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Abstract

We perform a comparative analysis of two machine learning methods to predict corporate

bond return in the US bond market. In contrast to previous studies, we find that the most

influential variables are associated with size risk and past return. However, credit and liquid-

ity risks are more prominent when negative externalities impact the market. Further, high

predictability at short horizons combined with the investment strategy employed translates

into highly significant alphas. We identify the best-performing method to be a decision-

tree-based model utilizing boosting. The out-of-sample performance for this method remains

statistically significant after accounting for transaction costs.

Keywords— R, LATEX, Machine learning, Corporate bonds
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1 INTRODUCTION 1

1 Introduction

In recent years, stock and bond trading has received more attention from investors. This

can be largely attributed to technological advances, lowering the barriers to entering the

market, thus increasing the number of market participants. Additionally, market information

has become more accessible, where investors take advantage of the extensive information

available electronically to research potential investments (Report to the Congress: Impact of

Technology on Securities Markets, 1997).

Further, computational power has become exponentially more powerful and inexpensive, al-

lowing investors to utilize more computational demanding models. In other words, predicting

the stock and bond market has entered a technologically advanced era, making it hard for

investors to search for new tools and techniques to generate excess return while reducing risk

(Rouf et al., 2021). This has never been an easy task, given the stochastic nature of returns.

In fact, the Efficient Market Hypothesis (EMH) states that it is not possible.

The EMH explains that stocks and bonds always trade at their fair value and that all infor-

mation in the market is reflected in the price. Consequently, the prices follow a random walk

pattern, and thus cannot be predicted, making it impossible to generate consistent alpha.

The EMH was a widely accepted theory in the past. However, with the advent of technology,

hedge funds began to show evidence that market prices, to some extent, could be predicted,

consequently being able to construct portfolios that yield returns in excess of the market.

One advanced technological approach is to use machine learning models to predict returns.

Machine learning is used in stock prediction to discover patterns in the data, allowing analysts

to quickly analyze more complex data while generating more accurate results, setting a

new standard for trading models. There are many different machine learning models, but

those categorized as ensemble decision trees, such as Random Forest and XGBoost, are

believed to closely mirror human decision-making (James et al., 2013), partially justifying

their application to the financial markets. The latter is further supported by Gu et al. (2020),

which emphasize that regression trees are more prominent than other methods in predicting

returns and state that such methods can help improve the empirical understanding of asset
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2 1 INTRODUCTION

pricing.

However, there are only a few acknowledged studies regarding machine learning methods to

predict stock returns and an absence of literature taking advantage of machine learning to

predict bond returns. The bond market is generally less analyzed than the stock market,

especially when pricing individual securities. There is, conceivably, a considerable amount of

undiscovered information regarding the use of machine learning models to predict the bond

market, thus making this an exciting research topic for this paper.

The main focus of this paper is to determine the impact of the machine learning methods,

Random Forest and XGBoost, as a tool to predict corporate bond returns. The main dif-

ference between Random Forest and XGBoost is that they utilize bagging and boosting,

respectively, to increase prediction accuracy. Ensemble decision trees are known to discover

complex data patterns. Thus, we want to test whether the complex data patterns discovered

can generate a significant alpha while controlling for credit risk, liquidity risk, and other

risk characteristics. In theory, any discoveries should be explained by the long-established

3-factor model, including two term-structure factors proposed by Fama and French (1993)

or the liquidity measure proposed by Amihud (2002), indicating an efficient market.

For our empirical study, we use transactions from the Trade Reporting and Compliance

Machine (TRACE). This database provides detailed information about all US corporate bond

market transactions, maintained by the Financial Industry Regulatory Authority. Additional

bond-specific information is sourced from the Mergent Fixed Income Database, along with

quarterly company-specific financials from Compustat and credit ratings from Standard and

Poor’s. However, the TRACE data set contains reporting- and pricing errors due to human

mistakes in the reporting process. If these errors are not accounted for, our analysis will be

prone to bias concerning liquidity and return (Dick-Nielsen, 2009). Thus, filters proposed by

Dick-Nielsen (2009) and Edwards, Harris, and Piwowar (2004) are employed, including other

limitations necessary. Lastly, we aggregate the data to monthly frequency for each bond.

