For each subset size 𝑆𝑖, 𝑆(𝑖 = 1, 2, … 𝑝): 

• Keep the 𝑆𝑖 most important features 

• Train the model on the training set using 𝑆𝑖 features 

• Predict the held-back samples 

                        End 

            End 

2. Calculate the performance profile over the 𝑆𝑖 using the held-back samples 

3. Determine the appropriate number of features 

4. Estimate the final list of features to keep in the final mode 

 

2.3 Multicollinearity tests 
 

If two or more of the variables that are chosen by RFE are highly correlated, then some of the 

variables might be redundant if the consequence of removing it from the model is only a 

negligible increase in error. Multicollinearity tests can be used to test for such situations, and 

performing such tests is also useful for the IML analysis because some of the IML methods are 

only reliable when the features are uncorrelated. 

 

When checking for multicollinearity, there are three different cases that require different 

methods, depending on whether we are investigating the degree of association between pairs of 

continuous variables, pairs of categorical variables, and pairs with one categorical and one 

continuous variable.  

 

Table 0.1: The dependence tests used for each variable pair. 

 

 

 



Pearsons’r 
Pearson's r measures the linear correlations between two continuous variables x, and 𝑦 (James, 

Witten, Hastie & Tibshirani, 2021). It is the covariance of the variables divided by the product of 

their standard deviations. It will be a number between -1 (perfectly negatively correlated) and 1 

(perfectly positively correlated). 

𝑟𝑥𝑦 =
𝑐𝑜𝑣(𝑋,𝑌)

𝜎𝑥𝜎𝑦
  (2.1) 

 

Cramer’s V 

Cramér’s V measures the degree of association between two categorical variables (Medium, 

2018). It uses the chi-square statistic: Let a sample size of 𝑛 of the simultaneously distributed 

categorical variables 𝐴 and 𝐵 for 𝑖 = 1, … , 𝑟: 𝑗 = 1, … , 𝑘 be given by the frequencies 𝑛𝑖𝑗 = the 

number of times the values (𝐴𝑖 , 𝐵𝑗)  were observed. Then, the chi-square statistic is computed 

the following way: 

𝜒2 = ∑
(𝑛𝑖𝑗−

𝑛𝑖𝑛𝑗

𝑛
)

2

𝑛𝑖𝑛𝑗

𝑛

𝑖,𝑗   (2.2) 

Where, 𝑟 is the number of rows and 𝑘 is the number of columns. The next step is using the chi-

square statistic to compute Cramér’s V: 

𝑉 = √
𝜒2/𝑛

min(𝑘−1,𝑟−1) 
 (2.3) 

 

It ranges from 0 (no association) to 1 (complete association). 

 

ANOVA 
Analysis of variance (ANOVA) is a statistical test used to check whether the means of two or 

more independent groups are significantly different from each other (Kim, 2017).  We use 

ANOVA when we have a single independent variable (categorical), and our goal is to check if 

variations or different levels of the categorical variable have a significant effect on a dependent 

variable (continuous). ANOVA analyses the level of variance within the independent groups 

through samples taken from them. If the variance is high within the groups, then it means that the 

mean of the sample chosen from the data will be different due to chance. In ANOVA, a Null and 

Alternative hypothesis is formulated to check these conditions. Under the null hypothesis, all the 



sample means are equal, and they do not possess any significant differences. In contrast, the 

alternative hypothesis is true when at least one sample mean is different from the others (Kim, 

2017). These hypotheses mathematically expressed as follows: 

 

𝐻0 ∶  𝜇1 = 𝜇2 = ⋯ = 𝜇𝐿                  𝑁𝑢𝑙𝑙 ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠          

                   𝐻1 ∶  𝜇𝑙 ≠ 𝜇𝑚                            𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠  

 

where, 𝜇𝑙  𝑎𝑛𝑑 𝜇𝑚 belong to any two sample means out of all samples included in the test. If the 

null hypothesis cannot be rejected, then the categorical variable did not have any impact on the 

dependent continuous variable. On the other hand, if the null hypothesis is rejected, then at least 

one of the sample means is different from the other (Kim, 2017). 

As a measure of the strength of the association in ANOVA, we have used the statistical term, 

𝜂2 (𝐸𝑡𝑎 𝑠𝑞𝑢𝑎𝑟𝑒𝑑). 𝜂2 represents the percentage of variance in the dependent variable accounted 

for by the independent variable (Richardson, 2011). The formula for 𝜂2 is: 

 

𝜂2 = 𝑆𝑆𝑒𝑓𝑓𝑒𝑐𝑡/𝑆𝑆𝑡𝑜𝑡𝑎𝑙  (2.4) 

 

where, 𝑆𝑆𝑒𝑓𝑓𝑒𝑐𝑡 is the sum of squares of the effect we are investigating, and 𝑆𝑆𝑡𝑜𝑡𝑎𝑙  is total sums 

of squares for all effects, errors, and interactions in the ANOVA (Richardson, 2011). 

 

2.4 Interpretable Machine Learning Methods 
 

2.4.1 Partial Dependence Plots 
 

Partial dependence plots (PDP) are one of the global methods that describe the marginal effect 

that features have on the prediction by a machine learning model (Boehmke & Greenwell, 2021). 

