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Abstract: 

In a recent paper Johnson and Kuosmanen (2011) propose a new, semi-parametric, 

general cost-frontier model, the stochastic nonparametric envelopment of data (StoNED). 

The model is semi-parametric in the sense that the cost function is estimated non-

parametrically, while the functional form of the distribution for the error term is 

parametrically specified. A common assumption for this distribution is that it is a 

convolution of a truncated normal distribution, representing inefficiency, and a normal 

distribution, representing noise. This parametric form has the drawback that a negative 

skewness implies a negative expected inefficiency. It can thus never capture a negatively 

skewed distribution with a positive expectation. In this paper we investigate this 

assumption and its consequences for an analysis of inefficiency. Furthermore, we 

propose a solution to the problem and investigate its performance by means of a Monte 

Carlo simulation. 
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1. Introduction 

Until recently, there were two commonly used methods for studying efficiency 

performance of the electricity distribution sector: The deterministic, nonparametric Data 

Envelopment Analysis (DEA) (Charnes et al., 1978) and the parametric Stochastic 

Frontier Analysis (SFA) (Aigner et al., 1977). DEA is a non-parametric method in the 

sense that no functional form for the cost function needs to be specified. DEA is capable 

of handling both multiple inputs and multiple outputs. At the other end of the spectrum, 

SFA is fully parametric. A functional form for the cost function is specified together with 

an error term, consisting of the inefficiency and a noise term, with assumed probability 

distributions. The specification of the error term enables the modeler to investigate the 

model fit in a traditional econometric sense. Johnson and Kuosmanen (2011) proposed a 

method, which can be placed in between DEA and SFA on the non-

parametric/parametric scale. It is called stochastic non-parametric envelopment of data 

(StoNED) and has the property that the cost function is estimated non-parametrically 

combined with a parametric assumption on the distribution of the error term, making it 

possible to separate inefficiency from noise. From 2012 this approach has been used for 

benchmarking and regulation of Finnish electricity distribution companies (Kuosmanen., 

2012).   

In parametric stochastic frontier models, a unit´s deviation from the efficient frontier is 

modeled as a sum of two components. These are the inefficiency component, which is 

modeled by a stochastic variable that only obtains positive values, and a random error 

that is typically modeled by a stochastic variable with a distribution that is symmetric 

around zero. In their seminal paper, Aigner et al. (1977) used the half-normal distribution 

for the inefficiency and the normal distribution for the random error. These random 

errors are in addition assumed to be independent and identically distributed across 

observations and statistically independent of each other. Other distributions that have 

been used for the inefficiency are the exponential, the truncated normal and two-

parameter gamma distributions (Meeusen and van den Broeck, 1977; Aigner, Lovell and 

Schmidt, 1977; Stevenson, 1980; Greene, 1980).  When adding these stochastic variables 

representing inefficiency and random error, an important feature can be observed. Both 

the expected value and the skewness are non-negative. This theoretical feature is 

however not always matched in the residuals obtained after fitting a stochastic frontier 

model. Green and Mayes (1991) showed that 48 of 151 industries in United Kingdom 



had an unexpected sign of the skewness, and they also reported that 49 of 140 Australian 

industries had the same feature. 

A common conclusion, when negative skewness is observed, is that the model is 

misspecified. While this is impossible to refute, a model should after all produce results 

that corresponds to its assumptions, it is not obvious which of the assumptions that are 

unfulfilled. In this paper we will argue, in line with Carree (2002), that the deviation 

from the efficient cost frontier might well have a negative skewness at the same time as a 

positive expectation. It is actually the latter, a positive expectation, that is essential for 

the economics of the model to make sense. A negative skewness is merely a technical 

inconvenience that makes some existing estimation procedures difficult to implement.   

This weak point of stochastic frontier models has been studied in a number of papers. 

