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Abstract

The new slm latent model for estimating spatial econometrics models using INLA has recently been introduced. It will

be described briefly and its use will be demonstrated in the accompanying poster.
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1. Introduction

Integrated Nested Laplace Approximation (INLA) provides a quick and reliable approximation to the

marginal distributions in Bayesian inference on hierarchical models. This has been implemented in the

R-INLA package which allows INLA to be used from within R statistical software. Although INLA is a

general methodology, its use in practice is limited to the models implemented in the R-INLA package. In

this poster, we describe the implementation and application of a new class of latent models in INLA made

available through R-INLA as these models have not been available within R-INLA so far. This new latent

class implements a standard spatial lag model that can be used to build more complex models in spatial

econometrics. The implementation of this latent model in R-INLA also means that all the other features of

INLA can be used for model fitting, model selection and inference in spatial econometrics, as will be shown

in this poster. We will illustrate the use of this new latent model and its applications with two datasets based

on Gaussian and binary outcomes.

2. The “slm” INLA latent model

2.1. Spatial Econometrics Models
In this section we summarise some of the spatial econometrics models that we will use throughout this

paper. For a review on spatial econometrics models, see Anselin [1]. We will follow the notation used in

Bivand et al. [2], which is in turn derived from Anselin [3] and LeSage and Pace [4, 5].
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We will assume that we have a vector y of observations from n different regions. The adjacency structure

of these regions is available in a matrix W, which may be defined in different ways. Unless otherwise stated,

we will use standard binary matrices to denote adjacency between regions, with standardised rows.

All these models can be rewritten so that the response y only appears on the left hand side. For example,

the spatial error model (SEM) is:

y = Xβ + (In − ρErrW)−1e; e ∼ MVN(0, σ2In); (1)

and the spatial lag model (SLM):

y = (In − ρLagW)−1(Xβ + e); e ∼ MVN(0, σ2In); (2)

2.2. The Integrated Nested Laplace Approximation
Bayesian inference on hierarchical models has often relied on the use of computational methods among

which Markov Chain Monte Carlo (MCMC) is the most widely used. Rue et al. [6] have developed an

approximate method to estimate the marginal distributions of the parameters in a Bayesian model. In par-

ticular, they focus on the family of Latent Gaussian Markov Random Fields models. First of all, a vector

of n observed values y = (y1, . . . , yn) are assumed to be distributed according to one of the distributions in

the exponential family, with mean μi. Observed covariates and a linear predictor on them (possibly plus

random effects) may be linked to the mean μi by using an appropriate transformation (i.e., a link function).

Hence, this linear predictor ηi may be made of a fixed term on the covariates plus random effects and other

non-linear terms.

The distribution of y will depend on a number of hyperparameters θ1. The vector x of latent effects forms

a Gaussian Markov Random Field with precision matrix Q(θ2), where θ2 is a vector of hyperparameters. The

hyperparameters can be represented in a unique vector θ = (θ1, θ2). It should be noted that observations y are

independent given the values of the latent effects x and the hyperparameters θ. INLA will not try to estimate

the joint distribution π(x, θ|y) but the marginal distribution of single latent effects and hyperparameters, i.e.,

π(x j|y) and π(θk |y). Indices j and k will move in different ranges depending on the number of latent variables

and hyperparameters.

2.3. Using Bayesian model averaging to fit spatial economentrics models
Bivand et al. [2, 7] describe how to use Integrated Nested Laplace Approximation to fit some spatial

econometrics models. Because of the lack of an implementation of these models within the R-INLA soft-

ware at that time (the 2013 Spatial Statistics conference), they fit many different models conditioning on

values of the spatial autocorrelation parameter. These conditioned models can be fitted with R-INLA and

they are later combined using Bayesian model averaging (see Hoeting et al. [8]), to obtain the posterior

marginals of the parameters of the desired model.

2.4. The “slm” latent model for fitting spatial economentrics models
The new “slm” latent model implements the following expression as a random effect that can be included

in the linear predictor:

x = (In − ρW)−1(Xβ + ε) (3)

Here, x is a vector of n random effects, In is the identity matrix of dimension n × n, ρ is a spatial

autocorrelation parameter, W is a n × n weight matrix, X a matrix of covariates with coefficients β and ε is

a vector of independent Gaussian errors with zero mean and precision τIn.

In this latent model, we need to assign prior distributions to the vector of coefficients β, spatial autocorre-

lation parameter ρ and precision of the error term τ. By default, β takes a multivariate Gaussian distribution

with zero mean and precision matrix Q (which must be specified); logit(ρ) takes a Gaussian prior with zero

mean and precision 10; and log(τ) takes a log-gamma prior with parameters 1 and 5 · 10−5. Note that many

spatial econometrics models can be derived from this implementation. In particular, the SEM model is a

particular case with β = 0; the SLM model can be fitted with no modification. Details of the implementation

are available at: http://www.math.ntnu.no/inla/r-inla.org/doc/latent/slm.pdf.
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3. Examples

The examples shown on the poster are taken from the literature. First, we use the study by Harrison and

Rubinfeld [9] of the median value of owner-occupied houses in the Boston area using 13 covariates as well.

Note that the median value has been censored at $50,000 and that we omit tracts that are censored, leaving

490 observations (see Pace and Gilley [10]). The spatial adjacency that we will consider is for census tract

contiguities. The second example data set covers business opening after Katrina; LeSage et al. [11] study

the probabilities of reopening a business in New Orleans in the aftermath of hurricane Katrina. They have

used a spatial probit, here we reproduce the analysis with a continuous link function (i.e., a probit function)

and the new “slm” latent model.

4. Extensions

The work presented on the poster highlights only certain aspects of our results. Extensions include the

calculation of impacts showing the consequences of feedback in models for which beta is included in slm

models. They also include additional random effects, model selection and Bayesian model averaging in

choices regarding the construction of spatial weights matrices.
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