The plot shows how predictions change as the value of features changes while averaging the 

effect of all the other features. In this way, we can learn about the degree of association between 

the feature and the target variable and the structure of the association, e.g., if it is linear or more 

complex. 

 

 



Algorithm 2.2 Estimating PDP 

For a selected feature x 

1. Create a grid of j evenly spaced values over the distribution of x: (𝑥1, 𝑥2, … , 𝑥𝑗)  

2. For i in (1, 2, …, j): 

• Copy the training data, but replace the original values of x with the constant 𝑥𝑖 

• Apply an ML model to obtain a vector with predictions of every target 

variable in the training data 

• Average the predictions 

            End 

3. Plot the averaged predictions against 𝑥1, 𝑥2, … , 𝑥𝑗 

 

A partial dependence function can also be expressed mathematically: 

 

𝑃𝐷𝑥𝑠
(𝑥𝑠) =

1

𝑛
∑ 𝑓 (𝑥𝑠, 𝑥𝑐

(𝑖)
)𝑛

𝑖=1  (2.5) 

 

Where 𝑥𝑠 are any given value for the feature of interest, 𝑃𝐷𝑥𝑠
 is the partial dependence function 

for this constant, and 𝑓 is the ML model that the PDP is estimated for. n is the number of 

observations in the training data, i is a single observation, and 𝑥𝑐
(𝑖)

 is a vector of the real values 

of the other features in the training data. The function measures the average effect of any given 

values of 𝑥𝑠 on the outcome of the prediction.  

 

The formula and algorithm above are for estimating the marginal effects of one feature, but PDPs 

can also be estimated for multiple features. In practice, a maximum of two features are used for 

the plots because visualizing plots with more features are very impractical. A PDP showing the 

effects of two features is a two-way PDP. 

 

PDPs should be used with great caution. They assume that the features in 𝑥𝑐 are uncorrelated 

with the feature of interest. When this assumption is violated, we can get extremely unlikely data 

points in the estimation of the PDP. For instance, in our application in section 3.4.3, an 

apartment of 50 𝑀2and 10 rooms. 

 



 
Figure 0.2: Two-way PDP of 𝑥1and 𝑥2effects on y, using 25 equally spaced values of 𝑥1. 

Figure 2.2 shows that the curve of x1 is similar for both values of x2. Increasing x1 results in a 

higher random forest prediction of y.   

 

2.4.2 H-Statistic 
 

Another way to study global model behaviour is to look at how feature interaction affects 

predictions (Molnar, 2021). The H-Statistic uses partial dependence to measure the interaction 

strength between two features or between one feature and all other features. Specifically, it 

estimates how much of the variation in the predictions can be explained by the interaction of two 

features.  

 

When there is no interaction between two features, the two-way partial dependence function, 

𝑃𝐷𝑗𝑘(𝑥𝑗 , 𝑥𝑘), can be expressed as follows: 

 

𝑃𝐷𝑗𝑘(𝑥𝑗 , 𝑥𝑘) = 𝑃𝐷𝑗(𝑥𝑗) + 𝑃𝐷𝑘(𝑥𝑘)  (2.6) 

 



where 𝑃𝐷𝑗(𝑥𝑗) and 𝑃𝐷𝑘(𝑥𝑘) are the partial dependence function for the single features. A lack of 

interaction between one feature and all other features means that the machine learning model 

with all the features can be expressed similarly: 

 

𝑓(𝑥) = 𝑃𝐷𝑗(𝑥𝑗) + 𝑃𝐷−𝑗(𝑥−𝑗)  (2.7) 

 

where 𝑓(𝑥) is the machine learning model, and 𝑃𝐷−𝑗(𝑥−𝑗) is the partial dependence function for 

all features except j.  

If there was any interaction between two features or between one feature and all other features, 

the two-way partial function and the entire function could not be expressed as the sum of the 

individual parts. The H-Statistic measures the degree of interaction by comparing the two-way 

dependence function with the same function under the assumption of no interaction: 

 

𝐻𝑗𝑘
2 = ∑ [𝑃𝐷𝑗𝑘(𝑥𝑗

(𝑖)
, 𝑥𝑘

(𝑖)
) − 𝑃𝐷𝑗(𝑥𝑗

(𝑖)
) − 𝑃𝐷𝑘(𝑥𝑘

(𝑖)
)]

2
𝑛
𝑖=1 / ∑ 𝑃𝐷𝑗𝑘

2 (𝑥𝑗
(𝑖)

, 𝑥𝑘
(𝑖)

)𝑛
𝑖=1   (2.8) 

 

To capture interactions between one feature and all other features, the H-statistic is expanded as 

follows: 

 

𝐻𝑗𝑘
2 = ∑ [𝑓(𝑥(𝑖)) − 𝑃𝐷𝑗(𝑥𝑗

(𝑖)
) − 𝑃𝐷−𝑗(𝑥−𝑗

(𝑖)
)]

2
𝑛
𝑖=1 / ∑ 𝑓2(𝑥(𝑖))𝑛

𝑖=1   (2.9) 

 

The former is called the two-way H-Statistic, and the latter is the H-Statistic for total interaction. 

If there is no interaction effect, the statistic is 0, and when all variation can be explained by the 

interaction effect, the statistic is 1. 