The resulting data set consists of 141,794 transactions covering 3,186 bonds.

Furthermore, we construct a long-short portfolio, allowing for various ratios between long

and short positions, with quarterly rebalancing. More specifically, we specify the model to
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place long positions into the top 5% performing bonds with a predicted return above zero.

Conversely, we place short positions to the bottom 5% performing bonds with a predicted

return below zero. In other words, due to quarterly rebalancing, we will predict only three

months at a time, which will increase the accuracy compared to predicting the whole period at

once. This is a sophisticated way of modeling, also called time-series cross-validation, enabling

us to monitor the prediction accuracy over time. However, this leads to an extensive number

of models to be estimated, resulting in a computationally demanding process, requiring

certain limitations for feasibility.

Finally, to evaluate if the machine learning models can construct a portfolio generating a

significant alpha over time, we regress the portfolios’ realized return series on the long-

established factors proposed by Fama and French (1993). We will use the stock-market

factors, market premium (MKT), small minus big size (SMB), high minus low book-to-

market (HML), and the term-structure factors term premium (TERM) and default premium

(DEF). Additionally, we include a liquidity measure proposed by Amihud (2002), which has

proven explanatory significance on bond returns in numerous articles.

Results from the Fama-regression indicate that machine learning methods bring better mea-

surements of complex relationships, evidently through generating return excess of the market.

Both portfolios provide highly significant alphas, with low corresponding adjusted R-squared

values. This signalizes that the Fama-factors and Amihud can not entirely explain the vari-

ance of the excess return.

Nevertheless, these results do not account for transaction costs. According to Harris (2015),

transaction costs vary between institutional and retail trades, being 52.1 and 84 basis points,

respectively. Followingly, XGBoost provides a statistically significant performance even under

the two scenarios of transaction costs. Whereas the Random Forest method becomes highly

affected, turning insignificant for Retail investors.

More interestingly, although the results prove a significant return excess of the market, the

Sharpe ratios are substantially lower than the market. This indicates that a large portion

of the alpha is due to taking more risk. Thus, investors would prefer the market portfolio

given the possibility of borrowing/lending money at a risk-free rate. Conversely, if this is
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not possible, investors with low-risk aversion might prefer the XGBoost portfolio, given its

excess return.

The remainder of the paper is structured as follows: we present a short description of corpo-

rate bonds and the US over-the-counter (OTC) bond market. Section 2 presents a cohesive

story of the relevant literature of the paper, focusing mainly on papers relating to Fama and

French and machine learning. In section 3, we detailedly explain the composition of our data

set, its matching procedures for combining the different data sets, and the filters employed.

Section 4 presents the essential models used. Section 5 outlines the methodology, whereas

section 6 presents the machine learning results. Finally, the last two sections, 7 and 8, present

our conclusion and corresponding critiques, respectively.
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Corporate bonds and the OTC-market

A corporate bond is a fixed income instrument categorized as debt security issued by cor-

porations. In practice, the company sells a debt obligation to investors to finance capital

expenditures. In return, the investor gets paid a pre-established number of interest pay-

ments, coupons, at a fixed rate or, in some cases, a variable interest rate. The interest

payments cease when the bond reaches maturity, and the original investment, the principal

amount, is paid back.

The ability of the company to repay depends on its outlook for future income and profitability,

including the capability to meet short-term financial obligations. The least creditworthy

bonds are categorized as “junk,” “speculative,” or “high-yield,” and the investors demand a

premium for the increased credit risk. Conversely, bonds embedding a credit rating equal to

or above “BBB” are categorized as “Investment-grade.” They are a collective designation for

all bonds with low default risk, thus yielding a lower coupon. Investment-grade corporate

bonds are considered a relatively safe and conservative investment, where investors tend to

include these bonds to offset riskier investments, such as stocks. In general, bondholders

have a higher claim on the company’s assets than equity holders. Consequently, in the event

of default, all bondholders would be prioritized before shareholders regarding repayment,

reducing its risk compared to stocks.

