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Abstract

We consider risk sharing among individuals in a one-period setting
under uncertainty, that will result in payoffs to be shared among the
members. We start with optimal risk sharing in an Arrow-Debreu
economy, or equivalently, in a Borch-style reinsurance market. From
the results of this model we can infer how risk is optimally distributed
between individuals according to their preferences and initial endow-
ments, under some idealized conditions. A main message in this theory
is the mutuality principle, of interest related to the economic effects
of pandemics. From this we point out some elements of a more gen-
eral theory of syndicates, where in addition, the group of people is to
make a common decision under uncertainty. We extend to a compet-
itive market as a special case of such a syndicate.

KEYWORDS: Optimal risk sharing, Syndicates, Savage expected
utility, Evaluation measures, No-arbitrage pricing, State prices.
JEL-Code: G10, G12, D9, D51, D53, D90, E21.

1 Introduction

We analyze optimal risk sharing in Society at large. We consider a one-period
model of uncertainty where Pareto optimal risk sharing, or equivalently, op-
timal consumption is characterized. The article is primarily a review paper,
where the possible originality is in the presentation and composition of the
various subject matters, in some of the proofs, in extensions and within var-
ious applications that are pointed out.

We discuss the no-arbitrage question and the associated state prices, both
issues important in the financial literature, and also in optimal risk sharing.

∗The Norwegian School of Economics, 5045 Bergen Norway. Telephone: (+47)
48235278. E-mail: Knut.Aase@NHH.NO.

1



Here we use the most basic framework, and this material can be found in an
appendix. We characterize Pareto optimality in Section 3, with examples. A
competitive equilibrium is a special Pareto optimal sharing rule, which we
treat in Section 4, also with examples.

In Section 5 we work with syndicates, where a group of individuals must
make a common decision under uncertainty that will result in a payoff to
be shared jointly among the members. Here we present conditions under
which the syndicate behaves as a Savage rational decision maker. This was
first treated in Wilson (1968), as an extension of the general model by Borch
(1962).

In this section we review conditions under which any member of the syndi-
cate can be relegated the task of making decisions under certainty on behalf
of the group. This problem is considered both when the members of the
group have homogeneous beliefs, and when the probabilities are heteroge-
neous. Amazingly enough, even in the latter case it is possible to find some
common ground.

An illustration is given of unanimity within a group via an example of
optimal diversification, where some classical results are recovered. Existence
of an evaluation measure of a syndicate is of importance in this theory.

The framework may be used to study risk sharing at various levels in
society, like the risk sharing problem in mutual insurance companies, rein-
surance markets, or at the state level of a given nation, and also between
nations via international organizations.

The paper ends with an application of the theory of syndicates to financial
markets and general equilibrium.

2 The Basic Risk-Exchange Model

In this section we study the following basic one period model having two time
points, 0 and 1. Let N = {1, 2, . . . , N} be a group of N agents having prefer-
ences �i over a suitable set of random variables, or gambles with realizations
(outcomes) in some subset A ⊆ R, i = 1, 2, . . . , N . Here R = (−∞,∞).
This preference relation is a binary relation on the relevant set of probabil-
ity distributions that is transitive and complete, and that satisfies the von
Neumann-Morgenstern axioms (the substitution axiom and the continuity
axiom).

The model is rather general, and the agents could be insurers, reinsurers,
consumers, or even countries or regions. For convenience, we shall phrase
the model in terms of individuals, consumers or insurers.

The preferences are represented by expected utility, meaning that there is
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a set of continuous utility functions (indices) ui : R→ R, such that x �i y if
and only if Eui(x) ≥ Eui(y), where x and y are random variables signifying
final consumption, or final portfolios. The reader may recognize this as a
hybrid of the Savage approach and the von Neumann-Morgenstern theory.
Viewed in light of interpretations in a business world, however, it is in the
spirit of the Savage theory provided all the agents have the same (subjective)
probability measure P . This is illustrated later.

We assume monotonic preferences, and risk aversion, so that, granted
enough smoothness, we have u′i(w) > 0, u′′i (w) ≤ 0 for all w in the relevant
domains. 1 Each agent is endowed with a random payoff xi, a random vari-
able at time 0, called his initial endowment (or portfolio). More precisely,
there exists a probability space (Ω,F , P ) such that agent i is entitled to
payoff xi(ω) at time 1 if ω ∈ Ω occurs, i ∈ N . This means that uncer-
tainty is objective and external, and all the uncertainty is revealed at time
1. There is no informational asymmetry. All parties agree upon (Ω,F , P ) as
the probabilistic description of the stochastic environment, the latter being
unaffected by their actions. It will be convenient to posit that both expected
values and variances exist for all these initial portfolios, which means that
all xi ∈ L2(Ω,F , P ), or just xi ∈ L2 for short.

We suppose the agents can negotiate any affordable contracts among
themselves, resulting in a new set of random variables yi, i ∈ I, representing
the possible final consumption to the different members of the group, or final
portfolios. 2

In the equilibrium version of our model, transactions are carried out right
away at “market prices”, where Π(c) represents the market price for any
c ∈ L2, i.e., it signifies the group’s valuation of the random variable c relative
to the other random variables in L2 at time 0. Notice that this trade, or risk
exchange, takes place at time 0, and results in the random final consumption
bundles yi, i ∈ N , also at time 0. Then if ω ∈ Ω happens, the consumption
of agent i is yi(ω), here a real number at time 1. The essential objective is
then to determine:

(a) Pareto optimal sharing rules.
(b) The market price Π(c) of any consumption bundle c ∈ L2 from the set

of preferences of the agents and the joint cumulative probability distribution
function F (x1, x2, . . . , xN) of the random vector x = (x1, x2, . . . , xN).

(c) For each i ∈ N , the final consumption bundle yi most preferred by
agent i among those satisfying his/her budget constraint Π(yi) ≤ Π(xi).

1Note that the concepts of monotonicity and risk aversion make perfectly sense without
assuming the existence of these derivatives.

2In a one-period model final consumption equals final wealth.

3



In the case (a) market prices as in equation (1) below, are not part of the
program.

2.1 Some basic references

References to this type of problem are plentiful, both in the economic liter-
ature, in the actuarial literature and otherwise scattered around in various
journals. The model related to optimal consumption in a world of uncertainty
is treated in Arrow (1953-70) and Arrow and Debreu (1954) in the economics
literature. In the actuarial literature we have, for example, Bühlmann and
Jewell (1979), as well as the basic treatment by Borch (1960a,b,c), where
the focus is on insurance and reinsurance. In the economics literature we
also have Borch (1962-68a,b) and (1990), here directed at the economics of
insurance. These models have been reviewed and extended in, for example,
Aase (1990-93a,b), (2002-10). This type of model has also been extended to
a dynamic setting in Aase (1992) related to insurance, and there is a large
literature in economic dynamics, where elements of this model are central,
several of them treated in Duffie (2001).

2.2 The no arbitrage requirement

Before we start, some basic facts are in order. First, observe that the pos-
sible events F = Fx := σ(x1, x2, . . . , xN) is the sigma-field generated by the
initial random variables x, so that any random variable can be written in
the form y = f(x1, x2, . . . , xN) for f a suitable Borel-measurable function.3

This means that the optimal final portfolios yi = fi(x1, x2, . . . , xN) for some
appropriate functions fi. In order to avoid trivialities, we assume that Fx is
complete, i.e., augmented with all the sets of P -measure zero.

Second, for (b) and (c) above we require that there is no arbitrage. By
an arbitrage, or an arbitrage possibility, we mean the possibility of receiving
a strictly positive amount at time 1 in some states ω ∈ A of positive prob-
ability (P (A) > 0), without paying anything net at time 0. Alternatively,
an arbitrage would also exist if an agent obtains a strictly positive amount
at time 0 with no further payments at time 1. In other words, an arbitrage
possibility would yield a strictly positive amount with positive probability,
either at time 0, or at time 1, or possibly at both time points, and with
no payout at any time, i.e., the possibility of receiving something net with
no risk. It is hardly surprising that this possibility can not be allowed in a
simple and rational model of a an insurance or financial market.

3This is a result that is known from measure theory, e.g., Tucker (1967), Theorem 1.1.
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Let us assume that market prices exist, denote the market price of any risk
y by Π(y), and consider risks in the space L2. Then we can show that unless
the functional Π(·) is linear and strictly positive, there would be arbitrage
possibilities.

The following theorem can be shown:

Theorem 1 There is no arbitrage if and only if there exists a stricltly pos-
itive random variable π, the state price deflator, representing prices through
the relation

Π(y) = E(yπ) for all y ∈ L2. (1)

Proof: See Appendix 1.
An analogue of the above theorem in financial markets, where only com-

mon stocks can be traded, is known as “The Fundamental Theorem of Asset
Pricing”. In the finite case the theorem is due to Steven Ross (1978), in the
one period framework, and the same reasoning carry over to the dynamic
case having a finite number of time periods. There is an extensive literature
on the infinite dimensional case, some of which is reviewed in Duffie (2001).

Readers familiar with the economics of uncertainty will typically be ac-
quainted with the concept of state prices; here π is the Arrow-Debreu state
price in units of probability.

My experience is that while this concept is well-known to economists,
it is lesser known or not quite appreciated by mathematicians. In order to
explain its importance, we provide a basic exposition in Appendix 2.

3 Pareto Optimality

Next we introduce the concept of (strong) Pareto optimality of an alloca-
tion. This is a criterion of the outcome of a negotiations process between
individuals that does not depend on the probability distribution of the initial
portfolios.

We need the following definition:

Definition 1 An allocation z = (z1, z2, . . . , zN) is called feasible if

N∑
i=1

zi ≤
N∑
i=1

xi := xM .

The concept of Pareto optimality offers a minimal and uncontroversial
test that any social optimal economic outcome should pass. In words, an
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economic outcome is Pareto optimal if it is impossible to make some individ-
uals better off without making some other individuals worse off. Formally
we have

Definition 2 A feasible allocation y = (y1, y2, . . . , yN) is called Pareto op-
timal if there is no feasible allocation z = (z1, z2, . . . , zN) with Eui(zi) ≥
Eui(yi) for all i and with Euj(zj) > Euj(yj) for some j.

Next we give a few useful results in establishing Pareto optimality.

3.1 The characterization of a Pareto optimum

First we focus on the following ”representative agent” result:

Theorem 2 Suppose ui are concave and increasing for all i. Then the al-
location y = (y1, y2, . . . , yN) is Pareto optimal if and only if there exists a
nonzero vector of agent weights λ ∈ RN

+ such that (y1, y2, . . . , yN) solves the
problem

E(u(xM |λ)) := sup
(z1,...,zN )

N∑
i=1

λiEui(zi) subject to
N∑
i=1

zi ≤ xM . (2)

In the above u(·|λ), or equivalently uλ(·), is defined as the function, possi-
bly depending on the agent weights λ, satisfying the real optimization prob-
lem u : R→ R defined by

u(x|λ) = sup
z∈RN

N∑
i=1

λiui(zi) subject to z1 + z2 + · · ·+ zN ≤ x. (3)

This problem is referred to as the sup convolution problem, and the function
u(·|λ) is called the utility function of the representative agent in economics
and finance, or the evaluation measure of the group of individuals in the
reinsurance literature and in the theory of syndicates. Below we shall show
how it is linked to the Lagrange multiplier associated with the problem (3).

