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Abstract 

The ambition of the study is to apply relevant real option theory to a specific investment 

decision in the oil industry. Investment flexibility is significant in this industry, but several 

companies rely on the standard net present value approach when valuing an investment 

possibility. The motivation of the study is to suggest a better way of optimizing investment 

decisions for appliance in the industry, where accounting for embedded options is the main 

focus. 

Present study compares two mutually exclusive projects for an operating company in the oil 

industry. This company can choose between these two projects under price- and oil 

discovery uncertainty. The first embedded option considered is an option to expand an 

operating project. The second embedded option considered is an option to switch to another 

project.  

The problem is solved by creating a comprehensive model through financial mathematics 

and programming in Matlab®. The model provides closed form solutions to the specific case 

study. The case study provides valuable insight in how the availability of the option to defer 

investment and the embedded options can alter an investment decision. 

Analyzing the option to defer investment shows that the company should not invest 

immediately when the project provides a positive net present value, like a breakeven analysis 

would suggest. Instead, the company should wait until the oil price is at a higher threshold. 

The analysis proves that embedded options provide sufficient value to alter a company’s 

investment decision. In addition, the uncertainty regarding an oil discovery process is proved 

to be a significant factor in the investment decision. 

Through this study, companies in the industry are encouraged to account for the suggested 

embedded options in its investment decision. In addition, it is recommended to focus less on 

the standard net present value approach, and focus more on the flexibility the projects offer. 
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1. Introduction 

This study performs a valuation of a sequential investment decision of two mutually 

exclusive projects under price- and oil discovery uncertainty. The work will be applied to a 

specific setting in the oil industry, where the goal is to optimize the operating company’s 

investment decision in a monopoly setting.  

Although the case is applied to a specific setting, the framework is applicable for other 

scenarios within the oil industry, and across other industries. Therefore, this study will help 

to provide insight in applying real option investment theory to relevant scenarios, and 

explain why accounting for investment flexibility is important when making investment 

decisions. 

A net present value (NPV) approach is often applied by oil companies when making 

investment decisions. NPV does not account for investment flexibility in the decision-

making process. Thus, this provides the possibility of mispricing an investment project, and 

in worst case a poor investment decision. It is shown how applying real option theory can 

improve the quality of a company’s investment decision.  

In the valuation process, it is assumed that the underlying variable, the oil price, follows a 

geometric Brownian motion (GBM) process. To value the options, a Decision Tree Analysis 

(DTA), Dynamic Programming (DP), will be applied. 

The base case for the study is an operating oil company which can choose between two 

projects; project A or project B. These projects contain different characteristics. Project B is 

assumed to be a larger field than the field in project A, but investing in project B also 

requires higher investment costs. Both projects are prospect fields, i.e. already proven, and 

hence available for investment without conducting an oil discovery process. The case study 

analyses the investment decision as described above, and investigates how the option to 

defer investment affects the investment decision. It is assumed that project A has embedded 

options attached, and the goal is to analyze how these options affect the company’s 

investment decision. The first embedded option is an option to expand project A into a 

nearby satellite field at a small cost. Even though the main fields are discovered, it is 

assumed that an oil discovery process for the expansion has not yet been conducted. 

However, an analysis of the situation where the expansion is certain, and the situation where 
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it is uncertain, will be conducted for the sake of comparison. The final embedded option for 

project A, is to switch to project B after extracting the expanded project successfully. 

The results found in this study confirm that flexibility may affect a company’s investment 

decision. Compared to a traditional NPV analysis, it is shown that the option to defer 

investments have an impact on project values, and thereby investment decision. In addition, 

investment in project A becomes more attractive compared to deferring investment, and 

compared to investment in project B, when including embedded options. A sensitivity 

analysis shows that increased volatility makes deferring investment more attractive opposed 

to investing. The uncertainty regarding the expanded satellite field is a value-decreasing 

factor for investment in project A. Decreasing uncertainty proves that project A grows more 

attractive accordingly. 
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2. Structure 

This chapter provides an overview over all chapters in the thesis, and a short summary of the 

main contents. 

In Chapter 3, an overview of relevant previous research related to the topic is presented. It 

starts with presenting the origins of option theory and real option theory, before specifying 

the previous research which relates to this study. 

As an introduction to the petroleum industry, the basics of oil production are presented in 

Chapter 4. The chapter starts with presenting an analysis of a typical oil production 

company’s value chain. Thereafter, an analysis of risk factors associated with oil production 

is conducted, highlighted by the oil price volatility. 

Chapter 5 describes the relevant theory applied in this study. It starts with the basics of 

financial- and real options, before addressing complex theories on stochastic processes, and 

suggests which method that can be applied to this model. 

In Chapter 6, the applicability of the study is presented. The chapter starts with an industry 

research. This research shows the application of the suggested model in the petroleum 

industry, and reveals if there is a demand for these types of frameworks. Additionally, a 

review of the application of real options and which kind that is most relevant in the industry 

is conducted. 

Chapter 7 provides a simple setup and description of the underlying problem this case study 

addresses. 

Chapter 8 provides an overview of the notational framework and assumptions which are 

specific for the case study. 

Chapter 9 describes the mathematical model and its application. The first section defines the 

mathematical framework. Then, it is assumed that the company can defer investment in both 

projects, but that project A does not have any embedded options.  The next section builds on 

the first, but also accounts for the option to expand. Both situations with oil discovery 

certainty and uncertainty are reviewed. Finally, the scenario where all the described options 

are available is analyzed, with both oil discovery certainty and uncertainty. 
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The application of the mathematical model with numerical results is presented in Chapter 10. 

The parameter inputs are presented before a simple NPV approach is conducted. Then, the 

same steps as in Chapter 9 are followed by adding option elements for each section.  

Chapter 11 provides a comparison and discussion of the numerical results from Chapter 10. 

It compares each scenario, and tests the model with a sensitivity analysis. 

The model relies on several assumptions, and therefore has limitations. These are described 

in Chapter 12. 

Finally, Chapter 13 concludes the study. The most relevant findings are presented, and the 

application of the framework for similar scenarios in the industry is discussed. 
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3. Previous Research 

In academic research, there are several topics regarding investment optimizations. Option 

theory was derived from the two pioneers Black and Scholes (1973). Based on their findings, 

Myers (1977) took the approach a step further and developed a model for valuing options for 

real investment decisions. An important study by Brennan and Schwartz (1985) suggested a 

new model of how to value mining and other natural resource projects using self-financing 

portfolios. This study, combined with the origin option theory, has been used as source for 

further real option science. Same year, McDonald and Siegel (1986) used real options in 

analyzing the value of deferring an irreversible investment.  

Majd and Pindyck (1987) analyzed how to make optimal investment, under a sequential 

investment process. Ekern (1988) developed a framework on how to evaluate projects in the 

petroleum industry, where a satellite field has several options for development and 

operations. Bjerksund and Ekern (1990) concluded in their research that the option to defer 

an investment in offshore fields is the most valuable real option. Some years later Dixit and 

Pindyck (1994) supported the findings due to the fact that investments in offshore fields 

require large irreversible investments. In addition, they developed an analytical framework 

for sequential investments, where one of the assumptions was that the output price follows a 

geometric Brownian motion process. Dixit (1993) analyzed and concluded that increasing 

returns and uncertainty makes it optimal to wait for the largest project when irreversible 

mutually exclusive projects has uncertain output price. Décamps, Mariotti and Villeneuve 

(2006) extended this research to include parameter restrictions where the optimal investment 

region is divided into two parts.  

According to Laine (1997), options to abandon and defer are most valuable for marginal oil 

fields. Abandonment options are especially valuable in marginal oil fields since they are 

estimated to last in twelve months only. Schwartz and Moon (2000) extended Laine’s study 

by including research and development (R&D) projects. These projects accounted for both 

uncertain costs and uncertain value of the completed project. Miltersen and Schwartz (2007) 

developed a real option framework valuing oil projects under uncertain maturity and 

competition. In this research the analysis was linked to monopolistic and duopolistic models, 

and included both abandonment- and switch options. A recent study by Chronopoulos and 

Siddiqui (2014) used a sequential investment framework to determine the optimal timing for 
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replacement of an emerging technology. The study assumed uncertainty in both the output 

price and the arrival of new versions. 

The work of Chronopoulos and Siddiqui (2014) is especially important for this study. Parts 

of the reasoning and processes used in current study are an application of their work. The 

study is also inspired by Miltersen and Schwartz (2007). Unlike Chronopoulos and Siddiqui 

(2014), the study focuses more on the investment decision under several different scenarios, 

and is applied to the oil industry. The study focuses on other real options than Miltersen and 

Schwartz (2007), but in a similar setting.  
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4. Oil Production 

This chapter analyses the companies in the oil industry more closely, focusing on oil 

production. To start, an overview of a typical value chain for these companies is presented 

along with the costs associated with it. Thereby, an overview of the companies’ different 

risks is presented, with focus on the oil price volatility.  

 Value Chain 4.1

In the petroleum sector, the value chain has three main categories; upstream, midstream and 

downstream, (EY, 2013) as shown in Figure 4-1. Most important for this study is the 

upstream section, and the focus is on development and production. Development includes 

deciding whether developing or not, which is dependent of the estimated production from the 

project. 

 

Figure 4-1: Value chain (EY, 2013) 

A normal approach is that an international oil company has to bid for a license. When the 

company and its partners have won a bargain round for a license, a process for oil 

discoveries below the seabed is initiated. Oil discovery is hereby referred to as an 

exploration process. The exploration process is outsourced to companies offering seismic 

and electromagnetic services. If the exploration shows potential oil reservoirs, test drilling 

using mobile drilling units will be conducted for confirming the existence of the reservoirs. 
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If test drilling proves successful, further analyses of the reservoir size will be conducted by 

continued drilling verify the quantity and quality of the oil field. This is important for 

analyzing whether the project is profitable or not. If the projects prove profitable, the 

company takes on the project and the drilling of production wells. After finalizing drilling 

and completion of the wells, production starts. Regardless of the production well, oil service 

companies maintains and repairs the production equipment. The produced oil is transported 

onshore via pipelines or tankers. Produced oil is then sold for the spot price in the market, 

disregarding any hedging strategies (KPMG, 2013). 

All these processes in the value chain produces cash flows, which makes it possible to 

estimate project values. The different incomes and expenditures that can occur are presented 

in Figure 4-2. 

 

Figure 4-2: Income and expenses (Statoil, 2014) 

 Risks 4.2

Risks and uncertainties are keys to understand the value of flexibility in the petroleum 
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Income

Expenses

Oil Price Production volume

Exploration Development Production

Acquisition (licenses)

Seismic

Test drilling

Administrative

Material costs

Installation

Engineering

Design

Taxes

Production cost

Operating field

Environmental tax

Maintenance

Royalties

Opex



 17 

important, both at project- and firm level. Figure 4-3 shows several different risks an oil 

company can be exposed to.  

This study will limit project risks to the oil price volatility, but acknowledges that the 

company has more concerns when investing. 

 

Figure 4-3: Risk factors (PTTEP, 2005). 

4.2.1 Oil Price Volatility 

The oil price is a critical risk that oil companies are facing. The oil price is the income per 

unit oil companies will get by selling their products. It is normally priced per barrel of crude 

oil, given in US dollars. As there are large costs attached to development and production, oil 

price is a risk which affects the company’s performance.  

In many cases, the oil price decides whether an investment is profitable or not. A normal 

standard for oil companies is to perform a breakeven analysis based on the oil price, and stop 

all investment if it is below a specific level. This breakeven price is normally different across 

different production fields. By example, Statoil’s Johan Castberg project had a breakeven 

price of 85 USD per barrel as of October 6
th

 2013 (World Oil, 2013). This breakeven 

analysis mainly depends on the development costs, as development is the greatest cost in the 

value chain, and is assumed to be irreversible. One can expect development costs to rise 

unless new technology reduces the costs accordingly. The last decade has shown a smaller 

development in technology compared to development costs (Statistisk sentralbyrå, 2013). 

With increasing costs in the sector, one can expect the oil price to be increasingly critical for 

oil companies. 
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The oil price is subjected to factors beyond the company’s control. Examples of price drivers 

are the relationship between demand and supply of the market, the Organization of the 

Petroleum Exporting Countries’ (OPEC) production policy, geopolitical factors, oil reserves 

in individual countries, and the global climate (PTTEP, 2005). The petroleum industry is 

therefore at a tough state, especially due to concerns about the global climate and concerns 

about the scarcity of the crude oil. Figure 4-4 shows the monthly oil price fluctuations and 

development from 1987 to 2014.  

 

Figure 4-4: Historical oil price fluctuation 1987-2014 (US. Energy 
Information Administration, 2014). 

One could argue that there has been an increasing demand for crude oil in this period, and 

that the price is sensitive to shocks in the economy. The volatility of the price fluctuations 

can also be observed from the graph. Some examples of annual volatility are presented in 

Table 4-1, where the volatility has been estimated based on historical monthly prices. 

Time interval Annualized volatility 

1987 - 2014 30,45 % 

2000 - 2014 29,56 % 

2005 - 2014 27,98 % 

2009 - 2014 21,03 % 

Table 4-1: Examples annualized oil volatility 
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critical for many company’s income, and makes them delay investment. According to oil-

price.net, the situation might be caused by an oversupply in the current market (Oil-price.net, 

2014). 
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5. Theory 

This chapter presents the theoretical framework for addressing this study’s research problem. 

First, background information regarding option basics will be presented. Thereafter, a review 

of Dynamic Programming and stochastic processes will be conducted.  

 Financial Options 5.1

To understand real options one should know the basics of financial options. As mentioned in 

Chapter 3, Black and Scholes pioneered option theory in 1973. Black and Scholes (1973) 

developed the seminal pricing model, called Black-Scholes formula. This is a method for 

pricing financial instruments of an underlying asset. This innovative tool has grown to 

become the fundament in modern option pricing. 

Option trading is a contract between two parties. One part is the buyer, whereas the 

counterpart is the option writer. An option contract gives the holder a right, but not an 

obligation, to buy or sell an asset at a given price in the future. This price is defined as the 

strike price. An option to buy an asset is a call option, and the option to sell an asset is a put 

option. Call options are exercised if the spot price is above the strike price, also referred to as 

in the money. If the spot price is below the strike price, call options are out of the money 

whilst put options are in the money (Berk and DeMarzo, 2014). The payoff for call- and put 

options are illustrated in the following formula, and in Figure 5-1.  

𝑃𝑎𝑦𝑜𝑓𝑓 𝑐𝑎𝑙𝑙 𝑜𝑝𝑡𝑖𝑜𝑛 = 𝑚𝑎𝑥[𝑠𝑝𝑜𝑡 𝑝𝑟𝑖𝑐𝑒 − 𝑠𝑡𝑟𝑖𝑘𝑒 𝑝𝑟𝑖𝑐𝑒, 0] 

𝑃𝑎𝑦𝑜𝑓𝑓 𝑝𝑢𝑡 𝑜𝑝𝑡𝑖𝑜𝑛 = 𝑚𝑎𝑥[𝑠𝑡𝑟𝑖𝑘𝑒 𝑝𝑟𝑖𝑐𝑒 − 𝑠𝑝𝑜𝑡 𝑝𝑟𝑖𝑐𝑒, 0] 
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Figure 5-1: Call and put option payoff (Surly Trader, 2009). 

An investor who is long in a call option, i.e. the buyer, has the opportunity to exercise the 

option. Thus, the counterpart who is short in the call option, i.e. the seller, is obligated to 

fulfill the contract if the option is exercised (Berk and DeMarzo, 2014). The option writer 

holds the risk of potentially having to finance the holders’ gains. To compensate for this risk, 

the writer is awarded an option premium in advance, and therefore option value can never be 

negative (Berk and DeMarzo, 2014).  

Within both call- and put options there are two main types; European and American. These 

can have limited maturity, or can be perpetual. A European option gives the owner an 

opportunity to exercise the option at a maturity date. An American option, on the other hand, 

gives the owner an opportunity to exercise the option up until the maturity date (Berk and 

DeMarzo, 2014). In general, American options are more difficult to handle, as European 

options only need to address the issue whether to exercise or not. An American option also 

has to address when to exercise. Due to the fact that American options can be exercised 

anytime, it cannot have a value below its European counterpart (Berk and DeMarzo, 2014). 
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 Real Options 5.2

In financial theory, valuations traditionally use a standard discounted cash flow (DCF) 

method, and ultimately a net present valuation. This method is presented in the following 

equation (Berk and DeMarzo, 2014). 

𝑁𝑃𝑉(𝑟, 𝑁) =∑
𝐶𝐹𝑡

(1 + 𝑟)𝑡
− 𝐼0

𝑁

𝑡=0

 

Such methods does not account for flexibility in the investment process. Applying this 

approach therefore opens for the possibility of mispricing. The idea behind real option 

valuation is to apply framework from financial option theory to value projects with respect to 

the flexibility it offers (Koller, Goedhart and Wessels, 2010). A standard NPV-approach is 

usually a now-or-never approach, which is rejected if a negative net present value is 

obtained. Real option valuation offers flexibility, which considers that a negative NPV might 

be positive at another time due to changes in one or several variables (Koller et al., 2010). In 

Figure 5-2, drivers that contribute to additional value through flexibility, is presented. 

 

Figure 5-2: Drivers affecting value due to flexibility (Koller et al., 2010, p. 
685) 
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Real options are often used for valuation of investment projects, and can appear as both 

European and American options. Including the value of flexibility is usually considered by 

using a Real-Option Valuation Method (ROV) or a Decision Tree Analysis (DTA) (Koller et 

al., 2010). The ROV-approach is similar to the valuation of financial options, and uses a 

model which replicates a portfolio similar to holding an option. The DTA approach 

considers different states in a decision tree, and discounts it with a subjective cost of capital, 

referred to as a discount rate. As will be explained in the next section, the DTA approach is 

the most viable approach for the cases studied in present report. 

When accounting for flexibility, there are several possibilities which a manager or a 

company can consider. The following list presents the most normal kinds of options an 

investor should consider: 

 Option to defer  Call 

 Option to abandon  Put 

 Option to switch  Call/Put 

 Option to expand  Call 

 Option to follow on  Call/Put 

 Dynamic Programing 5.3

Dynamic Programming originates from Richard Bellman’s work from the 1950s, which 

describes a mathematical theory of optimal sequential decisions under uncertainty from the 

DTA process. In other words, DP breaks a given problem into different parts and combines 

the different solutions into an overall valuation, or a value function. DP moves 

systematically, and builds the best solutions as it goes. A common association with dynamic 

programming is decision trees, where the options are to reject or accept an action. One can 

work backwards towards the initial situation to find the most optimal solution. The DP 

approach makes calculations easier and less demanding than for example estimating large 

matrices when building the valuation model (Dixit and Pindyck, 1994). 

Opposed to the method of Contingent Claims (CC), a constant risk-adjusted discount rate is 

used whereas CC uses a risk-neutral valuation (Dixit and Pindyck, 1994). DP solves the 

value using a constant discount rate that reflects the opportunity cost of capital. DP might be 

unclear on how the discount rate should be derived, and if it should be constant over time 
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(Dixit and Pindyck, 1994). On the other hand, an advantage of DP is that it is not dependent 

of having a variety of risky assets, which is required for perfectly replicate an uncertain 

investment. If the investment project does not have a twin asset, it is not possible to 

replicate. Hence, the investment project is illiquid, and not diversifiable.  

Dynamic programing is ideal to optimize decisions under uncertainty like the casework 

described in this study. As oil reservoirs are illiquid assets, and not possible to replicate since 

all reservoirs are unique, CC is not the best suitable framework. Therefore, DP with a 

subjective discount rate is the preferred method in this case. 

 Stochastic Process 5.4

A stochastic process is a process where a variable follows a somewhat random pattern. 

According to Dixit and Pindyck (1994), at least one part has to be random for a process to be 

stochastic. A stochastic process is governed by probabilistic laws, which dictate its 

development over time. It is the opposite of a deterministic system as the process is a tool to 

describe infinite possibilities of the underlying variable’s evolvement. Stochastic processes 

can have its form in either discrete time or continuous time.  

The stochastic process in this study will be the explanation for the oil price development. 

5.4.1 Standard Brownian Motion 

A Brownian motion process, also known as a Wiener process, is the most common 

stochastic process. According to Dixit and Pindyck (1994), it has three important properties. 

1. It follows a Markov process 

2. It has independent increments 

3. It is normally distributed 

In a Markov process, the probability distribution for all future values depends on its current 

value only. It is unaffected by past values, i.e. it is without memory, and is not affected by 

any other information. The independent increments state that the probability distribution for 

changes is independent of any other time interval. The normal distribution of the process has 

a variance, which increases linearly with time (Dixit and Pindyck, 1994).  
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5.4.2 Standard Brownian Motion with Drift 

One of the generalizations of the Wiener process is the standard Brownian motion with drift, 

which often is referred to as random walk. It is a stochastic differential equation (SDE), and 

the process is defined as in Equation (5.4.1) (Dixit and Pindyck, 1994). 

 𝑑𝑉 = 𝜇𝑑𝑡 + 𝜎𝑑𝑧 (5.4.1) 

This formula states that the value process is derived from one deterministic part and one 

stochastic part. For the stochastic part, 𝜎 defines the volatility of the underlying variable, and 

dz is the increment of a Wiener process. For the deterministic part, 𝜇 is the drift of the 

process. The drift can be characterized as a process following a trend, or a growth rate (Dixit 

and Pindyck, 2014). Figure 5-3 shows sampled Brownian motion with drift. The left hand 

side shows three samples, and the right hand side shows an optimal forecast with 66% 

confidence interval. 

