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Abstract
In this master thesis we investigate the effect of providing students with accurate

information about their peers’ time spent on homework. We use experimental data

collected from two surveys carried out on 10th grade students in Norway. The main

survey contained an intervention targeting students who spent below the median time

of their class on homework. These students were provided with information about the

actual median time spent on homework in their class. The follow-up survey consisted of

questions regarding the students’ beliefs. A partial population design was utilized in order

to capture any spillover effects, in addition to direct treatment effects.

Our main results suggests that the intervention was successful in correcting students’ beliefs.

Both the reduced form estimation and the instrumental variable estimation suggested

a positive treatment effect across our six outcome variables. We used three different

specifications, and while we see some differences between them, the main take-away

suggests a positive treatment effect.

Our analysis suggests some heterogeneity across students’ attitudes, but the evidence is

weak. We also check for heterogeneous effects of treatment and spillover conditional on

the students’ centrality in the peer group. We find some initial differences across these

subgroups, but the evidence is ambiguous and does not provide any clear insight into this

question.

We recommend further investigation of the direct behavioral changes of such an

intervention, as well as more in-depth investigation of the peer effects.

Keywords – Schoolwork, homework, partial population, spillover, instrumental variable,

double-lasso selection, information treatment.
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1 Introduction
Most 10th graders do not enjoy homework. Despite substantial evidence suggesting

homework’s importance in improving student achievement (Eren and Henderson, 2008),

getting a high-schooler to actually put time and effort into the assigned homework can

sometimes seem like an impossible task. Researchers have proposed several reasons for

this sub-optimal investment, including the opportunity cost of study time (Metcalfe et al.,

2019), short-sightedness (Ariely and Wertenbroch, 2002), and underestimation of the

expected returns to studying (Ersoy, 2019).

Although these articles raise compelling arguments as to why students underinvest in

homework, they fail to thoroughly consider the social side of the students’ life. Several

articles have studied how individuals are affected by their peers’ actions and beliefs

(Akerlof, 1991; Falk and Ichino, 2006). 10th graders seem to be particularly susceptible

to peer pressure (Brown, 2004). The desire to fit in and conform to the expectations of

the friend group affects behavior and choice (Bursztyn and Jensen, 2015). If a student

under-reports actual time spent on homework in order to better fit in, it might affect other

students’ choice as well. This feedback loop could further be enhanced by the friendship

paradox (Jackson, 2019), where students with many friendship ties are over-represented in

their friends’ peer samples. The behavior of the popular students would then be important

in the formation of norms regarding homework investment.

A field experiment was conducted by researchers at NHH during the school year of

2020/2021, targeting students who spend less time than the median in their class on

homework. An intervention was employed to correct the students’ expectations, in order

to nudge them to make more efficient choices regarding homework effort.

In this master thesis, we aim to investigate the effect of providing students with correct

information about their peers time spent on homework. Our goal is to assess whether the

information treatment has any effect on the misperceptions of students. We also want to

investigate the role of friendship ties in the spillover effect of this treatment. In order to

do so, we first measure the causal effect of the intervention by utilizing an instrumental

variable approach. Next, we look for spillover effects, exploiting the partial population

design of the experiment. Finally, we measure different network effects, including diffusion
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and centrality, by using the subjects self-reported friendship ties. We test our results for

heterogeneity and robustness by running our analyses on different sub-populations and

controlling for potential mechanical issues.
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2 Background

2.1 Benefits of Homework

For the purpose of this paper, homework can be defined as any task assigned by

schoolteachers intended for students to carry out during non-school hours (Cooper,

1989). Most students, parents, teachers and researchers believe that homework can be an

important supplement to in-school academic activities, and that homework is a necessary

and valuable part of a student’s learning process. Researchers have suggested a long list

of positive consequences of homework, both in the academic and non-academic spheres

of life (Cooper et al., 2006). Homework generally requires students to complete tasks

with less supervision and under less severe time constraints than during school, which is

said to promote greater self-direction and self-discipline, better time organization, more

inquisitiveness, and more independent problem solving (Corno, 1994; Zimmerman et al.,

1996).

Even though our main focus does not involve the effects of homework on achievement, it

is still of great importance to our paper. Research on the relationship between homework

and academic achievement suggest that doing more homework can have a positive effect

on the students’ grades (Cooper et al., 2006). This forms the basis of our thesis, as

it is imperative that doing more homework yields a positive outcome on achievement

and in the development of non-cognitive skills when trying to influence students to do

more homework. We consider students who invest relatively small amounts of time to

homework, as it might be unclear whether students already spending a large amount of

time on homework will benefit from being pushed to do even more.

2.2 Student Effort

A student’s study effort is argued to be one of the most important determinants of their

human capital (Costrell, 1994), and it is a critical component of their education production

function (Stinebrickner and Stinebrickner, 2004, 2008). Studies have demonstrated that

students study more when incentives to do so increase (Hirshleifer et al., 2015; Azmat and

Iriberri, 2016), and that their beliefs about how much they need to study are often strong
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predictors of their actual decisions (Stinebrickner and Stinebrickner, 2008). However,

previous work has also shown that students often have incorrect beliefs about their

own education production function, specifically about returns to their effort (Fryer Jr,

2016; Ersoy, 2019). Because of the importance of student effort and the incorrect beliefs

associated with it, understanding how students make their study effort decisions is of high

importance for both scholars and policymakers (Rury and Carrell, 2020).

The study effort decisions are also important for the students, as studying more implies less

time for non-studying activities such as leisure and work (Stinebrickner and Stinebrickner,

2003; Metcalfe et al., 2019). Thus, students must know their returns to study effort in

order for them to make efficient trade-offs between studying and non-studying activities

(Rury and Carrell, 2020).

2.3 Adolescence and Peer Effects

In the field of economics, researchers have accumulated large amounts of evidence on

the importance of peer effects. Group structures are ubiquitous in education and group

composition may have important effects on education outcomes. Furthermore, students

find themselves in different classrooms, living environments, schools, and social groups,

and are thus exposed to different peer groups, receive different education inputs, and face

different institutional environments (Garlick, 2013). Because of this, understanding how

social concerns or peer pressure impacts student’s beliefs and actions is of high importance

for both scholars and policymakers.

Researchers have found that adolescents in a particular peer group exhibit many similarities

compared with adolescents in other groups (Nurmi, 2004). This form of homogeneity

among individuals in peer groups has been reported in several characteristics, such as

aspirations (Kandel, 1978), problem behavior (Urberg et al., 1997) and schoolwork (Cohen,

1977).

The most widely repeated assertions about peer relations during adolescence are that

they become increasingly important and occupy an increasing amount of an individual’s

time (Brown, 2004). Starting from an early stage, children spend an increasing amount of

time with their peers both at school and after school (Larson and Richards, 1991), and

peer influence arises partly because popular youth often have the power to set styles and
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determine what activities will be undertaken (Brown, 2004).
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3 Literature

3.1 Effects of Receiving Information

Researchers have found that students’ beliefs about how much effort they need to put

into their schoolwork become more accurate upon receiving information. According to

Ersoy (2019), both information about an average individual and anecdotal information

moves student’s beliefs towards the information provided. Furthermore, students change

their study effort in the same direction as the shifts in their beliefs. Further backing this

theory, Azmat and Iriberri (2016) argues that information on how students compare to

their classmates is relevant when determining how much effort to exert.

Previous research show that providing students with feedback on their relative performance

has an impact on their future performance (Azmat and Iriberri, 2010; Bandiera et al., 2015),

while another part of the existing literature argues that students exert effort primarily

because they are compelled by cultural norms rather than objective rewards (Figlio et al.,

2019; Gneezy et al., 2019). Our paper differs in the fact that our main outcome variable

is planned time spent on homework, and that our main focus is correcting the student’s

misperceptions about peers’ study effort. The aforementioned papers on the other hand,

focuses on returns to study effort and the student’s perceived returns. However, our

paper will contribute to both parts of the existing literature, as we investigate both direct

treatment effects and spillover effects.

Azmat and Iriberri (2010) suggest two alternative explanations for why students would

react to the relative performance information. The first being that students might react

to additional information because individuals have inherently competitive preferences, or

that the presence of relative performance information instigate this type of competitive

preferences. In the presence of such competitive preferences, information that allows

for social comparison gives students utility from being ahead, and disutility from being

behind others.

The second explanation is that individuals’ imperfect knowledge of their own ability might

lead students to react differently to additional information, such that the information

is informative of the student’s own ability. An example of this is provided by Rury and
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Carrell (2020). In their paper, they study the effect of providing students with information

on returns to study effort and find that students who expect to receive low grades may

have inflated beliefs about how much effort they need to exert in order to improve their

performance. In turn, this leads them to provide effort that is potentially lower than they

would if they knew the true returns to effort. That is, if performance is a function of both

ability and effort, the self-perceived ability will affect the optimal choice of effort.

Based on these two explanations, all students would either choose high effort when

information is provided, leading to an observation of higher performance, or top performing

students would choose higher and bottom performing students lower effort, because this

information encourages high ability and discourages low ability students (Azmat and

Iriberri, 2010).

We see through prior research that the provision of information involving performance

feedback allows for social comparison, i.e., individuals can evaluate their own performance

by comparing themselves to others (Azmat and Iriberri, 2010). However, social comparison

does not only originate from received information through the treatment, but it is also

closely connected to the sharing of information among students, and the accompanying

peer effects. These peer effects are of great importance to our paper, as they could possibly

impact the aforementioned effects of receiving information.

3.2 Peer Effects on Student Effort

Whether or not students would benefit from interactions with other students is an

important question in existing research as well as in our thesis. The effect of peers on

a student’s performance is expressed in the findings of numerous researchers. Carrell

and Hoekstra (2010) and Figlio et al. (2019) found that the presence of disruptive peers

within classrooms would increase a student’s propensity to misbehave and disengage

during regular class time. While other researchers found that less disruptive behavior

and a sense of futility mediated peer effects on students’ academic performance (Avvisati

et al., 2013). A third finding is that hardworking peers might serve as role models that

inspire other students to put more effort into studying (Hoxby and Weingarth, 2005), and

furthermore Pop-Eleches and Urquiola (2011) found that attending a secondary school

with high-ability peers increased students’ frequency of doing homework after school.
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However, these estimates may reflect, but not reveal, behavioral responses that amplify or

reduce the impact of educational quality. For instance, these responses might change over

time, and thus potentially influence results differently depending on when outcome data

are collected (Pop-Eleches and Urquiola, 2011).

