

1

The Exercise of Covenant
Defeasace Options

 “A study of the removal of restictive covenants in US

corporate bonds, by means of big-data analysis”

Nils Diderik Grøttheim Algaard & Jo Magnus Tenfjord

Supervisor: Associate Professor Carsten Gero Bienz

 Master thesis in Financial Economics

NORWEGIAN SCHOOL OF ECONOMICS

This thesis was written as a part of the Master of Science in Economics and Business

Administration at NHH. Please note that neither the institution nor the examiners are

responsible − through the approval of this thesis − for the theories and methods used,

or results and conclusions drawn in this work.

Norwegian School of Economics

Bergen, autumn, 2014

2

Abstract

This thesis aims to examine the exercise of covenant defeasance options. To find what

bonds are defeased, we build a SEC crawler to analyze more than 1.4m SEC filings. Our

methods of analysis are descriptive statistics and regression analysis. The regression

analysis is performed by joining our data with Mergent’s Fixed Income Securities

Database (FISD). Our major findings are: (1) 0.56% of defeasible bonds have this

option exercised; (2) defeasance and repurchase are linked together as firms often

repurchase as many bonds as possible while any hold outs are removed via

defeasance; (3) no evidence that defeasance exercise is clustered in industries with

higher uncertainty (4) bonds with a higher number of restrictive covenants are more

likely to exercise their defeasance option; (5) there is no indication that callable bonds

substitute for defeasance exercise; (6) the defeasance exercises are often linked to

major corporate actions, such as acquisitions, mergers or refinancing.

3

Table of Contents
Abstract .. 2

Preface ... 6

1 Introduction ... 7

2 Institutional Background .. 12

2.1 Corporate Bonds ... 12

2.2 Debt Repurchases ... 13

2.3 Covenant Defeasance .. 14

2.4 Other Terms Related to Defeasance ... 15

2.5 Potential Motivation to Defease ... 15

3 Previous Literature ... 17

3.1 How to gather data using a web crawler: An application using SAS to search

EDGAR .. 17

3.2 The Defeasance of Control Rights ... 18

4 Data .. 20

4.1 The Search Program .. 20

4.1.1 Overview .. 20

4.1.2 Disclaimer and Distribution ... 21

4.1.3 Hardware Requirements .. 21

4.1.4 SRM5K Program Components ... 22

4.2 Scope of the Data .. 31

4.3 Sources .. 31

4.4 Search Iteration and the Data Gathering Process ... 33

4.5 Entity Attributions ... 36

5 Empirical Analysis... 38

4

5.1 Data set and variables ... 38

5.1.1 Dependent Variable ... 38

5.1.2 Probit Model .. 38

5.2 Prediction 1: Defeasance options are seldom exercised 39

5.3 Prediction 2: Bond issuers attempt repurchase prior to exercising a covenant

defeasance option ... 40

5.4 Prediction 3: Defeasance exercise is more common in industries with high

uncertainty regarding future financial performance ... 44

5.5 Prediction 4: Callability is a substitute for covenant defeasance 49

5.6 Prediction 5: Defeased bonds contain more covenants 51

5.7 Prediction 6: Defeasance is exercised in conjuncture with major corporate

events ... 54

5.8 Limitations of the Analysis .. 57

6 Conclusion .. 59

Appendix .. 61

Table 1: Summary Statistics of Regression Variables .. 61

Table 2: Covariance Matrix .. 62

Table 3: Regression Outputs .. 63

Code for Downloading Index Files ... 64

Code for Parsing Index Files to Memory .. 65

Code for Saving Index Information to the Database ... 69

Code for Downloading SEC Forms to Local Storage .. 73

Code for Searching Downloaded Forms for Specified Search String 78

The Database ... 82

An Alternative Method of Structuring the Data .. 85

Mac Version ... 86

5

Threading ... 86

Additional Helper Procedures .. 89

Dictionary on IT-Terms ... 91

References ... 94

Academic Textbooks .. 94

Research Papers ... 94

Internet .. 95

Lectures .. 96

6

Preface

This thesis concludes our independent study work in our master’s degrees in Financial

Economics at the Norwegian School of Economics (NHH).

Our motivation for the choice of thesis subject was multifaceted. The fixed income

financial asset class is a large and important part of the financial system. The

opportunity to gain deeper insight into this interesting topic is in our opinion useful

knowledge for the future. In addition, our specific topic has been subject to limited

research. One consequence of this is that there are less academic sources on the

subject, but it also meant that we had the opportunity to gain unique insights in the

subject and contribute to the understanding of the specifics about covenant

defeasance exercise. To the best of our knowledge, there existed no previous data on

the subject. The possibility to leverage the use of available comprehensive databases

and self-developed software to compile a unique dataset was considered an exciting

challenge. In addition, designing the self-developed software in a manner that made

it possible to use in other research was rewarding.

Our supervisor, Associate Professor Carsten Gero Bienz, is one of the authors of the

most recent research paper on covenant defeasance options. This means that we had

access to a leading professional on the subject. We would like to thank him for

guidance, constructive feedback and support during our work.

Bergen, December 2014

Nils Diderik Grøttheim Algaard and Jo Magnus Tenfjord

7

1 Introduction

Bond issuing firms are sometimes presented with situations where value increasing

actions are blocked by restrictive bond covenants. The firms are thereby incentivized

to renegotiate or circumvent these covenants. Renegotiations of debt contracts are

quite common, as Sufi and Roberts (2009) find that 90% of all bank loans are

renegotiated to some extent over their maturity period. However, when it comes to

bond issues, renegotiation is more complicated as bond issue ownership is spread

across many investors. According to Bradley and Roberts (2004), renegotiation is

virtually impossible, as the Trust Indenture Act of 1939 states that a two-third

approval from external bondholders is necessary to remove covenants. One way

covenants can be removed is that the issuer repurchases the outstanding debt.

Brandon (2013) finds in his research paper that “[…] firms are more likely to

repurchase outstanding debt either by open market transactions or tender offers

when investment frictions are relatively high.” One way to do this is to issue callable

debt, which can be bought back at a pre-specified price level. Such an option comes

at a cost to the issuer. In addition to the repurchase premium above the market price

of the bond ex post, there is also a yield premium, which compensates the borrower

for refinancing risks. Whether or not a call option is added in a bond issue is therefore

a trade-off between flexibility and cost.

Kahan and Rock (2009) show how activist bondholders can pursue unenforced

breaches of covenants. These bond investors seek to gain on unenforced covenants

by either forcing a default of the bond, or threatening with default to achieve higher

repurchase price.

One way to remedy this is the inclusion of a covenant defeasance (or “Legal

Defeasance”) option. This option is granted to the bond issuer and gives them the right

to remove covenants by guaranteeing bond payments by depositing cash or other risk

free securities in a restricted escrow account. By doing this, the bondholders continue

to receive their coupons and face value at schedule and the bond issuer is released

8

from the covenants associated with the bond (Mergent, 2014). Initially, this option

may seem similar to a call option, but there are distinct differences. As the defeased

bond does not trigger any transaction for the bondholder, and thereby no gain or loss,

defeasance does not trigger any taxation. In addition, there is no reinvestment risk

since the payments of the original bond continues according to the initial schedule.

Bienz, Faure-Grimaud and Fluck (2013) show that defeasance is a mechanism that

allows to pre-package bond covenant renegotiation. They find that the inclusion of a

covenant defeasance option increases the chance of more covenants in a bond issue

and because of this, the bond issues command a lower yield and thereby lower capital

costs for the firms. Bonds with a covenant defeasance option thereby have a cost

advantage in comparison to callable bonds.

Bienz et al (2013) do not look at defeasance exercise, but focus on the inclusion of

defeasance indenture agreements. We want to explore the exercises of covenant

defeasance and examine when and why corporate bonds are defeased.

This is not a trivial question, as up to date there exists no comprehensive dataset on

the exercise of defeasance options. We use a self-developed search program to crawl

the Securities and Exchange Commission’s (SEC) database (EDGAR) and examine more

than 1.4 million US company filings to create a comprehensive dataset on covenant

defeasance exercise.

By linking our findings with Mergent’s Fixed Income Security Database (FISD), we are

able to compare our findings of covenant defeasance exercise with other US corporate

bonds.

In our total sample, we find 40 occurrences of covenant defeasance exercise in the US

corporate bond market. FISD reports that 7190 bonds have been issued with a

defeasance option, which gives a covenant defeasance percentage of 0.56%. This can

be regarded as low compared to the 12.07% of bonds that have repurchase offers

made in the FISD database.

9

When performing bond repurchases, bondholders may choose to refuse repurchase

offers. This can be to obtain higher repurchase prices due to hold-up as suggested by

Bienz et al (2013) or to force a default of a security due to breach of covenant terms

as suggested by Kahan and Rock (2009). A possible reason to exercise covenant

defeasance options may therefore be to remove any remaining bondholders after

repurchase.

Our findings show that there is indeed a link between the tender offers and covenant

defeasance. We find that 72.5% of the bonds had previous exchange or tender offers

before they were defeased. Of the defeased bonds that were tendered, the tendering

was largely successful as the majority of the tendered bonds had tender acceptance

rates above 90%. Half of the tendered issues had acceptance ratios above 80%.

Regression outputs indicate that bonds that are exchanged or tendered are more

likely to have had their defeasance option exercised.

It is possible that some industries have business traits that lead to increased use of

covenant defeasance exercise. Bienz et al (2013) show that financially constrained

firms with high growth opportunities and higher degree of uncertainty are more likely

to include the defeasance option. One example could be the pharmaceutical industry,

where companies develop drugs under tight financial constraints. Due to high

uncertainty, they are forced to accept restrictive covenants in order to secure

financing. Should they get a patent and an FDA approval for a new drug, the

uncertainty is significantly reduced, and the need for financing to put the drug to

market is increased. By exercising their defeasance option, they can remove restrictive

covenants, get better financing, and incur additional debt.

When examining the industries of the defeased bonds, we found that defeasance

exercise is distributed to a wide variety of industries. There might be indications that

companies in the casinos and gaming industry are more likely to exercise defeasance

options than other industries, but this cannot be conclusively decided. Legg and Tang

10

(2010) show that the casinos and gaming industry was seen as less exposed to

systematic risk in the period the covenant defeasance exercises were observed. It is

therefore difficult to characterize the casinos and gaming industry as having especially

high uncertainty.

One might argue that any method of removing bond covenants is a potential

substitute for covenant defeasance. We therefore wish to investigate if call options

substitute for defeasance options to remove covenants. Unlike tender or exchange

offers, the call option is exercised by the bond issuer. The bondholder cannot refuse

the exercise of the call option. This potentially limits activist activity from

bondholders.

Opposing this view, Bienz et al (2013) point out that a large number of the callable

bonds are issued at make-whole premium. Half of the bonds that carry both a call and

defeasance option have to be called at a make whole premium. A make whole

premium comprises the net present value of all outstanding payments discounted at

the treasury rate plus a premium. In comparison to the call option, the defeasance

option does not expose the investor to reinvestment risk. Finding a new investment

opportunity might not be attractive to the bondholder, especially in a low interest rate

scenario where calling might be more beneficial over defeasance to the bond issuer.

In contrast, a defeased bond exactly replicates the expected cash flows of the bond

without risk of default.

Our findings show that when examining only bonds that carry a defeasance option,

bonds with call options are not significantly less likely to exercise a covenant

defeasance option. This supports the view of Bienz et al (2013) that calling of bonds

does not substitute for defeasance, but does not conclusively prove that there is no

correlation.

Bienz et al (2013) show that there is a positive association between the number of

covenants in a bond, and the inclusion of a defeasance option. The intuition is that

11

companies are willing to accept more restrictive covenants if they can be removed ex

post. Expanding on this intuition, we believe that among bonds with the option to

defease, the number of covenants positively affects the chance of exercising

defeasance options. This is reasonable as companies that are more restricted can have

a higher chance of encountering situations where the covenants limit value-adding

corporate actions.

In the comparison of our data findings with the FISD data, we found that the number

of covenants carried by a bond is positively associated with the probability of a

defeasance option being exercised. The results are significant even when adjusted for

the higher number of covenants in the bonds with a defeasance option. This is in

accordance with our expectations.

Restrictive covenants will potentially limit the possibilities of a company to act as they

wish. Value-adding corporate actions may be restricted by the covenants of their

bonds. As covenant defeasance exercise is not without cost, we believe that

defeasance will often be exercised in conjuncture with major corporate action. This is

because a major value-adding action is required to justify the cost of defeasance. Our

findings show that defeasance exercise is often jointly observed with other major

corporate actions. 65% of the defeasance exercises had associated major corporate

events. The most frequent actions were mergers, acquisitions and refinancing.

Within this thesis, we document existing theory and major previous literature used in

section 2 and 3. All the steps used in building our dataset of defeasance exercise, and

the associated software needed is documented in section 4. In section 5, we test the

predictions presented in the introduction, using regressions and descriptive statistics.

Section 6 concludes our findings.

12

2 Institutional Background

2.1 Corporate Bonds

A corporate bond is an exchange traded fixed income security. It makes regular

coupon payments and returns its face value at the final payment date.

As long as the bond-issuing company is liable to the bondholders, the bondholders are

exposed to the risk that the bond issuer might not be able to pay back the agreed

payable amount between the parties (Bodie, Kane, Marcus, 2011).

What firm specific risks a company carries, is largely a matter of a management’s

current and future strategic and financial decisions. In most lending, there is also a

potential for agency problems. Agency problems can arise when there is information

asymmetry and when one entity’s outcome depends on a different entity’s actions on

behalf of the first entity. When the latter entity is maximizing its own benefit at the

expense of the former, an agency problem arises (Pindyck & Rubinfeld, 2005).

Brandon (2013) states that “When a firm adds risky debt to its capital structure, it

introduces a series of financial obligations, legal constraints, and incentives that can

cause conflicts between managers, shareholders and debt holders.” Myers (1977)

showed that when a firm has risky debt in its capital structure, managers acting in the

interest of shareholders might reject positive net present value investment

opportunities. This underinvestment or “debt overhang” problem occurs when a

positive net present value project decreases the value of equity because some of the

value created goes to the debt holders.

The inclusion of covenants is a common way to remedy these problems. Covenants

are usually action restricting, which limits certain actions that might increase the

bondholders’ risk of not being paid their full coupons and face value. Common

covenants are dividend restrictions, subordination of further debt, security through

collateral and change of control (Smith & Warner, 1979).

13

In some occurrences, companies are faced with potential value-adding actions like

refinancing because of interest rate changes or expansions through positive net

present value opportunities. Restrictive covenants like limitations on debt, changes in

control, or similar, might hinder the company in executing these actions. These firms

will therefore want to renegotiate the covenants of their debt to execute these value-

adding actions. However, renegotiating covenants of publicly traded debt is very

difficult and costly. Bradley and Roberts (2004) state that renegotiation of public

corporate debt is virtually impossible. The Trust Indenture Act of 1939 states that a

two-third approval requirement of the bonds not owned by the issuing company is

necessary to remove covenants.

A way to remedy a difficult covenant renegotiation situation is to buy back all the debt

owned by bondholders. If the firm manages to buy back the issue, renegotiating is no

longer a problem since the company now owns their own debt and can do as they like.