 

2.4.3 Accumulated Local Effects  
 

Like the PDP, accumulated local effects (ALE) plots show how one or two features influence the 

predictions of a machine learning model (Molnar, 2021). But instead of looking at the average 

prediction in the data for any given value of the relevant feature, ALE measures how small 

changes in the feature lead to a difference in prediction. By just slightly changing the feature 

values, ALE avoids the type of problems featured in PDPs, with data points having unlikely or 

even impossible combinations of feature values.  



Algorithm 2.3 Estimating ALE plots 

For a selected feature x 

1. Divide the feature distribution into 𝑚 intervals that are defined by quantiles 

2. For each interval 𝑧 in (1, 2, …, 𝑚): 

• Calculate the difference in prediction for all observations in 𝑧 by replacing the feature 

with the upper and lower limits of the interval without changing the values of the 

other features 

• Average the differences in prediction to obtain the uncentered effect: 𝑓𝑧,𝐴𝐿𝐸(𝑥) 

• Calculate the average difference in prediction for all observations in the training data, 

and subtract this from 𝑓𝑧,𝐴𝐿𝐸(𝑥) to get the centered effect: 𝑓̂𝑧,𝐴𝐿𝐸(𝑥) 

3. Accumulate 𝑓̂𝑧,𝐴𝐿𝐸(𝑥) across the entire distribution to obtain a plot 

This way, 𝑓̂𝑧,𝐴𝐿𝐸(𝑥) can be interpreted as the effect of the feature at a certain value compared 

to the average prediction in the data.  

                                  
Figure 0.3: The intuition of ALE. The response variable y is plotted against the feature x1. The difference 

in prediction for observation “a” with respect to x1 is: f (z4, x2, x3) – f(z3, x2, x3). 

 
Figure 0.4: Example of an ALE plot on our simulated data. The local effects of x1 on y are accumulated 

across the entire distribution, drawing a plot. The plot was estimated using five intervals. 



 

Figure 2.4 is similar to the PDP in Figure 2.2; increasing x1 results in a higher random forest 

prediction of y. 

 

ALE for categorical features 

 

Since the ALE method accumulates effects in a certain direction, the feature values need to have 

an order. Because categorical features do not have a natural order, we must find one.  This is 

done by comparing the different categories based on their similarity with respect to the other 

features.  

 

For instance, let us say that in our application in section 3.4.2 Ale Plots, we only have two 

features, regio2 (geographical location) with two locations and livingSpace (area of the 

apartment in square meters). Then we can compute the cumulative distribution of livingSpace in 

both categories of regio2 and obtain a feature-wise distance based on how similar the 

distributions are. That is how feature-wise distance is estimated with respect to numerical 

features, but for categorical features, the relative frequency table is used to compare similarity. In 

practice, there are often more than two features, and in this case, the feature-wise distance would 

be the sum of the differences between both categories across all other features. When the 

distances between all categories have been calculated, multi-dimensional scaling is used to 

reduce the distance matrix to a one-dimensional distance measure. Then we get a similarity-

based order of the categories. 

 

2.4.5 Permutation Feature Importance 
 

The idea behind permutation feature importance is simple: the importance of the feature is 

measured by finding the increase in the model’s prediction error after we randomly permute the 

values of the feature. It works the following way: if we randomly permutate the values of an 

important feature, then the predictive power of this particular important feature will decrease. 

Also, the feature is unimportant if randomly permuting its values does not change much of the 

model's error because the model did not rely heavily on this feature in the initial prediction 

process (Boehmke & Greenwell, 2020). The permutation feature importance was first used by 

Breiman (2001) for random forests. After this idea was proposed, Fisher, Rudin, and Dominici 



(2018) introduced a new notion called model reliance which is a model agnostic version of 

feature importance. The algorithm proposed by Fisher, Rudin, and Dominici (2018) is as follows: 

 

Algorithm 2.4 Permutation Feature Importance 

Input: Trained model f, feature matrix x consisting of the p different observed features, the 

corresponding target vector y, and an error term 𝐿(𝑦, 𝑓(𝑥)). 

1. Calculate the initial model error 𝑒𝑜𝑟𝑖𝑔 = 𝐿(𝑦, 𝑓(𝑥)). 
2. For each feature j in (1, 2, …, p): 

• Create feature matrix 𝑥𝑝𝑒𝑟𝑚 by permuting feature j in the data x. By doing so, 

the dependency between feature j and true outcome y is broken  

• Calculate error 𝑒𝑝𝑒𝑟𝑚 = 𝐿(𝑦, 𝑓(𝑥𝑝𝑒𝑟𝑚)) based on predictions of permuted 

values 

• Estimate the permutation feature importance 𝐹𝐼𝑗 = 𝑒𝑝𝑒𝑟𝑚/𝑒𝑜𝑟𝑖𝑔 

            End 

3. Based on FI values, sort the features in descending order. 

 

 
 

Figure 0.5: Permutation Feature Importance applied to our simulated data 

 

Figure 2.5 displays the estimated permutation feature importance for the simulated model. Here, 

the permuting process was repeated three times, and the loss function is the mean squared error. 

x1 is the most important feature as permuting it increases the error by about 6 to 8 times. 