Educational researchers have also studied whether the effect of peer composition on

achievement is different for students with different academic abilities. Students at the

bottom of the test score distribution benefit significantly from the addition of students

who are at the 15th percentile of past test scores. Students at the top decile, benefit

strongly from the addition of classmates who are also at the top, while achievement for

students at the middle tends to be less affected by peer composition (Burke and Sass,

2008; Imberman et al., 2012)

3.3 Friendship Paradox

The friendship paradox refers to the fact that, on average, people have strictly fewer

friends than their friends have (Jackson, 2019). In his paper, Jackson suggests two reasons

why we should expect more connected individuals to behave systematically different from

less connected agents. The first is that people who have the most connections are also the

most exposed to interactions with others. This in turn leads to them being most heavily

influenced. The second is that if people differ in their taste for different activities, the

people who benefit the most from a given activity choose to have the most connections.

These two combined lead people’s most popular friends to engage the most in a behavior

and to bias the overall behavior in the society. Many forms of behavior are peer influenced

and driven by people’s perceptions of what is normal or acceptable behavior. The impact

of the friendship paradox on such behaviors can be seen in a series of studies that students

tend to overestimate the frequency of which their peers smoke or consume alcohol and

drugs, often by substantial margins (Jackson, 2019). In order for the friendship paradox

to have an effect in our case, the more popular students have to be more likely to do

more homework influencing their peers to do the same. Alternatively, they have to be

more likely to do less homework than the average. If this is the case, the students will be

treated, which enables them to spread the information among their connections.

Our study relates to the empirical literature on the diffusion of treatment effects through
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social networks. In a study on how participation in a microfinance program diffuses through

social networks, Banerjee et al. (2013) found that participants were significantly more

likely to pass information on to friends and acquaintances than informed non-participants,

but also that an individual’s decision is not significantly affected by the participation

of her acquaintances. The researchers found that the eigenvector centralities of initially

informed individuals are significant determinants of the eventual participation rate in a

village, while other variations in social network characteristics across villages are relatively

insignificant determinants of diffusion. Specifically, they found that individuals who have

more participating friends are more likely to participate because they are more likely

to hear about it or because they are influenced by the numbers of their friends who

participate.
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4 Experimental Protocol

4.1 The Norwegian School System

The Norwegian school system is divided into three levels, Primary, lower-secondary and

upper-secondary schools and higher education. In Norway, the first 10 years of school are

mandatory for all children aged 6-16. These 10 years consists of primary school (1-7th

grade) and lower secondary school (8-10th grade). All adolescents aged 16-19 also have

the right to attend upper-secondary school, but it is not mandatory (Thune et al., 2019).

A standard school day for 10th graders in Norway lasts from approximately 08:30 to 14:00,

with small variations between different schools. Homework is assigned by the teachers,

and is completed outside of school hours.

4.2 Experimental design

The experiment was conducted by researchers at NHH from the fall of 2020 throughout

the spring of 2021. 17 schools were recruited to participate in the study from all over

Norway. The experimental program consisted of a main survey, wherein treatment was

delivered, and a follow-up survey.

The main survey was distributed to students during school hours, and completed under

the supervision of their respective teachers. It included questions regarding the subjects’

time use on homework and other activities outside of school hours, as well as questions

regarding both the personal and social value of these activities (see Appendix A1.1 for

the full survey). The students were also asked to name the other participants from their

class, whom they considered to be friends with, and what their belief was regarding their

classmates’ time spent on homework.

Treatment was delivered to students who during the first questions of the survey reported

that they spent less time than the median for their class on homework. Towards the end

of the survey, these students were shown a message as seen in Fig. 4.1, informing them

that they were among the students who spent the least time on homework in their class.

The message also included information about what the median time spent on homework

was in their particular class. Immediately after this message all the participating students
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were asked to report how much time they planned to spend on schoolwork outside of

school hours until they finished 10th grade (see Tab. 4.2).

Figure 4.1: Message displayed to treatment group.

Figure 4.2: Question regarding students’ planned time to homework.

4.3 Randomization

The randomization was conducted at a class level, defining treatment and control classes

based on predetermined stratas. Treatment was then delivered only to students in treated

classes who reported below median time spent on homework in their class. This "partial

population" design (Avvisati et al., 2013; Moffitt, 2000) makes it possible to capture not

only the direct effect of the intervention, but also the spillover effects. The difference

in outcomes between below-median students in treatment and control classes captures

the effect of being made eligible for the intervention, while the difference between the

above-median students in treatment and control classes captures the spillover effects of

the intervention.

4.4 Outcome variables

Throughout this thesis we will rely on six main outcome variables. These are constructed

from survey data, and measure different aspects of the students’ beliefs and behavior.
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4.4.1 Main survey

We use two outcome measures from the main survey. These are utilized to detect any

direct treatment effects. The first is Time planned on homework, and follows directly from

the survey. Here the students were asked to report how much time they were planning to

spend on homework every day until the end of 10th grade. We also use Planned homework

above median which tells us whether the students’ planned time is above the actual median

in their class.

4.4.2 Follow-up survey

In the follow-up survey we are more interested in examining the students’ beliefs, rather

than their behavior. Our main outcome measure is wedge which is a measure for

the difference between the students’ guessed proportion below median and the actual

proportion below median in the main survey. Next, we examine if the probability of

students to correctly guess the class median is affected by treatment through the variable

Correct guess. The two final outcome measures relate to the precision of this guess. The

first is Distance from correct guess, and measures the difference between the guessed

median and the actual median. The final variable, Absolute distance from correct guess

gives the absolute value for the difference between the guessed median and the correct

median. Together, these latter variables should allow us to assess the direction of any

over- or underestimation.

4.5 Balance testing

Randomized control trials (RCTs) build upon the assumption that true random assignment

of treatment stochastically distributes all baseline characteristics (Mutz et al., 2019).

While this does not guarantee perfect distribution of such characteristics, it does allows

researchers to make precise quantifiable inferences. What makes random assignment

superior to other approaches to inference about causation is the fact that there is an

underlying mathematical model supporting the probability of unequal distribution of

baseline characteristics. This implies that the researcher is enabled to evaluate the exact

probability of imbalances in covariates between treatment and control groups to appear.



4.5 Balance testing 13

To concretize this notion, balance tests of baseline characteristics are usually carried

out when reporting on RCTs. The implications of such tests, however, are not entirely

straightforward. True randomization eliminates any external influence on treatment

indicators, implying that any differences between groups are due to chance. The test

statistics from balance testing has the interpretation of the probability that the difference

between two groups have occurred by chance, when there in fact is no difference. As noted

by Altman (1985) performing such tests "is to assess the probability of something having

occurred by chance when we know that it did occur by chance".

In this thesis we take a more pragmatic approach to balancing. We present a table of

baseline characteristics with means and differences between treatment and control group,

an approach similar to the one advocated by the CONSORT guidelines (Schulz et al.,

2010) and APSA standards (Gerber et al., 2014). In addition we present the test statistic

of an omnibus test on joint significance, following Hansen and Bowers (2008). This table

will serve as a starting point for our discussion. In the formal analysis, we will include only

those covariates that, ex ante, were argued to be influencing the outcome. This follows

the reasoning from Roberts and Torgerson (1999) and Mutz et al. (2019). More detailed

discussion of the relevant baseline characteristics follows in the next section, as well as

details regarding the selection procedure in chapter 5.

4.5.1 Baseline tests

Table 4.1 shows the result of standard tests for differences in means between treatment

and control group. Panel A shows the differences for students who spend less time on

homework than the median in their class. Only one of the baseline characteristics is

statistically different from zero. A coefficient of 0.13 for the row variable Female implies

that there are 13 percentage points more female students in the treatment group relative

to the control group. The estimate is significant at a 1 % level. In addition, expectations

parents > 3 is significantly different across the two groups at a 10 % level. All other

baseline characteristics seem to be fairly balanced.
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Table 4.1: Differences in baseline characteristics across treatment and control group

Mean C Mean T T-C (se) n.obs
Panel A: Below median

Female 0.29 0.40 0.13*** (0.040) 286
Time homework 13.80 14.60 1.74 (1.537) 287
Dislikes homework 0.86 0.81 −0.01 (0.035) 287

Grades
Standardized grade math −0.08 −0.154 −0.08 (0.107) 287
Standardized grade Norwegian −0.15 −0.29 −0.15 (0.127) 287
Returns to studying Norwegian 0.52 0.50 −0.08 (0.062) 287
Returns to studying math 0.65 0.62 −0.05 (0.070) 287

Attitudes
Importance grades > 3 0.87 0.80 −0.06 (0.042) 287
Pleasing parents > 3 0.61 0.60 0.04 (0.054) 287
Expectation of parents > 3 0.92 0.85 −0.08* (0.043) 287
Pleasing teachers > 3 0.48 0.49 0.02 (0.060) 287
Expectations of teachers > 3 0.84 0.83 −0.02 (0.039) 287
Importance of popularity > 3 0.76 0.74 0.01 (0.048) 287
Popularity schoolwork < 3 0.24 0.18 −0.05 (0.043) 287

Friendship
Number of in friends 3.09 2.96 −0.35 (0.264) 283
Number of out friends 2.92 2.89 −0.09 (0.263) 283
Number of reciprocal friends 6.01 5.84 −0.45 (0.511) 283
Eigencentrality 0.45 0.51 0.03 (0.037) 283
Many friends outside class 0.50 0.36 −0.09 (0.057) 287

Beliefs
Guessed median - class median main survey −16.13 −16.88 −2.22 (1.528) 287
abs(guessed median - class median) main survey 19.07 19.77 1.21 (1.069) 287
Wedge main survey 0.31 0.30 −0.01 (0.028) 287
Guessed median = class median main survey 0.11 0.12 0.01 (0.038) 287

Panel B: Above median
Female 0.61 0.55 −0.08** (0.033) 504
Time homework 47.27 47.09 −0.26 (1.644) 504
Dislikes homework 0.62 0.61 −0.01 (0.041) 504