This may be a cheaper and less time consuming way than renegotiation. Indeed,

Brandon (2013) finds in his research paper that the primary motivation for debt buy-

backs are to ease debt induced investment frictions.

2.2 Debt Repurchases

There are several ways to buy back debt. Common ways are call provisions, sinking

funds, convertible provisions and tender offers (Fabozzi, 2012).

A call provision is an included option, which gives the right but not the obligation to

buy back bonds at a specific date at a specific price, usually set above the bonds’ face

value. A sinking fund is a more gradual way to repurchase bonds. The company deposit

funds into a sinking funds account administered by a trustee that repurchases the

bonds in the open market. Convertible provision is an option where the company can

convert the bond debt into equity with a pre-specified exchange price. In addition,

tender offers are often used. This is a bid to all the bondholders to sell back their bonds

to the bond issuer at a price usually set above the quoted market price.

14

2.3 Covenant Defeasance

An alternative way to remove covenants is the inclusion and exercise of a covenant

defeasance option. Covenant defeasance or “legal defeasance” is an option that is

frequently added to corporate bonds (Bienz et al, 2013). As illustrated in figure 1

below, the option allows the bond issuer to replace the bond issuer’s obligations to

pay the coupon and principal to a pre-paid and closed off escrow account. The escrow

account is administered by a bank on behalf of the depositor.

Figure 1: Illustration of the cash flows of a bond after a covenant defeasance option is exercised

As the amount is pre-paid and restricts access for the bond issuer, the bondholders

will receive the expected payments from their purchased bond. In addition, there are

no tax consequences for the bondholders. The reason for this is that there is no gain

realized for the bondholder at the point of defeasance exercise, since the bonds are

not sold. By guaranteeing their promise to pay the coupons and the principal of the

bond, issuers can detach themselves from covenants that restrict management from

executing plans that are in the company’s best interests (Mergent, 2014).

15

In modeling terms, covenant defeasance will change the pricing of the bond to the

following:

𝑷𝟎 = (
𝑪

(𝟏 + 𝒓𝒇)
𝟏 +

𝑪

(𝟏 + 𝒓𝒇)
𝟐 + ⋯ +

𝑪

(𝟏 + 𝒓𝒇)
𝒏) +

𝑭𝑽

(𝟏 + 𝒓𝒇)
𝑵

Where:

P0 = Market value of corporate bond after defeasance

C = Coupon payments

rf = Risk free spot rate

N = Years to maturity from today

n = Specific year between present date and maturity date

FV = Face value of the bond

In comparison to a regular corporate bond, the difference is the discounting factor of

the coupons and the face value. The discount rate “i” has been replaced by “rf” which

denotes the risk free rate for each period. This is done since the bond needs to be

considered risk free for the covenant defeasance to be effective.

2.4 Other Terms Related to Defeasance

Terms that are frequently used along covenant defeasance (or “Legal defeasance”)

are in-substance defeasance and Economic defeasance.

Economic defeasance is similar to covenant defeasance as the coupons and face value

for the issued bond are secured in a closed off escrow account. While it has the effect

of removing the bonds from the balance sheets of the company performing the

economic defeasance, it will not free the company from its covenants of the bond.

This is also known as in-substance defeasance.

2.5 Potential Motivation to Defease

Restrictive covenants on bonds might restrict firms from pursuing value-adding

actions. Major corporate events have the potential to change the capital structure and

16

key bond covenant financial measures. Removing such covenants through a covenant

defeasance will enable the firm to pursue previous covenant restricted corporate

actions.

Another reason to defease might be that a bondholder is speculating that the bond

issuer wants remove the bond’s covenants. Since such an action requires the consent

of bondholders, these might be able to block such efforts by refusing to accept

repurchase offers or re-negotiation of the covenants. By doing so, the bondholders

can hold the bond issuer “hostage” and demand a price for their bonds that is higher

than market value. This is known as a “Hold up problem”. The inclusion of defeasance

options can limit hold up problems (Bienz et al., 2013), but it may be necessary to

exercise the covenant defeasance option to remove hold-out investors in some cases.

Kahan and Rock (2009) show how investors may aggressively pursue bonds where the

covenants are breached, and sanctions have not been enforced. By enforcing

breached covenant terms, they can force companies to immediately repay the bond.

Exercise of covenant defeasance may be a way to remove such troublesome investors.

A breach of covenants that triggers default requires a cash payout of the outstanding

coupons and face value and often triggers legal fees. Since a riskless replication is

sufficient for defeasance, this might suggest that defeasance is less costly. However,

it is not clear if the cost of exercising a covenant defeasance is less than the cost of

managing such investors.

17

3 Previous Literature

3.1 How to gather data using a web crawler: An application using SAS to

search EDGAR

This paper by Joseph Engelberg and Srinivasan Sankaraguruswamy (2006), discusses

how to use the analytics program Statistical Analysis System (SAS) to gather and

search data from EDGAR (the SEC database). It also includes a complete copy of the

program that Engelberg and Sankaraguruswamy have written to perform searches

(henceforth called the “SAS program”). This paper provided inspiration for our search

program used in this thesis. An important piece of information gathered from this

paper is an alternate download link that uses the HTTP protocol. The SEC specifies a

FTP download link that provides significantly lower download speeds due to the need

to authorize each file for download.

There is no use of the actual code from this paper as it is written in SAS, whereas our

program is written in C#. Because data is gathered from the same source, there are

several similarities in how the programs work. However, there are some key

differences:

1. The SAS program is more geared towards doing searches on a known subset

of companies, although it can do searches on all companies. Functionality to

search a known subset of companies has not been implemented, as it has not

been needed for our purposes.

2. The SAS program downloads the forms that are requested for searching each

time a search is made. After the search is made, the data is disposed, and will

need to be re-downloaded if another search is made. This structure requires

no storage space for the forms, and there is no lengthy download time before

a search can be made. On the other hand, searches will be slower since the

form transfer rate will be considerably lower from the remote servers than

stored locally on a hard drive. This structure was probably the most

reasonable for them, given that the program is geared towards searching

18

smaller subsets of known companies. In 2006, when their paper was

published, the total number of all submitted forms was 4,249,586 compared

with 14,036,271 forms in September 2014. In addition to an increased

number of forms, the file size has increased significantly.

3. The SAS program requires the SAS software suite to execute searches and

perform editing. Our program can run without any pre-installed software on

modern Windows computers. To make changes to our program, Microsoft

Visual Studio is required. Due to SAS missing important embedded methods

compared to C#, and the inability to create a standalone program, it was less

suitable to the needs of this project.

4. The SAS program requires the user to download, merge and manipulate the

form metadata. The SRM5K has simplified this process and will automatically

download, parse and save the information at the press of a button. The SAS

program does offer the user the ability to manipulate the dataset before a

search, provided they are familiar with the SAS programming language. This

functionality is not included in our program, but can be added by a user

proficient in SQL and C#.

At present, the SAS program does not work without modification due to changes in

how the index files are structured by the SEC since the SAS program was written. It

has been written to parse index files using fixed column width, whereas index file

columns are now split using the delimiter “|”.

3.2 The Defeasance of Control Rights

This paper by Carsten Bienz, Antoine Faure-Grimaud and Zsuzsanna Fluck (2013),

discusses how the implementation of covenant defeasance can substitute for the

renegotiation of bond terms. Their findings are as follows (direct quote from abstract):

1. With the option to remove covenants, issuers are willing to accept more

action-limiting covenants ex ante.

2. The exercise price is set high enough so that the option is only exercised in the

good state.

19

3. Financially constrained firms with high growth opportunities and higher

degree of uncertainty are more likely to include this option.

4. Investors trade off the yield for reduced risk upon exercise in the good state

and higher number of covenants in the bad state.

5. Investors accept a lower yield on bonds with the option to remove covenants

even after controlling for the number of covenants.

The paper focuses on the effects on bonds that include a defeasance option, versus

ones that do not. We wish to focus on bonds where the option is actually exercised.

The paper has been a major inspiration for our thesis. The following points from this

paper are incorporated into our thesis:

1. Findings indicating that call options do not substitute covenant defeasance

due to Make-Whole provisions and risk of reinvestment.

2. Regression results showing that the number of restrictive covenants is

statistically significant and positively linked to the probability that a bond

includes a defeasance option.

3. A theory that activist investors that pursue under-enforced covenants as

described by Kahan and Rock (2009) may be dissuaded by covenant

defeasance.

4. The use of data from the Mergent Fixed Income Securities Database can be

used to complement our gathered data on defeasance in regressions.

5. A theory that the inclusion of covenant defeasance option can limit hold-up

problems where activist bondholders can resist value-adding corporate events

requiring covenant removal or renegotiation to attain a higher return for

themselves.

20

4 Data

To the best of our knowledge, there exists no comprehensive database of covenant

defeasance option exercise. Mergent’s Fixed Income Securities Database (FISD) lists

only 11 examples. There are other examples mentioned in Bienz et al. (2013) such as

Aleris, but none of these examples corresponds to the ones given by FISD. Bloomberg

does not seem to distinguish between called and defeased bonds.

Hence, we needed to crawl EDGAR in order to examine corporate filings. Using our

self-developed search program, we are able to analyze the contents of 1,233,691 8-K

and 152,076 10-K forms for covenant defeasance exercise.

In the following section, we outline the steps used in setting up our program and using

it to create the dataset.

4.1 The Search Program

The following section is a cursory introduction to the program. The code of the main

program components, as well as technical details on various components can be found

in the appendix. We recommend that anyone wishing to alter the code of the program

should study the information in the appendix. An overview of certain IT-terms that

has been used in this section is also available in the appendix.

4.1.1 Overview

SEC Resource Manager version 5K (SRM5K or “the program”) is a program designed

to search through the text of any form that has been submitted to the SEC database

(EDGAR). The program performs all the steps needed to facilitate such a search with

a minimum of user input. It has a user-friendly interface that requires no programming

or database knowledge, which makes the program easy to use for a variety of users.

The search results are provided as output in datasheets in the comma separated value

(.csv) format, which is readable by most data manipulation software.

21

The program has been designed to operate from an external hard drive. The only

prerequisite is .NET Framework 3.5 installed on the computer. Newer versions of

Microsoft Windows will usually have this pre-installed, and will install it automatically

if this is not the case. Users wishing to make changes to the program code need to

have Microsoft Visual Studio 2008 or newer installed.

The program has an offline structure that requires large amounts of storage space. If

the program is copied, the different copies of the program are not necessarily

consistent. The program independently assigns a primary key to each record. If not

every instance of the program parses the exact same index files in the exact same

order, differences can arise. This means that the downloaded forms from one hard

drive cannot be used with the result file from another. All forms are still downloaded,

and users can alternatively use SEC accession numbers as a primary key.

4.1.2 Disclaimer and Distribution

Users are permitted make changes to the program as long as the original authors are

sufficiently credited. The names of the original authors should always be visible on the

startup screen of the program. Additional authors can claim credit as long as it made

clear to the user which changes they made. The authors must authorize any

commercial use of the program or the information it generates. Any commercial use

must adhere to the terms of use of all constituent content of the program.

Should anyone wish to duplicate the program, one can simply copy the entire contents

of the hard drive containing the program to a new drive. One might want to format

the contents of the new drive before copying to avoid any producer-installed software

from interfering with the program.

4.1.3 Hardware Requirements

The program is designed to run from an external hard drive. This is done because the

forms in aggregate will use a significant amount of storage space. As more forms are

added to EDGAR with time, the amount of storage space needed will increase. At the

22

time of writing, the storage requirements are about 400GB per major form type (such

as 8-K and 10-K forms). We expect storage requirements to increase by about 50-150

GB per additional year of forms downloaded of each form type. For other less

frequently used form types, the storage requirements are significantly smaller. The

only formal requirements are that the database file and the folders containing the

forms must be in the <root>:\EDGAR folder of the hard drive the program is stored.

There are no minimum requirements for the computer running the search. Any

reasonably modern Windows computer should work. Less than 8 GB of installed and

usable RAM might create problems in the future, due to the increasing size of

individual files submitted to the SEC. 8 GB of RAM should therefore also be considered

a minimum, especially when working with large forms such as 10-Ks.

The main concern for the search speed of the program is the read speed of the hard

drive being used. The computer and the external hard drive should therefore be USB

3.0 compatible or better as this greatly enhances search speed. Solid-state drives

should offer a major performance benefit over traditional hard drives, and should be

considered for users in need of increased search speed.

4.1.4 SRM5K Program Components

The program can be divided into 5 distinct processes as shown in figure 2 below.

Figure 2: A simplified process description of the program

We found this method of dividing the necessary procedures of the program to be the

most logical. Hence, it is therefore also how the code is structured into separate units.

The description of each code block (method) is based on this structure. The entire

Download
index files

from the SEC
database

Convert
index files

into a
machine-
readable
format

Save index
information

to a database

Use stored
index

information
to download
forms from

SEC database

Search
through

downloaded
forms for the

selected
search term

23

program solution contains several additional modules, which are not described, that

does supporting operations and maintains the user interface. These are described in

“Additional Helper Procedures” in the appendix, and the supplied program source

code.

4.1.4.1 Method for Downloading Form Metadata from the SEC Website

The downloading of index files from the SEC website requires four distinct steps as

outlined in figure 3.

Figure 3: A simplification of the process necessary to download index files.

When downloading forms, it is necessary to know their address on the SEC website.

Fortunately, the SEC supplies quarterly files containing information on all the forms

made available on their webpages. The information available in these files is:

 Company Name

 Form Type

 Form Submission Date

 CIK-number

 Link/server location

This information is distributed by the SEC in files named “company.idx” on their FTP

server. The .idx format is a text format data files. They can be opened using any text

viewer, and the information is stored in plain text. The index file is stored using the

following format:

ftp://ftp.sec.gov/edgar/full-index/2002/QTR1/company.idx

This is the location of the index file for the first quarter of 2002. Because the format

of the link stays the same for all years and quarters, we can design code that alters the

URL for downloading each index file. The code will increase a number starting at 1993

and the term to be met is that the number is equal to this year. This creates a list of

Create years
from last year
in database to

today

Create
quarters for

each of those
years to today

Insert each
year and

quarter into a
URL

Download
each index file
using the URL

24

numbers representing each year between 1993 and the current year. For each year,

quarters are created and labeled from 1 to 4. For the current year, quarters are only

created until the current quarter. This is inserted into the URL template, and used to

download each SEC index file.

The file is renamed at downloading to the format <Year>-<Quarter>.idx. The file for

the first quarter of 2002 will therefore be named 2002-1.idx. They are downloaded to

the folder “MASTERINDEX” on the hard drive containing the program. Note that every

time the procedure for downloading index files is run, the contents of the

“MASTERINDEX” folder will be deleted before downloading new files.

4.1.4.2 Method for Parsing Form Metadata into Memory

The steps outlined in figure 4 are required to read the index files. Note that this

procedure does not complete a process on its own, and it must be combined with the

saver in section 4.1.4.3.

Figure 4: A simplified process chart for parsing form metadata.

