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Abstract  

We study returns to scale in Norwegian electricity distribution companies. The scale 

issue of this sector has become an important political question, and it was for instance 

discussed by the Reiten commission (OED, 2014) in a study about the future structure 

and organization of the Norwegian electricity network industry. We use panel data 

from the Norwegian Water Resources and Energy Directorate (NVE) for the period 

from 2004 to 2010. The Data Envelopment Analysis (DEA) method and the 

Stochastic Nonparametric Envelopment of Data (StoNED) approach are applied to 

examine the scale issue. We show that a majority of the companies are smaller than 

the optimal size, in line with Kumbhakar et al. (2014).  The performance of 

Norwegian distribution companies are influenced by a number of environmental 

factors, and some of these factors are negatively correlated with company size. 

However, our results show that controlling for environmental factors when estimating 

returns to scale does not have a big effect on the estimated optimal sizes.  
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1. Introduction 

Norway was one of the pioneering countries in implementing market-oriented 

electricity sector reforms. The Norwegian electricity sector has been undergoing 

reorganization and restructuring after the Energy Act in 1991. However, its 

decentralized structure and ownership have remained largely unchanged. Recently, the 

structure of the industry has been discussed, e.g., by the Reiten-committee in a report 

prepared for the Norwegian ministry of petroleum and energy (OED). The report 

characterized smaller companies as being over-represented among the inefficient 

distribution companies (OED, 2014), and it suggested, among other things, increased 

co-operation and coordination among companies.  

Returns to scale (RTS) addresses the input and output decisions of the organization. 

Nicholson (1985) defined return to scale as follows: 

“In intuitive terms, if a proportionate increase in inputs increases outputs by 

the same proportion, the production function exhibits constant returns to scale. 

If output increases less than proportionately, the function exhibits diminishing 

returns to scale. And if output increases more than proportionately, there are 

increasing returns to scale (p.247)”. 

In the standard empirical economics of efficient production, returns to scale is 

commonly quantified as scale elasticity, i.e., the proportionate increase in outputs 

resulting from the proportionate increase in inputs. The scale elasticity is often 

estimated using econometric approaches like stochastic frontier analysis (SFA) (Gary 

et al., 1999; Lawson et al., 2004; Kumbhakar and Tsionas, 2008). In this paper we 

examine the scale characteristics of the electricity distribution companies in Norway 

by means of the nonparametric data envelopment analysis (DEA) approach and the 

stochastic non-parametric envelopment of data (StoNED) method.   

Unlike the parametric SFA approach, DEA does not have any assumptions on the 

underlying production or cost functional form as well as on the distribution of the 

inefficiency. Banker (1980) firstly proposed the standard model with single output for 

studying RTS in DEA. The RTS concept was extended from the single output case to 

the multiple output case by Banker et al (1984) and Banker and Thrall (1992).  

However, DEA does not distinguish inefficiency from noise in the data. 



The stochastic non-parametric envelopment of data (StoNED), combining the virtues 

of SFA and DEA, was proposed by Johnson and Kuosmanen (2011). This approach 

has been applied to the Finnish electricity distribution regulation by Kuosmanen 

(2012). The main advantage of StoNED over SFA is the independence of the ad hoc 

parametric assumptions about the functional form of the production or cost function. 

In contrast to the fixed functional forms in SFA, one can impose more general 

monotonicity and concavity constraints in StoNED, without sacrificing the flexibility 

of the regression function. The main relative advantage of StoNED over DEA is the 

better robustness to outliers, data errors, and other stochastic noise in the data. Our 

study aims at quantifying returns to scale for electricity distribution companies using 

the StoNED approach. 

Electricity distribution companies, even in the same country, do not operate under 

identical or even similar environmental and climatic conditions. It is well know that 

analyses of efficiency and productivity should control for factors beyond the 

companies’ control, see e.g. Coelli and Battese (2008). Specifically, if the 

environmental factors are related to size, like in the Norwegian distribution sector, an 

analysis of economies of scale that does not control for these factors will probably be 

biased. See e.g. the discussion of the Canadian hospital sector by Asmild et al. (2013), 

where it is shown that the optimal hospital size depends on location. In this paper we 

investigate the environmental impact on the measured economies of scale for 

Norwegian electricity distribution companies. Norway is a suitable case for such a 

study because of its large number of distribution companies and detailed data of an 

extensive range of local geographic factors and weather conditions. We specify three 

different approaches based on the DEA model and the StoNED model to study 

whether environmental factors have any impact on estimated returns to scale.  

