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Abstract

This thesis investigates the impact of underwater hull cleaning and crew performance

on bunker consumption using noon reports. Biofouling imposes increased resistance on

oceangoing vessels over time, and hull cleanings are subsequently performed to remove

marine growth and reduce resistance. With uncertain data, a classification model is

proposed to identify hull cleaning dates. The hull cleaning dates classified by the proposed

model outperform the company-reported dates in terms of fitting expectations.

A model to economically optimize hull cleaning intervals is further defined, achieving

savings of 0.3 – 1.4 % over a three-year period, by applying optimal intervals to vessels

with two hull cleanings. Adding an additional hull cleaning resulted in fuel savings of

2.1 – 3.2 %. Although results are found under strict assumptions, they are similar to

savings made by advanced continuous monitoring systems. Individual crew members are

analyzed to find whether certain crew over- or underperforms in terms of fuel expenditure.

Findings suggest that several masters and chief engineers have significant deviations in

mean consumption even after controlling for all known covariates, although the causality

of deviations remains unexplained.

Using fixed effects regression models, the impact of hull cleaning on fuel consumption is

estimated to be approximately 1 % for Panamax and Medium Range vessels, and 9 % for

Suezmax vessels. Crew members are estimated to explain between 3 – 4 % of variation

in fuel consumption. Several machine learning models were tested to measure effects

on prediction accuracy. Linear models achieved prediction accuracies of 63.5 – 67.5 %,

increasing by 3 – 8 %, while advanced non-linear models achieved prediction accuracies

of 77.1 – 78.2 %, increasing by 2.5 – 3 %. The thesis’ findings contributes to existing

literature by quantifying the impact of underwater hull cleaning and crew performance

on bunker consumption under data uncertainty, by providing a model to identify hull

cleanings and to observe potential savings of optimizing intervals.

Keywords – Underwater Hull Cleaning, Crew, Classification, Optimization, Machine

Learning, Shipping
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1 Introduction

While most people live their lives without offering much thought to the endless supply

chains and logistics that bring them their everyday products, shipping remains the most

important conveyor of trade volumes. It has been described by the UN (2016) as the

backbone of global trade and economy, and in 2018 shipping accounted for 80 % of global

trade by volume and 70 % of global trade by value (UNCTAD, 2018). Furthermore,

shipping is by a substantial margin the most environmental friendly means of cargo

transport, measured by CO2

km·kg (IMO, 2009). However, the shipping industry alone is

responsible for 2.89 % of global anthropogenic emissions, increased from 2.76 % in 2012,

despite carbon intensity reductions of 1-2 % per year since 2015 (IMO, 2020). This

means that absolute emissions in shipping grow faster than the improvements in fuel

efficiency. The International Maritime Organization (IMO) has during the last decade

imposed reductions on CO2 and sulfur emissions (IMO, 2019). Reaching emission goals

solicits effective solutions to reduce fuel consumption within everything from ship design

(Hochkirch and Bertram, 2010) to route optimization (Kobayashi et al., 2014).

Holding trading patterns and ship-specific attributes constant, two factors that influence

fuel consumption heavily is the condition of the hull and crew performance. Deteriorating

hull and propeller performance is assumed to account for approximately 10 % of fuel costs

and emissions for oceangoing vessels (Copernicus, 2021). For instance, the development of

biofouling can drastically decrease fuel efficiency (Lindholdt et al., 2015). Underwater hull

cleanings are amongst the most widespread methods of combating biofouling, although

several other abatement methods exist (IMO, 2020). Adland et al. (2018) showed that

there are significant decreases in fuel consumption following underwater hull cleaning

procedures, also referred to as simply hull cleanings.

While biofouling can certainly have an impact on the performance of oceangoing vessels,

the effects of crew members on fuel consumption is a topic which has not yet been subject

to analysis. Managing director Peter Knudsen of Blueflow Energy Management stated

that the most important aspect of saving fuel is the crew, referring to the importance

of having the right competence on board. Without the capability to correctly operate

and understand signals from different sources of data, it would be futile to introduce new
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technology and increase energy efficiency (VPO, 2018). Masters and chief engineers may

impact bunker consumption through their ability to maintain stable speeds, efficiently

accelerate/decelerate, and handle the rudder in a proficient manner.

The contribution of this thesis is fourfold. Although hull cleaning has been shown to

have significant effects on fuel consumption, these procedures are not necessarily well

documented. First, section 4 proposes a classification algorithm utilizing OLS regressions

to detect hull cleaning dates under data uncertainty. The model builds upon the findings

of Adland et al. (2017) to identify effects of hull cleanings on fuel consumption. Next, fuel

consumption profiles using detected hull cleaning dates are visualized and discussed in

regard to a priori expectations. This is valuable for ship owners who want to analyze fuel

consumption with uncertain data or deficient hull cleaning dates.

Second, section 5 performs economical optimization of hull cleaning intervals. Further, the

section investigates how assumptions about fuel consumption behavior affect the optima.

Optimization of hull cleaning intervals has not been analyzed in existing literature,

probably because of the complex relationship between the development of biofouling over

time and fuel consumption. The section introduces a theoretical optimization problem

to solve the general economical optima of hull cleaning intervals, subject to changes in

various parameters. Optimization of hull cleaning intervals leads to lower fuel consumption

as a result of minimizing external resistance over a dry dock interval. This is of interest

for shipping companies who want to reduce fuel costs by improving their basis of decision-

making regarding the timing of hull cleaning procedures.

Third, building on the information gathered on the effects of hull cleanings, section 6

isolates the effects of crew members, and ascertains whether and to what extent individual

crew can influence fuel consumption. Modelling the effects of masters and chief engineers

is however dependent on the interval in which they sail, due to the effects of biofouling and

hull cleanings. Hull cleaning intervals should therefore be accounted for before looking at

their impact. This section analyzes the effects on fuel consumption in terms of individual

differences between crew members. This is interesting for ship owners who want to better

understand to what degree individual crew members can affect fuel consumption, and the

importance of having well trained, competent crew.

Fourth, section 7 quantifies the impact of hull cleaning and crew using fixed effects
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regression models. Next, the section examines the extent to which various drivers explain

variation in fuel consumption, by fitting variance decompositions. Lastly, several linear

and non-linear prediction models are implemented and compared, to discern how the

thesis’ findings affect prediction accuracy. This is interesting for shipping companies who

are curious about the drivers of fuel consumption, and the total effects of hull cleaning

and crew. The findings are useful for improving modelling and predictions of bunker

consumption under data uncertainty. The discovered effects can consequently be used as

a basis for further analysis and decision making to save fuel costs and emissions.
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2 Literature review

Meng et al. (2016) describes the fuel efficiency PE of a ship as a function of vessel speed

V and resistance RT such that PE = V ·RT . Resistance is further decomposed to three

types of resistance:

RT = RF +RR +RA (2.1)

where RF represents the frictional resistance, including total deterioration of the hull and

propeller. RR represents the residual resistance (i.e. primarily waves), and RA represents

the air resistance mainly caused by wind. Lindholdt et al. (2015) suggests that the

frictional resistance causes 70-90 % of the ships total resistance.

Biofouling, defined by Hellio and Yebra (2009) as “the undesirable accumulation of

microorganisms, algae and animals on structures submerged in seawater ”, is among the top

contributors to decreasing fuel efficiency (Hakim et al., 2017). Schultz (2007) found that

light slime or deteriorated coating could impose penalties of 11 % on total resistance, heavy

slime layers could penalize resistance by 20 %, while heavy calcareous fouling inflicted

resistance penalties of 80 %. To combat biofouling, various antifouling techniques has

been subject to thousands of years of development in line with the industry’s importance

to society (Dafforn et al., 2011). It is estimated that antifouling coatings save the shipping

industry $60 billion and 384 million tons of CO2-emissions on an annual basis (Bressy

and Lejars, 2014).

Although several antifouling paints have been shown to improve fuel efficiency (Kojima

et al., 2016; Yang et al., 2014; Tripathi, 2016), studies suggest an average decline in vessel

performance of 15-20 % over a typical 4 to 5-year sailing interval (IMO, 2011). Farkas

et al. (2021) suggested that biofilm layers could increase fuel consumption by between

671 to 4153 tons per year for post-panamax tankers, leading to a potential cost increase

of more than $1.75 million. Consequently, performing underwater hull cleanings is a

widespread approach to keep fuel efficiency near initial levels (i.e. dry dock levels). In dry

dock, a complete overhaul of the hull is performed with new antifouling coating applied.

In contrast, hull cleanings are generally performed by either divers or magnetic robots,
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removing marine growths from the hull with rotating brushes (Lindholdt et al., 2015).

The effect is therefore greater in periods after a dry dock compared to hull cleanings.

Adland et al. (2018) measured the marginal effect of hull cleanings using a difference-in-

difference estimator. Given that lnCvt is the log-consumption of vessel v at time t, and w

is the observable time window before and after the hull cleaning, the model is defined as:

lnCvt = δw · IAFTERw
vt +Xvtβ + ϑv + εvt (2.2)

where δw is the difference-in-difference estimator measuring the effect of hull cleanings,

the dummy variable IAFTERw
vt is equal to 1 after a hull cleaning has been performed, and

0 before. β is the vector of estimated coefficients for the external covariates Xvt, the

time-invariant vessel-specific (i.e. fixed) effects are given by ϑv, and εvt represents random

perturbation with E[εvt] = 0 and V ar(εvt) = σ2. The paper observed an average reduction

in fuel consumption of 9 % following underwater hull cleanings.

The difference-in-difference model presented above is based on the previous work by

Adland et al. (2017). To estimate and visualize fuel consumption profiles for sailing

intervals with several hull cleanings, Adland et al. (2017) presented bunker consumption

as a logarithmic function of a given set of variables and a time trend, equal to:

lnCt =
∑
k

δk · Itk +Xt · θ + f(t) + εt (2.3)

where the subscript t represents a given date, and k is signalling a hull cleaning with

k = {1, 2, ..., K}. δ is denoted as the fuel efficiency effect for the period after a given hull

cleaning k performed at time t. Further, Xt · θ displays the effects of vessel characteristics

such as weather conditions, speed, or draft, to isolate fuel consumption by excluding

external factors. f(t) is given as a cubic time trend such that f(t) = τ1 · t+ τ2 · t2 + τ3 · t3

and εt is residual perturbation with E[εt] = 0. A linear time trend after each hull cleaning

procedure is added, which considers differences in consumption growth for each interval.

It is implemented into the equation as δk = αk + βk · t expanding equation 2.3 to:
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lnCt =
∑
k

(αk + βk · t) · Ik +Xt · θ + f(t) + εt (2.4)

Although the positive effects of underwater hull cleanings seem clear-cut, such procedures

have certain drawbacks. If the fouling has reached a level where soft brushes are no

longer effective, the procedure runs the risk of mechanically damaging the coating and

further inducing corrosion on the hull (Lindholdt et al., 2015). Such harm will likely lead

to a substantially swifter return of biofouling and thus lead to a larger increase in fuel

consumption over time. While hull cleaning negates the global oceanic threat of spreading

invasive marine species (Adland et al., 2018), certain antifouling paints enact adverse

effects onto the environment when scrubbed off (Lindholdt et al., 2015). When considering

whether to perform underwater hull cleanings, the trade-off between harmful effects on

the ship and environment versus the cost savings achieved must be carefully weighted.

The potentially harmful environmental effects is why the topic is still being discussed at

the IMO, even though it is recognized as an effective abatement method (IMO, 2020).

Reducing fuel consumption and carbon emissions is key for most ship owners and charterers.

On-board sensory data and software technology for continuous monitoring of the hull

condition and ship performance has been developed by several players in recent years

(Lande, 2017). Decision support services and software tools combined with innovations in

data analytics have created new opportunities for owners and operators pursuing increased

efficiency and fleet performance (StormGeo, 2021). Using decision support tools, crew can

closely observe and take action once performance is dropping below a certain threshold.

This has opened the possibility of optimizing the timing of hull cleanings to maintain

efficient performance by gauging the vessel resistance, and continuously compare it to

vessels of similar build (Lande, 2017).

These types of continuous decision support tools are still not very widespread. However,

an unnamed user of the CASPER1 software reported annual fuel savings of 1-3% across

their fleet, amounting to approximately $4 million, by performing favorable hull cleanings.

With annual subscription costs of $700,000, such decision support systems can lead to

extensive fuel cost savings (GCaptain, 2012).
1CASPER is a software developed by Propulsion Dynamics enabling ships to undergo hydrodynamic

mapping, which is needed to acquire the appropriate dimensions and baseline data for comparison with
in-service performance data.
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3 Data

Withing shipping, noon reports are a common practice to provide vessel updates to the

shipping company. Noon reports are prepared and sent with a sample frequency of 24

hours, at noon local time, by the chief engineer (Wankhede, 2021). The reports include

information of the ship’s consumption and underlying conditions at specific points in time

(Smith et al., 2013). They consist of standardized data and are among other things used

to observe how speed and external environmental forces impact the ship’s performance.

In most cases, noon reports are used to evaluate the fuel consumption for a specific vessel

in comparison to vessels of similar type.

However, one of the main issues with noon reports is the data granularity. Since the data

is based on a combination of 24-hour averages and snapshots, the interpretations can

sometimes be misleading and/or confusing. This specifically impacts the data on weather

conditions and ship speed where we cannot capture events of accelerations/decelerations,

manoeuvrings or sudden changes in weather that heavily impacts fuel consumption within

those hours (Smith et al., 2013). In addition, most weather data is recorded as snapshots2,

meaning that changes in conditions during the previous 24 hours are not considered.

Furthermore, noon reports will not always be accurate due to numerous sources of errors.