In order for the program to use the information contained in the downloaded index

data files, the information needs to be parsed into a machine-readable format. The

downloaded files are in the .idx format, which is readable in visual studio using the

embedded “streamreader”-function. The program opens each file in the folder of

index files. It reads the file line by line until it encounters a line of dots. This is a data

anchor designating that the header of the file has ended and that subsequent lines

contain data. The program will then go through each item until it reaches the end of

the file.

Open each
index file

Read each
line of data

Split lines
into

variables

Save
information
to memory

Start the
saver

procedure

25

The data item can be in different formats depending on when the files where released

from the SEC. The program supports index file formats back to at least 2006. All files

downloaded from the SEC will be in the newest format.

The current data format uses a symbol delimited format where “|” is the delimiter.

The data is stored in the following order:

CIK|Company Name|Form Type|Date Filed|Filelink

A typical data line will therefore look like this:

1000180|BOEING|8-K|2014-01-22|edgar/data/1000180/0001000180-14-000007.txt

The program will split each line on the delimiter and store each item in a pre-defined

object class called DocumentInstance.

The object class contains a variable called IndexID that is not supplied with the index

file from the SEC. This is a number that is generated by the program to give each form

information item in the database a unique identifier (primary key). This is also the key

used to name the forms when they are downloaded.

By forcing information to adhere to a set specification in the initial parsing process,

miss-parsed information can be identified before reaching the database insertion

phase. This adds robustness by reducing the danger of adding erroneous data to the

database, especially since our selected database engine does not have a dedicated

date format.

4.1.4.3 Saving Form Index Data

The steps outlined in figure 5 will save the index data that is parsed into memory in

part 4.1.4.2.

Figure 5: The process of saving the index data to the database

Retrive form
index data

from
memory

Check if each
index line is
already in
database

If not in
database,

save index
line

26

Once the entire file has been read through, the database saver method is invoked. It

will go through each parsed item in the local memory, and check if it is already present

in the database. The item FileLink is used as a candidate key to determine if the record

is already present, since no other combinations of the data are robust enough to be a

candidate key. This is because the same company can submit two forms of the same

type in a single day.

The matching procedure is very time-consuming. This is partly because the database

engine lacks string-indexing capabilities, and partly because the matching procedure

prioritizes robustness and simplicity over speed. For example, to control the integrity

of the entire database, the program would have to make about 196 trillion matching

operations (14 million existing items multiplied by 14 million potentially unknown

items that need to be controlled). For each record found by the parser, the program

makes an SQL-query asking for a record with the same FileLink as the record to be

inserted. If a match is made, nothing is inserted, as the record already exists.

If no match is found the program prepares to insert the information. The information

is parameterized, which is a method of converting data items in a program to SQL-

database format before the transaction with the database takes place. This is

generally considered best practice as it reduces vulnerability to SQL-injection attacks,

and makes the SQL interchangeable between different database systems (Feuerstein,

2007). This could be useful if one would like to upgrade to a different database engine

that gives higher search performance.

A method of database insertion is used where changes are not finally saved until the

code has sent a signal to the database that all rows have been successfully inserted.

This means that if an error occurs while saving the data, all insertions made are rolled

back, and the database remains unchanged. This reduces the risk of records being

improperly inserted, and therefore increases robustness.

27

4.1.4.4 Method for Downloading Forms to Local Storage

Figure 6: A simplified model of the steps needed to download forms from the SEC database

This procedure uses the saved form index data to download the actual form to local

storage using the steps outlined in figure 6. It will download all forms of a selected

type between 1993 and the newest date in the index database. The files are

downloaded to the following location:

<Drive letter of drive the program is launched from>:\EDGAR\<Form Type>\<Year

form was submitted>\<IndexID of form>.txt

Therefore, a 10-K form with submission date 23.08.2008 and assigned index id

3856300 will be downloaded to C:\EDGAR\10-K\2008\3856300.txt when the program

is stored on the C: disk.

Downloading forms will be time consuming. Larger files (like 10-Ks) are faster to

download per gigabyte than smaller files (like 8-Ks). This is due to the slight time the

SEC database needs to handle each request. When downloading 10-Ks, the authors

have been able to download at close to the max speed of our available network (about

1.6 Mbits/s). Still, due to the amount of data, users should expect downloading a

single recent year of one form type to take several days.

In the program, all forms are download to local permanent storage, before any search

can be made. This opposes the solution chosen in the SEC-scraper made by Engelberg

& Sankaraguruswamy (2006), who download the relevant forms each time a search is

made, and disposes the data after the search is complete.

The reason the data is stored locally is that the amount of data has increased markedly

since the Engelberg and Sankaraguruswamy wrote their SEC-scraper in 2006. As

Retrive
record
from

database

Insert
server

position
into URL

Download
from

server

28

shown in figure 7, this is especially true for 10-K forms. All 10-K forms from 1993 to

2006 sum to 55.88 GB while the 10-K forms for 2013 alone sum to 95.8 GB.

Figure 7: Comparison between the number of forms and the total size of all forms per year for 10-K. Source: SRM5K

The reason for this increased amount of data is partly increased file sizes. A change

can be found around 2002-2003 when submission of HTML-forms rather than text

forms became more common. A marked increase was around 2010, as a consequence

of multimedia content being attached to forms, as shown in figure 7. This multimedia

content can be pictures, PowerPoint presentations, video etc. The program has no

method of searching through this content, as each format would require decoding

from raw code and then a codec to interpret the data. While the multimedia content

does not improve searches, and consumes a significant amount of storage space, it

was decided not to make any effort to remove this content from the form files. We

decided to keep the downloaded data identical to the data on the SEC servers. 8-K

forms have also increased in size from around 2010, as seen in figure 8. This increase

is less pronounced than for 10-K forms.

0

20

40

60

80

100

120

0

2000

4000

6000

8000

10000

12000

G
b

 p
er

 y
ea

r

N
u

m
b

er
 o

f
fi

le
s

p
er

 y
ea

r

Year

10-K data over time

Files Gb

29

Figure 8: Comparison between the number of forms and the total size of all forms per year for 8-K. Source: SRM5K

Users should note that the program will only download forms between 02.00 and

11.00 UTC. This is due to a request from the SEC that bulk downloads should be done

outside working hours, defined as between 9PM and 6AM Eastern Standard Time. The

SEC does not factor in daylight saving times, so neither does the program. If a

download is initiated within US working hours, the program will pause downloading

forms, and display a message explaining why. Downloading will start automatically at

02.00 UTC, and pause again at 11.00 UTC. An override of the restriction is

implemented for users who wish to download only a few files.

The program will indicate to Windows that it is currently performing operations, and

that it should not enter sleep mode. In practice, this method has proved somewhat

unreliable, as the computer will frequently initiate sleep mode anyway. An alternative

method of preventing sleep mode is to keep a window of a media player such as VLC

open while performing operations or the user can manually deactivate sleep and

hibernation modes in Windows.

0

10

20

30

40

50

60

0

20000

40000

60000

80000

100000

120000

140000

G
b

 p
er

 y
ea

r

N
u

m
b

er
 o

f
fi

le
s

p
er

 y
ea

r

Year

8-K data over time

Files Gb

30

4.1.4.5 Method for Searching Through Downloaded Forms

Figure 9: The simplified steps used by the program to search through SEC forms

Using the steps from figure 9, this method will go through each of the forms selected

for search through specification in the user interface. It returns a list containing the

hits made.

The user can define their search in the user interface. In the input line, the user may

input one or more distinct search strings. The user should note that the program

searches the form for the set of input characters in their exact order (string). This is

opposed to search engines such as Google, which identify whole words. The reason

for searching for strings rather than words is the large amount of extra code needed

to differentiate words from whitespaces and HTML-code. What the user reads as a

space or newline will be one of a number of different encoding options. It would also

require a robust HTM-decoder, to avoid mistaking search text for code. One possible

effect of this is that the program will return hits for search strings that are part of

another word. For example, a search for “Invest” will yield a hit when encountering

the word “Investment”.

The search procedure is not case sensitive. This is currently hard-coded into the

program, and can be changed by either recoding the program or altering the program

to make case sensitivity an option in the user interface.

The user must select the form they wish to search. A search may only be made on one

form type at a time. If one wishes to make searches on multiple form types, one must

perform multiple searches and merge the results. Although it is technically possible to

Retrive
search
options

from user
interface

Retrive
index

information
for each

year

Search
through all
forms for
each year

Look for
search term

in each
form

If term is
found,
output

information
to results

file

31

search multiple form types in one search, it has not been a prioritized feature, since it

would require a substantial amount of additional code.

It should be noted that the user can select forms for search that are not present on

the hard drive. The user should therefore download the desired form type in the

update tab before searching to insure its presence. A search made without the forms

present will end prematurely without returning any hits.

The search is made chronologically. The program will split the forms to be searched

by year, and only searches one year at a time.

The results of the search are returned in a file named “results.csv” that is stored in

“<root>\EDGAR\results.csv”. A copy of files where a hit for the specified search term

was made is saved to a folder named “RESULTFILES” that can also be found in the

“EDGAR” folder. Note that both the result file and folder is cleared each time a search

is initiated, so users should save their results elsewhere after a search has been made.

4.2 Scope of the Data

This thesis is limited to US corporate bonds since it is a large homogenous market. The

EU is also a large market, but US financial legislation is more similar across regions

than in the EU, and US bonds will therefore be more comparable. US corporate bonds

will also have a single currency, which adds to comparability. When using the search

program we chose to focus on 8-K and 10-K filings. We used these, as all significant

transactions in a company that affects stakeholders are required to be disclosed in

these filings.

4.3 Sources

The sources for our data are primarily the Securities and Exchange Commission’s (SEC)

Electronic Data Gathering, Analysis, and Retrieval (EDGAR) system. This system stores

all submissions by companies and others who are required by law to file forms with

the SEC. The SEC states that the primary purpose of the database is to increase the

32

efficiency and fairness of the securities market for the benefit of investors,

corporations, and the economy. This is done by accelerating the receipt, acceptance,

dissemination, and analysis of time-sensitive corporate information filed with the

agency. It is important to note that the EDGAR database’s filings only date back to

1993 or 1994 in some instances (SEC.gov, 2014). This database has been the

underlying data for our searching using SRM5K.

In addition to EDGAR, the Bloomberg financial database was used to triangulate

results and add data to the findings. Bloomberg L.P. is the company that owns and

services the Bloomberg financial database. The database is extensive and provides

both broad and in-depth data about most types of assets classes including equities,

government and corporate debt, money market securities and commodities. In

addition to general information about the different securities collected from SEC-

filings, the database also provides information based on external sources like major

and reputable newspapers (Bloomberg.com, 2014). The reason for our addition of this

database is its structured qualities and ease of use regarding look-up of specific

securities.

The Fixed Income Securities Database (FISD) is a database owned and maintained by

Mergent, which is a leading provider of business and financial information. FISD

contains issue details on over 140,000 corporate, corporate MTN (medium term note),

supranational, U.S. Agency, and U.S. Treasury debt securities and includes more than

550 data items. FISD provides details on debt issues and the issuers, as well as

transactions by insurance companies. It is used to examine market trends, deal

structures, issuer capital structures and other areas of fixed income debt research

(Mergent.com, 2014).

In addition to EDGAR, Bloomberg and FISD, news services like businesswire.com and

prnewswire.com was used to identify significant corporate events.

33

4.4 Search Iteration and the Data Gathering Process

In this section, the work method to identify covenant defeasance option exercises and

compile additional data about these findings is explained. An overview of the steps in

the work process is illustrated in figure 10.

Figure 10: Work processes when compiling the covenant defeasance exercise dataset

In the initial open search for “covenant defeasance”, we expected that some of the

returned results would not be valid occurrences of covenant defeasance. We defined

a “false positive” as findings that were not a valid covenant defeasance exercise and

“true positive” as a search result that was a valid covenant defeasance exercise.

Initially, the search word used in the SRM5K to find events of covenant defeasance

was “Covenant defeasance”. By doing this, 5939 hits of the 1.4 million forms were

found. When looking through these results, it was clear that most of these findings

were bonds that included a covenant defeasance option and were not an option

exercise. These false positives made it hard to identify the true positives. However, by

manually searching through some of the hits, some true positives were identified.

1
• Search for phrase "Covenant defeasance" in SRM5K

2
• Identify events

3
• Identify recurring phrases to refine search

4
• Supplement with findings in Google

5
• Check robustness by using Google’s command "Site:"

6
• Triangulate findings with the Bloomberg Database

7
• Supplement with attributes from the Bloomberg Database

8
• Identifying corporate events using SEC-forms

9
• Identifying corporate events using alternative sources

34

In addition to returning forms with the search word, the SRM5K also returns the

heading of its hits. We tried to identify headings that could indicate an exercised

defeasance option, but were not able to find any that consistently was used for

describing covenant defeasance exercises.

Since the wordings in the SEC-filings are often standardized, we checked some of our

confirmed true positives to identify standardized phrases. One recurring phrase found

in three of the true positives, was “Effected a covenant defeasance”. Other less

frequent phrases was “Executed a covenant defeasance” and “Exercised a covenant

defeasance”. When focusing the search using these phrases, the hits generated in the

SRM5K where mostly true positives.

In addition to the searches in SRM5K, Google searches where used. The main strategy

was to start using the focused search phrases “Effected a covenant defeasance”,

“Executed a covenant defeasance” and “Exercised a covenant defeasance” found

earlier. When doing these searches, a number of false positives were returned. To

resolve this, commands in Google for exclusions of standard phrases in the false

positives where used. Examples of these are “upon election”, “at any time” and “If

we”. These phrases are common in texts that state the existence of a covenant

defeasance option, but not an actual exercise of the option. By doing this, additional

exercises of covenant defeasance were found.

Google was also used to search the EDGAR database. By using the command

“site:sec.gov” in front of the search phrases, a filter is added to the search excluding

all hits not located at the site “sec.gov”, which is where the EDGAR-database is

located. When using this command on previous identified covenant defeasance

phrases, the additional findings were limited. However, previous hits from the focused

SRM5K-search were found. These findings were mixed with noise from numerous false

positives. The fact that no new hits where made, indicates that the search procedures

used in the SRM5K search where robust.

35

After having found covenant defeasance events, the Bloomberg database was used to

validate the results. If a unique identification number for the bond was not included

in the form or statements from the company, the findings were cross-checked with

other information about the bond to identify the correct bond name in the Bloomberg

database.

Since the SEC-forms where the covenant defeasance exercise was stated, did not

contain complete data about the bonds, data from the Bloomberg database were used

to supplement our dataset. From this database, data such as Employer Identification

Number (EIN), Committee on Uniform Security Identification Procedures (CUSIP),

bond class, face value, industry classification, issue date, maturity and coupon rate

was retrieved. Under the category “corporate events”, information about tender

amount, tender announcement date, tender effective dates, information about buy-

backs and other information relating to the tender was found.

The Bloomberg database does not explicitly label defeased bonds as defeased. In most

cases, the bonds are specified as “called” on the defeasance date noted in the

corporate filing. This specification was consistent with the defeasance date of our

findings. Since the defeasance dates in the corporate filings and the Bloomberg call

date match, there is reason to believe that the “call”-classification is the defeasance

date.

Some of the defeased bonds that are listed as called are also defined as “defeased” in

a text field called “Bond description notes”. This was considered as a potential source

of uncovering additional defeasance hits. After consulting with Bloomberg terminal

support, we were informed that doing a specified search isolated in the “bond

description notes” was not a feature supported by Bloomberg at this time.