Simar and Wilson (2009) argued that "wrong skewness" was not an estimation or 

modeling failure, but a finite sample problem that is most likely to occur when the 

signal-to-noise ratio (the variance ratio of the inefficiency component to the variance of 

the composite error) was small. An interpretation of this is that the error term 

(inefficiency plus noise) is basically normally distributed. Theoretically, it therefore has a 

skewness of zero. In a sample, however, it can obviously happen to be somewhat 

negative. When the skewness is negative, two possible solutions are to obtain a new 

sample or to re-specify the model (Carree, 2002; Almanidis et al., 2011).  Following 

Simar and Wilson (2009), Qu et al (2013) proposed a non-positivity residual skewness 

constraint in the maximum likelihood estimation (MLE) algorithm in order to avoid the 

problem. The disadvantage of this approach is that the ratio of signal to noise, which 

affects the results, could not be determined. The weakness can be avoided in panel data 

models if we use the fixed effects model proposed by Schmidt and Sickles (1984) or 

time-varying models developed by Cornwell et al (1990, 1996).  

This paper will investigate an alternative approach not yet considered for the StoNED 

model. Our approach is based on the following observation: A negative skewness is only 

unreasonable if it implies inefficiencies with a negative expectation. Carree (2002) 

presented this idea for stochastic frontier models and exemplifies it with the binomial 

distribution.  In the present paper, we will modify the two most commonly used 

distributions in the StoNED context, the half normal and the exponential distributions, so 

that they have a negative skewness and a positive expectation. We will also study how 



robust the StoNED estimator of the cost function is with respect to distributional 

assumptions on the inefficiency. 

The rest of this paper is divided into 5 sections. The next section discusses the StoNED 

model and Section 3 suggests a modification to it. Section 4 presents an illustration with 

electricity data and the results of a small Monte Carlo study investigating the sensitivity 

of the distributional assumptions for the modified StoNED model. Section 5 concludes. 

2. The StoNED Model 

In line with Kuosmanen (2012), we assume that the observed data is consistent with the 

relationship  

௜ݔ										 ൌ ௜ሻ࢟ሺܥ ∙ expሺߝ௜ሻ.                                                            (1) 

The observed total cost for a company is denoted ݔ௜ ܥ ,  is the cost frontier function, 

and	࢟௜ is the vector of outputs of company ݅. The error term can be decomposed in two 

parts, ߝ௜ ൌ ௜ݑ ൅ ௜ݒ , where ݒ୧  is a stochastic noise term and ݑ௜  represents inefficiency.  

The noise ݒ௜ is assumed to be normally distributed with a zero mean and a finite variance 

௩ଶߪ . The inefficiency ݑ௜  is usually assumed to follow a half-normal distribution 

|ܰሺ0, |௨ଶሻߪ , with the variance ܸܽݎሺݑ௜ሻ ൌ
గିଶ

గ
௨ଶߪ , the expected value of inefficiency 

௜ሻݑሺܧ ൌ ߤ ൌ ߨ/௨ඥ2ߪ ൐ 0  (Aigner et al., 1977). We also assume that ݒ௜  and ݑ௜  are 

statistically independent of each other and of the regressors.  

As described by Kousmanen (2012), the StoNED method has two stages: 

Stage 1: Estimate the total cost by convex nonparametric least squares (CNLS). 

Stage 2: Estimate the variance parameters ߪ௨ଶ, ߪ௩ଶ, the expected values of inefficiency ߤ 

and the cost frontier function ܥመ. 

The CNLS estimator can be obtained by the following convex programming model: 

           min
ఈ,ఉ,ఌ,ఊ

∑ ௜ߝ
ଶ௡

௜ୀଵ  

 s.t. 

 ln ௜ݔ ൌ ln ௜ߛ ൅ ݅        			௜ߝ ൌ 1,⋯ , ݊           (2)