For instance, human error might be prevalent as all information has to be manually

input by the chief engineer. Misinterpretations of inputs, and usage of different units or

roundings between reporters, could all lead to errors in the assessment of noon reports. For

this reason, continuous monitoring systems have been developed in order to improve data

accuracy, the speed of acquisition, and allowing for higher resolution of data (Smith et al.,

2013). Few vessels currently have such systems installed, and for the time being, noon

reports are far more widespread than continuous monitoring. To address the presence of

uncertainty in noon reports, a thorough cleaning process is required before using the data

for analytic purposes.

2Other ship owners may have a policy that weather reports are estimated as 24-hour averages.
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3.1 Presentation of data

The data in this thesis is comprised from 31,620 unprocessed noon reports spanning from

the 1st of January 2018 to the 31st of December 2020 from an anonymous international

shipping company. The fleet consists of three different classes (Suezmax, Panamax and

Medium Range), each of which have six to eleven sister vessels of similar build. Data

registered by the various vessels’ Automatic Identification System (AIS) during the same

period will also be utilized. To achieve an overview of typical trading routes and frequent

locations, positional data from each vessel class are presented in appendix A1. Although

similar, noticeable takeaways are that Panamax ships have no trans-pacific voyages,

predominantly operating in the Atlantic Ocean. Medium Range vessels are evenly spread

worldwide with no clear area of operations, while Suezmax vessels generally sail between

the Americas and the Middle-East/Asia.

3.2 Discussion of variables

Due to environmental restrictions, usage of fuel types with different sulphur concentrations

can vary depending on the current area and vessel. Total consumption is calculated only

from the main propulsion engines, with no differentiation between fuel types. Masters

and chief engineers are represented by unique numbers, which anonymously represent the

actual masters and chief engineers in charge at the time of the noon report.

From April 2019, the data owner transitioned to a new reporting system containing

additional weather and vessel operational data, such as wave and swell height, trim, and

slip. As the variables are not available for the entire period, there is a trade-off between

the total number of observations and additional weather and ship data. Alternatively,

external weather data from ERA5 with hourly measurements could be utilized, but due

to differences in resolution this poses a problem. ERA5 data is measured only on certain

coordinates, leading to incongruence between local conditions and vessel conditions, as

well as rounded coordinates resulting in missing values3. Thus, although some weather

variables have been shown to be significant, it was decided that the inclusion of weather

variables from external sources was not worth the modest increase in explanatory power

3When the nearest rounded coordinate is ashore, there are no measurements of water-specific variables.
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exhibited in previous research (Adland et al., 2017; Nilsson and Nilsson, 2021).

The AIS data includes metrics such as longitude and latitude, draught, and heading of

the vessel. Since draught is only measured in noon reports from the new system, 43 % of

these observations are missing. AIS data is therefore used to measure draught. The course

of the ship is manually registered, but suffers from missing values. Furthermore, the AIS

heading is recorded as a snapshot, which could differ from the 24-hour course. To achieve

a similar basis for all noon reports, the course of the ship is calculated as the bearing

between the previous and current coordinates. The calculated bearings do not consider

the actual direction of the ship, which factors in currents. This thesis therefore assumes

that ships sail in straight line unaffected by currents. An issue with this assumption is

that ships travelling along or around coastlines, is regularly forced to adjust the course of

the ship. However, it is deemed that the advantages of this assumption outweighs the

minimal difference between the calculated bearing and the reported course.

Port calls refer to intermediate stops for ships on scheduled voyages. When stopping, the

ship will either be moored or at anchor, which indicates that the total consumption for a

day in port should be close to zero. However, port calls are not easily discernible in the

data. This is partly because they are not reported explicitly, and partly because speed

reported by AIS and reported consumption have apparent discrepancies. In this thesis, a

port stay is defined as two consecutive days with close to zero consumption4. The day

before and after a port stay have reduced consumption compared to sailing days5 due to

manoeuvring at slow speeds close to shore, in addition to idle time. Such observations

will be removed in the cleaning process because consumption analysis is only meaningful

on sailing days (Adland et al., 2017). The initiation of a port call is therefore flagged

prior to the day heading into port, to avoid removing flagged port calls when cleaning the

data. The requirement of having two consecutive days with near zero consumption is to

account for misreportings in data, thus reducing the risk of incorrectly flagging port calls

amid trips. As the flagging of port calls is not perfect, it is important to emphasize that

the flagging of port calls is not directly related to the data cleaning process, but for usage

in later analysis.

4While port stays usually have zero consumption, manoeuvring within ports occasionally leads to
low, non-zero consumption.

5Sailing days are here defined as days where the ship is believed to be sailing continuously.
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Relative wind direction is estimated using the actual wind direction and bearing of the

vessel. Since the data of wind direction is reported on eight different levels (N, NE, E

etc.), all bearings are transformed into equal levels to match them. Bearings above 337.5

and below 22.5 degrees is set as N, while bearings between 22.5 and 67.5 degrees are set as

NE and so on. This division is illustrated by figure 3.1. Since wind direction is defined as

the direction from which it originates, the vessel is presumed to sail in headwind when the

vessel course and wind direction are equal. If the course and wind direction are opposite,

the vessel is sailing with wind from astern and so on.

Figure 3.1: Division of bearing and wind direction

Extensive vessel information was also provided and implemented into the dataset. Stopford

(2008) states that older ships generally have higher operating costs due to physical

degradation over time, while Rakke (2016) observed that the age of the engine could affect

fuel efficiency as much as 10 %. Therefore, vessel age could be an important factor to

examine trends in fuel consumption. To isolate the effects of only underwater hull cleanings,

dry dock dates are also important to document. The dry dock dates are determined by

internal data, and the time since last dry dock is calculated and implemented into the data

set. However, two linear time trends would describe the same variance, hence resulting

in multicollinearity in the models. Since this thesis only examines observations between

two dry docks for each vessel, the time since last drydock is chosen to represent the linear

time trend.

Further variables could include effects that are not quantifiable using only noon reports

and averaged weather data. For instance, close monitoring of the hull and detailed engine
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parameters would be advantageous, and Uyanık et al. (2020) achieved substantially higher

adjusted R2 when including high resolution engine data. The inclusion of RPM as a

variable was considered, but Yu et al. (2021) expectedly observed a strong collinear

relationship with speed. Since the presence of multicollinearity in the model would lead

to inaccurate coefficient standard errors, the variable was excluded.

Table 3.1 shows the final selection of variables which will be utilized for further analysis,

grouped by data source.

Table 3.1: Variables selected for analysis

Data Source Parameter Units
Noon reports Date dd/mm/yyyy

Speed through water kts
Vessel name ID
Vessel segment Type
Wind speed Beauforta
Relative wind direction Directionsb
Wind speed : direction Beaufort : Direction
Cargo status Laden/Ballast
Master ID
Chief engineer ID

AIS data Draft m
Longitude deg
Latitude deg
Bearing deg

Internal data Time since dry dock weeks
Vessel age weeks

aThe Beaufort scale measures wind speed on a scale of 0 (calm) to 12 (hurricane force) (RMS, 2018).
bDirections consist of cardinal directions (N, E, S, W) and ordinal directions (NE, SE, SW, NW).

3.3 Data-cleaning process

The raw data consists of 31,620 noon reports across three years from 29 oceangoing vessels.

All observations with consumption less than 2.5 tons/day are removed, dropping 13,409

observations. This removes observations where vessels have been stationary along with

erroneous reports. Observations from the 1st of January 2018 are removed because variables

such as time difference and bearing are dependent on the previous report, removing an

extra 19 observations. Following Adland et al. (2018), noon reports where average speed

is below seven knots or above 15 knots are removed from the dataset, dropping 805
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observations. Speeds below seven knots indicate days with manoeuvring and/or pilotage,

and are closely related to port calls. As the vessels have set design speeds, speeds over

this threshold occurs either due to abnormalities or misreportings.

Reported average speed displays speed through water and is only measured when the

vessel is sailing, thus excluding the impact of idle time. Calculating average speed as the

total sailing distance since last report divided by the time since last report, gives the

actual average speed over ground for the last 24 hours. Large variations in the difference

between reported average speed and calculated average speed indicate periods of idle time

or lower speeds, which is undesirable as the analysis should only consider sailing days.

These variables are then used to further filter out port calls and days heading in and out

of port. Since currents make up some of the difference between the two metrics, they

are differentiated even when the vessel is sailing continuously. By setting the maximum

difference between calculated and reported average speed to 2.5 knots, differences due to

currents are allowed, while irregularities due to inconsistent sailing speeds are filtered out.

This removes 2,741 observations.

Furthermore, all observations that have the exact same coordinates as the previous report

are removed from the dataset, resulting in the exclusion of 337 observations. This also

filters out duplicate reports made by the same vessel on the same day. Observations with

a time difference since last noon report of more than 25 hours or less than 23 hours are

rejected6. This allows for differences in time zones when a vessel sails from one time zone

to another, and removes another 212 observations. Observations with missing values for

either wind direction or wind speed are further removed, excluding 117 observations.

Removal of outliers is important for Ordinary Least Squares (OLS) regression, as they

tend to have high leverage. Observations with wind speed higher than 10 on the Beaufort

scale are removed to account for extreme weather, dropping eight observations. Draught

values outside the 0.5 and 99.5 percentile for each vessel segment are removed from the

dataset, excluding 255 observations. In figure 3.2, remaining outliers are removed for

the Medium Range class based on visual identification. The cut-offs are established by

the solid lines, which are based on either absolute fuel consumption or the relationship

6Although some reports may have higher time differences due to leaving port in the morning, and as
such do not submit noon reports for the morning hours alone, these fall under the category of days in
and out of port and are therefore undesirable.
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between consumption and speed. Each vessel segment has distinct cut-offs, and plots of

the remaining data for each segment are shown in appendix A2. In total, six outliers are

removed from the dataset.

Figure 3.2: Outliers for Medium Range vessels

3.3.1 Comments on cubic law

To determine whether the remaining data set conforms to the expected fuel consumption

behavior of cargo ships, the data can be examined in relation to the cubic law. A widely

used assumption within shipping is that fuel consumption follows a cubic law, which states

that the bunker consumption of ships can be approximated well as the current vessel

speed to the power of three (Meng et al., 2016). Wang and Meng (2012) suggested that

this is indeed a good approximation in the absence of historical data, where it is shown

that the exponent is between 2.7 and 3.3 for speeds below 20 knots. For speeds above

20 knots, Kontovas and Psaraftis (2011) deemed that an exponent of 4 was appropriate.

Adland et al. (2020) proposed that while the cubic rule seems to hold true near vessel

design speeds, the exponent is instead between 1.7 and 2.3 at the ships’ typical operating

speeds.

From the cleaned data, the correlation between speed and fuel consumption is found

by applying a polynomial OLS regression line to fit observations for vessels in ballast
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condition. Only ballast observations are considered because masters have more flexibility

regarding sailing speed when the ship is in ballast, compared to the stricter instructed

speeds of laden vessels, usually between 12-14 knots. Thus, the variance of speed for

laden vessels is likely too small to identify similar patterns. The observations are plotted

prior to controlling for differing operating conditions. Consequently, observations at lower

speeds could be affected by harsh weather, although the most extreme conditions are

excluded from the data set. In figures 3.3a and 3.3b, the tendencies of a cubic law seem

clear. Assuming a power-relationship between consumption and speed, there is indeed a

resemblance of a non-linear relationship. In figure 3.3c however, the relationship looks

rather linear. Still, the positive correlation indicates that speed is an important variable

for predicting fuel consumption. It is therefore assumed that the remaining data set

represents typical shipping data in theory, and that the results in this thesis can likely be

extended to be representative for other vessels.

(a) Panamax (b) Suezmax

(c) Medium Range

Figure 3.3: Cubic law patterns of vessel segments
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Considering the regression lines in figure 3.3, performing a log-transformation of the speed

and consumption variables is likely beneficial, as there is a non-linear relationship between

speed and consumption. By taking the logarithm of both variables, the relationship is

linearized to a larger extent, enabling classic OLS-regressions and linear models to better

fit the data (Dahly, 2017). The effective relationship between variables therefore becomes

non-linear, while preserving a linear model (Benoit, 2011). This becomes clear in figure

3.4b, where the correlation between speed and consumption in log-log space is markedly

more linear compared to figure 3.3b.

(a) Panamax (b) Suezmax

(c) Medium Range

Figure 3.4: Speed-consumption relationship of the log transformed variables

3.3.2 Descriptive statistics of variables

The cleaned data set consists of 13,711 observations across all vessel segments. Summary

statistics for the final selection of variables for each vessel class is presented in tables 3.2 to

3.4. In general, the external variables are fairly similar for each class. Medium Range vessels

have substantially lower consumption compared to the other two classes, because they are
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significantly smaller. Furthermore, Medium Range vessels are considerably younger than

the other classes, which could affect the fuel efficiency relative to Suezmax and Panamax

vessels. The mean draught ranges from 9.3m (Panamax) to 13.1m (Suezmax).

Table 3.2: Descriptive statistics for Panamax vessels

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

Wind Speed 4,135 4.67 1.39 0 4 6 9
Draught 4,135 9.27 1.88 6.80 7.40 11.00 12.70
Consumption 4,135 29.48 7.19 6.90 24.50 34.60 57.20
Speed 4,135 12.34 1.37 7.00 11.60 13.30 15.00
Vessel age 4,135 594.55 116.30 343 490 691 785

Table 3.3: Descriptive statistics for Suezmax vessels

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

Wind Speed 3,312 4.62 1.43 0 4 6 9
Draught 3,312 13.07 3.15 9 9.2 15.8 17
Consumption 3,312 35.28 7.26 7.30 29.87 40.20 59.50
Speed 3,312 12.29 1.04 7.00 11.80 12.90 15.00
Vessel age 3,312 367.07 54.59 256 322 409 482

Table 3.4: Descriptive statistics for Medium Range vessels

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

Wind Speed 6,264 4.45 1.33 0 3 5 9
Draught 6,264 10.37 1.67 6.80 8.50 11.80 12.60
Consumption 6,264 18.70 3.75 2.90 16.70 21.40 28.20
Speed 6,264 12.30 1.12 7.00 11.90 13.00 15.00
Vessel age 6,264 152.31 66.44 0 106 202 309
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4 Classifying hull cleanings

Due to the documentation of performed hull cleanings sometimes being inadequate, as

they are not necessarily registered in noon reports, hull cleaning dates are often uncertain.