Finally, data on major prior and parallel events with the covenant defeasance was

collected. The primary source of information was the forms where the defeasance

36

exercise was found. In addition, Google searches were also used for finding events for

each company. These searches were limited to the months around the covenant

defeasance date.

It is important to point out that without our self-developed search program, the true

positive findings would be far less extensive. The data obtained from Bloomberg could

only be extracted from the Bloomberg database after being pinpointed by SRM5K. The

Bloomberg database is extensive, but is constrained by a user interface that does not

allow quarries identifying covenant defeasance exercise. Solely relying on Bloomberg

searches would therefore not have been feasible to create a usable dataset for our

thesis.

4.5 Entity Attributions

A number of attributions for our confirmed defeasance findings were collected. These

are listed, explained and documented below.

CompanyName: Notes the bond issuers company name.

CUSIP: A unique 9-character alphanumeric code that identifies a North American

financial security for the purposes of facilitating clearing and settlement of trades.

EmployeeIdentificationNumber (EIN): Also known as Federal Employer Identification

Number or FEIN. This number is unique for every incorporated company.

CompanyBusinessType: Bloomberg’s standard industry classification.

FormType: In which form type the entity was found

FormDate: The date of which the form has been recorded in EDGAR.

CIK-Number: Central Index Key. This number is unique number the U.S. Securities and

Exchange Commission gives to each company that files forms electronically.

BondMaturityDate: Date of maturity for the bond.

BondCoupon: Coupon payments in percent of face value.

BondFaceValue: The total face value of the bond.

TenderType: If the bondholders have received an offer to sell back their bonds to the

bond issuer and what type of offer they have been given.

http://en.wikipedia.org/wiki/Alphanumeric
http://en.wikipedia.org/wiki/North_America
http://en.wikipedia.org/wiki/Security_(finance)
http://en.wikipedia.org/wiki/Clearing_(finance)
http://en.wikipedia.org/wiki/Settlement_(finance)

37

AmountTendered: The dollar-amount of the bond that the company managed to buy

back of the bonds face value.

AmountTendered (%): The percentage amount of the bond that the company

managed to buy back in relation to the initial face value.

BondClass: Information about the debt priority of the bond.

TenderAnouncementDate: The date a tender offer for a specific bond is announced.

TenderEffectiveDate: The date a defeasance option for a specific bond is exercised.

BondInfoLink: Notes a link to alternative attribution source.

BondInfoLink2: Notes an additional link to alternative attribution source, if applicable.

SearchWordSECResourceManager: Notes the search word used to find the entity in

the SEC Resource Manager.

CorporateEvent: States if a description of a significant corporate event in the recent

months around the covenant defeasance date is found. This might be acquisitions,

mergers or refinancing.

TenderLink: Source of tender offer information.

CorporateEventDate: States the exact date of the corporate event.

CorporateEventLink: States the source of the corporate event finding.

CorporateEventDescription: Describes in short, the corporate event.

38

5 Empirical Analysis

In this section, we present an empirical analysis on the bond issuer’s decision to

exercise their covenant defeasance options.

5.1 Dataset and Variables

We wish to compare bonds that have and have not been defeased, to see if there are

any significant variables that affect the exercise of covenant defeasance options. This

is done by merging the bonds found to be defeased, with the Fixed Income Securities

Database containing US-issued corporate bonds. A series of regressions are

undertaken to examine if a set of variables affect the likelihood of a defeasance option

being exercised. The examined variables are chosen based on potential effects found

while creating the dataset, and significant findings by Bienz et al (2013) on the

inclusion of covenant defeasance options.

5.1.1 Dependent Variable

The dependent variable is a binominal variable designating if a bond has exercised a

covenant defeasance option and is called Is Defeased. The bonds that either the FISD

or we have flagged as defeased have the variable set to true.

Only 21 out of the 40 bonds that were found to be defeased are present in the FISD

database. Therefore, only these 21 bonds represent the positive case of covenant

defeasance exercise.

Summary statistics of all the variables can be found in Table 1 in the Appendix.

5.1.2 Probit Model

The Probit regression model is used to investigate if there exists a significant

relationship between an associated variable and exercise of defeasance options for

predictions where regression analysis is practical.

39

The dependent variable is binominal, designating if a bond has been defeased. Using

a standard linear OLS estimator on a binominal dependent variable is possible, but

implies that the change in predicted probability is the same for all given values of X.

A Probit model, which is a nonlinear probability model, is therefore used. The model

measures the probability that Y=1 using the cumulative standard normal distribution

function 𝛷(𝑧) The Probit regression model is defined as:

𝑃𝑟(𝑌 = 1|𝑋) = 𝛷(𝛽0 + 𝛽1𝑋)

𝛷 is the cumulative normal distribution function and z = β0 + β1X is the “z-value” or

“z-index” of the Probit model (Bienz, 2014).

The regression output is displayed in table 3 in the appendix.

5.2 Prediction 1: Defeasance options are seldom exercised

Due to the lack of trustworthy information on defeasance exercise, and the lack of

reporting on the subject by major financial institutions such as Bloomberg, we

hypothesize that the exercise of defeasance options is rare.

Our findings total 40 confirmed cases of exercised covenant defeasance options. Our

findings range from bonds being defeased between late 1996 and late 2013. The

bonds face values vary between $ 31.1 million and $ 1.25 billion with a mean of $ 278

million and a median of $ 204 million.

Of our dataset of 40 defeased bonds, we were able to join 21 of these findings with

the FISD dataset. The total number of defeasible bonds in FISD is 7190, which make

the defeased amount of FISD bonds equal to 0.29%. Comparing all 40 defeased bonds

to the 7190 in FISD will still yield a percentage of only 0.56% defeasance options

exercised. In comparison, the FISD database indicates that repurchase attempts are

made on 12.07% of US bonds issued, which makes defeasance exercise seem quite

uncommon in comparison.

40

The limited use of covenant defeasance options might explain the lack of explicit

reporting of this from Bloomberg and other institutions. It might also indicate that

other methods of covenant removal are attempted before a covenant defeasance is

exercised. An example of this is Las Vegas Sands, which in 2002 refinanced its debt.

This involved issuing new bonds and retiring existing bonds. In this transaction, the

existing debt was first tendered and one of the issues failed to gain a complete tender.

The defeasance option was exercised after this tender attempt failed (Las Vegas

Sands, 2002).

5.3 Prediction 2: Bond issuers attempt repurchase prior to exercising a

covenant defeasance option

Bienz et al (2013) suggest that bond issuers will prefer to attempt to neutralize the

covenants through repurchase. However, they may need to remove any hold-out or

activist investors as the bondholder can refuse any repurchase offer, potentially

making a complete repurchase prohibitively expensive. Covenant defeasance may

therefore be used to remove the hold-outs. We therefore expect tender or exchange

offers to have a positive effect on the chance of exercising a covenant defeasance

option.

By examining the forms and statements where we found covenant defeasance

exercises, we found that many of the firms that exercised the option also made a

tender offer prior to the exercise of the option.

Tendering N %

Tendered 29 72,5 %

Not tendered 11 27,5 %

Total 40 100 %
Table 1: Exhibits how many of the total bonds that were and were not tendered

Indeed, table 1 shows that 72.5% of the total issues did a tender offer of their bonds

before undertaking a covenant defeasance.

41

Tendering Descriptive Statistics N Mean Median Highest Lowest

Tendering % 29 74,5 % 81,2 % 99,98 % 16,6 %
Table 2: Descriptive statistics of tender offers on defeased bonds

Table 2 shows descriptive statistics of tender acceptance percentages of the tendered

bonds. Bond issues usually got a high acceptance ratio, with a mean of 74.5% and a

median of 81.2%. The highest acceptance ratio was 99.98% and the lowest was 16.6%.

The mean was lower than the median, since most of the observations of the sample

have a high acceptance ratio and some observations have a relatively low acceptance

ratio.

Figure 11: Illustration of tender acceptance and our defeased bond sample

Figure 11 categorizes the number of defeased bonds according to tender percentages

with an interval of 10%-points for each category. Acceptance percentages above 90%

dominate our sample and few bonds have tender acceptance percentage of less than

50%.

0
1
2
3
4
5
6
7
8
9

10
11
12

90% + 90% - 80% 80% - 70% 70% - 60% 60% - 50% 50% - 40% 40% - 30% 30% - 20% 20% - 10% 10% - 1%

N
u

m
b

er
 o

f
d

ef
ea

se
d

 b
o

n
d

s

Offer acceptance percentage

Number of Defeasance and Tendering Percentage

42

Figure 12: Number of defeasances with offer acceptance percentages above 90%

Figure 12 takes a closer look at the bonds that have a tender acceptance above 90 %,

by categorizing the defeasance hits at a 1%-point interval. The majority of these

covenant defeasance exercises have tender rates above 99%. Only two of the eleven

observations have tender acceptance percentages less than 98%. Since all of these

bonds manage to tender a large part of the issues, the cost of defeasance relative to

the size of the bond issue is marginal.

Following in table 3 is the regression output of the variable Tender or Exchange Offer,

which is a dummy variable, designating if a bond has made at least one tender or

exchange offer. This variable is used to represent repurchase attempts. In

specifications (1) and (4), the variable All covenants is omitted to test the sensitivity

of the Tender or Exchange Offer to omitted variable bias. Specifications (3) and (6) are

made using heteroskedasticity-robust standard errors. In specifications (4), (5) and (6),

the datasets are restricted to only bonds that contain a defeasance option.

0

1

2

3

4

5

6

7

99% + 99% - 98% 98% - 97% 97% - 96% 96% - 95% 95% - 94% 94% - 93% 93% - 92% 92% - 91% 91% - 90%

N
u

m
b

er
 o

f
d

ef
ea

se
d

 b
o

n
d

s

Offer acceptance percentage

Number of Defeasance and Tendering Percentage

43

Specification Number (1) (2) (3) (4) (5) (6)

Data set

All bonds
Only bonds with defeasance

options

Tender or Exchange
Offer

0.421*** 0.305* 0.305* 0.341** 0.307* 0.307*

 (0.159) (0.170) (0.177) (0.171) (0.173) (0.179)

Covenant count N Y Y N Y Y

Robust standard
errors

N N Y N N Y

Only defeasible bonds N N N Y Y Y

Table 3: The regression output on the variable indicating repurchase offers using Is Defeased as dependent variable

Table 3 shows that across all specifications, the regression coefficient is positive,

which is consistent with our prediction that repurchase is positively associated with

covenant defeasance exercise.

The regression coefficients are significant on at least the 90% level in every

specification of the model in table 3. Specifications (1) and (4) show a higher

significance level, which likely is due to omitted variable bias, because the variable

Tender and Exchange Offer is omitted. This may indicate that the results are sensitive

to omitted variable bias, and missing causal factors can therefore inflate the

significance of the included factors.

Specifications (2), (3), (5) and (6) give very similar regression coefficients and standard

errors. This indicates that repurchase attempts and the inclusion of defeasance

options have a low degree of correlation, which is consistent with the results of the

correlation matrix in table 2 in the appendix.

Although the significance of the coefficient is only 90% in some specifications, we

know that the variable Tender or Exchange Offer used in the regression is

underreported. Of the 21 instances of covenant defeasance that could be joined to

the FISD database, 7 are reported as having a repurchase offer made. Our research

indicates that the true number of repurchase attempts is 13 out of the 21. This

44

discrepancy has not been corrected in the regression dataset as it could create a bias

towards the corrected data. The regression output might therefore not give an

entirely accurate description of the importance of repurchase in covenant defeasance

exercise.

Some bond issuers go as far as explicitly stating that the covenant defeasance option

is exercised to remove remaining bondholders after repurchase. Indeed, Hudbay

Minerals state in their annual information form, 27.03.2007, that they first

repurchased bonds through the open market in the years 2005 and 2006. At the end

of 2006, they made a tender offer for the total amount. When this tender amount

failed to acquire the whole bond issue, they exercised a covenant defeasance option

for the remaining amount outstanding (Hudbay Minerals, 2007). Other examples are

Hovnanian Industries and Revlon Industries. Revlon first attempted an exchange offer,

followed by a tender offer before the company defeased the remaining issue (Revlon,

2005). Hovnanian did an exchange offer, market buybacks and a secondary exchange

offer before defeasing the remaining bonds (Bloomberg, 2014).

The conclusion is that repurchases and covenant defeasance exercise has a positive

relationship. Companies repurchase bonds and finally exercise the defeasance option

to remove the bondholders who do not accept their repurchase offers. These

repurchase offers often have a high degree of acceptance.

5.4 Prediction 3: Defeasance exercise is more common in industries with high

uncertainty regarding future financial performance

There is a possibility that companies in certain industries have stronger incentives to

exercise a covenant defeasance option. Bienz et al (2013) showed that financially

constrained firms with high growth opportunities and higher degree of uncertainty

are more likely to include the defeasance option. This might cluster covenant

defeasance exercise in industries exposed to these traits.

45

Industry N %

Aerospace & Defence 1 2,5 %

Apparel & Textile Products 1 2,5 %

Auto Parts Manufacturing 1 2,5 %

Casinos & Gaming 7 17,5 %

Consumer Products 8 20,0 %

Containers & Packaging 1 2,5 %

Electrical Equipment Manufacturing 1 2,5 %

Exploration & Production 1 2,5 %

Food & Bevarages 1 2,5 %

Homebuilders 1 2,5 %

Metals & Mining 3 7,5 %

Motion Picture Equipment 1 2,5 %

Petrolium Refining 1 2,5 %

Power Generation 1 2,5 %

Publishing & Broadcasting 1 2,5 %

Refining & Marketing 1 2,5 %

Restaurants 2 5,0 %

Retail - Consumer Discretionary 2 5,0 %

Tobacco 1 2,5 %

Transportation & Logistics 1 2,5 %

Utilities 1 2,5 %

Wireless Telecommunications Services 2 5,0 %

Sum 40 100 %
Table 4: Covenant defeasance exercise by industry classification of the bond issuer

Table 4 uses Bloomberg’s industry definitions and shows that defeasance has occurred

over a broad range of industries. However, two categories stand out, which are

casinos & gaming and consumer products.

Figure 13: An overview of firms with exercised covenant defeasance options in the casinos and gaming industry

AZTAR
CORPORATION; 1

EMPRESS FINANCE; 1

HARD ROCK HOTELS;
1

ISLE OF CAPRI
CASINOS INC; 1

LAS VEGAS SANDS
INC; 1

MAJESTIC STAR
CASINO LLC; 1

RIVIERA
CORPORATION; 1

Defeasance within Casinos & Gaming

46

Figure 13, shows that the category casinos & gaming is populated by a diverse group

of companies, with no reoccurrence among the firms. The only connection or

similarity that was found was the fact that the companies are part of the same

industry. It can therefore be assumed that these observations are independent.

Figure 14: An illustration of defeasance in the casinos & gaming industry by year

The exercises of the covenant defeasance options in the industry over time were

graphed to look for correlation with economic trends or other non-firm specific

factors. As illustrated in figure 14, the observations are spread across a 9-year period

and show no signs of patterns.