 



 

 

2.4.6 Local Interpretable Model-Agnostic Explanations (LIME) 
 

As opposed to global surrogate models, which explain the global and general behavior of the 

black-box model, local interpretable model-agnostic explanation (LIME) is an algorithm that 

explains individual predictions and was introduced by Riberio, Singh, and Guestrin (2016). The 

LIME algorithm assumes that every complex machine learning model is linear in a small 

neighborhood around the target observation (local scale). Under this assumption, it is possible to 

fit a simple model around a target individual observation, which will represent how the global 

model behaves at that local point (Riberio, Singh, and Guestrin, 2016). To achieve this, the 

LIME algorithm samples through the training data to come up with observations that are similar 

to the target individual observation. Then it tests how the predictions change when the ML model 

is given different variations of the training data. Afterward, a new dataset is created, which 

consists of permuted samples and corresponding predictions by the black-box model. On this 

dataset, the LIME algorithm trains an interpretable model, typically a regression model using the 

least absolute shrinkage and selection operator (LASSO) method, which is weighted by the 

proximity of the sampled instances to the instance of interest (Boehmke & Greenwell, 2020). 

The requirement is that the new interpretable model should be a good enough approximation of 

the black-box model on a local scale, but the same performance is not expected on a global scale. 

This notion is called local fidelity. Local surrogate models can be mathematically expressed as 

follows:  

 

𝑒𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑖𝑜𝑛(𝑥) = 𝑎𝑟𝑔 min
𝑔𝜖𝐺

 𝐿(𝑓, 𝑔, 𝜋𝑥) + 𝛺(𝑔) (5) 

 

where x is the target individual observation, g is the interpretable model, L is a loss function 

(e.g., mean squared error), f is the original black box model, 𝜋𝑥 is proximity measure which 

defines how large the neighborhood around target x should be, and 𝛺(𝑔) is model complexity 

(Biecek, Burzykowski, 2020). The user should define complexity, for example, the maximum 

number of features that the linear model may use.  

 

 



Algorithm 2.5 LIME 

1. Permute the training data to come up with the replicated datasets. 

2. Estimate the proximity measure between target observation and each permuted 

observation. 

3. Use the machine learning model to come up with predictions based on the permuted data. 

4. Choose the m number of the features that have the most predictive power. 

5. Fit a new simpler interpretable model to the permuted data, explaining the complex 

model’s predictions with m features from the permuted data weighted by its similarity to 

the original observation. 

6. Use the new feature weights to explain local behavior. (Boehmke, Greenwell, 2020) 

 

One question that may arise here is how we create variations of the data? In the case of tabular 

data, new variations are created by perturbing each feature individually based on the mean and 

standard deviation of the feature in the normal distribution. 

One of the difficulties of the LIME algorithm is defining a meaningful neighborhood around 

target observation (proximity measure). The LIME algorithm uses an exponential smoothing 

kernel to define this neighborhood (Molnar,2021). For instance, small kernel width means that 

the neighboring instance must be very close to affect the local model. The best way to come up 

with a reasonable kernel value is to try out different values reasonable for the application and test 

if the explanations make sense. 

 

2.4.7 K-Nearest Neighbours 
 

The first step of the LIME algorithm is permuting the observations of interest. This introduces an 

element of randomness that can create different results when running the algorithm multiple 

times. The instability of the results is a potential weakness in the LIME method.  

 

As an attempt to deal with this problem, we will use the K-Nearest Neighbours (KNN) method to 

find the K observations from the dataset that are most similar to our observations of interest and 

fit a simple model to this data. By using real observations from the dataset rather than permuted 

data, we remove the element of randomness.  

 

The KNN method is mostly used as a prediction method (James, Witten, Hastie & Tibshirani, 

2021). To predict a test set observation 𝑥0 in a regression problem, KNN finds the K most 

similar observations from the training set, and the average outcome of those observations is the 



prediction for 𝑥0. However, we will only be using KNN to identify the nearest neighbors, not for 

prediction. 

 

There are several distance metrics that KNN can use to identify nearest neighbours, but we will 

use Euclidean distance. The Euclidean distance between two observations is the sum of 

differences between all the features (Fiori, 2020).  

𝑑(𝑥, 𝑦) = √∑(𝑥𝑖 − 𝑦𝑖)2

𝑚

𝑖=1

 

Where 𝑥 and 𝑦 are the observations to measure the distance between, 𝑖 is any given feature, and 

𝑚 is the total number of features.  

 

2.4.8 Shapley Values 
 

It is normal that when a model produces predictions, not all the features play an equal role in 

them. The influence of each feature can be measured by estimating the prediction error of the 

model by removing a particular feature and calculating its importance based on its absence from 

the model. However, estimating a single feature influence one at a time means that dependencies 

between features are not considered, which could lead to some inaccuracies. Therefore, to 

observe all dependencies between features, we use Shapley Values which is also a method to 

explain individual predictions from the black-box model (Boehmke & Greenwell, 2020). The 

concept of Shapley values is that the feature values of an individual observation work together to 

influence the model’s predictions with respect to the model’s expected output, and it divides this 

total change in prediction among the features in a way that is fair to their contributions across all 

possible subsets of features. To achieve this, Shapley Values go through each combination of 

features to assess their predictive power. For example, to calculate the importance of feature x, 

the model will consider the accuracy of all combinations of features excluding x and then 

analyze how accuracy changes by adding x to all these combinations. Therefore, calculating 

Shapley Values is computationally expensive (Boehmke & Greenwell, 2020). 