Grades
Standardized grade math 0.07 0.07 −0.04 (0.068) 504
Standardized grade Norwegian 0.19 0.06 −0.20*** (0.066) 504
Returns to studying Norwegian 0.34 0.38 0.06 (0.039) 504
Returns to studying math 0.56 0.59 0.05 (0.041) 504

Attitudes
Importance grades > 3 0.93 0.86 −0.07*** (0.025) 504
Pleasing parents > 3 0.72 0.76 0.05 (0.037) 504
Expectation of parents > 3 0.92 0.91 −0.01 (0.018) 504
Pleasing teachers > 3 0.60 0.65 0.05 (0.037) 504
Expectations of teachers > 3 0.88 0.88 −0.02 (0.021) 504
Importance of popularity > 3 0.77 0.79 0.03 (0.026) 504
Popularity schoolwork < 3 0.16 0.20 0.04 (0.023) 504

Friendship
Number of in friends 2.97 2.87 −0.19 (0.196) 494
Number of out friends 3.08 2.91 −0.27 (0.224) 494
Number of reciprocal friends 6.05 5.79 −0.46 (0.413) 494
Eigencentrality 0.47 0.51 0.04 (0.025) 494
Many friends outside class 0.42 0.37 −0.03 (0.042) 504

Beliefs
Guessed median - class median main survey −4.25 −4.44 −0.51 (1.898) 504
abs(guessed median - class median) main survey 12.78 13.62 1.23 (1.028) 504
Wedge main survey 0.15 0.12 −0.05* (0.024) 504
Guessed median = class median main survey 0.28 0.27 0.00 (0.031) 504

Notes: Female is a manually coded variable based on the name of the student. The first and second columns
show the mean value of the row variables for the control and treatment group, respectively. The third column
shows the estimated coefficient from a regression of the baseline characteristic on treatment status, controlling
for strata fixed effects. The fourth column includes robust standard errors, clustered at the class level
(corresponding with randomization level). Each row includes a separate regression. * p < 0.1, ** p < 0.05, ***
p < 0.01.
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In Panel B, we see a more stark difference between treatment and control group. In total,

4 of the 19 baseline characteristics tested are statistically different between the two groups.

Of these, two are significant at a 1 % level, one at a 5 % level and the final one at a 10 %

level. While these differences might seem dramatic, we argue that with proper care, we

are able to discuss our findings as reliable. In order for us to do so, we rely on two main

notions.

First, is the notion that randomized selection does not guarantee equal distribution,

only stochastic distribution of baseline characteristics (Mutz et al., 2019). This implies

that statistical testing of several baseline characteristics are prone to Type I error; the

test returns a statistically significant effect when there in fact is no such effect. The

probability that at least one of the tests return a significant result increases with the

number of baseline characteristics to be tested. We are confident that the randomization

was successful; there were no mechanical or technical issues with the implementation of the

randomization procedure. As long as the former statement is true, the differences between

treatment and control group as shown by the balance test only convey the random nature

of stochastic distribution.

In total we have data on 61 different classes distributed across the treatment (29) and

control group (32). While increasing this number would increase the probability of a

balanced distribution of baseline characteristics, we argue that we still have a decently

sized data set to work with.

Second, when conducting our analysis we are concerned about both the efficiency and

credibility of our model. With credibility, we refer to the degree in which our results truly

reflect the effect of a change in treatment status for an individual. While a randomized

and perfectly balanced data set provide strong arguments for credible results, we would

nevertheless be interested in arguing for the precision of our findings. The precision may

be considered as the propensity for Type II error; finding non-significant results when

there in fact are significant effects. A proven way to improve upon a statistical analysis is

to include covariates in the analysis. An important prerequisite for improving the model

is that the researcher provides some theoretical or empirical evidence, or at the very least

well-substantiated suspicions, that the covariate affects the outcome variable of interest.

Any covariates which meet these requirements should be included in the analysis in order
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to increase the precision of the estimates.

The important implication from this discussion is that any such covariates should be

included in the analysis regardless of their significance in a balance test (Mutz et al., 2019).

In our analysis we include covariates we suspect could affect the outcome of interest,

based on ex ante discussion. These covariates include indicators for gender, baseline time

spent on homework, attitudes towards homework, grades, perceived returns to studying

and popularity measures. Coincidentally, several of these covariates coincide with the

unbalanced baseline characteristics in Table 4.1.

In addition to the individual regressions, we also conducted an omnibus test, following

Hansen and Bowers (2008). This method effectively tests for joint significance for all

baseline characteristics. Running the test separately for Panel A and Panel B gives a

p-value of 0.029 and 4.195e�05, respectively. These low p�values imply that the samples

are indeed unbalanced, and confirms our suspicions from the individual balance tests.

In summary, we argue that while our sample seems to be subject to some imbalances

in baseline characteristics, careful attention to the issue of balance and randomization

combined with meticulous treatment of the covariates should allows us to conduct our

analysis with confidence that the estimates it provides are both precise and efficient. Still,

we need to carefully consider our choice of estimation model in order for our analysis to

be credible.
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5 Empirical Approach
The main goals of our empirical analysis are to estimate the causal effect of the intervention,

identify any spillover effects from the treated to the non-treated, and study the spillover

effects in relation to network characteristics. More specifically, our main outcome variable

for the first part of the analysis is planned time spent on homework, which captures the

students study intentions following the treatment. In the second part of the analysis we

will focus on the beliefs of the students regarding their peers’ time spent on homework, as

reported in the follow-up survey.

5.1 Instrumental Variable approach

When working with a field experiment, as described in chapter 4, we have to consider the

possibility of treatment dilution and imperfect take-up (Angrist and Pischke, 2014). In

order to circumvent this issue we utilize an Instrumental Variable (IV) approach. This

method employs an instrument, in place of the suspected endogenous variable, which

allows for only the exogenous part of the explanatory variable to be captured in the model.

This method allows us to estimate the local average treatment effect (LATE), as opposed

to the intention to treat (ITT) from the reduced form.

Successful IV-estimation requires the use of a valid instrument. There are three main

assumptions that has to be satisfied for this approach to be meaningful (Angrist, 2006).

The relevance assumption requires the instrument to have a significant effect on the

instrumented variable. This assumption is trivial in its identification, and can be examined

through a regression of the instrument on the instrumented variable. Formally it translates

to Cov(X,Z) 6= 0

In addition to the relevance condition, the instrument also has to be uncorrelated with

the unobserved random effects captured in the regression model, often formulated as

Cov(Z, u) = 0. This requirement is separated into two assumptions, the exclusion

restriction and independence assumption (Angrist et al., 1996). These assumptions

relates to the channels in which the instrument is affecting the outcome variable, and

the distribution of the instrument. The exclusion restriction requires the instrument to

only affect the outcome through the instrumented variable. The independence assumption
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requires random distribution of the instrument.

5.1.1 Instrumental variables in randomized control trial

Randomized control trials are by many considered the gold standard in estimation of

causal effects (Angrist et al., 1996), however, this approach requires the researcher to

be able to imagine the outcome in the counterfactual situation of no treatment. With

random distribution of treatment to a sufficiently large sample, it is possible to argue that

the average difference between treated and non-treated corresponds to the average causal

effect (Angrist and Pischke, 2014). These types of analyses are usually difficult to perform

properly in social sciences, as they require no treatment dilution nor any non-compliance.

Often an alternative approach is to combine RCTs with IV-estimation (Angrist, 2006;

Angrist et al., 1996). The novel idea here is to use assigned treatment as an instrument

for actual delivered treatment. This allows us to interpret the estimated effect as LATE,

which corresponds to the effect of the instrumented variable on the compliers, rather than

as an ITT effect.

In this application of the IV framework, the necessary assumptions for a valid instrument

becomes somewhat trivial. By design, our instrument is both strongly correlated with the

instrumented variable and randomly assigned. This implies that the relevance assumption

and independence assumption are satisfied. We provide evidence for a significant first

stage regression in the formal empirical estimation in Appendix A2.1.

The exclusion restriction may require some discussion and external motivation in other

applications, but for our specific case it is quite trivial. Being randomly assigned to

treatment by external researchers should have no impact on the outcome variable of

the student whatsoever, if not for delivered treatment. This implies that by design, our

instrument is strong and arguably valid for our purposes.

5.2 Empirical model

We specify the identifying model which we estimate separately on students above and

below the median of time spent on homework. This approach is similar to the one employed

by Avvisati et al. (2013), utilizing the partial population design of the experiment, and
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allows us to identify the direct effects of being treated by the intervention, as well as the

spillover effects of having treated students in your class. The first-stage regression shows

the effect of the instrument on the instrumented variable.

Dic = ↵1 + �Zic + �Xic + �1c + e1ic (5.1)

Following the naming convention used in Angrist & Pischke (2015), Dic is the instrumented

variable, delivered treatment for individual i in class c. Zic denotes the instrument, and

corresponds to the randomly assigned treatment for individual i in class c. Xic is a vector

of control variables for individual i in class c, and �1c are dummy indicators for strata

fixed effect. e1ic represents unobserved individual random effects.

We get the corresponding reduced form equation by directly regressing the instrument on

the outcome variable:

Yic = ↵0 + ⇢Zic + �0Xic + �0c + e0ic (5.2)

where Yic represents the outcome measure for student i. Xic is a vector of control variables

for individual i in c, and �0c are dummies for strata fixed effects. e0ic is the unobserved

individual random effects. The parameter ⇢ represents the ITT and reflects the effect of

being made eligible for treatment.

The fitted values from estimation 5.1 are then substituted into the second stage regression

in place of the instrumented variable. This gives the following formal estimation:

Yic = ↵2 + �D̂ic + �2Xic + �2c + e2ic (5.3)

where Yic is still the outcome variable, D̂ic is the fitted values from the first stage regression,

Xic is the same vector of controls as in the first stage, �2c represents strata dummies, and

e2ic is the unobserved individual random effects. The parameter of interest here is �, which

captures the instrumented variable’s effect on the outcome variable through the instrument.

The estimated � for students with below median time spent on homework corresponds to

the treatment effect, while for students above median time spent, it corresponds to the
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spillover effects.