0

1

2

3

1998 1999 2000 2002 2007

#
 o

f
d

ef
ea

sa
n

ce

Casinos & Gaming Defeasance

47

Figure 15: Illustrates defeasance in the consumer products industry

Figure 15 shows that the exercises of the covenant defeasance in the category

consumer products were also evenly spread across the time period and show no

indication of significant clustering of defeasance option exercises.

Figure 16: Firms in the consumer products industry that have exercised covenant defeasance options

0

1

2

3

1995 1997 2005 2009 2011 2013

#
 o

f
d

ef
ea

sa
n

ce

Consumer Product Defeasance

REVLON
CONSUMER

PRODUCTS CORP;
5; 62,50%

SCOTT PAPER
COMPANY; 1; 12,50%

SEALED AIR
CORP/DIVERSEY

HOLDING; 2;
25,00%

Defeasance within Consumer Products

48

The exercise of defeasance options in the consumer products industry is illustrated in

figure 16. The company Revlon Incorporated dominates the defeasance findings in this

category. In the category, the company represents 5 of 8 observations (62.5%) of the

category and 12.5% of our total findings.

Revlon Incorporated is an American company listed on the NYSE in New York. More

specifically, it produces cosmetics, fragrances, skin and personal care products. It has

revenues of $ 1.49 BN, 6,500 employees, a market capitalization of $ 1.79 BN, and has

historically been a financially healthy company (Revlon.com, 2014).

Figure 17: Revlon Incorporated defeasance history

Since Revlon has a history of exercising defeasance options, inquiries where done into

when these exercises were made. Figure 17 shows that the five observations of

covenant defeasance are spread across a 16-year time period, where the double

observation in 2005 is linked to a refinancing where two bonds were involved. The

1997 observation is linked to a merger with Cosmetic Center Company (Baltimore Sun,

1996). For the 2013 and 2009 observations, significant corporate events could not be

found.

0

1

2

3

1997 2005 2009 2013

#
 o

f
D

ef
ea

sa
n

ce

Revlon Defeasance History

49

Company No. of Defeasance Corporate Event Date

PRICE COMMUNICATIONS WIRELESS 2 Acquisition 16.08.2002

THE RESTAURANT COMPANY/PERKINS 2 None found 01.08.2005

SEALED AIR CORP 2 Acquisition 02.12.2011
Table 5: Overview showing companies with more than one covenant defeasance option, reason for defeasance and

defeasance date.

In addition to Revlon Incorporated, table 5 shows that there are three additional

companies that have had more than one defeasance observation. While Revlon

Incorporated has its defeasances spread over a period of time, Price Communication,

Perkins (The Restaurant Company) and Sealed Air Corporation’s defeasances are

undertaken on more than one bond at the same date. Price Communication Wireless

and Sealed Air Corporation did this due to acquisitions. Due to the fact that these two

companies are associated with the same defeasance events, they cannot be

considered independent.

With the exception of casinos and gaming, the industry of a company does not seem

to affect the exercise of covenant defeasance options. The casinos and gaming

industry is exposed to risks such as the issue and renewal of gaming licenses. Indeed,

Aztar Corporations gaming division declared bankruptcy after failing to obtain such a

license in 2010. However, Legg and Tang (2010) show how the casino industry

historically has experienced low sensitivity to economic downturns, with a revenue

growth of 3.1% during the recession of 2001. As most of the defeasance exercise

observations are located around this period, it is difficult to argue that investors would

see this industry as particularly risky. In addition, it cannot be determined that casinos

and gaming are overrepresented, due to the small sample size. We therefore cannot

conclude that industries exposed to high uncertainty are any more likely to exercise a

covenant defeasance option.

5.5 Prediction 4: Callability is a substitute for covenant defeasance

According to our model, it is possible that callability will negatively affect the

probability of defeasance exercise, as issuers can call the bond and thereby remove

50

all covenants. The bondholders cannot resist this method of covenant removal, since

the decision to exercise the option lies wholly with the bond issuer. This eliminates

the potential hold-up problems that might occur in repurchase offers.

Opposing the above view, Bienz et al (2013) point out that a large number of the

callable bonds are issued with a make-whole premium. Of the defeasible bonds, 41.8%

include such a premium. Bondholders also incur income tax on the proceeds of the

call. The defeasance option does not expose the investor to reinvestment risk. Finding

a new investment opportunity might not be attractive for the bondholder, especially

in a low interest rate scenario where calling might be more beneficial over defeasance

for the bond issuer. In contrast, a defeased bond exactly replicates the expected cash

flow of the bond without risk of default.

In the regression, we investigate the relationship between a bond including a call

option given by the independent variable Callable, and the exercise of covenant

defeasance options. The intuition is that bond issuers who have the ability to call a

bond may be less likely to exercise the covenant defeasance option, as they prefer to

effect the call option instead. The relationship between exercising a call and exercising

a covenant defeasance option is not investigated, as a bond cannot be terminated in

more than one way. The regression output concerning the call option is outlined in

table 6.

Specification
Number

(1) (2) (3) (4) (5) (6)

Data set

All bonds
Only bonds with defeasance

options

Callable -0.553* -0.336 -0.336 -0.424 -0.291 -0.291
 (0.284) (0.301) (0.289) (0.299) (0.314) (0.301)

Covenant count N Y Y N Y Y

Robust standard
errors

N N Y N N Y

Only defeasible
bonds

N N N Y Y Y

Table 6: The regression output on the variable indicating callability using Is Defeased as dependent variable

51

The focus of the regression output is mainly on specifications (4), (5) and (6) in table

6, which are only conducted on bonds that have a defeasance option. This is because

the effect on callability on the exercise of defeasance options is only relevant when

the bond issuer has the choice between both options. Bond issuers who have not

included a defeasance option may be forced to exercise their call option to remove

covenants, even if they would have preferred exercising a covenant defeasance

option. As we wish to investigate the exercise and not the inclusion of the defeasance

option, this can potentially skew the results. Specifications (1) and (4) omit the

variable All covenants, while specifications (3) and (6) use heteroskedasticity-

consistent standard errors. The regression output concerning the call option is

outlined in table 6.

Table 6 shows that the variable designating if the bond has a call option has low

significant impact on the likelihood of exercising a covenant defeasance option. It is

significant on the 90% level in specification (1) that excludes number of covenants and

includes bonds that do not contain a defeasance option. In all other specifications, the

variable is not significant. It is possible that the significance in specification (1) is due

to an omitted variable bias, as the variable Tender or Exchange Offer is not included

in the model. The variable is also not significant when the included bonds are reduced

to only those that do not include a covenant defeasance option. This is important, as

the callability variable is only interesting to us when the bondholder has a choice

between calling and exercising a covenant defeasance option. When given such a

choice, we find no indications that bond issuers who have the option to call are less

likely to exercise a covenant defeasance than those who do not have this option. This

supports the theory presented by Bienz et al (2013) that call options do not substitute

covenant defeasance, due to refinancing risk and make-whole premiums of call

options. The lack of significance does not disprove that there is exists a relationship

between callability and covenant defeasance exercise.

5.6 Prediction 5: Defeased bonds contain more covenants

Our theory is that companies that are more restricted by covenants will have more

incentive to exercise a covenant defeasance option. This is because a company with

52

many restrictive covenants is more likely to encounter situations where the covenants

inhibit value-adding action, and might have to exercise the covenant defeasance

option.

Bienz et al (2013) have shown that the inclusion of covenant defeasance options is

positively associated with the number of covenants in a bond. The bond issuers are

therefore willing to accept more restrictive covenants, because they have the option

to remove them. This can lead to a potential bias, as any significant relationship

between defeasance exercise and number of covenants, might be due to the bonds

being defeasible instead. Specifications (5) and (6) in table 7 therefore include only

defeasible bonds in the regression dataset, and we focus on the results of these three

specifications.

In the regression output outlined in table 7, the independent variable All covenants is

the number of restrictive covenants in each bond. This is used as a proxy for the

degree of restriction. Note that specifications (1) and (4) are omitted as they do not

include the All covenants variable. Specifications (3) and (6) use heteroskedasticity-

robust standard errors.

Specification
Number

(2) (3) (5) (6)

Data set

All bonds
Only bonds with defeasance

options

All Covenants 0.0468*** 0.0468*** 0.0307* 0.0307***
 (0.0169) (0.0108) (0.0182) (0.0114)

Robust standard
errors

N Y N Y

Only defeasible
bonds

N N Y Y

Table 7: The regression output on the variable measuring covenant restriction using Is Defeased as dependent

variable

We predict that companies that are more restricted will be more inclined to exercise

their covenants defeasance options. We therefore expect a positive relationship

between the number of covenants and the exercise of defeasance options. In all

53

specifications seen in table 7, the regression coefficient is positive, which is in

accordance with our expectations.

There is a marked decrease in the explanatory power of the All covenants variable

when the dataset is restricted to only include bonds with a defeasance option. This is

in accordance with the positive relationship between the number of covenants and

inclusion of covenant defeasance options documented by Bienz et al (2013). Bonds

with fewer covenants are less likely to include defeasance options, and the average

number of covenants will therefore be higher when the bonds without a defeasance

option are excluded. The average number of restrictive covenants is 8.06 for all bonds

and 9.45 for the bonds that contain a defeasance option. This multicollinearity can

also be seen in the correlation table in table 2, where the correlation coefficient is

0.42.

In specifications (5) and (6), where the dataset only includes defeasible bonds, the

regression coefficients in table 7 are still significant at the 90% and 99% level

respectively. This indicates that among bonds that include a defeasance option, those

with a higher number of covenants are more likely to exercise their covenant

defeasance options.

In conclusion, the regressions indicate that there is a strong positive correlation

between the number of restrictive covenants in a bond, and covenant defeasance

exercise. This is in accordance with our assumption that bonds that are more

restricted will have more reason to exercise a covenant defeasance than less

restricted bonds. It is also interesting that the number of covenants is still significant

when only bonds with defeasance options are included. This eliminates the potential

bias created by the correlation between the number of covenants and the inclusion

of a defeasance option documented by Bienz et al (2013).

54

5.7 Prediction 6: Defeasance is exercised in conjuncture with major corporate

events

We predict that the need to remove restrictive covenants arises when the company is

undergoing major corporate actions. This is because the restrictive covenants will limit

the company’s freedom to act, and a major value-adding action is needed to outweigh

the cost associated with covenant defeasance. Such actions may be mergers,

acquisitions and refinancing.

The analysis is conducted only on the defeased bonds, and is not incorporated into

the regression analysis. This is because corporate events are somewhat difficult to

quantify. No dataset available to the authors lists such actions. Attempts at using

proxies such as change in debt was unsuccessful, as it proved to have weak correlation

to manually gathered information on corporate events. The types of events that may

be restricted by covenants are numerous, and does not necessarily give the same

effects on potential proxies. As such, the analysis is done only on the defeased bonds,

and does not include an associated regression.

Figure 18: Significant corporate events among companies that have exercised a defeasance option

Merger, 6, 15,00%

Acquisition, 12,
30,00%

Liquidation, 1, 2,50%
Refinancing, 7, 17,50%

None found, 14,
35,00%

Related Corporate Events and Defeasance

55

Figure 18 shows related corporate events for the total sample of defeasance option

exercise. We find that 65% of the defeasance exercises are linked to a corporate event

like an acquisition, merger or refinancing. This link was often explicit, where the

company stated that the defeasance exercise took place to facilitate the corporate

action. 45% of the covenant defeasance options were exercised prior to a merger or

acquisition, 17.5% were related to a refinancing of a company and one observation

where in connection with a liquidation. In 35% of the exercises, no significant

corporate event was found.

Figure 19: Corporate events in the sample that did not tender the defeased bond

Merger; 1; 9,09%

Acquisition; 5; 45,45%

Liquidation; 1; 9,09%

Refinancing; 1; 9,09%

None found; 3; 27,27%

Related Corporate Events and No Tender Offer

56

Figure 20: Corporate events in companies that attempted tender before exercising the defeasance option

Figures 19 and 20 show the related corporate events of the companies that did and

did not tender their bonds before defeasance exercise. The companies that did not

tender were more involved in mergers and acquisitions (55% of the sample) than the

companies that did tender (40% of the sample). In addition, the companies that did

not tender had only 1 observation of refinancing vs. 6 in the companies that did

tender.

In the case of the merger between Price Communication and Verizon in 2002, a

defeasance option is exercised so that the company can circumvent the covenant

“Change of Control”. The bond agreement explicitly state that the bond should be

redeemed immediately one day following the closing date of the transaction (Price

Communications Cellular Holdings, 2000). In the same filing, it is stated that Price

Communications will exercise a covenant defeasance of the outstanding bonds

provided that the merger goes through and that the acquirer, Verizon, provided the

necessary cash agreed upon to exercise such a defeasance.

In 1996, Revlon acquired the company Prestige Fragrance & Cosmetics (Baltimore Sun,

1996). This required the issuance of more debt, which was restricted by covenants in

Merger; 5; 17,86%

Acquisition; 6; 21,43%

Refinancing; 6; 21,43%

None found; 11; 39,29%

Related Corporate Events and Tender Offer

57

existing bonds. The company thereby defeased the existing bonds and issued new

bonds for Revlon’s own financing needs and for the acquisition.

Covenant defeasance exercise seems to be more likely to happen in the events of

major corporate events that breaches or potentially breaches the covenants of a

company’s outstanding bond issues. The major found corporate events are mergers,

acquisitions or refinancing. This is according to our expectations.

5.8 Limitations of the Analysis

The dataset of defeased bonds contains only 40 records of defeasance exercise. This

creates problems when the data is compared to the FISD dataset. Only 21 of the 40

bonds that were found to be defeased was found in the FISD database, even after

attempted manual matching. We have not found any indication that there are any

variables that affect what bonds cannot be found in the FISD. The existence of such a

bias cannot be disproven. This can skew the results of the regression due to attributes

of the bonds that have not been matched. A larger dataset of exercised defeasance

options would increase the robustness of the regression. However, we have high

confidence that most instances of covenant defeasance exercise have been identified

in our dataset. As mentioned in section 4.4, alternative methods of identifying

covenant defeasance yielded no new instances of covenant defeasance exercise

compared to using the self-developed search program.

The low number of defeasance exercise has also precluded the inclusion of category

variables, as there are too few observations in each category. An attempt was made

to include dummy variables for industry, but there were no more than four

observations in each industry variable. This was not acceptable as the number of firms

in each industry was more important to the statistical significance, than the number

of firms that had defeased. The decision to not include the industry variables can give

omitted variable bias. This can increase the significance of the variables that have

been included in the regression.

58

Some variables where omitted from the regression due to missing observations. Bienz

et al (2013) show how bond issuer fundamentals such as the fixed asset ratio can

affect the inclusion of covenant defeasance options. It is possible that such variables

could be significant when examining defeasance exercise. When attempting to include

fixed assets from COMPUSTAT, missing values further reduced the number of

defeasance observations in the regressions to 13. This loss of data fidelity was not

considered as justified by the variable potential significance. The companies that could

be found in COMPUSTAT appeared to be larger companies, which could create

potential bias towards large companies in regressions. A more robust dataset on

company fundamentals could improve the analysis, but this was not available to the

authors.