Let us first explain the connection between the solutions of problems (2)
and (3). In that regard we assume all the random variables are defined on
the same probability space (Ω,F , P ) with generic element ω ∈ Ω. A subset
A ⊂ Ω, A ∈ F , where P (A) = 0 we call a P -null set for short. The problem
(3) can be interpreted as a real-valued problem for any given state ω ∈ Ω.

The problem (3) can be interpreted as a decision problem in which the
group must share a ”cake” of size x(ω) in order to maximize a weighted sum of
the member’s utilities. The proof that the optimal solution (y1, y2, . . . , yN)
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generated by the sequence of ”cake-sharing” programs (3) is the optimal
solution of the problem (2) can be obtained by contradiction. The reason is
the additive nature of utility. Suppose that this is not the case. Then there is
a feasible allocation ŷ other than the one generated by the sequence (3) that
satisfies

∑N
i=1 λiui(ŷi(ω)) >

∑N
i=1 λiui(yi(ω)) for all ω ∈ Ω except for a P -null

set. But then, by Fubini’s Theorem, E
(∑N

i=1 λiui(ŷi)
)
> E

(∑N
i=1 λiui(yi)

)
,

contradicting the fact that y solves problem (2).
We can now return to the proof of the theorem itself, which can be found

in Appendix 3.
This basic result gives rise to the following characterization of a Pareto

optimum. This result is known as Borch’s Theorem:

Theorem 3 A Pareto optimum y is characterized by the existence of non-
negative agent weights λ1, λ2, . . . , λN and the real function u : R → R such
that

λ1u
′
1(y1) = λ2u

′
2(y2) = . . . = λNu

′
N(yN) := u′(xM |λ) a.s. (4)

The proof of Theorem 3 can be found in Appendix 3.
First, to be noticed here is that the yi’s only depend on the marginal

utility functions, not on the probability distribution of the random vector
(x1, x2, . . . , xN) of the agents’ initial holdings. Thus it is not necessary to
know this probability distribution in order to characterize Pareto optimal
allocations.

Second, as a by-product we have a characterization of the state price
deflator π of the last sections, this key quantity is connected to the economy
via the identity

π = cu′(xM |λ) a.s.

where c > 0 is some normalizing constant. We return to this later when we
consider a competitive equilibrium.

Alternatively, the above step can be further formalized by a theorem of
Zahl (1963), who analyzed the part of infinite dimensional analysis where the
Lagrange multiplier must be a function of the state variable. In our case it
means that the Lagrange multiplier computed at xM is stochastic, since xM
is a random variable.

Next we illustrate by an example. For this we need the following defini-
tion: The relative risk aversion is defined by the function Ru(x) = −u′′(x)x

u′(x)

for any utility function u. First we consider the case of constant relative risk
aversion.

Example 1. Consider the case of power utility, where ui(x) = (x1−γi −
1)/(1− γi) for x > 0, γi 6= 1 and ui(x) = ln(x) for x > 0 when γi = 1, where
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the natural logarithm results as a limit when γi → 1. This example only
makes sense in the no-bankruptcy case where xi > 0 P-a.s. for all i. The
parameters γi > 0 are then the relative risk aversions of the agents, which
are given by positive constants for this class of preferences.

Consider first the case where γ1 = γ2 = . . . = γN = γ. Here all the
marginal utilities are given by u′i(x) = x−γ, and using Theorem 3, the first
order condition for Pareto optimality is

λiu
′
i(yi) = u′(xM), a.s. for all i,

which implies that yi = λ
1/γ
i (u′(xM))−1/γ, a.s. Using the market clearing

condition xM =
∑

i∈N yi, a.s., which only says that no risk disappears during
the process of risk sharing, we obtain

u′(xM) = (
∑
i∈I

λ
1/γ
i )γx−γM a.s.,

showing that the marginal utility of the representative agent is of the same
type as that of the individual agents. The optimal sharing rules are linear,
and given by

yi =
λ

1/γ
i∑

j∈N λ
1/γ
j

xM a.s. for all i ∈ N . �

From this example we notice that the optimal allocations depend on the
initial ones only through the aggregate xM . Thus we may write yi = yi(xM)
for all i ∈ N . This is quite general, and follows from (2) of Theorem 2,
equation (3) and equation (4) of Theorem 3.

The linearity of the optimal allocations is lost when the relative risk
aversions are allowed to be different for the various agents. This leads to
non-linear contracts.

Also notice that we have dropped the λ-dependence in the marginal utility
function of the representative agent. The explanation for this will come later,
but notice that prices are determined modulo a normalization, which can here
be taken to be (

∑
i∈I λ

1/γ
i )γ. This means that the evaluation measure u does

not depend on the sharing rule λ.

3.2 Risk tolerance and aggregation

Consider a group if individuals, let us call such a group a syndicate, where
the sharing rules are Pareto optimal. Of interest now are two basic and useful
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results. For this we first define what we mean by the absolute risk aversion of
an agent with utility function u. It is given by A(x) = −u′′(x)

u′(x)
, and is strictly

positive under our assumptions. The risk tolerance of an agent is defined by
ρ(x) = 1/A(x).

The first result relates the Pareto optimal allocations to a solution of a
system of ordinary differential equations. It says the following:

The Pareto optimal contracts yi(x) as a real function of the real variable
x ∈ B ⊆ R, satisfies the non-linear, first order ordinary differential equation:

y′i(x) =
Aλ(x)

Ai(yi(x))
, yi(x0) = bi, x, x0 ∈ B ⊆ R, i ∈ N , (5)

where Aλ(x) = −u′′λ(x)

u′λ(x)
is the absolute risk aversion function of the represen-

tative agent, and Ai(yi(x)) = −u′′i (yi(x))

u′i(yi(x))
is the absolute risk aversion of agent

i at the Pareto optimal allocation function yi(x), i ∈ N . The notations uλ
and Aλ have the same meaning as u(·|λ) in that the functions u and A may
depend on the sharing rule λ. Here yi(x0) = bi represent the initial conditions
of these differential equations, where

∑N
i=1 bi = x0.

The second result says that the risk tolerance of the representative agent
is the sum or the risk tolerances of the individual members at the Pareto
optimal allocations. More precisely,

ρλ(xM) =
∑
i∈N

ρi(yi(xM)) a.s. (6)

as an equality between random variables. This allows us to rewrite the
differential equations (5) as follows

dyi(x)

dx
=
ρi(yi(x))

ρλ(x)
, yi(x0) = bi, x, x0 ∈ B ⊆ R. (7)

In words we summarize these two results:

Theorem 4 (a) The risk tolerance of the syndicate ρλ(xM) equals the sum
of the risk tolerances of the individual agents in a Pareto optimum.

(b) The real, Pareto optimal allocation functions yi(x) : B → R, i ∈
N satisfy the first order ordinary, nonlinear differential equations (5), or
equivalently, (7).

Since these two results are central in the theory, in Appendix 3 we present a
simple proof.
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The result (6) has several interesting interpretations. One is that the
syndicate can better carry risk than the individuals can in autarky. For
example, a mutual insurance company can be interpreted as a syndicate,
where the syndicate members are the customers. This means that the mem-
bers smooth their individual risks in a pool, and in a Pareto optimum their
individual liability is a real function of the aggregate risk.

By (7) it follows that contracts yi(x) are all increasing in x. This yields
the mutuality principle. It means that an aggregate wealth increase will
affect all members in a positive direction, and a wealth decrease will affect
all the members negatively. The direction is the same for all, but how much
is individual.

The economic consequences of pandemics may be observed to have these
features: It affects most people negatively, but to a varying degree.

A nation, or any international organization like EU, UN or the Red Cross,
can be considered as a syndicate, as can the whole World for that matter,
where the members are the inhabitants of the country, or nations of the
organization, or in the World, respectively. Since a nation is, by the above
result, less risk averse than the individual people that make it up, some
projects are better undertaken by the state; they may simply be too grande
for individual citizens. Typical infrastructural projects like roads, tunnels,
bridges, rail-ways, harbours, air ports, museums, etc. are often undertaken
by the state. Similar interpretations are valid for organizations, or the World.
For example are the climate problems facing Earth too big for any nation to
solve alone, which calls for international cooperation.

Pareto optimal contracts are characterized by a continuum of contracts
along a Pareto optimal frontier. Consider for example the case N = 2. The
feasible contracts can then be thought of as a bounded section of the first
quadrant by a concave curve, the Pareto frontier, from one axis to the other
(see Figure 1).

A tangent to the Pareto frontier is characterized by two numbers, the
agent weights (λ1, λ2) determining the slope of the tangent, which is −λ1/λ2.
Imagine the line with this slope, λ1Eu(z1) + λ2E(z2) = c, that cuts through
the feasible region. It corresponds to a particular sharing rule. Then move
the line with this slope, by varying the constant c, until it is tangency to the
Pareto frontier. The point at which this happens corresponds to the Pareto
optimum for this particular sharing rule. By varying the weightings, and
repeating this process, the Pareto optimal frontier is spanned out.

The Pareto optimal frontier includes contracts that will not be likely
outcomes of real negotiations between the parties, since they may not satisfy
individual rationality. For N individuals this means that only the section of
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Individually rational
PO-contracts

CE

Figure 1: The Pareto frontier for N=2.

the Pareto optimal frontier that satisfies

Eui(yi(xM)) ≥ Eui(xi), i ∈ N .

will be rational for all parties. This section is called the core. For N = 2 it
is indicated in Figure 1.

3.3 HARA-utility functions

The class of utility functions with affine risk tolerances is called the Hyper-
bolic Absolute Risk Aversion (HARA)-class, and plays a special role in this
theory. The utility functions in this class can given by analytic expressions.
Recall that with expected utility, if the utility function u(x) represents the
preference relation, then au(x) + b represents the same preference relation,
where a and b are two scalars with a > 0.

The utility function u(·) : R→ R such that ρ(x) = α+ βx > 0 is HARA
with coefficients (α, β) if and only if there exists scalars a and b such that

au(x) + b =


1

β−1
(α + βx)

(β−1)
β , if β 6= 0 and β 6= 1;

ln(α + x), if β = 1;

−α exp(− x
α

), if β = 0 and α > 0.

When the parameter β = −1 we have quadratic utility, which also is a
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member of the HARA class.
In the paper we will be interested in optimal risk sharing, and in order

to gain some basic insights, it is an advantage to consider a class of utility
functions where agents are allowed to have different preferences, and where
optimal sharing rules are affine. Our next example satisfies both these crite-
ria, and is included in the above list.