Using known dates, Adland et al. (2018) found significant drops in fuel consumption

after hull cleanings, net all other predictors. The aim of this classification model is to

reverse engineer these findings and use the mathematical model presented in section 2

as a foundation, where Adland et al. (2018) used a difference-in-difference estimator to

measure the causal effect of hull cleanings on fuel consumption. However, the described

approach necessitates the knowledge of when hull cleanings have been performed, and

equally important, when they have not been performed. Without this information, a

classification based on the same approach would contradict the assumption that the

intervention7 occurs independent of the outcome (CPH, 2013). In contrast, a classification

model with no training data entails the identification of hull cleaning dates by identifying

the expected outcome.

To classify hull cleaning dates, it is necessary to utilize a prediction model that captures

the effects of the included predictors well, but where the variance of unobserved predictors

remains. In more advanced prediction models there is a higher risk of overfitting. This

implies that the existing predictors capture variance to a larger extent, including the

variation around hull cleanings and biofouling that is yet to be explained. In terms of

a bias-variance trade-off, advanced models increase the variance by decreasing the bias.

Bias is used to quantify how much the average accuracy of the method changes as input

from data changes, while variance describes how sensitive the method is to the chosen

input data (James et al., 2013). OLS regressions thus have higher bias and lower variance

compared to more complex non-linear techniques (Fortmann-Roe, 2012). This section

seeks to observe the effect of sudden drops and changes in the fuel consumption slope over

time. It is therefore desirable to use models with low variance to perceive such effects

in the error term. With low variance, high interpretability, and low computational time,

standard OLS regression will be used for further analysis.

7The intervention would in this case be the performance of a hull cleaning.
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4.1 OLS regression models

The observed results from the OLS regression for each class, with fixed effects for specific

vessels, are shown in table 4.1. The OLS estimator is given by:

lnCvt = α +
∑
i

βiXvit + ϑv + εvt (4.1)

where lnCvt is the log consumption of vessel v at time t, α is the constant term, and βi

is the vector of coefficients for the vessel characteristics i, given by Xvit. Fixed vessel

effects are given by ϑv, and the residual term is εvt with E[εvt] = 0 and V ar(εvt) = σ2.

This includes models with and without an interaction term between wind speed and wind

direction, with crosswind set as the reference category. The interaction term is included

to quantify the effects of additional wind strength given a set wind direction. For instance,

the benefit of having wind from astern is dependent on the wind speed8. To make sensible

estimates of the time trend variable, observations occurring before a vessel’s first dry dock

and after a vessel’s second dry dock are removed. Vessels with observable dry dock periods

of less than two years are also excluded, dropping two Panamax vessels and five Medium

Range vessels from further analysis. As a consequence, a further 3,226 observations are

removed.

When excluding the interaction term, all variables are significant on a 1 % level explaining

between 55 % to 70 % of the variance in log fuel consumption. The coefficients are as

expected, with log speed, draught, and headwind increasing resistance, and wind from

astern reducing resistance. Considering columns (1), (3), and (6), increasing speed with 1

% leads to an increase in fuel consumption of 1.43 % for the Panamax class, while only

increasing consumption by 1.08 % for Suezmax vessels. Since draught indicates how deep

the ship extends below the waterline, it makes sense that consumption increases as the

load of the vessel is increased. Deeper draught also increases frictional resistance as a

larger portion of the hull is beneath the waterline. If draught increases with one unit, fuel

consumption increases with 4.7 %9 for Panamax, 3.8 % for Suezmax vessels, and 8.8 % for

8It could be argued that when wind speed increases above a certain level, the benefit of having wind
from astern is reduced as wave height rises. In that case, speed is also likely to decrease.

9Since the logarithm of consumption is the dependent variable, the marginal effect of non logarithmic
variables are given as the exponential coefficient subtracted by one: %∆lnCt = 100 · (exp(βi)− 1).
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Table 4.1: Regression for all vessel segments split by interaction term on wind

Dependent variable:

Log Fuel Consumption
Panamax Panamax Suezmax Suezmax Medium Medium

(1) (2) (3) (4) (5) (6)

Log Speed 1.430∗∗∗ 1.414∗∗∗ 1.081∗∗∗ 1.044∗∗∗ 1.381∗∗∗ 1.354∗∗∗
(0.022) (0.023) (0.031) (0.031) (0.028) (0.028)

Draught 0.046∗∗∗ 0.047∗∗∗ 0.037∗∗∗ 0.036∗∗∗ 0.077∗∗∗ 0.077∗∗∗
(0.001) (0.001) (0.001) (0.001) (0.002) (0.002)

Wind Beaufort (WB) 0.045∗∗∗ 0.041∗∗∗ 0.038∗∗∗ 0.040∗∗∗ 0.069∗∗∗ 0.056∗∗∗
(0.004) (0.002) (0.004) (0.002) (0.004) (0.002)

Wind Front (F) −0.014 0.058∗∗∗ −0.064∗∗ 0.043∗∗∗ 0.033 0.028∗∗∗
(0.030) (0.009) (0.027) (0.008) (0.030) (0.009)

Wind SideFront (SF) −0.016 0.028∗∗∗ −0.023 0.033∗∗∗ 0.004 0.027∗∗∗
(0.026) (0.008) (0.026) (0.008) (0.026) (0.008)

Wind SideBack (SB) 0.065∗∗ −0.049∗∗∗ 0.039 −0.043∗∗∗ 0.123∗∗∗ −0.046∗∗∗
(0.029) (0.008) (0.026) (0.008) (0.027) (0.008)

Wind Back (B) 0.121∗∗∗ −0.075∗∗∗ −0.023 −0.076∗∗∗ 0.118∗∗∗ −0.079∗∗∗
(0.033) (0.009) (0.031) (0.009) (0.031) (0.009)

Weeks since dry dock 0.0003∗∗∗ 0.0003∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.0004∗∗∗ 0.0004∗∗∗
(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

F : WB 0.013∗∗ 0.022∗∗∗ −0.003
(0.006) (0.005) (0.006)

SF : WB 0.009 0.012∗∗ 0.004
(0.005) (0.005) (0.006)

SB : WB −0.026∗∗∗ −0.019∗∗∗ −0.040∗∗∗
(0.006) (0.006) (0.006)

B : WB −0.044∗∗∗ −0.012∗ −0.046∗∗∗
(0.007) (0.007) (0.007)

Constant −0.864∗∗∗ −0.811∗∗∗ 0.133 0.220∗∗∗ −1.748∗∗∗ −1.630∗∗∗
(0.062) (0.061) (0.085) (0.083) (0.077) (0.076)

Observations 3,432 3,432 3,281 3,281 3,772 3,772
R2 0.704 0.695 0.559 0.550 0.622 0.611
Adjusted R2 0.703 0.694 0.556 0.548 0.620 0.609

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Medium Range vessels. Additionally, vessels increase consumption by between 0.03 - 0.1

% per week, likely due to biofouling, aging, and other sources of deterioration of the hull.

The models with interaction terms between wind speed and direction are considered for

further analysis due to the previously explained logic, as well as exhibiting increased

adjusted R2. To examine the performance of OLS regressions compared to other methods,

several machine learning techniques are compared in terms of prediction accuracy in the

next section.

4.2 Comparison of prediction accuracy

The number of tools available for prediction purposes has grown immensely. While classic

methods such as regular OLS regression are still relevant, new prediction models are

constantly in the works. During the last couple of decades, the computational power of

computers has doubled every two years, following Moore’s law (Moore, 1998). This has

led to an increase in the commercial availability of advanced linear and non-linear machine

learning algorithms. In this section, several of these methods will be compared against

OLS regression in terms of prediction accuracy and explanatory power.

Both Nilsson and Nilsson (2021) and Uyanık et al. (2020) explored several machine learning

techniques to find which models achieved the highest degree of accuracy given a set of

variables. The same dependent variable and regressors, including fixed vessel effects, are

applied for all techniques with the same random number generator. Hence, the metrics

can be used to determine which models perform the best for predicting fuel consumption.

Each algorithm uses a validation set approach, allocating 80 % of observations into a

training set for model fitting and parameter tuning, and 20 % into a hold-out test set for

each vessel class. Since all metrics are based on out-of-sample accuracy, the prediction

errors are unbiased. While K-fold cross validation generally results in less bias, it is

substantially more demanding in terms of computational power (James et al., 2013). Table

4.2 show the prediction errors and explanatory power for every technique on all segments.

The number of observations across vessel classes are comparable, ranging from roughly

3,300 to 3,800. In general, advanced regression trees perform the best for all vessel segments,

with similar R2 and RMSE. Extreme Gradient Boosting (xGBoost) and Random Forest

perform the best. In terms of linear models, there is little to no difference between
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standard OLS and shrinkage techniques like Ridge, Lasso or Partial Least Squares. More

advanced algorithms, such as xGBoost and Random Forest, are highly dependent on the

fine-tuning of hyperparameters to achieve optimal results, while regular OLS is easier

to use and interpret. For Panamax vessels, the differences between OLS and the best

performing models are moderate, while regression trees decisively outperform OLS for

Suezmax and Medium Range vessels. It is interesting to see whether the inclusion of hull

cleaning and crew performance can shrink the differences in performance. This is further

discussed in section 7.

Table 4.2: Performance metrics for machine learning methods

Panamax Suezmax Medium Range

RMSE R2 MAE RMSE R2 MAE RMSE R2 MAE

Linear 0.1571 68.93% 0.1152 0.1415 53.28% 0.1049 0.1541 59.64% 0.1178

Lasso 0.1571 68.96% 0.1151 0.1414 53.31% 0.1049 0.1542 59.56% 0.1178

Ridge 0.1579 68.97% 0.1154 0.1414 53.27% 0.1054 0.1542 59.59% 0.1179

PCR 0.1571 68.95% 0.1152 0.1415 53.28% 0.1049 0.1541 59.64% 0.1178

PLS 0.1610 67.40% 0.1192 0.1417 53.15% 0.1051 0.1545 59.38% 0.1185

Bagging 0.1760 60.90% 0.1233 0.1501 47.39% 0.1164 0.1698 51.17% 0.1252

Extra Trees 0.1368 76.71% 0.0889 0.0999 76.83% 0.0713 0.1232 74.67% 0.0893

Boosting 0.1383 76.43% 0.0908 0.1029 75.59% 0.0738 0.1255 73.46% 0.0896

Random Forest 0.1341 77.89% 0.0863 0.0978 78.49% 0.0702 0.1228 75.46% 0.0895

xGBoost 0.1346 77.34% 0.0873 0.0951 78.90% 0.0682 0.1251 73.62% 0.0854

BART 0.1450 73.63% 0.0966 0.1114 71.03% 0.0807 0.1280 72.08% 0.0960

n = 3432 n = 3281 n = 3772

4.3 Expectations

To gauge the credibility of empirical fuel consumption profiles, it is useful to clarify the

thesis’ a priori expectations. As discussed in section 2, the development of biofouling and

worsening conditions of the hull, increases resistance and therefore fuel consumption over

time. Hull cleanings are subsequently performed to remove the cause of the increased

resistance. After performing a hull cleaning, most of the negative effects connected to

biofouling are expected to disappear instantly, leading to a negative and instant shock

in fuel consumption levels. While hull cleanings have an impact on short-term fuel
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consumption, it could also affect the growth rate of consumption over time due to the

abrasion of antifouling coating. It is therefore expected that following a hull cleaning, the

biofouling rate and hence the increase in consumption over time is either equal or larger

than before.

4.4 Classification algorithm

The proposed classification algorithm looks at a vessel’s consumption preceding and

following port calls, to determine at which port calls the vessel has undergone an underwater

hull cleaning. To control for external conditions in consumption, the residuals of the OLS

regression in equation 4.1 is considered. The fitted values l̂nCt from the regression are

given by:

l̂nCt = α +
∑
i

βiXit (4.2)

where l̂nCt is estimated based on equation 4.1. Controlling observations for all variables

using equation 4.2 gives:

lnC∗
t = lnCt − l̂nCt = εt (4.3)

Thus, the observed log fuel consumption controlled for external variables is equal to the

remaining variance10, such that lnC∗
t is given by εt. The log consumption controlled

for all external variables is therefore referred to as lnC∗
t . The classification model will

compare the lnC∗
t of the observations closest to a port call to look for significant drops

in fuel consumption. For all port calls p of a vessel, the time window to be analyzed is

defined as p± w, where the number of observations considered before and after port calls

are specified by w. The algorithm initially uses an OLS-estimate to quantify the effect δ

on lnC∗
t before and after the port call p. Similar to the model by Adland et al. (2018)

described in section 2, this is given by:

10To get the actual controlled fuel consumption, the constant term α would have to be added. There
is however no difference in results, but the interpretation of the lnC∗

t values differs slightly.
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lnC∗
t = δ · IAFTERw

t + ϵt (4.4)

where IAFTERw
t is a dummy variable indicating 1 if an observation is after the port call and

0 otherwise, and ϵt is the new residual term with E[ϵt] = 0 and V ar(ϵt) = σ2. The hull

cleaning effect δ is then further analyzed to see whether the level of consumption before

and after the port call has been reduced significantly. Specifically, using a significance level

of s, if δ is significant and negative, the port call p is stored as a possible hull cleaning,

along with the p-value and coefficient of δ. In figure 4.1a, observations of lnC∗
t before

and after vessel P1’s first port call are displayed. The first port call does not have a

significant drop in log fuel consumption controlled for external variables following the

port call (represented by the red vertical line). In figure 4.1b however, a significant drop

is detected in the observations following the eighth port call of the same vessel. Port call

8 is therefore classified as a possible hull cleaning.