We must therefore admit the possibility of omitted variable bias in the regression

output, due to missing variables concerning bond issuer fundamentals, and omitting

category variables.

59

6 Conclusion

In this thesis, we illustrate the composition of covenant defeasance exercise in the

period 1993 to mid-2014. With the use of a self-written computer search program, we

were able to search through 1.4 million SEC-filings and make a unique dataset of

exercised covenant defeasance options. By linking our dataset to FISD and by

performing empirical analysis, we were able to gain insights into why and how

covenant defeasance options are exercised.

In the examined time period, we find 40 exercised covenant defeasance options.

These are spread across a wide variety of industries and are quite evenly distributed

through the time period. A higher number of exercises than we expected are observed

in the casinos and gaming industry, but the number of observations is not high enough

to conclusively show a difference between this and other industries.

Covenant defeasance options are usually exercised in conjunction with a tender offer

where the bond issuer attempts to buy back the bond before exercising the

defeasance option. This indicates that the defeasance option might be costlier to

exercise than buying back the bonds in the market. In a majority of the cases, exercises

are most often performed prior or after a major corporate event like mergers,

acquisitions or refinancing.

We find little indication that call options substitute for defeasance exercise, as bonds

with the option to call does not exercise their defeasance options significantly less

often. This supports previous literature on the subject by Bienz et al (2013) showing

that call options does not substitute defeasance options.

Through the creation of a unique dataset, this thesis gives insights into the exercises

of covenants defeasance options. We also document specific connected traits that can

help understand the use of these options. Even though covenant defeasance options

are often included in bond issues, there is little information about covenant

defeasance exercise. Familiarity with these options to both holders and the affected

60

party might be limited. The insights in this thesis can be of use to holders of the option

or potential affected parties, to better understand the potential contractual

consequences of entering such agreements.

61

Appendix

Table 1: Summary Statistics of Regression Variables

We present summary statistics, including the mean, the standard deviation, the

minimum and the maximum for a sample of 10604 US corporate bonds. The

information is from the Fixed Income Securities Database, with the exception of the Is

Defeased variable, which is from the authors’ original research. Tender or Exchange

Offer, Callable, Has Defeasance Option and Is Defeased are dummy variables, and their

mean is therefore given as percentages to improve readability. The included variables

are whether the covenant defeasance option of the bond is exercised, whether the

bond has had at least one tender or exchange offer made, whether the bond is

callable, the number of restrictive covenants on the bond, and whether the bond has

a defeasance option included.

Variable N Mean Std. Dev. Min Max

Is Defeased 10604 0,19 % 0,043 0 1

Tender or Exchange Offer 10604 12,07 % 0,326 0 1

Callable 10604 27,24 % 0,445 0 1

All Covenants 10582 8,06 4,868 0 26

Has Defeasance Option 10604 67,80 % 0,467 0 1

62

Table 2: Covariance Matrix

This table shows the statistical relationship between the dependent and independent

variables. It is calculated using the full FISD dataset of all 10607 corporate US-owned

bonds. The variable Has Defeasance Option is included although it is not an

independent variable. It has moderate correlation with the independent variable All

Covenants. The regression specifications (4) (5) and (6) are for this reason done on

only bonds that has a defeasance option.

Is

Defeased

Tender or
Exchange

Offer
Callable

All
Covenants

Has
Defeasance

Option

Is Defeased 1,00

Tender or Exchange
Offer

0,03 1,00

Callable -0,02 -0,06 1,00

All Covenants 0,04 0,17 -0,36 1,00

Has Defeasance Option 0,02 0,11 -0,23 0,42 1,00

63

Table 3: Regression Outputs

We run Probit regressions with Is Defeased as the dependent variable to test predictions 1-4. Is Defeased takes value one when the defeasance
option is found to have been exercised, and zero otherwise. We include the variables that drive the exercise of defeasance option as
hypothesized: The number of covenants, if the bond is callable and if a tender or exchange offer has been made on the bond. We compare
specifications 1-3 with 4-6 to control for the relationship between the number of covenants and inclusion of defeasance options. Specifications
4-6 have regressions made only on defeasible bonds. Specifications (1) and (4) omit the variable for number of covenants, to control the
sensitivity of the remaining variables to under-specification. Specifications (3) and (6) are done using robust standard errors to control for
potential multicollinearity indicated in the correlation matrix. Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

Specification Number (1) (2) (3) (4) (5) (6)

Dependent Variable Is Defeased Is Defeased Is Defeased Is Defeased Is Defeased Is Defeased

Tender or Exchange Offer 0.421*** 0.305* 0.305* 0.341** 0.307* 0.307*

 (0.159) (0.170) (0.177) (0.171) (0.173) (0.179)
Callable -0.553* -0.336 -0.336 -0.424 -0.291 -0.291

 (0.284) (0.301) (0.289) (0.299) (0.314) (0.301)
All Covenants 0.0468*** 0.0468*** 0.0307* 0.0307***

 (0.0169) (0.0108) (0.0182) (0.0114)
Constant -2.904*** -4.109*** -4.109*** -2.830*** -3.845*** -3.845***

 (0.0884) (0.548) (0.602) (0.0943) (0.571) (0.626)

Observations 10 604 10 570 10 570 7 190 7 182 7 182
Pseudo R-squared 0,0446 0,0717 0,0717 0,0268 0,0443 0,0443

Covenant count N Y Y N Y Y

Robust standard errors N N Y N N Y

Only defeasible bonds N N N Y Y Y

64

Code for Downloading Index Files

This code relates to section 4.1.4.1, and contains all the steps that facilitate the

downloading of index files from the SEC webpages.

// Method to only save index files for the last quarter in the

database and after. Used to quickly update the records to present

day, but will not legacy control.

 private void GetQuickIndexFiles(BackgroundWorker bw)

 {

 //Deletes all index files in the index folder as they

might be incomplete/outdated

 string Savepath = (@AppDir + ":\\EDGAR\\EDGARINDEX\\");

 System.IO.DirectoryInfo directory = new

System.IO.DirectoryInfo(Savepath);

 directory.Empty();

 //Gets the current year and quarter

 Int32 ThisYear = DateTime.Now.Year;

 Int32 ThisQuarter = Research.GetQuarter(DateTime.Now);

 //Gets the newest date currently in the database

 DateTime maxdate = getmaxdate();

 //Gets the quarter of the newest date

 Int32 MaxQuarter = Research.GetQuarter(maxdate);

 //Creates year-items for between today and last date in

database

 for (int y = maxdate.Year; y <= ThisYear; y++)

 //If the year to be downloaded is this year, we need

to check which quarters to download

 if (y == ThisYear)

 if (ThisQuarter >= MaxQuarter)

 {

 for (int q = Research.GetQuarter(maxdate); q <=

ThisQuarter; q++)

 DownloadIndex(y, q,bw);

 }

 else

 {

 for (int q = 1; q <= ThisQuarter; q++)

 DownloadIndex(y, q, bw);

 }

65

 else

 for (int q = 1; q <= 4; q++)

 DownloadIndex(y, q,bw);

 bw.ReportProgress(1, "Done downloading index files");

 }

Code for Parsing Index Files to Memory

This code relates to section 4.1.4.2 and contains the code necessary to read the index

files into memory.

 public void ReadFile(bool Quicksearch, BackgroundWorker bw)

 {

 // Sets the adress of the index file folder

 string sti = @AppDir+":/Edgar/EDGARINDEX/";

 //creates a string array of all the filenames in the

index file folder

 string[] F = Directory.GetFiles(sti);

 //Finds the newest record in the database.

 DateTime maxdate = getmaxdate();

 //Goes through each index file in the folder

 foreach (string Filename in F)

 {

 bw.ReportProgress(1,"Parsing file " +Filename);

 //Initiates the quarter and year variables for

helping the saver

 int lookupyear = 0;

 int lookupquarter = 0;

 //Creates a new document feed list to contain the

records from one index file

 List<DocumentInstance> _DocumentFeed = new

List<DocumentInstance>();

 //Opens the index file in the reader, that reads the

file one line at a time

66

 using (System.IO.StreamReader IndexText = new

System.IO.StreamReader(Filename))

 {

 Boolean Nyttformat = false;

 DateTime Result;

 String IndexLine = String.Empty;

 Int32 cik;

 IndexLine = IndexText.ReadLine();

 //Goes through the file untill it finds a line

of dashes, indicating the end of the header and start of the data.

 while (IndexLine.IndexOf("---------------------

-------------------") == -1)

 {

 // There are two main formats of the index

files. The old format had set width for each data item, while the

new one separates the items using | as a delimiter.

 //If the items are separated by | instead of

set with spaces, we set the nyttformat bool to true

 if (IndexLine.IndexOf("CIK|") == -1)

 { }

 else

 Nyttformat = true;

 IndexLine = IndexText.ReadLine();

 }

 //Reads an extra line down to move from the

dashed line to the first record line.

 IndexLine = IndexText.ReadLine();

 // Read each line untill there are no more lines

in the file

 while (IndexLine != null)

 {

 //Declares a single docment instance object

to hold a single record

 var _e = new DocumentInstance();

 //If the file is of the new format as

determined above, we split the line into a string array on the |

symbol

67

 if (Nyttformat)

 {

 //Splits the line

 String[] IndexItems =

IndexLine.Split('|');

 //Insert the relevant data items into

the relevant object class entities.

 _e.CompanyName = IndexItems[1];

 _e.FormType = IndexItems[2];

 //Uses tryparse in case the cik is

corrpted(ie. not just numbers)

 if (Int32.TryParse(IndexItems[0], out

cik))

 _e.CIK = cik;

 string dateitem = IndexItems[3];

 // Tries to parse the publication date

using a specified format. If it fails to report a date, the

pblicationdate will b null. This item will be subject to change

should the SEC change the date format.

 if (DateTime.TryParseExact(dateitem,

"yyyy-MM-dd", CultureInfo.InvariantCulture, DateTimeStyles.None, out

Result))

 _e.PublicationDate = Result;

 _e.FileLink = IndexItems[4];

 }

 // If the index file is of the old

format, the items are separated by set width. This is a less robust

system that also limits possible company name length to 61 characters

 // This method should never be invoked

if one only uses freshly downloaded index files, as even old index

files have been updated to the new format on EDGAR.

 //I left it in just in case.

 else

 {

 // The first number in the substring

method represents the start index position in the string, the second

specifies the length of the substring that should be retrived after

the index position.

68

 // The .trim() method removes any

leading and trailing blank spaces from the retrived string.

 _e.CompanyName = IndexLine.Substring(0,

61).Trim();

 _e.FormType = IndexLine.Substring(61,

10).Trim();

 //Tries to parse the CIK into an integer

 if

(Int32.TryParse(IndexLine.Substring(74, 10).Trim(), out cik))

 _e.CIK =

Convert.ToInt32(IndexLine.Substring(74, 10).Trim());

 // The set width format uses two

different date formats. This determines which to use.

 if (IndexLine.Substring(84,

10).IndexOf("-") == -1)

 {

 string dateitem =

IndexLine.Substring(84, 10).Trim();

 if

(DateTime.TryParseExact(dateitem, "yyyyMMdd",

CultureInfo.InvariantCulture, DateTimeStyles.None, out Result))

 _e.PublicationDate = Result;

 }

 else

 {

 string dateitem =

IndexLine.Substring(84, 14).Trim();

 if

(DateTime.TryParseExact(dateitem, "yyyy-MM-dd",

CultureInfo.InvariantCulture, DateTimeStyles.None, out Result))

 _e.PublicationDate = Result;

 }

 _e.FileLink = IndexLine.Substring(98,

50).Trim();

 }

 //Sets the lookupyear to the year of the item

parsed. Thus, the last item parsed will determine what year the index

file is for.

 lookupyear = _e.PublicationDate.Year;

69

 lookupquarter = Research.GetQuarter

(_e.PublicationDate);

 // If the quick search method has been

invoked, only files with a publication date the same or later than

the newest in the database will be added.

 // Otherwise all files will be parsed

 if (Quicksearch == true)

 {

 if (_e.PublicationDate >= maxdate)

 _DocumentFeed.Add(_e);

 }

 else

 _DocumentFeed.Add(_e);

 //Readies the next line in the document to

be read

 IndexLine = IndexText.ReadLine();

 //Loops to read the next line in the document

 }

 }

 bw.ReportProgress(1,"Found " + _DocumentFeed.Count);

 //Invokes the saver to save the items parsed from

the index file

 Saver(_DocumentFeed,lookupyear,lookupquarter,bw);

 //Loops to the next index files to be parsed

 }

 bw.ReportProgress(1, "Done parsing");

Code for Saving Index Information to the Database

This code relates to section 4.1.4.3 and contains the code necessary to save data to

the database

public static void Saver(List<DocumentInstance> lur,int lookupyear,int

lookupquarter,BackgroundWorker bw)

 {

 //If no items are parsed, we quit this method

 if (lur.Count <= 0)

 return;

70

 //The information needed to conect to the database. Appdir

contains the driveletter if the drive the program is run from

 string cs = "Data

Source="+AppDir+":\\EDGAR\\edgar_INDEX.sqlite;Version=3;";

 Int64 Maxindex = 0;

 //Sets the connection to the database

 SQLiteConnection conn = new SQLiteConnection(cs);

 bw.ReportProgress(1,"Saving records for year "+

lookupyear.ToString() + " quarter "+lookupquarter.ToString());

 {

 //Opens the database connection

 conn.Open();

 //Declares a transaction on the connection. This ensures

no data is commited to the database untill all items are inserted without

errors. This ensures partial insertions are not made

 //when an error is encountered. The data is stored only

when the transaction is commited.

 var transaction = conn.BeginTransaction();

 //try-catch loop to handle errors on insertion

 try

 {

 // new list to contain the existing records from the

database. This data is used to check if the data to be inserted exists in

the database allready.

 List<DocumentInstance> h = new

List<DocumentInstance>();

 var cmd = new SQLiteCommand();

 cmd.Connection = conn;

 cmd.Transaction = transaction;

 var cmd2 = new SQLiteCommand();

 cmd2.Connection = conn;

 //Sql to find the highest index id allready in the

database. This is used to create new indexid itms(primary key)

 cmd2.CommandText = "Select MAX(indexid) from

raportindex";

 var Maxid = cmd2.ExecuteReader();

 while (Maxid.Read())

71

 {

 Maxindex = Convert.ToInt64(Maxid[0]);

 }

 //We add one to the index id retrived to prepare for

inserion

 Maxindex++;

 cmd2.Dispose();

 //Sql to find existing items in the database from the

year and quarter that the parsed file is for. We check the new data agianst

this list to avoid duplicate entries

 cmd2.CommandText = "Select Filename from raportindex

where strftime('%Y',datefiled) = '" + lookupyear + "' and

(((cast(strftime('%m', datefiled) as integer) -1) / 3)+1) = " +

lookupquarter+"";

 //Execute the get existing items command

 var p = cmd2.ExecuteReader();

 //Reads the found records from the database result

variable to the document instance list in local memory, so that we can

dispose the command.

 while (p.Read())

 {

 var _q = new DocumentInstance();

 _q.FileLink= (""+p[0]);

 h.Add(_q);

 }

 //Dispose the command, so that we are ready for

insertion.

 cmd2.Dispose();

 // This method compares the filelink atribute in the

list of existing database items with the filelinks in the parsed data. We

use filelink as it is the only candidate key in the

 //parsed data. There can be multiple forms of the same

type by the same company on the same time. Maching on non-indexed strings

like this is verry cpu and time itensive however.