We specify three different models. Model (1) is the simplest and only controls for strata

fixed effects. Model (2) includes covariates that ex ante were argued to potentially affect

the outcome measures. Model (3) choose the individual control variables Xic based on a

double lasso selection procedure (Belloni et al., 2014). This method effectively allows us

to choose the appropriate control variables in a high-dimensional data-set by utilizing a

two stage process (Urminsky et al., 2016). First, we identify the covariates that predict

the dependent variable, then the ones that predict the independent variable. The final

regression model is fitted with the variables that have been estimated to have non-zero

effects in the two prior steps.

To avoid issues with incorrect standard errors, we use the built in 2SLS function in STATA

to conduct our estimations. In addition, we cluster the standard errors at the class level

(Angrist and Pischke, 2008). Randomization of treatment was conducted at class level,

and thus the clustering should follow the level of randomization.

5.3 Heterogeneity analysis

We test for heterogeneous results across subgroups by modifying the estimated equations

above. We estimate the difference by introducing an interaction term to our estimation.

By interacting the indicator for treatment and the characteristic we want to test for

heterogeneity across, we get a model that singles out the effect of being treated in a

specific subgroup. Below, only the second stage is shown, however in practice we follow

the same estimation strategy as above.

Yic = ↵2 + �D̂ic + �2Aic + ⇣2(A⇥ Z)ic + �2Xic + �2c + e2ic (5.4)

Where Yic is the outcome measure, Xic is a vector of control variables for individual i in

class c, �2c controls for strata fixed effects, and e2ic is the unobserved individual random

effects. Aic here represents the subgroup identifier. This is a dummy variable that takes

the value of 1 if individual i in class c belongs to a specific subgroup, and 0 otherwise.

The interaction term is a dummy representing whether the individual belongs to a certain

subgroup and is treated. The coefficient of interest in this model is ⇣2 which represents
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the relative difference between treatment effect for individuals in the subgroup and not in

the subgroup.

5.3.1 Network effects

In addition to the direct and indirect effects, we are interested in identifying how different

network characteristics affect the diffusion of treatment effect. In particular, we want to

examine how network characteristics such as eigenvector centrality and degree distribution

affect the magnitude of spillover effects. The main idea is that if the treated students in

one class are more central in their networks relative to other classes, the spillover effect

should be stronger due to a higher degree of interaction between treated and non-treated

students.

We test for this by further specifying our heterogeneity analysis. First, we calculate the

degree distribution and eigenvector centrality for each friend network, using GEPHI. These

variables are then used to construct measures for the centrality of the treated individuals

in different classes. Consolidating this with the above approach to heterogeneity analysis

allows us to estimate the difference in treatment effect conditional on the initial injection

point. This approach bears similarities with Banerjee et al. (2013).
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6 Analysis

6.1 Reduced Form Estimation

We start out our analysis by testing for ITT effects by estimating equation 5.2. The

dependent variable is different measures for the students’ beliefs regarding their future

time use on schoolwork. Table 6.1 presents the beta coefficient from the estimations.

All three models (1, 2, 3) suggests that being below median in a class that is made eligible

for treatment is associated with an increase in the amount of time planned for homework.

The first row represents the mean time planned, while the second row represents the

probability for the student to plan more homework than the actual median in the class.

There are some differences between the three models. In the first row, we find some

difference in the magnitude of the estimated coefficient between model (1) and the other

two. In the second row, model (2) reports a slightly higher estimated coefficient relative

to the other two. However, the differences are not dramatic, and the significance and

general interpretation of the results remain stable across all models.

Table 6.1: Direct intention to treat effects from the main survey

(1) (2) (3)
No controls Pre-determined controls Double Lasso Selection

Panel A: Direct effect

Time planned homework 8.149*** 8.457*** 8.480***
(2.295) (2.811) (1.921)

Planned homework above median 0.154*** 0.240*** 0.153***
(0.058) (0.060) (0.056)

N 287 286 286

Panel B: Spillover effect

Time planned homework −2.006 −3.208 −4.405*
(2.988) (2.640) (2.264)

Planned homework above median −0.010 −0.026 −0.031
(0.029) (0.029) (0.026)

N 504 504 504

Notes: Model (1) shows the coefficient from the reduced form regression using only indicators for strata
fixed effects as covariates. Model (2) shows the coefficient from a similar regression, but also including
pre-determined controls. Model (3) shows the coefficient from a PDS-lasso regression, utilizing a post
double lasso selection procedure in order to determine which covariates to include. Robust standard errors
clustered at class level in parenthesis below each coefficient. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Considering model 2 (3), the magnitude of the coefficients in the first row implies that

being made eligible for treatment is associated with a 8.457 (8.480) minutes increase

in average time planned for homework. Further, the second row implies a 24.0 (15.3)

percentage points increase in probability for the students to plan more time to homework

than the median in their class. Not only do the students plan more time for homework

after the treatment, but on average the probability that they plan more than the median

in their class is increased. The link between treatment and effect seems to be consolidated

through these estimations.

Next, we consider the reduced form estimation of the relationship between treatment and

the students’ ability to correctly guess their peers’ time spent on homework as reported

in the follow-up survey. Table 6.2 shows the beta coefficient from estimating equation 5.2

with measures for the precision in students’ guesses as the dependent variable.

Table 6.2: Direct and indirect intention to treat effects from the follow-up survey

(1) (2) (3)
No controls Pre-determined controls Double Lasso Selection

Panel A: Direct effect

Wedge follow up −0.103*** −0.082 −0.104***
(0.035) (0.050) (0.033)

Correct guess 0.053 0.084 0.064
(0.057) (0.055) (0.053)

Distance from correct guess 5.133** 5.895** 4.539**
(2.296) (2.979) (2.030)

Absolute distance from correct guess −3.998** −5.033*** −4.235***
(1.686) (1.679) (1.542)

N 218 217 217

Panel B: Spillover effect

Wedge follow up −0.057** −0.055* −0.039*
(0.029) (0.028) (0.022)

Correct guess 0.052 0.050 0.051
(0.047) (0.056) (0.044)

Distance from correct guess 0.190 0.354 −0.760
(1.972) (1.792) (1.625)

Absolute distance from correct guess −0.082 −0.525 −0.422
(1.109) (1.161) (0.921)

N 400 400 400

Notes: Model (1) shows the coefficient from the reduced form regression using only indicators for strata
fixed effects as covariates. Model (2) shows the coefficient from a similar regression, but also including pre-
determined controls. Model (3) shows the coefficient from a PDS-lasso regression, utilizing a post double
lasso selection procedure in order to determine which covariates to include. Robust standard errors clustered
at class level in parenthesis below each coefficient. * p < 0.1, ** p < 0.05, *** p < 0.01.
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The first row of Panel A suggests that being made eligible for treatment is associated

with a decrease in guessed proportion below median. The measure wedge indicates the

difference between the student’s guessed proportion of classmates being below median

and the actual proportion below the median. A negative estimated coefficient implies that

students eligible for treatment on average guess that fewer of their peers are below the

median. Model (1) and (3) are statistically significant at a 1 % level, and while model (2)

is not significant at any conventional level, a p-value of 0.106 tells us it is very close to

the 10 % level. It is important to note that the students were not tasked with guessing

how many of their peers were below the median in the follow up survey, but that they

were tasked with guessing how many of their peers reported being below median in the

main survey.

The third row of Panel A suggests that students made eligible for treatment guess a higher

median than the actual median in their class. The findings in row 4 suggest that the

absolute difference between guessed median and actual median is decreasing for eligible

students. An explanation for this might be that students were underestimating ex ante.

The treatment nudged these students to reconsider their initial guesses, and on average,

increase their guessed median. Consolidated, the results from row 1, 3 and 4 suggest that

while students are increasing their relative distance to the correct median (that is, they

are overestimating more), the net effect of reducing the prior underestimation is such that

the absolute distance is reduced. The total effect seems to be that students eligible for

treatment are better at guessing than their non-treated peers.

We also see some spillover effects in the first row of Panel B. Model (1) and (2) report a

coefficient at about 50 % the magnitude of the direct effect, while model (3) has estimates a

somewhat weaker relationship. All models are statistically significant at conventional levels.

The estimated coefficient implies that there are some dynamic between the students that

allow for the treatment to also affect some of the non-eligible students. More specifically,

students having peers below median who are made eligible for treatment in their class are

more inclined to guess a higher proportion above median.
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6.2 Instrumental variable estimation

Moving on to the instrumental variable estimation, we now consider the local average

treatment effect. Table 6.3 shows the beta coefficient from estimating equations 5.1 and 5.3

as in a two-stage least squares regression. Due to the mechanical aspect of our analysis, we

do not find it necessary to show the first stage regression. By assumption our instrument is

highly relevant, and any additional information from the first stage is not key in analyzing

our data. However, all first-stage regressions are reported in Appendix 2.

The first row of Panel A in Table 6.3 suggests that being treated is associated with an

increase in time planned on homework in the future. This suggestion is further reinforced

by the second row which implies that treated students also have a higher probability

of planning more homework than the median relative to their non-treated peers. The

coefficients seems to be of about the same magnitude as their ITT counterparts, with

the exception of model (3) which reports a slightly stronger effect. Considering that the

LATE is a local measure for the effect on the treated and the ITT effect only considers

the eligibility for treatment, it would be reasonable to expect such a difference.

Table 6.3: Direct treatment effects from the main survey

(1) (2) (3)
No controls Pre-determined controls Double Lasso Selection

Panel A: Direct effect

Time planned homework 8.329*** 7.964*** 9.157***
(2.257) (2.491) (2.031)

Planned homework above median 0.158*** 0.229*** 0.165***
(0.056) (0.054) (0.056)

N 287 286 286

Panel B: Spillover effect

Time planned homework −0.900 −2.125 −2.873
(2.965) (2.826) (2.802)

Planned homework above median −0.000 −0.022 −0.028
(0.029) (0.028) (0.029)

N 504 504 504

Notes: Model (1) shows the coefficient from an IV-regression using only indicators for strata fixed effects as
covariates. Model (2) shows the coefficient from a similar IV-regression, but also including pre-determined
controls. Model (3) shows the coefficient from an IV-lasso regression, utilizing a post double lasso selection
procedure in order to determine which covariates to include. Robust standard errors clustered at class
level in parenthesis below each coefficient. * p < 0.1, ** p < 0.05, *** p < 0.01
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The difference in estimated coefficients between the three models are mainly driven by the

covariates. We see that model (1) and (2) are quite similar, with (2) reporting a slightly

lower coefficient. Model (3) differs somewhat more, suggesting about 10 % stronger effect

in time planned on homework. For probability of time planned to be above the median,

the estimate from model (2) is higher than the two other. Significance seems stable across

all three models.