(a) Port call 1, no significant drop (b) Port call 8, significant drop

Figure 4.1: Comparison of two port calls for vessel P1

The minimum time passed between two hull cleanings is measured by m, to ensure that

the effect of a single hull cleaning is only considered once. If two port calls happen within

the same week and a hull cleaning is performed on one of them, both port calls will

perceive similar effects on consumption. m is intended to limit the realistic minimum

interval between sequential hull cleanings. Hull cleanings are then determined in the order
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of the most significant drops in fuel consumption, subject to the constraint that another

hull cleaning cannot happen within m months before or after. Possible hull cleanings

are defined as port calls where δ is negative and significant. The possible hull cleaning

with the lowest p-value for δ is automatically identified as a hull cleaning. The second

most significant possible hull cleaning is then identified as a hull cleaning, but only if it is

more than m days away from the first identified hull cleaning, and so on. The process is

repeated for all vessels within the segment, and for all segments.

4.5 Fuel consumption profiles

From the classification algorithm, a vessel’s hull cleanings are defined by k =

{1, 2, 3, . . . , K}, where K is the total number of hull cleanings. Depending on the amount

of classified hull cleanings for a unique vessel, observations are arranged into K+1 intervals.

In contrast to the model in equation 2.3 proposed by Adland et al. (2017), the effect of

each hull cleaning is not added together, but has a unique impact on fuel consumption.

Hence, the logarithmic value of fuel consumption lnCt for an observation in week t, is

given as:

lnCt = α + τkt ·Xkt + θ · Yt + εt (4.5)

where Xkt is a dummy variable indicating 1 if week t is between the kth and kth + 1

hull cleaning and 0 otherwise, and τkt is the effect of hull cleaning k at time t. Yt is a

set of vessel characteristics based on the chosen variables with the associated vector of

coefficients θ, and εt is the residual term with E[εt] = 0 and V ar(εt) = σ2. Within Yt, one

of the vessel characteristics is a linear time trend in the form of weeks since last dry dock.

For the purpose of identifying hull cleaning effects, a non-linear time trend was deemed

superfluous.

As mentioned in section 4.3, it is expected that the increase in fuel consumption grows

steeper for each subsequent hull cleaning. Therefore, an interaction term between the hull

cleaning and the linear time trend is added to the equation:

τkt = αk + βk · t (4.6)
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where αk is the shock in consumption after a given hull clean k, and βk determines the

slope of the hull clean interval dependent on time t. This extends equation 4.5 to:

lnCt = (αk + βk · t) ·Xkt + θ · Yt + εt (4.7)

which is used for visual representation of fuel consumption over time.

4.6 Application of classification model

Before applying the algorithm and model on actual observations, all statistical parameters

must be determined. Following the findings of Adland et al. (2018), the number of days w

that define the observable time windows is set to 45, as this maximized the marginal effect

of hull cleanings. Time windows of less than 2w are not considered, to have sufficient

and comparable number of observations. The level of significance s is set to 1 %, as this

was determined to be a reasonably strict level of certainty. Further, the minimum time

interval between hull cleanings m is set to 150 days (about five months), as it is assumed

that having more than one hull cleaning within five months does not make economical

sense. This is because biofouling has likely not imposed sufficient negative effects on

consumption within this period to justify the cost of hull cleaning procedures.

To ensure that remaining observations provide meaningful comparisons, ships with no

company-reported hull cleanings are removed, as well as ships with no hull cleaning

intervals longer than m. This leads to all remaining Medium Range vessels being excluded

from further analysis, as well as one Panamax and three Suezmax vessels. Observations

in hull cleaning intervals shorter than m are also removed. In figure 4.2, the green boxes

represent dry docks, the orange boxes represent company-reported hull cleaning dates,

while blue boxes represent the hull cleaning dates detected by the classification model.

The red box indicates that the classification model agrees with the company-reported date.

Further, the white intervals represent time periods outside our interest, either due to dry

docks or because of an inadequate number of observations following a company-reported

hull cleaning. Grey intervals represent periods of interest with observations, in other

words the data used in the analysis.
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Figure 4.2: Detected and company-reported hull cleaning dates

The classification model generally disagrees with the company-reported dates, as observed

in figure 4.2. Only on one occasion does the model agree with reported dates, although

several others are rather close. For vessel P5, the model detects no hull cleanings, and the

vessel is consequently excluded from further analysis. To measure the extent to which

the classification model is successful, fuel consumption profiles of observations using both

reported and classified hull cleaning dates are compared.

4.7 Comparison of fuel consumption profiles

To identify the effects of hull cleanings for each vessel, the predicted values found by

an OLS regression based on equation 4.7 are used. The graphs are drawn holding all

external variables constant, thus only varying hull cleanings and time trends. Some

fuel consumption profiles are shown in figure 4.3, where jumps in consumption signal

hull cleanings and gaps in the slopes represent weeks with no observations. Applying

the described model to the dates provided by the company leads to largely nonsensical

consumption profiles. Shown on the left-hand side of figure 4.3, consumption is often

increasing immediately after hull cleanings and with wildly inconsistent, nonsensical slopes.

However, when applying the same model to the hull cleaning dates identified by the

classification model, the results are markedly better in terms of fitting expectations. Fuel

consumption profiles based on the classification model are shown on the right-hand side

of figure 4.3. Since the classification model requires a hull cleaning to have a negative

effect on fuel consumption, upward shocks are quite rare. It is further apparent that fuel

consumption slopes seem to rise for the vast majority of intervals. Negative trends do occur

occasionally, which means that there is still some variation that neither the prediction nor
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classification model is able to account for. Interestingly, there is no recurring evidence of

steeper interval slopes following hull cleanings, although figure 4.3b and especially figure

4.3f conforms to expectations. All fuel consumption profiles, with comparisons whenever

applicable, are displayed in appendix A3. This indicates that the abrasion of antifouling

coating and ensuing hull corrosion may not have as severe effects as previously suggested.

(a) Reported HC vessel P3 (b) Detected HC vessel P3

(c) Reported HC vessel P7 (d) Detected HC vessel P7

(e) Reported HC vessel S3 (f) Detected HC vessel S3

Figure 4.3: Comparison of selected fuel consumption profiles
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Since the classification model allows for hull cleaning detection on vessels with no reported

occurrences, it can be further tested on all vessels with an observable dry dock interval of

more than two years. As dry docks are sometimes performed during the three-year period

for Medium Range vessels, only observations before the second dry dock are considered.

In appendix A3.2 and A3.3, the hull cleanings identified for vessels with no basis of

comparison are presented, along with their respective fuel consumption profiles. The

algorithm seems to classify hull cleanings that generally yield logical fuel consumption

profiles in terms of fitting expectations. The extent to which the dates found by the

classification model is able to explain variance in the data is discussed in section 7, where

various external effects are measured in terms of prediction power.
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5 Optimizing hull cleaning intervals

The optimal timing of hull cleanings remains an important unresolved issue within shipping.

While the sheer complexity of the numerous factors affecting vessel performance makes

this a hard problem to solve, the possible cost savings could be substantial. This section

aims to find economical optimizations of hull cleaning intervals, based on the findings in

section 4.

5.1 Assumptions

Section 4.5 presented fuel consumption profiles based on dates found by the classification

model. However, random variations and unknown effects lead to certain traits in the

profiles that are likely not present. Fuel consumption slopes, as seen in figure 4.3 and

appendix A3, do not seem to follow any obvious pattern in terms of steepness following a

hull cleaning. In practical terms, an economical optimization for a vessel that follows a

pattern which is illogical and likely a result of arbitrary or unknown variation, is not of

any value. To illustrate this further: if a master is considering performing a hull cleaning,

but the optimal timing according to a given decision rule is dependent on whether the

unknown post-cleaning slope is increasing or decreasing in steepness, the decision rule is

worthless. Additionally, it is not intuitive for a vessel to consume less fuel after a regular

hull cleaning compared to a dry dock 11. In other words, to create a decision rule based

on economical optimization, certain assumptions about the behavior of fuel consumption

slopes have to be in place. This means that the optimization model to some degree strays

away from the empirical findings in section 4.5, and instead explores theoretical models to

improve applicability. This section initially presupposes fuel consumption to be weekly

aggregated for the duration of a three-year interval, which is further discussed later.

Although Adland et al. (2018) found a 9 % drop in fuel consumption following a hull

cleaning, the findings assume that the hull cleanings are spread out to a certain extent. If

two hull cleanings were performed within two months of each other, one would expect the

second hull cleaning to reduce consumption by substantially less than 9 %. This is because

biofouling would not have had time to impose significant negative effects on performance.
11Some self-polishing coatings need time to smooth out to reach the point of minimum resistance,

resulting in resistance reductions in the weeks following a dry dock.
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Assuming that hull cleanings are efficient at restoring the hull condition to near dry dock

levels, it is expected that the absolute reduction in fuel consumption is a function of

time, but never dropping below dry-dock levels. To avoid the problem of subsequent hull

cleanings, two assumptions are implemented. First, hull cleaning shocks are measured as a

percentage drop from the difference between the current consumption level and the initial

dry dock level. For instance, if the hull cleaning shock parameter12 is δ = 0.5, the initial

consumption level is C0 = 50, and the consumption of the previous week w is Cw−1 = 56,

the post-shock consumption level would be Cw = 56− (56− 50) · 0.5 = 53. This example

is further illustrated by figure 5.1, where the delta (δ) leads to a drop equal to half of

the periodic increase. Second, to further prevent unnatural cleaning patterns, the hull

cleaning intervals are not allowed to occur more than once every m weeks.

Figure 5.1: Hull cleaning shock parameter δ

The consumption level used is the back-transformed value of log consumption controlled

for external variables, explained in section 4.4. For presentation purposes, logarithmic

values are sometimes difficult to interpret, which is why the optimization model utilizes

back-transformed values. This includes weekly consumption and growth rates based on

data from the Panamax class, even though they are still hypothetical estimates. Further,

the slope numbers of fuel consumption profiles are henceforth assumed to be constant,

12δ is in this section redefined compared to section 4, although they are related in terms of purpose.
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due to the lack of evidence of steeper slopes in the empirical analysis in section 4.5.

5.2 Theoretical optimization model

This thesis will now build further upon the model created by Adland et al. (2017), presented

in section 2. Contrary to their model, weeks are used as the measurement of time. This

is because it is not necessary to determine the exact day of the optimal hull cleaning,

and because weekly aggregated data makes the model less computationally demanding.

Weeks and hull cleanings are denoted as w and k respectively, where weeks are given as

w ∈ W = {1, 2, 3, . . . , n} and hull cleanings are given as k ∈ K = {1, 2, . . . , h}. n is the

number of weeks and h is the number of hull cleanings. The objective will thus be to

minimize the sum of the vessel’s consumption across all weeks, given by:

MIN :
∑
w∈W

Cw (5.1)

The consumption level Cw for week w is given subject to:

Cw = Cw−1 + l − (Cw−1 − C0) · δ ·Xk,w ∀ w ∈ W,k ∈ K (5.2)

where l is the absolute increase in consumption per week, and Xk,w is dummy variable

indicating 1 if hull cleaning k is performed in week w and 0 otherwise. l represents the

increased vessel resistance due to biofouling and other negative externalities affecting the

hull and propeller.

5.3 Interval optimization

As previously discussed, the optimization is primarily designed based on hypothetical

assumptions. The initial consumption C0 and the consumption increase l are however

empirically estimated to give a reasonably realistic interpretation of consumption over

time. In the model, consumption is only observed once each week, whereas it is realistically

reported anywhere from zero to seven days a week. Using the average of the ten first fitted

values13 for each Panamax vessel, the initial daily consumption level is approximated to be
13Estimated using back-transformed values of equation 4.7 from section 4.5
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30 tons a day. To better compare initial weekly consumption C0 with reality, the empirical

daily consumption is multiplied by four, since the average number of observations per

week for a given vessel is 3.65 ≈ 4. Thus, C0 is set to 30 · 4 = 120 tons/week. The monthly

consumption increase is estimated to be between 0.15 % - 3 % of C0, based on the findings

of Gundermann and Dirksen (2016) on added monthly resistance caused by biofouling.

The hull cleaning shock parameter δ is examined using values between 0.3 – 0.9. Since

hull cleaning shocks are only described empirically using regular percentage drops, this

estimate range is wide and based solely on achieving the desired behavior. The number of

weeks n is tested for values corresponding to 2, 3 and 4 years, in other words n = 156± 52,

while the number of hull cleanings h is set to either 2 or 3. Further, the minimum number

of weeks allowed between each hull cleaning is set to m = 24, which is approximately six

months. The parameters n, h and m are heavily restricted because increasing either of

these is exponentially more computationally demanding due to the number of possible

combinations. This is why the interval constraint m is larger than the five months assumed

in section 4.6.

Running the optimization with a constant fuel consumption increase of14 l = 0.3 and a

shock percentage of δ = 0.5, the graph in figure 5.2 represents the optimal hull cleaning

intervals. Note that the x-axis represents the percentiles of the optimal hull cleanings over

a given period. Initially, a three-year period (156 weeks) is assumed. If for instance the

first hull cleaning happens in week 56, this corresponds to the 36th interval percentile as

56/156 ≈ 36 %. Similarly, if the second hull cleaning happens in week 99, it corresponds to

the 63rd percentile (99/156 ≈ 63 %). This is done to provide a more general interpretation

of the optimization which remains the same for all values of n.

In figure 5.2, there is an obvious pattern present. Hull cleaning intervals with constant

slopes are decided by a certain threshold after which it will always drop, and will

consequently always drop to the same consumption level. The pattern from figure 5.2

is in fact always present when holding slope numbers constant, unless other constraints

are binding. Further, as long as the slope is constant the graph will always be centred

around the middle, thus resembling an ambigram. It is therefore worth noting that due

to the theoretical nature of the optimization, the optimal intervals are equal regardless of

14Based on monthly increase of 1 %, l = C0 · 0.01
4 .
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Figure 5.2: Optimization with δ = 0.5

the initial consumption estimates C0 and l. Figure 5.2 would consequently be identical

for any value of these, with the only change being a different scale on the y-axis. For

purposes other than estimation of cost benefits, it is therefore not necessary to estimate

these parameters.