The reminder of this paper is structured as follows: After the literature review in 

Section 2, Section 3 describes the data sample used in the estimation of various 

models. Section 4 reviews the theoretical foundation of DEA and StoNED and 

describes the methodology used for our analysis. The results are presented in Section 5. 

Section 6 contains concluding comments. 



2. Review of previous studies 

The scale issue in electricity distribution sectors for different countries has been 

studied by several authors. Many studies have found evidence of scale economies: 

Filippini (1996) for Switzerland; Kumbhakar and Hjalmarsson (1998) for Sweden; 

Yatchew (2000) for Canada and Kwoka (2005) for the US.  

There are several studies that investigate the scale issue in Norwegian electricity 

distribution companies. Salvanes and Tjøtta (1994) studied the scale issue of 100 

Norwegian electricity distribution industries in 1998. They found that no economies of 

scale were present in the industry, even for small companies. The total factor 

productivity development of Norwegian electricity distribution utilities of 157 firms in 

1983 and 170 in 1989, respectively, was examined by Førsund and Kittelsen (1998). 

They concluded that the small firms experienced poor performance. Recently, there 

were conflicting results. Growitsch et al. (2009) used the method of SFA to estimate 

cost efficiency and scale economics for 499 electricity distribution companies from 

eight European countries: Finland, Ireland, Italy, Netherlands, Norway, Spain, Sweden 

and United Kingdom. The analysis of the relationship between firm size, technical 

efficiency and quality of service among these companies shows evidence of significant 

economies of scale in electricity distribution networks, even for the larger firms. 

Kumbhakar et al. (2014) used input distance functions to investigate scale economies, 

technical change and efficiency for 128 Norwegian electricity distribution companies 

from 1998 to 2010. They found evidence of scale economics for small companies.  

The environmental influence on the performance in Norwegian electricity distribution 

companies has been studied by several authors. Growitsch et al. (2012) studied the 

effect of almost 100 geographic and weather variables on Norwegian electricity 

distribution companies for the 2001-2004 period using the input distance function and 

stochastic frontier method, and the results proved that the effect on companies’ 

average efficiency was great. Miguéis et al. (2012) examined the productivity change 

for Norwegian electricity distribution companies between 2004 and 2007. The 

relationship between efficiency and environmental factors including size was studied, 

which indicated that size had no significant effect on efficiency levels. However, our 

study is the first to investigate the environmental impact on economies of scale in the 

Norwegian electricity distribution sector.  



3. Data 

The data used in this study comprise economic and technical information on 123 

Norwegian electricity distribution companies from 2004 to 2010. The data were 

collected by Norway’s regulatory agency (NVE). The variables in our data correspond 

to the variables used by the regulator in the benchmarking model that was 

implemented from 2007, i.e., it has a single input, five outputs and three 

environmental factors. The single input specified is total cost, which includes the four 

cost groups described in Table 1. The data for all years have been adjusted to the price 

level of a base year (2010). We use an industry-specific price index for adjusting 

operations and maintenance costs and the consumer price index for the quality costs. 

Thermal losses are valued at the average system price at Nord Pool for the base year, 

and the capital costs are calculated using the nominal rate of return set by the regulator 

for the base year.  

Table 1 Elements of the single input cost variable 

Cost group Unit of measurement 
Capital costs NOK 
Operations and maintenance costs NOK 
Quality cost (value of lost load, VOLL) NOK 
Cost of thermal power losses NOK 

Table 2 lists the five output variables. Energy delivered and customers are direct 

outputs from the production activity of the distribution companies. We distinguish 

between regular customers and cottage customers, since the latter customer type 

usually consume less energy than regular customers. Two of the variables (high 

voltage lines and network stations) are in fact input variables, however, they represent 

structural conditions that may influence the required network size and thereby the cost 

level of the companies.  

Table 2 Output variables 

Variable Unit of measurement 
Energy delivered MWh 
Customers (except cottage customers) No. of customers 
Cottage customers No. of customers 
High voltage lines Kilometers 
Network stations (transformers) No. of stations 

 

The environmental variables are listed in Table 3. They describe environmental 

conditions that may affect the cost of the companies, and are the only variables that 



are not based on data reported by the companies. The values of the environmental 

variables are size-independent index measurements and need to be scaled in the DEA 

model in order to avoid the bias problems described by 0. We use the length of the 

overhead high voltage network to scale the index variables for use in the DEA model, 

while unscaled variables are used in the StoNED model. 