Overall, these estimations imply that informing students about the median time their peers

spend on homework is sufficient to nudge them to plan more study time for themselves.

Furthermore, the effect seems to be strong enough to substantially increase the proportion

of below-median students who plan to do more homework than the median.

Table 6.4 is comparable to table 6.2, however with estimated LATEs instead of ITT effects.

The estimated coefficients in the first row of Panel A suggests a positive effect on students

ability to correctly guess their peers answers. The magnitude of the coefficients are quite

similar to those from the ITT estimation. Model (2) is significant at a 5 % level, while

model (1) and (3) exhibit an even higher significance level of 1 %.

The second row of Table 6.4 suggests a positive effect on students ability to perfectly

guess their peers answers on time use. The coefficient of model (2) implies that students

whom receive treatment are 10.9 percentage points more likely to correctly guess their

peers answers perfectly. The estimate is significant at a 5 % level. Model (1) and (3) do

not suggest any significant treatment effects.

The third row further confirms the relationship suggested in 6.2, however with the main

difference that model (3) yields a non-significant estimate. The fourth row follows in the

same fashion, with model (1) and (2) having the same interpretation as in table 6.2, while

model (3) is non-significant.

We also find some evidence for spillover effects in the local treatment effects. The first

row of model (1) and (2) of Panel B suggests that students whom are not treated but

who are in the same class as someone treated, guess that 7.3 (5.7) percentage points more

of their peers report spending more time than the median in their class on homework.

Model (1) and (2) estimate a statistically significant relationship at the 5 % level, while

model (3) is only significant at the 10 % level with a weaker estimated relationship.
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Table 6.4: Direct and indirect treatment effects from the follow-up survey

(1) (2) (3)
No controls Pre-determined controls Double Lasso Selection

Panel A: Direct effect

Wedge follow up −0.109*** −0.091** −0.097***
(0.034) (0.042) (0.037)

Correct guess 0.066 0.109** 0.052
(0.054) (0.046) (0.051)

Distance from correct guess 4.930** 5.939** 2.890
(2.150) (2.428) (2.091)

Absolute distance from correct guess −3.796** −4.977*** −2.148
(1.587) (1.470) (1.511)

N 218 217 217

Panel B: Spillover effect

Wedge follow up −0.073** −0.057** −0.059**
(0.030) (0.025) (0.028)

Correct guess 0.077 0.083 0.069
(0.049) (0.054) (0.054)

Distance from correct guess 1.266 0.182 0.211
(2.163) (1.550) (1.695)

Absolute distance from correct guess −0.482 −1.008 −1.234
(1.148) (1.065) (1.244)

N 400 400 400

Notes: Model (1) shows the coefficient from an IV-regression using only indicators for strata fixed effects as
covariates. Model (2) shows the coefficient from a similar IV-regression, but also including pre-determined
controls. Model (3) shows the coefficient from an IV-lasso regression, utilizing a post double lasso selection
procedure in order to determine which covariates to include. Robust standard errors clustered at class level in
parenthesis below each coefficient. * p < 0.1, ** p < 0.05, *** p < 0.01.

Consolidating our findings, we see some evidence for positive treatment effect, as well as

some spillover effects. The results remain significant across several model specifications.

6.3 Heterogeneity analysis

The following section presents the results from a heterogeneity analysis. Based on the

existing literature, we have reasons to believe that different sub-samples might respond

differently to the treatment. In order to test for these differences, we re-estimate our

model including an interaction term between the suspected heterogeneity indicator and the

treatment variable. In essence we estimate model 5.4. We perform separate estimations

across all characteristics we suspect might be subject to heterogeneity issues. Table 6.5

summarizes the coefficients of the interaction terms from the estimations.
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6.3.1 Grades

According to Azmat and Iriberri (2010), higher-achieving students might respond differently

to information treatment than low-achieving students. The authors argue that due to the

high-achieving students’ relatively higher ability to implement new information in their

decision making, they should see a stronger effect among the top performing students.

The first two columns of Table 6.5 show the coefficient of the interaction term between

treatment and a dummy for whether the student achieved a grade of 5 or higher on their

latest math and Norwegian test, respectively. We notice that only two of the coefficients

are significantly different from zero, suggesting that students that achieve a grade of 5

or higher in math or Norwegian have a lower distance from the correct guessed median

relative to the students achieving a grade of 4 or lower. The estimated effect is about 1.4

times as strong for the math grade than for the Norwegian grade.

From Panel B we see some evidence that high achieving students in math guess a lower

absolute distance from median, and high achieving students in Norwegian guess a higher

relative distance from the median. Both estimates are significant at a 10 % level.

These results suggest some heterogeneity in the treatment effect, dependent on the subjects

grades. There seems to be some correlation between stronger treatment effect and high

achieving students. This could have further implications for how to most efficiently

implement such an intervention on a larger scale, and deserves careful consideration.

6.3.2 Gender

The third column of Table 6.5 suggests that female respondents are relatively better at

guessing correctly (second row of Panel A). This effect is significant at a 10 % significance

level, and the estimated coefficient is relatively large compared to the main effects from

Table 6.3.

As with achievement, this result also supports the notion of some heterogeneity, however

the evidence is only apparent for one of the outcome variables and the significance is weak.

We should be cautious in interpreting these results.
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6.3.3 Utility from homework

Another interesting notion is that the students’ preferences might affect how perceptible

they are to treatment. One could argue that students whom derive low utility from

schoolwork might underestimate the amount of time their peers spend on schoolwork. For

these students we would expect to see a stronger treatment effect due to the fact that

their guesses are already disproportionately lower than their peers.

From column 4 in Table 6.5 we see some evidence of this intuition. All the coefficients

displayed support the intuition that a weaker treatment effect is associated with students

who derive low utility from homework. The first row suggests they guess that a higher

proportion of their peers are below median in time spent on homework. The second row

suggests a lower proportion of correct guesses. The third and fourth row consolidated

implies that these students are worse at guessing, and that they have a propensity for

underestimating, relative to their peers. All the estimates remain statistically significant

at conventional levels.

Similarly, we see some significant effects in column 5. Both row 1 in Panel A and, row 2 and

4 in Panel B suggest that students who believe spending time on homework contributes to

lower popularity is associated with a weaker treatment and spillover effect than their peers.

We see a 20.4 percentage points lower spillover effect on proportion of perfect guesses

relative to their peers, and their absolute distance to correct guess is 5.698 minutes higher

than their peers.

6.3.4 Network effects

We test different network effects by constructing a measure for the average centrality of

the treated students in each class. This measure is then used to create sub-samples of

students in classes with higher or lower than average centrality for below-median students.

The reported estimates show the difference in effect for students whom have treated peers

that are more or less central than average. The results of the estimation is presented

in Table 6.6. The first column shows the estimated effect of having the below-median

students have higher eigencentrality than average. The remaining columns show the

estimated effect of having the below-median students have a higher than average total
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amount of friends (degree), in-friends (indegree), out-friends (outdegree) and reciprocal

friends, respectively.

Since we are interested in contact between students in order to facilitate treatment transfer,

we allow one-way reported friendship ties to be interpreted as communicative. The rational

behind this is that any form of friendship requires reciprocal involvement. Thus, it is

reasonable to consider the different measures for friendship ties as indicators of interaction

between students. Still, we estimate models separately for each measure as it allows for

more nuanced discussion.

Table 6.6: Network effects: Centrality of Panel A

Eigencentrality Total friends In-friends Out-friends Reciprocal friends

Panel A: Direct effect

Wedge follow up 0.082 0.004 −0.193 0.027 0.006
(0.065) (0.083) (0.121) (0.067) (0.068)

Correct guess −0.033 −0.103 −0.000 0.006 0.098
(0.112) (0.127) (0.160) (0.119) (0.142)

Distance from correct guess −3.994 3.304 3.636 5.050 6.772*
(3.205) (4.770) (7.489) (3.946) (4.096)

Absolute distance from correct guess 2.334 −0.485 1.108 −3.482 −6.900**
(2.648) (3.478) (4.610) (3.055) (2.997)

N 217 217 217 217 217

Panel B: Spillover effect

Wedge follow up −0.006 0.045 −0.113* 0.102* 0.037
(0.040) (0.069) (0.067) (0.060) (0.068)

Correct guess −0.094 0.017 0.064 0.017 −0.055
(0.068) (0.085) (0.120) (0.100) (0.105)

Distance from correct guess −2.600 1.972 2.954 6.186* 4.128
(2.751) (4.270) (4.322) (3.648) (3.091)

Absolute distance from correct guess 3.517* −1.472 −1.070 −1.848 3.095
(2.107) (2.564) (3.042) (2.924) (2.164)

N 400 400 400 400 400

Notes: Heterogeneity analysis by adding an interaction term to the IV-regression. The interaction term is dependent on
network characteristics of the below-median students. The model controls for pre-specified covariates and is coinciding
with Model (2) from the main analysis. Robust standard errors clustered at class level in paranthesis. Each cell is a
unique regression. * p < 0.1, ** p < 0.05, *** p < 0.01.

Since we are mainly interested in investigating the heterogeneity in spillover effects, we

begin by considering Panel B.

The fourth row of column one suggests that high eigencentrality among the treated students

is associated with a larger difference between believed median and correct median. This

is a somewhat surprising result as it implies that treating students with high centrality,

and thus high propensity for interacting and initiating spillover effects, is associated with
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a weaker spillover.

Column two, three and four show the estimated coefficient from estimations with the

interaction term depending on different measures of friendship ties. The first row suggests

a correlation between the treated students having many in-friends and a stronger spillover

effect, while having many out-friends is associated with a weaker spillover effect. We

see no effect for reciprocal friends. These results are interesting as the they suggests the

opposite of what one would expect. It would be reasonable to argue that treated students

with many out-friends would have a higher frequency of interaction, and thus would be

more inclined to see a stronger treatment effect.

Due to the ambiguity of the estimated effects, we do not find enough convincing evidence

to argue for clear heterogeneity in spillover effect conditional on centrality measures. Our

results do, however, motivate further investigation of this issue, as there seems to be some

mechanism at play that our data set and specification is not able to pick up.