5.3.1 Changing the shock size

When looking at different shock sizes, it is apparent that the magnitude has an effect on

the optimal interval. In figure 5.3a, the drop is only 25 %, and differs from the described

pattern as the minimum interval constraint m is binding. From figures 5.3a and 5.3b, it is

also noticeable that both hull cleaning intervals move toward the middle of the dry-dock

interval as the shock decreases. In general, the sensitivity of hull cleaning intervals for

different shocks is shown in Appendix A4.1.

In section 4.3, preliminary expectations of consumption growth are discussed. However, if

the slope numbers are not constant, the behavior of optimal intervals differ. In appendix

A4.2, it is briefly discussed what happens to the optimal intervals when faced with increased

consumption growth after each subsequent hull cleaning. Keeping shocks constant, the

optimal hull cleaning intervals are also dependent of the length of the period n, although

the effect is rather small. For periods between 2-4 years, the deviations in optimal intervals
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(a) δ = 0.25 (b) δ = 0.75

Figure 5.3: Changing shock size δ

vary by less than 1 percentage point for the first shock, and remains exactly equal for

the second shock. For the scenario in which three hull cleanings are performed, the

corresponding graphs are available in appendix A4.4, with the same interpretations as

presented in this section.

5.3.2 Changing the number of hull cleanings

So far, the analysis has looked at the optimal timings given different shock sizes for

performed hull cleanings. It is further interesting to observe the difference in total fuel

consumption when varying the number of hull cleanings. All calculations are based on

the optimal intervals found in the last sections.

Assuming a weekly growth of 0.25 % (l = 0.3), a single Panamax vessel with no hull

cleanings would amass 22,347 tons of fuel consumption over a three-year period. When

changing the shock parameter, the decrease in overall consumption performing three

instead of two hull cleanings, ranges between 1.31 % and 1.80 %. The largest effects are

seen with δ = 0.55 and δ = 0.6, with fuel savings of 1.80 %. This leads to savings of

around 370 tons of fuel over three years. Whether the fuel savings are worth it, depends

on the trade-off between hull cleaning and fuel costs. All consumption differences when

varying the shock parameter δ are displayed in table 5.1.
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Table 5.1: Effects on consumption with different shock sizes

Two hull cleanings Three hull cleanings Effect

Shock Consumption HC1 HC2 Consumption HC1 HC2 HC3 Difference Percentage

0.25 21507.26 40% 57% 21226.13 32% 49% 65% 281.13 1.31%

0.3 21367.51 41% 58% 21057.21 33% 49% 66% 310.3 1.45%

0.35 21233.99 41% 58% 20900.57 33% 49% 66% 333.42 1.57%

0.4 21106.7 41% 58% 20755.62 33% 49% 66% 351.08 1.66%

0.45 20984.95 40% 59% 20621.76 33% 49% 66% 363.19 1.73%

0.5 20868.08 40% 60% 20498.4 33% 49% 66% 369.68 1.77%

0.55 20755.8 39% 61% 20383.67 32% 50% 68% 372.13 1.79%

0.6 20647.8 38% 62% 20276.11 31% 50% 69% 371.69 1.80%

0.65 20543.89 38% 62% 20175.06 30% 50% 70% 368.83 1.80%

0.7 20443.84 37% 63% 20079.97 29% 50% 71% 363.87 1.78%

0.75 20347.41 36% 63% 19990.35 28% 50% 71% 357.06 1.75%

0.8 20254.43 35% 64% 19905.64 28% 50% 72% 348.79 1.72%

0.85 20164.7 35% 65% 19825.5 27% 50% 73% 339.2 1.68%

0.9 20078.05 35% 65% 19749.6 26% 50% 74% 328.45 1.64%

Furthermore, it could be valuable to observe the sensitivity of performing two or three

hull cleanings when changing l. In table 5.2, it is apparent that fuel savings grow bigger

when fuel consumption increases. Assuming an increase of l = 0.05 tons per week, the

difference between performing two and three hull cleanings is only 0.31 %. Meanwhile,

if l = 0.9, increasing to three hull cleanings results in a reduction of 4.93 % in total

fuel consumption. A reasonable consumption increase of l = 0.3 would lead to a 1.75

% decrease in total consumption. Compared to performing no hull cleanings at all, the

decrease would be 8.9 % and 10.5 % for two and three hull cleanings respectively. In other

words, there is a noticeable difference in consumption depending on the number of hull

cleanings performed.
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Table 5.2: Effects on consumption with different consumption increases

Two hull cleanings Three hull cleanings Effect

Growth Consumption HC1 HC2 Consumtpion HC1 HC2 HC3 Change Percentage

0.05 18991.23 36% 63% 18931.72 28% 50% 71% 59.51 0.31%

0.1 19262.47 36% 63% 19143.45 28% 50% 71% 119.02 0.62%

0.15 19533.7 36% 63% 19355.17 28% 50% 71% 178.53 0.91%

0.2 19804.94 36% 63% 19566.9 28% 50% 71% 238.04 1.20%

0.25 20076.17 36% 63% 19778.62 28% 50% 71% 297.55 1.48%

0.3 20347.41 36% 63% 19990.35 28% 50% 71% 357.06 1.75%

0.35 20618.64 36% 63% 20202.07 28% 50% 71% 416.57 2.02%

0.4 20889.88 36% 63% 20413.79 28% 50% 71% 476.09 2.28%

0.45 21161.11 36% 63% 20625.52 28% 50% 71% 535.59 2.53%

0.5 21432.34 36% 63% 20837.24 28% 50% 71% 595.1 2.78%

0.55 21703.58 36% 63% 21048.97 28% 50% 71% 654.61 3.02%

0.6 21974.81 36% 63% 21260.69 28% 50% 71% 714.12 3.25%

0.65 22246.05 36% 63% 21472.41 28% 50% 71% 773.64 3.48%

0.7 22517.28 36% 63% 21684.14 28% 50% 71% 833.14 3.70%

0.75 22788.52 36% 63% 21895.86 28% 50% 71% 892.66 3.92%

0.8 23059.75 36% 63% 22107.59 28% 50% 71% 952.16 4.13%

0.85 23330.98 36% 63% 22319.31 28% 50% 71% 1011.67 4.34%

0.9 23602.22 36% 63% 22531.04 28% 50% 71% 1071.18 4.54%

0.95 23873.45 36% 63% 22742.76 28% 50% 71% 1130.69 4.74%

1 24144.69 36% 63% 22954.48 28% 50% 71% 1190.21 4.93%

5.4 Case study

Whilst this optimization is highly theoretical with several strict assumptions, it would

be interesting to see the effect of optimal hull cleaning intervals on actual vessels. The

classification model detected two performed hull cleanings on two separate Panamax

vessels, P2 and P6. These vessels are further used in an empirical study based on the

theoretical optimization of hull cleanings. The case study examines how moving the two

hull cleanings to their respective optima affects total fuel consumption, as well as exploring

the impact of adding a third hull cleaning.

For vessel P2, the classification model detected hull cleanings at week 164 and 248. The

observations started when P2 had 118 weeks since last dry dock. For this vessel to be
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compared to the theoretical optima, hull cleanings are instead assumed to happen in

week 46 (29 %) and 130 (83 %)15. From section 5.3, it is given that the optimal hull

cleaning intervals with δ = 0.75 and l = 0.3, occurs in week 56 (36 %) and 99 (63 %). In

this section, only the consumption increase l is tested in terms of sensitivity, keeping δ

constant. Table 5.3 displays the percentage savings in consumption for both vessel P2

and P6.

Table 5.3: Effects of optimal timings with two hull cleanings

Actual timing Optimal timing Effect

Consumption HC1 HC2 Consumption HC1 HC2 l Difference

Vessel P2 20641.09 29% 83% 20347.41 36% 63% 0.3 1.42%

21921.81 29% 83% 21432.34 36% 63% 0.5 2.23%

23202.54 29% 83% 22517.28 36% 63% 0.7 2.95%

Vessel P6 20415.21 35% 52% 20347.41 36% 63% 0.3 0.33%

21545.34 35% 52% 21432.34 36% 63% 0.5 0.52%

22675.48 35% 52% 22517.28 36% 63% 0.7 0.70%

Expectedly, the closer the classified hull cleanings are to the optimal interval, the lower

the savings in consumption are. Vessel P6 performs its first hull cleaning almost at the

optimal time, while the second is performed 11 percentage points (18 weeks) too early.

This results in savings of 0.33 % in total consumption over three years. On the other

hand, vessel P2 misses the first hull cleaning by seven percentage points (12 weeks), and

performs the second hull cleaning 20 percentage points (31 weeks) too late. The difference

in total consumption is therefore 1.42 %, which indicates that the vessel could have saved

over 263 tons of fuel over three years. The same principles are applied for consumption

increases of l = 0.5 and l = 0.7, for which the potential fuel savings are even bigger for

both vessels.

In figure 5.4, the sensitivity of fuel consumption loss regarding hull cleaning timings are

displayed. For the first hull cleaning in figure 5.4a, the extra expenditure exponentially

decreases from over 2 % when performed 30 weeks early, to 0 % at the optimal timing.

When performing hull cleanings later than the optimal timing, fuel consumption is once

15All optimizations are performed on a 156-week interval starting in week 1. Since most vessels have
performed their first dry dock several weeks before the observed period, direct comparisons cannot be
made. The observed weeks are consequently scaled so hull cleanings happen in the same relative interval.
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again increasing exponentially. Similar conclusions can be drawn when looking at the

timing of the second hull cleaning in figure 5.4b, however, it is mirrored compared to

figure 5.4a.

(a) First hull cleaning (b) Second hull cleaning

Figure 5.4: Increase in consumption when a HC deviates from the optimal timing

Finally, increasing from two to three hull cleanings within the three-year period has

considerable advantages in terms of fuel savings. Table 5.4 displays the differences in

consumption for both vessel P2 and P6 using three different values of l. The difference is

predictably substantially larger than simply performing the two hull cleaning intervals

optimally. Adding an extra hull cleaning increases fuel savings with between 2.08 % to 4.37

% depending on the consumption increase l for vessel P6. For vessel P2, the corresponding

savings are 3.15 % to 6.54 %. As previously discussed, the growth rate has no impact on

the optimal intervals, but affects the total savings over the three-year period.

Table 5.4: Effects of optimal timings with three hull cleanings

Actual timing Optimal timing Effect

Consumption HC1 HC2 Consumption HC1 HC2 HC3 l Difference

Vessel P2 20641.09 29% 83% 19990.35 28% 50% 71% 0.3 3.15%

21921.81 29% 83% 20837.24 28% 50% 71% 0.5 4.95%

23202.54 29% 83% 21684.14 28% 50% 71% 0.7 6.54%

Vessel P6 20415.21 35% 52% 19990.35 28% 50% 71% 0.3 2.08%

21545.34 35% 52% 20837.24 28% 50% 71% 0.5 3.29%

22675.48 35% 52% 21684.14 28% 50% 71% 0.7 4.37%
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6 Impact of individual crew performance

In this section, individual differences between key crew members are analyzed. To find

the effects of key crew members on bunker consumption, it is again desirable to control

for as many external factors as possible. Hull cleanings must be included to make fair

comparisons between masters, since a master sailing right after a hull cleaning is expected

to have lower fuel consumption relative to a master sailing right before a hull cleaning.

Consequently, once hull cleanings have been identified, the impact of individual crew

members on fuel consumption can be found.

In this section, the differences in fuel consumption between masters and chief engineers

are statistically tested to find outliers. For the purpose of identifying individual masters,

pairing masters and chief engineers would not isolate the effects of single crew members.

Further, using a standard OLS regression approach with dummy variables for each master

would not measure a master’s deviation from the mean, but rather measure the deviation

from the mean of the arbitrary reference master. Thus, a new testing scheme is proposed,

using ANOVA and t-testing. When finding the effects of masters, it could be argued that

the omittance of chief engineers could lead to biased estimators following the problem of

omitted variable bias (Hanck et al., 2019). The assumption is therefore made that masters

are, by and large, responsible for a vessel’s consumption. This suggests that if a master

is surrounded by only inefficient (or excellent) chief engineers, the deviation in terms of

consumption is still credited to the master. Chief engineers are then tested in terms of

deviation from their respective master’s mean.

6.1 Analysis of masters

The concept of consumption controlled for all external variables (C∗
t ) will be further used

to separate masters in terms of fuel consumption. Using a similar regression to equations

4.3 and 4.5, C∗
t is estimated by:

Ct = τkt ·Xkt + θ · Yt + εt (6.1)
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C∗
t = εt (6.2)

The regression model uses the non-transformed variables consumption and speed. While

log transforming these variables likely represents the actual relationship between speed

and consumption better, it is somewhat penalized in terms of inference validity. This is

further discussed in section 8. The residuals of the OLS regressions are again considered as

the consumption controlled for external variables for each vessel, with a mean of zero. C∗
t

is in this case further scaled so that each vessel has σ2 = 1. This is to ensure comparable

C∗
t values between vessels within the same segment.

The regression model is estimated on each specific vessel. Only masters that have more

than 50 observations are included. This implies that external effects such as weather

likely differs slightly from ship to ship. This is however necessary when including the

interval specific time trends, as the various vessels have different hull cleaning dates which

would lead to nonsensical results if time trends were pooled for an entire segment. When

looking at all observations from a specific vessel, we nevertheless assume that there are

enough observations to avoid overfitting weather data. In addition, vessel fixed effects are

automatically taken care of with this approach. In figures 6.1 to 6.3, boxplots are shown

to compare the means and variance of C∗
t for different masters.