 

 

Figure 5-3: Drift (Dixit and Pindyck, 1994, p. 66-67) 

5.4.3 Geometric Brownian Motion and Itôs Lemma 

Unlike standard Brownian motion, geometric Brownian motion describes the evolution of a 

log-normal distributed variable. It is here a special case of Equation (5.4.1). Future values 

are log-normal distributed with a volatility that grows linearly with time. The process of a 

geometric Brownian motion SDE, can be written as in Equation (5.4.2) (Dixit and Pindyck, 

1994). 

 𝑑𝑉 = 𝑉𝜇𝑑𝑡 + 𝑉𝜎𝑑𝑧 (5.4.2) 
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Equation (5.4.2) assumes that today’s value of the project is known. V is the underlying 

variable and can be observed at any time, 𝑉𝑡. The continuous time stochastic process, V, is an 

Itô process. For more detail of the Itô process, see Dixit and Pindyck (1994). To determine 

the stochastic process of the oil price through a GBM and differentiate and integrate 

functions of Itô processes, one can apply Itô’s Lemma, where Itô’s Lemma can be 

understood as a Taylor series expansion (Dixit and Pindyck, 1994).  

GBM is frequently used to model security prices, interest rates, output prices and other 

variables. Using this approach in modeling values of investment projects will therefore be 

suitable for this study. The model used assumes that the value process follows a GBM with 

drift, and that it can be expanded using Itôs Lemma.  

5.4.4 Geometric Brownian Motion versus the Ornstein-Uhlenbeck 
Process 

Another method commonly used for modeling the stochastic process of the oil price, is the 

Ornstein-Uhlenbeck process. This is often referred to as a Mean Reverting process (Dixit 

and Pindyck, 1994). 

Geometric Brownian motion tend to wander far from the original starting point, which is 

realistic for some variables, but not for other (Dixit and Pindyck, 1994). Even if oil prices 

fluctuate randomly on short term, one could argue that the price over time is being drawn 

back towards the marginal cost of producing oil - a mean-reverting process. However, this 

study will not discuss which of these processes are the most realistic.  
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6. Applicability of Study 

In this chapter, a study of the applicability of the casework is presented. It is shown how real 

options specifically can be applied to investment decisions in the petroleum industry. Firstly, 

a brief introduction of how the industry can choose to apply the different valuation 

approaches will be presented. In addition, an analysis of how real option theory creates value 

for the industry, and how it is applicable, will be discussed. Secondly, an analysis of whether 

oil companies actually expand existing projects or not, is presented. Thirdly, a review of the 

applicability of an option to switch to another project is conducted.  

 Valuation in the Industry 6.1

Amongst companies in the petroleum industry, there are differences regarding which 

practice is used in valuation of projects. From conversations with Rocksource ASA, a 

company operating on the Norwegian continental shelf, an anonymous employee implied 

that that use of real option theory as framework in decision strategies is not common 

practice. Instead, it practices NPV (Anonymous, 2014). Trusting this statement, they do not 

analyze which potential value options to expand productions or to switch to another project 

has. 

6.1.1 Real Options in the Petroleum Industry 

Real option theory is very applicable to investment decisions in the petroleum industry. It is 

an industry with high irreversible investment costs, and is very sensitive to the volatile oil 

price. Therefore, the value of flexibility is of great importance when making optimal 

investment decisions. This subsection will look closer at the application of the options listed 

in the Section, 5.2, and why it is important to consider this for the petroleum industry. 

Option to Defer Investment  

The option to defer an investment is equivalent to a financial call option on a stock (Koller et 

al., 2010). The strike price corresponds to the investment cost for developing an oil field. In 

other words, it is an option to invest at a later stage. Regarding an investment as an option, 

and not a now-or-never approach is a flexibility which should increase the value of an 

investment opportunity.  



 28 

If the oil price when investing is low, a NPV approach would probably provide a negative 

value, and hence the considered project will be rejected at the time. This could lead to 

mispricing of the project. By waiting for better market conditions, the company can invest in 

the project at a later stage. This flexibility should be included in the valuation of the project 

to avoid mispricing. 

This scenario is especially relevant today, December 2014, as the oil price is at a low level 

compared to the last five years. Rejected projects with regards to standard DCF, with a 

negative NPV today, might prove to be valuable in the future.  

Option to Abandon a Project 

The option to abandon a project is equivalent to a financial put option on a stock, with a 

strike price corresponding to the liquidation value of a project. This is a flexibility which is 

valuable when an investment project performs poorly (Koller et al., 2010). A standard NPV 

approach assumes that the processes of the projects are on-going, and therefore exaggerates a 

negative value which would provide a mispricing of a project. 

If the oil price is at a low level, and the project contributes negatively for a company, 

abandoning the project may be an alternative. Abandonment can take place if the value of a 

project falls below its liquidation value (Koller et al., 2010). An abandonment of a producing 

oil field corresponds to shutting down production and selling the project to another market 

participant. This is because abandonment by removing drilling- and production facilities are 

very costly. 

Option to Switch 

The option to switch is equivalent to both a financial call- and put option, and the cost of 

switching corresponds to its exercise price. A switch option has two interpretations. The first 

interpretation is the option to set a project passive or active, where activating the project is a 

call option, and setting it passive is a put option. The second interpretation is an option to 

switch to another and more lucrative project after extracting the first one (Koller et al., 

2010). 

Miltersen and Schwartz (2007) describes the case where an investor can set a project passive 

or active based on the oil price fluctuations, or abandon the project if the price is very low. 

This switching gives the operating company and the partners flexibility to extract the 
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resources when the market price is beneficial. Later in this study, the option to switch to 

another project will be discussed. 

Option to Expand a Project 

The option to expand a project is equivalent to a call option on a stock, and the 

corresponding exercise price is the investment cost of the expansion. The option provides a 

company the flexibility to make follow-on investments on a project. 

In petroleum investment, expansion is very relevant, as expanding a developed field is less 

costly than installing new surface production facilities. When the original project is installed, 

and the resources extracted, the company could expand it to possible nearby satellite fields. 

As the production equipment already is installed, the only investment costs will be drilling 

new wells, and a possible upgrade of the production equipment. 

Option to Follow-on Investments/Embedded Options 

Technically, embedded options are options on options. It gives the holder or the issuer an 

option to perform a specified action in the future. Embedded options are phased investments 

where the management can invest at a later stage to exercise a new option.  

Embedded options in the petroleum industry can by example be the expansion option and 

switch option mentioned earlier. If having an option to invest in a drilling project, a follow-

on option can be an option to expand it later, or switch to another project. 

 Expanding Mature Fields by Including Nearby Satelite 6.2
Fields 

On the Norwegian continental shelf, the Norwegian Government offers licenses without 

bargain rounds to oil companies (The Norwegian Government, 2014). After receiving these 

licenses, oil companies can start exploring and extract oil in the designated areas. Each year 

Awards in Predefined Areas (APA) is offered. APA allows companies to conduct further 

exploration in well-established exploration areas on the Norwegian shelf. The Norwegian 

Government offers APA, and companies with its partners get a share of a license close to a 

mature field, fields that already are producing, and have done so for a significant time (The 

Norwegian Government, 2014). Companies must however do further data gathering, e.g. by 

seismic of the assigned satellite field to try to locate where it is optimal to do test drilling, 
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and provide estimates of the field size. Such satellite fields are more likely to contain less 

production volume. Extracting oil in these smaller satellite fields using the installations of 

the main field, might be profitable since it reduces capital expenditures (CapEx) 

significantly. Quote by the Norwegian Government: “Small discoveries cannot justify stand-

alone developments, but may have good profitability when they can exploit existing and 

planned process equipment and transportation systems, or be coordinated with other planned 

developments” (The Norwegian Government, 2014). 

The Norwegian Petroleum Department (NPD) states licenses which are offered have a “drill 

or drop” condition, meaning that the license owner has up to three years to decide whether 

they shall drill an exploration well or abandon the license (The Norwegian Petroleum 

Department, 2014). This implies that this specific license has a three-year European call 

option to do exploration for the nearby fields. Assuming that every company is offered a 

license share each year, it is realistic to assume that an option to utilize these licenses can be 

viewed as perpetual American options.  

 Switching from One Project to Another 6.3

Oil reservoirs have finite lifetime. In order to make sure of an oil company’s long-term 

existence, continuous exploration for oil reservoirs must be done. Once a reservoir is 

extracted, the oil company can either choose to invest, or choose to downsize total 

productions. Should the company choose to reinvest, it can expand to nearby fields, abandon 

wells and re-drill new targets, or new wells can be drilled. Being offered a license for an 

alternative area makes it possible for an oil company to switch to the new reservoir when the 

ongoing field is emptied. 
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7. Defining the Problem 

The ambition of this study is to analyse the effect real options have on an operating 

company’s investment decision. To effectively analyse this effect, a specific case study will 

be applied. The case study will compare the optimal investment strategy when deferring an 

investment to a standard NPV analysis. Thereafter, the study will discuss how the embedded 

options alter this decision.  

This study proposes a framework based on the work of Miltersen and Schwartz (2007), and 

Chronopoulos and Siddiqui (2014). A company optimizes its investment strategy in a 

monopoly setting where the company is the only operator with the option to invest in the 

projects. As all other investment problems, the ambition of this study is to suggest a better 

way of making investment decisions. Although the use of the ordinary NPV approach is 

common in this regard, this study will provide an overview based on real option theory. This 

chapter will provide a simple overview of the case study.  

 The Casework 7.1

The base case is that a company can choose between two projects, project A and B. These 

projects have some different characteristics. The projects are both mutually exclusive. 

Hence, a company can maximum take on one of these projects when making the investment 

decision.  

 Characteristics of the Projects 7.2

Project A and B has known reservoir sizes, which a company always knows are there. 

Neither of the projects has been invested in yet, and it is assumed that a company has an 

American perpetual option to invest in both projects. Hereby, this company will only invest 

in the projects at its optimal stopping point, at time t. The stopping time corresponds to the 

point where a company exercises the option to invest in the project, hereby called the 

optimal investment threshold.  

The oil price is the random variable which provides value to the option of deferring an 

investment.  
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In the oil industry, it is reasonable to assume that developed oil fields do not have perpetual 

cash flows. Sometime during the extraction, the production volume will eventually vanish. 

Most likely, the extraction will decrease as the projects mature. When the project is 

maturing, the production volume decreases accordingly. Accounting for this, a suggestion 

from Dixit and Pindyck (1994) is applied. It is assumed that the values of the projects have 

infinite lifetimes with a value-decreasing factor, . 

7.2.1 Embedded Options 

Unlike project B, project A has embedded options attached. The only option project B has is 

the option to defer investment, which is also a feature for project A. The main characteristic 

of project B is that it has a larger oil reservoir, and can be extracted at a greater investment 

cost. 

The first embedded option of project A is that a company has an option to expand 

production. This expansion is called project E. In practice, this means that after the 

production has started, the company has an option to do further exploration in the area 

nearby the main field. By using the developed field in place, the company can extract oil 

from nearby satellite fields at a far less CapEx than starting a new drilling process elsewhere.  

The second embedded option of project A is a switch option. The idea for this option is 

based on the switch option suggested by Miltersen and Schwartz (2007). This study will 

extend this method. The switch option in this model is the possibility to switch from project 

A to project B after deciding to invest in both project A and project E. The company has to 

carry a new investment cost to activate project B.  
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8. Assumptions and Notation 

In this study, an analysis of a price-taking decision-maker’s (an investing company), 

decision is analyzed in m = 1, 2 or 3 different scenarios. A scenario defines how many 

options that are available for the investing company. The scenarios are: 1) Valuation of- and 

comparison between project A and project B, including the option to defer investment. 2) 

Valuation of project project A with option to defer and expand , and comparison with project 

B. 3) Valuation of project A with option to defer, expand and switch to project B, and 

comparison with project B.  

At time 𝜏𝑛,𝑘
(𝑚)

, the company is considering scenario m, operating project n, and has the option 

to invest in project k. Notice that when n = 0, the company is not operating any projects, and 

when k = 0, there are no further options available. At time 𝜏𝑛,𝑘
(𝑚)

, the optimal investment 

threshold for project k, when operating project n, is 𝑃∗𝑛,𝑘
(𝑚)

. By example, consider time 𝜏0,𝐴
(1)

. 

The company considers scenario 1, operates no projects, and the subscript, A, denotes the 

option to invest in project A. At this time, it is optimal to invest in project A at its 

corresponding optimal investment treshold, 𝑃∗0,𝐴
(1)

. Consider time 𝜏𝐴,𝐸
(2)

, where the company 

has the options from scenario 2. The company is currently operating project A, and has the 

option to expand to project E. This takes place at its corresponding optimal investment 

treshold, 𝑃∗𝐴,𝐸
(2)

.  

At time 𝜏𝑛𝑣𝑘
(𝑚)

, the company can choose to invest in either project n or project k, where v is 

defined as “or”. Hence, 𝜏𝑛𝑣𝑘
(𝑚)

 denotes the company’s final investment decision in scenario m. 

By example, at time 𝜏𝐴𝑣𝐵
(1)

, the company can invest in either project A or project B, while 

having only the option to defer investment as defined in scenaro 1. 

An option value function is denoted as 𝐹𝑛,𝑘
(𝑚)(∙). It is the maximized expected NPV from 

investing in project k in scenario m, given that the company operates project n. 𝑉𝑛,𝑘
(𝑚)(∙) 

denotes the expected project value function from operating the active project, n, in scenario 

m. If k ≠ 0, the expected project value includes an embedded option to invest in project k. If 

the availability of an embedded option depends on the success of an exploration, the 

expected value of the project is denoted as 𝑉𝑛,𝑘
(𝑚)
(∙).  
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The model is based on comprehensive financial mathematics. It is therefore not viable to 

include all calculations in the main part of the study. Therefore, in Chapter 9, it is often 

referred to the appendix. By example, referring to Equation (A-1.1) refers to Equation (1.1) 

in the appendix. 

The success of an exploration process is assumed to follow a Poisson process. Parameter  

denotes the intensity of the Poisson process and is independent of the continuous time, t. 

Hence, with probability 𝜆𝑑𝑡, the exploration will prove successful, and with probability 

1 − 𝜆𝑑𝑡 it will prove unsuccessful (Dixit and Pindyck, 1994). 

Initiating production of project n requires an investment cost, 𝐼𝑛. Keeping the project alive 

requires ongoing costs, which for simplicity is assumed to be included in the investment 

cost. Additionally, the output from the projects are called the production volume, which is 

denoted 𝐷𝑛. Finally, the underlying oil price at time t, 𝑃𝑡, is independent of the Poisson 

process and follows a geometric Brownian motion as described in Subsection 5.4.3, and 

shown in Equation (8.1). 

𝑑𝑃 = 𝑃𝜇𝑑𝑡 + 𝑃𝜎𝑑𝑧 (8.1) 
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9. Model 

This chapter creates a model for valuation of the investment problem described in Chapter 7. 

It provides a framework for optimal investment decision-making. 

It is assumed that an investing company has the option to either invest in project A or project 

B. To analyze which impact the embedded options have on the initial investment decision, a 

study of three separate scenarios is conducted. 

1. Valuation of- and comparison between project A and project B, including the option 

to defer investment. 

2. Valuation of project A with option to expand, and comparison with project B. 

3. Valuation of project A with option to expand and to switch to project B, and 

comparison with project B. 

Scenario 1 

In the first scenario, the option to defer investment in both projects is analysed. The 

company can wait for better oil prices before deciding to invest. The analysed value 

functions are therefore the value functions of both projects, and the option value to invest in 

them. The scenario concludes with a framework for optimal decision-making when choosing 

between the projects. The option to choose between project A or B is denoted as 𝐹𝐴𝑣𝐵
(1)(𝑃). 

The value functions for project A and B is denoted as 𝑉𝐴,0
(1)(𝑃) and 𝑉𝐵,0

(1)(𝑃), while their 

corresponding option values are denoted as 𝐹0,𝐴
(1)(𝑃) and 𝐹0,𝐵

(1)(𝑃). Valuing the value 

functions in scenario 1 implies that no embedded options are included, but only the option to 

defer investment.  

Scenario 2 

In the second scenario, the first scenario is expanded by adding the option to expand project 

A. This scenario is divided into two subsections. The first subsection assumes that the 

expansion is known, while the second subsection will take the uncertainty regarding an 

exploration process into account. Both sections conclude with a framework for optimal 

decision-making when choosing between project A and B. The investment decision where 

the existence of the expansion is known is denoted as 𝐹𝐴𝑣𝐵
(2)(𝑃), while the situation where it is 

unknown is denoted as 𝐹𝐴𝑣𝐵
(2)
(𝑃). Project A’s value function must be redefined as it contains 
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the value of having the option to expand to project E. The value of project A is denoted by 

𝑉𝐴,𝐸
(2)(𝑃) when the expansion is certain, and 𝑉𝐴,𝐸

(2)
(𝑃) when the expansion is uncertain. The 

value function of the expansion is denoted as 𝑉𝐸,0
(2)(𝑃) and it’s option value is 𝐹𝐴,𝐸

(2)(𝑃). 

Valuing the value functions in scenario 2, implies that the option to expand is accounted for. 

Scenario 3 

In the third scenario, scenario two is expanded by accounting for the option to switch to 

project B. This scenario is into two subsections; where the expansion is certain, and where 

there has not been conducted an exploration process yet. The investment decision where the 

existence of the expansion is known is denoted as 𝐹𝐴𝑣𝐵
(3)(𝑃), and the situation where the 

existence of the expansion is unknown is denoted as 𝐹𝐴𝑣𝐵
(3)
(𝑃). Thereby, the value function of 

project A is denoted as 𝑉𝐴,𝐸
(3)(𝑃) when the expansion is certain, and 𝑉𝐴,𝐸

(3)
(𝑃) when there is 

uncertainty. Project E includes the option to switch to project B, thus the value function must 

be redefined. Therefore, the project value of the expansion is denoted as 𝑉𝐸,𝐵
(3)(𝑃) and the 

option value is denoted as 𝐹𝐴,𝐸
(3)(𝑃). In addition, the project value of project B when 

switching to it will be added, and is denoted 𝑉𝐵,0
(3)(𝑃) with the corresponding option value 

denoted as 𝐹𝐸,𝐵
(3)(𝑃). Valuing the value functions in scenario 3, implies that all options are 

accounted for. 

Estimating today’s value using real option theory depends on future values. In order to 

determine the value functions in each scenario of the subsections, a backward process will be 

conducted, starting with the last project value in the scenario. 
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 Valuation of- and Comparison between Project A and 9.1
Project B, Including the Option to Defer Investment 

This section considers the simplest scenario where project A does not have any embedded 

options, and compares its attractiveness opposed to project B. The company will has the 

option to defer investment in both projects. Technically, the modelling of these two project 

values is the same, and only the input values will differ. The calculations will therefore not 

distinguish between these two values until the final part of the section where an investment 

decision is made.  

The section also provides an insight in the calculations, assumptions and formulas used in 

the model. These calculations are reusable for later stages in the study. Therefore, the 

calculations in the two coming subsections are of general character before it models 

specifically later in this chapter. 

9.1.1 Project Value 

The expected project values are here denoted as 𝑉𝑛,𝑘
(𝑚)
(𝑃), where the project value is the 

expected net present value of investing in the projects. 

𝑉𝑛,𝑘
(𝑚)
(𝑃) at time t can be expressed as the sum of the operating revenues, 𝐷𝑛𝑃, over the 

interval t, t+dt, and the continuation value beyond t+dt, adjusted for investment costs, 𝐼𝑛. 

Notice that investment costs are fixed over the time period.  

There is also a probability, 𝛾𝑑𝑡, that the project dies during the next short time interval. The 

𝛾 represents this probability in Equation (9.1.1), and theoretically functions as a depreciation 

of the total project value (Dixit and Pindyck 1994). In this case, it is added to make sure that 

the resources has decreasing infinite profit flows. This factor is added because oil projects in 

reality have finite lifetimes. Not including a value decreasing parameter would hence 

overestimate the project values. The value of the projects with an option to defer investments 

is shown in Equation (9.1.1). 

 𝑉𝑛,𝑘
(𝑚)
(𝑃)  = 𝐷𝑛𝑃𝑑𝑡 + 𝜀[𝑉(𝑃 + 𝑑𝑃)𝑒

−(𝛾+𝜌)𝑑𝑡] (9.1.1) 

Equation (9.1.1) is built from the suggestions by Dixit and Pindyck (1994). The formula 

illustrates that 𝑉𝑛,𝑘
(𝑚)
(𝑃) is dependent of a deterministic and stochastic part. In the stochastic 
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part, dP is an increment of the Wiener process. dP can be expanded using Itô’s Lemma. By 

reorganizing, 𝑉𝑛,𝑘
(𝑚)
(𝑃) evolves into a non-homogenous ordinary differential equation (ODE). 

As proven in (A-1.1) – (A-1.4), it takes the form of Equation (9.1.2). 

 
1

2
𝜎2𝑃2𝑉𝑛,𝑘

(𝑚)′′(𝑃) + 𝜇𝑃𝑉𝑛,𝑘
(𝑚)′(𝑃) − (𝛾 + 𝜌)𝑉𝑛,𝑘

(𝑚)
(𝑃) + 𝐷𝑛𝑃 = 0 (9.1.2) 

In the value estimation, a homogenous ODE must be obtained. From substitutions, 

transformations, and reorganizations, Equation (9.1.2) converts into a homogenous ODE 

with constant coefficients, as proven in (A-1.4) – (A-1.9).  