Example 2. Consider the case with negative exponential utility functions,

with marginal utilities u′i(z) = e−z/ρi , i ∈ N , where ρ−1
i is the absolute risk

aversion of agent i, or ρi is the corresponding risk tolerance. Using the
characterization (4), the first order conditions for Pareto optimal sharing
rules are

λie
−yi/ρi = u′(xM), a.s., i ∈ N .

After taking logarithms in this relation, and summing over i, market clearing
implies

u′(xM) = e(K−xM )/ρ, a.s. where K :=
N∑
i=1

ρi lnλi and ρ :=
N∑
i=1

ρi.

Furthermore, from the same first order conditions we also obtain that the
optimal sharing rules (or portfolios) can be written

yi(xM) =
ρi
ρ
xM + bi, where bi = ρi lnλi − ρi

K

ρ
, i ∈ N . (8)

The ”reinsurance contracts”, if we for the moment use this interpretation,
involve optimal sharing rules which are affine in xM . Market clearing holds
here, since

∑
i∈N y

′
i(xM) = 1 and

∑
i∈N bi = 0. �

As we will show in the next section, the result of this example is consis-
tent with theory, since our utility functions belongs to the HARA-class with
identical cautiousness, or slope ρ′(x) = 0.

Contracts of this type are termed proportional reinsurance (the more cor-
rect affine is not in industry use.) The constants of proportionality ρi/ρ are
simply equal to to each agent’s risk tolerance, measured relative to the group.
The more risk tolerant a member is, the larger fraction of the aggregate risk
is held.

In order to compensate for the fact that the least risk-averse reinsurer
will hold the larger proportion of the market, zero-sum side payments occur
between the reinsurers, here represented by the terms bi.

Without these side payments an agent, with a “small” initial endowment
but with a large risk tolerance, would end up with a “large” final endowment,
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but this would not be consistent with individual rationality, or as we will see
below, with the agents’ budget constraints.

This kind of treaty seems common in reinsurance practice, and is, more-
over, easy to interpret and understand.

An example with the more general form of HARA utility class is the
following:

Example 3. Consider the class ui(x) = 1
β−1

(αi + βx)
(β−1)
β , i ∈ N , when

β 6= 1 and β 6= 0. Using the first order characterization (4), we obtain the
following:

λi(αi + βyi(xM))−
1
β = u′(xM), a.s. i ∈ N

Some routine calculations show that the optimal sharing rules are given by

yi(xM) = Ai +BixM

where

Ai =
λβi∑
j λ

β
j

and Bi =
λβi

β
∑

j λ
β
j

α− αi
β
.

That is, the sharing rules are affine. Market clearing is seen to hold. �
Our general risk sharing model with N agents can also be specialized to

two agents, one insurance customer and one insurer. The first to have used
the model for this basic problem seems to have been Moffet (1979).

3.4 Affine contracts

In this section we formalize what we have demonstrated so far when it comes
to optimal risk sharing. Effectively we then rule out non-linear contracts.

Denote as above the absolute risk aversion function of an agent by A(x) =
u′′(x)
u′(x)

, x ∈ R, and the risk tolerance function by ρ(x) = 1
A(x)

. The relative risk

aversion function defined by R(x) = xA(x). Recall, HARA utility means that
the risk tolerance functions of the agents are affine, i.e., if ρi(x) = αi + βix,
i ∈ N , where the αi and βi are all constants. Then affine sharing rules obtain
provided the agents have HARA utility functions with the same cautiousness
parameters, i.e., when ρ′i(x) = βi = β, for all i ∈ N . More precisely:

Theorem 5 The Pareto optimal sharing rules are affine if and only if the
risk tolerances are affine with identical cautiousness, i.e., yi(x) = Ai + Bix
for some constants Ai, Bi, i ∈ N ,

∑
j Aj = 0,

∑
j Bj = 1,⇔ ρi(x) = αi+βx,

for some constants αi and β, i ∈ N .

A short, and we claim original, proof of this theorem can be found in Ap-
pendix 3 based on the system of differential equations in (7).
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There are several important insights when members belong to the class
of utility functions considered above, which we return to later.

We next consider the pricing issue in a competitive market, where the
concept of an equilibrium is central.

4 Equilibrium

The problem each agent i ∈ N is supposed to solve is the following:

sup
zi∈L2

Eui(zi) subject to π(zi) ≤ π(xi). (9)

An important issue is, of course, existence (and uniqueness) of solutions to
(9). We shall not elaborate on this here, suffice it is to note the following: If

{zi ∈ L2 : Eui(zi) <∞, π(zi) ≤ π(xi)}

is bounded (in L2-norm), then existence is guaranteed.4 Also, a strictly
concave ui suffices for uniqueness.

See Arrow and Debreu (1954), Bewley (1972), Bühlmann (1980-84), Mas-
Colell (1986), Mas-Colell and Zame (1991), Dana (1993) and Aase (1993a)-
(2010) for existence and uniqueness of equilibrium. 5

Definition 3 A competitive equilibrium is a collection (Π; y1, y2, . . . , yI) con-
sisting of a price functional Π and a feasible allocation y = (y1, y2, . . . , yI)
such that for each i, yi solves the problem (9) and markets clear;

∑N
i=1 yi =∑N

i=1 xi.
6

We close the system by assuming rational expectations. This means that
the market clearing price Π implied by agent behaviour is assumed to be the
same as the price functional π on which agent decisions are based. The main
analytic issue is then the determination of equilibrium price behaviour.

In this section we characterize a competitive equilibrium (CE) assuming
that it exists. We take it that the initial portfolios are not identically equal to
zero, and that a unique equilibrium exists. We also assume quite naturally

4By i.a., the Banach-Alaogher Theorem.
5Existence of Arrow-Debreu equilibria in infinite-dimensional settings seems to have

been first treated in Bewley (1972).
6Market clearing is usually defined by

∑N
i=1 yi ≤

∑N
i=1 xi. Since we have strictly

monotonic preferences, equality will result in equilibrium.

14



that Π(xi) > 0 for each i. In fact, it seems reasonable that each agent is
required to bring to the market an initial “endowment” of positive value. 7

The computation of an equilibrium requires that the joint probability dis-
tribution of the initial endowments (x1, x2, . . . , xN) is known. Only relative
prices can be determined in equilibrium, modulo a normalizing constant.

In this case we have the following:

Theorem 6 Suppose the preferences of the agents are strictly monotonic
and convex, i.e., u′i > 0 and u′′i ≤ 0 for all i ∈ N , and assume that a
competitive equilibrium exists, where Π(xi) > 0 for each i. The equilibrium
is then characterized by the existence of positive constants αi, i ∈ I, such
that for the equilibrium allocation (y1, y2, . . . , yI)

u′i(yi) = αiπ, a.s. for all i ∈ I, (10)

where π is the Riesz representation of the pricing functional Π.

Comparing this result to the first order conditions of a Pareto optimum,
equation (4) of Theorem 3, we notice that the Lagrange multipliers αi are
just the reciprocals of the agent weights λi, αi = 1/λi, implying that a
competitive equilibrium is, if it exists, Pareto optimal.

We next explain the basics of the proof of this result, which can be found
in Appendix 3.

In order to illustrate the new feature here, the pricing question, we present
a simple example.

Example 4. Let us return to Example 2, where we now demonstrate how a
single Pareto optimal point is picked out by a competitive equilibrium. This
we do by determining the ray λ of agent weights.

In order to determine this vector λ = (λ1, . . . , λN), we employ the budget
constraints:

E(yie
(K−xM )/ρ) = E(xie

(K−xM )/ρ), i ∈ N ,

which give that

bi =
E{xie−xM/ρ − ρi

ρ
eMe

−xM/ρ}
E{e−xM/ρ}

, i ∈ N .

Hence the optimal equilibrium allocations yi are completely determined in
terms of the given primitives of the model. The ray λ can also be determined

7This is of course a weaker requirement than the positivity assumption xi ≥ 0 P-a.s.
for all i found in consumer theory.
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modulo a normalization. Letting K =
∑N

i=1 ai lnλi denote this normaliza-
tion, then

λi = ebi/ρieK/ρ, i ∈ N .

If we impose the normalization E{π} = 1 of the state price deflator, we
obtain e−K/ρ = E{e−eM/ρ}, in which case the constants λ are given by

λi =
ebi/ρi

E{e−xM/ρ}
, i ∈ N .

Through this example we also discover a “premium principle” in insurance,
since market prices are given by

Π(z) =
E{z · e−xM/ρ}
E{e−xM/ρ}

, for any z ∈ L2. (11)

The pricing rule given by expression (11) is referred to as the ”Esscher princi-
ple” in actuarial mathematics, but then with the important distinction that
the aggregate market index xM in (11) is substituted by the risk z itself. For
this latter ”principle” the pricing rule is of course no longer a linear func-
tional, which will, unfortunately, lead to arbitrage possibilities and other
anomalies. �

A CE picks out a point on the Pareto frontier which satisfies individual
rationality, so the competitive equilibrium allocation is located in the core.
In the case of the two-agent problem, this point is located in the individual
rationality section of the Pareto frontier in the NE-quadrant (see Fig. 1).

Recall, the first order conditions for optimality does not depend on prob-
abilities, but when we employ the budget constraints, probabilities enter.

In Assa and Boonen (2022) risk sharing and contingent premiums is dis-
cussed in relation to the UK Covid-19 economic losses.

We next include some results on Pareto optimal risk sharing in groups,
where there is a decision to be undertaken by the group. Here we also take
a look at the situation where agents can have different probability beliefs.

5 Syndicates I

A syndicate is defined to be a group of individuals who must make a common
decision under uncertainty that will result in a payoff to be shared jointly
among the members. Let us call the common decision a ∈ A, where A is the
decision space. We limit ourselves to A ⊂ R, a subset of the real numbers.

The first result we have in mind belongs to group decision theory, or the
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theory of syndicates. It specifies a payoff to the group g(a, Z), where Z is a
random variable with realization z, and g is a real function: g : R×R→ R,
assumed to be a smooth C2,2-function.

The syndicate is faced with an investment project with payoff function
g. In this section we assume that before the action a is taken, the syndicate
comes together and negotiates a sharing rule, as we have described in the
above. Here we only consider sharing rules that do not depend on the decision
itself. This means that the members of the syndicate are motivated by income
and not by the decision itself.

Individual sharing rules yi(x, Z) will accordingly all depend on the payoff
x = g(a, Z) and the random variable Z, but not on the decision a. Otherwise
Pareto optimal sharing rules are found by the same principles as before.

We shall here allow the various members to have individual probability
beliefs regarding the random variable Z, represented by the probability den-
sity functions fi(z), i = 1, 2, . . . , N . We assume the individuals to be Savage
rational decision makers satisfying Savage’s 7 axioms (Savage (1954)). The
probability distributions are defined on the same support, and we assume
them to be mutually absolutely continuous with respect to each other. Sup-
pose h1 and h2 represent two arbitrary, random prospects, members of some
set F of ”acts”, facing agent i, defined on the same probability space. Sav-
age’s expected utility theorem then says:

There exist a utility index ui and a probability distribution pi such that
h1 � h2 if and only if

∫
R ui(h1(z))dpi(z) ≥

∫
Ω
ui(h2(z))dpi(z), i ∈ N .