Figure 6.1: Boxplot of Panamax masters’ mean consumption controlled for external
variables
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Figure 6.2: Boxplot of Suezmax masters’ mean consumption controlled for external
variables

Figure 6.3: Boxplot of Medium Range masters’ mean consumption controlled for external
variables

For Medium Range vessels, master 308 appears to have the highest consumption, while

for Suezmax vessels master 602 seems to have the lowest. For Panamax vessels and other

masters, the differences seem to be somewhat less obvious and implores the question

of whether or not there are actually significant differences between masters within the

segment. A sensible first step is consequently to consider the C∗
t of masters in an ANOVA.
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6.1.1 ANOVA testing

Prior to proceeding with statistical testing, it should be clear that the data follows the

normality assumptions of ANOVA and t-testing to ensure valid inference. It follows from

the central limit theorem that for sample sizes above n = 30, the sampling distribution

approximates the standard normal distribution (Kwak and Kim, 2017). Autocorrelation is

still present in C∗
t values, which will not prevent unbiased estimators, although inference

validity may suffer slightly. The residuals are homoscedastic, achieved when setting σ2 = 1.

By plotting histograms of C∗
t values, it is obvious that observations are indeed resembling

a normal distribution. With a sample size of n ≥ 50 for all masters, the observations for

each specific master should be normally distributed as well.

A one-sided ANOVA is fit to determine whether any of the masters have significantly

different means (McDonald, 2014). The null hypothesis is that all masters have equal

means, while the alternative hypothesis is that at least one master deviates in terms of

mean C∗
t . For Panamax vessels, the ANOVA is not rejected, with a p-value of 0.83. Thus,

we cannot conclude that there are definitely differences between Panamax masters. For

Suezmax and Medium Range masters, the ANOVA is rejected with p-values of 2.5 · 10−4

and 3.5 · 10−5 respectively. Considering that the ANOVA only tests to see whether there

are differences in means relative to each other, it is not certain that any one master

significantly differs in terms of C∗
t . Consequently, it is of interest to examine which

masters deviate significantly from the expected mean of zero.

6.1.2 T-testing

Using the scaled residuals, a two-sided t-test assuming equal variance is run on every

master. The test observator t is given by:

t =
x̄− µ

sx̄
(6.3)

where x̄ is the mean of the n observations for each master within the vessel segment, and

µ is the assumed mean of all masters. Since the assumed mean of C∗
t is µ = 0, we have

t = x̄
sx̄

. The estimated standard error of the mean sx̄ = s√
n

is based on the standard

deviation s and size n of the sample. The test observator t is compared with the student’s
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t-distribution with n− 1 degrees of freedom, and a significance level of 1 %. Note that

masters are still separated segment-wise, implying that a master could appear in more

than one segment. An overview of masters with C∗
t significantly different from zero, along

with the p-value and their respective average C∗
t , is displayed in table 6.1:

Table 6.1: Masters with significantly different consumption

1 % significance level

Class Master Avg. controlled
consumption p-value

Suezmax 602 -0.4628 0.0014
Medium Range 308 0.4625 0.0004
Medium Range 332 0.2038 0.0055

Some of the masters with low p-values are expected from the boxplots, such as masters

308 and 602. The results suggests that some masters, even after controlling for all known

covariates, are still outliers in terms of consumption. Although the causality of the

differences in fuel consumption is unknown, these masters have significantly different

C∗
t in comparison to their colleagues during the period of observations. As a side note,

when running the same test with log transformed variables, the exact same masters are

significant. In appendix A5, results are shown for tests with a significance level of 5 %.

6.2 Analysis of chief engineers

Keeping in mind that masters have different C∗
t means, chief engineers will be compared

against other chief engineers sailing under the same master. Vessel segments are still

separated, but all observations of a master within the same segment are considered. The

data is further filtered so that chief engineers sailing under the same master have a sample

size of n ≥ 30. This is to ensure that each chief engineer has a representative number of

observations, as well as satisfying normality assumptions for testing in accordance with

the central limit theorem (Kwak and Kim, 2017).

First, an ANOVA test is done to ascertain the presence of discrepancies in means between

chief engineers of the same master. If the null hypothesis of equal means is rejected, the

mean of each chief is tested using a two-sided t-test. However, instead of comparing the

sample mean to zero, it is compared to the mean of their master. Thus, we have µ = x̄
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compared to the mean of the chief ȳ, which gives the test observator:

t =
ȳ − x̄

sȳ
(6.4)

where t is tested for significance in the same way as before. If there are only one or two

chief engineers with sufficient observations for a given master, the ANOVA test is skipped,

and the chiefs are tested only using the described t-test. The chief engineers with average

C∗
t significantly different from the respective master’s mean are displayed in table 6.2,

along with the p-value and difference in mean consumption, ȳ − x̄.

Table 6.2: Chief engineers with significant differences in consumption

1 % significance level

Class Chief engineer Difference from
avg. consumption p-value

Panamax 547 -0.5115 0.0012
Panamax 319 0.3360 0.0002
Suezmax 430 0.2624 4.03e-05
Suezmax 434 -0.4334 0.0004
Suezmax 430 -0.4891 1.36e-07
Suezmax 434 0.7057 1.41e-05
Suezmax 82 0.2626 0.0002
Suezmax 169 -0.2140 0.0078
Suezmax 392 -0.3553 0.0012
Suezmax 463 0.2790 0.0017
Suezmax 430 0.6205 6.16e-06
Suezmax 152 -0.2054 0.0013
Medium Range 223 0.5800 8.63e-05

For chief engineers, most of the significant differences appears in the Suezmax segment.

Interestingly, engineers 434 and 430 show significant differences for two and three different

masters, but with different signs. This is perhaps signaling that the effects of chief engineers

could be largely due to unknown external factors and arbitrary variance. Log transforming

variables leads to similar results, except that chief engineer 637 has a significant difference,

while chief engineers 169 and 392 are no longer significant. Since chief engineers are

only tested if the ANOVA is rejected, setting the significance level to 5 % leads to the

identification of more chief engineers. This also applies to chief engineers with p-values

lower than 1 %, as more ANOVAs are rejected. The chief engineers identified using a

significance level of 5 % are presented in Appendix A5.



45

7 Results and discussion

In this section, the total impact of hull cleaning and crew members are quantified. Some

of the prediction methods used in section 4.2 will be utilized again to see whether the

inclusion of the thesis’ findings can achieve higher prediction accuracy.

7.1 Regression output

To include the effects of crew in a fixed effects model, some assumptions are made. Adland

et al. (2016) considered the matched effects of charterers and owners on freight rates

using fixed effects models. Matched pair dummy variables for each buyer and seller were

implemented to avoid omitted variable bias. In this case, with around 95 masters and 80

chief engineers, creating matched pairs would lead to exceptionally high fragmentation of

data, as the number of dummies becomes extremely large. Such estimations would also

be severely computationally demanding. A fixed effects OLS regression model building

upon equation 4.1 and 4.5 is instead run with separate dummies for masters and chief

engineers, and is given by:

lnCvt = α + τk ·Xvk + θ · Yvt + ηxy · Ixy + ϑv + εvt (7.1)

where Ixy is a dummy variable equal to 1 for observations with master x and chief engineer

y, and ηxy is the fixed effect coefficient for the same crew combination. θ · Yvt represents

vessel characteristics for vessel v at time t. Note that the hull cleaning effects are no

longer including interval specific time trends, meaning that τk = αk. This is because

estimating all of the different vessels’ interval specific time trends would be nonsensical

when individual timings differ. The results of the fixed effects model are displayed in tables

7.1 to 7.3, where different effects are added separately. Total effects are also estimated

separately under ballast and laden conditions. Since some vessels and observations have

been removed during the classification section, new regressions are fit with the updated

data set without adding hull cleaning and crew performance as variables.
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Table 7.1: Regression for different sets of regressors with fixed effects (FE)
for Panamax vessels

Dependent variable:

Log consumption
No FE FE Weather HC Crew Ballast Laden

(1) (2) (3) (4) (5) (6) (7)

Log Speed 1.321∗∗∗ 1.260∗∗∗ 1.407∗∗∗ 1.410∗∗∗ 1.396∗∗∗ 1.467∗∗∗ 1.063∗∗∗

(0.028) (0.026) (0.023) (0.023) (0.024) (0.036) (0.037)

Draught 0.051∗∗∗ 0.055∗∗∗ 0.046∗∗∗ 0.045∗∗∗ 0.046∗∗∗ 0.013 0.038∗∗∗

(0.002) (0.002) (0.001) (0.001) (0.002) (0.008) (0.003)

HC1 −0.096∗∗∗ −0.134∗∗∗ −0.221∗∗∗ −0.064∗∗∗

(0.010) (0.014) (0.024) (0.017)

HC2 −0.085∗∗∗ −0.217∗∗∗ −0.362∗∗∗ −0.126∗∗∗

(0.015) (0.024) (0.040) (0.029)

HC3 −0.118∗∗∗ −0.427∗∗∗ −0.968∗∗∗ −0.143
(0.023) (0.084) (0.205) (0.089)

Since dry dock 0.001∗∗∗ 0.001∗∗∗ 0.002∗∗∗ 0.001∗∗∗

(0.0001) (0.0002) (0.0004) (0.0003)

Constant −0.424∗∗∗ −0.255∗∗∗ −0.752∗∗∗ −0.883∗∗∗ −1.044∗∗∗ −1.037∗∗∗ −0.026
(0.069) (0.065) (0.063) (0.064) (0.107) (0.169) (0.138)

Observations 3,046 3,046 3,046 3,046 3,046 1,242 1,804
R2 0.539 0.615 0.701 0.711 0.743 0.782 0.588
Adjusted R2 0.539 0.614 0.699 0.709 0.736 0.767 0.568

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 7.2: Regression for different sets of regressors with fixed effects (FE)
for Suezmax vessels

Dependent variable:

Log consumption
No FE FE Weather HC Crew Ballast Laden

(1) (2) (3) (4) (5) (6) (7)

Log Speed 0.707∗∗∗ 0.704∗∗∗ 1.033∗∗∗ 1.132∗∗∗ 1.120∗∗∗ 1.267∗∗∗ 0.860∗∗∗

(0.036) (0.035) (0.035) (0.032) (0.032) (0.058) (0.035)

Draught 0.039∗∗∗ 0.040∗∗∗ 0.036∗∗∗ 0.036∗∗∗ 0.038∗∗∗ −0.005 0.030∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001) (0.005) (0.002)

HC1 −0.172∗∗∗ −0.187∗∗∗ −0.225∗∗∗ −0.157∗∗∗

(0.010) (0.012) (0.026) (0.012)

HC2 −0.303∗∗∗ −0.334∗∗∗ −0.317∗∗∗ −0.284∗∗∗

(0.017) (0.020) (0.042) (0.020)

HC3 −0.386∗∗∗ −0.414∗∗∗ −0.439∗∗∗ −0.289∗∗∗

(0.024) (0.029) (0.055) (0.033)

Since dry dock 0.004∗∗∗ 0.004∗∗∗ 0.003∗∗∗ 0.003∗∗∗

(0.0002) (0.0002) (0.0004) (0.0002)

Constant 1.260∗∗∗ 1.288∗∗∗ 0.322∗∗∗ −0.057 0.252 0.382∗ 0.857∗∗∗

(0.092) (0.090) (0.093) (0.086) (0.156) (0.217) (0.101)

Observations 2,717 2,717 2,717 2,717 2,717 904 1,813
R2 0.383 0.417 0.526 0.613 0.659 0.629 0.576
Adjusted R2 0.383 0.416 0.523 0.610 0.651 0.605 0.561

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 7.3: Regression for different sets of regressors with fixed effects (FE)
for Medium Range vessels

Dependent variable:

Log consumption
No FE FE Weather HC Crew Ballast Laden

(1) (2) (3) (4) (5) (6) (7)

Log Speed 0.963∗∗∗ 0.990∗∗∗ 1.392∗∗∗ 1.403∗∗∗ 1.340∗∗∗ 1.614∗∗∗ 0.804∗∗∗

(0.033) (0.032) (0.031) (0.030) (0.030) (0.064) (0.035)

Draught 0.082∗∗∗ 0.086∗∗∗ 0.076∗∗∗ 0.076∗∗∗ 0.077∗∗∗ 0.028∗∗ 0.051∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002) (0.011) (0.002)

HC1 −0.093∗∗∗ −0.104∗∗∗ −0.116∗∗∗ −0.099∗∗∗

(0.010) (0.013) (0.044) (0.013)

HC2 −0.109∗∗∗ −0.270∗∗∗ −0.100 −0.250∗∗∗

(0.017) (0.031) (0.110) (0.028)

HC3 −0.167∗∗∗ −0.339∗∗∗ −0.277∗∗ −0.311∗∗∗

(0.022) (0.041) (0.131) (0.041)

Since dry dock 0.001∗∗∗ 0.002∗∗∗ 0.001∗∗ 0.002∗∗∗

(0.0001) (0.0002) (0.001) (0.0002)

Constant −0.373∗∗∗ −0.514∗∗∗ −1.723∗∗∗ −1.833∗∗∗ −1.779∗∗∗ −2.216∗∗∗ 0.007
(0.084) (0.081) (0.083) (0.084) (0.093) (0.237) (0.108)

Observations 3,192 3,192 3,192 3,192 3,192 743 2,449
R2 0.458 0.496 0.617 0.631 0.676 0.744 0.493
Adjusted R2 0.458 0.495 0.615 0.629 0.666 0.711 0.473

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

In general, the size of the marginal effects16 increases with each subsequent hull cleaning

(Column 4), and especially in ballast condition (6). When pooled for both ballast and

laden condition (4), the effect on Panamax and Medium Range vessels ranges from -8.8 %

for the first hull cleaning to -15.3 % for the third hull cleaning. The effect is noticably

higher for the Suezmax vessels ranging from -15.8 % to -32 %. The large effects are

probably partly due to the substantially higher weekly increase in consumption, which

is 0.4 % for Suezmax, compared to 0.1 % for both the Panamax and Medium Range

segments. As the third hull cleaning is most likely performed during the latter part of the

16Marginal effects of logarithmic values are calculated in the same way as in section 4.1
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three-year period, the effect of a higher weekly growth plays a bigger role in the marginal

effect of later hull cleanings. The same logic is also applicable for Medium Range and

Panamax segments in why later hull cleanings have a bigger marginal effect.