In Panel A we see some evidence that suggests heterogeneity in the direct treatment effect.

The estimated coefficient of row 3 and 4 suggests an association between the treated

students having many reciprocal friends, and a stronger treatment effect. The mechanism

of this relationship could depend on treated students exchanging information about the

treatment with each other, thus amplifying the treatment effect.

As discussed earlier, we are interested in the effect of interaction between treated and

non-treated students. Since we are not able to directly observe such interaction, we rely on

self-reported friendship ties. Following the discussion of the direction of such ties, it is also

interesting to investigate any heterogeneity dependent on the network characteristics of the

non-treated students. High frequency of interaction between above-median students could

lead to heterogeneous spillover effects. This could for example be due to an above-median

student seeking social interaction with several treated students. This mechanism closely

relates to the friendship paradox Jackson (2019). We consider this effect in Table 6.7

These estimations suggests some differential effects for above median students with many

friends. We see this through the first row of column 2 in both Panel A and Panel B. The

estimated coefficient suggests that a high number of friends among the treated above

median students is associated with a lower wedge. In addition, row four of the same
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column suggests a correlation between overestimation and total number of friends. In

Panel B we find some evidence for weaker spillover effects, while still maintaining some of

the overestimation also found in Panel A.

Table 6.7: Network effects: Centrality of Panel B

Eigencentrality Total friends In-friends Out-friends Reciprocal friends

Panel A: Direct effect

Wedge follow up 0.073 −0.278*** −0.094 −0.104 −0.021
(0.084) (0.071) (0.070) (0.077) (0.054)

Correct guess −0.279* 0.018 0.117 −0.220* 0.028
(0.158) (0.112) (0.110) (0.119) (0.105)

Distance from correct guess −9.462* 10.715*** 5.644 1.624 1.418
(4.980) (3.249) (4.405) (4.147) (2.973)

Absolute distance from correct guess 9.325** −2.783 −3.872 1.991 0.753
(4.172) (3.411) (3.360) (3.979) (2.712)

N 217 217 217 217 217

Panel B: Spillover effect

Wedge follow up −0.043 −0.105* 0.070 −0.035 −0.006
(0.071) (0.062) (0.078) (0.058) (0.050)

Correct guess −0.269** −0.061 −0.356*** −0.044 −0.038
(0.137) (0.116) (0.117) (0.126) (0.102)

Distance from correct guess −1.020 6.351* −4.569 2.036 3.356
(4.679) (3.735) (4.919) (3.601) (2.775)

Absolute distance from correct guess 7.322** 3.143 9.393*** 4.657 1.674
(3.283) (2.617) (3.093) (3.156) (2.474)

N 400 400 400 400 400

Notes: Heterogeneity analysis by adding an interaction term to the IV-regression. The interaction term is dependent on
network characteristics of the above-median students. The model controls for pre-specified covariates and is coinciding with
Model (2) from the main analysis. Robust standard errors clustered at class level in paranthesis. Each cell is a unique
regression. * p < 0.1, ** p < 0.05, *** p < 0.01.

Column three of Panel B suggests high amount of in-friends among above median students

in treated classes is associated with a substantially lower proportion of correct guesses

and higher distance from correct guess.

Finally, we specify our analysis to consider the difference between students with more or

less than one treated friend. The estimations are consolidated in Table 6.8. We do not

see any clear signs of heterogeneity in the spillover effects. The only exception is a weakly

significant estimate that suggests some association between high number of treated friends

and higher distance from correct guess.

In Panel A, however, we find some more interesting insights. First, the coefficient reported

in the third row of column one suggests that having a lot of treated friends is associated

with a lower distance from correct guess. Next, we find some evidence of a correlation

between having many treated out-friends and stronger treatment effect. One reasonable
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explanation of this is that students who interact more with other treated students are

subject to an amplification of treatment.

Table 6.8: Network effects: Number of treated friends

In-friends Out-friends Reciprocal friends

Panel A: Direct effect

Wedge follow up 0.040 −0.103* 0.016
(0.028) (0.059) (0.028)

Correct guess 0.033 0.267** 0.027
(0.048) (0.117) (0.063)

Distance from correct guess −2.414* 5.257 −2.154
(1.345) (4.125) (1.666)

Absolute distance from correct guess −0.938 −5.797* −0.230
(1.065) (3.174) (1.418)

N 214 217 214

Panel B: Spillover effect

Wedge follow up 0.010 −0.015 0.026
(0.016) (0.057) (0.019)

Correct guess −0.030 −0.066 −0.028
(0.035) (0.088) (0.039)

Distance from correct guess −0.610 −0.544 −2.353
(1.386) (3.409) (1.487)

Absolute distance from correct guess 1.900* 3.191 1.480
(1.094) (2.609) (1.154)

N 392 400 392

Notes: Heterogeneity analysis by adding an interaction term to the IV-regression. The
interaction term is dependent on the number of treated friends of the subjects. The
model controls for pre-specified covariates and is coinciding with Model (2) from the
main analysis. Robust standard errors clustered at class level in paranthesis. Each cell is
a unique regression. * p < 0.1, ** p < 0.05, *** p < 0.01.

In total, our heterogeneity analysis does not provide any clear insight into the importance

of network characteristics on treatment and spillover effects. We do find some implications

of a relationship between the number of friends and the magnitude of treatment, but the

results are ambiguous and require more in depth investigation in order to provide any

constructive insight.
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7 Robustness check

7.1 Balance and bias

Imbalances in baseline characteristics between treatment and control group could be a

potential threat to causality. The main concern is that any of the imbalanced covariates

are predictive of the outcome variable, thus contributing to omitted variable bias. This

section is dedicated to discussing the potential effects the baseline characteristics could

have on the outcome. In the following section, we expand on this analysis and then test

whether our intuition holds when controlling for the imbalanced covariates.

Recalling the results from table 4.1, we see that the first sign of imbalance between

treatment and control group is evident in the Female variable. Our data suggests that

being a female student is associated with better initial guesses regarding peers’ time spent

on homework (see Appendix A3.1). A difference in baseline distribution of female and

male students could then have an impact on the estimated treatment effect. Since the

initial wedge is lower for female students, one reasonable suspicion is that the treatment

will have limited effect. Thus, if we do not control for this imbalance in our analysis, we

would expect to see a negative bias in our treatment effect (Panel A), and a positive bias

in our spillover effect (Panel B).

We do not find any evidence of differential initial beliefs across the other imbalanced

baseline characteristics. However, there seems to be some differences in initial time

planned on homework. Both female, Norwegian grade > 4 and importance grades > 3 are

associated with higher time planned to homework. The relationships are significant at a 1

% level. This does reflect some underlying difference in attitude across different baseline

characteristics.

Another main concern with imbalanced covariates is that observed imbalances also reflect

imbalances in the unobserved characteristics. This is a far more pressing issue, as we have

no means of controlling for of measuring these kinds of differences.



36 7.2 Attrition

7.2 Attrition

We check for attrition and it’s effects by constraining our estimations to the respondents

who participated in the follow-up survey. Our concern is that there is differential attrition

rates conditional on treatment status, which could potentially skew our analysis by

contributing to violation of the independence assumption and the condition of randomly

distributed treatment.

From Table 7.1 we see that the attrition rate was on average 24% for the below median

students and 20% for the above median students. The estimated coefficient in column 3

tells us that there is a 7 percentage points lower attrition rate for students above median

in the treated classes. This suggests that students subject to spillover of treatment effects

are more likely to stay in the study relative to their untreated peers. We don’t see any

evidence for differential attrition for the below-median students.

Table 7.1: Attrition rate

Mean C Mean T T-C (se) n.obs
Panel A: Below median

Attrition rate 0.24 0.24 −0.01 (0.045) 287
Panel B: Above median

Attrition rate 0.24 0.17 −0.07** (0.033) 504

Notes: Attrition rate by regressing a dummy for participation in the follow-up
survey on treatment status. Controlled for strata fixed effects and standard
errors clustered at class level. * p < 0.1, ** p < 0.05, *** p < 0.01.

To investigate whether attrition might affect the distribution of baseline characteristics in

our sample, we re-estimate our model for balance testing on a subsample consisting of

only students whom respond to both surveys. The differences in baseline characteristics

are summed up in table 7.2.

Relative to the full sample, we see that there are indeed a few more baseline characteristics

that are significantly different between the treatment and control group. For Panel A,

we see imbalance in the gender indicator and returns to studying Norwegian. For Panel

B, we find the same imbalances as for the full sample with an addition of the number of

friends. The differences are about the same, but the significance is lower. Interestingly,

we do not see any evidence for differences in initial beliefs in the restricted sample, as we
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do in the full sample. The discrepancy between significant variables in the full sample

and the restricted sample does indeed imply that attrition might prove an issue for the

internal validity of our results.
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Table 7.2: Baseline characteristics of subsample responding to follow-up survey

Mean C Mean T T-C (se) n.obs
Panel A: Below median

Female 0.30 0.44 0.15** (0.059) 217
Time homework 14.95 15.05 1.79 (1.797) 218
Dislikes homework 0.84 0.77 −0.00 (0.046) 218

Grades
Standardized grade math 0.01 −0.017 −0.02 (0.130) 218
Standardized grade Norwegian −0.09 −0.15 −0.08 (0.153) 218
Returns to studying Norwegian 0.51 0.44 −0.12* (0.060) 218
Returns to studying math 0.64 0.55 −0.09 (0.097) 218

Attitudes
Importance grades > 3 0.90 0.84 −0.05 (0.040) 218
Pleasing parents > 3 0.65 0.63 0.01 (0.071) 218
Expectation of parents > 3 0.92 0.86 −0.07 (0.052) 218
Pleasing teachers > 3 0.47 0.49 −0.01 (0.082) 218
Expectations of teachers > 3 0.83 0.83 −0.02 (0.046) 218
Importance of popularity > 3 0.78 0.73 −0.05 (0.054) 218
Popularity schoolwork < 3 0.25 0.19 −0.06 (0.055) 218

Friendship
Number of in friends 3.18 2.94 −0.42 (0.319) 215
Number of out friends 3.02 2.96 −0.17 (0.315) 215
Number of reciprocal friends 6.19 5.90 −0.60 (0.617) 215
Eigencentrality 0.45 0.51 0.04 (0.046) 215
Many friends outside class 0.50 0.36 −0.10 (0.061) 218