Table 4 shows descriptive statistics of the (unscaled) variables used in our analysis. 

The data set used here is the same as in Cheng et al. (2014). In this paper, however, we 

simplify by averaging the annual data to obtain a data set that is representative for the 

entire period 2004-2010.  

Table 3 Environmental variables 

Variable Unit of measurement 
Forest Proportion (0–100) of area with high-growth forest  
Snow Average precipitation as snow (mm)  
Coast Average wind speed (m/s) / Average distance to coast (meters) 

Table 4 Descriptive statistics of the variables used in our analysis 

Variable Mean SD Median Min Max 

Total cost 899.70 1887.77 340.23 27.43 16418.60 

Energy delivered 53331.80 156417.70 13927.00 913.50 1531464.30

Customers (except cottage customers) 1814.20 5341.68 469.50 26.80 52120.40 

Cottage customers 208.31 336.34 104.14 10.31 2594.51 

High voltage lines 73.82 126.98 31.17 3.09 830.29 

Network stations (transformers) 92.32 179.66 33.60 2.97 1349.30 

Forest 70.88 147.83 23.94 0.00 967.42 

Snow 163341.00 262382.70 84623.00 1662.00 1542310.00

Coast 4.60 8.73 0.90 0.02 49.49 

Table 5 Correlations 

 

Forest Snow Coast 

Total cost 0.015 -0.210 -0.081 

Energy 0.018 -0.204 -0.072 

Customers 0.024 -0.193 -0.145 

Cottage customers 0.013 -0.202 -0.076 

High voltage lines -0.021 -0.175 -0.115 

Network stations 0.012 -0.205 -0.120 

 

Table 5 shows the correlations between the outputs and environmental variables. 

Forest is positively correlated with the cost and the outputs, except for high voltage 

Env.  var. 
Output



lines, while the corresponding correlation coefficient values for snow and coast are 

negative. A possible explanation for the observed negative correlation is that the 

environmental variables are related to size, i.e. smaller companies are located in areas 

that are more exposed to snow and costal climate. A priori, we expect this 

phenomenon to influence estimation results regarding both efficiency scores and 

returns to scale. Specifically, if the environmental effects are not controlled for, as in 

Kumbhakar (2014), we would expect an overestimation of returns to scale. In this 

paper we include the environmental factors and discuss whether the results are 

affected. This issue is important and relevant for the current discussion about the 

industry structure (OED, 2014). 

4. Methodology 

4.1 The DEA models 

The DEA method is used to establish a best practice group among a set of observed 

units and to identify the units that are inefficient when compared to the best practice 

group (Charnes et al., 1978). The DEA models can be input-oriented or output-

oriented. We consider the input-oriented model to be appropriate for the electricity 

distribution sector, since the objective of an electricity distribution company is to 

produce an exogenously given level of desirable outputs at minimum cost. In addition, 

DEA models can be specified as constant returns to scale (CRS) or variable returns to 

scale (VRS). Suppose we have  company observations , , 1,⋯ , , where 

company i uses the vector of inputs , ⋯ ,  to produce the vector of 

outputs , ⋯ , . In the regulation, a CRS model is used. However, since we 

are interested in the returns to scale characteristics of individual companies, we use a 

VRS model. The following set of equations and inequalities defines the DEA model 

that we utilize in our analyses (Banker et al., 1984): 

 	 max ∑  

 s.t. 

 ∑ 1 

 ∑ ∑ 	 0 1,⋯⋯ ,  (1) 

 	 0 1,⋯⋯ ,  

 	 0 1,⋯⋯ ,  



In model (1), company  is the one under investigation, and , , and  are the 

shadow prices on the output and input constraints, and the VRS constraint, 

respectively, of the DEA model in envelopment form, to which (1) is the dual. The 

value of 	 identifies the returns to scale for company . When 0 , we have 

increasing returns to scale (IRS); 	 0 means that we have decreasing returns to 

scale (DRS); and 0 implies constant returns to scale (CRS). 

There are different approaches in the DEA literature to investigate the impact of 

environmental factors on performance, see for instance Coelli et al. (2005) and 

Miguéis et al. (2012). In order to estimate the environmental impact on the scale 

economics in our analysis based on the DEA model, we specify three different DEA 

models as follows: 

DEA_without EF: The VRS DEA model without environmental factors. The model 

considers only a single input and five outputs.  