Adding the hull cleaning variable increases the adj. R2 with 8.7 % for Suezmax, 1 % for

Panamax and 1.4 % for Medium Range vessels, which is a major difference. Further,

adding crew performance increases adj. R2 with 4.1 % for Suezmax compared to 2.7 % for

Panamax and 3.7 % for Medium Range. The difference between classes is considerably

smaller for crew performance than for hull cleanings. The coefficients of masters and chief

engineers are omitted from the table due to the high number of variables, while weather

variables are omitted for visual purposes and because they have been previously discussed.

7.2 Variance decomposition

Variance decomposition is used to indicate the amount of information each variable

contributes compared to the other variables. Similar to the regressions, such analyses

are made for each class due to differences in vessel characteristics. This is to observe if

hull cleaning or crew performance are prominent variables in explaining variance, and

see to which extent they add extra information regarding fuel consumption. The results

of ANOVA tests for each segment are displayed in tables 7.4 to 7.6. The percentage

column is calculated as the individual sum of squares divided by the total sum of squares,

excluding residuals. Thus, the column measures the share of explained variance that

the respective variable captures, showing which variables provide the most in terms of

explanatory power.

Table 7.4: ANOVA for Panamax vessels

Df Sum Sq Mean Sq Pr(>F) Percentage
Log speed 1 89.15 89.15 0.0000 54.98
Draught 1 28.48 28.48 0.0000 17.56
Weather 9 19.28 2.14 0.0000 11.89
Vessel name 6 1.23 0.21 0.0000 0.76
Weeks since dry dock 1 5.12 5.12 0.0000 3.15
Hull cleaning 3 1.81 0.60 0.0000 1.11
Master 36 12.24 0.34 0.0000 7.55
Chief engineer 28 4.83 0.17 0.0000 2.98
Residuals 2960 55.96 0.02
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Table 7.5: ANOVA for Suezmax vessels

Df Sum Sq Mean Sq Pr(>F) Percentage
Log speed 1 8.94 8.94 0.0000 10.41
Draught 1 41.04 41.04 0.0000 47.79
Weather 9 14.61 1.62 0.0000 17.01
Vessel name 3 1.66 0.55 0.0000 1.93
Weeks since dry dock 1 0.92 0.92 0.0000 1.07
Hull cleaning 3 3.59 1.20 0.0000 4.17
Master 23 6.94 0.30 0.0000 8.08
Chief engineer 21 8.17 0.39 0.0000 9.51
Residuals 2654 44.49 0.02

Table 7.6: ANOVA for Medium Range vessels

Df Sum Sq Mean Sq Pr(>F) Percentage
Log speed 1 33.09 33.09 0.0000 23.82
Draught 1 60.96 60.96 0.0000 43.88
Weather 9 25.17 2.80 0.0000 18.12
Vessel name 6 2.32 0.39 0.0000 1.67
Weeks since dry dock 1 6.02 6.02 0.0000 4.33
Hull cleaning 3 1.11 0.37 0.0000 0.79
Master 39 5.31 0.14 0.0000 3.82
Chief engineer 36 4.94 0.14 0.0000 3.55
Residuals 3095 66.45 0.02

All variables have p-values less than 1−4, which indicates that the inclusion of all variables

is correct as they all provide additional information. In general, log speed, draught, and

weather offer the highest explanatory power. The crew member variables actually have

a bigger impact than fixed vessel effects, because the vessels are compared to almost

identical sister ships. Since there are so many crew members, the possibility of overfitting

is present, as the data is highly fragmented. Hence, it is possible that these variables

capture a decent portion of unknown or arbitrary variation by chance. It is surprising

that draught has a larger effect on variance than speed for two segments. However, this is

likely because observations are pooled for both ballast and laden conditions. In appendix

A6, ANOVA tests for vessels in ballast are displayed. The relationship between speed and

consumption becomes more obvious when only considering ballast observations.

Since Panamax vessels are unique in terms of their dual-engines, speed has a greater

impact on consumption, leading to competent crew playing an important role for vessel

performance. This could explain why masters have a substantial effect on Panamax vessels.
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The cause of the large effect of crew performance on Suezmax vessels remains unclear,

with chief engineers being prominent in terms of variance. In section 6.2, most of the chief

engineers with significant differences were serving on Suezmax vessels, and the number

of chief engineers was even higher using a 5 % significance level. With this in mind,

the results are not suprising as it is obvious that chief engineers have large variations

on Suezmax vessels. One theory could be that the efficiency of operations cause larger

fluctuations in performance for Suezmax vessels. Since chief engineers are responsible

for submitting the noon reports, it is also possible that Suezmax vessels for some reason

suffer more in terms of having correct, standardized noon reports, although this is hard

to ascertain.

Suezmax vessels are also the largest in terms of deadweight tonnage, which means that

draught varies to a greater extent. This is supported by the descriptive statistics in section

3.3.2, where the Suezmax segment has max observations of 17m in draught, compared to

12.7m and 12.6m for Panamax and Medium Range respectively. Therefore, it is logical

that draught has a bigger impact in describing variance for the Suezmax class. The

differences become minimal in ballast condition, where most of the variance is attributed

to speed, weather and crew performance. Additionally, the draught of the Suezmax class

may be a factor to why hull cleaning has a larger impact on these vessels, as more of the

hull is exposed to frictional resistance compared to other classes. Medium Range vessels

do a lot of part cargos and parcelling leading to less idle/waiting time, thus reducing the

risk of biofouling. This could explain why hull cleaning makes up such a small portion of

the variance for Medium Range vessels. The conclusions drawn from the results are based

on knowledge provided by the ship owner.

7.3 Prediction accuracy

To see if adding hull cleaning and crew performance influence the accuracy of predicting

fuel consumption, a selection of machine learning algorithms from section 4.2 are revisited.

This includes three linear models (OLS, Lasso and Ridge) and three non-linear tree-based

models (Extra Trees, Random Forest and xgBoost). Since some observations and vessels

were removed in section 4, predictions of the trimmed data set are performed again to

create fair comparisons. Again, predictions are divided into vessel segments because of the
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large differences in characteristics. The algorithms use the same validation set approach

as before, splitting 80 % of observations into training data for model fitting and validation,

and the remaining 20 % into a hold-out test set to generate unbiased results. All metrics

are displayed from out-of-sample data. With the addition of the discussed variables, the

effects on prediction accuracy are displayed in tables 7.7 to 7.9.

Table 7.7: Performance metrics for Panamax vessels

Without HC and Crew All predictors

Panamax RMSE R2 MAE RMSE R2 MAE

OLS 0.1565 64.50% 0.1184 0.1501 67.49% 0.1118

Lasso 0.1564 64.50% 0.1183 0.1501 67.47% 0.1120

Ridge 0.1556 64.50% 0.1179 0.1501 66.98% 0.1127

Extra Trees 0.1365 72.84% 0.0903 0.1289 75.77% 0.0860

Random Forest 0.1315 74.62% 0.0897 0.1272 76.29% 0.0864

xGBoost 0.1334 74.53% 0.0913 0.1261 77.13% 0.0864

Table 7.8: Performance metrics for Suezmax vessels

Without HC and Crew All predictors

Suezmax RMSE R2 MAE RMSE R2 MAE

OLS 0.1379 55.67% 0.1020 0.1248 63.75% 0.0928

Lasso 0.1379 55.64% 0.1020 0.1248 63.68% 0.0928

Ridge 0.1382 55.20% 0.1026 0.1292 60.86% 0.0962

Extra Trees 0.1065 73.60% 0.0738 0.0986 77.52% 0.0674

Random Forest 0.1036 75.64% 0.0721 0.0986 78.22% 0.0677

xGBoost 0.1019 75.71% 0.0707 0.1005 76.40% 0.0697
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Table 7.9: Performance metrics for Medium Range vessels

Without HC and Crew All predictors

Medium Range RMSE R2 MAE RMSE R2 MAE

OLS 0.1611 59.72% 0.1211 0.1535 63.57% 0.1145

Lasso 0.1610 59.76% 0.1209 0.1534 63.61% 0.1142

Ridge 0.1609 59.82% 0.1203 0.1546 62.87% 0.1154

Extra Trees 0.1299 73.85% 0.0874 0.1201 77.62% 0.0804

Random Forest 0.1272 75.10% 0.0869 0.1205 78.10% 0.0813

xGBoost 0.1306 74.85% 0.0872 0.1291 75.28% 0.0851

The results in tables 7.7 to 7.9 solidifies the evidence that adding hull cleaning and

crew performance have a distinctly bigger impact on Suezmax tankers, as the R2 of the

OLS model increases by almost 8 %, compared to an increase in R2 of 3 % and 4 % for

Panamax and Medium Range respectively. For non-linear models, the improvement is

more modest, with R2 increasing by 2.5 %, 2.5 %, and 3 % in the best performing model

for Panamax, Suezmax, and Medium Range vessels respectively. Analogous to section 4.2,

more advanced algorithms perform better. Overall, Random Forest seems to be the best

performing machine learning technique in terms of prediction accuracy.

The difference in performance between linear and non-linear models has however decreased

markedly. Because of the low variance of linear models, the inclusion of more predictors

leads to bigger improvements in accuracy relative to the high variance non-linear models.

This is perhaps due to more advanced models having a higher tendency to overfit, as they

use the available predictors to explain unknown variation to a larger extent. The inclusion

of hull cleaning and crew performance as variables thus seem to explain a large portion of

the differences in performance between OLS and other non-linear models. Of course, the

possibility of overfitting remains potent for all methods due to the high fragmentation

that occurs when including crew variables.
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8 Limitations and further reasearch

The results regarding the impact of hull cleaning and the optimization of these, is based

on results from the classification model in 4. All results derived from the ensuing analysis

is consequently dependent on the accuracy of this model. If the detected hull cleanings

stray far away from reality, the findings and interpretations could be inaccurate. However,

as the comparison of fuel consumption profiles in section 4.5 show, the detected hull

cleaning dates are more in line with expectations than the company-reported dates. The

analysis is therefore assumed to be relatively trustworthy given the uncertainty in the

data. This emphasizes the value of precise and reliable data.

It is hard to quantify the accuracy of the classification model, due to the lack of a

training set with confirmed hull cleaning dates. Further research should aim to test the

classification model in terms of prediction error. Although few classification models are

designed to consider time series when recognizing events, it could be worth testing various

models on training and test data to compare prediction errors. One method that seems

to be a good fit for this type of time series classification problem, is a Recurrent Neural

Network (RNN). RNNs take into account the order of observations in a time series and

as such could perhaps recognize patterns preceding and following actual hull cleanings

(James et al., 2013). Given a training set with sufficient observations and confirmed

hull cleaning dates, further research should attempt implementing RNNs to identify hull

cleaning dates. The authors believe this could be among the best prediction models for

this classification problem.

The noon reports provided only cover three years, where most of the dry docks happened

1-2 years prior to the first observations. This leads to uncertainty in whether the first

hull cleaning identified is actually the first hull cleaning of the dry dock interval. It is

reasonable to assume that given the observed hull cleaning intervals, some hull cleanings

have been performed in the period prior to the first observations. Hence, some caution is

advised when quantifying and comparing the exact effect of the first, second and third

hull cleaning, as the sequence number may be incorrect.

As some papers have previously discussed, including Idais et al. (2021), measuring the

exact growth rate of biofouling is extremely complex. Further research could include
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additional variables that are sensitive in terms of being accurately quantified, such as

water temperature, salinity, exact idle time, and time spent in areas with increased risk of

biofouling. Given accurate measurements, the impact of external variables on friction could

be correctly calculated, and enable more accurate predictions of bunker consumption.

The development of biofouling is not only dependent on exogenous variables affecting

the vessel. The type of hull and choice of antifouling coating used also affects the rate of

biofouling. This information is rarely available, but could have improved estimates of hull

deterioration over time, and helped determine hull cleaning dates more precisely. The

thickness of the antifouling coating applied during dry dock is also important, as it affects

how long the coating remains effective. This is especially important for determining to

what extent the coating is scrubbed off during underwater hull cleanings.

Although the optimizations in section 5 are accurate given the assumptions, the real-life

conditions make these assumptions quite a stretch. Because of the several unknown or

currently unattainable factors affecting biofouling, the optimization model will only go

so far in regards to application. Further, several of the assumptions such as the size of

hull cleaning shocks are unlikely to hold in real life, and would require extensive analysis

in order to estimate accurately. Additionally, because some of the constraints in the

theoretical optimization model is convex quadratic, linear solvers are not able to solve

the optimization problem. Non-linear solvers were also attempted, but failed to deliver

the desired results due to ignoring integrality constraints. The model was therefore

implemented in R, and run as a brute force model in which the intervals that minimized

consumption were selected. This leads to high computational times, which increases

exponentially whenever parameters such as the minimum time interval m is reduced, or

the number of hull cleanings h and time period n is increased.

To achieve an optimization model which delivers real-life application to a higher degree,

another approach is likely required. As continuous monitoring of hull conditions becomes

more widespread, the decision rules are to a larger extent based on real time features

and thresholds. Further research could utilize simulations to find typical shipping routes,

measure factors that are expected to affect biofouling, and find the optimal thresholds

where the vessel is most likely to minimize consumption by performing a hull cleaning.

This kind of model would probably move away from the realm of economical optimization,
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and instead be based on simulations and machine learning predictions. For instance,

Bomholt and Thune (2020) used Extreme Gradient Boosting and RNNs with great results

for shipping route simulations.