 

 



Algorithm 2.6 Shapley Values 

Here we first denote the following required variables: number of iterations M, an instance of 

interest x; feature index j; data matrix X; and machine learning model f.  

For each feature j in (1, 2, …,  m): 

1. Draw a random instance z from the data matrix X 

2. Select a random permutation o of the feature values 

3. Order instance 𝑥:  𝑥0 = (𝑥(1), … , 𝑥(𝑗), … , 𝑥(𝑝)) 

4. Order instance 𝑧:  𝑧0 = (𝑧(1), … , 𝑧(𝑗), … , 𝑧(𝑝)) 

5. Create two new instances 

• With feature 𝑗: 𝑥+𝑗= (𝑥(1), … , 𝑥(𝑗+1), 𝑥(𝑗), 𝑧(𝑗+1), … , 𝑧(𝑝)) 

• Without feature 𝑗:  𝑥−𝑗 = (𝑥(1), … , 𝑥(𝑗−1), 𝑧(𝑗), 𝑧(𝑗+1), … , 𝑧(𝑝)) 

6. Calculate marginal contribution: 𝜙𝑗
𝑚 = 𝑓(𝑥+𝑗) − 𝑓(𝑥−𝑗) 

7. Compute Shapley value as the average: 𝜙𝑗(𝑥) =
1

𝑀
∑ 𝜙𝑗

𝑚𝑀
𝑚=1  (Molnar, 2021). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

3. Applications to German Real Estate Data 
 

In this chapter we apply the IML methods to a dataset about German Real Estate to show how 

they can reveal some of the mechanisms of a black box model that predicts monthly rent. First, 

the dataset is presented along with the pre-processing steps. Then, feature selection with RFE 

and multicollinearity tests are conducted to find the features that are most important for 

predicting rent. After finding the best features, we estimate a random forest model, and finally, 

we interpret this model with the IML methods. 

 

Figure 0.1:The process of our application. 

 

3.1 Dataset and Pre-processing 
 

Our dataset was scraped from Germany’s leading real estate platform Immobilienscout24 on the 

dates 2018-09-22, 2019-05-10, and 2019-10-08. It contains information about offers on rental 

properties in all German regions. The variables are related to the monthly rent of the offer, 



physical characteristics of the apartment, geographical information, and text descriptions. The 

raw data consists of 268.850 observations and 49 variables. 

 

The dataset did not need much pre-processing, as most of the variables were suitable for machine 

learning in their raw form. However, some modifications to the dataset were needed. Some 

variables had to be excluded for various reasons. A few of them were unsuitable because of a 

large majority of missing values (NAs). We also left out text descriptions as textual analysis is 

outside the scope of this thesis. 

 

There were also some problems with a few very unlikely or impossible data points. For instance, 

zero square meters of living space, zero monthly rent, or apartments with 2.5 rooms. Data points 

with zero square meters or no monthly rent were simply removed, while non-integer rooms were 

rounded. After the pre-processing, we were left with 55,810 observations. 

 

3.2 Feature Selection 
 

The Recursive Feature Elimination found that the best Random Forest model contained the 

following features: 

 
Table 0.1: Variables selected by Recursive Feature Elimination. 

 



 

As argued in 2.3 Multicollinearity Tests, some of these features might still be redundant if they 

are highly correlated with other features, and removing them from the model only causes a 

negligible increase in prediction error.  

 
Figure 0.2: Pearson correlation measuring the strength of association between numerical features. 

Unsurprisingly, the Pearson Correlation plot shows an almost perfect correlation between 

noRooms and noRoomsRange. 

 



 
Figure 0.3:Cramér’s V measuring the strength of association between categorical variables. 

The Cramér’s V plot indicates that the categorical variables condition and newlyConst are very 

strongly associated and can potentially be eliminated from the model without causing a 

problematic increase in error. 

 

 

Figure 0.4: 𝜂2 measuring the strength of association between pairs of continuous and categorical 

variables. 



The pairs of categorical and continuous variables are very weakly associated such that no feature 

will be removed from the dataset because of the results from the ANOVA test.  

This leaves noRooms, noRoomsRange, newlyConst, and condition as potentially redundant 

variables. We estimated a Random Forest with all features included as the base model. Then four 

other models were estimated, where each excluded one of the features mentioned above. We 

compare the models using mean absolute percentage error (MAPE). 

 

 
 

Table 0.2: MAPE of random forests with highly associated features removed. 

 

Removing newlyConst or noRooms results in the smallest increase in error compared with the base 

model. Because newlyConst and condition measure different properties of the apartment and 

noRooms and noRoomsRange are just different measures of the same characteristic, we reason that 

it is only reasonable to remove noRooms. Thus, the final model will include all features from table 

3.1 except noRooms. 

 

3.3 Random Forest Estimation 
 

Before estimating the random forest model, we have divided the dataset into training and test sets 

to assess the model accuracy on unseen data. Training set consisted 80% of all observations 

(44,648 observations) and test set included 20% (11,162 observations).  