DEA_with EF: The VRS DEA model with environmental factors. The environmental 

factors are treated as outputs or cost drivers. One advantage of this approach is that 

we can obtain information about the shape of the frontier, e.g., local returns to scale 

for the companies.  

Reverse DEA: The reverse two-stage VRS DEA model. Ruggiero (2004) and Simar 

and Wilson (2004) address the biased estimates resulting from correlation between 

inputs and environmental factors, and Barnum and Gleason (2008b) propose the 

reverse two-stage DEA model in order to mend the problem. The first step of this 

model is to regress the input (total cost) on the outputs and the environmental factors: 

log	 log	 .                                     (2) 

In this equation,  is the single input,  is the output vector, and  is the vector of 

environmental factors, of company . The vector  contains the coefficients 

representing the environmental impact on the total cost of company . Also,  is the 

vector of output coefficients,  is the intercept, and   is the statistical error term, for 

company . We then adjust the total cost by removing the estimated environmental 

impact as follows: 

⋅ exp	                                                (3) 



In the second step, we use model (1) with the adjusted total cost as input to investigate 

the performance of the companies.  

4.2 Measurement of scale elasticity in the DEA model 

Førsund et al. (2007) specifies how to calculate the scale elasticities for inefficient and 

efficient companies, respectively. The inefficient companies are projected onto the 

efficient frontier. The projection can be input-oriented or output-oriented, and in our 

analysis we consider the former variant, in line with the discussion of model choice 

above. The scale elasticity for an inefficient company with unique shadow prices is  

	

	 , 1, … , .                                           (4) 

For the efficient companies spanning the frontier and thus being corner points of the 

DEA technology set, Banker et al. (1984) and Banker and Thrall (1992) showed that 

the shadow prices may not be unique. We calculate the upper and lower bounds on the 

shadow prices in the way proposed by Banker and Thrall (1992). The upper bound 

	is found by maximizing the value of , given that the objective function value 

in (1) is equal to 1, i.e., by solving the following optimization problem: 

 	max 	 

 s.t. 

 ∑ 1 			 

 ∑ 1  5  

 ∑ ∑ 	 0 1,⋯⋯ ,  

 	 0 1,⋯⋯ ,  

 	 0 1,⋯⋯ ,  

To find the lower bound   of the shadow price, the sign in the objective function 

(5) is simply changed from positive to negative, i.e.,  is replaced with . 

From (5) we know that ∈ ∞, 1 , i.e., 1  and ∞ . The 

maximum and minimum scale elasticities, respectively, for the corner points is then 

calculated as (Førsund et al., 2007): 

, 1, … ,                                           (6) 



, 1, … , .                                          (7) 

The maximal value of  corresponds to infinite scale elasticity, i.e., we are on a 

vertical frontier segment, and the minimal value implies zero scale elasticity, i.e., we 

are on a horizontal frontier segment. When computing the scale elasticity for efficient 

companies, we use the average of   and , except when is infinite and 

we use . 

4.3 The StoNED models 

Johnson and Kuosmanen (2011) recently introduced the StoNED method in order to 

integrate a stochastic SFA-style noise term into the nonparametric DEA-style cost 

frontier, and to take the contextual variables, such as environmental variables, better 

into account. StoNED avoids the main disadvantage of SFA---its parametric nature---

by using convex nonparametric least squares (CNLS) to estimate the cost frontier 

function. CNLS does not require an assumption about the functional form of the 

frontier function, but determines a frontier from the family of continuous, 

monotonically increasing, concave functions which best fits the data (Kuosmanen 

2008). The StoNED method has two stages: 

Stage 1: Estimate the shape of the cost frontier by the convex nonparametric least 

squares (CNLS).  

Stage 2: Estimate additional distributional assumption about  and  and find the 

cost frontier function and efficiency scores. 