 1

2
𝜎2𝑧′′ + (𝜇 +

1

2
𝜎2) 𝑧′ + (𝜇 − 𝛾 − 𝜌)𝑧 = −𝐷𝑛 

(9.1.3) 

After further reorganization, Equation (9.1.3) can be written as a more intuitive 

interpretation, Equation (9.1.4). Evidence is shown in (A-1.9) – (A-1.12). Notice that the 

equation describes the present value of a perpetual stream of cash flows, but with a value 

decreasing factor, 𝛾. It is important to be aware of that 0 <   >  must hold. If not, the 

project values will become either zero or negative. 

 𝑉𝑛,𝑘
(𝑚)
(𝑃) = ∫

𝛾𝑒−𝛾𝑡𝐷𝑛𝑃(1 − 𝑒
−(𝜌−𝜇)𝑡)

𝜌 − 𝜇

∞

0

𝑑𝑡 − 𝐼𝑛 =
𝐷𝑛𝑃

𝛾 + 𝜌 − 𝜇
− 𝐼𝑛 (9.1.4) 

9.1.2 Option Value 

This subsection provides the elements of the option to invest in the projects at time t, where 

𝐹𝑛,𝑘
(𝑚)(𝑃) denotes the option value function. The fact that the option is perpetual is an element 

which derives from the assumption that the company operates in a monopoly world, and 

would never face competition about the oil reservoirs. The American element of the option 

gives the company flexibility to exercise the option at whichever time it finds optimal.  

There are only two possible outcomes at time t: 

1. Option is in or at the money: The company exercises the option 

2. Option is out of the money: The company defer investing 

 

If the option is in the money, the company gets the project value by investing, which was 
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solved for in the previous subsection. The definition of what happens when the option is out 

of the money follows. 

The option value follows the same processes as the project value and by expanding the 

stochastic process with Itô’s lemma, the following expression stands. 

 
1

2
𝜎2𝑃2𝐹𝑛,𝑘

(𝑚)′′(𝑃) + 𝜇𝑃𝐹𝑛,𝑘
(𝑚)′(𝑃) − 𝜌𝐹𝑛,𝑘

(𝑚)(𝑃) = 0 (9.1.5) 

The option element does obviously not have a profit flow, so it cannot have the same 

solution as the project value. According to Dixit and Pindyck (1994), this equation has the 

following boundary conditions: 

 

(1):  𝐹𝑛,𝑘
(𝑚)(0) = 0 

(2): 𝐹𝑛,𝑘
(𝑚)
(𝑃∗𝑛

(𝑚)) = 𝑉𝑛,𝑘
(𝑚)
(𝑃∗𝑛,𝑘

(𝑚)
)  − 𝐼𝑛 

(3): 𝐹′𝑛,𝑘
(𝑚)
(𝑃∗𝑛,𝑘

(𝑚)
) =  𝑉′𝑛,𝑘

(𝑚)
(𝑃∗𝑛,𝑘

(𝑚)
) 

(9.1.6) 

𝑃∗𝑛,𝑘
(𝑚)

 is the optimal investment threshold for exercising the option. Boundary condition 1 

states that the option to invest will be of no value when 𝑃 = 0. Boundary condition 2 is the 

value-matching condition, and condition 3 is the smooth-pasting condition. The value-

matching condition states that the value of the option must equal the net value obtained by 

exercising it, and the smooth-pasting condition states that the option value and the net value 

of the investment should meet tangentially at the optimal investment threshold (Dixit and 

Pindyck, 1994). 

The equation for this option is a homogenous linear equation of second order, and the 

solution to this expression is a linear combination of any two linearly independent solutions, 

like the following expression suggested by Dixit and Pindyck (1994): 

 𝐹𝑛,𝑘
(𝑚)(𝑃) = 𝐴𝑛,𝑘

(𝑚)
𝑃𝛽1 + 𝐵𝑛,𝑘

(𝑚)
𝑃𝛽2 (9.1.7) 

𝐴𝑛,𝑘
(𝑚)

 and 𝐵𝑛,𝑘
(𝑚)

 are here constants, but unknown at this point.  

As shown in (A-1.16) – (A-1.20), Equation (9.1.5) can be written as the quadratic Equation 

(9.1.9). 
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1

2
𝜎2𝛽′′ + (𝜇 −

1

2
𝜎2) 𝛽′ − 𝜌𝛽 = 0 (9.1.10) 

This solves into the roots, 𝛽1 and 𝛽2:  

 
𝛽1 =

(
1
2𝜎

2 − 𝜇) + √(𝜇 −
1
2𝜎

2)
2

+ 2𝜌𝜎2

𝜎2
 

(9.1.11) 

 

𝛽2 =
(
1
2𝜎

2 − 𝜇) − √(𝜇 −
1
2𝜎

2)
2

+ 2𝜌𝜎2

𝜎2
 

(9.1.12) 

As explained in the previous subsection, 0 < 𝜌 > 𝜇 is necessary for this model to make 

economic sense. This condition provides information stating that 𝛽1 > 1, and 𝛽2 < 0. When 

considering boundary condition 1, the constant with the negative root, 𝐵𝑛,𝑘
(𝑚)

, should be given 

the value of zero to ensure that 𝐹𝑛,𝑘
(𝑚)(𝑃) goes to zero when P goes to zero (Dixit and 

Pindyck, 1994). Therefore, 𝐵𝑛,𝑘
(𝑚)
 is set to zero, and the solution for the option to invest in the 

projects stands as Equation (9.1.13): 

 𝐹𝑛,𝑘
(𝑚)(𝑃) = {

𝐴𝑛,𝑘
(𝑚)
𝑃𝛽1                                                   , 𝑃 < 𝑃∗𝑛,𝑘

(𝑚)

𝐷𝑛𝑃

𝛾 + 𝜌 − 𝜇
− 𝐼𝑛                                      , 𝑃

∗
𝑛,𝑘
(𝑚)

≤ 𝑃
 (9.1.13) 

𝑃∗𝑛,𝑘
(𝑚)
 is the optimal investment threshold where the option should be exercised. The first 

branch reflects the situation where the option is out of the money, 𝑃 < 𝑃∗𝑛,𝑘
(𝑚)

, and the 

company still has the option to invest at a later stage. The second branch shows the situation 

where the option is in the money, 𝑃∗𝑛,𝑘
(𝑚)

≤ 𝑃. The company can extract the project value of 

the projects by investing 𝐼𝑛.  

The solution for 𝐹𝑛,𝑘
(𝑚)(𝑃) has two unknowns, 𝐴𝑛,𝑘

(𝑚)
and 𝑃∗𝑛,𝑘

(𝑚)
. 𝐴𝑛,𝑘

(𝑚)
𝑃𝛽1 is only valid when the 

option is out of the money, or in other words; when it is still optimal to hold the option and 

not to invest. It is clear that the incentive to invest rises with an increase in P. Therefore, 

there should be a point, 𝑃∗𝑛,𝑘
(𝑚)

, where it is optimal to invest.  

The value-matching and smooth-pasting conditions mentioned in the previous subsection 

will help determining these values.  
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Substituting 𝐹𝑛,𝑘
(𝑚)
(𝑃)  = 𝐴𝑛,𝑘

(𝑚)
𝑃𝛽1 into boundary condition (2) and (3) makes it possible to 

rewrite the value-matching and smooth-pasting conditions like the following equations: 

(2) 𝐴𝑛,𝑘
(𝑚)
𝑃∗𝑛,𝑘

(𝑚)𝛽1
=
𝐷𝑛𝑃

∗
𝑛,𝑘
(𝑚)

𝛾 + 𝜌 − 𝜇
− 𝐼𝑛 (9.1.14) 

(3) 𝛽1𝐴𝑛,𝑘
(𝑚)
𝑃∗𝑛,𝑘

(𝑚)𝛽1
=
𝐷𝑛𝑃

∗
𝑛,𝑘
(𝑚)

𝛾 + 𝜌 − 𝜇
 (9.1.15) 

Solving and rearranging, the two unknowns, 𝐴𝑛,𝑘
(𝑚)

and 𝑃∗𝑛,𝑘
(𝑚)

, are presented in Equation 

(9.1.16) and (9.1.17) 

 𝑃∗𝑛,𝑘
(𝑚)

=
𝛽1𝐼𝑛(𝛾 + 𝜌 − 𝜇)

𝐷𝑛(𝛽1 − 1)
 (9.1.16) 

 

𝐴𝑛,𝑘
(𝑚)

=
𝐷𝑛𝑃

∗
𝑛,𝑘
(𝑚)1−𝛽1

𝛽1(𝛾 + 𝜌 − 𝜇)
 (9.1.17) 

All proofs can be found in (A-1.23) – (A-1.30). 

This concludes the general approach of the problem. The next subsection will apply the 

methods to the described scenario. 
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9.1.3 Appliying Model to Project A and B: Scenario 1, 𝐅𝐀𝐯𝐁
(𝟏) (𝐏) 

After setting the foundation of this framework, it is time to be more specific. This subsection 

will first briefly present both investments separately, and secondly compare them to each 

other in a scenario where the company must choose between them. The values, which will be 

calculated is presented in Figure 9-1. 

Value of 
expansion

Option to switch 
to project B

Value of project B

Invest in project A

Project Value V(P)

F(P)

Scenario 1Scenario 1

Invest in project B

Scenario m

λ

Investment 
decision

Scenario 1

Option to invest in 
project A or B

Scenario mScenario m

(1) ( )AvBF P

Scenario m
( )

, ( )m

E BF P( )

,0 ( )m

BV P ( )

, ( )m

E kV P

(1)

,0 ( )AV P(1)

,0 ( )BV P

Scenario m
( )

, ( )m

A EF P
( )

, ( )m

A EF P Option to expand

 

Figure 9-1: Value functions scenario 1 

Using the framework from Subsection 9.1.1, the project values of project A and B, if the 

company invests, takes the following form. 

 𝑉𝐴,0
(1)(𝑃) =  

𝐷𝐴𝑃

𝛾 + 𝜌 − 𝜇
− 𝐼𝐴 (9.1.18) 

 𝑉𝐵,0
(1)(𝑃) =  

𝐷𝐵𝑃

𝛾 + 𝜌 − 𝜇
− 𝐼𝐵 (9.1.19) 
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When not considering the choice between the projects, and reusing the general approach 

from Subsection 9.1.2, the option to invest in project A and B must take the following forms. 

 𝐹0,𝐴
(1)(𝑃) = {

𝐴0,𝐴
(1)
𝑃𝛽1                                                          , 𝑃 < 𝑃∗0,𝐴

(1)

 𝑉𝐴,0
(1)(𝑃)                                                         , 𝑃∗0,𝐴

(1)
≤ 𝑃

 (9.1.20) 

 
𝐹0,𝐵
(1)(𝑃) = {

𝐴0,𝐵
(1)
𝑃𝛽1                                                           , 𝑃 < 𝑃∗0,𝐵

(1)

𝑉𝐵,0
(1)(𝑃)                                                          , 𝑃∗0,𝐵

(1)
≤ 𝑃

 (9.1.21) 

In these equations 𝐷𝐵 > 𝐷𝐴 and 𝐼𝐵 > 𝐼𝐴 must hold due to the characteristics of the projects. 

It becomes clear investment in A and B will happen at different optimal thresholds. Since 

project B has greater fixed investment costs, this subsection assumes that project B’s 

investment threshold must be higher than project A’s.  

This subsection regarded the value functions without including an investment decision. The 

next section will analyze the situation where the company can choose between project A and 

project B. 

Investment Decision: Scenario 1, 𝐹𝐴𝑣𝐵
(1)(𝑃) 

Consider a case where the price is very low, and the company has an option to invest in both 

projects. It will not invest in either of these projects until the price is high enough. The 

option is defined in the matter of an endogenous constant multiplied with the respective 

price, and the price is elevated with a positive root to define the possibility of the price 

increasing. In this scenario, option value 𝐹0,𝐴
(1)(𝑃) can help solving the endogenous constant 

and the optimal investment threshold via the value-matching and smooth-pasting conditions. 

The solutions for these are the following. 

 𝑃∗0,𝐴
(1)
=
𝛽1𝐼𝐴(𝛾 + 𝜌 − 𝜇)

𝐷𝐴(𝛽1 − 1)
 (9.1.22) 

 

𝐴0,𝐴
(1)
=

𝐷𝐴𝑃
∗
𝐴
(1)1−𝛽1

𝛽1(𝛾 + 𝜌 − 𝜇)
 (9.1.23) 
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The option to invest is denoted as 𝐴0,𝐴
(1)
𝑃𝛽1, while 𝑃∗0,𝐴

(1)
 denotes the first investment threshold 

where it is optimal to invest in project A. The company will obviously not invest when the 

price is 0, so the option is defined in the interval 0 ≤ 𝑃 < 𝑃∗0,𝐴
(1)

. 

The solution for 𝐹0,𝐵
(1)(𝑃) only describes an option value where positive price fluctuations are 

relevant, as the constant with the positive beta, 𝐴0,𝐵
(1)

, is the only one considered. It seems 

unlikely that it is optimal to invest in one of the projects at every price between the optimal 

investment threshold of project A and the optimal investment threshold of project B. 

Thereby, the company has to expect two waiting regions in this case, where the optimal 

decision is to wait. The first waiting region is the price interval before investing in project A, 

and the second waiting region is the interval between project A and B where it is optimal to 

wait. 

The second waiting region is in fact an option to invest in both projects. The option to invest 

in project A is at the money at a low threshold, and the option to invest in project B is at the 

money at a high threshold. The waiting region should therefore be expressed in a matter of 

the price both decreasing and increasing. If the scenario of the waiting region described 

above holds, the solution for 𝐹0,𝐵
(1)
(𝑃) cannot be correct when choosing between project A 

and B, as it only considers the positive price fluctuations. The solution must include both the 

positive and negative solution of the quadratic function. The waiting region is therefore 

defined as 𝐶0,𝐴𝑣𝐵
(1) 𝑃𝛽1 + 𝐸0,𝐴𝑣𝐵

(1) 𝑃𝛽2. If the price decreases sufficiently in the second waiting 

region, the company invests in project A. However, if the price increases sufficiently in the 

second waiting region, the optimal decision is to invest in project B. 

Project B’s value were previously defined as 𝑉𝐵,0
(1)(𝑃), with an optimal investment threshold, 

𝑃∗0,𝐵
(1)

. When the company faces its investment decision, the optimal threshold for investing 

directly in project B, 𝑃∗
0,𝐵

(1)
, needs to be defined. The bar in the subscript implies that the 

threshold is different from when analyzing the project isolated. This is a result of having a 

second waiting region. 

Consider a case where the price is very high. Since project B has higher production rate than 

project A, and the higher investment cost is fixed, project B should intuitively be preferred to 
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project A at higher prices. The company will in other words invest directly in project B when 

𝑃∗
0,𝐵

(1)
≤ 𝑃, where 𝑃∗

0,𝐵

(1)
≠ 𝑃∗0,𝐵

(1)
. 

Consider that investing in project A is optimal in a certain interval, 𝑃∗0,𝐴
(1)
≤ 𝑃 < 𝑃∗

0,𝐴

(1)
, 

where the bar is added to show that the thresholds are not equal. 𝑃∗
0,𝐴

(1)
< 𝑃 < 𝑃∗

0,𝐵

(1)
 defines 

the region where it is optimal to defer investment, i.e. 𝐶0,𝐴𝑣𝐵
(1) 𝑃𝛽1 + 𝐸0,𝐴𝑣𝐵

(1) 𝑃𝛽2. If the price 

drops to or below 𝑃∗
0,𝐴

(1,)
, the optimal investment decision is to invest in project A. However, 

if the price increase to or above 𝑃∗
0,𝐵

(1)
, investing in project B is the optimal decision.  

Considering all possibilities of the investment decision, the solution takes the following 

form. 

 𝐹𝐴𝑣𝐵
(1)(𝑃) =

{
 
 

 
  𝐴0,𝐴

(1)
𝑃𝛽1                                                           , 𝑃 < 𝑃∗0,𝐴

(1)

𝑉𝐴,0
(1)(𝑃)                                            , 𝑃∗0,𝐴

(1)
≤ 𝑃 ≤ 𝑃∗

0,𝐴

(1)

𝐶0,𝐴𝑣𝐵
(1) 𝑃𝛽1 + 𝐸0,𝐴𝑣𝐵

(1) 𝑃𝛽2                 , 𝑃∗
0,𝐴

(1)
≤ 𝑃 ≤ 𝑃∗

0,𝐵

(1)

𝑉𝐵,0
(1)(𝑃)                                                          , 𝑃∗

0,𝐵

(1)
≤ 𝑃

 (9.1.24) 

There are four unknowns in this equation, two optimal investment thresholds, 𝑃∗
0,𝐴

(1)
 and 

𝑃∗
0,𝐵

(1)
, and two endogenous constants, 𝐶0,𝐴𝑣𝐵

(1)
 and 𝐸0,𝐴𝑣𝐵

(1)
. Solving it proves complex 

mathematically, and is therefore solved numerically. The answers depend on the inputs used, 

so the thresholds are presented in Chapter 10. The equations that needs to be solved is shown 

in (A-1.32) and (A-1.33). 

This investment decision concludes the modelling of scenario 1. The next section analyses 

how the option to expand alters the company’s investment decision from Equation (9.1.24). 
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 Valuation of Project A with Option to Expand, and 9.2
Comparison with Project B 

This section considers the scenario where project A has the option to expand to project E. At 

the point of expansion, project A is already drilled and extracted.  

In this section, two situations are presented. Both situations assume that the company has 

already invested in project A. The first situation assumes that an exploration has been 

conducted successfully, while the other assumes that the exploration process has not yet been 

conducted. In both situations, it is concluded how the option to expand affects optimal 

investment choice between project A or B, starting with the first situation. 

9.2.1 Project A versus Project B when the Expansion is Certain: 

Scenario 2, 𝐅𝑨𝒗𝐁
(𝟐) (𝐏) 

To provide a better overview, this subsection assumes that the company already knows that 

the oil reservoir of the expansion is there. Hence, there is no need for an exploration process, 

and the company can choose to expand the project whenever it is optimal. The scenario is 

presented in Figure 9-2. 
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Figure 9-2:  Project A vs. project B when expansion is certain in scenario 2 

Project Value of Expansion: Scenario 2,  𝑉𝐸,0
(2)
(𝑃)   

This subsection assumes that the company has already utilized the option to expand project 

A. Following the same GBM process as earlier, the value function of the expansion is 

defined in the same matter as in Section 9.1.  

However, the project value has some different characteristics. 𝐼𝐸 is the investment cost 

specific for the expansion. Subtracting 𝐼𝐴 implies that investing in A must take place before 

expanding. 𝐷𝐸  refers to the production volume of both project A, and the expanded field, E. 

 𝑉𝐸,0
(2)(𝑃)   =

𝐷𝐸𝑃

𝛾 + 𝜌 − 𝜇
− (𝐼𝐴 + 𝐼𝐸) (9.2.1) 

Option Value of Expansion: Scenario 2, 𝐹𝐴,𝐸
(2)
(𝑃)   

As well as in the option to invest in project A, the option to expand is also considered as a 

perpetual American option, The company can either decide to expand or wait for better 
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market conditions. If the option is in the money, the company can extract the value of the 

expansion, 𝑉𝐸,0
(2)(𝑃), and if it is out of the money, it still has the option to invest at a later 

stage. However, what differs from previous calculations is that when the option is out of the 

money, the company still gets the cash flows from the ongoing production in project A, 

which is already invested in. 

Applying the same arguments and boundary conditions as in Equation (9.1.6), the option 

value to expand takes the following form. 

 𝐹𝐴,𝐸
(2)(𝑃) = {

𝑉𝐴,0
(1)(𝑃) + 𝐴𝐴,𝐸

(2)
𝑃𝛽1                                , 𝑃 < 𝑃∗𝐴,𝐸

(2)

𝑉𝐸,0
(2)(𝑃)                                                    , 𝑃∗𝐴,𝐸

(2)
≤ 𝑃

 (9.2.2) 

The first branch in Equation (9.2.2) is the interval where the option is out of the money, and 

the second branch is where the option is in the money.  

In Equation (9.2.2), two new unknowns needs to be solved; the endogenous constant 𝐴𝐴,𝐸
(2)

, 

and the optimal investment threshold, 𝑃∗𝐴,𝐸
(2)

. Applying the value-matching and smooth-

pasting conditions, the two branches in 𝐹𝐴,𝐸
(2)(𝑃) can be solved with respect to the two 

unknowns. 

 

As shown in (A-2.1) – (A-2.3), solving for the two unknowns provides the following 

answers. 

 𝐴𝐴,𝐸
(2) =

𝑃∗𝐴,𝐸
(2) (1−𝛽1)(𝐷𝐸 − 𝐷𝐴)

𝛽1(𝛾 + 𝜌 − 𝜇)
 (9.2.3) 

 
𝑃∗𝐴,𝐸

(2)
=

𝛽1𝐼𝐸(𝛾 + 𝜌 − 𝜇)

(𝛽1 − 1)(𝐷𝐸 − 𝐷𝐴)
 (9.2.4) 

Investment Decision: Scenario 2, 𝐹𝐴𝑣𝐵
(2)
(𝑃)   

This subsection goes back to the initial investment decision where the company has the 

option to invest in project A or project B. The main difference in this subsection compared to 

Section 9.1 is that project A should be more attractive as it has the option to expand the 
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production. The investment in project A exclusively will be analyzed before investigating 

how the embedded options will change optimal investment decision in project A or B.  

When the company invests in project A, the option to expand project A must be included to 

provide sufficient information for optimal decision-making. Compared to Section 9.1, the 

value changes if the company decides to invest in project A, as it has the option to expand. 

The company will receive the project value of A, and the option to expand it, denoted as 

𝑉𝐴,𝐸
(2)(𝑃), which is the same as 𝐹𝐴,𝐸

(2)(𝑃) when 𝑃 < 𝑃∗𝐴,𝐸
(2)

. The solution for the project value of 

project A included the option to expand is presented in Equation (9.2.5). 