Unlike stocks traded on the stock exchange, most corporate bonds are traded OTC. The

OTC-market has no central marketplace or clearinghouse and tends to be less- regulated and

liquid than exchanges. However, after the near-collapse of the credit default swap market

in 2008, this market has come under more strict monitoring (Friewald et al., 2012). A set

of rules approved by the Securities and Exchange Commission legislates that all Corporate

debt transactions conducted by a designated dealer must be reported to TRACE.
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2 Literature Review

To be prepared for the upcoming analysis, we review relevant literature for both bonds and

stocks that have contributory power to this paper’s structure. Additionally, we will compare

findings between the references and make a cohesive story.

Fama and French (1993) is considered a solid empirical paper on corporate bond pricing,

expanding the 3-factor model with two term-structure factors, term premium and default

premium. They have shown that both term- and default premium are important factors.

This is also emphasized by other researchers, mainly through Fama and MacBeth’s (1973)

methodology, which can be seen as a cross-sectional regression developed to empirically test

the Capital Asset Pricing Model.

Fama and French (1993) emphasize that, when used alone, stock market factors seem to

capture common variation in bond returns. They are linked to bond returns through their

shared variation in the term-structure factors, more specifically;

1. Since both bonds and stocks are the firm’s claim on the value of the same underlying

assets, size, and book-to-market could impact common variations in stock and bond

returns.

2. Expected default loss fluctuates with the equity price, where the loss appreciates when

the equity value decreases and vice versa.

However, when the two term-structure factors are included, the explanatory power of the

stock-market factors disappears for all but the low-grade corporate bonds. Further, Bai et

al. (2019) argue that using reconstructed factors, all being bond-specific, is more accurate.

For example, reconstructing the MKT factor, originally the stock market excess return, to be

a value-weighted bond market return in excess of the one-month Treasury bill. They state

that the reconstructed factors have economic and significant risk premiums that cannot be

explained by the long-established stock-market and term-structure factors.

Nevertheless, Lin et al. (2011) discovered that, after expanding Fama and French’s bond-

specific model (3-factor plus TERM and DEF) with a liquidity measure, bonds with high
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liquidity sensitivities are expected to generate approximately 4 % higher average returns than

bonds with low sensitivity. Thus suggesting that liquidity risk is an important determinant

of corporate bond returns. Similar findings are discussed by Friewald et al. (2012), which

discover that liquidity effects stand for around 14% of the explained marketwide corporate

bond yield spread changes and conclude that these measures are significantly more prominent

during periods of crisis. However, Chung et al. (2019) state that liquidity measures cannot

account for the high returns associated with high idiosyncratic bond volatility even though

it tends to increase with liquidity.

Further, due to technological advances, new methods categorized as machine learning can

handle large amounts of complex data while discovering relationships and patterns more ac-

curately than older models. Gu et al. (2020) describe that the overall success of machine

learning algorithms for return predictions brings promise for practical aspects of portfolio

choice. Moreover, they state that, by using return prediction as a proving ground, their

findings through neural networks and regression trees demonstrate that machine learning

methods can help improve the empirical understanding of asset pricing. Such findings con-

tribute to the justification of the growing role of machine learning as a tool to predict financial

returns.

Using Gu et al. (2020) article as a framework, Leippold et al. (2021) wanted to test if

they achieved similar results if applied to emerging markets. They tested multiple machine

learning methods in predicting the Chinese stock market which has entirely different char-

acteristics than the US stock market. Further, they constructed two types of portfolios, a

zero-net-investment, and one solely holding long positions. Their findings are robust, and

they discuss that machine learning methods can be even more successfully applied to such

markets, emphasizing the generalization capabilities of machine learning.

Further, Harris (2015) investigate transaction costs in the corporate bond market and found

that transaction costs are higher than equities but decrease significantly with trade size.