We assume, as in Kuosmanen (2012), the cost frontier function 

										 ∙ exp 	      where ,			 0,																										 8  

where  is the total cost of company ,  is the cost frontier function,  is the vector 

of the outputs of company ,  is the residual of company , and  and   represent 

inefficiency and a stochastic noise terms, respectively. In order to obtain the CNLS 

estimator in Stage 1, we solve the quadratic programming (QP) model (Kuosmanen, 

2012; Kuosmanen and Kortelainen, 2012) given by 

 min
, ,

∑  

 s.t. 

 ln ln 			 1,⋯ ,  (9) 



 	 	 	 		 1,⋯ ,  

 0  1,⋯ , , 

where   is the CNLS estimator of the expected total cost of producing outputs	 ,  

is the vector of marginal output costs of company , and  is the intercept of 

company . No restriction on the sign of  indicates that VRS is assumed. CRS can 

be imposed by assuming 0, and IRS or DRS correspond to 0 or 0, 

respectively. The first constraint of model (9) can be interpreted as the regression 

equation, where the log transformation follows from the exponential formulation in 

(8). Non-concavity is ensured by the second constraint, and the third constraint 

guarantees monotonicity.  Since we want to identify local returns to scale of each 

company, we make the VRS assumption in our StoNED models, i.e., we do not 

restrict the sign of . 

For stage 2 of the StoNED procedure, there are two approaches to estimate the 

variance parameters based on the optimal solution ̂  of model (9): the method of 

moments (MoM) (Aigner et al., 1977) and the pseudo-likelihood estimation approach 

(PSL) (Fan and Weersink, 1996). We only consider the former method, since the 

computation is simpler than for the latter one. As in Kuosmanen (2012), we assume 

that the stochastic noise term  follows a normal distribution 0, . The 

inefficiency term  follows a half-normal distribution with finite variance, , which 

implies that the expected value of inefficiency is 2/ 	 (Aigner et al., 

1977). Then, based on the vector of estimated errors  , the parameters of the two 

distributions can be obtained by 

, and																																																												 10   

,																																																										 11   

where ∑ ̂ ̅ /  and ∑ ̂ ̅ /  are estimates of the second 

and third central moments of the composite errors distribution, respectively. 

Next, we estimate the cost frontier function for company  as 

∙ exp ∙ exp ,                (12) 



and the cost efficiency score for company  is the ratio of the minimum cost to the 

observed cost: 

                                                             (13) 

As for DEA, we specify three approaches with respect to how environmental factors 

are incorporated in the StoNED model: 

StoNED_without EF: The VRS StoNED model without environmental factors.  

StoNED_with EF: The VRS StoNED model with environmental factors. For this 

model, the regression constraints in Model (9) should be changed into 

ln 						 1,⋯ , ,																																					 14  

where the coefficient vector  characterizes the environmental impact of company . 

Note that, while in the corresponding DEA model described in Section 4.1, we have 

included the environmental variables as outputs, implying that their (dual) weights 

will be company-specific. In the StoNED model, however, the coefficient vector  

applies to all the companies in the data set, so the two approaches are fundamentally 

different. Also, the  The cost frontier function for this approach is 

, ∙ exp ∙ .   (15)  

Reverse StoNED: The reverse VRS StoNED model.  The first step in this approach is 

also to regress total cost on the environmental factors, which is the same as equation 

(2). We then use  in the two stages of the StoNED approach.  

4.4 Measurement of scale elasticity in the StoNED model 

Frisch (1965) introduced, for any production function, returns to scale or scale 

elasticity as a measure of the increase in output relative to a proportional increase in 

all inputs, evaluated as the marginal change at a point in input-output space. In our 

analysis, the cost frontier function is used. We then have that returns to scale can be 

measured as the increase in cost relative to a proportional increase in all outputs, as in 

Frisch (1965). Expanding outputs proportionally by factor 	we choose the minimal 

expansion of inputs , ,  allowed by the transformation function 

(Førsund et al., 2007) 



, , , 0.        	                                     (16) 

Scale elasticity is defined as the ratio between the relative change in outputs and 

inputs, respectively, i.e. 

∙  .                                                         (17) 

Based on expression (17) for the general case, we can develop the scale elasticity for 

the StoNED model with a single input factor (total cost). Given that the proportional 

expansion of outputs is , the expanded cost level, based on (15), will be 

   , ∙ exp .                            (18)   

The marginal cost effect of expanding the output level is 

∙ exp ,                                        (19) 

and the marginal change in the input expansion factor is therefore  

∙

∙
.                              (20) 

Inserting the inverse of (20) into (17) and evaluating, without loss of generality, at 

1, gives       

.                                                        (21) 

Relating the elasticity measure in (21) to the discussion of returns to scale in 

Kuosmanen and Kortelainen (2012), we have the following cases: 

 Constant returns to scale: 	 0 ⇔	ϵ 1 

 Increasing returns to scale: 	 0 ⇔	ϵ 1 

 Decreasing returns to scale: 	 0 ⇔	ϵ 1 

 

5. Empirical results 

The six models described in Section 4 have been applied to a data set with 123 

companies, where the data variables for each company is obtained by taking averages 

over the period 2004-2010. We first discuss the efficiency scores, before moving on to 

considering returns to scale.  