In other words, the preference relation � defined on the set of random
prospects F has a numerical representation not only given by a utility index
ui(x), but also by a probability distribution pi(z). In our case the pi(z)
corresponds to the cumulative probability distribution function Fi(z) where
the derivative F ′i (z) = fi(z). The strict interpretation of this representation
is that all uncertainty is subjective, while in the von Neumann-Morgenstern
framework all uncertainty is objective.

It has been claimed that the Savage interpretation works better in a
business world. The following simple example illustrates:

Example 5.
Consider the two following lotteries, called acts by Savage:
h1: You win 1000 Euro if the football (soccer) team Barcelona ends among

the top three teams in its division, Ecuardorian Serie A, next year, otherwise
you get 0.

h2: You win 1000 Euro if a fair coin lands heads in 4 consecutive trials,
otherwise you get 0.

Suppose you get the choice between h1 and h2, and your utility function
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is u. You would then calculate

Eu(h1) = pu(1000) + (1− p)u(0) = p.

Here we have normalized so that u(1000) = 1 and u(0) = 0, which we can
do in both frameworks. Also p is the probability of success in lottery h1.

Similarly

E(h2) = (
1

2
)4u(1000) + (1− (

1

2
)4)u(0) =

1

16
.

Notice that your choice does not depend on the utility function u. In the von
Neumann-Morgenstern framework this is not a bona fide decision problem,
since the choice only depends on probabilities, which are objective and hence
known to the decision maker. In the Savage approach however, probabilities
are subjective and part of the preference representation, and is accordingly
a decision problem. �

5.1 Homogenous probability beliefs

When probabilities are the same across the agents, the numerical represen-
tation of preferences looks the same as with the von Neumann-Morgenstern
interpretation, where the probabilities are considered to be objective, so it
can in principal be interpreted either way. But recall Example 5.

If one happens to be a Bayesian however, one will argue a bit differently.
According to Aumann (1976), if two people have the same priors, and their
posteriors for an event A are common knowledge, then these posteriors are
equal.

The normal situation is that the weights λ = (λ1, λ2. . . . , λN) will affect
the sharing rules yi(xM), and by this the risk tolerance of the syndicate, via
the inequalities within the allocation (y1, y2, . . . , yN). This is true with or
without homogenous beliefs. However, if the risk tolerances of the individual
members are of the HARA type with equal cautiousness parameter, that is
given by ρi(x) = αi+βx, we obtain from the result (6) that the risk tolerance
of the syndicate is given by

ρ(x) =
N∑
i=1

(αi + βyi(x, z)) = α + βx, ∀z (12)

where α =
∑N

i=1 αi is a constant, and where
∑N

i=1 yi(x, z) = x for all z by
market clearing. (Recall, no risk disappears after risk sharing; the total risk
is, presumably now better distributed among the members so that the ones
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who can carry more risk, does that at the optimum.) Notice that the risk
tolerance of the group does not depend on the weights λ, so we have dropped
the superscript on ρ. This also means that the evaluation measure of the
syndicate, what we earlier denoted by u(x|λ), does not depend on λ either,
so we refer to it as u(x) when this is the case. This means that the inequalities
in the wealth distribution does not affect the syndicate’s willingness to risk-
taking.

Because of this fact, we limit ourselves for the moment to the case of
HARA utility functions ui(x) for the members of the group, where the risk
tolerances are all affine with the same cautiousness β = ρ′i(x), i = 1, 2, . . . , N .
Here yi(x, z) = yi(x) for all i ∈ N when probability beliefs are homogeneous.

In this situation we define the ’derived’ utility vi of member i as follows:

vi(x) := ui(yi(x)), i = 1, 2, · · · , N.

This means that once the group has been established and the members have
agreed upon a Pareto optimal sharing rule y = y(x), we consider the indi-
vidual’s utility function after this sharing rule has been implemented, as a
function of the aggregate wealth x. Since there is an element of optimiza-
tion behind this construction, we call this the derived utility functions of the
members (or, perhaps, the indirect utility functions). We can then show the
following:

Theorem 7 Let the members of the group all have affine risk tolerances
with the same cautiousness. Then the risk tolerance of any member’s derived
utility functions vi, i ∈ N , is the same as the risk tolerance of the syndicate.

As a consequence of this result, any member of such a group can be
given the task of making decisions under uncertainty on behalf of the group.
There is unanimity on the management of risk followed by the planner. Such
a group is called an unanimous syndicate, which we formalize later.

Since the result is rather central, in Appendix 3 we present a proof.
The attitude towards the aggregate risk of each member of the pool is

identical, and equal to the one of the central planner, despite the fact that the
members have different preferences to start with. These important properties
hold only in the case of HARA-utility functions with identical cautiousness
β, as will be pointed out later.

This theorem is of course a bit special, but is nevertheless a remarkable
result. If the conditions were true in practical life, there would not be much
disagreement among us. But recall, the individuals are assumed to be equally
well informed and, moreover, they have homogeneous probability beliefs.
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In other contexts than purely financial, ’group thinking’ may imply more
agreement than is desirable, in that the ability of flexibility and critical think-
ing may be lost.

With differential information and/or heterogeneous probabilities, results
might be different, and, perhaps, more realistic? We shall return to this
below.

To illustrate, we consider an example, where the individual members
have different preferences of the negative exponential type described earlier,
a HARA-class of utilities with equal cautiousness across the population.

5.2 Example: Optimal diversification

Suppose that a partnership (syndicate) has the opportunity to invest its cap-
ital of 1 USD in a project with an uncertain return of Z per dollar invested.
The partnership can borrow, or lend capital in any amount a at interest rate
r, so a payoff g(a, Z) = (1 + a)Z − ar is available, and the decision problem
is to choose an optimal amount of debt, or equivalently, an optimal amount
(1 + a) invested in the risky project.

Suppose that all members agree that Z is normally distributed with prob-
ability density fZ(z) having mean m and variance v, and moreover the indi-
viduals have all negative exponential utility functions ui(x) = 1−ρie−x/ρi , i ∈
N , where ρi are the risk tolerances of the individuals.

Then we know that the syndicate has risk tolerance ρ =
∑

i ρi and eval-
uation measure u(x) = 1− ρe−x/ρ which does not depend on λ.

Before the decision is made, the members have decided on a Pareto opti-
mal sharing rule, which under our assumptions is given by yi(x, z) = yi(x) =
ρi
ρ
x+ bi for some zero sum constants bi, as explained in Example 2.

The syndicates decision problem consists in finding the value of a which
maximizes

Eu(g(a, Z)) =

∫ ∞
−∞

u(g(a, z))fZ(z)dz =∫ ∞
−∞

(
1− ρe−

1
ρ

((1+a)z−ar)) 1√
2πv

e−
1
2

(z−m)2

v dz. (13)

The first order condition is both necessary and sufficient for a maximum here,
so we solve d

da

(
Eu(g(a, Z))

)
= 0, which has solution

1 + a∗ =
ρ

v
(m− r). (14)

We show the calculation below.
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The interpretation of this expression is:
(i) More is invested in the risky project the larger the risk tolerance ρ of

the syndicate.
(ii) More is invested risky the larger the ”risk premium” (m− r).
(iii) Less is invested risky the larger the variance v.
For those familiar with the optimal portfolio selection theory in finance,

the above solution has the same basic features. See Mossin (1968), Samuelson
(1969), Merton (1971) and Aase (1984). The two first consider intertempo-
rary models in discrete time, the next uses continuous time with continuous
dynamics, while the last one uses continuous time and continuous dynamics
with jumps included.

Let us look at the calculations:

d

da

(
Eu(g(a, Z))

)
=

∫ ∞
−∞

(z − r)e−
1
ρ

((1+a)z−ar) 1√
2πv

e−
1
2v

(z−m)2dz = 0.

Utilizing the form of the normal distribution and forming a full square, this
is equivalent to∫ ∞

−∞

1√
2πv

ze−
1
2v

(z−(m−v 1+a
ρ

))2e(ar
ρ
− 1

2v
m2)+ 1

2v
(m−v+ 1+a

ρ
)2dz =

r

∫ ∞
−∞

1√
2πv

ze−
1
2v

(y−(m−v 1+a
ρ

))2e(ar
ρ
− 1

2v
m2)+ 1

2v
(m−v+ 1+a

ρ
)2dz.

Using that the integral of a probability distribution equals 1, and the defini-
tion of expected value of a normal variate, we now have after cancelling the
constants

m− v1 + a

ρ
= r,

which proves our result (14).
Now we come to the more interesting point, the one of agreement in the

syndicate. Consider any member of the group, let us say member no. i. This
agent’s decision problem after the syndicate has been formed and a Pareto
optimal sharing rule yi(x) = ρi

ρ
x+ bi has been established, is the following:

maxa

∫ ∞
−∞

ui(yi(x))fX(x)dx = maxa

∫ ∞
−∞

(1− ρie−
1
ρi
yi(x)

)fX(x)dx =

maxa

∫ ∞
−∞

(1− ρie−
1
ρi

(
ρi
ρ

[(1+a)z−ar]+bi))fZ(z)dz =
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maxa

∫ ∞
−∞

(1− ρie−
bi
ρi e−

1
ρ

((1+a)z−ar))
1√
2πv

e−
1
2v

(z−m)2dz.

The latter optimization problem is seen to give the same result as the prob-

lem of the central planner, since the two different constants, ρ versus ρie
− bi
ρi ,

multiplying the exponential function simply cancel in both cases after dif-
ferentiation and equating the result to 0, and thus do not affect the optimal
solution a∗.

Hence we have an application of Theorem 7.

5.3 Heterogeneous probability beliefs

With different probability functions in the Savage-representations, we choose
to interpret these distributions as posterior probability distributions, which
may be the result from different priors where information may, or may not, be
different. Below we shall also make use of the dispersion functions ϕi(z) =:
f ′i(z)/fi(z), assuming fi(z) > 0 for all z and for all i.

In a syndicate the dispersions of the individuals result in a syndicate dis-
persion at a Pareto optimum, which is a mixture of the individual dispersions
and the derivatives of the sharing rules with respect to x. Since the latter
depend on the utility functions of the members, the resulting probability dis-
tribution f(z) of the central planner is a mixture of the individual probability
distributions and the corresponding utility functions via the sharing rules.

We do not obtain a simple separation between some probability dis-
tribution of the syndicate, that depend solely on the members probability
distributions, and a utility function which is related to a sup-convolution
problem. But we characterize conditions under which we obtain a separa-
tion between a resulting probability distribution of the syndicate, f(z), and
its utility function u(x|λ), which comprises the evaluation measure, call it
u(x, z|λ) = u(x|λ)f(z) of the syndicate. Since the resulting probability den-
sity f will also depend on the member’s utility functions through the sharing
rules, this brings the theory well into the framework of Savage (1954). Below
we follow Wilson (1968), Rubinstein (1974) and Amershi and Stoeckenius
(1983), where many of the proofs that we omit can be found.