Additionally, bonds with a high rating, recently issued, and bonds close to maturity have

lower transaction costs. Their results suggest that more transparent bond prices would

be beneficial, especially for retail investors. Given major differences regarding transaction
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costs, Leippold et al. (2021) emphasize that one must include transaction costs to assess the

economic significance. Through transaction cost scenarios, they discover that the different

strategies’ performance remains economically significant, also under conservative assumptions

regarding the magnitude of the transaction costs.
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3 Data Description

This section presents the composition of our data set, its matching procedures, and the filters

employed. Acquiring and merging data from different sources enables us to analyze various

parameters impacting bond returns. The individual data sets we have merged are;

1. Transaction data from the Trade Reporting and Compliance Engine (TRACE).

2. Bond-specific information from Mergent Fixed Income Database.

3. Credit ratings from Standards & Poor’s.

4. Firm financials from Compustat/CRSP.

5. Risk factors (Fama & French).

TRACE provides detailed information about all US corporate bond market transactions and

is maintained by the Financial Industry Regulatory Authority. A set of rules approved by

the Securities and Exchange Commission legislates that all transactions of treasuries, securi-

tized products, agency bonds, and corporate debt conducted by a designated dealer must be

reported to TRACE. The complete TRACE data set consists of 278,582,266 transactions for

248,489 bonds. The time period of the data stretches from 1st of July 2002 to 31st of March

2021. Given its size, this data set is computationally demanding, and for this thesis, we filter

out bonds embedding specific characteristics to reduce the computational requirement.
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Figure 1: Transaction volume by sub-product

This plot visualizes the quarterly number of transactions per sub-product. CORP stands for Corporate
bonds, ELN is equity-linked notes, and CHRC is short for Church bonds. Lastly, some bonds have not
received any classifications, thus addressed as NA.

From figure 1, we observe the quarterly number of transactions for the entire TRACE data set.

The number of bonds being bought and sold each quarter has increased since the beginning

of the data collection. We see a substantial increase after the financial crisis and a steady

incline from 2016. Further, we restrict our data only to contain corporate bonds.

Additional information about the bond’s characteristics is sourced from the Mergent Fixed

Income Database, containing issue details, such as offering amount, offering date, coupon rate,

and maturity. After merging the data set by matching CUSIP IDs, we filter out all bonds with

a maturity of less than six months and above 30 years. Next, we exclude financial and utility

firms from our data due to vast inequalities in capital structures. More specifically, using the

Standard Classification Code (SIC), we differentiate financial firms and utility firms between

SIC 6000-6999 and 4900-4999. Additionally, bonds categorized as convertible, perpetual,

putable, privately placed, exchangeable, preferred securities, or quoted in a foreign currency

are also removed.
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After filtering for all the above limitations, the data set contains 105,139,947 transactions

covering 69,016 unique bonds. Next, we account for reporting errors using the filters proposed

by Dick-Nielsen (2009). This filtering mainly focuses on deleting true duplicates, reversals,

and adjustments regarding same-day corrections. A reporting error can easily be corrected

if the correction is made within the same day as the original report was filed. However,

the original report containing the error will still remain in the TRACE database. Moreover,

if a correction is made on a later date, a report identical to the original report marked as

“Reversal” is filed. Then, a new report is filed containing the correct information for the

transaction. Failing to correct these errors will bias liquidity measures and return (Dick-

Nielsen, 2009). Additionally, we follow Edwards, Harris, and Piwowar (2004) to eliminate

data errors subject to its pricing. They propose two filters to detect potential outliers in the

reported prices;

1. A daily median filter is applied to the bonds experiencing low price deviations. Op-

positely, a nine-trading-day median centered on the trading day is used on bonds ex-

periencing high price deviations. For both median-filters, elimination of transactions

occurs if the absolute price deviation is greater than 10%.

2. A reversal filter to identify any unusual price movements. This filter eliminates trans-

actions with an absolute price change deviating from the lead, lag, and mean of lead

plus lag price change by at least 10%.

Finally, we exclude all transactions with a volume that is not an integer and those executed

before the first active date or after the maturity date. Now that both the reporting error and

pricing error filters are employed, we will present the total loss of observations and bonds.
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Table 1: Outcome from filters

This table presents the total loss of transactions and bonds due to the filters proposed by Dick-Nielsen
(2009) and Edwards, Harris, and Piwowar (2004). Transactions refer to the number of observations
removed. The "Bonds" column reflects that all transactions for that particular bond are removed.