  



5.1 Efficiency scores  

Figure 1 shows the efficiency scores obtained under the six different models that we 

are considering, and a summary is given in Table 6. We see that the inclusion of 

environmental variables will, for most companies, lead to an increase in the efficiency 

scores, and we also see that the StoNED efficiency scores are consistently higher than 

the corresponding DEA scores. These findings confirm the results in Cheng et al. 

(2014, and they can be important in a regulation framework since the current 

yardstick incentive regulation estimates the revenue caps based on the efficiency 

scores (Bjørndal et al., 2010). In the Norwegian context, however, the calibration 

methodology applied by the regulator reduces the importance of the efficiency score 

levels, although the combination of calibration and differences in level may lead to 

some redistribution effects. 

Table 6 Efficiency scores. 

Statistic 
DEA or 
StoNED

Inclusion of env. factors 

Without EF With EF Reverse

Mean 
DEA 0.8252 0.8991 0.8312 

StoNED 0.9796 0.9806 0.9782 

Median 
DEA 0.8161 0.9046 0.8302 

StoNED 0.9702 0.9725 0.9686 

Min 
DEA 0.5722 0.6593 0.6005 

StoNED 0.6711 0.7735 0.7696 

Max 
DEA 1 1 1 

StoNED 1.455 1.303 1.3605 
 

 

Fig.1 Efficiency scores under the DEA and StoNED models 



5.2 Returns to scale 

Figure 2 shows the number of companies with IRS, CRS and DRS for the respective 

models. The companies are predominantly IRS under all models, i.e., they appear to 

be smaller than the most productive size. However, this tendency is considerably 

stronger under StoNED models than under DEA. We also see that the number of IRS 

companies decreases when we include the environmental factors in either the DEA or 

the StoNED models, i.e., the optimal company sizes are smaller (Cheng et al., 2014). 

For the reverse DEA model we see only a slight reduction in the number of IRS 

companies, and for the reverse StoNED model we see a slight increase. One may 

conclude that the choice of estimation method to investigate environmental impact 

affects the scale issue.  

 

Fig.2 Distributions of returns to scale for the DEA models and StoNED models 

Furthermore, in Figure 3, the scale elasticity estimates for the DEA models and the 

StoNED models are plotted against the number of customers for each company. In the 

DEA models, the scale elasticity estimates, irrespective of model alternative, mostly 

lie above the dotted line where scale elasticity is equal to one (CRS), i.e. the smaller 

companies are characterized by IRS. This is in line with the findings in Kumbhakar et 

al. (2014).  



 

Fig.3 Scale elasticity (y-axes) versus number of customers (x-axes) 

Given the relationship between size and environmental factors that we observed in 

Section 3, one might expect the inclusion of the environmental variables to affect the 

observed scale elasticities. Specifically, the negative correlation between size and two 

of the three environmental factors should result in lower estimates for the elasticities 

when the environmental factors are included in the analysis. Figure 4 compares the 

elasticity values obtained without and with controlling for environmental factors, 

shown on the x-axes and the y-axes, respectively. We see that inclusion of 

environmental factors as variables in the benchmarking models leads to lower 

estimated elasticity values, for most companies, under both DEA and StoNED, and 

the mean and median values in Table 7 confirms this. When total cost is adjusted for 

environmental effects in the reverse models, the picture is less clear. We see a slight 

reduction in the StoNED elasticities, although smaller than when the environmental 

variables are included in the benchmarking model. For the DEA elasticities, we 

observe almost no change. 



 

 

Fig.4 Scale elasticity without environmental factors (x-axes) versus scale elasticity 

with environmental factors (y-axes).  

Table 7 Scale elasticities. 