௜ߛ  ൌ ௜ߙ	 ൅ ௜ࢼ௜࢟
ᇱ 	൒ ௛ߙ	 ൅ ௛ࢼ௜࢟

ᇱ 		        ݄ ൌ 1,⋯ , ݊ 



௜ࢼ  ൒ 0          ݅ ൌ 1,⋯ , ݊ 

Here, γ୧  is the convex nonparametric least squares (CNLS) estimator of the expected 

total cost of producing the output vector ࢟௜ ௜ࢼ ,  is the vector of the marginal cost of 

outputs for firm i, and α୧ is the intercept of firm i. The first constraint of model (2) can be 

interpreted as the regression equation. The second and third constraints ensure convexity 

and monotonicity, respectively. Model (2), where the sign of α୧ is unrestricted, implicitly 

assumes variable returns to scale (VRS), and alternative scale assumptions can be 

expressed by imposing restrictions on the sign of α୧ (Kuosmanen and Kortelainen, 2012). 

For stage 2 of the StoNED procedure, there are two approaches to estimate the variance 

parameters based on the optimal solution εො୧ of model (2): the method of moments (MoM) 

(Aigner et al., 1977) and the pseudo-likelihood estimation approach (PSL) (Fan and 

Weersink, 1996). We only consider the former method, since the computation is simpler 

than for the latter one. Then, under half-normal inefficiency and normal noise ,  the 

parameters of the two distributions can be obtained by 

ො௨ߪ ൌ ඨ
ெ෡య

ቆටమ
ഏ
ቇቂర
ഏ
ିଵቃ

య , and																																																																						ሺ3ሻ  

ො௩ߪ ൌ ටܯ෡ଶ െ ቂగିଶ
గ
ቃ ො௨ଶߪ

మ
,																																																																			ሺ4ሻ  

where ܯ෡ଶ ൌ ∑ ሺߝ௜̂ െ ሻ̅ଶ/݊௡ߝ
௜ୀଵ  and ܯ෡ଷ ൌ ∑ ሺߝ௜̂ െ ሻ̅ଷ/݊௡ߝ

௜ୀଵ  are estimates of the second and 

third central moments of the composite errors distribution, respectively. The cost frontier 

function is estimated by 

௜ሻ࢟መሺܥ ൌ ௜ߛ ∗ expቆെߪො௨ට
ଶ

గ
ቇ .                                                   (5) 

Furthermore, the cost efficiency score of firm ݅ is defined as  

௜ܧܥ ൌ
஼መሺ࢟೔ሻ

௫೔
,                                                                      (6) 

i.e, the ratio of the minimum cost to the observed. 

3. Shifted negative half-normal or exponential distribution 



With half-normal or exponential distributions for inefficiency and normally distributed 

noise, both the expected value and skewness for the composite error become positive. 

However, in practice, the residuals from the first step in the StoNED procedure does not 

always have this property. In order to allow for a positive expectation and a negative 

skewness, simultaneously, we propose to use a shifted negative half-normal or 

exponential distribution in this study. The modified model is given by 

௜ߝ ൌ ௜ݒ
ᇱ ൅ ௜ݑ

ᇱ,						ݑ௜
ᇱ ൌ ܣ െ ߱௜,																																																										ሺ7ሻ 

where ߝ௜  is the residual of company ݅ , and ݒ௜
ᇱ  and ݑ௜

ᇱ  are the noise and inefficiency, 

respectively. The noise term  ݒ௜
ᇱ is assumed to follow a normal distribution ܰሺ0, ௩ᇱଶߪ ሻ, 

while the inefficiency term is given by the positive constant ܣ  minus the stochastic 

variable ߱௜, which follows a positive distribution. We will consider two different one-

sided distributions: The half-normal and the exponential. For the half-normal case, i.e., 

߱௜~|ܰሺ0, ሺ߱௜ሻݎܸܽ ఠଶሻ|, we haveߪ ൌ
గିଶ

గ
ఠଶߪ  and ܧሺ߱௜ሻ ൌ ට	ఠߪ

ଶ

గ
, hence the expectation 

and variance of inefficiency are ܧሺݑ௜
ᇱሻ ൌ ܣ െ 	ߨ/ఠඥ2ߪ  and ܸܽݎሺݑ௜

ᇱሻ ൌ గିଶ

గ
ఠଶߪ , 

respectively.  We will also study the case where ߱௜ is assumed to follow an exponential 

distribution with rate 1/τ , which implies that the expectation and the variance of 

inefficiency will be Eሺݑ௜
ᇱሻ ൌ ܣ െ τ and ܸܽݎሺݑ௜

ᇱሻ ൌ τଶ, respectively. 