For a model to achieve high accuracy, it must capture the relationship between features and 

outcome to a large degree. Such a model would therefore be more interesting to interpret 

compared to a less accurate one. To achieve high accuracy, we searched through different 

random forest hyperparameters to find the best performing model. The following 

hyperparameters were tested:  



- Nodesize, which controls the minimum number of observations in the terminal nodes. 

Decreasing this number creates a deeper and more complex tree. 

- Sample size used to estimate each tree. 

- Mtry, which is the number of features to consider at each split. 

- Ntree, number of individual decision trees in the model. 

We tested a total of 120 combinations of parameters. Table 3.3 shows the optimal parameters. 

 

 

Table 0.3: Optimal parameter values of the Random Forest. 

After fitting the model with these parameters, the error on the test set measured by mean absolute 

percentage (MAPE) was 13.26%.  

 

3.4 Interpreting the Model Using IML Methods 
 

As previously discussed in the thesis, ML models can be interpreted at the global scale and the 

local scale. We start by interpreting global model behavior with permutation feature importance, 

ALE plots, the H-Statistic, and PDPs. Then, the model is studied at the local scale with 

implementation of LIME and Shapley Values. 

 

3.4.1 Permutation Feature Importance 
 

As a first step in interpreting the model, we used permutation feature importance. As discussed 

before, PFI measures the importance of features by permuting values of the particular feature. If 

the training performance of the model decreases after randomly permuting the values of a certain 

feature, then that feature is important. The results of PFI are shown in Figure 3.5. As we can see, 

the most important feature is livingSpace, followed by regio2, which represents the city where 



the apartment is located. Interestingly, features such as condition, hasKitchen, balcony have 

almost no power in explaining total rent, according to the permutation feature importance. 

 

 
Figure 0.5: Permutation Feature Importance 

 

3.4.2 ALE Plots 
 

The feature-based importance method showed that livingSpace and regio2 are the most important 

features. Therefore, it would be interesting to look closer at the effects of these features on 

totalRent. 



 
. 

Figure 0.6: The local effects of livingSpace on totalRent. 20 quantiles were chosen as the number of 

intervals. 

As seen from Figure 3.6, the effect of livingSpace corresponds to an almost perfectly linear 

increase of totalRent. The effect of having less than 100 m2 of livingSpace results in a smaller 

than average prediction of totalRent. 

 

 
Figure 0.7: The local effects of the biggest cities on totalRent. We choose the nine most frequent cities 

from the dataset as it would be impractical to visualize all 51 categories. 

 

Among the biggest cities, there are big differences in how they affect the prediction of totalRent. 

München has the strongest positive effect, but other large cities like Berlin and Frankfurt are also 



associated with totalRent that is higher than average. Chemnitz has the strongest negative effect. 

The "Other" category, which captures apartments outside the biggest cities, is associated with a 

prediction that is slightly below average. 

 

3.4.3 H-Statistic and PDP 
 

The H-Statistic for total interaction shows to what extent a feature interacts in the model with all 

other features. 

 
Figure 0.8: The H-Statistic for total interaction for all features. 

 

The most important variables from the feature-based importance method are also those who 

interact the most with other variables. The H-Statistics of livingSpace and regio2 are respectively 

0.222 and 0.220, which means that for both features, approximately 22% of the variation in the 

predicted outcome can be explained by their interaction with other features. 

 

To investigate these interaction effects further, we will look at how livingSpace and regio2 

interact with all other features by studying their two-way interaction effect, equation (4.3) in 

2.4.2 H-Statistic. 

 



 
Figure 0.9: The two-way H-Statistics of livingSpace and regio2. 

 

The strongest interaction is between livingSpace and regio2. Since the multicollinearity tests 

revealed a week degree of association between these variables, we can safely study their 

interaction by using a two-way PDP. 

 
Figure 0.10: Two-Way PDP of regio2 and livingSpace’s effect on totalRent. We chose the nine most 

frequent cities as it would be impractical to visualize all 51 categories. 20 Quantiles were chosen as the 

number of intervals for livingSpace. 

 

The effects of livingSpace in Berlin, Düsseldorf, München, Hamburg, and Frankfürt are very 

similar, and they are not linear. They are close to linear up to livingSpace of approximately 250 

𝑀2. From this point, the effect of increasing livingSpace is a lot stronger at about 300 𝑀2. 

However, we should be careful in interpreting the effects from this range because there are a lot 



fewer observations in it compared to the rest of the distribution. In the other cities, the effects are 

simpler. They are close to linear across the entire distribution of livingSpace. The model clearly 

predicts a higher totalRent for big apartments in the biggest cities compared to big apartments in 

smaller cities.  

 

Other strong interactions are between livingSpace and lift and between livingSpace and 

interiorQual. The ANOVA tests showed that livingSpace is only weakly associated with lift and 

interiorQual, which means that we can use PDP to study these interactions as well. 

 

 
Figure 0.11: Two-way PDP of lift and livingSpace effect on totalRent. 20 Quantiles were chosen as the 

number of intervals for livingSpace. 

 

The model predicts a higher totalRent for apartments in a building with a lift, and this difference 

increases with the size of livingSpace. A possible explanation for this is that big apartments in a 

building that are tall enough to have a lift might be luxurious penthouses at the top of tall 

buildings. 