Statistic 
DEA or 
StoNED

Inclusion of env. factors 

Without EF With EF Reverse

Mean 
DEA 0.9998 0.9798 1.002 

StoNED 1.0978 1.043 1.089 

Median 
DEA 1.0239 0.9959 1.0245 

StoNED 1.0458 1.0325 1.042 

Min 
DEA 0.4851 0.4794 0.4981 

StoNED 0.7525 0.6574 0.756 

Max 
DEA 1.2159 1.2995 1.2072 

StoNED 1.5762 1.9976 1.6893 
 

  



6. Conclusion 

In this paper, we examine returns to scale for Norwegian electricity distribution 

companies, based on average data for the period from 2004 to 2010.  We compare 

results under the DEA and StoNED approach, respectively, and we also look at the 

effect of controlling for environmental factors. Our results show that a majority of the 

companies are below the optimal size. This is true for StoNED as well as for DEA, 

although the tendency is somewhat stronger under the former approach. Also, we see 

that controlling for environmental factors has the effect, except under the reverse DEA 

approach, of decreasing the optimal size. However, neither changing the estimation 

approach nor controlling for environmental factors changes the main conclusion, i.e., 

that the distribution companies are predominantly smaller than the optimal size. 

Hence, our research confirms the results in Kumbhakar et al. (2014). 

References 

Aigner, D., Lovell, C. A. K., Schmidt, P., 1977. Formulation and estimation of 
stochastic frontier production function models.J. Econom.621–37. 

Asmild, M., Hollingsworth, B., Birch, S., 2013. The scale of hospital production in 
different settings: one size does not fit all. Journal of Productivity Analysis 40: 197-
206 

Banker, R.D., Thrall, R.M., 1992. Estimation of returns to scale using Data 
Envelopment Analysis. Eur  J  Oper Res. 62:74–84. 

Banker, R. D., 1980. Studies in Cost Allocation and Efficiency Evaluation. DBA 
Thesis, Harvard University Graduate School of Business 

Banker, R.D., Charnes, A., Cooper, W.W., 1984. Models for estimating technical and  
scale inefficiencies in data envelopment analysis. Management science 30, 1078-1092. 

Barnum, D.T., Gleason, J.M., 2008b. Bias and precision in the DEA two-stage 
method. Applied Economics 40 (18), 2305–2311. 

Bjørndal, E., Bjørndal, M., Camanho, A., 2008. Weight restrictions on geography 
variables in the DEA benchmarking model for Norwegian electricity distribution 
companies. Technical Report 33/08, Institute for Research in Economics and Business 
Administration, Bergen. 

Bjørndal, E., Bjørndal, M., Fange, K-A., 2010. Benchmarking in regulation of 
electricity networks in Norway: An overview. Energy, Natural Resoures and 
Environmental Economics. 317-342.  



Charnes, A., Cooper, W.W., Rhodes, E., 1978. Measuring the efficiency of decision 
making units. European Journal of Operational Research 2, 429–444. 

Cheng, X.M., Bjørndal, E., Bjørndal, M., 2014. Cost efficiency analysis based on the 
DEA and StoNED models: Case of Norwegian electricity distribution companies. 
European Energy Market (EEM). 

Coelli, T., Rao, D.S.P., Battese, G.E., 1998. An Introduction to Efficiency and 
Productivity Analysis. Kluwer Academic Publishers, Inc., Boston. 

Dyson, R.G., Allen, R., Camanho, A.S., Podinovski, V.V., Sarrico, C.S., Shale, E.A., 
2001. Pitfalls and protocols in DEA. European Journal of Operational Research 132 
(2), 260–273. 

Farsi, M., Filippini, M., Plagnet, M-A., Saplacan, R., 2010. The economies of scale in 
the French power distribution utilities. Energy Energy Market (EEM), 7th 
International Conference on the European, ETH Zurich, Zurich, pp 1–7 

Filippini, M., 1996.  Economies of scale and utilization in the Swiss electric power 
distribution industry. Appl Econ 28:543–550 

Førsund, F. R., Hjalmarsson, L., Krivonozhko, V. E., Utkin, O. B., 2007. Calculation 
of scale elasticities in DEA models: Direct and indirect approaches. Journal of 
Productivity Analysis, 28, 45–56. 

Førsund, F.R., Kittelsen, S.A.C., 1998. Productivity development of Norwegian 
electricity distribution utilities. Resour Energy Econ 20:207–224 Giles D, Wyatt 

Førsund, F.R., Hjalmarsson, L., 2004a. Are all scales optimal in DEA? Theory and 
empirical evidence. Journal of Productivity Analysis 21 (1), 25–48. 