We will use the maximum likelihood method to estimate the parameters ߪ ,ܣఠ, and ߪ௩ᇱ  

for the half-normal case, and A, ߬ and ߪ௩ᇱ  for the exponential case. In order to perform 

maximum likelihood estimation, we need the likelihood function of the composite error 

term ߝ ൌ ᇱݒ ൅ ܣ െ ߱,  which can be expressed as the sum of the variables ܻ ൌ ᇱݒ ൅  ܣ

and –߱.  Hence, the density function of the composite error ߝ is given by 

ఌ݂ሺߝሻ ൌ ׬ ఠ݂ሺ߱ሻ
ାஶ
ିஶ ௒݂ሺߝ ൅ ߱ሻ݀߱ ൌ ׬ ఠ݂ሺ߱ሻ

ାஶ
଴ ௒݂ሺߝ ൅ ߱ሻ݀߱.                 (8) 

The variable ܻ follows a normal distribution ൫ܣ, ௩ᇲߪ
ଶ ൯ , i.e., with the probability density 

function 

௒݂ሺݕሻ ൌ
ଶ

ටଶగఙೡᇲ
మ
exp ቀെ ૚

૛

ሺ௬ି஺ሻమ

ఙೡᇲ
మ ቁ.                                             (9) 

For the case where ߱ follows a half-normal distribution, we have 



ఠ݂ሺ߱ሻ ൌ

ە
۔

ۓ
ଶ

ටଶగఙഘ
మ
exp ቀെ ૚

૛

ఠమ

ఙഘ
మቁ ,							for	߱ ൒ 0,

0,																																								for	߱ ൒ 0,
		

                                       (10) 

and for the exponential case 

ఠ݂ሺ߱ሻ ൌ ቐ

ଵ

ఛ
exp ቀെఠ

ఛ
ቁ ,							for	߱ ൒ 0,

0,																												for	߱ ൒ 0,
		

                                      (11) 

Summing the log-densities, log ఌ݂ሺߝሻ, over all observations and maximizing, we obtain 

the maximum likelihood estimators of the parameters, for the half-normal case, A, ߪఠ, 

and ߪ௩ᇲ, and for the exponential case, A, ߬ and ߪ௩ᇲ. Finally, the cost frontier function is 

estimated by 

௜ሻ࢟መᇱሺܥ ൌ ො௜ߛ ⋅ exp ቆെܣመ ൅ ට	ොఠߪ
ଶ

గ
ቇ                                            (12)        

or 

௜ሻ࢟መᇱሺܥ ൌ ො௜ߛ ⋅ exp൫െܣመ ൅ τො൯.                                                    (13)  

4. Monte Carlo simulation and empirical illustration 

In this section, a dataset with 123 Norwegian electricity distribution companies for the 

year 2012 is used to illustrate our approach. The single input is total cost, which includes 

five elements: operations and maintenance costs, value of cost load (quality cost), 

thermal power losses, capital depreciation, and return on capital. We specify three 

variables as outputs: high voltage lines, network stations, and the number of customers. 

High voltage lines and network stations representing structural and environmental 

conditions may affect required network size and thereby the cost level of the companies. 

See Cheng et al (2014) for a more detailed description of the dataset. 

Descriptive statistics of the composite errors (residuals) obtained from Stage 1 in 

StoNED are presented in Table 1. The negative value of the skewness statistic suggests 

that our alternative model, which allows for negative skewness, is indeed suitable.  