 
Figure 0.12: Two-way PDP of interiorQual and livingSpace’s effect on totalRent. 20 Quantiles were 

chosen as the number of intervals for livingSpace. 

 

totalRent as a function of livingSpace is similar for all the categories of interiorQual.  However, 

apartments with the interior quality described as “luxury” have the most expensive rents 

followed by “sophisticated”. The descriptions “simple” and “normal” have a very similar effect 

on totalRent. 

 

3.4.4 LIME 
 

The methods discussed above are good to derive conclusions from the global interpretability 

perspective. Global interpretability helps us to understand how the features influence the target 

variable, what kind of potential interactions exist between features, etc. But in the further 

analysis, we intended to explain the predictions of some interesting individual observations. In 

such cases, we use local surrogate models such as LIME or Shapley values. 

 

In order to analyze the LIME model, we first run predictions on the test set, using random forest. 

After we get predictions, we select the highest and lowest predictions for analysis. To build the 

LIME model, we specify the data to use (training data), the model to use (random forest), and the 

number of bins to classify continuous variables. Also, this part required us to do a lot of testing 

with different parameters. The most important two parameters are kernel width and distance 

function. As default, the LIME algorithm uses 0.75 as kernel width and Gower's distance as a 

distance function to calculate the distance to the permutation. Gower's distance is calculated as 



the mean of the partial dissimilarities across individuals, and the general equation of the 

coefficient is:  

𝐷𝐺𝑜𝑤𝑒𝑟(𝑥1, 𝑥2) = 1 − (
1

𝑝
∑ 𝑠𝑗(𝑥1𝑥2))

𝑝

𝑗=1
 

 

where, 𝑠𝑗(𝑥1𝑥2) is the partial similarity function (Anand, 2020). Another distance function is the 

Manhattan distance which calculates the distance between two real-valued vectors by the sum of 

the absolute differences between the two vectors (Craw,2011). 

 

So, in order to achieve the best possible fit, we have tested different hyperparameters of LIME, 

including kernel widths, distance functions, and type of model to fit locally. After a couple of 

tests, distance function= Manhattan, kernel width=0.75, and local model= LASSO were 

determined as the best parameter choices. 

 

 
Figure 0.13: LIME estimates with distance function=Manhattan and kernel width=0.75 

 



Results of this run are shown in Figure 3.13; it explains why these observations were predicted 

so far from the mean prediction. As we can see, the explanation fits for both cases are nearly 

perfect. Now we can clearly observe which factors influenced the target variable and in which 

direction. Also, we achieved some interesting results, which differ from those we got in global 

methods. For instance, condition=refurbished and yearConstructed are actually important 

features in explaining the highest observation, but those features had very little predictive power 

according to permutation feature importance. Moreover, heatingType and noRoomsRange are the 

best explanatory features for the lowest observation according to the LIME method. Those 

features also did not have any predictive power according to permutation feature importance.  

 

Although the LIME algorithm gives a pretty good understanding of important features on a local 

scale, explanations generated by LIME are not stable. Each time the algorithm was run, we got 

slightly different results in terms of feature importances. For example, Figure 3.15 demonstrates 

this instability.  

 

 



 

Figure 0.14: Two different LIME explanations for the same observations. 

 

 

Both graphs are explanations generated by the LIME algorithm for the same two observations, 

but we can observe some features being placed differently in the importance list. This is caused 

by the nature of the LIME algorithm, as it uses random perturbing of observations each time. In 

the next section, we will try to overcome this problem by applying KNN instead of random 

permuting. 

 

3.4.5 LIME with KNN 
 

When using KNN to find observations similar to the minimum and maximum predictions from 

the random forest, we experimented with the values of K and found that using the 1000 nearest 

neighbours resulted in a good model fit for the LASSO in both cases. In Figures 3.16 and 3.17, 



the contribution of each feature is the model coefficient multiplied by the feature value for this 

observation. 

 

Figure 0.15: The features with the most significant contributions in the LASSO model’s local 

approximation of the minimum prediction from the random forest. 

 

The LASSO for the minimum prediction got an 𝑅2 of 0.74 and predicted totalRent of 286, which 

is not far from the random forest prediction, which was 266. Therefore, the model fits the local 

data reasonably well and is a good approximation in this instance.  livingSpace=40 added 

approximately 250 to the prediction. On the other hand, regio2=Chemnitz had a significant 

negative impact of about 150. This effect matches Chemnitz effects on the global scale, as seen 

in Figure 3.6. telekomUploadSpeed=40 and condition=well_kept had some minor contributions 

to the prediction.  

 

 

 



 

Figure 0.16: The features with the most significant contributions in the LASSO model’s local 

approximation of the maximum prediction from the random forest. 

 

The LASSO for the maximum prediction got an 𝑅2 of 0.85 and predicted totalRent of 7411, 

which is a bit off from the random forest prediction, which was 9160. It fits the local data better 

than in the case above but is not as good at approximating the prediction of interest. 

livingSpace=456 added more than 6000 to the prediction, and regio2=Berlin added 650. The 

local effects of Berlin also match the global effects in figure 3.6. lift=True, noRoomsRange=4, 

and hasKitchen=TRUE had relatively minor positive effects on the prediction. 