Unlike our treatment in sections 3 and 4, we now have both a decision a
and a random variable Z that affect the payoff x = g(a, Z). In order to be
precise, this calls for some definitions.

By a sharing rule we mean a set of functions

y = {yi(x, z|λ); i ∈ N} such that
N∑
i=1

yi(x, z|λ) = x, ∀z.
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A contract is an ordered pair, (y, a), of a sharing rule y and a decision a. A
contract (y, a) Pareto dominates another contract (ŷ, â) if, for all i

Ei{ui(yi(g(a, Z), Z|λ))} ≥ Ei{ui(ŷi(g(â, Z), Z|λ))}

with strong inequality for at least one i. The operator Ei denotes expectation
with respect to the density fi(z). A contract is Pareto optimal if there does
not exist any Pareto dominating contract. This generates a partial order
over contracts. The associated preference order is called the Pareto order of
contracts.

A decision a is Pareto-preferred to a decision â if there exists a sharing
rule y such that

Ei{ui(yi(g(a, Z), Z))} ≥ Ei{ui(ŷi(g(â, Z), Z))} ∀ ŷ and i ∈ N ,

where we have dropped the possible λ-dependence for notational convenience.
When we wish to take account of the the dependence of the sharing rule on
the decision a, we write yi(x, z|a).

This defines a partial order on A and is called the Pareto order on A.
A sharing rule y is Pareto optimal for some a ∈ A provided there does

not exist a ŷ such that

Ei{ui(yi(g(a, Z), Z))} ≤ Ei{ui(ŷi(g(a, Z), Z))} ∀i ∈ N ,

with strong inequality for at least one agent j.
Generalizing the results of Section 3, let y be a Pareto optimal shar-

ing rule for a ∈ A. Then there exists a vector of agent weights λ(a) =
(λ1(a), λ2(a), . . . , λN(a)) such that y = (y1, y2, . . . , yN) maximizes

N∑
i=1

λi(a)Ei{ui(yi[g(a, Z), Z)|a]} subject to
N∑
i=1

yi(x, z|a) = x ∀(x, z|a).

Assume that fi(z) > 0 for all z and that λi(a) > 0 for all i ∈ N . By
optimizing the Lagrange function of the above problem, we can show the
following:

Theorem 8 First order necessary and sufficient conditions for Pareto opti-
mality of the sharing rule y is that there exists non-negative weights λ(a) =
(λ1(a), λ2(a), . . . , λN(a)) and a function µ(x, z|a) such that

(1)
N∑
i=1

yi(g(a, z), z|a) = g(a, z), ∀z
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and

(2) λi(a)u′i(yi(g(a, z), z|a))fi(z) = µ(g(a, z), z|a), ∀z and i ∈ N .

We say that a complete order on A can be derived from an evaluation
measure if there exists a function M(x, z) such that a is preferred to â if and
only if ∫

M(g(a, z), z)dz ≥
∫
M(g(â, z), z)dz.

We now assume as in Section 5.1 and 5.2 that a sharing rule is chosen be-
fore the decision a is considered, in which case the agent weights λi do not
depend on a. We seek conditions for the existence of an evaluation measure
representing group decision processes.

Towards this end we start with a sufficiently rich set A and suppose
that the group must choose a Pareto optimal contract. Let (y, a) be such
a contract. Then y must be a Pareto optimal sharing rule for a, and since
this is characterized by the weights λi, which do not depend on a, y is also
Pareto optimal for all a ∈ A.

Now, let λ be the weights corresponding to y. Then it must be the case
that

a ∈ Argmaxα∈A

N∑
i=1

λiEi[ui(yi(g(α,Z), Z))] (15)

The reason is that the feasible set over α ∈ A is convex from our assumption
about the structure of A.

We now define

M(x, z) =
N∑
i=1

λiui(yi(x, z))fi(z). (16)

Then we can reformulate (15) to

a ∈ Argmaxα∈A

∫
M(g(α, z), z)dz

We now define an order � on A by

a � â iff

∫
M(g(a, z), z)dz ≥

∫
M(g(â, z), z)dz.

An order � is said to be Pareto-inclusive if a is Pareto-preferred to â implies
that a � â.
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Here it can be shown that � is Pareto inclusive. The order � selects the
same optimal decision as the group chooses.

We now assume that an evaluation measure M(x, z) exists independent
of a. Then by the use of Theorem 8 notice that

∂M(x, z)

∂x
=

N∑
i=1

λiu
′
i(yi(x, z))

∂yi(x, z)

∂x
fi(z) = µ(x, z)

N∑
i=1

∂yi(x, z)

∂x
= µ(x, z).

In other words, the Lagrange multiplier µ(x, z) is the marginal change in
the evaluation measure with respect to x, just as u′(x) = µ(x) in the proof
of Theorem 3. This is also in analogy with the way the state price in Ap-
pendix 2 is connected to the marginal utility of the representative agent via
du(x|λ)/dx = π(x), here related to equilibrium.

We have the risk tolerances ρi(x) = −u′i(x)/u′′i (x) of the agents and dis-
persion functions ϕi(z) = f ′i(z)/fi(z) of the probability distributions, i ∈ N .
Since ϕi(z) = d

(
lnfi(z)

)
/dz, we can reconstruct the probability densities

from the dispersion functions as follows: fi(z) =exp
( ∫ z

z0
ϕi(s)ds

)
. We now

define the corresponding concepts for the syndicate:

ρ(x, z) = − µ(x, z)

∂µ(x, z)/∂x
and ϕ(x, z) =

∂µ(x, z)/∂z

µ(x, z)
.

The following general properties hold for the functions ρi, ρ, ϕi and ϕ:

(i)
∑
i

ρi(yi(x, z)) = ρ(x, z).

(ii)
∂yi(x, z)

∂x
=
ρi(yi(x, z))

ρ(x, z)

(iii)
∑
i

∂yi(x, z)

∂x
ϕi(z) = ϕ(x, z)

Here (i) and (ii) are the extensions of (6) and (7) to the inhomogeneous
case, while (iii) is new. It implies that the syndicate’s dispersion function
depends on the individuals’ dispersion functions as well as of the sharing
rule, which in its turn depend on the members’ utility functions.

We give a proof of property (iii) in Appendix 3.
Returning to the question mentioned earlier: Given a Pareto optimal

sharing rule y, under what conditions, if any, will the syndicate behave as a
Savage-rational decision maker in the choice of a?

The answer is that this happens if and only if the evaluation measure
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u(x, z) is separable with respect to x and z, that is, if and only if there exist
a function u(x) and a probability density f(z) such that

u(x, z) = u(x)f(z),

where u(·) is strictly concave and strictly increasing and f(z) is mutually
absolutely continuous with respect to fi(z) for all i ∈ N and possesses a
dispersion function.

As a consequence of (iii) above, the syndicate’s probability density func-
tion f(z) depends on the members’ probability density functions as well as
their utility functions, which is remarkable and emphasizes the Savage (or de
Finetti)-style nature of the syndicate.

In this case is the complete preference order on A generated by∫
u(g(a, z), z)dz =

∫
u(g(a, z))f(z)dz,

and the syndicate is said to be a Wilson syndicate.8

For a Wilson syndicate we notice that

ρ(x, z) = − u
′(x)f(z)

u′′(x)f(z)
= − u

′(x)

u′′(x)

does not depend on z, and is the syndicates risk tolerance, while the syndi-
cates dispersion function is given by

ϕ(x, z) =
u′(x)f ′(z)

u′(x)f(z)
=
f ′(z)

f(z)
.

We now need a formal definition: A sharing rule is said to be affine
provided ∂yi(x,z)

∂x
is independent of x for all i ∈ N . We can then show the

following (see Amershi and Stockenius (1983)):

Theorem 9 If the members of a syndicate have the same probability as-
sessments, or if the sharing rules are affine, then the syndicate is a Wilson
syndicate.

An example may illustrate.
Example 5.
Let u1(x) = u2(x) = ln(x) for x ∈ [0, 1] and f1(z) = 1, f2(z) = 2z for

z ∈ (0, 1), where N = {1, 2}. Consider the particular sharing rule where

8after Robert Wilson, who was awarded The Sveriges Riksbank Prize in Economic
Sciences in Memory of Alfred Nobel in 2020, together with Paul R. Milgrom.
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λ1 = λ2. The associated Pareto optimal contracts y satisfy

u′1(y1(x, z))f1(z) = u′2(y2(x, z))f2(z) = µ(x, z).

This means that

1

y1(x, z)
=

2y

y2(x, z)
= µ(x, z), ∀z ∈ (0, 1).

From
∑

i yi(x, z) = x for all (z, x), it follows that µ(x, z) = (2z+ 1)/x which
is separable, hence this is a Wilson syndicate.

The sharing rules are given by y1(x, z) = x
2z+1

, y2(x, z) = 2xz
2z+1

. The

evaluation measure u(x, z) = 2ln(x)(1
2
(2z + 1)), from which we can take

u(x) = 2ln(x) and f(z) = 1
2
(2z + 1), a trapezium distribution, which is a

mixture of f1 which is uniform, and f2 which is triangular, but its final shape
is also influenced by u1 and u2.

Here ∂y1(x,z)
∂x

= 1
1+2z

and ∂y2(x,z)
∂x

= 2z
1+2z

do not depend on x, so the sharing
rules are here linear. According to the result above, this fact is enough to
verify that we here have a Wilson syndicate as well. �

6 Syndicates II

In part I we formulated the conditions under which a group of people behave
as a Savage-rational decision maker. Except from Sections 5.1-2, the theory
in part I is relevant for a group of people who use a given Pareto optimal
sharing rule. The constructed evaluation measure is valid for this particular
weighting λ, with an associate Pareto-inclusive complete preference ordering
on A.

In this section we ask the following question: Under which conditions are
the preference orderings generated by different λ-weightings equivalent?

We need the following definition: A sharing rule is said to be determinate
provided ∂yi(x,z)

∂x
does not depend on z for all i ∈ N .

A sharing rule is both affine and determinate if ∂yi(x,z)
∂x

is a constant for
all i.

Note that in Example 5 the sharing rule is not determinate.
For what comes next we need the following technical result:

Proposition 1
∂µ(x, z)

∂λj
=

1

λj

∂yj(x, z)

∂x
µ(x, z)

A proof can be found in Appendix 3.
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Notice that the evaluation measure for a given weighting is determined
by the relative sizes of the weights, so the partial derivative of µ(x, z) with
respect to λj can be considered an a change in the weighting.

By this result, the following can now be shown:

Theorem 10 The evaluation measure of a syndicate is determined indepen-
dent, modulo a proportional constant, of the chosen Pareto optimal sharing
rule λ if and only if all the sharing rules are affine and determinate.