Førsund, F.R., Hjalmarsson, L., 2004b. Calculating scale elasticity in DEA models. 
Journal of the Operational Research Society 55 (10), 1023–1038 

Frisch, R., 1965. Theory of production. D. Reidel, Dordrecht Publishing Co. 

Growitsch, C., Jamasb, T., Pollit, G.P., 2009. Quality of service, efficiency and scale 
in network industries: an analysis of European electricity distribution. Appl Econ 
41:2555–2570 

Growitsch, C., Jamasb, T., Wetzel, H., 2012. Efficiency effects of observed and 
unobserved heterogeneity: Evidence from Norwegian electricity distribution networks, 
Energy Economics, Volume 34, Issue 2, 542-548 

Hisnanick, J.J., Kymn, K.O., 1999. Modeling economies of scale: the case of US 
electric power companies. Energy Economics 21(3), 225:237 

Johnson, A.L., Kuosmanen, T., 2011. One-stage estimation of the effects of 
operational conditions and practices on productive performance: asymptotically 



normal and efficient, root-n consistent StoNED method. Journal of Productivity 
Analysis 36, 219–230. 

Korhonen, P.J., Syrjanen, M.J., 2003. Evaluation of cost efficiency in Finnish 
electricity distribution. Annals of Operations Research 121, 105–122. 

Koop, G., Osiewalski, J., Steel, M. F.J., 1999. The components of output growth: A 
stochastic analysis. Oxford Bulletin of Economics and statistics, Volume 61, Issue4, 
pages 455-487. 

Kumbhakar, S.C., Hjalmarsson, L., 1998. Relative performance of public and private 
ownership under yardstick competition: electricity retail distribution. Eur Econ Rev 
42:97–122 

Kumbhakar, S. C., Tsionas, E. G.,  2008. Scale and efficiency measurement using a 
semiparametric stochastic frontier model: Evidence from the U.S. commercial banks. 
Empirical Economics 34 (3), 585–602. 

Kumbhakar, S.C., Amundsveen, R., Kvile, H.M., Lien, G., 2014. Scale economies, 
technical change and efficiency in Norwegian electricity distribution, 1998-2010. 
Journal of Productivity Analysis.  

Kuosmanen, T., 2008. Representation theorem for convex nonparametric least squares. 
Econ J 11(2):308–325 

Kuosmanen, T., 2012. Stochastic semi-nonparametric frontier estimation of electricity 
distribution. Energy Economics 34 (6), 2189–2199 

Kuosmanen, T., Kortelainen, M., 2012. Stochastic non-smooth envelopment of data: 
semi-parametric frontier estimation subject to shape constraints. J Prod Anal 
38(1):11–28 

Kwoka, J., 2005. Electric power distribution: economies of scale, mergers and 
restructuring. Appl Econ 37:2373–2386 

Lawson, L.G., Bruun, J., Coelli, T., Agger, J.F., Lund, M., 2004. Relationships of 
efficiency to reproductive disorders in Danish milk production: Astochastic frontier 
analysis. Journal of Dairy Science, Volume 87, Issue 1, pages 212-224. 

Miguéis, A. L., Camanho, A.S., Bjørndal, E., Bjørndal, M., 2012.  Productivity 
change and innovation in Norwegian electricity distribution companies. Journal of the 
Operational Research Society (63): 982-990. 

Nicholson, W., 1985. Microeconomic Theory: Basic Principles and Extensions, third 
ed. Dryden Press, Chicago. 

OED., 2014. Et bedre organisert strømnett. A report for the Norwegian Ministry of 
Petroleum and Energy, written in Norwegian. Available at: 



https://www.regjeringen.no/globalassets/upload/oed/pdf_filer_2/rapport_et_bedre_org
anisert_stroemnett.pdf (Last accessed: 17.3.2015). 

Ruggiero, J., 2004. Performance evaluation when non-discretionary factors correlate 
with technical efficiency. European Journal of Operational Research 159, 250 – 257. 

Salvanes, K.G., Tjøtta, S., 1994. Productivity differences in multiple output industries: 
an empirical application to electricity distribution. J Prod Anal 5:23–43 

Simar, L., Wilson, P., 2004. Estimation and Inference in Two-Stage, Semi-Parametric 
Models of Production Processes.April, mimeo. 

Tovar, B., Ramos-Real, F.J., Fagundes de Almeida, E., 2011. Firm size and 
productivity, evidence from the electricity distribution industry in Brazil. Energy 
Policy 39:826–833 

 

 