Table 1  Descriptive statistics of the composite errors 

Variable Min Max SD Mean Second moment Third moment Skewness

Composite error -0.4857 0.4014 0.1483 0.0009 0.0218 -0.0004 -0.1243 
 



Given our assumption of negative skewness, we perform a simulation study in order to 

investigate the sensitivity of the cost estimates to the parametric form of the one-sided 

distribution assumed for ߱. In order to do this, we simulate 1000 replications of our cost 

data under two different distributional assumptions: half-normal and exponential. Then, 

for each replication, we apply the estimators given by (12) and (13). A priori, we would 

expect a better fit when we apply an estimator that is consistent with the data generating 

process, i.e., that (12) is best when the true distribution is the half-normal, and that (13) is 

best when the true distribution is the exponential. 

The starting point for our simulation is, for each company ݅ ൌ 1, … ,123, a best-practice 

cost ܥ′ሺ࢟௜ሻ ൌ ො௜ߛ ⋅ ݁ି଴.ଵ , i.e., the average-practice estimate from Stage 1 in StoNED 

improved by an industry efficiency factor of ݁ି଴.ଵ . Next, we simulate noise and 

inefficiency values for each company based on the half-normal and the exponential 

distribution, respectively. We use parameter values ܣ ൌ 0.2 and ߪ௩ᇱ ൌ 0.01, and for the 

one-sided distributions we use values such that ܣ െ ሺ߱ሻܧ ൌ 0.1,  i.e., consistent with the 

assumed industry inefficiency. For the half-normal case this implies ߪఠ ൌ ଴.ଵ

ඥଶ/గ
 , and for 

the exponential case it implies ߬ ൌ 0.1 . For each of the 1000 replications we then 

estimate ܥመ′ሺ࢟௜ሻ based on both (12) and (13). 

Figure 1 shows the results of the simulation study. The 4 panels show scatterplots of the 

average cost estimate over the 1000 replications for each firm divided by the “true” cost. 

In the two diagrams to the left, we estimate with (12), i.e., assuming half-normal 

inefficiencies, and in the rightmost we estimate with (13), i.e., assuming exponential 

inefficiencies. 

As can be seen from the results, the estimators recapture the true cost quite well, i.e., the 

average estimated costs are close to the true costs, also for the cases when the estimator 

assumes the wrong distribution. We note, however, that the average relative cost is, to a 

small extent, systematically overestimated. The reason for this is a topic for future 

research. 



 

Figure 1 Estimated cost versus true cost 

In Figure 2, we show the mean absolute errors between estimated cost and true cost, 

where the mean is taken over the 1000 replications. Each of the data series shown have 

123 data points, one for each of the companies, and we have divided the errors by the 

true cost for each company. The two diagrams correspond to the respective distributions, 

i.e., half-normal and exponential, from which we have simulated our cost data. The green 

circles indicate errors arising when the cost estimation is based on the correct 

distributional assumption, i.e., consistent with the true distribution, and the red diagonal 

crosses show what the errors would be if we take the wrong assumption. We observe 

from Figure 2 that the mean absolute errors are considerable, but that the effect of the 

distributional assumption is hardly visible. Although the effect is small, it has the 

expected sign, i.e., the mean absolute errors are always larger when an incorrectly 

specified distribution for the inefficiency is used.  

If an even smaller noise variance, ߪ௩, is chosen, the distribution of ߝ will become difficult 

to distinguish from a normal distribution. None of the two models will then be able to 



separate out the effect of inefficiency from that of noise. In fact, we investigated this by 

changing ߪ௩  to 0.1. For this case, the situation sometimes occur that an incorrectly 

specified model performs marginally better than a correctly specified one in terms of 

mean absolute deviations. The term “incorrectly specified”, however, is somewhat 

ambiguous. A better term is perhaps “over-specified”. If the data is normally distributed, 

a model consisting of a normally distributed term will suffice to capture the variation in 

the data. 

 

Figure 2 Mean absolute estimation errors, relative to true cost  

5. Conclusion 

This paper suggest a modification in order to handle situations where the inefficiency has 

a negatively skewed distribution (but with positive expectation). Furthermore, it studies 

the impact the distributional assumption has when the cost function is estimated. Our 

conclusion is that, for the case studied in this paper, the effect is miniscule, compared to 

other sources of error.  
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