A natural question is now how to characterize utility functions which
guarantees that the Pareto optimal sharing rules are affine and determinate.
The first result in this direction is closely related to Theorem 7. Is says

Theorem 11 Suppose that the probability assessments are all homogeneous.
All the Pareto optimal sharing rules are affine and determinate if and only
if the member’s utility functions all have linear risk tolerances (HARA) with
identical cautiousness parameter.

In order to connect more directly to the result in Theorem 7, we need the
following two definitions:

A group of people is said to be a λ-unanimous syndicate provided for all
i, j, a and â we have that

Ei
(
ui(yi(g(a, Z), Z))

)
≥ Ei

(
ui(yi(g(â, Z), Z))

)
is equivalent to

Ej
(
uj(yj(g(a, Z), Z))

)
≥ Ej

(
uj(yj(g(â, Z), Z))

)
where y is the Pareto optimal sharing rule associated with λ.

A syndicate which is λ-unanimous for every λ is said to be an unanimous
syndicate.

In an unanimous syndicate one can delegate the decision making process
to any of the syndicate’s members.

We now have two results, which we also cite without proofs:

Theorem 12 A syndicate is λ-unanimous if and only if the λ-Pareto optimal
sharing rule is affine and determinate.

Corollary 1 A syndicate is unanimous if and only if all the Pareto optimal
sharing rules are linear and determinate.

The following summarizes many of the above results in the case when
there is agreement with regard to probability assessments:
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Theorem 13 In a syndicate with agreement about the probability distribu-
tions the following are equivalent:

(1) The syndicate is unanimous.
(2) All members of the group have HARA-class utility functions with the

same degree of cautiousness.
(3) The evaluation measure of the syndicate is determined independent

of λ, or equivalently, the complete preference orders on A generated by the
group’s different evaluation measures are all equivalent.

(4) The group’s Pareto ordering on A is complete.

We notice that (1) and (2) is a sharpening of our previous Theorem 7 in
Section 5.1 in that we in fact have equivalence between the HARA-class with
the same cautiousness and the property of unanimity.

The following can be summarized in the general case:

Theorem 14 For a syndicate with heterogenous probability beliefs the fol-
lowing are equivalent:

(1) The syndicate is λ-unanimous for some λ.
(2) The group is an unanimous syndicate.
(3) All the members of the group have constant absolute risk aversions.
(4) The preference orders generated by u(x, z|λ) are identical for all λ.
(5) The group’s Pareto-order is complete.

This theorem gives an answer to our earlier discussion about agreements
in a group. When probability assessments are different between the members
of the group, it is more difficult for the group to be a unanimous syndicate:
All the members must have negative exponential utility functions, which is
more limiting than having general HARA utility with the same cautiousness
parameter. Their absolute risk aversions are allowed to be different, but
otherwise this class is, of course, somewhat restricted. However, this property
constitutes a good example in illustrating optimal risk sharing, as we pointed
out in Example 2 of Section 3.3, and actually provides reinsurance treaties
that are in daily use in the insurance industry.

Wilson (1968) presented an example of a group decision problem of the
same type as we discussed in Section 5.2 with the difference that the members
have different probability distributions for the risky asset. It is interesting to
notice how the syndicate’s probability assessment is constructed in this case.
We focus on this part in his example.

6.1 An example

We consider the same problem as in Section 5.2 but with heterogenous prob-
abilities. As before we have negative exponential utility functions with risk
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tolerances ρi, which implies that the syndicate has the same type of utility
function with risk tolerance ρ =

∑
i ρi. Here member i has probability den-

sity according to the N(mi, vi)-distribution, so these are normally distributed
with means and variances depending on the individual.

The sharing rules satisfy ∂yi(x,z)
∂x

= ρi
ρ

, i ∈ N . Here the syndicate’s prob-
ability density happens to be normal with mean m and variance v, where

m = v
∑
i

ρi
ρ

mi

vi
,

and

v−1 =
∑
i

∂yi(x, z)

∂x
v−1
i =

∑
i

ρiv
−1
i

ρ
.

Here we have used property (iii) for dispersions in Section 5.3.
Notice how the syndicate’s probability distribution is a mixture of the

individual members’ probability distributions and the utility functions of the
members, represented by the risk tolerances of the individuals and of the
syndicate. This places this theory in the subjective tradition of representing
preferences in a non-trivial way.

The computations from now on are similar to our previous calculations,
where the optimal investment in the risky asset is given by Equation (14),
with m and v as given above.

We also have to show that the result is the same when the task of decision
making is left in the hands of an arbitrary member of the syndicate. This
goes much as before, but notice that here the sharing rules yi(x, z) depend
on z and hence on a mixture of all the parameters of the preferences and the
probability distributions, but since the sharing rules are also determinate,
these dependencies simplify after differentiation with respect to a, and the
result becomes as before, in agreement with Property (2) in Theorem 14
�

In our model the agents know their own probability distribution as well
as all those of the other agents. Accordingly the model can not be used
directly to analyze asymmetric information. However, close variants of the
model have been utilized for this topic as well. An example is the model of
Holmstrøm (1979), who analyses the situation with two agents, a principal
and an agent. Only the agent can make the decision, which can not be
observed by the principal, which is where the asymmetric information comes
in.9 The resulting model was used for situations with moral hazard. A model

9Bengt Holmstrøm obtained the The Sveriges Riksbank Prize in Economic Sciences in
Memory of Alfred Nobel in 2016, together with Oliver Hart. Holmstrøm’s Ph.D.-advisor
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where the different agents have different priors as well as different information
is presented by Kobayashi (1980), see also Wilson (1978).

We can use the theory of syndicates at several levels. At the first level, risk
sharing between individuals, the objectives consist in maximizing individual
preferences of the members, assuming these can be represented by expected
utility. This leads to an evaluation measures for the mutual insurance com-
pany, the reinsurance market, the nation, or the international organization,
respectively, whatever is the focus of the study. This construction allows us
to form several levels of syndication.

An example of this is given in Aase (2007), where marine insurance is
studied at three levels. The preferences of ship owners give rise to the eval-
uation measures the various P&I-Club, and the latter give rise to the final
evaluation measure of the reinsurance syndicate, where the various clubs ob-
tain their reinsurances. From this prices in the insurance market will be
formed according to the theory.

The situation with different probability beliefs typically gives rise to bet-
ting between the agents. We next consider this phenomenon when they do
not formally enter a syndicate and agree on a sharing rule, which is the case
when the model is interpreted as an Arrow-Debreu equilibrium model.

7 Syndicates, financial markets and general

equilibrium

Consider as in Section 4 an exchange economy under uncertainty with one
consumption good. The N agents are characterized by utility functions and
associated probability density functions as well as initial endowments, with
the same assumptions as above. The uncertainty in the economy is associ-
ated with a random vector Z = (Z1, Z2, . . . , Zm) of dimension m say, which
affect the market portfolio x(Z) =

∑
i xi(Z), where xi are the initial endow-

ment of agent i as before. We assume the joint probability distribution of
the vector (x1(Z), x2(Z), . . . , xN(Z)) is known, although we do not need to
specify the functional relationship between x and Z here. We know that any
competitive equilibrium is Pareto optimal, and that any Pareto optimum can
be implemented as a competitive equilibrium, possibly after a redistribution
of the initial endowments (by the First and Second Welfare Theorem).

The extension to a multivariate Z will primarily affect the relationship
(iii) in Section 5.3. If we define the marginal dispersions of the individuals

was Robert Wilson.
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and the syndicate as

ϕi(zk) =:

∂fi(z)
∂zk

fi(z)
, i ∈ N and ϕ(x, zk) =

∂µ(x,z)
∂zk

µ(x, z)
, k = 1, 2, . . .m,

respectively, then we obtain the following generalization of (iii)

ϕ(x, zk) =
N∑
i=1

ϕi(zk)
∂yj(x, z)

∂x
, k = 1, 2, . . . ,m.

By extending this to higher order partial derivatives, the joint distribu-
tion f(z) can be determined from the sharing rules and the higher order
dispersions.

An alternative to this, and a bit outside the theme of the paper, is to
determine the univariate marginal distributions from the above equations,
and employ copulas to determine the joint distribution. Correlation coeffi-
cients are good measures of dependence in the case of joint normality, but in
general can copulas give a better picture.

Define the decision a by g(a, z) = x(z) for any realization z of Z, and
consider the set

A =
{
a|E
(
g(a, Z)u′(x(Z), Z|λ)

)
= E

(
x(Z)u′(x(Z), Z|λ)

)}
.

The expectation is taken with respect to the joint probability distribution
f(z), which is determined as described above.

In an exchange economy we can interpret a decision a ∈ A as a budget-
feasible consumption plan for a ”pseudo agent” with initial allocation x(z)
who is confronted with state prices u′(x(z), z|λ)f(z) in state z. Defined this
way, the set A is convex and satisfies our earlier conditions.

Based on the syndicate theory, in particular Theorem 8, by this construc-
tion prices u′(x(z, z|λ))f(z) occur in equilibrium if and only if there exists a λ
such that a∗ is the optimal decision in A based on the preference order gener-
ated by the evaluation measure M(x, z|λ) =

∑
i λiui(yi(x(z), z|λ)fi(z). The

evaluation measure depends in general on the weights λ, where yi(x(z), z|λ)
is the optimal consumption of agent i, i ∈ N .

An economy populated with agents (ui, fi), i = 1, 2, . . . , N is said to have
the aggregation property if all the equilibria are characterized by the same
price functional based on u′(x(z), z)f(z) (modulo a normalization), see Ru-
binstein (1974).

Suppose now that x(z) is not a constant as z ∈ Rm varies. Then we say
that there is non-trivial social risk.
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Under this assumption the following result can be proven:

Proposition 2 The following is equivalent:
(i) The economy has the aggregation property.
(ii) The economy is equivalent to an unanimous syndicate.

A proof can be fond in Appendix 3.
If x(z) = x̄ for all z ∈ Rm, then µ(x(z), z|λ) = u′(x(z)|λ)f(z) so the ratio

between prices in different states of the world would be

u′(x̄|λ)f(z)

u′(x̄|λ)f(s)
=
f(z)

f(s)

independent of the sharing rule λ, which is a degenerate case, since this ratio
is in general equal to

u′(x(z)|λ)f(z)

u′(x(s)|λ)f(s)
=
λi
λj

u′i(yi(x(z), z))fi(z)

u′j(yj(x(s), s)fj(s)
, ∀(i, j)

for any states z and s. This follows from the first order conditions, where
the the marginal rates of substitution of consumption in states z and s is the
same for all agents i ∈ N .