 

 

 

 

 

3.4.6 SHAPLEY VALUES 
 

Shapley Values is the next step to understanding local model behavior. We try to understand the 

influence of individual features and their coalitions on the final prediction. As a reference point, 

we have used the mean value of predictions which is totalRent=921, and try to analyze what are 



the main drivers of deviation of lowest and highest predictions. As we can see from Figure 3.18, 

the most influential feature of the highest rent is the living space. The influence level 

significantly drops for interiorQual=luxury and regio2=Berlin. The last driver of the deviation is 

lift=TRUE, and the other features have little to no influence on the prediction. 

 

 
 

Figure 0.17: Shapley Values for highest prediction. 

 

Moreover, Shapley Values for the lowest prediction are shown in Figure 3.19. The main driver of 

the difference between the lowest value and the mean value is livingSpace once more. But this 

time second most influential feature is regio2=Chemnitz, followed by interiorQual=normal. 

Other features have very low influence. 



 
 

Figure 0.18: Shapley Values for lowest prediction. 

 

As we can see, there are some similarities and differences between LIME and Shapley results. 

Some significant differences are, while the LIME algorithm values almost all features being 

important in the highest prediction case, Shapley results yield only four features being most 

influential. In the lowest prediction case, the LIME algorithm puts heatingType=central_heating 

as the most negative influencer, but the Shapley method puts this feature as the least important. 

 

 

 

 

 

 

 



4. Discussion and Conclusion 
 

The high accuracy achieved by black-box models comes at the cost of less interpretability. We 

cannot fully understand how a random forest consisting of hundreds of deep decision trees makes 

a prediction, but the methodology section showed that there are methods for gaining insight into 

the mechanisms of such a model to make it more interpretable. These methods present these 

insights in a visual and intuitive way, both at the global and the local level. 

 

At the global level, they can show which features are most important in the model, the effect of 

each feature, and how different features interact. 

 

In our application on the German Real Estate data, the global IML methods revealed some 

mechanisms that would be expected in a model that predicts monthly rent. Naturally, the 

prediction of rent increases with the size of the apartments. An apartment being in one of the 

biggest cities generally increases the prediction, especially for large apartments. Other 

mechanisms that were identified are that better interior quality is associated with higher 

predictions, and large apartments in buildings with lift generally result in higher predictions than 

large apartments in buildings without lifts. 

 

After studying and applying these global methods, we are left with the impression that they have 

several good qualities. One of them is that they complement each other. For instance, the H-

Statistic shows the interaction strength between two variables but not how the effect works. 

Introducing the Two-way PDP complements the H-Statistic by showing how this effect works, 

thereby telling a more complete story of the interaction. Another good quality of the methods is 

that they present the insights in an easily understandable way. This can be very useful when non-

technical people require explanations of ML applications.  

 

Even though the global IML techniques are useful in many ways, they still have a few 

limitations. The visual way of presenting the effects makes them easy to understand, but it also 

limits how interaction effects can be presented. For instance, we cannot use the methods to 

present interaction effects between three or more variables which makes it hard to understand the 

more complex mechanisms.  



In the case of global methods, we have seen that some features such as apartment size, the region 

where the apartment is located, or interior quality are generally the main drivers of prediction. 

But in the analysis with local surrogate models, we have noticed these features are not 

necessarily the most important ones for each individual prediction. In the closer examination of 

lowest and highest rent apartments, we have seen features such as year of construction, 

condition, etc., are having stronger effects. This indicates that the general effects and the most 

important features on the global scale do not necessarily apply to the same degree on a local 

scale. When the global effects do not always generalize well to every prediction, these local 

methods are needed. 

 

After implementing the LIME algorithm and seeing the instability of the explanations, we tried 

to solve this problem by sampling with the KNN method. This came at the cost of a slightly 

worse explanation fit; it was reduced from 1 to 0.85 for the maximum prediction and from 0.88 

to 0.74 for the minimum prediction. In this alternative implementation of the LIME, the local 

effects were more similar to the global effects, as opposed to the normal implementation of 

LIME and the Shapley Values. But we have achieved stable results with LIME using KNN as 

opposed to results generated by LIME's own random perturbation. 

  

Although the LIME method is a creative idea that can provide interesting explanations, we still 

think that Shapley Values fit the purpose of interpreting black box models better. This method 

does not suffer from any instability issues, which makes it a lot more reliable and trustworthy for 

those who require local explanations.  

 

4.1 Suggestions for Further Research 
 

As discussed above, the global methods are not practical for interaction effects between three or 

more features. Methods that can explain more complicated interactions would be very useful in 

the cases where simpler explanations are considered incomplete or insufficient. Consequently, 

we think that research into such methods could be beneficial for the field of interpretable 

machine learning. 

 



This thesis has shown both the potential and the limitations of LIME. Solving the instability 

problem without losing accuracy would make LIME a trustworthy alternative to Shapley Values, 

which can be useful in the cases where they are too computationally expensive or time-consuming. 

Therefore, further developing the LIME algorithm could potentially be very productive. 

 

Finally, there is a lot more to learn about ML models for real estate predictions. Potentially 

significant effects could be discovered by including more variables in the dataset. For instance, 

macroeconomic variables and more detailed geographic variables could have significant effects 

on prices that could be discovered by IML methods.  
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