Beliefs
Guessed median - class median main survey −18.56 −17.30 −0.31 (1.742) 218
abs(guessed median - class median) main survey 19.59 19.93 0.81 (1.354) 218
Wedge main survey 0.34 0.32 −0.03 (0.026) 218
Guessed median = class median main survey 0.10 0.09 0.00 (0.042) 218

Panel B: Above median
Female 0.66 0.57 −0.12*** (0.041) 400
Time homework 48.50 47.52 −0.08 (1.605) 400
Dislikes homework 0.62 0.58 −0.04 (0.041) 400

Grades
Standardized grade math 0.12 0.15 −0.03 (0.073) 400
Standardized grade Norwegian 0.26 0.13 −0.20** (0.076) 400
Returns to studying Norwegian 0.31 0.37 0.05 (0.044) 400
Returns to studying math 0.59 0.57 0.03 (0.046) 400

Attitudes
Importance grades > 3 0.93 0.84 −0.08** (0.030) 400
Pleasing parents > 3 0.72 0.78 0.09** (0.038) 400
Expectation of parents > 3 0.92 0.92 −0.00 (0.024) 400
Pleasing teachers > 3 0.62 0.67 0.06 (0.039) 400
Expectations of teachers > 3 0.88 0.88 −0.01 (0.027) 400
Importance of popularity > 3 0.76 0.79 0.04 (0.027) 400
Popularity schoolwork < 3 0.16 0.21 0.05 (0.032) 400

Friendship
Number of in friends 3.04 2.93 −0.28 (0.199) 392
Number of out friends 3.23 2.93 −0.48** (0.221) 392
Number of reciprocal friends 6.27 5.86 −0.76* (0.404) 392
Eigencentrality 0.47 0.52 0.03 (0.031) 392
Many friends outside class 0.39 0.37 0.00 (0.045) 400

Beliefs
Guessed median - class median main survey −4.04 −3.88 −0.31 (2.087) 400
abs(guessed median - class median) main survey 12.90 13.63 1.24 (1.019) 400
Wedge main survey 0.14 0.12 −0.04 (0.027) 400
Guessed median = class median main survey 0.27 0.27 0.01 (0.031) 400

Notes: Female is a manually coded variable based on the name of the student. The first and second columns
show the mean value of the row variables for the control and treatment group, respectively. The third column
shows the estimated coefficient from a regression of the baseline characteristic on treatment status, controlling
for strata fixed effects. The fourth column includes robust standard errors, clustered at the class level
(corresponding with randomization level). Each row includes a separate regression. * p < 0.1, ** p < 0.05, ***
p < 0.01.
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We test for the impact of these imbalances by estimating a model without any controls

and a model where we control for the imbalanced covariates, and compare them. Table

7.3 shows the estimated coefficients of treatment for the two different models. We see that

the coefficient for wedge is significant for both panels and both models. Considering the

other outcome variables, we see that distance and absolute distance both have equally

significant effects. Moreover, model (2) seems to be estimating a somewhat stronger

treatment effect. In Panel B, the two estimated effects are almost identical, both in

magnitude and significance.

Table 7.3: IV estimation controlling for unbalanced subsample

(1) (2)
No controls Controlling for imbalance

Panel A: Direct effect

Wedge follow up −0.109*** −0.108***
(0.034) (0.036)

Correct guess 0.066 0.050
(0.054) (0.057)

Distance from correct guess 4.930** 5.792**
(2.150) (2.331)

Absolute distance from correct guess −3.796** −4.576**
(1.587) (1.802)

N 218 214

Panel B: Spillover effect

Wedge follow up −0.073** −0.072**
(0.030) (0.030)

Correct guess 0.077 0.070
(0.049) (0.046)

Distance from correct guess 1.266 1.690
(2.163) (2.024)

Absolute distance from correct guess −0.482 −0.207
(1.148) (1.210)

N 400 392

Notes: Model (1) shows the coefficient from an IV-regression using only indicators for
strata fixed effects as covariates. Model (2) shows the coefficient from a similar IV-
regression, but also including controls for imbalanced baseline characteristics. Robust
standard errors clustered at class level in parenthesis below each coefficient. * p < 0.1,
** p < 0.05, *** p < 0.01.
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While our discussion of the attrition rate raised some concern about the internal validity

of our analysis, we do not see any evidence of stark differences between a model estimated

with and without controls for the imbalanced covariates. Our main outcome measures

remains stable across both models, which suggests that differential attrition does not

affect the analysis in any noticeable way.

7.3 Issues with randomization

For our main analysis, we use an IV approach. This is to avoid issues with non-compliance

and treatment dilution. However, we also have a variable in our data set which indicates

what schools were experiencing issues with the implementation of the treatment. In the

absence of non-compliance, the estimated ITT effect corresponds with the LATE. The

following section will present our main results from the IV analysis and compare them

to a alternative model where we restrict our sample to only the classes with successful

implementation of treatment.

From Table 7.4 we see that the differences between the two models are minuscule for

all outcomes except the wedge measure in Panel B. Here, both the significance and the

estimated effect is substantially smaller for the restricted sample. For all other variables,

both the estimate and the significance support the same conclusion regarding the effect of

treatment. The differences we see in the estimates could be the result of a smaller sample

in one of the models.
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Table 7.4: Difference between ITT on successful randomization and IV on full sample

(1) (2)
Issue = 0 IV

Panel A: Direct effect

Wedge follow up −0.095* −0.091**
(0.050) (0.042)

Correct guess 0.100* 0.109**
(0.060) (0.046)

Distance from correct guess 5.711* 5.939**
(3.274) (2.428)

Absolute distance from correct guess −5.515*** −4.977***
(1.805) (1.470)

N 191 217

Panel B: Spillover effect

Wedge follow up −0.047 −0.057**
(0.031) (0.025)

Correct guess 0.030 0.083
(0.059) (0.054)

Distance from correct guess 0.257 0.182
(1.833) (1.550)

Absolute distance from correct guess 0.011 −1.008
(1.236) (1.065)

N 330 400

Notes: Model (1) shows the coefficient from an reduced form regression
restricted to the school where there are no confirmed issues with
randomization. Model (2) shows the coefficient from a IV-regression on the
whole dataset, corresponding with the main model. Both model controls
for predetermined baseline characteristics, as well as strata fixed effects.
Robust standard errors clustered at class level in parenthesis below each
coefficient. * p < 0.1, ** p < 0.05, *** p < 0.01.
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8 Discussion

8.1 Potential mechanism

Our thesis depends on students misperceptions about peers’ time spent on homework.

While there are many possible explanations for this misperception, one reasonable intuition

is related to misreporting among students. For example, if a student thinks that everyone

else in their peer group is spending a small amount of time doing homework, they will

naturally believe that doing less homework is socially desirable. However, such beliefs

might be incorrect, and the stigma associated with this attitude could lead to incorrect

beliefs. If the students believe that doing more homework is stigmatized, they might

be reluctant to talk about it and reveal their private views to others. If most students

act this way, they might all end up believing that their private views are only shared by

at best a small minority. Furthermore, this leads to a preference falsification, in which

the students reported preferences are affected by social acceptability, providing a biased

summary of the class’ view on homework. This could potentially update the student’s

beliefs about the share of people with negative views towards homework and make the

students reluctant to talk about and reveal their private views to their peers.

Our analysis suggests some evidence of the above intuition. We find that the baseline

difference in guessed proportion and the actual proportion of peers below median time

spent on homework is high. Since students cannot observe the actual time spent on

homework among their peers, they are dependent on the information their peers provide

them. Thus, it is reasonable to attribute some of the differences between the actual

and the perceived situation to misreporting. Our analysis also suggests positive spillover

effects, implying that updating some students’ beliefs with correct information about their

peers’ time spent on homework reduces the misreporting among students.

8.2 Limitations of the data set

As mentioned in Section 4.1, our study is based on self-reported data. The justification of

this is that only the students themselves can report how much time they plan to allocate

to different activities. In addition, most interactions in friendships occurs outside of public
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view, or at least away from the attention of adults. Thus, it seems necessary to rely on

the students to report information about planned allocation of time and friendship ties.

However, being in their adolescence the students are not necessarily reliable reporters of

their experiences in group relationships or regarding time spent on different activities.

Misreporting could lead to unreliable datasets in relation to the actual situation, however,

this issue is equally present in the control group and the treatment group, and thus does

not affect internal validity.

Most of the questions the students are presented with in the surveys have pre-determined

options in which the students have to choose from. However, some of the questions allows

for the students to write the answer themselves, e.g., writing the date of their latest test

in a given subject. These open questions present some problems, as we see a tendency of

misreporting among the students. In order to get a representative data set, we depend

on the students writing a valid answer. An aspect that further increases this concern,

is the monetary price connected to the surveys. By completing the follow-up survey for

instance, the students become part of a lottery in which three of the students in each

class are rewarded 200 NOK. This might lead some students to quickly going through the

survey, not paying attention to what they answer, with the sole purpose of being part of

the lottery. Moreover, this could lead to a misrepresentation of how many of the students

actually improved their beliefs after being treated, which in turn could lead to falsified

spillover effects.

A second potential problem is the fact that the female variable is manually coded based on

the first name of the student. We must take into account that the proportion of girls might

be incorrect. Both because there might be gender neutral names placed in the wrong

category, or simply that some girls have "boys’" names or vice versa. The uncertainty

regarding this baseline characteristic might be problematic, and it is important to interpret

these results with caution. Generally, it is hard to confirm that the effects we find are

completely valid, as we do not have the true distribution of girls and boys among the

students.

A third problem, regarding the spillover effects, is identifying the peers with the strongest

source of influence. In our study, we assume that the students are affected by the peers

they list as their friends. However, one could argue that adolescents could be more
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influenced by those whom they want to be friends with, or groups to which they aspire for

membership. If the latter is true, even though the students reported friends are treated,

we might not observe a spillover effect as expected if the ones they want to be friends

with is not treated, or we might find a spillover effect in cases where a student’s reported

friends are not treated.

All of the above limitations are mainly a concern for external validity. Since the issues are

present for both the treatment and control group, we would expect our analysis to return

credible estimates applicable to our sample.