A market constructed this way would typically imply ”betting” between
agents with different probability beliefs (and has been questioned for this
added complexity). To see how a sharing rule will typically look like, consider
the market analogue to the syndicate in the example in Section 6.1, where
N = 2. The sharing rules yi(x(z), z), i = 1, 2 are given by

y1(x(z), z) =
ρ1

ρ
x(z) +

(
ρ1lnλ1 − ρ1

K

ρ

)
+(∑

j

ρ−1
j

)−1 1

2

(
− (z −m1)2/v1 + (z −m2)2/v2 − ln(

v1

v2

)
)
,

where K =
∑

j ρjlnλj (see Example 2), and with the following expression for
agent 2:

y2(x(z), z) =
ρ2

ρ
x(z) +

(
ρ2lnλ2 − ρ2

K

ρ

)
+(∑

j

ρ−1
j

)−1 1

2

(
− (z −m2)2/v2 + (z −m1)2/v1 − ln(

v2

v1

)
)
,

when m = 1. Here we have used the system differential equations given in
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Section 5.3, equation (ii). Notice that y1 + y2 = x for all z as the case should
be.

According to agent 1’s probability belief, the realization z should be close
to m1. If this happens and v1 < v2, then the z-dependent term (the third
term on the right-hand side) in the above expression involves a net transfer
from agent 2 to agent 1 at time 1, in which case agent 1 wins the bet.

On the other hand, if z falls close to m2 and v2 < v1, agent 2 wins.
In the situation of Proposition 1 the optimal sharing rules are linear,

in which case we may alternatively think of the model as a stock market
economy (in contrast to the more general Arrow-Debreu economy), at least
if probability beliefs are homogeneous. In such a market sharing rules are
automatically linear, since stocks can be bought and sold in proportions
only (number of shares times price). Such a market is sometimes said to
be effectively complete when probability beliefs are homogeneous, since non-
linear contracts are not optimal.

Under certain conditions we may implement a securities market equilib-
rium with N securities and associated stock prices S at time 0, and port-
folio weights θ1, θ2, . . . , θN , such that (θ1, θ2, . . . , θN ;S) is s security market
equilibrium with the same consumption allocation (y1, y2, . . . , yN) as in the
Arrow-Debreu economy (see for example Duffie (2001) for a definition of such
a security market equilibrium). This construction can be carried out when
the securities market is complete, but can alternatively result with linear
sharing rules as explained above.

In the one-period model, without explicit Brownian motion dynamics, a
simple model obtains when the state space is finite. When the number of
the risky stock-owned companies, whose vectors of state-contingent payoffs
are linearly independent, is at least equal to, or larger than the number of
states, the resulting market is complete, recall the last result in Section 10.1.2
(Appendix 2). In our setting we have an uncountably large state space, since
we have probability densities on compacts. This could, perhaps, be related to
the theory of so-called ”large markets”, which uses contiguity concepts and
is beyond the scope of the present article, see for example Prigent (2003).

Non-linear contracts, like various derivatives and options, do exist and
are traded in real life markets, and one may wonder if this can be analyzed
within the framework of the present model. Consider for example a contract
with payoff yp1 at time 1, p ≥ 2, still with homogeneous probability beliefs.
Its price at time 0 is simply

Π(yp1) =

∫
y

yp1(x(z), z)u′(x(z), z|λ)f(z)dz,
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provided the integral exists. Such a claim is, moreover, not redundant in
this model, and the optimal consumption allocations yi can be attained in a
market of stock-owned firms only. The completeness issue is if such a security
can be spanned by a portfolio of the given securities.

In general, with existence of general Arrow-Debreu securities, the finite
number of optimal contracts, interpreted as securities in a stock market, is
not sufficient to determine the Arrow-Debreu state prices. However, in the
present setting the Arrow-Debreu prices are known from the structure of the
model.

If we go beyond the class of HARA-utility functions, we encounter non-
linear Pareto optimal contracts. However, the resulting contracts may not
come close to the financial instruments that market participants want to
trade.

When probability beliefs are inhomogeneous, betting occurs as we have
demonstrated above. However, the bets are structured by the model. In
the standard model derivatives are considered as bets on the state of the
economy, or on the price of one of more of the given securities or functions of
such, but the setting only leaves the agents indifferent between status quo or
actually acquiring the derivative, short or long. In the present setting agents
bet actively, more like in the real world, and one may wonder if this added
feature could be useful in analyzing derivatives.

8 Conclusions

We have reviewed optimal risk sharing among members of various organi-
zations. The starting point was optimal risk sharing in an Arrow-Debreu
economy, or equivalently, in a Borch type reinsurance market. From the re-
sults of this model we have inferred how risk is optimally distributed between
individuals according to their preferences and initial endowments. Not sur-
prisingly, risk aversions play an important role. In addition to employing
the criterion of Pareto optimality, we also narrowed the scope to the pricing
problem connected with competitive equilibrium within the same framework.

The mutuality principle basically says that when it is blowing from the
north, all the trees bend southwards: This principle, we claim, can be con-
nected to economic consequences of a pandemic: It makes most people worse
off, and when it is over, those who survived may improve their situation
(although it may take some time).

From this we progressed to a review of the more general theory of syn-
dicates, where, in addition, a group of people is to make a common decision
under uncertainty. Conditions were formulated under which the syndicate
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behaves as a rational Savage decision maker, with an associated evaluation
measure.

Depending on the structure of this measure, we can infer the degree of
unanimity in the syndicate. Presumably, a theory like this can shed some
light on what goes on in World meetings, like for example, the UN Climate
Change Conference (COP26) held in Glasgow in November 2021. It basically
says that it is hard to agree, which was experienced. Lastly, we extended
also the syndicate setting to a competitive market equilibrium.

9 Appendix 1

Proof of Theorem 1:
From functional analysis it is known that a positive, linear functional on

an Lp-space is bounded (1 ≤ p < ∞), and hence also continuous, in which
case we can use the Riesz Representation Theorem and conclude that there
exists a unique random variable π ∈ L2

+, where L2
+ is the positive cone of L2,

such that
Π(y) = E(yπ) for all y ∈ L2. (17)

In an economc context this non-negative random variable, the Riesz Rep-
resentation, turns out to be the state-price deflator. Other names used for
this concept in the literature is pricing kernel, state price density or marginal
rates of substitution, the latter in a dynamic context.

Finally, the pricing functional π is also strictly positive, meaning simply
that π(Z) > 0 for any Z > 0. Here Z > 0 means that Z ≥ 0 a.s., and there
is some set A such that Z(ω) > 0 for all ω ∈ A where P (A) > 0. This is
a direct consequence of no arbitrage possibilities as well. Thus the Riesz’
representation π is strictly positive a.s.

It should be noticed that if Ω is a finite set, any linear functional is
automatically continuous, so we would not need the theorem from functional
analysis in order to apply the Riesz Representation Theorem.

In conclusion, we have shown that if there is no arbitrage, then there
exists a strictly positive random variable π ∈ L2

+ such that prices are given
by the relation (17). On the other hand if prices are given by (17), there can
not be any arbitrage. Suppose z ≥ 0 a.s., then π · z ≥ 0 a.s. since π > 0 a.s.,
and accordingly must Π(z) ≥ 0. Likewise, if z > 0, (meaning z ≥ 0 a.s., and
there exists a set A ∈ F having strictly positive probability, where z(ω) > 0
for all ω ∈ A) then π · z > 0 since π > 0 a.s., and accordingly must Π(z) > 0.
Our proof is then ccomplete: �
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10 Appendix 2

10.1 State prices

In order to put the basic message forward as simple and direct as possible,
we consider a discrete model for this part.

We fix a future point in time, called one period from today, and define
a set Ω containing S states of the world, indexed j = 1, 2, · · · , S. In other
words, the state space is Ω = {ω1, ω2, · · · , ωS} = {1, 2, · · · , S} for simplicity
of notation.

In this one-period setting we consider an exchange economy populated by
N agents with endowments xn, and preference relations over end-of-period
consumption �n, n = 1, 2, · · · , N . Notice that we need no limitations like
preferences are represented by expected utility, or otherwise, at this stage.

10.1.1 A thought experiment

Consider the following thought experiment: Imagine these individuals or-
ganize a market for trade in contingent claims related to these states j =
1, 2, · · · , S. In this market we imagine there will be established prices ψj for
these state contingent claims, i.e.,

ψj = market value today of 1 unit of account at the end of the period,

given that state j occurs, j = 1, 2, · · · , S.

More precisely, we define a unit contingent claim, called an Arrow-Debreu
security, as follows

1j =

{
1, if state j ∈ Ω occurs;

0, otherwise.

Then ψj is the price of 1j for any state j ∈ Ω.
Now we assume that there exists an equilibrium in Arrow-Debreu secu-

rities with prices as indicated, a concept we define formally below. 10 Since
this equilibrium is formed by the N agents in this economy, the prices will
reflect the characteristics of these agents, including their preferences, their
endowments and the various states that can occur. The details of how this
comes about, we need not worry about at the present.

Suppose you have access to such a market, and were to consider an in-
vestment project y, where the payoff at the end of the period depends on

10See Arrow (1951-53), and Arrow and Debreu (1954).
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what state j that occurs. Also suppose that you are a price taker, in that
your actions will not change the equilibrium prices. (If not, see e.g., Bichuch
and Feinstein (2021)).

The project may be represented by a set of numbers yj representing the
payoff if state j occurs, j = 1, 2, · · · , S.

A natural question is then what this project is worth at the beginning of
the period. Let us denote this value by Π(y).

The answer is simple: If you owned the project, you could issue y1 state
1-claims 11, y2 state 2-claims 12, · · · , yS state S-claims 1S, and sell these in
the market.

Since the prices of the Arrow-Debreu securities are known, the amount
from this sale is given by ψ1y1 for the 11 claims plus ψ2y2 for the 12 claims plus
· · · plus ψSyS for the 1S claims. In total would this sale bring in

∑S
j=1 ψjyj,

which must then represent the value of the investment project y, i.e.,

Π(y) =
S∑
j=1

ψjyj. (18)

One thing to note about this valuation formula, is that it does not ex-
plicitly depend on the probabilities of the states. In other words, as long
as the state prices ψj are known, the valuation formula can be set down
without really knowing the probabilities, call them pj, of the various states,
j = 1, 2, · · · , S,

10.1.2 Equivalent representations of the value of a project

If the probabilities pj are known, we may alternatively express the value of
any project y as follows: Assuming all pj > 0 we can rewrite (18) as follows

Π(y) =
S∑
j=1

pj
ψj
pj
yj.

This assumption is innocuous, since if one state has probability 0, this state
may safely be removed from consideration. It is of no interest here.

Let us define the Arrow-Debreu state prices in units of probability as the
state price deflator :

ψj
pj

:= πj = state price deflator in state j, j = 1, 2, · · · , S.

The vector π = (π1, π2, · · · , πS) is then the state price deflator. With proba-
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bilities in place, we can consider π as a random variable defined on Ω, with
value πj if state j occurs.

Using this, we may write the project value today as an expectation with
respect to the probabilities pj as follows:

Π(y) =
S∑
j=1

pj(πjyj) = E(πy). (19)

Here we have considered both π and y as random variables on the same
probability space (Ω,F , P ), in which case (19) is merely the definition of the
expected value of the product πy of these two random variables. In addition
to having the state-price-in-units-of probability interpretation of π, we have
also recovered the basic pricing formula (1) using finite dimensional analysis.