 𝑉𝐴,𝐸
(2)(𝑃) =

𝐷𝐴𝑃

𝛾 + 𝜌 − 𝜇
− 𝐼𝐴 + 𝐴𝐴,𝐸

(2)
𝑃𝛽1 (9.2.5) 

Equation (9.2.5) states that the company gets the value of project A plus the option to expand 

if it decides to invest in project A. In this matter, the option to invest in project A is the 

following. 

 𝐹0,𝐴
(2)(𝑃) = {

𝐴0,𝐴
(2)
𝑃𝛽1                                  , 𝑃 < 𝑃∗0,𝐴

(2)

 𝑉𝐴,𝐸
(2)(𝑃)                                , 𝑃∗0,𝐴

(2)
≤ 𝑃

 (9.2.6) 

The first branch of the equation states that if the option is out of the money, the company 

still has the option to invest in project A, because of the perpetual element of the option. If 

the option is in the money, the company can extract the value of project A, and have the 

option to expand. 

Here, the endogenous constant, 𝐴0,𝐴
(2)

 and the optimal investment threshold, 𝑃0,𝐴
∗(2) are 

unknowns, which is solved via the value-matching and smooth-pasting conditions as the 

following equations. 

 𝐴0,𝐴
(2)
= (

1

𝑃0,𝐴
∗(2)
)

𝛽1

[
𝐷𝐴𝑃0,𝐴

∗(2)

𝛾 + 𝜌 − 𝜇
+ 𝐴𝐴,𝐸

(2)
𝑃0,𝐴
∗(2) − 𝐼𝐴] (9.2.7) 

 
𝑃0,𝐴
∗(2) =

𝛽1𝐼𝐴(𝛾 + 𝜌 − 𝜇)

𝐷𝐴(𝛽1 − 1)
 (9.2.8) 

Hereby, one can consider the optimal investment decision of choosing either project A or B. 

The option to invest in project B remains unchanged compared to Subsection 9.1.3. So 
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following the same reasoning and assumptions as earlier, the company’s optimal investment 

decision takes the following form. 

 𝐹𝐴𝑣𝐵
(2)(𝑃) =

{
 
 

 
  𝐴0,𝐴

(2)
𝑃𝛽1                                                             , 𝑃 < 𝑃∗0,𝐴

(2)

𝑉𝐴,𝐸
(2)(𝑃)                                             , 𝑃∗0,𝐴

(2)
≤ 𝑃 ≤ 𝑃∗

0,𝐴

(2)

𝐶0,𝐴𝑣𝐵
(2) 𝑃𝛽1 + 𝐸0,𝐴𝑣𝐵

(2) 𝑃𝛽2                    , 𝑃∗
0,𝐴

(2)
≤ 𝑃 ≤ 𝑃∗

0,𝐵

(2)

𝑉𝐵,0
(1)(𝑃)                                                             , 𝑃∗

0,𝐵

(2)
≤ 𝑃

 (9.2.9) 

Equation (9.2.9) consists of four unknowns, the two endogenous constants, 𝐶0,𝐴𝑣𝐵
(2)

 and 

𝐸0,𝐴𝑣𝐵
(2)

, and two investment thresholds, 𝑃∗
0,𝐴

(2)
 and 𝑃∗

0,𝐵

(2)
, which has to be solved numerically. 

The equations solving these unknowns are presented in (A-2.5) – (A-2.6). 

𝐹𝐴𝑣𝐵
(2)(𝑃) represent the initial investment decision an investing company has when there is no 

uncertainty regarding the existence of project E. In the next subsection, a corresponding 

analysis will be given in a scenario where uncertainty of the explorations success is added. 

9.2.2 Project A versus Project B when the Expansion is Uncertain: 

Scenario 2, 𝐅𝐀𝐯𝐁
(𝟐) (𝐏) 

This subsection approaches project E from the point of view when there is uncertainty 

regarding the option to expand project A. When the company decides to invest in project A, 

it does still not know if there are satellite fields nearby, but that there is a possibility to 

explore for it. The exploration process will reveal a reservoir with some probability, λ. There 

are two possible outcomes. 

1. The exploration reveals a new satellite field nearby, λ. 

2. The exploration does not reveal any new satellite fields, (1-λ) 

From Subsection 9.2.1 the project value, 𝑉𝐸,0
(2)(𝑃), and the option value, 𝐹𝐴,𝐸

(2)(𝑃), is already 

presented in the case with certainty, and will remain the same also in this subsection. 

However, the uncertainty factor will affect the attractiveness of investing in project A as 

there is uncertainty about the existence of project E. The case with uncertainty is presented 

in Figure 9-3, and will be accounted for in the next subsection. 
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Figure 9-3: Project A vs. project B when expansion is uncertain in state 2 

Modelling the Uncertainty Effect on Project A: Scenario 2,  𝑉𝐴,𝐸
(2)
(𝑃) 

This subsection models what effect the uncertainty factor has on the value function of project 

A. It is assumed that if the exploration process is not successful, the company still has the 

option to continue exploring. This assumption is a simplification which might seem 

unrealistic at first, as there is a relatively small area the exploration process can happen in. 

Hence, it seems unlikely that the first exploration process will miss the point where the 

reservoir is. This assumption is justified by technology development. It is possible that 

today’s technology is not sufficient to reveal reservoirs deeper in the ground, but that a 

future development of the technology will.  

According to Chronopoulos and Siddiqui (2014), the project value of project A with 

uncertainty can be written as in Equation (9.2.10), where 𝑉𝐴,𝐸
(2)
(𝑃) denotes the value function. 
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𝑉𝐴,𝐸
(2)
(𝑃) = (𝐷𝐴𝑃𝑑𝑡 − 𝜌𝐼𝐴𝑑𝑡) + (1 − 𝜌𝑑𝑡)𝜆𝑑𝑡𝜀[𝐹𝐴,𝐸

(2)(𝑃 + 𝑑𝑃)] 

                                          + (1 − 𝜌𝑑𝑡)(1 − 𝜆𝑑𝑡)𝜀 [𝑉𝐴,𝐸
(2)
(𝑃 + 𝑑𝑃)] 

(9.2.10) 

The first part of Equation (9.2.10) represents the ongoing process of project A. The second 

part represents the event of λ, where the exploration process is successful, and the company 

gets the option to invest in the expanded project. The third part states that if the exploration 

is unsuccessful, the company can still continue exploring. If 𝜆 = 0, the company has the 

option to continue exploring and operate project A. 

As shown in (A-2.7) – (A-2.9), solving this equation, and expanding the stochastic part with 

Itôs Lemma, gives the following solution. 

1

2
𝜎2𝑃2𝑉𝐴,𝐸

(2)′′

(𝑃) + 𝜇𝑃𝑉𝐴,𝐸
(2)′

(𝑃) − (𝜌 + 𝜆)𝑉𝐴,𝐸
(2)
(𝑃) + 𝐷𝐴𝑃 − 𝜌𝐼𝐴 + 𝜆𝐹𝐴,𝐸

(2)(𝑃) = 0 (9.2.11) 

Equation (9.2.11), has two solutions, as 𝐹𝐴,𝐸
(2)
(𝑃) is defined both in- and out of money in the 

previous subsection. The evidence can be found in (A-2.10) – (A-2.11), and the result is 

presented in Equation (9.2.12). 

 𝑉𝐴,𝐸
(2)
(𝑃) = {

𝑉𝐴,0
(1)(𝑃) + 𝐴𝐴,𝐸

(2)
𝑃𝛽1 + 𝐴𝐴,𝐸

(2)
𝑃𝛿1                                        , 𝑃 < 𝑃∗𝐴,𝐸

(2)

𝑃[𝜆𝐷𝐸 + (𝛾 + 𝜌 − 𝜇)𝐷𝐴]

(𝜌 + 𝜆 − 𝜇)(𝛾 + 𝜌 − 𝜇)
−

𝜆𝐼𝐸
𝜌 + 𝜆

− 𝐼𝐴 + 𝐵𝐴,𝐸
(2)𝑃𝛿2   , 𝑃∗𝐴,𝐸

(2)
≤ 𝑃

 (9.2.12) 

It is important to notice that the optimal investment threshold is independent of the 

exploration process. In other words, an increase in λ does have impact on the likelihood of 

the exploration process being successful, but not when to exercise the option to invest. Thus, 

𝑃∗𝐴,𝐸
(2)

 is defined at the same threshold as in Equation (9.2.4) . 

𝑉𝐴,0
(1)

, 𝐴𝐴,𝐸
(2)

 and 𝑃∗𝐴,𝐸
(2)

 are known from Subsection 9.2.1, and the first part in the second branch 

is the solution of 𝑉𝐴,𝐸
(2)(𝑃) adjusted for uncertainty, λ. In other words, there are two unknowns 

in this equation, 𝐴𝐴,𝐸
(2)

 and 𝐵𝐴,𝐸
(2)

. The bar is used to separate these values from 𝐴𝐴,𝐸
(2)

 and 𝐵𝐴,𝐸
(2)

.  

The idea regarding the two new endogenous constants is provided by Chronopoulos and 

Siddiqui (2014). The intuition behind the introduction of these is an expected lag period 

from a successfully conducted exploration process, and until the investment can take place. 
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In the first branch of Equation (9.2.12), the constant, 𝐴𝐴,𝐸
(2)

, is an adjustment for positive 

fluctuations in the oil price since the option is not available at the time an exploration has 

been concluded successfully. Respectively, 𝐵𝐴,𝐸
(2)

 represents an adjustment for negative 

fluctuations in the oil price. Since the option in this branch is in the money, there is a 

possibility that the oil price drops to a point where it is out of the money before the 

investment is implemented. These unknowns can be solved for via the value-matching and 

smooth-pasting conditions. Applying the solutions suggested by Chronopoulos and Siddiqui 

(2014), the specific answers in this case study is presented in Equation (9.2.13) and (9.2.14). 

𝐴𝐴,𝐸
(2) =

𝑃∗𝐸
(2)−𝛿1

(𝛿2 − 𝛿1)
[
𝜆(𝛿2 − 1)(𝐷𝐸 − 𝐷𝐴)𝑃

∗
𝐸
(2)

(𝜌 + 𝜆 − 𝜇)(𝛾 + 𝜌 − 𝜇)
−
𝛿2𝜆𝐼𝐸
𝜌 + 𝜆

− (𝛿2 − 𝛽1)𝐴𝐴,𝐸
(2)
𝑃∗𝐴,𝐸

(2)𝛽1
] (9.2.13) 

𝐵𝐴,𝐸
(2) =

𝑃∗𝐸
(2)−𝛿2

(𝛿1 − 𝛿2)
[
𝜆(1 − 𝛿1)(𝐷𝐸 − 𝐷𝐴)𝑃

∗
𝐸
(2)

(𝜌 + 𝜆 − 𝜇)(𝛾 + 𝜌 − 𝜇)
+
𝛿1𝜆𝐼𝐸
𝜌 + 𝜆

+ (𝛿1 − 𝛽1)𝐴𝐴,𝐸
(2)
𝑃∗𝐴,𝐸

(2)𝛽1
] (9.2.14) 

To find the two values of 𝛿, Equation (9.2.11) can by following the same arguments as (A-

1.16) – (A-1.20)  be viewed as the quadratic function presented in Equation (9.2.15). 

 
1

2
𝜎2𝛿′′ + (𝜇 −

1

2
𝜎2) 𝛿′ + (𝜌 − 𝜆)𝛿 = 0 (9.2.15) 

This solves into Equation (9.2.16) and (9.2.17) where 0 < 𝜌 > 𝜇, and 𝛿1 > 1, 𝛿2 < 0.  

 
𝛿1 =

(
1
2𝜎

2 − 𝜇) + √(𝜇 −
1
2𝜎

2)
2

+ 2𝜎2(𝜌 + 𝜆)

𝜎2
 

(9.2.16) 

 

𝛿2 =
(
1
2𝜎

2 − 𝜇) − √(𝜇 −
1
2𝜎

2)
2

+ 2𝜎2(𝜌 + 𝜆)

𝜎2
 

(9.2.17) 

Intuitively, λ=0 should make 𝛿1 = 𝛽1 and 𝛿2 = 𝛽2, which proves correct in the quadratic 

function.  
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Investment Decision: Scenario 2,  𝐹𝐴𝑣𝐵
(2)
(𝑃) 

Finally, this subsection provides the decision framework for the company when the 

exploration is not conducted. Following the same reasoning as earlier, analyzing the optimal 

investment decision in project A first, the option value of project A takes the following form. 

 𝐹0,𝐴
(2)
(𝑃) = {

𝐴0,𝐴
(2)
𝑃𝛽1                           , 𝑃 < 𝑃

∗

0,𝐴

(2)

𝑉𝐴,𝐸
(2)
(𝑃)                          , 𝑃

∗

0,𝐴

(2)

≤ 𝑃
 (9.2.18) 

Unlike when the expansion is known, the second branch defines when the option to invest in 

project A is in the money, the company will have the out of money value of 𝑉𝐴,𝐸
(2)
(𝑃). This is 

because the company gets the value from investing in project A, and an embedded option to 

expand after exploration has been conducted successfully. Thereafter, if the company 

explores, it gets the expected value of project E. The solution of 𝐹0,𝐴
(2)
(𝑃) therefore leaves 

two unknowns, the endogenous constant, 𝐴0,𝐴
(2)

, and the optimal threshold level, 𝑃
∗

0,𝐴

(2)

. These 

values are determined numerically via the following value-matching and smooth-pasting 

conditions.  

 𝐴0,𝐴
(2)
𝑃
∗

0,𝐴

(2)𝛽1

= 𝑉𝐴,0
(1)𝑃

∗

0,𝐴

(2)

+ 𝐴𝐴,𝐸
(2)𝑃

∗

0,𝐴

(2)𝛽1

+ 𝐴𝐴,𝐸
(2)𝑃

∗

0,𝐴

(2)𝛿1

  (9.2.19) 

 

𝛽1𝐴0,𝐴
(2)
𝑃
∗

0,𝐴

(2)𝛽1

=
𝐷𝐴𝑃

∗

0,𝐴

(2)

𝛾 + 𝜌 − 𝜇
+ 𝛽1𝐴𝐴,𝐸

(2)𝑃
∗

0,𝐴

(2)𝛽1

+ 𝛿1𝐴𝐴,𝐸
(2)𝑃

∗

0,𝐴

(2)𝛿1

 (9.2.20) 

When choosing between project A or B, the solution remains similar to Subsection 9.2.1. 

However, the value-decreasing effect of λ gives different optimal thresholds, 𝑃
∗

0,𝐴

(2)

 and 

𝑃
∗

0,𝐵

(2)

, and endogenous constants, 𝐶0,𝐴𝑣𝐵
(2)

 and 𝐸0,𝐴𝑣𝐵
(2)

, which must to be solved. The 

investment decision takes the following form. 

 𝐹𝐴𝑣𝐵
(2)
(𝑃) =

{
  
 

  
  𝐴0,𝐴

(2)
𝑃𝛽1                                                                   , 𝑃 < 𝑃

∗

0,𝐴

(2)

𝑉𝐴,𝐸
(2)
(𝑃)                                                  , 𝑃

∗

0,𝐴

(2)

≤ 𝑃 ≤ 𝑃
∗

0,𝐴

(2)

𝐶0,𝐴𝑣𝐵
(2)

𝑃𝛽1 + 𝐸0,𝐴𝑣𝐵
(2)

𝑃𝛽2                       , 𝑃
∗

0,𝐴

(2)

≤ 𝑃 ≤ 𝑃
∗

0,𝐵

(2)

𝑉𝐵,0
(1)(𝑃)                                                                  , 𝑃

∗

0,𝐵

(2)

≤ 𝑃

 (9.2.21) 
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For the remaining four unknowns, the same method with numerical iterations is applied. The 

equations solving these unknowns are presented in (A-2.13) – (A-2.14). 

This subsection concludes the scenario where the operating company only has one embedded 

option. The next section will add a new embedded option, the option to switch to project B. 

 Valuation of Project A Including all Embedded Options, 9.3
and Comparison with Project B 

This section considers the scenario where project A has both the option to expand, and the 

option to switch to project B after investing in project A and project E. Intuitively, having 

the option to switch to project B after extracting the expanded project, makes the initial 

investment in project A more attractive compared to a direct investment in project B. 

As in Section 9.2, this section analyses both the situation where the expansion is certain, and 

where an exploration process must be conducted, starting with the certain situation. 

Following the framework presented in Section 9.1, only the final expressions are presented. 
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9.3.1 Project A Versus Project B when the Expansion is Certain: 

Scenario 3, 𝐅𝐀𝐯𝐁
(𝟑) (𝐏) 

It is assumed that the value of the expansion is known and does not require an exploration 

process. This scenario, including all options is described in Figure 9-4.  
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Figure 9-4: Project A vs. project B when expansion is certain in scenario 3 

Value of Project B: Scenario 3,  𝑉𝐵,0
(3)(𝑃) 

This subsection defines project value of B in scenario 3. It is the value function if the 

company decides to switch to project B after extracting both project A and the expansion. 

This calculation assumes that the company already has utilized the option to switch to 

project B and gets the project value from switching. The value function is defined in the 

same matter as in Subsection 9.1.1, so this part states the expression from the process. 

 𝑉𝐵,0
(3)(𝑃) =

𝐷𝐵𝑃

𝛾 + 𝜌 − 𝜇
− (𝐼𝐴 + 𝐼𝐸 + 𝐼𝐵) (9.3.1) 
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Option Value of Switching to Project B: Scenario 3, 𝐹𝐸,𝐵
(3)(𝑃) 

Having the option to switch to project B is considered as a perpetual American option. 

Applying the same arguments as in Subsection 9.1.2, the option value takes the following 

form. 

 𝐹𝐸,𝐵
(3)(𝑃) = {

𝐷𝐸𝑃

𝛾 + 𝜌 − 𝜇
− (𝐼𝐴 + 𝐼𝐸) + 𝐴𝐸,𝐵

(3)
𝑃𝛽1             , 𝑃 < 𝑃𝐸,𝐵

∗(3)

𝑉𝐵,0
(3)(𝑃)                                                         , 𝑃𝐸,𝐵

∗(3) ≤ 𝑃

 (9.3.2) 

The first branch implies the scenario where the option is out of the money. The company 

gets perpetual cash flows from the expanded project, and the option to switch to project B 

later. When the option is in the money, as in the second branch, the company switches to 

project B and extract its project value, 𝑉𝐵,0
(3)(𝑃). 

As investment in project B only applies after investing in project A and project E, it is 

exercised at a different optimal threshold, 𝑃𝐸,𝐵
∗(3), and the option value will have a new 

endogenous constant, 𝐴𝐸,𝐵
(3)

. Applying the value-matching and smooth-pasting conditions, 

these are solved as the following equations. 

 𝐴𝐸,𝐵
(3) =

𝑃∗𝐸,𝐵
(3) (1−𝛽1)(𝐷𝐵 − 𝐷𝐸)

𝛽1(𝛾 + 𝜌 − 𝜇)
 (9.3.3) 

 
𝑃∗𝐸,𝐵

(3)
=

𝛽1𝐼𝐵(𝛾 + 𝜌 − 𝜇)

(𝛽1 − 1)(𝐷𝐵 − 𝐷𝐸)
 (9.3.4) 

Project Value of Expansion: Scenario 3, 𝑉𝐸,𝐵
(3)(𝑃) 

The project value of the expansion follows the same arguments as in Subsection 9.2.1. 

However, the value increases because company also has the option to switch to project B, 

𝐴𝐸,𝐵
(3)
𝑃𝛽1. The project value function is shown in the following equation. 

 𝑉𝐸,𝐵
(3)(𝑃)  =

𝐷𝐸𝑃

𝛾 + 𝜌 − 𝜇
− (𝐼𝐴 + 𝐼𝐸) + 𝐴𝐸,𝐵

(3)
𝑃𝛽1 (9.3.5) 

Equation (9.3.5) states that if the company invests in the expansion, it gets the project value 

of the expansion plus the option to switch to project B. 
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Option Value of Expansion: Scenario 3, 𝐹𝐴,𝐸
(3)(𝑃) 

The option value of expanding production is seemingly similar to the value of the option to 

expand in Subsection 9.2.1. However, one must take into account the option to switch to 

project B. The option value is presented in Equation (9.3.6) 

 𝐹𝐴,𝐸
(3)(𝑃) = {

𝐷𝐴𝑃

𝛾 + 𝜌 − 𝜇
− 𝐼𝐴 + 𝐴𝐴,𝐸

(3)
𝑃𝛽1                   , 𝑃 <  𝑃∗𝐴,𝐸

(3)

𝑉𝐸,𝐵
(3)(𝑃)                                                  , 𝑃∗𝐴,𝐸

(3)
≤ 𝑃

 (9.3.6) 

The first branch of Equation (9.3.6) states that if the option is out of the money, the company 

still operates project A, and has the option to expand. The second branch states that if the 

option to invest is in the money, the company invests and extracts the value of the 

expansion. Different from scenario 2, the project value, 𝑉𝐸,𝐵
(3)(𝑃), and the option 

value, 𝐴𝐴,𝐸
(3)
𝑃𝛽1 , of the expansion includes the option to switch to project B. 

As a result of the change in the project value of the expansion, it is clear that the optimal 

threshold and endogenous constant will differ from Subsection 9.2.1. Using value-matching 

and smooth-pasting conditions, these are solved as in Equation (9.3.7) and (9.3.8). 