Filter Transactions Bonds
Dick-Nielsen 16,259,625 405
Edwards, Harris and Piwowar 13,802,181 52,126

After running the above filters, the remaining data consist of 75,078,141 transactions covering

16,485 bonds. Further, we aggregate the data for each bond into monthly frequency based

on end-of-month observations by volume-weighting intraday transactions. However, some

bonds are not traded on the last possible trading day each month, and to balance this out,

we accept the transaction if it is observed at most three trading days before. After converting

to monthly frequency, our data set consists of 495,015 transactions covering 12,330 unique

bonds. Next, we use Standard & Poor’s credit ratings to control for default risk. We factorize

the credit-rating variable by assigning integer numbers (e.g., AAA = 22, AA+ = 21, . . . ) to

address its summary statistics. Lastly, we filter out all bonds that have not received a rating.

Quarterly reported firm-specific financials are sourced from Compustat and merged by match-

ing CUSIP IDs. This data set provides information such as; cash holdings, equity, outstanding

shares, share price, total debt, and total assets. Firm-specific information will be essential

in our models. Thus we exclude all bonds related to firms not included in Compustat. The

resulting data set consists of 141,794 transactions covering 3,186 unique bonds. A summary

statistics of the final data set is presented below.
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Table 2: Summary statistics

This table presents summary statistics of our combined data set. The table includes the number of
observations, mean, standard deviation, and 5%, 50%, and 95% quantiles. We assign integer numbers to the
credit ratings, where AAA = 22, AA = 21, A = 20 and so on. Offering amount is presented in units of
millions, and the thousand separator is ",".

Statistic N Mean SD Q05 Q50 Q95
Offering amount 141,794 781.98 655.72 250.00 600.00 2,000.00
Maturity (Years) 141,794 10.34 4.64 5.25 10.02 20.04
Coupon (in pct) 141,794 4.78 1.82 2.30 4.60 8.00
Credit rating 141,794 14.57 3.09 9.00 15.00 20.00

The average bond size in our sample is approximately $782 million, with a corresponding

interquintile range between $250 million and $2 billion. Further, the average bond has a

remaining time to maturity of 10.34 years and a coupon rate of 4,78%. The coupon rate

shows large variations during the time period, with an interquintile range between 2.3% and

8%. Large variations in the coupon rate are also reflected in the credit rating, having an

interquintile range between 9 (B+) and 20 (AA). The summary statistics suggest our sample

contains a broad range of corporate bonds.

Finally, the three stock-market factors proposed by Fama and French (1993) MKT, HML,

and SMB are downloaded from: French’s webpage. Following Fama and French (1993),

we calculate two term-structure factors, TERM, and DEF. We estimate TERM as the dif-

ference between a long-term government bond and the one-month Treasury bill. The DEF is

estimated as the difference between the return of an investment-grade portfolio constructed

from our sample and a long-term government bond. The rate for the one-month Treasury bill

and the long-term government bond is sourced from the: Federal Reserve Bank (FED).

These factors will be used to test if our portfolios can generate a significant alpha throughout

the time period.
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4 Models

This section will explain the models used to conduct our analysis, including Fama and French,

and the underlying processes in XGBoost and Random Forest.

4.1 Fama-French model

Fama and French’s model attempts to explain variations in the returns given its different

exposures to the market. Their model uses three stock market factors, market risk premium

(MKT), small minus big (SMB), and high minus low (HML). The MKT is defined as the stock

returns in excess of the risk-free rate. SMB is the difference in return between a portfolio of

small-sized stocks and a portfolio of big-sized stocks. HML is the return difference between

a portfolio with high book-to-market stocks and a portfolio of low book-to-market stocks.

Next, they include two term-structure factors, term premium (TERM) and default premium

(DEF). TERM is the difference between the monthly long-term government bond return and

the one-month Treasury bill. DEF is the difference between a market portfolio of long-term

corporate bonds and the long-term government bond return. The regression equation is;

rt − rf = α + β1MKTt + β2SMBt + β3HMLt + β4TERMt + β5DEFt

(1)

From the equation above, rt − rf is the portfolio return in excess of the risk-free rate at time

t. The MKT beta measures the portfolio’s exposure to the systematic risk, also referred to

as non-diversifiable risk. The SMB beta measures the portfolio’s exposure to size risk. The

HML beta measures the portfolio’s exposure to book-to-market, where high book-to-market

stocks are considered riskier. Higher book-to-market stocks are being traded at a discount

compared to their book value, reflecting low expected growth and return on equity. The

TERM beta measures the portfolios’s exposure to risk related to maturity. Long-term bonds

are more sensitive to interest rate changes due to having a greater duration than short-term

bonds. The DEF beta measures the portfolio’s exposure to default risk. For example, bonds
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awarded a credit rating below “BBB” provides a return premium due to higher default risk.