In our analysis we distinguish between in-friends, out-friends, total friends and reciprocal

friends. In-friends is the number of peers who have reported a student as their friend,

out-friends is the number of peers a student report as their friends, total friends is the total

of the two, excluding any overlapping friendship ties, and reciprocal friends is the number

of friendship ties where two students have reported each other. There is some uncertainty

related to the dynamics of the different terms. Considering the nature of friendship ties,

it is reasonable to believe that any one of these measures imply interaction between two

students, regardless of being directed or undirected. The intuition behind this is that

it is nearly impossible to consider a one-way friendship. Thus, the interpretation of the

different measures could become somewhat complex, and we should be cautious when

interpreting our analysis.

8.3 Limitations of the estimation strategy

As explained in subsection 5.1, there are three assumptions that must be satisfied in order

for the IV-estimation to be meaningful, the relevance assumption, exclusion restriction,

and the independence assumption.

The independence assumption is trivially satisfied because randomization is expected to

lead to equally distributed confounders across assignment groups. However, we can never

guarantee that the instrument itself is not correlated with the unobserved random effects

captured in the regression model. If it is, the independence assumption would be violated,

and our results would be biased.

One indirect way of assessing this assumption is to look at whether there is imbalance in
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measured covariates across the levels of the proposed instrument. Imbalance in measured

covariates can in principle be eliminated by adjusting for them in the analysis, but such

imbalances can be suggestive of imbalance across unmeasured variables. As shown in

subsection 4.3.1, we find some differences between the treatment and the control group in

both panels. Due to the slight imbalances we find in our dataset, we have to be careful

when interpreting our results, as this might lead to the test returning a statistically

significant effect when there in fact is no such effect, or non-significant results when there

in fact is significant effects.

Furthermore, as IV estimations represent the effect of our variable of interest on individuals

who react to the instrument, it is important to know who these individuals are in order

to draw meaningful policy implications. When looking at the LATE in a randomized

experiment, we have to consider the characteristics among the compliers compared to

the population. Compliers may be composed of different sub-populations with different

treatment effects, and as shown in subsection 6.3, we observe some heterogenous effects.

Thus, we have to be cautious when interpreting and extrapolating the results.

8.3.1 Differences in estimated models

Throughout the analysis we have relied on three different specification in order to estimate

our models. The main difference between them relates to the included covariates. Model (1)

does not include any covariates. Under the strict assumptions for a successful randomized

control trial, this specification should give us unbiased estimates of the treatment effect.

However, as discussed earlier, there might be some predetermined characteristics that

are predictive of the outcome variable. Including these in the analysis should increase

the precision of our estimates. Thus, model (2) provides us with estimates that control

for all pre-determined characteristics we believe ex-ante are affecting the students beliefs

about time spent on homework. However, this model is susceptible to crowding out effects,

especially for smaller sample sizes.

The final model was estimated using a post double lasso selection procedure. This ensures

that all, if any, included covariates have a strong mechanical relation to the outcome

variable. This method effectively removes our influence over the analysis, providing us

with a neutral model without any subjective biases. We partial out the identifiers for
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strata fixed effect, but allow the selection procedure to decide which other covariates to

include.

The issue of which model is the most reliable and precise, is open for discussion. With a

lack of dramatic differences between the three models, it is difficult for us to argue for one

model’s superiority. Instead we rely on the notion that if all models are supporting the

same conclusion, we can safely argue for a successful analysis.

8.4 External validity

An important concern with our design regards the external validity of the findings. There

are several important qualifications to the generality of the treatment effects we estimate.

Our treatment and spillover effects are estimated from the behavior of a particular sample

of students. In our paper, we consider a sample of 10th graders in Norway. First, we

focus on change in our main outcome variable, planned time spent on homework, upon

treatment. Second, we include the additional information students might acquire after

interacting with their peers. The peers we study are very close – often friends and in the

same class, and they form their associations naturally and endogenously.

As previously mentioned, adolescents are in a period of great vulnerability to peer effects

in addition to a strong desire to fit in. These attributes are not specific to adolescents in

our school, but general attributes for adolescent. However, there are many attributes in

which the 10th graders we study might differ from other students. First, the Norwegian

culture might be quite different from other countries, impacting how the students interact

and are influenced by each other. Second, there are institutional differences between

countries, making it hard to transfer our findings directly to other schools and countries.

Third, the Norwegian homework structure might differ from those in other countries. In

addition to these attributes, there might also be differences between countries, and how

well developed they are. For example, a lot of peer influence among Norwegian students

today might happen through their phones and social media. Students in some countries,

however, might not have access to these means of communication, affecting the peer

influence part of the study.

Even though some of our effects could be transferable to students in other schools and
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countries, it is hard to fully confirm this without further studies on the differences between

schools and countries, and the importance of different independent variables for each of

these.

8.5 Implications of the COVID-19 epidemic

The lockdowns in response to Covid-19 have interrupted conventional schooling with

nationwide school closures in Norway. During the previous year, students have alternated

between being at school and having digital classes at home. Since most of our experiment

was conducted while covid unfolded, and because we can’t be certain when and if the

different subject schools were at school or home, there is a concern that this could have

impacted our results. The main survey was always conducted at school with a minimum

of one meter between each student, ensuring the students’ privacy when answering the

questions. However, there are especially two consequences of the epidemic and students

having classes at home that potentially could impact our results.

First, the tasks students perform might not be identical to the situation in which there is

physical attendance at school. Students doing everything from home could lead to most

tasks being perceived as either homework or schoolwork, making it harder to distinguish

between the two. Furthermore, this could lead to incorrect beliefs about how much

homework one plans to do, and how much homework one has done. Second, both national

and regional infection prevention measures have led to a significant reduction in student’s

opportunity to socialize with others outside of school, and they haven’t been exposed

to their usual social groups or classrooms. In addition to having classes at home, this

severely reduces the opportunities to be affected by the other students and could thus

have an impact on our spillover effect.

8.6 Long term vs short term

We find that the information contained in our intervention increased planned time spend

on homework among the participants, as well as improving their precision in guessing

their peers’ time spent on homework in the short run (about 2 weeks after intervention).

The magnitude of the effects we observe may reflect the relatively short time horizons
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over which outcomes are measured. In regard to the beliefs on how much time peers spent

on homework, the outcome tests belief on schoolwork that was done during the previous

week. This deviates from many other educational studies, which cover a semester or a

year’s worth of material. If beliefs decay over time, it may result in a reduction of the

measured impact of the treatment over time. This could have methodical implications for

future research as more frequent follow-up testing could allow for more precise estimation

of long-term effects.
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9 Conclusion
This master thesis studies the effect of providing 10th-grade students with information

about their peers time spent on homework. The data was collected from an ongoing

experiment conducted by researchers at NHH. In total our data set consists of observations

from 17 schools. The study is based on students’ self reported study time and grades, as

well as preferences towards homework and other activities.

Our results suggests that treatment both increases the future time planned on homework

and improves the students precision in guessing their peers’ time spent on homework. One

hypothesis supported by the results is that treated students are underestimating ex ante

and treatment nudges them to increase their estimates, resulting in more overestimation

ex post. However, the total effect shows a positive development in overall precision. Our

analysis also suggests an association between negative attitudes towards homework and a

weaker treatment effect, and high achievement and stronger treatment effect.

We find some evidence of spillover effects, particularly regarding students’ precision in

guessing. Students not eligible for treatment in treated classes see a spillover effect in the

same direction as the treatment effect, but with reduced magnitude.

All results remain relatively stable across different estimation specifications and sub-

samples. We run robustness checks by including imbalanced baseline covariates and by

controlling for attrition, without seeing any substantial difference in results. We also test

for heterogeneous spillover effect conditional on centrality measures in the network, but

do not find any compelling evidence.

The main policy implication of these findings relate to the efficiency of informational

interventions in the school system. We see that a simple informative notice has the potential

to change students intentions in the short term, and also influence their perceptions in

the longer term. These types of interventions are relatively low-cost and low-impact, and

could be implemented on a larger scale without substantial effort.

The focus of our analysis has been on the perceptions and beliefs of 10th-graders in Norway.

Our thesis contributes to the existing literature by examining the treatment effect and

transmission of treatment effects through social networks. While our analysis has focused
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solely on the beliefs of the students, it would be interesting to further investigate the

direct behavioral impact such an intervention could have.

It would also be interesting to investigate the long term effects of this intervention. Our

analysis is limited to the duration of the study, but it would be interesting to follow the

students for a longer period of time to see how their beliefs and attitudes develop. An

extension of this is also to further develop the heterogeneity analysis in order to better

understand the dynamics that determine the treatment effect.

Finally, while we did not find any clear evidence for differential network effects, it would

be interesting to focus more on role of friendship ties in diffusion and amplification of

treatment effect.
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Appendix

A1 Survey

A1.1 Main survey

Figure A1.1: Main survey
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A1.2 Follow-up survey

Figure A1.2: Follow-up survey
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A2 First Stage estimation

Table A2.1: Results from the first stage regressions

�̂ (se) F-stat N

Panel A: Direct effect

Table 6.3 and 6.4 0.951*** (0.031) 74.26 217
Table 7.4 (1) 0.944*** (0.036) 1187.94 218
Table 7.4 (2) 0.941*** (0.027) 51898.25 214

Panel B: Spillover effect

Table 6.3 and 6.4 0.853*** (0.067) 5.62 400
Table 7.4 (1) 0.859*** (0.066) 177.75 400
Table 7.4 (2) 0.850*** (0.069) 940.27 392

Notes: The table shows the estimated coefficient of the instrument from
the first stage of the two stage least squares regression from the analysis.
The model contains controls for pre-determined baseline characteristics
and strata fixed effects. Robust standard errors, clustered at class level. *
p < 0.1, ** p < 0.05, *** p < 0.01.
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A3 Balance and bias

Table A3.1: The difference in initial beliefs conditional on baseline characteristics

Time homework Initial wedge

Female 9.94*** −0.05***
(1.426) (0.019)

Norwegian grade > 4 5.69*** 0.01
(1.450) (0.021)

Importance grades > 3 8.80*** −0.01
(2.375) (0.028)

Expectation of parents > 3 2.74 −0.02
(2.691) (0.025)

Notes: The table shows the estimated coefficients of a
regression of the column-variable on the row-variable. Robust
standard errors clustered at class level in parenthesis. * p < 0.1,
** p < 0.05, *** p < 0.01.