 𝐴𝐴,𝐸
(3) = (

1

𝑃∗𝐴,𝐸
(3)
)

𝛽1

[
𝑃∗𝐴,𝐸

(3)(𝐷𝐸 − 𝐷𝐴)

𝛾 + 𝜌 − 𝜇
+ 𝐴𝐸,𝐵

(3)𝑃∗𝐴,𝐸
(3)𝛽1

− 𝐼𝐸] (9.3.7) 

 
𝑃∗𝐴,𝐸

(3)
=

𝛽1𝐼𝐸(𝛾 + 𝜌 − 𝜇)

(𝛽1 − 1)(𝐷𝐸 − 𝐷𝐴)
 (9.3.8) 

Investment Decision: Scenario 3, 𝐹𝐴𝑣𝐵
(3)(𝑃) 

In this subsection, the company faces the initial investment decision of choosing project A or 

project B. The initial investment decision of investing in project A or B differs from 

Subsection 9.2.1. This is because project A has the option to both expand and switch to 

project B. Following the same arguments as in Subsection 9.1.1, and accounting for the 

option to expand, project A’s value is defined as the following. 

 𝑉𝐴,𝐸
(3)(𝑃) =  

𝐷𝐴𝑃

𝛾 + 𝜌 − 𝜇
− 𝐼𝐴 + 𝐴𝐴,𝐸

(3)𝑃𝛽1 (9.3.9) 
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Its corresponding option value has the following value function. 

 𝐹0,𝐴
(3)(𝑃) = {

𝐴0,𝐴
(3)
𝑃𝛽1                                  , 𝑃 < 𝑃∗0,𝐴

(3)

𝑉𝐴,𝐸
(3)(𝑃)                                 , 𝑃∗0,𝐴

(3)
≤ 𝑃

 (9.3.10) 

The option value implies that when the option is in the money, the company has the value of 

project A and the option expand to project E, which again has the option to switch to project 

B. Investing in project A is done at or above the optimal investment threshold, 𝑃∗0,𝐴
(3)

, and the 

endogenous constant is given as 𝐴0,𝐴
(3)
. These unknowns are solved via the value-matching 

and smooth-pasting conditions. 

 𝐴0,𝐴
(3) = (

1

𝑃∗0,𝐴
(3)
)

𝛽1

[
𝑃∗0,𝐴

(3)
𝐷𝐴

𝛾 + 𝜌 − 𝜇
+ 𝐴𝐴,𝐸

(3)𝑃∗0,𝐴
(3)𝛽1

− 𝐼𝐴] (9.3.11) 

 
𝑃0,𝐴
∗(3) =

𝛽1𝐼𝐴(𝛾 + 𝜌 − 𝜇)

𝐷𝐴(𝛽1 − 1)
 (9.3.12) 

Finally, given that the exploration is known, the company’s optimal investment decision 

takes the following form. 

 𝐹𝐴𝑣𝐵
(3)(𝑃) =

{
 
 

 
  𝐴0,𝐴

(3)
𝑃𝛽1                                                                    , 𝑃 < 𝑃∗0,𝐴

(3)

𝑉𝐴,𝐸
(3)(𝑃)                                                    , 𝑃∗0,𝐴

(3)
≤ 𝑃 ≤ 𝑃∗

0,𝐴

(3)

𝐶0,𝐴𝑣𝐵
(3) 𝑃𝛽1 + 𝐸0,𝐴𝑣𝐵

(3) 𝑃𝛽2                          , 𝑃∗
0,𝐴

(3)
≤ 𝑃 ≤ 𝑃∗

0,𝐵

(3)

𝑉𝐵,0
(1)(𝑃)                                                                    , 𝑃∗

0,𝐵

(3)
≤ 𝑃

 (9.3.13) 

Equation (9.3.13) consists of four unknowns, the two endogenous constants, 𝐶0,𝐴𝑣𝐵
(3)

 and 

𝐸0,𝐴𝑣𝐵
(3)

, and two optimal investment thresholds, 𝑃∗
0,𝐴

(3)
 and 𝑃∗

0,𝐵

(3)
, which are solved 

numerically. The equations solving these unknowns are presented in (A-3.2) – (A-3.3). 

𝐹𝐴𝑣𝐵
(3)(𝑃) represent the initial investment decision an investing company has when there is no 

uncertainty regarding the exploration process. The next subsection describes the situation 

where there is uncertainty regarding the success of the exploration process. 
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9.3.2 Project A Versus Project B when the Expansion is Uncertain: 

Scenario 3, 𝐅𝐀𝐯𝐁
(𝟑)
(𝐏) 

This subsection accounts for uncertainty about the expansion. From Subsection 9.3.1, the 

value of project B after switching from project E, and the option value of switching to 

project B, was calculated. These values are unaffected by the exploration process. However, 

as in Subsection 9.2.2, a new value for project A must be conducted as the uncertainty 

affects the option to expand, and thereby the option to switch to project B. The modeling is 

presented in Figure 9-5. 

Value of 
expansion

Option to switch 
to project B

Value of project B

Invest in project A

Project Value V(P)

F(P)

Scenario 3Scenario 1

Invest in project B

Scenario 3

λ

Investment 
decision

Scenario 3

Option to invest in 
project A or B

Scenario 3Scenario 3

(3)

( )AvBF P

Scenario 3
(3)

, ( )E BF P(3)

,0 ( )BV P (3)

, ( )E BV P

(3)

, ( )A EV P
(1)
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(3)

, ( )A EF P
( )

, ( )m

A EF P Option to expand

 

Figure 9-5: Project A vs. project B when expansion is uncertain in scenario 
3 
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Modelling the Uncertainty Effect on Project A: Scenario 3,   𝑉𝐴,𝐸
(3)
(𝑃) 

This subsection follows the same process as in Subsection 9.2.2, but the solution has to 

reflect the option to switch to project B. Considering this, the value of project A when there 

is uncertainty about the expansion takes the following form.  

 𝑉𝐴,𝐸
(3)
(𝑃) =

{
 
 

 
 𝑉𝐴,0

(1)(𝑃) + 𝐴𝐴,𝐸
(3)
𝑃𝛽1 + 𝐴𝐴,𝐸

(3)
𝑃𝛿1                                        , 𝑃 < 𝑃∗𝐴,𝐸

(3)

𝑃[𝜆𝐷𝐸 + (𝛾 + 𝜌 − 𝜇)𝐷𝐴]

(𝜌 + 𝜆 − 𝜇)(𝛾 + 𝜌 − 𝜇)
−

𝜆𝐼𝐸
𝜌 + 𝜆

− 𝐼𝐴                                          

                                    +𝐴𝐸,𝐵
(3)𝑃𝛽1 + 𝐵𝐴,𝐸

(3)
𝑃𝛿2                     , 𝑃∗𝐴,𝐸

(3)
≤ 𝑃

 (9.3.14) 

The first branch is similar to Equation (9.2.12), but the option to expand, 𝐴𝐴,𝐸
(3)
𝑃𝛽1, also 

reflects a value to switch to project B. In the second branch, there is added a new 

endogenous constant, 𝐴𝐸,𝐵
(3)𝑃𝛽1, compared to Equation (9.2.12). It reflects the option to 

switch from project E to project B. 𝐴𝐸,𝐵
(3)

 was estimated in Equation (9.3.3). Applying the 

solutions suggested by Chronopoulos and Siddiqui (2014), the solutions for the two 

unknowns, 𝐴𝐴,𝐸
(3)

 and 𝐵𝐴,𝐸
(3)

, are in this case study presented in Equation (9.3.15) and (9.3.16) 

when applying the value-matching and smooth-pasting conditions. Notice that the optimal 

investment threshold, 𝑃∗𝐴,𝐸
(3)

, is the same as in Equation (9.3.8). 

𝐴𝐴,𝐸
(3)

=
𝑃∗𝐴,𝐸

(3)−𝛿1

(𝛿2 − 𝛿1)
[
𝜆(𝛿2 − 1)(𝐷𝐸 − 𝐷𝐴)𝑃

∗
𝐴,𝐸
(3)

(𝜌 + 𝜆 − 𝜇)(𝛾 + 𝜌 − 𝜇)
−
𝛿2𝜆𝐼𝐸
𝜌 + 𝜆

− (𝛿2 − 𝛽1)𝐴𝐴,𝐸
(3)𝑃∗𝐴,𝐸

(3)𝛽1

+ (𝛿2 − 𝛽1)𝐴𝐸,𝐵
(3)
𝑃𝐴,𝐸
∗(3)

𝛽1

] 

 

 

(9.3.15) 

𝐵𝐴,𝐸
(3)
=
𝑃∗𝐴,𝐸

(3)−𝛿2

(𝛿1 − 𝛿2)
[
𝜆(1 − 𝛿1)(𝐷𝐸 − 𝐷𝐴)𝑃

∗
𝐴,𝐸
(3)

(𝜌 + 𝜆 − 𝜇)(𝛾 + 𝜌 − 𝜇)
−
𝛿2𝜆𝐼𝐸
𝜌 + 𝜆

+ (𝛿1 − 𝛽1)𝐴𝐴,𝐸
(3)𝑃∗𝐴,𝐸

(3)𝛽1

− (𝛿1 − 𝛽1)𝐴𝐸,𝐵
(3)
𝑃𝐴,𝐸
∗(3)

𝛽1

] 

 

 

(9.3.16) 
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Investment Decision: Scenario 3, 𝐹𝐴𝑣𝐵
(3)
(𝑃) 

The option to invest in project A, under uncertainty regarding the expansion, takes the 

following form. 

 𝐹0,𝐴
(3)
(𝑃) = {

𝐴0,𝐴
(3)
𝑃𝛽1                               , 𝑃

∗

0,𝐴

(3)

< 𝑃

𝑉𝐴,𝐸
(3)
(𝑃)                             , 𝑃 ≤ 𝑃

∗

0,𝐴

(3)
 (9.3.17) 

The option to invest leaves two unknowns, the optimal investment threshold, 𝑃
∗

0,𝐴

(3)

, and the 

endogenous constant, 𝐴0,𝐴
(3)

. These values are determined numerically via the following 

value-matching and smooth-pasting conditions. 

 𝐴0,𝐴
(3)
𝑃
∗

0,𝐴

(3)𝛽1

= 𝑉𝐴,0
(1)𝑃

∗

0,𝐴

(3)

+ 𝐴𝐴,𝐸
(3)𝑃

∗

𝐴

(3)𝛽1

+ 𝐴𝐴,𝐸
(3)
𝑃
∗

0,𝐴

(3)𝛿1

  (9.3.18) 

 

𝛽1𝐴0,𝐴
(3)
𝑃
∗

0,𝐴

(3)𝛽1

=
𝐷𝐴𝑃

∗

0,𝐴

(3)

𝛾 + 𝜌 − 𝜇
+ 𝛽1𝐴𝐴,𝐸

(3)𝑃
∗

0,𝐴

(3)𝛽1

+ 𝛿1𝐴𝐴,𝐸
(3)
𝑃
∗

0,𝐴

(3)𝛿1

 (9.3.19) 

At the end, when choosing between project A or B, the company faces the following option 

for optimal investment. 

 𝐹𝐴𝑣𝐵
(3)
(𝑃) =

{
  
 

  
  𝐴0,𝐴

(3)
𝑃𝛽1                                                                        , 𝑃 < 𝑃

∗

0,𝐴

(3)

𝑉𝐴,𝐸
(3)
(𝑃)                                                       , 𝑃

∗

0,𝐴

(3)

, ≤ 𝑃 ≤ 𝑃
∗

0,𝐴

(3)

𝐶0,𝐴𝑣𝐵
(3)

𝑃𝛽1 + 𝐸0,𝐴𝑣𝐵
(3)

𝑃𝛽2                             , 𝑃
∗

0,𝐴

(3)

≤ 𝑃 ≤ 𝑃
∗

0,𝐵

(3)

𝑉𝐵,0
(1)(𝑃)                                                                       , 𝑃

∗

0,𝐵

(3)

≤ 𝑃

 (9.3.20) 

As in the previous section, the four unknowns, 𝑃
∗

0,𝐴

(3)

, 𝑃
∗

0,𝐵

(3)

, 𝐶0,𝐴𝑣𝐵
(3)

 and 𝐸0,𝐴𝑣𝐵
(3)

 will be solved 

numerically. The equations solving these unknowns are presented in (A-3.10) – (A-3.11). 
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10. Numerical Results 

In this chapter, numerical values are applied to the model developed in Chapter 9. It provides 

a sufficient amount of information for the company to make an optimal decision at time 𝑡, 

but with some limitations regarding the assumptions for the model as mentioned in Chapter 

7. 

After presenting the chosen input values, a base case scenario where the company will 

choose based on a standard NPV analysis is presented. Thereafter, a presentation of the same 

steps and procedure as in Chapter 9, starting with the simplest scenario where project A does 

not have embedded options is given. Thereafter, the option to expand and the option to 

switch to project B are added. The application of the model is done in Matlab® where all the 

necessary formulas from the previous chapter are applied to get numerical results.  

 Parameter Values 10.1

Without insight in specific projects in the oil industry, it is not possible to derive perfectly 

reusable numbers for the industry. However, the model is reusable for similar problem sets 

with more realistic inputs. Therefore, given the break-even oil price in the industry, as 

discussed in Section 4.2.1, the inputs based on this, but are adjusted to make the analysis as 

realistic as possible. The parameter values chosen are presented Table 10-1. These values 

will remain constant throughout the chapter if not anything else is clearly specified. 
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Parameter Values Notations 
Input 

Values 

Quantity 

Factor 

Subjective discount rate 𝜌 10 % per year 

Instantaneous drift of the value process 𝜇 1 % per year 

Instantaneous volatility of the value process 𝜎 20 % per year 

Production volume project A 𝐷𝐴 3 
Million barrels 

per year 

Production volume project B 𝐷𝐵 4 
Million barrels 

per year 

Production volume expansion 𝐷𝑒 0.5 
Million barrels 

per year 

Combined production volume of project A and 

expansion 
𝐷𝐸  3.5 

Million barrels 

per year 

Total cost of project A 𝐼𝐴 1100 Million USD 

Total cost of project B 𝐼𝐵 1900 Million USD 

Total cost of expansion 𝐼𝐸 400 Million USD 

Value decreasing factor 𝛾 3 % per year 

Poisson intensity (probability of exploration succuess) 𝜆 1 % per year 

Possible range of oil price x 0 - 150 USD 

Table 10-1: Parameter Values 

Notice that 𝐼𝐵 > 𝐼𝐴 > 𝐼𝐸 , 𝐷𝐵 > 𝐷𝐴 > 𝐷𝑒  and 𝜌 > 𝜇 > 0. These are key assumptions for this 

model to make sense. The chosen price range of 0 – 150 USD, and the volatility of 20% is 

based on historical prices of oil per barrel as shown in Subsection 4.2.1.  

 Investment Decision Applying NPV 10.2

For the sake of discussion, simplicity and a better overview, it is for now assumed that the 

operating company makes decisions based on a standard DCF valuation, and ultimately a 

NPV. Hereby, the company will not consider deferring investment, but invest as long as the 

project produces a positive NPV. The preferred project is the project with the highest NPV at 

the time a valuation has been made. Figure 10-1 shows how the company invests based on 

the presented price range.  



 65 

 

Figure 10-1: Investing based on NPV (generated by Matlab®) 

The figure describes the total NPV, represented by the solid lines, of investing in project A 

and B at different price thresholds. There are shed light on three spots; 𝐵𝐸𝐴(𝑃), 𝐵𝐸𝐵(𝑃) and 

𝐼𝑛𝑡𝐴,𝐵. 𝐵𝐸𝐴(𝑃) describes project A’s value function where the NPV of investing is zero. 

This price threshold corresponds to the project’s breakeven price when the company makes 

decisions based on NPV. 𝐵𝐸𝐵(𝑃) corresponds to project B’s breakeven price. Finally, 𝐼𝑛𝑡𝐴,𝐵 

is the intersection price between the value functions of project A and B, where they are 

equally profitable. Project A is preferred to project B when 𝑃 < 𝐼𝑛𝑡𝐴,𝐵 and project B is 

preferred to project A when 𝐼𝑛𝑡𝐴,𝐵 < 𝑃. Project A is the preferred project at lower prices 

because of a smaller investment cost, while project B is more profitable at higher prices 

because of a higher production volume. Thus, project B has a higher breakeven price before 

considering an investment. 

This analysis does not consider the flexibility to wait, expand or switch, and could therefore 

lead to mispricing of the projects, and possibly a wrong investment decision. Adding 

flexibility to the analysis will be accounted for in the following sections. 
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 Project A and B with Option to Defer Investments 10.3

Applying the model from Section 9.1, one can take a closer look at how the option to defer 

investment affects the decision-making compared to the NPV analysis. This section analyses 

the scenario where the company has the option to defer the investment, but no embedded 

options. 

10.3.1 Optimized Investment in Project A and B 

Consider a scenario where the company can invest in project A and B; the company is not 

choosing between the projects. Applying real option theory, the company only invests at or 

above the optimal investment threshold of the respective projects. The scenario is presented 

in Figure 10-2. 

 

Figure 10-2: Optimized investment timing in project A and B (generated by 
Matlab®) 

The solid lines are the total project value of investing in project A and B. The two dashed 

lines represent the option value functions to invest. Considering the smooth-pasting 

condition, it is discussed that the optimal investment threshold of the options is the price 

where the project value and the option value meets tangentially, here 𝑃0,𝐴
(1)

 and 𝑃0,𝐵
(1)

. The 

optimal investment thresholds in project A are when 73.33 ≤ 𝑃, and correspondingly when 

95 ≤ 𝑃 for project B.  As expected, due to the characteristics of the projects, it is confirmed 
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that 𝑃0,𝐴
(1)
< 𝑃0,𝐵

(1)
. Interestingly, both investment thresholds are above their breakeven prices 

from the previous section. 

10.3.2 Investment Decision 

Consider the scenario where the company optimizes its investment opportunity by choosing 

between project A or B, corresponding to the option value function derived from Subsection 

9.1.3. The solution of the value function 𝐹𝐴𝑣𝐵
(1)(𝑃) is illustrated in Figure 10-3. 

 

Figure 10-3: Optimized investment timing in project A or B in scenario 1 
(generated by Matlab®) 

The company should expect two waiting regions in this case, i.e. the price regions where the 

optimal decisions is to wait for another price rather than investing. 

The first waiting region is defined where 𝑃 < 𝑃0,𝐴
(1)

, illustrated with the dashed line. When 

𝑃 < 73.33, the optimal decision for the company is to defer investment until 73.33 ≤ 𝑃, and 

then invest immediately in project A when 73.33 ≤ 𝑃 ≤ 88.61. The second waiting region, 

illustrated by the bold and black line, is defined when it is optimal to wait and see how the 

price will fluctuate rather than invest directly in project A. The company should defer 

investment and consider the price fluctuations in the price region 88.61 < 𝑃 < 103.41. If 

the price drops to or below 88.61, the company should invest in project A. If the price 

increases to 103.41, it is optimal to invest in project B. 
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The company should in other words not consider investing at all before the price is 73.33. 

This threshold is significant higher than the breakeven price of project A at 44 from the NPV 

analysis. Another point is that project B should not be preferred to project A at lower prices 

than 103.41, compared to the NPV intersection point at 96.01, as shown in Figure 10.1. 

This section proves that having the option to defer investment does affect a company’s 

investment decision. The next sections consider the scenario where project A has embedded 

options. 

 Project A with Option to Expand Versus Project B 10.4

This section corresponds to the model developed in Section 9.2, where the company has one 

embedded option; the option to expand project A. Thereby, project A has two options 

attached, the option to defer investment and the option to expand the project. Both situations 

from Section 9.2 are analysed. The situation with certainty about the expansion is regarded 

first, and thereby compared to the situation with uncertainty from an exploration process.  

10.4.1 Choosing between Project A or B when the Expansion is 
Certain 

Following the same reasoning as in Subsection 9.2.1, the decision between project A or B 

when the company knows that the expansion is there is analysed. This corresponds to 𝜆 = 1. 

Having the option to expand project A should make investing more attractive compared to 

investing in project B, and deferring investment. This subsection will analyze to which 

extent it does. The solution of the option value function, 𝐹𝐴𝑣𝐵
(2)(𝑃) is illustrated in Figure 10-4. 
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Figure 10-4: Optimized investment in project A or B when expansion is 
certain in scenario 2 (generated by Matlab®) 

The option to expand project A does make the investment opportunity more attractive. The 

price range where it is optimal to invest in project A has increased to 73.33 ≤ 𝑃 ≤ 102.71. 

The reason is that the project value function, 𝑉𝐴,𝐸
(2)(𝑃), and option value, 𝐴0,𝐴

(2)(𝑃), includes 

the option to expand at a later stage. The graph lines for these functions are therefore steeper 

compared to the respective value functions in Figure 10-3. This makes investing in project A 

more attractive relative to project B, which is now optimal at a higher price threshold, 

113.15 ≤ 𝑃. The second waiting region is also in a lesser interval compared to the previous 

section, as investment is more attractive than deferring investment. 

Notice that the first optimal investment threshold for project A is not affected. This is 

because both the option to invest in project A, and the project value of A are increasing with 

the option value to expand the project. As they both increase with the same amount, they will 

still meet tangentially at the same point as previously. The project value and option value at 

this point is however higher because of the new option.  
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10.4.2 Choosing between Project A or B when the Expansion is 
Uncertain 

This subsection relates to the model calculated in Subsection 9.2.2, where the expansion is 

uncertain. The company does not know if the expansion exists, but can perform an 

exploration process to reveal its existence. Figure 10-5 presents the solution for 𝐹𝐴𝑣𝐵
(2)
(𝑃), 

assuming 𝜆 = 0,01. 