 //The method returns the list object wic will contain

all records where the parsed filelink was not found in the database

72

 var list = from g in lur

 where !(from o in h

 select o.FileLink)

 .Contains(g.FileLink)

 select g;

 //If no records that didn't allready exist where found,

we exit the method to parse the next text file

 if (list.Count() < 1)

 return;

 //Saves each item to the database.

 foreach (var Item in list)

 {

 cmd.Connection = conn;

 cmd.Transaction = transaction;

 //Parameterize all atributes of the item. This is

slightly overkill on this program from a security standpoint(as the database

is completely open) but it is still good practice

 AddParameter(cmd.Parameters, "@IndexID", Maxindex,

DbType.Int64);

 AddParameter(cmd.Parameters, "@CompanyName",

Item.CompanyName, DbType.String, 62);

 AddParameter(cmd.Parameters, "@FormType",

Item.FormType, DbType.String, 10);

 AddParameter(cmd.Parameters, "@CIK", Item.CIK,

DbType.Int64);

 AddParameter(cmd.Parameters, "@DateFiled",

Item.PublicationDate, DbType.DateTime);

 AddParameter(cmd.Parameters, "@FileName",

Item.FileLink, DbType.String, 50);

 //Define the insertion string

 cmd.CommandText = "Insert into RaportIndex

(IndexID,CompanyName, FormType, CIK,DateFiled,Filename) VALUES

(@IndexID,@CompanyName,@Formtype,@CIK,@DateFiled,@FileName)";

 //Add item to database(it is not completly saved

untill the transaction is committed)

73

 cmd.ExecuteNonQuery();

 // Add one to the index id to prepare for the next

insertion

 Maxindex++;

 }

 //If all items in the list are saved correctly, this

method commits the changes to the database.

 transaction.Commit();

 //Closes the connection

 conn.Close();

 }

 // If any errors are encounterd douring insertion, this

method catches them

 catch (Exception)

 {

 bw.ReportProgress(1, "Error, rolling back");

 //We roll back any changes made to the database in this

method, meaning any records that was inserted before the error was thrown

is not inserted.

 transaction.Rollback();

 bw.ReportProgress(1, "Finished rolling back");

 }

 finally

 {

 if (conn.State == ConnectionState.Open)

 conn.Close();

 }

 }

 }

Code for Downloading SEC Forms to Local Storage

This code relates to section 4.1.4.4 and contains the code used to download the SEC

forms themselves to the local hard drive.

74

public void GetMasterList(string formtype)

 {

 string aarSQL = "Select * From formyears;";

 string cs = "Data

Source="+AppDir+":\\EDGAR\\edgar_INDEX.sqlite;Version=3;";

 string GetYear;

 System.IO.StreamWriter ErrorList = new

System.IO.StreamWriter(AppDir+":\\EDGAR\\errorlist.TXT");

 SQLiteConnection conn = new SQLiteConnection(cs);

 conn.Open();

 var cmd = conn.CreateCommand();

 cmd.CommandText = aarSQL;

 bw.ReportProgress(1,"Getting distinct years from

database");

 var aar = cmd.ExecuteReader();

 List<String> aaar = new List<String>();

 while (aar.Read())

 {

 aaar.Add("" + aar[0]);

 }

 conn.Close();

 foreach (string ar in aaar)

 {

 SQLiteConnection iconn = new SQLiteConnection(cs);

 iconn.Open();

 GetYear = "Select IndexID, FileName, Companyname,

Datefiled from raportindex where strftime('%Y',Datefiled)='" + ar +

"' and FormType like '" + formtype + "'";

 var icmd = iconn.CreateCommand();

 string savepath = @AppDir+":\\EDGAR\\" + formtype +

"\\" + ar + "\\";

 if (!Directory.Exists(savepath))

 {

 Directory.CreateDirectory(savepath);

 }

 icmd.CommandText = GetYear;

75

 bw.ReportProgress(1,"Getting " + formtype + "s for

year " + ar);

 var f = icmd.ExecuteReader();

 List<DocumentInstance> g = new

List<DocumentInstance>();

 while (f.Read())

 {

 var _e = new DocumentInstance();

 _e.IndexID =Convert.ToInt32(f[0]);

 _e.FileLink = "" + f[1];

 _e.CompanyName = "" + f[2];

 _e.PublicationDate = Convert.ToDateTime(f[3]);

 g.Add(_e);

 }

 iconn.Close();

 WebClient Request = new WebClient();

 //Request.Credentials = new

NetworkCredential("anonymous", "nhhpost@gmail.com");

 foreach (var d in g)

 {

 // Television recording is beginning. Enable

away mode and prevent

 // the sleep idle time-out.

 OmIgjen:

 SetThreadExecutionState(

 ES_CONTINUOUS |

 ES_SYSTEM_REQUIRED |

 ES_AWAYMODE_REQUIRED);

 if (DateTime.UtcNow.Hour >= 02 &&

DateTime.UtcNow.Hour < 24)

 {

 string url =

"http://www.sec.gov:80/Archives/" + d.FileLink;

 if (!File.Exists(@AppDir+":\\EDGAR\\" +

formtype + "\\" + ar + "\\" + d.IndexID.ToString() + ".txt"))

76

 {

 try

 {

 bw.ReportProgress(1, "Saving file "

+ d.IndexID + ".txt PublicationDate " +

d.PublicationDate.ToShortDateString() + " Company " +

d.CompanyName.ToString());

 Console.WriteLine(" Saving file " +

d.IndexID + ".txt");

 Request.DownloadFile(url,

@AppDir+":\\EDGAR\\" + formtype + "\\" + ar + "\\" +

d.IndexID.ToString() + ".txt");

 }

 catch (WebException ex)

 {

 ErrorList.WriteLine(d.IndexID + ";"

+ d.FileLink + ";" + ex.InnerException);

 bw.ReportProgress(1,"Error

downloading company" + d.IndexID.ToString());

 StreamWriter err = new

StreamWriter(@AppDir+ ":\\EDGAR\\" + formtype + "\\" + ar + "\\" +

d.IndexID.ToString() + ".txt");

 err.WriteLine("Error Downloading");

 err.Close();

 }

 }

 }

 else

 {

 bw.ReportProgress(1, "Current time within US

working hours, Download paused");

 System.Threading.Thread.Sleep(60000);

 goto OmIgjen;

 }

 }

77

 }

 bw.ReportProgress(1, "Download complete");

 SetThreadExecutionState(ES_CONTINUOUS);

 ErrorList.Close();

 }

 private void cmdDoDownload_Click(object sender, EventArgs e)

 {

 string Formtype = cmbUpdate.Text;

 bw.WorkerReportsProgress = true;

 bw.WorkerSupportsCancellation = true;

 bw.DoWork += new DoWorkEventHandler(delegate(object o,

DoWorkEventArgs args)

 {

 BackgroundWorker b = o as BackgroundWorker;

 GetMasterList(Formtype);

 // report the progress in percent

 });

 bw.ProgressChanged += new

ProgressChangedEventHandler(

 delegate(object o, ProgressChangedEventArgs args)

 {

 string b = args.UserState as string;

 lblProgress.Text = b;

 });

bw.RunWorkerAsync();

 }

78

 }

}

Code for Searching Downloaded Forms for Specified Search String

This section relates to section 4.1.4.5 and contains the code that reads through the

forms, and returns result to a data file.

public void GetMasterList(string formtype)

 {

 string aarSQL = "Select * From formyears;";

 string cs = "Data

Source="+AppDir+":\\EDGAR\\edgar_INDEX.sqlite;Version=3;";

 string GetYear;

 System.IO.StreamWriter ErrorList = new

System.IO.StreamWriter(AppDir+":\\EDGAR\\errorlist.TXT");

 SQLiteConnection conn = new SQLiteConnection(cs);

 conn.Open();

 var cmd = conn.CreateCommand();

 cmd.CommandText = aarSQL;

 bw.ReportProgress(1,"Getting distinct years from

database");

 var aar = cmd.ExecuteReader();

 List<String> aaar = new List<String>();

 while (aar.Read())

 {

 aaar.Add("" + aar[0]);

 }

 conn.Close();

 foreach (string ar in aaar)

 {

 SQLiteConnection iconn = new SQLiteConnection(cs);

 iconn.Open();

 GetYear = "Select IndexID, FileName, Companyname,

Datefiled from raportindex where strftime('%Y',Datefiled)='" + ar +

"' and FormType like '" + formtype + "'";

 var icmd = iconn.CreateCommand();

79

 string savepath = @AppDir+":\\EDGAR\\" + formtype +

"\\" + ar + "\\";

 if (!Directory.Exists(savepath))

 {

 Directory.CreateDirectory(savepath);

 }

 icmd.CommandText = GetYear;

 bw.ReportProgress(1,"Getting " + formtype + "s for

year " + ar);

 var f = icmd.ExecuteReader();

 List<DocumentInstance> g = new

List<DocumentInstance>();

 while (f.Read())

 {

 var _e = new DocumentInstance();

 _e.IndexID =Convert.ToInt32(f[0]);

 _e.FileLink = "" + f[1];

 _e.CompanyName = "" + f[2];

 _e.PublicationDate = Convert.ToDateTime(f[3]);

 g.Add(_e);

 }

 iconn.Close();

 WebClient Request = new WebClient();

 //Request.Credentials = new

NetworkCredential("anonymous", "nhhpost@gmail.com");

 foreach (var d in g)

 {

 // Television recording is beginning. Enable

away mode and prevent

 // the sleep idle time-out.

 OmIgjen:

 SetThreadExecutionState(

 ES_CONTINUOUS |

 ES_SYSTEM_REQUIRED |

 ES_AWAYMODE_REQUIRED);

 if (DateTime.UtcNow.Hour >= 02 &&

DateTime.UtcNow.Hour < 24)

80

 {

 string url =

"http://www.sec.gov:80/Archives/" + d.FileLink;

 if (!File.Exists(@AppDir+":\\EDGAR\\" +

formtype + "\\" + ar + "\\" + d.IndexID.ToString() + ".txt"))

 {

 try

 {

 bw.ReportProgress(1, "Saving file "

+ d.IndexID + ".txt PublicationDate " +

d.PublicationDate.ToShortDateString() + " Company " +

d.CompanyName.ToString());

 Console.WriteLine(" Saving file " +

d.IndexID + ".txt");

 Request.DownloadFile(url,

@AppDir+":\\EDGAR\\" + formtype + "\\" + ar + "\\" +

d.IndexID.ToString() + ".txt");

 }

 catch (WebException ex)

 {

 ErrorList.WriteLine(d.IndexID + ";"

+ d.FileLink + ";" + ex.InnerException);

 bw.ReportProgress(1,"Error

downloading company" + d.IndexID.ToString());

 StreamWriter err = new

StreamWriter(@AppDir+ ":\\EDGAR\\" + formtype + "\\" + ar + "\\" +

d.IndexID.ToString() + ".txt");

 err.WriteLine("Error Downloading");

 err.Close();

 }

 }

 }

 else

81

 {

 bw.ReportProgress(1, "Current time within US

working hours, Download paused");

 System.Threading.Thread.Sleep(60000);

 goto OmIgjen;

 }

 }

 }

 bw.ReportProgress(1, "Download complete");

 SetThreadExecutionState(ES_CONTINUOUS);

 ErrorList.Close();

 }

 private void cmdDoDownload_Click(object sender, EventArgs e)

 {

 string Formtype = cmbUpdate.Text;

 bw.WorkerReportsProgress = true;

 bw.WorkerSupportsCancellation = true;

 bw.DoWork += new DoWorkEventHandler(delegate(object o,

DoWorkEventArgs args)

 {

 BackgroundWorker b = o as BackgroundWorker;

 GetMasterList(Formtype);

 // report the progress in percent

 });

 bw.ProgressChanged += new

ProgressChangedEventHandler(

 delegate(object o, ProgressChangedEventArgs args)

 {

 string b = args.UserState as string;

 lblProgress.Text = b;

82

 });

bw.RunWorkerAsync();

 }

 }

}

The Database

The index data is stored in an offline database that accompanies the program. It

contains the information parsed from the master index files from SEC.gov.

The database is in the SQLite format. This database format was chosen because it is

designed to be a lightweight offline system to accompany programs. It is often used

in mobile applications to store resources needed by the program. Initially we used

Microsoft SQL Server and Oracle MySQL in the project. However, we found that these

database programs did not meet our requirements, since these programs need to

have a running database server instance to make requests. This was incompatible with

our desire to keep the entire program self-contained on a hard drive.

SQLite is functionally quite similar to SQL Server or MySQL. The main differences are

certain differences in SQL code syntax, and a lack of a set and indexed date format.

There are also substantial differences in search performance, especially in text

matching. This is one of the reasons some procedures in the program have a long

execution time.

The database consists one table named FormIndex containing the data on all forms

available through Edgar. These items are:

83

 CompanyName: The full legal name of the company at time of form

submission.

 CIK: The Central Index Key of the submitting company. A primary key that is

unique to each business entity.

 Formtype: The type of the submitted form in its alphanumerical short form

(i.e. 10-K 8-K 424B2 etc.). For an explanation of each form type, see sec.gov

 DateFiled: The day the form was registered as submitted.

 Filename: The location of the file on the SEC servers. Also contains the SEC

accession number.

The database also contains a view that outputs all available years.

 A view is a preconfigured query that is loaded each time the view is called. The view

has the following query:

select distinct strftime('%Y',datefiled) as 'year' from Raportindex Order by

strftime('%Y',datefiled)

It uses the “distinct” clause that makes each unique hit repeat only once. This reduces

a list of the year of each form submitted, to a list of the years in the database. This

view is used by several procedures to perform operations year by year. The lack of a

dedicated date format requires using the strftime function to parse the date from a

text format to a date-logic enabled format.

At time of writing (September 2014), the database contains the information on 14 092

692 records and occupies about 1,5GB of space. The database is unsecured, and can

be accessed and edited by anyone that can gain access to the file. For database

management, we have been using the SQLite Manager Plugin for the Mozilla Firefox

web browser. A complete list of SQLite management software can be found on the

SQLite website http://www.sqlite.org/cvstrac/wiki?p=ManagementTools . The

database file is found at: <DriveLetter>:\EDGAR\EDGAR_Index.sqlite

The data in the database can be exported for use in a different program. Simply select

the RaportIndex form in SQLite Manager, and press the “export” button to save the

84

data in CSV-format. This format can be opened in most data manipulation software

such as Microsoft Excel, STATA and Minitab. Note that the sheer number of forms in

the database may preclude the file from being opened in some programs.

The data can also be manipulated directly in SQLite Manager. This requires knowledge

of SQL and the SQLite specific syntaxes used. A summary of the specifics of SQLite can

be found at http://www.sqlite.org/lang.html, but using this site will require a basic

understanding of SQL.

We have made the decision not to save the content of the forms into the database,

but keep them as separate text files on the hard drive. This was done for two main

reasons:

 Maintaining file integrity: The files are all stored as individual .txt files

on the SEC server, and we wish to alter the forms as little as possible

while downloading them. Our concern is that formatting and structure

that could be useful in a search could be lost if the text is parsed into a

database.