This formula important in large parts of financial and insurance eco-
nomics, in particular related to equilibrium theory.

Suppose we have a model of N securities where dn,j is the number of
units of account paid by security n in state j. Denote the prices of the N
securities at time 0 by the vector q. A portfolio θ ∈ RN has market value
q · θ and payoff d′θ ∈ RS. d is the payoff matrix of the securities, and prime
here means transpose. We interpret this as a model of a stock market (where
sharing rules are linear). An arbitrage possibility is a portfolio θ ∈ RN with
q · θ ≤ 0 and d′θ > 0, or q · θ < 0 and d′θ ≥ 0. In this discrete model the no-
arbitrage condition was characterized by S. Ross (1978). It says that there
is no arbitrage if and only if there is a state price vector ψ = (ψ1, ψ2, . . . , ψS)
such that q = dψ.

11 Appendix 3:

Proof of Theorem 2.
Suppose first that (y1, y2, . . . , yN) is a solution to the problem (2), and

assume, to reach a contradiction, that it is not Pareto optimal. Assume all
the λi > 0. Then there exists a Pareto dominating allocation (ŷ1, ŷ2, . . . , ŷN)
satisfying Eui(ŷi) ≥ Eui(yi) for all i ∈ N , and Euj(ŷj) > Euj(yj) for at
least one j ∈ N , where

∑
i ŷi ≤ x. But then the feasible allocation ŷ has a

larger value of
∑N

i=1 λiEui(ŷi) than y, which is a contradiction.
The other direction, that if y is Pareto optimal, then it a solution to the

problem (2), can be proved by use of The Separating Hyperplane Theorem.
Since this proof is a bit technical, we skip it here. �

Proof of Theorem 3.
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Starting with problem (3), the Lagrangian of the problem is the following:

L(z;µ) =
N∑
i=1

λiui(zi)− µ(x|λ)
( N∑
i=1

zi − x
)

(20)

where the Lagrange multiplier µ(·|λ) depends on x. Here we recall the state
by state interpretation of the problem (3), in which x(ω) is a real number for
any given state ω, which means that µ(x(ω)|λ) is also a real number. This
moves the problem to ordinary Lagrange calculus in a deterministic world.
(The notation also indicates that µ may depend on the sharing rule λ.) The
first order conditions for optimality of y in (20) imply that for x > 0,

λiu
′
i(yi) = µ(x|λ), i = 1, 2, . . . , N.

By the Envelope Theorem we can write µ(x|λ) = u′(x|λ), where the latter
is defined in (3), and u is smooth enough by the Implicit Function Theo-
rem. This implies that, for every i and now interpreted as equalities between
random variables, we have that

λ1u
′
1(y1) = λ2u

′
2(y2) = . . . = λNu

′
N(yN) := u′(xM |λ) a.s.

This proves necessity. As for sufficiency, we note that the first-order con-
ditions are also a sufficient condition under concavity. The fact that the
”sup-convolution” function defined by the optimality problem (3) is concave,
is a nice student problem. �

Proof of Theorem 4
Starting with the first order conditions

λiu
′
i(yi(x)) = u′(x|λ), x ∈ B ⊆ R, i ∈ N ,

from our smoothness assumptions, both sides of the above equation are real,
differentiable functions (the right-hand side because of the implicit function
theorem), so taking derivatives of both sides gives

λiu
′′
i (yi(x))y′i(x) = u′′(x|λ), x ∈ B ⊆ R, i ∈ N .

Dividing the second equation by the first, we obtain the following non-linear,
first order ordinary differential equation for the Pareto optimal allocation
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function yi(x):

y′i(x) =
Aλ(x)

Ai(yi(x))
, yi(x0) = bi, x, x0 ∈ B, i ∈ N . (21)

Here yi(x0) = bi represent the initial conditions of these differential equations,
where

∑I
i=1 bi = x0. This proves (b).

As for (a) notice that
∑

i∈I y
′
i(x) = 1, for any x ∈ B ⊂ R, we obtain by

summation in (21) that 1/Aλ =
∑

i 1/Ai(yi(s), or

ρλ(x) =
∑
i∈I

ρi(yi(x)), x ∈ B.

This can also be written

ρλ(xM) =
∑
i∈I

ρi(yi(xM)), a.s., (22)

interpreted as an equality between random variables. This allows us to
rewrite the differential equations in (21) as in (7) as well. �

Proof or Theorem 5.
Let us go back to the system of nonlinear differential equations for the

Pareto optimal contracts in (7), which we repeat here

dyi(x)

dx
=
ρi(yi(x))

ρλ(x)
, yi(x0) = bi, x, x0 ∈ B,

and assume we have HARA-class preferences with identical cautiousness.
Then this system of equations can be written

dyi(x)

dx
=
αi + βyi(x)

α + βx
, yi(x0) = bi, (23)

where
∑N

i=1 bi = x0, and
∑N

i=1 αi = α.
The solution to this system is given by

yi(x) =
αi + βbi
α + βx0

x+
αbi − αix0

α + βx0

. (24)

This can be readily checked by inserting this solution in the equation (23),
and verify that the equation and the boundary conditions are all satisfied.
This system of ordinary, linear differential equations is known to have a
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unique solution satisfying the boundary conditions, provided the coefficients
are continuous in the variable x, so we are done. �

Proof of Theorem 6.
The problem maxzi Eui(zi) s.t. h(zi) ≤ 0, where h(zi) := π(zi) − π(xi),

i = 1, 2, . . . , N is an infinite dimensional problem for each i, but a ”nice” one
in that the objective is concave and the constraint function h (the feasible
set) is convex.

For such problems the Kuhn-Tucker Theorem says that, granted a suit-
able constraint qualification, any optimal solution yi will be supported by a
Lagrange multiplier αi: That is, there exist αi ≥ 0 such that the Lagrangian

Li(zi;αi) = Eui(zi)− αih(zi)

is maximal at zi = yi. Moreover, complementary slackness holds: αih(yi) =
0. The said qualification could be h(z0

i ) < 0 for some z0
i . (This is the so-called

Slater condition.) Here let z0
i = 1

2
xi.

Next we explore what maximality of Li(·, αi) at yi means.
We first argue in terms of of directional derivatives : Recall that

5Li(yi, z) = lim
t↓0+

Li(yi + tz;αi)− Li(yi;αi)
t

,

where 5Li(yi, z) is the directional derivative of Li(yi;αi) in the ”direction” z
in the Hilbert space L2. Li is differentiable at yi means that 5Li(yi, z) exists
for all z ∈ L2, and the functional z → 5Li(yi, z) is linear. This functional,
the gradient of Li at yi, is denoted by 5Li(yi). It can here be shown to be
given by

(5Li(yi))(z) = E{(u′i(yi)− αiπ)z}. (25)

A necessary condition for a maximum of Li at yi is that the gradient in (25)
is zero in all directions z ∈ L2, which leads directly to the condition (10).

Alternatively, we could use a variational argument: For that purpose
define a variation ỹi := yi+tz where yi is the optimal solution of (9), t ∈ R is a
scalar dummy variable and z ∈ L2 is an arbitrary random variable. According
to our conditions the function f(t; z) := Li(ỹi;αi) attains its maximum for
t = 0, and consequently must

f ′(0; z) = E{z(u′i(yi)− αiπ)} = 0 for all z ∈ L2, (26)

which again implies that u′i(yi)− αiπ = 0 a.s.
Finally, since u′i > 0 for all i, the shadow price π > 0 P-a.s., otherwise

42



the problem (9) can not have a solution, contrary to our assumption that an
equilibrium exists. From the first order condition (10) it then follows that
αi > 0 of all i. �

Proof of Theorem 7.
Consider member i’s attitude towards the syndicate’s risk x, given the

sharing rule yi(x). Taking derivatives with respect to x gives:

v′i(x) = u′i(yi(x))y′i(x) = u′i(yi(x))
αi + βyi(x)

α + βx
,

where we have used the differential equation for y′i(x) given in (7). Further-
more

v′′i (x) = u′′i (yi(x))
(αi + βyi(x)

α + βx

)2

+ u′i(yi(x))
d

dx
y′i(x).

It is straightforward to see by a bit of calculus that d
dx
y′i(x) = 0. From the

above we then obtain that the risk tolerance of member i’s derived utility
function is given by

− v
′
i(x)

v′′i (x)
= − u

′
i(yi(x))

u′′i (yi(x))

α + βx

αi + βyi(x)
= α + βx. �

Proof of property (iii) in Section 5.3.
We start with the relation (2) in Theorem 8, which can be written

λiu
′
i(yi(x, z))fi(z) = µ(x, z), ∀i.

Differentiation this relation with respect to y, we get

λiu
′′
i (yi(x, z))fi(z)

∂yi(x, z)

∂z
+ λiu

′
i(yi(x, z))f

′
i(z) =

∂µ(x, z)

∂z
, ∀i.

Dividing this equation by the previous one we get

u′′i (yi(x, z))

u′i(yi(x, z))

∂yi(x, z)

∂z
+
f ′i(z)

fi(z)
= ϕ(x, z).

From this it follows that

∂yi(x, z)

∂z
= ϕi(z)ρi(yi(x, z))− ϕ(x, z)ρi(yi(x, z)).
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Summing over the members we obtain∑
i

∂yi(x, z)

∂z
=

∂

∂z

∑
i

yi(x, z) =
∂

∂z
x = 0

=
∑
i

ϕi(y)ρi(yi(x, z))− ϕ(x, z)ρ(x, z),

where wee have used (i). Accordingly,

ϕ(x, z) =
1

ρ(x, z)

∑
i

ϕi(z)ρi(yi(x, z)) =

∑
i

ϕi(z)
ρi(yi(x, z))

ρ(x, z)
=
∑
i

ϕi(z)
∂yi(x, z)

∂x
,

where we have used (ii). Thus (iii) follows. �

Proof of Proposition 1.
The starting point is the equation

λju
′
j(yj(x, z))fj(z) = µ(x, z), ∀j, x and z.

By taking partial derivatives and dividing the results by the above equation,
this results in

− 1

ρj

∂yj(x, z)

∂λi
=

∂µ(x,z)
∂λi

µ(x, z)
, j 6= i

and
1

λi
− 1

ρi

∂yi(x, z)

∂λi
=
∂µ(x, z)

∂λi

1

µ(x, z)
, j = i.

Summing over all the members gives the result. �

Proof of Proposition 2.
(i) implies (ii): The aggregation property means that there exists k(λ) > 0

such that
k(λ)µ(x(z), z|λ) = u′(x(z))f(z), ∀ z andλ.

The quantity µ(x, z) is determined, modulo a constant, for each x and z.
From Theorem 12 it follows that all the Pareto optimal sharing rules are
affine and determinate. In the inhomogeneous case the result now follows
from Theorem 14, in the homogeneous case from Theorem 13. (ii) implies
(i): Just reverse the above arguments. �.
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[24] Bühlmann, H. (1980). An economic premium principle. ASTIN Bulletin
11; 52-60.
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