 

Figure 10-5: Optimized investment timing in project A or B when uncertain 
expansion in scenario 2 (generated by Matlab®) 

The company should invest in project A when 73.25 ≤ 𝑃 ≤ 90.52, and only invest in 

project B when 104.72 ≤ 𝑃. Comparing the result with Figure 10-4, considering uncertainty 

regarding the expansion makes investing in project A less attractive. Simultaneously, the 

incentive to choose project B increases. Having the possibility to explore for expansion is in 

fact attractive, as the price range for investing in project A increases compared to not having 

it. 

One interesting point is that 𝑃0,𝐴
(2)
< 𝑃0,𝐴

(2)
. This is because of the introduction of the new 

endogenous constants, 𝐴𝐴,𝐸
(2)

 and 𝐵𝐴,𝐸
(2)

. As these are adjustments for an expected lag period 

from a successfully conducted exploration process, they affect the project- and option values. 

𝐴𝐴,𝐸
(2)

 affects the out of the money option value function, and 𝐵𝐴,𝐸
(2)

 affects the project value. 
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As 𝐴𝐴,𝐸
(2)

≠ 𝐵𝐴,𝐸
(2)

, the option value function and project value function will no longer meet 

tangentially at the same optimal investment threshold as in Figure 10-4. 

 Project A Including all Options Versus Project B 10.5

This final section analyses the scenario where the value of project A includes all options 

discussed in present study. If the company decides to invest in project A, the project includes 

the option to expand it, and switching to project B at a later stage. This section divides 

between two situations; where the expansion is certain, and where there is uncertainty 

regarding an exploration process. 

10.5.1 Choosing between Project A and B, when the Expansion is 
Certain 

This subsection follows the model derived from Subsection 9.3.1. As there is certainty 

regarding the expansion, the company also knows that it can switch to project B after 

extracting the expanded project. The solution to the investment decision, 𝐹𝐴𝑣𝐵
(3)(𝑃), is 

presented in Figure 10-6.  

 

Figure 10-6: Optimized investment in project A or B when certain expansion 
in scenario 3 (generated by Matlab®) 

Investing in project A is more attractive when considering the possibility to switch to project 

B. However, if the price is high enough, here specifically 114.57 ≤ 𝑃, it is still optimal to 
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invest directly in project B. From Figure 10-2, it is proved that if the company does not have 

the choice between project A or B, the optimal investment threshold in project B is 95 ≤ 𝑃, 

which corresponds to the optimal price threshold to switch to project B.  When 114.57 ≤ 𝑃, 

the company will not invest in project A, including all embedded options, but rather invest 

directly in project B. 

10.5.2 Choosing between Project A and B, when the Expansion is 
Uncertain 

This subsection applies the model calculated in Subsection 9.3.2 where there is uncertainty 

about the expansion. Adding an uncertainty parameter thereby affects the value of the switch 

option indirectly. Figure 10-7 provides the solution for the investment decision, 𝐹𝐴𝑣𝐵
(3)
(𝑃). 

 

Figure 10-7: Optimized investment in project A or B when uncertain 
expansion in scenario 3 (generated by Matlab®) 

Considering uncertainty in the calculations makes investing in project A less attractive 

compared to the solution in Figure 10-6. However, compared to not having this option, it is 

more likely that the company should choose project A rather than project B. The company 

will invest in project A when 73.25 ≤ 𝑃 ≤ 105.47 under exploration uncertainty, and thus 

the interval decreases compared to the situation with no exploration uncertainty.  

This chapter has provided the numerical results for the case study. The next chapter will 

proceed with a discussion of the obtained results, and see how the models react to alterations 

of key parameters. 
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11. Comparison and Discussion of the Numerical 
Results 

Chapter 10 provided interesting results which may provide investing companies valuable 

inputs for its investment decisions. In this chapter, the numerical results are discussed more 

thoroughly and compared across the different scenarios. Finally, a sensitivity analysis shows 

how the solutions change if the volatility parameter is altered.  

 Embedded Option’s Effect on Investment Decision 11.1
when Expansion is Certain 

The three different scenarios with full certainty regarding the expansion is analysed first. For 

each scenario a new option is added, and thereby the results can be compared. A comparison 

based on the results from Chapter 10 is presented in Table 11-1. 

Scenario 
Optimal Investment 

Project A 
Waiting Region 

Optimal Investment 

Project B 

NPV approach 44 ≤ 𝑃 < 95 0 < 𝑃 < 44 96.01 ≤ 𝑃 

Scenario 1 73.33 ≤ 𝑃 ≤ 88.61 88.61 < 𝑃 < 103.41 103.41 ≤ 𝑃 

Scenario 2 73.33 ≤ 𝑃 ≤ 102.71 102.71 < 𝑃 < 113.15 113.15 ≤ 𝑃 

Scenario 3 73.33 ≤ 𝑃 ≤ 104.62 104.62 < 𝑃 < 114.57 114.57 ≤ 𝑃 

Table 11-1: Comparison results NPV and scenario 1-3 without uncertainty 

 

Comparing the three scenarios studied to the standard NPV approach, there are great 

differences in the investing regions. The reason is that the NPV approach does not open for 

any waiting regions as long as the NPV is positive. The only waiting region in the NPV 

approach is from 𝑃 = 0 until the project NPV is zero, here at 𝑃 = 44. If the NPV approach 

considers the investment to be a now-or-never situation, project A will be rejected at 44 >

𝑃. Opening for flexibility in the investment decision results in longer waiting regions, and 

the optimal price regions are therefore shorter. 

Comparing scenario 1 to scenario 2, the option to expand makes investing in project A more 

attractive. The end of the interval increases from 88.61 to 102.71, and implies that investing 
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is optimal at a greater range of price thresholds. The waiting period is moved further up in 

the price region as a direct consequence of the increased attractiveness of project A. This 

applies for the optimal investment threshold of project B as well, because project B’s 

attractiveness is reduced compared to project A. 

As shown in scenario 3, the option to switch to project B does provide additional value to 

project A, illustrated by an increase in the optimal investment interval.  However, the effect 

is not as great as the effect of the expansion. Compared to scenario 2, the end of the interval 

increases from 102.71 to 104.62. Correspondingly, the waiting region is shorter and moved 

further up in the price region.  Investing in project B is here only optimal at or above 114.57. 

Flexibility with certain expansion makes project A more attractive compared to project B. 

The next section provides the same analysis, but in addition considers the exploration 

uncertainty. 

 Embedded Option’s Effect on Investment Decision 11.2
when Expansion is Uncertain 

This section analyses the investment decision when accounting for the uncertainty regarding 

the expansion. This applies for scenario 2 and scenario 3, and a comparison between the 

scenarios with uncertainty is presented in Table 11-2. 

Scenario 
Optimal Investment 

Project A 
Waiting Region 

Optimal Investment 

Project B 

Scenario 2 

w/uncertainty 
73.25 ≤ 𝑃 ≤ 90.52 90.52 < 𝑃 < 104.72 104.72 ≤ 𝑃 

Scenario 3 

w/uncertainty 
73.25 ≤ 𝑃 ≤ 91.66 91.66 < 𝑃 < 105.47 105.47 ≤ 𝑃 

Table 11-2: Comparison scenario 1-2 with uncertainty 

When comparing the two scenarios with uncertainty to scenario 1, the embedded options 

makes investing in project A more attractive also after adjusting for exploration uncertainty. 

More interestingly, project A in both scenario 1 and 2 is less attractive after adjusting for 

exploration uncertainty compared to the situation where the expansion is certain. This result 

was expected, but one can see that the top threshold of project A is reduced significantly, and 

may have great impact on investment decisions. 
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The model assumes that 𝜆 = 0.01, and this has impact on the reduced price thresholds 

discussed above. It is intuitively difficult to imagine what a realistic input parameter for λ 

should be, as it reflects the likelihood of an exploration process being successful. A realistic 

parameter value for the Poisson intensity could be critical for the company when optimizing 

investment decisions. If  λ = 0, the company will only look at the project value of A without 

embedded options in its decision-making. If λ = 1, then 𝐹𝐴𝑣𝐵
(𝑚)
(𝑃) = 𝐹𝐴𝑣𝐵

(𝑚)(𝑃) if correcting for 

the lag period, and investing in project A is hence more valuable. Therefore, Figure 11-1 

presents what happens if  λ increases for both these scenarios. 

 

Figure 11-1: Sensitivity analysis Poisson intensity (generated by Matlab®) 

Figure 11-1 describes the interval of  λ from 0 ≤ 𝜆 ≤ 1, and how the optimal investment 

thresholds react to the likelihood of an exploration process being successful. As previously 

argued, 𝑃
∗

0,𝐴

(2)
 and 𝑃

∗

0,𝐴

(3)
 is unaffected by the Poisson intensity if correcting for the lag period, 

and the figure confirms this as it remains nearly constant around 73.25 in the interval.  

Intuitively, an increase in λ makes investment in project A more attractive, as there is a 

greater probability that the company can exercise both the option to expand and the option to 

switch to project B. The dashed lines in the figure confirm this. The price ranges for optimal 

investment in project A increases accordingly in both scenarios. The investment thresholds 

for project B in both scenarios increases respectively, as investing in project A is more 

attractive, while the second waiting period is moved parallel to this. 
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In addition to λ, the volatility affects a company’s investment decision. The effect of this 

parameter is analyzed in the next section. 

 Volatility Sensitivity of the Model 11.3

The presented results assumed an oil price volatility of 20%.When considering option 

valuation, the volatility parameter is arguable the most important input. If there is no oil 

price fluctuation, there is no value in the flexibility of deferring an investment. As argued in 

Chapter 5, there is uncertainty in the estimation of this parameter based on the length of the 

estimation period. In addition, the calculations are based on monthly spot prices, when others 

might use daily price fluctuations. In addition, these are historical prices, so there is no 

guarantee that they will represent future price fluctuations.  

This section provides an overview of what occurs when the volatility is altered in the 

situations with and without certainty of the expansion. The first example is presented in 

Figure 11-2 when expansion is certain. 

 

Figure 11-2: Volatility sensitivity when certain expansion (generated by 
Matlab®) 

The figure describes the evolution of the three price thresholds in all three scenarios, with 

full certainty regarding the existence of the expansion, i.e. 𝜆 = 1. The graph samples every 

threshold in a volatility region from 20% ≤ 𝜎 ≤ 45%. The grey lines are from scenario 1, 

the blue lines are from scenario 2, and the red lines are from scenario 3.  
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The base case with volatility at 20% is at the intersection point between the graphs and the y-

axis. Intuitively, an increased volatility makes deferring investment more attractive as the 

option value increases. As shown in the figure, this also applies in this model. When 

volatility increases, the first optimal investment threshold for project A, 𝑃∗0,𝐴
(𝑚)

, and the 

optimal investment threshold for project B, 𝑃∗
0,𝐵

(𝑚)
, increases. This is because it requires a 

higher investment threshold for it to be optimal with an immediate investment at higher 

volatilities. Correspondingly, the second investment threshold of investment in project A, 

𝑃∗
0,𝐴

(𝑚)
, decreases with increasing volatility. A decrease in this price threshold makes the 

second waiting region larger, and thereby confirms that waiting grows more attractive.  

A point to note is where 𝑃∗0,𝐴
(𝑚)

 and 𝑃∗
0,𝐴

(𝑚)
 intersects at all scenarios. The intersection points 

are at 𝜎(1) = 25.9% in scenario 1, at 𝜎(2) = 34.6% in scenario 2, and at 𝜎(3) = 43.6 % in 

scenario 3. As the interval between these two investment thresholds represent the region 

where the company should invest in project A, the intersection points are at the highest 

volatility possible for considering investment in project A. At every threshold where 

𝜎(𝑚) < 𝜎, it will never be optimal to invest in project A. The company should therefore 

defer investment until 𝑃∗
0,𝐵

(3)
≤ 𝑃, and invest directly in project B.  

By observing the implied volatilities from the different scenarios, the effect embedded 

options have on the investment decision is shown. It is clear from Figure 11-2 that the 

required volatility for never considering investment in project A, increases when adding 

embedded options to the project. Adding both the option to expand, and the option to switch, 

requires an increase from 𝜎 = 25.9% to 𝜎 = 43.6% for project A to never be optimal. The 

optimal investment threshold for project B increases accordingly, as project A is more 

attractive when including the embedded options. 

Figure 11-2 accounts only for the scenarios where there is certainty regarding the existence 

of the option to expand project A. Figure 11-3 shows the same case, but including 

uncertainty about the expansion, i.e. 𝜆 = 0.01. 
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Figure 11-3: Volatility sensitivity when uncertain expansion (generated by 
Matlab®) 

The same intuition applies for Figure 11-3, but in a lesser scale. As there is uncertainty 

regarding the availability of the embedded options, the level of the required implied 

volatility decreases. Adding both the option to expand and the option to switch requires an 

increase from 𝜎 = 25.9% to 𝜎 = 28.3% for project A to never be optimal, compared to 

𝜎 = 43.6% under certainty. Based on this result, accounting for an uncertain parameter 

makes deferring investment more attractive. 
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12. Limitations and Simplifications 

The proposed framework is developed to show how accounting for flexibility can affect a 

company’s investment decision. This is done associated with several assumptions and 

simplifications. Therefore, the framework is not a final answer to these kinds of decision 

problems. The solution can be applied to several topics, but should include more elements to 

be completely viable for use in the oil industry. In this chapter, limitations which an 

investing company should consider in the investment process are listed first. Thereafter, 

other methods which can be applicable, and topics for future work based on this study is 

proposed. 

 Sector Simplifications 12.1

Present study proposes simplifications to the industry, which an operating company may 

consider including when making an investment decision.  

It is assumed that the company operates in a monopoly setting. In reality, there is 

competition about licenses. To make the scenarios more realistic, the model should consider 

this. 

As explained in Section 4.2, an operating company has to consider a variety of different 

risks. This study only considers the oil price volatility. It is arguably the most important 

variable, but accounting for other risks might affect investment decisions.  

 Limitations in the Model 12.2

This case study only considers three options; the option to defer investment, the option to 

expand, and the option to switch to another project. The embedded options are also only 

considered at one of the projects in this case. In reality, an investing company has more 

options than the options considered in this case study. One relevant example is the option to 

abandon a project. If the company seeks to avoid all possibilities of mispricing, all the 

options available in both projects must be accounted for. 
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The proposed model does not consider any types of convenience yield for holding the option 

rather than investing. The convenience yield in these situations should reflect the cost of 

deferring investment. Hence, the value of waiting can be overrated in present model. 

Another assumption is that all costs are fixed in this model. Costs are factors which are 

uncertain, and are often a matter of available technology at the time. New technology can 

reduce investment costs in the future, and hence favouring deferring an investment. Costs 

can also be reduced by a decrease in the commodity prices, such as the steel price. 

The model considers changes in the oil price up until the time of investment only. There is 

also only one investment decision in this regard. After investing, a perpetual model is 

applied. In reality, oil price fluctuations can provide the investing company possibilities to 

optimize investment decisions, after deciding to invest in the first place. One of these 

possibilities is the option to set a project passive or active at certain levels, as proposed by 

Miltersen and Schwartz (2007). 

Applying GBM opposed to the Ornstein-Uhlenbeck process is a subject which is open for 

discussion. One can argue for both theories, and they can provide different answers. 

 Suggestions for Future Work 12.3

As there are limitations and simplifications in the proposed framework, this study opens for 

further research. It would be interesting if the framework were applied to other settings in the 

petroleum industry, or in other sectors as well. Therefore, this chapter concludes by listing 

some possible topics related to the study, which should be followed up in future work. 

- Accounting for other options, especially abandonment option, and convenience yield 

- Adding a third project to the problem 

- Applying the Ornstein-Uhlenbeck process to the setting 

- Accounting for cost uncertainty in the model 

- Investment decision under competition 
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13. Conclusion 

The ambition of present study was to apply relevant real option theory to a specific 

investment decision in the oil industry. The meaning was to suggest a better way of 

optimizing investment decisions when choosing between projects. Accounting for flexibility 

in the petroleum industry is of great importance, and several studies encourage operating 

companies to pay more attention to the subject. Even though there is significant investment 

flexibility in oil projects, several companies still rely on the standard NPV approach which 

may result in mispricing of projects. 

The model suggested in this study emphasized the importance of including the value of 

flexibility when making an investment decision, and highlighted the importance of 

embedded options. The model described how an investing company effectively could 

consider these options in a decision-making process. Specifically, an option to expand a 

project and an option to switch to another project were the main focus.  

The solutions to the case study clearly indicate that accounting for flexibility could alter a 

company’s investment decision. Analyzing the option to defer investment showed that the 

company should not invest immediately when the project provides a positive net present 

value, like a breakeven analysis would suggest. Instead, the company should wait until the 

oil price is at a higher threshold. In addition, the analysis proved that embedded options 

provide sufficient value to alter a company’s investment decision significantly. Another 

finding was that uncertainty regarding an exploration process is an important value-

decreasing factor which must be acknowledged in the process. 

The study raised questions which could be important for the oil industry, as well as other 

sectors. When considering large irreversible investment decisions, mispricing of the projects 

may lead to the wrong investment decision. While the study did not offer a conclusive 

answer to a total investment problem, it provided valuable insight in how to address them. 

It would be helpful to do further research in this area, and the study suggested several 

important topics to the matter. Based on the findings, it is recommended that the industry 

analyses the effect of the embedded options proposed when investing. Accounting for 

flexibility is a critical factor which operating companies should consider in the process. 
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Appendix 

1 Valuation of- and comparison between project A and 
project B, including the option to defer investment 

1.1 Project value,  

The oil price, P, follows a Geometric Brownian motion process (A-1.1) 

 𝑑𝑃 = 𝑃𝜇𝑑𝑡 + 𝑃𝜎𝑑𝑧    (A-1.1) 

The value of the outcome is dependent of a deterministic and a stochastic part, dP. 

 𝑉𝑛,𝑘
(𝑚)
(𝑃) = 𝐷𝑛𝑃𝑑𝑡 + 𝜀[𝑉(𝑃 + 𝑑𝑃)𝑒

−(𝛾+𝜌)𝑑𝑡] (A-1.2) 

Substituting (A-1.1) into (A-1.2) and expanding the stochastic process using Itôs Lemma, 

(A-1.2) into. An Itô’s Lemma expansion can be perpetual by using more than two primes, 

but this is an unnecessary procedure as all parts with primes higher than two are so small that 

they do not add value. Thus, primes above two can be excluded. 

 𝑉𝑛,𝑘
(𝑚)(𝑃) =

1
2𝜎

2𝑃2𝑉𝑛,𝑘
(𝑚)′′(𝑃)𝑑𝑡 + 𝜇𝑉𝑛,𝑘

(𝑚)𝑉′(𝑃)𝑑𝑡 − (𝛾 + 𝜌)𝑉𝑛,𝑘
(𝑚)(𝑃)𝑑𝑡

                                                                                        +𝐷𝑛𝑃𝑑𝑡 + 𝑉𝑛,𝑘
(𝑚)
(𝑃)

 (A-1.3) 

Simplifying, dividing by dt and accounts for the below factors, the non-homogenous 

ordinary differential equation (ODE) below appears in Equation (A-1.4). 

 𝑑𝑧 = 𝜖𝑡√𝑑𝑡, where 𝜖𝑡 has zero mean and unit standard deviation. Thus dz = 0 

 𝑑𝑡2 converges towards zero faster than dt, thus 𝑑𝑡2 = 0 

 𝑑𝑡𝑑𝑥 also converges towards zero faster than dt and thus 𝑑𝑡𝑑𝑥 = 0 

 𝑑𝑧2 converges towards dt and thus 𝑑𝑧2 = 𝑑𝑡 

 

 1

2
𝜎2𝑃2𝑉𝑛,𝑘

(𝑚)′′(𝑃) + 𝜇𝑃𝑉𝑛,𝑘
(𝑚)′(𝑃) − (𝛾 + 𝜌)𝑉𝑛,𝑘

(𝑚)(𝑃) + 𝐷𝑛𝑃 = 0 (A-1.4) 

To obtain a particular solution to the non-homogenous ODE (A-1.4), t is set to log(p), and 

the below bullet points is substituted into (A-1.4), which solves into (A-1.7) 
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 𝑃
𝑑𝑉𝑛,𝑘

(𝑚)

𝑑𝑃
= P

𝑑𝑉𝑛,𝑘
(𝑚)

𝑑𝑡

𝑑𝑡

𝑑𝑃
= P

𝑑𝑉𝑛,𝑘
(𝑚)

𝑑𝑡

1

𝑃
=

𝑑𝑉𝑛,𝑘
(𝑚)

𝑑𝑡
 

 𝑃2
𝑑2𝑉𝑛,𝑘

(𝑚)

𝑑𝑃2
= 𝑃2

𝑑

𝑑𝑃
(
1

𝑃

𝑑𝑉𝑛,𝑘
(𝑚)

𝑑𝑡
) =

𝑃2 (
1

𝑃2
)
𝑑𝑉𝑛,𝑘

(𝑚)

𝑑𝑡
+ 𝑃2

1

𝑃

𝑑

𝑑𝑃

𝑑𝑉𝑛,𝑘
(𝑚)

𝑑𝑡
−
𝑑𝑉𝑛,𝑘

(𝑚)

𝑑𝑡
+ P

𝑑

𝑑𝑡
(
𝑑𝑉𝑛,𝑘

(𝑚)

𝑑𝑡
)

𝑑𝑡

𝑑𝑉𝑛,𝑘
(𝑚) = −

𝑑𝑉𝑛,𝑘
(𝑚)

𝑑𝑡
+
𝑑2𝑉𝑛,𝑘

(𝑚)

𝑑𝑡2
 

 

⟹
1

2
𝜎2 (−

𝑑𝑉𝑛,𝑘
(𝑚)

𝑑𝑡
+
𝑑2𝑉𝑛,𝑘

(𝑚)

𝑑𝑡2
) + 𝜇𝑃 (

𝑑𝑉𝑛,𝑘
(𝑚)

𝑑𝑡
) − (𝜆 + 𝜌)𝑉𝑛,𝑘

(𝑚)(𝑃) + 𝐷𝑛𝑃 = 0 (A-1.5) 

⟹
1

2
𝜎2𝑉𝑛,𝑘

(𝑚)′′ −
1

2
𝜎2𝑉𝑛,𝑘

(𝑚)′ + 𝜇𝑉𝑛,𝑘
(𝑚)′ − (𝜆 + 𝜌)𝑉𝑛,𝑘

(𝑚)(𝑃) + 𝐷𝑛𝑃 = 0 (A-1.6) 

⟹
1

2
𝜎2𝑉𝑛,𝑘

(𝑚)′′ + (𝜇 −
1

2
𝜎2)𝑉𝑛,𝑘

(𝑚)′ − (𝛾 + 𝜌)𝑉𝑛,𝑘
(𝑚) + 𝐷𝑛𝑒

𝑡 = 0 (A-1.7) 

First, V is transformed into 𝑧𝑒𝑡 and after grouping the terms the following appears. 