 Technical limitations: The largest file we have downloaded is more than

400MB large. This would have to be parsed into a single

VARCHAR(MAX) cell in the database. The theoretical max size that can

be fitted into a SQLite VARCHAR(MAX) cell is one billion characters, or

bytes. 400MB is equal to 419 430 400 bytes, or a bit less than half the

theoretical max size. We believe that file sizes will increase as more

multimedia items are embedded into forms, and that the theoretical

max size of will soon be reached. The size of the largest annual report

increased from 250MB in 2012 to more than 400MB in 2013.

Many users might be more comfortable with individual files, than database items.

There is also a risk that inexperienced users extract too many records at a time, and

thereby risks crashing their computers. The risk of inadvertently opening a large

number of text files by inexperienced users seems much smaller.

85

The most important argument against storing the forms as individual files is a possible

decrease in search performance, and increased difficulty in determining the integrity

of the forms. The form downloader has therefore been structured to do a full integrity

check of the historical files each time it is run.

An Alternative Method of Structuring the Data

The program searches forms by opening all forms of the relevant type, and reading

their entire content looking for the search term every time a search is made. This is a

“brute force” way of searching that is quite slow and requires a lot computing power.

Searches can take several hours potentially excluding time-sensitive users.

The alternative would have been to create an index of all words in all forms. This is

done by creating a reference to every single word in every single document in a

database. The database will comprise of a table that contains all the words ever used

in any form, a table of all forms submitted (similar or identical to the one we have

created for the program) and a hit table showing where a word is encountered in a

form. Since there is a large degree of reuse of words across all forms, the list of unique

words should be a lot quicker to query than all forms. When the words that are search

for is located in the words table, a lookup can be made in the word-hit table.

Running searches in this way is a lot faster since the logical position of a hit in the

dataset can be deduced from the primary key of the words in the search. This structure

is similar to what Google and WRDS uses, and offers quick searches, and better

possibilities to offer the system to a wider audience through a web portal.

The downside to this structure is that the indexing all forms is an immensely time,

storage and computational power intensive procedure. It requires a centralized

database, a web service and the associated user interface, and frequent administrator

attention. Any administrators would need to be IT professionals. The code that parses

the text would need to be a lot more sophisticated than it is to properly separate

words, while ignoring HTM, and other code.

86

Overall, the costs of implementing such a structure are bigger than the benefits, for

the purposes of this paper.

Mac Version

There have been made requests for a Mac OS X version of the program. This has not

been a priority during this project, but the use of C# for .NET as coding language was

partly made to facilitate porting to other platforms. By using the Mono framework,

we believe that the program can be ported to Mac OS X and Linux. The Mono project

compatibility tool indicates that the opening splash screen and the method to prevent

sleep mode are the only unsupported methods in the project. The database driver

(SQLite) is also listed as unsupported, but it should be supported through separate

resource packs. Some procedures such as the file addresses will need to be recoded

to match the Mac file address format as well. One will also naturally need a computer

running Mac OS X to perform debugging.

Threading

Operations in a program are executed in the order indicated by the code. The program

will read one line of code, do the operations that line command, and go to the next

line. Usually, this is not a problem as most simple operations are executed so fast as

to not be perceivable by humans, so that the queue of commands is executed before

the next user input happens.

In the program, several methods take a long time to execute. In order to keep the user

interface responsive, it is necessary to run these methods on their own “threads”. A

thread is a separate execution path that executes the code it is ordered to do, while

keeping the main program thread free to execute other code, such as handling user

input and updating the user interface. The thread can send information to the main

thread such as progress and completion status. This is evident in the program for

example when during a search, the progress bar updates. A search without a separate

thread would make the entire program appeared to have “hanged” or “crashed” until

87

the search completes, since any new commands would be in the back of the execution

queue, behind the search.

The threading procedure can also be used to increase the performance by dividing

execution paths on many simultaneous threads. When searching, the performance is

to a large degree limited by the speed the hard drive can locate and load the file to

memory. In a single thread search, the hard drive will remain idle while the program

searches the file, and will only activate when the search is finished, and a command

to load a new file is received. It also means that the search can also only use one

processor core at a time.

The program uses a procedure that can split the search of individual files between a

dynamically changing number of threads, based on what gives the highest

performance. This method is embedded in newer versions of Visual Studio (.NET 4.0+),

but as the program is in .NET 3.5, a user created method by Rob Volk is used with small

modifications. This ensures that because the different thread will be in different states

of execution, there will nearly always be a queue of requests to the hard drive for form

files. If file-reading performance was not the limiting factor, a suitable number of

threads to completely occupy the next performance bottleneck will be executed. This

ensures that the maximum hardware limited search speed is reached, no matter the

hardware configuration. It also spreads the search over all available physical CPU

cores, where a single thread search can only use one core at a time. It might make the

computer unavailable to execute other work while searching due to the large amount

of computing resources occupied by the program.

Apart from a change in how the method is declared, this code is entirely the work of

Rob Volk. All credit and big thanks goes to him.

public static void EachParallel<T>(this IEnumerable<T> list,

Action<T> action, BackgroundWorker bw)

 { //Method retrived from http://robvolk.com/parallel-

foreach-loop-in-c-3-5/

 //Code by Rob Volk June 19. 2009

88

 // enumerate the list so it can't change during execution

 // TODO: why is this happening?

 list = list.ToArray();

 var count = list.Count();

 if (count == 0)

 {

 return;

 }

 else if (count == 1)

 {

 // if there's only one element, just execute it

 action(list.First());

 }

 else

 {

 // Launch each method in it's own thread

 const int MaxHandles = 64;

 for (var offset = 0; offset <= count / MaxHandles;

offset++)

 {

 // break up the list into 64-item chunks because

of a limitiation in WaitHandle

 var chunk = list.Skip(offset *

MaxHandles).Take(MaxHandles);

 if (bw.CancellationPending == true)

 return;

 // Initialize the reset events to keep track of

completed threads

 var resetEvents = new

ManualResetEvent[chunk.Count()];

 // spawn a thread for each item in the chunk

 int i = 0;

 foreach (var item in chunk)

 {

 resetEvents[i] = new

ManualResetEvent(false);

89

 ThreadPool.QueueUserWorkItem(new

WaitCallback((object data) =>

 {

 int methodIndex =

(int)((object[])data)[0];

 // Execute the method and pass in the

enumerated item

 action((T)((object[])data)[1]);

 // Tell the calling thread that we're

done

 resetEvents[methodIndex].Set();

 }), new object[] { i, item });

 i++;

 }

 // Wait for all threads to execute

 WaitHandle.WaitAll(resetEvents);

 }

 }

 }

Additional Helper Procedures

These code snippets are not integral to the main procedures of the program, but are

necessary since both main procedures and the user interface use them. Many of these

procedures could have been integrated into other methods, but are separate methods

to enable re-using of the same code.

// Method retrived from

http://www.codeproject.com/Questions/191236/Function-to-find-

Current-Quarter-of-the-Year

 public static int GetQuarter(this DateTime dt)

 {

 return (dt.Month - 1) / 3 + 1;

 }

 //Method retrived from

http://stackoverflow.com/questions/1288718/how-to-delete-all-files-

and-folders-in-a-directory

90

 // Code by Adam Robinson

 public static void Empty(this System.IO.DirectoryInfo

directory)

 {

 foreach (System.IO.FileInfo file in

directory.GetFiles()) file.Delete();

 foreach (System.IO.DirectoryInfo subDirectory in

directory.GetDirectories()) subDirectory.Delete(true);

 }

 public static List<string> GetFormTypes(string AppDir)

 {

 //Method that gets all the different types of SEC forms

contained in the database for populating the user interface

 SQLiteConnection conn = new

SQLiteConnection(GetConnectionString(AppDir));

 List<String> FormTypes = new List<string>();

 conn.Open();

 var cmd = conn.CreateCommand();

 cmd.CommandText = " Select Distinct Formtype from

raportindex order by formtype";

 var r = cmd.ExecuteReader();

 while (r.Read())

 {

 FormTypes.Add("" + r[0]);

 }

 return FormTypes;

 }

 public static string GetConnectionString(string AppDir)

 {

 //Method for centrally storing the connection string to

the database, so that if it needs to be altered

 //it only needs to be done once here.

 string cs = "Data Source=" + AppDir +

":\\EDGAR\\edgar_INDEX.sqlite;Version=3;";

 return cs;

 }

 public static string Appdir()

 {

91

 //Method to find the drive letter of the hard drive the

program is run from

 string aplpath =

Path.GetDirectoryName(Application.ExecutablePath);

 string AppDirectory = aplpath.Substring(0, 1);

 return AppDirectory;

 }

 public static DateTime getmaxdate()

 {

 //Method that gets the newest date that is registred in

the database.

 DateTime Maxdate = DateTime.MaxValue;

 string AppDir = Appdir();

 string cs = "Data Source=" + AppDir +

":\\EDGAR\\edgar_INDEX.sqlite;Version=3;";

 SQLiteConnection conn = new SQLiteConnection(cs);

 var cmd = new SQLiteCommand();

 cmd.Connection = conn;

 conn.Open();

 cmd.CommandText = "Select Max(Datefiled) from

raportindex";

 var res = cmd.ExecuteReader();

 while (res.Read())

 Maxdate = Convert.ToDateTime(res[0]);

 return Maxdate;

 }

Dictionary on IT-Terms

The following section contains a quick explanation of several IT-terms that are used in

the paper or code comments

Method: A block of code that is designed to achieve a purpose. Can achieve simple or

complex tasks. One example can be the code that downloads all the forms from the

database.

Parse: Converting data into a computer readable format. One example can be to

convert a date from text into a data object where one can apply logic like adding a

month.

92

Metadata: Data about data. In our thesis, it mostly applies to the index data about

forms. Since a SEC-form is data, information such as address, date of submission,

submitting company etc. is effectively data describing data.

Function: A set of code that takes an argument, does an operation on it, and returns

a result. An example is the code that takes a date and returns the quarter of that date

as a number.

Variable: An object that stores a piece of data in a certain format.

Int or Integer: The most common format for storing whole numbers in programming.

Other number formats that might be relevant are Long and Decimal

String: The most common format for storing text in a program. Note that anything can

be stored in a string, including numbers. Numbers stored in strings cannot have math

logic applied to them.

Bool or Boolean: A variable that can only have two states, false or true. Is often used

in conjunction with If-statements (see below).

If: Will perform an operation based on the condition of a statement. For example, the

downloader uses an if-statement to control actions based on whether the file is

already downloaded. If it is present (FileExists=TRUE) it will go to the next form. If it is

not present (FileExists=FALSE) it will download the form to disk.

ForEach or For Each: Repeats an operation for each item in a list.

Hard coding: Giving a variable a set value in the program, rather than making it

changeable by a user through the user interface. For example, the connection

information to the database is written in the code, rather than being made an option.

User Interface: The part of the program the user sees and interacts with. By

manipulating items such as buttons in the interface, the user can initiate, and change

the execution of the underlying code. The underlying code can then report to the user

interface through text boxes and progress bars. Is not needed for a program to

function, but without it, all program variables will need to be hard-coded

SQL: Structured Query Language. A programming language used to perform

operations in most database engines. Should not be confused with SQL Server, SQLite

and MySQL, which are all database engines (programs).

93

HTM or HTML: The standard markup language used to make web pages. Is used in

many SEC forms to add formatting options over plain text files.

Candidate Key: One or more variables that can be used to uniquely identify a record

in a database. If the candidate key is used in the database to uniquely identify a record,

it is a primary key.

94

References

Academic Textbooks

Bodie, Z., Kane, A., Marcus, A. (2011) Investments and Portfolio Management, global

edition McGraw Hill, New York.

Fabozzi, F., (2012) The Handbook of Fixed Income Securities, 8th Edition. McGraw

Hill, New York.

Feuerstein, S., (2007) Oracle PL/SQL Best Practices, 2nd Edition. O’Reilly Media,

Sebastopol, California.

Pindyck R. & Rubinfeld, D. (2005) Microeconomics, International edition, Pearson,

New Jersey.

Research Papers

Bienz C., Faure-Grimaud, A. and Fluck, Z. (2013) The Defeasance of Control Rights.

Working Paper. Working paper.

Bradley, M. and Roberts, M. (2004) The Structure and Pricing of Corporate Debt

Covenants. Working paper.

Engelberg, J., Sankaraguruswam, S.y (2007) How to Gather Data Using a Web

Crawler: An application using SAS to search EDGAR. Working paper.

Julio, B. (2013) Corporate Investment and the Option to Repurchase Debt. Working

paper.

Kahan, M., E. Rock (2009) Hedge Fund Activism in the Enforcement of Bondholder
Rights, Northwestern University Law Review.

Legg, M.P, Tang, H. (2011) Why Casinos Are Not Recession Proof. Working paper.

95

Myers, S. (1977) "Determinants of Corporate Borrowing". Journal of Financial
Economics.

Smith, C. Jr., Warner, J. (1979) On Financial Contracting: An Analysis of Bond
Covenants. Journal of Financial Economics.

Sufi, A., Roberts, M. (2009) Renegotiation of financial contracts: Evidence from
private credit agreements, Journal of Financial Economics.

Internet

Bloomberg L.C. (2014) Available at:

http://www.bloomberg.com/professional/solutions/education/ [15.10.2014]

Bowie, L,. “Cosmetic Center to merge Revlon subsidiary will be absorbed” (1996)

Baltimore Sun. Available at: http://articles.baltimoresun.com/1996-11-

28/business/1996333049_1_cosmetic-revlon-prestige [11.11.2014]

Fixed Income, Mergent, (2014) Available from:

http://www.mergent.com/mergent-solutions/fixed-income-data [01.11.2014].

Lambert, E., Doghouse On Wheels, Forbes, (2005) Available from:

http://www.forbes.com/free_forbes/2005/0131/094.html [15.10.2014]

Revlon Investor Relations, (2014) Available at: http://phx.corporate-

ir.net/phoenix.zhtml?c=81595&p=irol-irhome [01.12.2014]

Revlon Annual report 2004, (2005) Available at: http://library.corporate-

ir.net/library/81/815/81595/items/149265/RevlonInc2004Annual%20Report.pdf

[01.12.2014]

Security and Exchange commission, (2014) Available at:

https://www.sec.gov/investor/pubs/edgarguide.htm#.VH9JURGzlWU [15.10.2014]

96

Hudbay Minerals Inc. Consolidated Financial Statements Available at:

http://www.hudbayminerals.com/Theme/HudBay/files/doc_financials/HudBay_year

endFinstats_4mar2009.pdf [01.11.2014]

Price Communications, 8-K Filing (2000) Available at:

http://www.sec.gov/Archives/edgar/data/355787/000091205700052069/00009120

57-00-052069.txt [03.12.2014]

Las Vegas Sands, 10-Q Filing (2002) Available at:

http://www.sec.gov/Archives/edgar/data/850994/000085099403000001/lvsi_form1

0k-dec2002.htm [05.12.2014]

Lectures

Bienz, C. (2014) Lecture 5, FIE401 Empirical Finance, Bergen [03.10.2014]