When back-transforming logarithmic variables, the estimates sometimes have a tendency to

be biased. The regressions in this thesis are primarily estimated in log-log space to remove

non-linear relationships between variables. However, the hull cleaning optimizations use

actual fuel consumption for better interpretability and applicability. Hence, all estimated

values in section 5 are back-transformed. Despite the arithmetic mean not necessarily

deviating by much, this bias is important to keep in mind when back-transforming

logarithmic values (Rothery, 1988).

There are several reasons to consider the results of the individual crew analysis under

a high degree of caution. The models used to estimate the consumption net all other

variables have limited explanatory power, as there are several known or unknown factors

not available that could further explain consumption. If correlation between a specific

master and high consumption exists, we cannot know whether this is caused by the master

or by any number of external unknown factors, for instance mechanical issues. Further,

it is likely a stretch to hold just one master and - to a lesser degree - one chief engineer,

responsible for everything related to consumption. For instance, there are several other

crew members in charge at various times during the 24 hours of a noon report.

The decision to not log transform variables before the statistical testing was made to

increase inference validity, as tests with log-transformed variables are no longer operating

with arithmetic means. Instead, the arithmetic mean of the log transformed consumption

is actually the geometric mean of the non-transformed consumption. Although the t-test

itself tests for differences in the provided mean with no differentiating, the results do not

automatically translate to outside log space. It follows that using the log transformed

consumption in testing would lead to different p-values, and therefore different conclusions.

However, the estimation of external effects are likely worse when the power relationship

between consumption and speed is not modeled as such. Hence there is a trade-off between

a slightly worse fit for the model and a slightly more “correct” inference, although the

conclusions remain closely related. In all cases, the results should not be taken for granted,

as the causality of deviations from the mean consumption remains uncertain.
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9 Conclusion

This thesis uses noon reports to identify the impact of hull cleaning and crew performance

on bunker consumption under data uncertainty. To account for the uncertainty, a

classification model to detect hull cleanings based on noon reports was proposed. Previous

research suggests that hull cleanings lead to negative shocks in fuel consumption, with

consumption between hull cleanings increasing over time mainly due the development of

biofouling. While the hull cleaning dates provided by the data owner rendered largely

nonsensical fuel consumption profiles, the hull cleaning dates detected by the classification

model generated fuel consumption profiles which were substantially better in terms of

fitting expectations. Although it is not possible to quantify the accuracy of the classification

model without additional information, further research could test model accuracy and

fine-tune model parameters on data sets with confirmed hull cleaning dates.

Economical optimizations of hull cleaning intervals were done by defining an optimization

problem. Optimal hull cleaning intervals were discovered to be independent on both initial

fuel consumption and its consumption increase. Thus, in theory, all that is needed to

optimize hull cleaning intervals using the proposed model, are accurate estimates of the

shock size relative to post dry dock levels. The optimization model was applied on actual

vessels with two classified hull cleanings under strict assumptions. Using the best available

estimate for the increase in frictional resistance over time, fuel savings of 0.3 % and 1.4

% were achieved over a three-year period by moving the classified hull cleanings to their

respective optima. Adding an additional hull cleaning and moving the hull cleanings to

their respective optima resulted in fuel savings of 2.1 % and 3.2 %. The magnitude of the

estimated fuel savings are mainly dependent three factors; (i) the increase in consumption

due to biofouling, (ii) the size of the hull cleaning shock, and (iii) by how much the vessels

missed their respective optima.

The effects of individual crew members were explored using statistical tests. Results

indicate that some masters consume significantly more or less fuel compared to their

peers. Masters with significantly lower consumption incur fuel savings between 0.22

- 0.38 tons/day, while masters with significantly higher consumption have excess fuel

usage of 0.37 - 0.59 tons/day. The tests further identifies which chief engineers that have
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significantly different consumption compared to their respective master’s average. Though

some chief engineers significantly differ from their colleagues, they do not appear to be

consistent in whether they are better or worse than their colleagues. Despite significant

differences in fuel consumption, there are no assumptions of causality. Although deviations

could reflect the crew member’s competence, they could also be due to unknown factors.

Identified hull cleanings and crew performance were included as variables to quantify

their impact on consumption. Variance decompositions showed that draught and speed

are the most important drivers of fuel consumption, explaining between 10-55 % and

17-48 % of variance respectively, depending on vessel segment. Identified hull cleanings

exhibits an explanatory power of around 9 % for Suezmax vessels and 1 % for other

classes. Considering that effects are based on classified hull cleanings, the results are

dependent on classification accuracy. Crew performance explains between 2.7-4.1 %

of bunker consumption, depending on vessel segment. In terms of prediction, OLS

regression achieved explanatory powers between 63.5-67.5 %, up from 55.5-64.5 %. The

best performing non-linear tree-based models reached explanatory powers of 77.1-78.2

%, up from 74.5-75.6 %. This indicates that more advanced non-linear models capture

unknown variance even without the additional predictors, due to their high variance. In

contrast, the linear models with lower variance benefit greatly from the added predictors,

as they are less prone to overfitting.

Findings show that hull cleaning has a significant impact on bunker consumption, although

the size of the effect vary by vessel segment. Optimization of hull cleaning intervals can

lead to moderate fuel savings. Since the analyses involving hull cleanings are performed

under data uncertainty, some caution is advised until the accuracy of the classification

model is assessed. The results underline the value of having reliable data as a foundation

for consumption modelling and decision-making to increase fuel efficiency. Further analysis

reveals that crew performance has a noticeable impact on consumption, although the

causality remains unclear. For shipping to reach the IMO emission goals, both the impact

of hull cleaning and crew performance should be considered by ship owners. With large

variation between individual crew members, and potential savings in the optimization of

hull cleaning intervals, shipping companies can accommodate these findings in their daily

operations to reduce fuel costs and emissions.
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Appendix

A1 Geographic locations

Figure A1.1: Trading routes for all Panamax vessels

Figure A1.2: Trading routes for all Suezmax vessels

Figure A1.3: Trading routes for all Medium Range vessels
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A2 Outliers in different vessels segments

(a) Panamax outliers

(b) Suezmax outliers

(c) Medium Range outliers

Figure A2.1: Cut-off lines for outliers for all segments
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A3 Fuel consumption profiles

A3.1 Comparison of fuel consumption profiles

(a) Reported HC P1 (b) Detected HC P1

(c) Reported HC P3 (d) Detected HC P3

(e) Reported HC P4 (f) Detected HC P4

Figure A3.1: Comparison of fuel consumption profiles
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(g) Reported HC P6 (h) Detected HC P6

(i) Reported HC P7 (j) Detected HC P7

(k) Reported HC P8 (l) Detected HC P8

(m) Reported HC S1 (n) Detected HC S1

Figure A3.1: Comparison of fuel consumption profiles
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(o) Reported HC S2 (p) Detected HC S2

(q) Reported HC S3 (r) Detected HC S3

Figure A3.1: Comparison of fuel consumption profiles

A3.2 Classified hull cleaning dates for vessels with no basis of

comparison

Figure A3.2: Classified hull cleaning dates for vessels with no basis of comparison
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A3.3 Fuel consumption profiles for vessles with no basis of

comparison

(a) Detected HC P2 (b) Detected HC S4

(c) Detected HC S5 (d) Detected HC M1

(e) Detected HC M2 (f) Detected HC M3

Figure A3.3: Classified fuel consumption profiles
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(g) Detected HC M4 (h) Detected HC M5

(i) Detected HC M6 (j) Detected HC M7

Figure A3.3: Classified fuel consumption profiles
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A4 Sensitivity of parameters for optimization

A4.1 Interval sensitivity to shock size

Figure A4.1 shows the sensitivity of optimal timings subject to changes in shock size δ,

with 0.3 < δ < 0.9.

Figure A4.1: Optimal intervals for various shock sizes

The points correspond to the optimal timings given various shock sizes. An easier

interpretation is shown in figure A4.2, where the example consumption profile has δ = 0.9.

Hull cleaning timings move closer to the middle when shock size decreases, until the

minimum interval constraint m is binding. The shape of the graph in figure A4.1 is

completely independent of the initial consumption C0 and slope number l.

Figure A4.2: Optimal intervals for various shock sizes illustrated with δ = 0.9
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A4.2 Interval sensitivity with increasing slope numbers

Let lk be the consumption increase after hull cleaning k, with l0 being the initial

consumption increase. Slope number lk increases after each hull cleaning with the absolute

value ∆, given by ∆ = l0 · g, where the growth factor g is a percentage of the initial

consumption increase l0. Thus, slope number is measured by lk = l0 + k · ∆, with a

marginal percentage increase lk
lk−1

− 1 = g
k
. This extends equation 5.2 to account for

interval-specific time trends lk:

Cw = Cw−1 + l0 − (Cw−1 − C0) · δ ·Xk,w + intk,w · lk ∀ w ∈ W,k ∈ K (.1)

where intk,w is a dummy variable indicating 1 if the week is following hull cleaning k,

and 0 otherwise. Figure A4.3 shows optimal intervals with g = 0.25 and g = 0.75, with

δ = 0.5.

(a) g = 0.25 (b) g = 0.75

Figure A4.3: Changing growth factor g

Figure A4.4 show optimal intervals with g ranging from 0 to 1.
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Figure A4.4: Optimal intervals for various growth factors

It is clear that both hull cleanings are pushed to higher percentiles when the growth factor

increases. The graph is equal for all values for l0 and C0.

A4.3 Interval sensitivity changing shock size and growth factor

The graph of different growth factors with δ = 0.75 in figure A4.4 is compared to the

graphs in figure A4.5a and A4.5b with shock size parameters of δ = 0.75 and δ = 0.25

respectively.

(a) δ = 0.75 (b) δ = 0.25

Figure A4.5: Comparison of growth factors with different shock sizes

It is clear that when lowering shock size, the later the optimal timing when growth rate

increases, until the minimum interval constraint m is binding.
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A4.4 Corresponding graphs with three performed hull cleanings

(a) δ = 0.25 (b) δ = 0.5

(c) δ = 0.75

Figure A4.6: Fuel consumption slopes for different values of δ with three hull cleanings

Figure A4.7: Optimal intervals for various shock sizes with three hull cleanings
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(a) g = 0.5

(b) g = 0.25 (c) g = 0.75

Figure A4.8: Different growth factors with three hull cleanings
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A5 Significant crew members with 5 % significance level

Table A5.1: Significant chief engineers with 5 % significance level

5 % significance level

Class Master Avg. Net
Consumption p-value

Suezmax 602 -0.4628 0.0014

Suezmax 620 -0.2302 0.0135

Suezmax 263 0.1436 0.0421

Medium Range 308 0.4625 0.0004

Medium Range 676 -0.2167 0.0485

Medium Range 64 -0.3431 0.0127

Medium Range 332 0.2038 0.0055
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Table A5.2: Significant chief engineers with 5 % significance level

5 % significance level

Class Chief engineer Difference from
Avg. Net Consumption p-value

Panamax 547 -0.5115 0.0012

Panamax 319 0.3360 0.0002

Panamax 227 -0.3522 0.0227

Panamax 311 0.2699 0.0481

Panamax 813 0.4492 0.0203

Suezmax 430 0.2624 4.03e-05

Suezmax 434 -0.4334 0.0004

Suezmax 430 -0.4891 1.36e-07

Suezmax 434 0.7057 1.41e-05

Suezmax 82 0.2626 0.0002

Suezmax 169 -0.2140 0.0078

Suezmax 392 -0.3553 0.0012

Suezmax 463 0.2790 0.0017

Suezmax 430 0.6205 6.16e-06

Suezmax 152 -0.2054 0.0013

Suezmax 503 0.2672 0.0301

Suezmax 806 -0.4273 1.29e-06

Suezmax 637 0.0845 0.0170

Suezmax 90 0.2704 0.0191

Suezmax 82 -0.2590 0.0211

Medium Range 418 -0.0815 0.0492

Medium Range 351 -0.1272 0.0255

Medium Range 747 -0.3183 0.0107

Medium Range 223 0.5800 8.63e-05
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A6 Variance decomposition for ballast observations

Table A6.1: Variance decomposition for Panamax vessels in ballast

Df Sum Sq Mean Sq Pr(>F) Percentage
Log Speed 1 66.10 66.10 0.0000 77.11
Draught 1 0.27 0.27 0.0003 0.32
Weather 9 6.68 0.74 0.0000 7.78
Vessel name 5 0.99 0.20 0.0000 1.15
Weeks since drydocking 1 1.88 1.88 0.0000 2.19
Hull cleaning 3 1.30 0.43 0.0000 1.15
Master 34 6.38 0.19 0.0000 7.44
Chief engineer 28 2.12 0.08 0.0000 2.46
Residuals 1159 23.88 0.02

Table A6.2: Variance decomposition for Suezmax vessels in ballast

Df Sum Sq Mean Sq Pr(>F) Percentage
Log speed 1 9.11 9.11 0.0000 32.31
Draught 1 0.63 0.63 0.0000 2.23
Weather 9 8.62 0.96 0.0000 30.55
Vessel name 2 0.61 0.31 0.0000 2.17
Weeks since drydocking 1 0.22 0.22 0.0010 0.76
Hull cleaning 3 2.41 0.80 0.0000 8.56
Master 21 3.34 0.16 0.0000 11.85
Chief engineer 18 3.26 0.18 0.0000 11.54
Residuals 847 16.60 0.02

Table A6.3: Variance decomposition for Medium Range vessels in ballast

Df Sum Sq Mean Sq Pr(>F) Percentage
Log speed 1 30.42 30.42 0.0000 55.11
Draught 1 0.23 0.23 0.0052 0.41
Weather 9 11.80 1.31 0.0000 21.53
Vessel name 6 0.28 0.05 0.1405 0.51
Weeks since drydocking 1 2.88 2.88 0.0000 5.25
Hull cleaning 3 1.19 0.40 0.0000 2.17
Master 32 3.05 0.10 0.0000 5.56
Chief engineer 33 4.95 0.15 0.0000 9.03
Residuals 656 18.83 0.03