1
2𝜎

2(𝑧′′𝑒𝑡 + 𝑧′𝑒𝑡 + 𝑧′𝑒𝑡 + 𝑧𝑒𝑡)                                  

              + (𝜇 −
1
2𝜎

2) (𝑧′𝑒𝑡 + 𝑧𝑒𝑡) − (𝛾 + 𝜌)𝑧𝑒𝑡 = −𝐷𝑛𝑒
𝑡
 (A-1.8) 

Further reorganizing solves into a homogenous ODE:  

 1

2
𝜎2𝑧′′ + (𝜇 +

1

2
𝜎2) 𝑧′ + (𝜇 − 𝛾 − 𝜌)𝑧 = −𝐷𝑛  (A-1.9) 

In the next stage, z is set to c, where c is constant. A natural interpretation of 𝑧 = 𝑐 = 

constant, is that 𝑧′′ = 𝑧′ = 0. Thus, remaining from Equation (A-1.9) is: 

 
(𝜇 − 𝛾 − 𝜌)𝑧 = −𝐷𝑛 ⟹ 𝑧 =

𝐷𝑛
𝛾 + 𝜌 − 𝜇

  (A-1.10) 

Now, transforming back 𝑉 = 𝑧𝑒𝑡 and a closed form solution is obtained: 

 
𝑧 =

𝐷𝑛
𝛾 + 𝜌 − 𝜇

⟹ 𝑉 =
𝐷𝑛𝑒

𝑡

𝛾 + 𝜌 − 𝜇
=

𝐷𝑛𝑃

𝛾 + 𝜌 − 𝜇
 

   (A-1.11) 

This can also be written as a more intuitive interpretation, Equation (A-1.12), as the value of 

a perpetual stream of cash flows with value decreasing factor, 𝛾. Notice that 0 <   > . 
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𝑉𝑛,𝑘
(𝑚)(𝑃) = ∫

𝛾𝑒−𝛾𝑇𝐷𝑛𝑃(1 − 𝑒
−(𝜌−𝜇)𝑇)

𝛾 + 𝜌 − 𝜇

∞

0

𝑑𝜏 − 𝐼𝑛 =
𝐷𝑛𝑃

𝛾 + 𝜌 − 𝜇
− 𝐼𝑛  (A-1.12) 

1.2 Option value 

The option to invest in project A or B in scenario 1 is given in (A-1.13). 

 

𝐹𝑛,𝑘
(𝑚)(𝑃) = {

𝜀[𝐹𝑛,𝑘
(𝑚)(𝑃 + 𝑑𝑃)𝑒−𝜌𝑑𝑡]       , 𝑃 < 𝑃∗𝑛,𝑘

(𝑚)

𝑉𝑛,𝑘
(𝑚)(𝑃)                                   , 𝑃∗𝑛,𝑘

(𝑚)
≤ 𝑃

  (A-1.13) 

Expanding the stochastic part in the first branch using Itôs Lemma, (A-1.13) evolves into the 

homogenous second-order differential Equation, (A-1.16) 

 
𝐹𝑛,𝑘
(𝑚)
(𝑃) =

1

2
𝜎2𝑃2𝐹𝑛,𝑘

(𝑚)′′(𝑃)𝑑𝑡 + 𝜇𝑃𝐹𝑛,𝑘
(𝑚)′(𝑃)𝑑𝑡 − 𝜌𝐹𝑛,𝑘

(𝑚)(𝑃)𝑑𝑡 + 𝐹𝑛,𝑘
(𝑚)
(𝑃) (A-1.14) 

 
1

2
𝜎2𝑃2𝐹𝑛,𝑘

(𝑚)′′(𝑃)𝑑𝑡 + 𝜇𝑃𝐹𝑛,𝑘
(𝑚)′(𝑃)𝑑𝑡 − 𝜌𝐹𝑛,𝑘

(𝑚)(𝑃)𝑑𝑡 = 0 (A-1.15) 

 
1

2
𝜎2𝑃2𝐹𝑛,𝑘

(𝑚)′′(𝑃) + 𝜇𝑃𝐹𝑛,𝑘
(𝑚)′(𝑃) − 𝜌𝐹𝑛,𝑘

(𝑚)(𝑃) = 0 (A-1.16) 

As (A-1.16) is an equation of second-order, the general solution (A-1.17) can be expressed 

as a linear combination of any two independent solutions, 

 𝐹𝑛,𝑘
(𝑚)(𝑃) = 𝐴𝑛,𝑘

(𝑚)
𝑃𝛽1 + 𝐵𝑛,𝑘

(𝑚)
𝑃𝛽2  (A-1.17) 

where 𝐴𝑛,𝑘
(𝑚)

, 𝐵𝑛,𝑘
(𝑚)

 is to be determined, and 𝛽1 > 1 and 𝛽2 < 0 is known. 𝐹𝑛,𝑘
(𝑚)(𝑃) must satisfy 

the following three boundary conditions in (A-1.18): 

(1):  𝐹𝑛,𝑘
(𝑚)
(0) = 0 

(2): 𝐹𝑛,𝑘
(𝑚)(𝑃∗) =  𝑉𝑛,𝑘

(𝑚)
(𝑃∗) − 𝐼𝑛          (A-1.18) 

(3): 𝐹′𝑛,𝑘
(𝑚)(𝑃∗) =  𝑉′𝑛,𝑘

(𝑚)
(𝑃∗) 

When boundary condition (1) is adhered and due to 𝛽2 < 0, 𝐵𝑛,𝑘
(𝑚)(𝑃) = 0, 𝐹𝑛,𝑘

(𝑚)(𝑃) takes the 

following form. 
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 𝐹𝑛,𝑘
(𝑚)
(𝑃) = 𝐴𝑛,𝑘

(𝑚)
𝑃𝛽1  (A-1.19) 

Finding the solutions for 𝛽1 and 𝛽2, the particular solution to (A-1.16), t is set to log(p), and 

the below bullet points is substituted into (A-1.16). Also, 𝐹𝑛,𝑘
(𝑚)

 is substituted by 𝛽 at the end. 

This solves into the quadratic function (A-1.20).  

 𝑃
𝑑𝐹𝑛,𝑘

(𝑚)

𝑑𝑃
= P

𝑑𝐹𝑛,𝑘
(𝑚)

𝑑𝑡

𝑑𝑡

𝑑𝑃
= 𝑃

𝑑𝐹𝑛,𝑘
(𝑚)

𝑑𝑡

1

𝑃
=

𝑑𝐹𝑛,𝑘
(𝑚)

𝑑𝑡
 

 𝑃2
𝑑2

𝑑𝑃2
= 𝑃2

𝑑

𝑑𝑃
(
1

𝑃

𝑑𝐹𝑛,𝑘
(𝑚)

𝑑𝑡
) = 𝑃2 (

1

𝑃2
)
𝑑𝐹𝑛,𝑘

(𝑚)

𝑑𝑡
+ 𝑃2

1

𝑃

𝑑

𝑑𝑃

𝑑𝐹𝑛,𝑘
(𝑚)

𝑑𝑡
=

−
𝑑𝑉

𝑑𝑡
+ P

𝑑

𝑑𝑡
(
𝑑𝐹𝑛,𝑘

(𝑚)

𝑑𝑡
)

𝑑𝑡

𝑑𝐹𝑛,𝑘
(𝑚) = −

𝑑𝐹𝑛,𝑘
(𝑚)

𝑑𝑡
+
𝑑2𝐹𝑛,𝑘

(𝑚)

𝑑𝑡2
 

 

 1

2
𝜎2𝛽′′ + (𝜇 −

1

2
𝜎2) 𝛽′ − 𝜌𝛽 = 0 (A-1.20) 

Solving this quadratic solution with respect to 𝛽, the two roots are as follow in Equation (A-

1.21) and (A-1.22). 

 

𝛽1 =
(
1
2𝜎

2 − 𝜇) + √(𝜇 −
1
2𝜎

2)
2

+ 2𝜌𝜎2

𝜎2
 

(A-1.21) 

 

𝛽2 =
(
1
2𝜎

2 − 𝜇) − √(𝜇 −
1
2𝜎

2)
2

+ 2𝜌𝜎2

𝜎2
 

(A-1.22) 

Finally, this leaves the company with the following option to invest in either project A or B. 

Using value-matching and smooth-pasting conditions (boundary condition (2) and (3)) in (A-

1.18), the two unknowns, 𝐴𝑛,𝑘
(𝑚)

 and 𝑃∗𝑛,𝑘
(𝑚)

 in (A-1.23) can be solved as a set of equations 

with two unknowns, Equation (A-1.24) and (A-1.25). 

 

𝐹(𝑉) = {
𝐴𝑛,𝑘
(𝑚)
𝑉𝛽1                               ,𝑃 < 𝑃∗𝑛,𝑘

(𝑚)

𝐷𝑛𝑃

𝛾 + 𝜌 − 𝜇
− 𝐼𝑛                ,𝑃

∗
𝑛,𝑘
(𝑚)

≤ 𝑃 
 (A-1.23) 
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(2) 𝐴𝑛,𝑘
(𝑚)
𝑃∗𝑛,𝑘

(𝑚)𝛽1
=
𝐷𝑛𝑃

∗
𝑛,𝑘
(𝑚)

𝛾 + 𝜌 − 𝜇
− 𝐼𝑛 (A-1.24) 

(3) 𝛽1𝐴𝑛,𝑘
(𝑚)
𝑃∗𝑛,𝑘

(𝑚)𝛽1
=
𝐷𝑛𝑃

∗
𝑛,𝑘
(𝑚)

𝛾 + 𝜌 − 𝜇
 (A-1.25) 

In the following, a step-by step solution will be presented on how to solve the set of 

equations with the two unknowns. First, Equation (A-1.25) is reorganized to (A-1.26) 

(3) 𝐴𝑛,𝑘
(𝑚)
𝑃∗𝑛,𝑘

(𝑚)𝛽1
=

𝐷𝑛𝑃
∗
𝑛,𝑘
(𝑚)

𝛽1(𝛾 + 𝜌 − 𝜇)
 (A-1.26) 

Setting (A-1.24) equal to (A.1.26), 𝐴𝑛,𝑘
(𝑚)
𝑃∗𝑛,𝑘

(𝑚)𝛽1
 cancels out and after reorganizing, the 

following expression is left. 

 −
𝐷𝑛𝑃

∗
𝑛,𝑘
(𝑚)

𝛾 + 𝜌 − 𝜇
+

𝐷𝑛𝑃
∗
𝑛,𝑘
(𝑚)

𝛽1(𝛾 + 𝜌 − 𝜇)
= −𝐼𝑛 (A-1.27) 

After factorizing the left hand side, and multiplying the whole expression by -1, the 

expression can be simplified as follow: 

 
𝐷𝑛𝑃

∗
𝑛,𝑘
(𝑚)(𝛽1 − 1)

𝛽1(𝛾 + 𝜌 − 𝜇)
= 𝐼𝑛 (A-1.28) 

Solving the expression with respect to 𝑃∗𝑛,𝑘
(𝑚)

 gives the final answer to the optimal threshold, 

𝑃∗𝑛,𝑘
(𝑚)

, in Equation (A-1.29) 

 
𝑃∗𝑛,𝑘

(𝑚)
=
𝛽1𝐼𝑛(𝛾 + 𝜌 − 𝜇)

𝐷𝑛(𝛽1 − 1)
 (A-1.29) 

As the optimal threshold is solved, the solution can be used to estimate 𝐴𝑛,𝑘
(𝑚)

 by substituting 

𝑃∗𝑛,𝑘
(𝑚)

 into the smooth-pasting condition, (A-1.25). After reorganizing, 𝐴𝑛,𝑘
(𝑚)

 is presented in 

(A-1.30) 

 

𝐴𝑛,𝑘
(𝑚)

=
𝐷𝑛𝑃

∗
𝑛,𝑘
(𝑚)(1−𝛽1)

𝛽1(𝛾 + 𝜌 − 𝜇)
 (A-1.30) 
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Investment decision: Scenario 1, 𝐹𝐴𝑣𝐵
(1)(𝑃) 

 

𝐹𝐴𝑣𝐵
(1)(𝑃) =

{
 
 

 
  𝐴0,𝐴

(1)
𝑃𝛽1                                                                      , 𝑃 < 𝑃∗0,𝐴

(1)

𝑉𝐴,0
(1)(𝑃)                                                      , 𝑃∗0,𝐴

(1)
≤ 𝑃 ≤ 𝑃∗

0,𝐴

(1)

𝐶0,𝐴𝑣𝐵
(1) 𝑃𝛽1 + 𝐸0,𝐴𝑣𝐵

(1) 𝑃𝛽2                             , 𝑃∗
0,𝐴

(1)
≤ 𝑃 ≤ 𝑃∗

0,𝐵

(1)

𝑉𝐵,0
(1)(𝑃)                                                                     , 𝑃∗

0,𝐵

(1)
≤ 𝑃

 (A-1.31) 

In Equation (A-1.31), 𝐴0,𝐴
(1)
𝑃𝛽1 and 𝑃∗0,𝐴

(1)
, are solved via value-matching and smooth-pasting 

between the first and second branch, while 𝑃∗
0,𝐴

(1)
, 𝑃∗

0,𝐵

(1)
, 𝐶0,𝐴𝑣𝐵

(1) 𝑃𝛽1 and 𝐸0,𝐴𝑣𝐵
(1) 𝑃𝛽2 are solved 

numerically via the second, third, and fourth branch. Value-matching and smooth-pasting 

between the second and third branch are presented in (A-1.32), and value-matching and 

smooth-pasting between the third and fourth branch are presented in (A-1.33). 

 𝐷𝐴𝑃
∗
0,𝐴

(1)

𝛾 + 𝜌 − 𝜇 − 𝐼𝐴 = 𝐶0,𝐴𝑣𝐵
(1) 𝑃∗

0,𝐴

(1)𝛽1
+ 𝐸0,𝐴𝑣𝐵

(1) 𝑃∗
0,𝐴

(1)𝛽2

𝐷𝐴𝑃∗0,𝐴
(1)

𝛾 + 𝜌 − 𝜇 = 𝛽1𝐶0,𝐴𝑣𝐵
(1) 𝑃∗

0,𝐴

(1)𝛽1
+ 𝛽2𝐸0,𝐴𝑣𝐵

(1) 𝑃∗
0,𝐴

(1)𝛽2
 (A-1.32) 

 

𝐶0,𝐴𝑣𝐵
(1) 𝑃∗

0,𝐵

(1)𝛽1
+ 𝐸0,𝐴𝑣𝐵

(1) 𝑃∗
0,𝐵

(1)𝛽2
=

𝐷𝐵𝑃
∗
0,𝐵

(1)

𝛾 + 𝜌 − 𝜇 − 𝐼𝐵  

𝛽1𝐶0,𝐴𝑣𝐵
(1) 𝑃∗

0,𝐵

(1)𝛽1
+ 𝛽2𝐸0,𝐴𝑣𝐵

(1) 𝑃∗
0,𝐵

(1)𝛽2
=

𝐷𝐵𝑃∗0,𝐵
(1)

𝛾 + 𝜌 − 𝜇

 (A-1.33) 
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2 Valuation of project A with option to expand, and 
comparison with project B 

2.1 Project A versus Project B when the expansion is certain: 

Scenario 2, 𝐅𝐀𝐯𝐁
(𝟐) (𝐏) 

Option value of expansion: Scenario 2, 𝐹𝐴,𝐸
(2)(𝑃) 

𝐹𝐴,𝐸
(2)(𝑃) = {

𝑉𝐴,0
(1)(𝑃) + 𝜀[𝐹𝐴,𝐸

(2)(𝑃 + 𝑑𝑃)𝑒−𝜌𝑑𝑡]

𝑉𝐴,𝐸
(1)(𝑃)                                               

= {
𝑉𝐴,0
(1)(𝑃) + 𝐴𝐴,𝐸

(2)𝑃𝛽1     , 𝑃 < 𝑃∗𝐴,𝐸
(2)

𝑉𝐴,𝐸
(2)(𝑃)                        , 𝑃∗𝐴,𝐸

(2)
≤ 𝑃

 (A-2.1) 

By applying value-matching and smooth-pasting conditions between the two branches in (A-

2.1), the two unknowns, 𝐴𝐴,𝐸
(2)

 and 𝑃∗𝐴,𝐸
(2)

 can be solved following the same framework as 

Equation (A-1.23) – (A-1.30) and is presented in Equation (A-2.2) and (A-2.3). 

 𝐴𝐴,𝐸
(2) =

𝑃∗𝐴,𝐸
(2) (1−𝛽1)(𝐷𝐸 − 𝐷𝐴)

𝛽1(𝛾 + 𝜌 − 𝜇)
 (A-2.2) 

 𝑃∗𝐴,𝐸
(2)

=
𝛽1𝐼𝐸(𝛾 + 𝜌 − 𝜇)

(𝛽1 − 1)(𝐷𝐸 − 𝐷𝐴)
 (A-2.3) 

Investment decision: Scenario 2, 𝐹𝐴𝑣𝐵
(2)(𝑃) 

 

𝐹𝐴𝑣𝐵
(2)(𝑃) =

{
 
 

 
  𝐴0,𝐴

(2)
𝑃𝛽1                                                              , 𝑃 < 𝑃∗0,𝐴

(2)

𝑉𝐴,𝐸
(2)(𝑃)                                               , 𝑃∗0,𝐴

(2)
≤ 𝑃 ≤ 𝑃∗

0,𝐴

(2)

𝐶0,𝐴𝑣𝐵
(2) 𝑃𝛽1 + 𝐸0,𝐴𝑣𝐵

(2) 𝑃𝛽2                     , 𝑃∗
0,𝐴

(2)
≤ 𝑃 ≤ 𝑃∗

0,𝐵

(2)

𝑉𝐵,0
(1)(𝑃)                                                              , 𝑃∗

0,𝐵

(2)
≤ 𝑃

 (A-2.4) 

In Equation (A-2.4), 𝐴0,𝐴
(2)
𝑃𝛽1 and 𝑃∗0,𝐴

(2)
, are solved via value-matching and smooth-pasting 

between the first and second branch, while 𝑃∗
0,𝐴

(2)
, 𝑃∗

0,𝐵

(2)
, 𝐶0,𝐴𝑣𝐵

(2) 𝑃𝛽1 and 𝐸0,𝐴𝑣𝐵
(2) 𝑃𝛽2 are solved 

numerically via the second, third, and fourth branch. Value-matching and smooth-pasting 

between the second and third branch are presented in (A-2.5), and value-matching and 

smooth-pasting between the third and fourth branch are presented in (A-2.6). 
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 𝐷𝐴𝑃
∗
0,𝐴

(2)

𝛾 + 𝜌 − 𝜇 − 𝐼𝐴 + 𝐴𝐴,𝐸
(2)
𝑃∗

0,𝐴

(2)𝛽1
= 𝐶0,𝐴𝑣𝐵

(2) 𝑃∗
0,𝐴

(2)𝛽1
+ 𝐸0,𝐴𝑣𝐵

(2) 𝑃∗
0,𝐴

(2)𝛽2

𝐷𝐴𝑃∗0,𝐴
(2)

𝛾 + 𝜌 − 𝜇 + 𝛽1𝐴𝐴,𝐸
(2)
𝑃∗

0,𝐴

(2)𝛽1
= 𝛽1𝐶0,𝐴𝑣𝐵

(2) 𝑃∗
0,𝐴

(2)𝛽1
+ 𝛽2𝐸0,𝐴𝑣𝐵

(2) 𝑃∗
0,𝐴

(2)𝛽2
 (A-2.5) 

 

𝐶0,𝐴𝑣𝐵
(2) 𝑃∗

0,𝐵

(2)𝛽1
+ 𝐸0,𝐴𝑣𝐵

(2) 𝑃∗
0,𝐵

(2)𝛽2
=

𝐷𝐵𝑃
∗
0,𝐵

(2)

𝛾 + 𝜌 − 𝜇 − 𝐼𝐵  

𝛽1𝐶0,𝐴𝑣𝐵
(2) 𝑃∗

0,𝐵

(2)𝛽1
+ 𝛽2𝐸0,𝐴𝑣𝐵

(2) 𝑃∗
0,𝐵

(2)𝛽2
=

𝐷𝐵𝑃∗0,𝐵
(2)

𝛾 + 𝜌 − 𝜇

 (A-2.6) 

2.2 Project A versus Project B when the expansion is uncertain: 

Scenario 2, 𝐅𝐀𝐯𝐁
(𝟐)
(𝐏) 

Modelling the uncertainty effect on project A: Scenario 2, 𝑉𝐴,𝐸
(2)
(𝑃) 

 
𝑉𝐴,𝐸
(2)
(𝑃) = (𝐷𝐴𝑃𝑑𝑡 − 𝜌𝐼𝐴𝑑𝑡) + (1 − 𝜌𝑑𝑡)𝜆𝑑𝑡𝜀[𝐹𝐴,𝐸

(2)(𝑃 + 𝑑𝑃)]

                                                                +(1 − 𝜌𝑑𝑡)(1 − 𝜆𝑑𝑡)𝜀 [𝑉𝐴,𝐸
(2)
(𝑃 + 𝑑𝑃)]

              (A-2.7) 

Expanding the stochastic part on the right hand side of (A-2.7) using Itôs Lemma, the 

equation evolves into (A-2.8)  

             𝑉𝐴,𝐸
(2)
(𝑃) = 𝐷𝐴𝑃 − 𝜌𝐼𝐴                                                                                                             

      +(1 − (𝜌 + 𝜆)𝑑𝑡) [𝑉𝐴,𝐸
(2)
(𝑃)𝑑𝑡 +

1
2𝜎

2𝑃2𝑉𝐴,𝐸
(2)′′

(𝑃)𝑑𝑡 + 𝜇𝑃𝑉𝐴,𝐸
(2)′

(𝑃)𝑑𝑡]

 +(1 − 𝜌𝑑𝑡)𝜆𝑑𝑡 [𝐹𝐴,𝐸
(2)(𝑃)𝑑𝑡 +

1
2𝜎

2𝑃2𝐹𝐴,𝐸
(2)′′(𝑃)𝑑𝑡 + 𝜇𝑃𝐹𝐴,𝐸

(2)′(𝑃)𝑑𝑡]

              
(A-2.8) 

Reorganizing and simplifying (A-2.8), the differential equation that describes 𝑉𝐴,𝐸
(2)
(𝑃) is 

presented in (A-2.9) 

 

1
2𝜎

2𝑃2𝑉𝐴,𝐸
(2)′′

(𝑃) + 𝜇𝑃𝑉𝐴,𝐸
(2)′

(𝑃) − (𝜌 + 𝜆)𝑉𝐴,𝐸
(2)
(𝑃)

                                                    +𝐷𝐴𝑃 − 𝜌𝐼𝐴 + 𝜆𝐹𝐴,𝐸
(2)(𝑃) = 0 

              (A-2.9) 

As 𝐹𝐴,𝐸
(2)(𝑃) has two solutions, when 𝑃 < 𝑃∗𝐴,𝐸

(2)
 and 𝑃∗𝐴,𝐸

(2)
≤ 𝑃, the solution to 𝑉𝐴,𝐸

(2)
(𝑃) can be 

written as: 
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{
 
 
 
 

 
 
 
 
1

2
𝜎2𝑃2𝑉𝐴,𝐸

(2)′′

(𝑃) + 𝜇𝑃𝑉𝐴,𝐸
(2)′

(𝑃) − (𝜌 + 𝜆)𝑉𝐴,𝐸
(2)
(𝑃)                                       

                   +
𝐷𝐴𝑃

𝛾 + 𝜌 − 𝜇
− 𝐼𝐴 + 𝜆𝐴𝐴,𝐸

(2)𝑃𝛽1 = 0                 , 𝑃 < 𝑃∗𝐴,𝐸
(2)

1

2
𝜎2𝑃2𝑉𝐴,𝐸

(2)′′

(𝑃) + 𝜇𝑃𝑉𝐴,𝐸
(2)′

(𝑃) − (𝜌 + 𝜆)𝑉𝐴,𝐸
(2)
(𝑃)                                       

                   + 𝐷𝐴𝑃 − 𝐼𝐴 +
𝜆𝐷𝐸

𝛾 + 𝜌 − 𝜇
− 𝜆𝐼𝐸 = 0              , 𝑃∗𝐴,𝐸

(2)
≤ 𝑃

 (A-2.10) 

Using the framework presented in (A-1.4) – (A-1.12), the solution for 𝑉𝐴,𝐸
(2)
(𝑃) is given in 

(A-2.11). Notice, when following the same reasoning as in (A-1.17), the terms containing 

negative exponents, 𝛽2 and 𝛿2 can be ruled out in the top part of (A-2.11) and the term 

containing the positive exponent, 𝛿1 in the bottom part of (A-2.11) can be ruled out. 

       𝑉𝐴,𝐸
(2)
(𝑃) =

{
 
 

 
 𝑉𝐴,0

(1)(𝑃) + 𝐴𝐴,𝐸
(2)𝑃𝛽1 + 𝐴𝐴,𝐸

(2)𝑃𝛿1                                , 𝑃 < 𝑃∗𝐴,𝐸
(2)

𝑃[𝜆𝐷𝐸 + (𝛾 + 𝜌 − 𝜇)𝐷𝐴]

(𝜌 + 𝜆 − 𝜇)(𝛾 + 𝜌 − 𝜇)
                                                            

                 −
𝜆𝐼𝐸
𝜌 + 𝜆

− 𝐼𝐴 + 𝐵𝐴,𝐸
(2)𝑃𝛿2                         , 𝑃∗𝐴,𝐸

(2)
≤ 𝑃

 (A-2.11) 

Investment decision: Scenario 2, 𝐹𝐴𝑣𝐵
(2)
(𝑃) 

 

𝐹AvB
(2)

(𝑃) =

{
  
 

  
  𝐴0,𝐴

(2)
𝑃𝛽1                                                                       , 𝑃 < 𝑃

∗

0,𝐴

(2)

𝑉𝐴,𝐸
(2)
(𝑃)                                                      , 𝑃

∗

0,𝐴

(2)
≤ 𝑃 ≤ 𝑃

∗

0,𝐴

(2)

𝐶0,𝐴𝑣𝐵
(2)

𝑃𝛽1 + 𝐸0,𝐴𝑣𝐵
(2)

𝑃𝛽2                            , 𝑃
∗

0,𝐴

(2)
≤ 𝑃 ≤ 𝑃

∗

0,𝐵

(2)

𝑉𝐵,0
(1)(𝑃)                                                                     , 𝑃

∗

0,𝐵

(2)
≤ 𝑃

 (A-2.12) 

In Equation (A-2.12), 𝐴0,𝐴
(2)
𝑃𝛽1 and 𝑃

∗

0,𝐴

(2)
, are solved via value-matching and smooth-pasting 

between the first and second branch, while 𝑃
∗

0,𝐴

(2)
, 𝑃

∗

0,𝐵

(2)
, 𝐶0,AvB

(2)
𝑃𝛽1 and 𝐸0,AvB

(2)
𝑃𝛽2 are solved 

numerically via the second, third, and fourth branch. Value-matching and smooth-pasting 

between the second and third branch are presented in (A-2.13), and value-matching and 

smooth-pasting between the third and fourth branch are presented in (A-2.14). 
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𝐷𝐴𝑃
∗

0,𝐴

(2)

𝛾 + 𝜌 − 𝜇 − 𝐼𝐴 + 𝐴𝐴,𝐸
(2)𝑃

∗

0,𝐴

(2)𝛽1

+ 𝐴𝐴,𝐸
(2)𝑃

∗

0,𝐴

(2)𝛿1

= 𝐶0,𝐴𝑣𝐵
(2)

𝑃
∗

0,𝐴

(2)𝛽1

+ 𝐸0,𝐴𝑣𝐵
(2)

𝑃
∗

0,𝐴

(2)𝛽2

𝐷𝐴𝑃
∗

0,𝐴

(2)

𝛾 + 𝜌 − 𝜇 + 𝛽1𝐴𝐴,𝐸
(2)
𝑃
∗

0,𝐴

(2)𝛽1

+ 𝛿1𝐴𝐴,𝐸
(2)𝑃

∗

0,𝐴

(2)𝛿1

= 𝛽1𝐶0,𝐴𝑣𝐵
(2)

𝑃
∗

0,𝐴

(2)𝛽1

+ 𝛽2𝐸0,𝐴𝑣𝐵
(2)

𝑃
∗

0,𝐴

(2)𝛽2
 
(A-2.13) 

𝐶0,𝐴𝑣𝐵
(2)

𝑃
∗

0,𝐵

(2)𝛽1

+ 𝐸0,𝐴𝑣𝐵
(2)

𝑃
∗

0,𝐵

(2)𝛽2

=
𝐷𝐵𝑃

∗

0,𝐵

(2)

𝛾 + 𝜌 − 𝜇 − 𝐼𝐵 

𝛽1𝐶0,𝐴𝑣𝐵
(2)

𝑃
∗

0,𝐵

(2)𝛽1

+ 𝛽2𝐸0,𝐴𝑣𝐵
(2)

𝑃
∗

0,𝐵

(2)𝛽2

=
𝐷𝐵𝑃

∗

0,𝐵

(2)

𝛾 + 𝜌 − 𝜇

 
(A-2.14) 
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3 Valuation of project A including all embedded options, 
and comparison with project B 

3.1 Project A versus Project B when the expansion is certain: 

Scenario 3, 𝐅𝐀𝐯𝐁
(𝟑)

 

Investment decision: scenario 3, 𝐹𝐴𝑣𝐵
(3)(𝑃) 

 

𝐹𝐴𝑣𝐵
(3)(𝑃) =

{
 
 

 
  𝐴0,𝐴

(3)
𝑃𝛽1                                                                     , 𝑃 < 𝑃∗0,𝐴

(3)

𝑉𝐴,𝐸
(3)(𝑃)                                                     , 𝑃∗0,𝐴

(3)
≤ 𝑃 ≤ 𝑃∗

0,𝐴

(3)

𝐶0,𝐴𝑣𝐵
(3) 𝑃𝛽1 + 𝐸0,𝐴𝑣𝐵

(3) 𝑃𝛽2                           , 𝑃∗
0,𝐴

(3)
≤ 𝑃 ≤ 𝑃∗

0,𝐵

(3)

𝑉𝐵,0
(1)(𝑃)                                                                     , 𝑃∗

0,𝐵

(3)
≤ 𝑃

 (A-3.1) 

In Equation (A-3.1), 𝐴0,𝐴
(3)
𝑃𝛽1 and 𝑃∗0,𝐴

(3)
, are solved via value-matching and smooth-pasting 

between the first and second branch, while 𝑃∗
0,𝐴

(3)
, 𝑃∗

0,𝐵

(3)
, 𝐶0,𝐴𝑣𝐵

(3) 𝑃𝛽1 and 𝐸0,𝐴𝑣𝐵
(3) 𝑃𝛽2 are solved 

numerically via the second, third, and fourth branch. Value-matching and smooth-pasting 

between the second and third branch are presented in (A-3.2), and value-matching and 

smooth-pasting between the third and fourth branch are presented in (A-3.3). 

 𝐷𝐴𝑃
∗
0,𝐴

(3)

𝛾 + 𝜌 − 𝜇 − 𝐼𝐴 + 𝐴𝐴,𝐸
(3)
𝑃∗

0,𝐴

(3)𝛽1
= 𝐶0,𝐴𝑣𝐵

(3) 𝑃∗
0,𝐴

(3)𝛽1
+ 𝐸0,𝐴𝑣𝐵

(3) 𝑃∗
0,𝐴

(3)𝛽2

𝐷𝐴𝑃∗0,𝐴
(3)

𝛾 + 𝜌 − 𝜇 + 𝛽1𝐴𝐴,𝐸
(3)
𝑃∗

0,𝐴

(3)𝛽1
= 𝛽1𝐶0,𝐴𝑣𝐵

(3) 𝑃∗
0,𝐴

(3)𝛽1
+ 𝛽2𝐸0,𝐴𝑣𝐵

(3) 𝑃∗
0,𝐴

(3)𝛽2
 (A-3.2) 

 

𝐶0,𝐴𝑣𝐵
(3) 𝑃∗

0,𝐵

(3)𝛽1
+ 𝐸0,𝐴𝑣𝐵

(3) 𝑃∗
0,𝐵

(3)𝛽2
=

𝐷𝐵𝑃
∗
0,𝐵

(3)

𝛾 + 𝜌 − 𝜇 − 𝐼𝐵 

𝛽1𝐶0,𝐴𝑣𝐵
(3) 𝑃∗

0,𝐵

(3)𝛽1
+ 𝛽2𝐸0,𝐴𝑣𝐵

(3) 𝑃∗
0,𝐵

(3)𝛽2
=

𝐷𝐵𝑃∗0,𝐵
(3)

𝛾 + 𝜌 − 𝜇

 (A-3.3) 
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3.2 Project A versus Project B when the expansion is uncertain: 

Scenario 3, 𝐅𝐀𝐯𝐁
(𝟑)
(𝐏) 

Modelling the uncertainty effect on project A: Scenario 3, 𝑉𝐴,𝐸
(3)
(𝑃)  

 
𝑉𝐴,𝐸
(3)
(𝑃) = (𝐷𝐴𝑃𝑑𝑡 − 𝜌𝐼𝐴𝑑𝑡) + (1 − 𝜌𝑑𝑡)𝜆𝑑𝑡𝜀[𝐹𝐴,𝐸

(3)(𝑃 + 𝑑𝑃)]

                                                                +(1 − 𝜌𝑑𝑡)(1 − 𝜆𝑑𝑡)𝜀 [𝑉𝐴,𝐸
(3)
(𝑃 + 𝑑𝑃)]

              (A-3.4) 

Expanding the stochastic part on the right hand side of (A-3.4) using Itôs Lemma, the 

equation evolves into (A-3.5)  

             𝑉𝐴,𝐸
(3)
(𝑃) = 𝐷𝐴𝑃 − 𝜌𝐼𝐴                                                                                                             

      +(1 − (𝜌 + 𝜆)𝑑𝑡) [𝑉𝐴,𝐸
(3)
(𝑃)𝑑𝑡 +

1
2𝜎

2𝑃2𝑉𝐴,𝐸
(3)′′

(𝑃)𝑑𝑡 + 𝜇𝑃𝑉𝐴,𝐸
(3)′

(𝑃)𝑑𝑡]

 +(1 − 𝜌𝑑𝑡)𝜆𝑑𝑡 [𝐹𝐴,𝐸
(3)(𝑃)𝑑𝑡 +

1
2𝜎

2𝑃2𝐹𝐴,𝐸
(3)′′(𝑃)𝑑𝑡 + 𝜇𝑃𝐹𝐴,𝐸

(3)′′(𝑃)𝑑𝑡]

              
(A-3.5) 

Reorganizing and simplifying (A-3.5), the differential equation that describes 𝑉𝐴,𝐸
(3)
(𝑃) is 

presented in (A-3.6) 

 

1
2𝜎

2𝑃2𝑉𝐴,𝐸
(3)′′

(𝑃) + 𝜇𝑃𝑉𝐴,𝐸
(3)′

(𝑃) − (𝜌 + 𝜆)𝑉𝐴,𝐸
(3)
(𝑃)

                                                    +𝐷𝐴𝑃 − 𝜌𝐼𝐴 + 𝜆𝐹𝐴,𝐸
(3)(𝑃) = 0 

              (A-3.6) 

As 𝐹𝐴,𝐸
(3)(𝑃) has two solutions, when 𝑃 < 𝑃∗𝐴,𝐸

(3)
 and 𝑃∗𝐴,𝐸

(3)
≤ 𝑃, the solution to 𝑉𝐴,𝐸

(3)
(𝑃) can be 

written as: 

             

{
 
 
 
 

 
 
 
 
1

2
𝜎2𝑃2𝑉𝐴,𝐸

(3)′′

(𝑃) + 𝜇𝑃𝑉𝐴,𝐸
(3)′

(𝑃) − (𝜌 + 𝜆)𝑉𝐴,𝐸
(3)
(𝑃)                                       

                   +
𝐷𝐴𝑃

𝛾 + 𝜌 − 𝜇
− 𝐼𝐴 + 𝜆𝐴𝐴,𝐸

(3)𝑃𝛽1 = 0                 , 𝑃 < 𝑃∗𝐴,𝐸
(3)

1

2
𝜎2𝑃2𝑉𝐴,𝐸

(3)′′

(𝑃) + 𝜇𝑃𝑉𝐴,𝐸
(3)′

(𝑃) − (𝜌 + 𝜆)𝑉𝐴,𝐸
(3)
(𝑃)                                       

+ 𝐷𝐴𝑃 − 𝐼𝐴 +
𝜆𝐷𝐸

𝛾 + 𝜌 − 𝜇
− 𝜆𝐼𝐸 + 𝜆𝐴𝐸,𝐵

(3)𝑃𝛽1 = 0      , 𝑃∗𝐴,𝐸
(3)
≤ 𝑃

 (A-3.7) 

Using the framework presented in (A-1.4) – (A-1.12), the solution for 𝑉𝐴,𝐸
(3)
(𝑃) is given in 

(A-3.8). Notice, when following the same reasoning as in (A-1.17), the terms containing 
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negative exponents, 𝛽2 and 𝛿2 can be rule out in the top part of (A-3.7) and the term 

containing the positive exponent, 𝛿1 in the bottom part of (A-3.7) can be ruled out. 

       𝑉𝐴,𝐸
(3)
(𝑃) =

{
 
 

 
 𝑉𝐴,0

(1)(𝑃) + 𝐴𝐴,𝐸
(3)𝑃𝛽1 + 𝐴𝐴,𝐸

(3)𝑃𝛿1                                           , 𝑃 < 𝑃∗𝐴,𝐸
(3)

𝑃[𝜆𝐷𝐸 + (𝛾 + 𝜌 − 𝜇)𝐷𝐴]

(𝜌 + 𝜆 − 𝜇)(𝛾 + 𝜌 − 𝜇)
                                                            

                 −
𝜆𝐼𝐸
𝜌 + 𝜆

− 𝐼𝐴 + 𝐴𝐸,𝐵
(3)𝑃𝛽1 + 𝐵𝐴,𝐸

(3)𝑃𝛿2                , 𝑃∗𝐴,𝐸
(3)

≤ 𝑃

 (A-3.8) 

Investment decision: Scenario 3, 𝐹𝐴𝑣𝐵
(3)
(𝑃) 

 

𝐹𝐴𝑣𝐵
(3)
(𝑃) =

{
  
 

  
  𝐴0,𝐴

(3)
𝑃𝛽1                                                                      , 𝑃 < 𝑃

∗

0,𝐴

(3)

𝑉𝐴,𝐸
(3)
(𝑃)                                                      , 𝑃

∗

0,𝐴

(3)
≤ 𝑃 ≤ 𝑃

∗

0,𝐴

(3)

𝐶0,𝐴𝑣𝐵
(3)

𝑃𝛽1 + 𝐸0,𝐴𝑣𝐵
(3)

𝑃𝛽2                           , 𝑃
∗

0,𝐴

(3)
≤ 𝑃 ≤ 𝑃

∗

0,𝐵

(3)

𝑉𝐵,0
(1)(𝑃)                                                                     , 𝑃

∗

0,𝐵

(3)
≤ 𝑃

 (A-3.9) 

In Equation (A-3.9), 𝐴0,𝐴
(3)
𝑃𝛽1 and 𝑃

∗

0,𝐴

(3)
, are solved via value-matching and smooth-pasting 

between the first and second branch, while 𝑃
∗

0,𝐴

(3)
, 𝑃

∗

0,𝐵

(3)
, 𝐶𝐴𝑣𝐵

(3)
𝑃𝛽1 and 𝐸𝐴𝑣𝐵

(3)
𝑃𝛽2  are solved 

numerically via the second, third, and fourth branch. Value-matching and smooth-pasting 

between the second and third branch are presented in (A-3.10), and value-matching and 

smooth-pasting between the third and fourth branch are presented in (A-3.11). 

𝐷𝐴𝑃
∗

0,𝐴

(3)

𝛾 + 𝜌 − 𝜇 − 𝐼𝐴 + 𝐴𝐴,𝐸
(3)𝑃

∗

0,𝐴

(3)𝛽1

+ 𝐴𝐴,𝐸
(3)𝑃

∗

0,𝐴

(3)𝛿1

= 𝐶𝐴𝑣𝐵
(3)

𝑃
∗

0,𝐴

(3)𝛽1

+ 𝐸𝐴𝑣𝐵
(3)

𝑃
∗

0,𝐴

(3)𝛽2

𝐷𝐴𝑃
∗

0,𝐴

(3)

𝛾 + 𝜌 − 𝜇 + 𝛽1𝐴𝐴,𝐸
(3)
𝑃
∗

0,𝐴

(3)𝛽1

+ 𝛿1𝐴𝐴,𝐸
(3)𝑃

∗

0,𝐴

(3)𝛿1

= 𝛽1𝐶𝐴𝑣𝐵
(3)

𝑃
∗

0,𝐴

(3)𝛽1

+ 𝛽2𝐸𝐴𝑣𝐵
(3)

𝑃
∗

0,𝐴

(3)𝛽2
 

(A-3.10) 

𝐶𝐴𝑣𝐵
(3)

𝑃
∗

0,𝐵

(3)𝛽1

+ 𝐸𝐴𝑣𝐵
(3)

𝑃
∗

0,𝐵

(3)𝛽2

=
𝐷𝐵𝑃

∗

0,𝐵

(3)

𝛾 + 𝜌 − 𝜇 − 𝐼𝐵 

𝛽1𝐶𝐴𝑣𝐵
(3)

𝑃
∗

0,𝐵

(3)𝛽1

+ 𝛽2𝐸𝐴𝑣𝐵
(3)

𝑃
∗

0,𝐵

(3)𝛽2

=
𝐷𝐵𝑃

∗

0,𝐵

(3)

𝛾 + 𝜌 − 𝜇

 
(A-3.11) 
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