Finally, the intercept term is the alpha and should be indistinguishable from zero when

regressing the realized returns from the market portfolio on the aforementioned factors.

4.2 Machine learning

Machine learning can roughly be divided into two categories;

1. Supervised learning is used to predict a dependent variable using independent variables.

2. Unsupervised learning is used to discover patterns within variables.

Supervised learning aims to fit a model that can use independent values to accurately pre-

dict the dependent variable by discovering complex relationships (James et al., 2013). One

supervised approach uses machine learning models categorized as an ensemble decision tree,

such as Random Forest and XGBoost, utilizing bagging or boosting, respectively, to improve

prediction accuracy.

4.2.1 Ensemble methods

Ensemble learning suggests that the decision-making of a larger group of models is better

than an individual model. The models will work collectively to achieve a better prediction.

More specifically, ensembling refers to a single model as a weak learner that may not perform

well due to high variance. However, when the weak learners are combined, they can form

a strong learner (highly accurate model), as their combination reduces bias and variance

(James et al., 2013). A typical implementation of the ensemble methods is using decision

trees, which learn simple decision rules from the training data to predict the target variable.

A decision tree is prone to overfitting, which means that a single-tree model provides high

variance with a corresponding low bias. Conversely, underfitting means low variance and

high bias. When overfitting or underfitting, it cannot generalize its discoveries well onto new

data sets or unobserved data points. However, when the trees are ensembled, the idea is to

counteract this behavior allowing for better model generalization. Bagging and boosting are

ensemble learning methods that utilize bootstrapped samples.
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4.2.2 Bootstrapping, Bagging & Boosting

Bootstrapping allows for the generation of new samples without collecting additional training

data. More specifically, it draws samples with replacements from the original data. Bootstrap

aggregation (Bagging) is when multiple models are trained on bootstrapped samples from

the original training set (James et al., 2013). The final prediction will be the average of all

models to increase prediction accuracy. The diagram below displays the process of bagging.

Figure 2: Bagging process
This Figure shows the process of bagging, and is sourced from: Towards Data Science. Learning
algorithm refers to the machine learning model fitted on the bootstrapped training sample. This process
can be expanded infinitely, only limited by computational power.

Conversely, boosting will fit an individual model on a bootstrapped sample, then use the

residual errors of this model as the dependent variable in the next model when trained on a

new bootstrapped sample (James et al., 2013). This process is repeated n number of times,

where the final prediction is the last model’s results. The diagram below displays the process

of boosting.
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Figure 3: Boosting process
This figure shows the process of boosting, and is sourced from: Towards Data Science. Train model
refers to the machine learning model fitted on the bootstrapped training sample. Test model refers to
predicting. The last node, "Data points falsely predicted," refers to the residual error from model 1, which
is then used as the dependent variable in model 2.

4.2.3 Model validation

To validate machine learning models, we divide the original data into two subsets called

train- and test sets. More specifically, the models are fitted exclusively on the training set,

and then the fitted model is validated on the test set. It is important to note that none of the

observations in the training set is included in the test set. A more sophisticated version of

training and testing sets is time-series cross-validation. This procedure produces numerous

training and testing sets, where each test set consists of observations in a pre-specified time

interval (Hyndman & Athanasopoulos, 2021). The corresponding train set consists of all

observations that occured prior to the test set. This procedure is repeated throughout the

entire time period for the data, adding the observations in the previous test set to the train

set. The following figure will display an example of a series of training and test sets.
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Figure 4: Cross-validation
The green color represents the training sets, expanding with three months for each model, where one point
refers to all observations in that month. The red color represents the test sets, which are moved three
months at a time. The blue color represents the remaining data points in the original data not used in the
model.

This method allows the model to have the most data possible to predict the upcoming time

interval. Additionally, the prediction accuracy will be higher when using shorter prediction

horizons, compared to predicting the whole period at once (Leippold et al., 2021).

In order to evaluate the performance of a statistical learning method, we need to measure

how well its predictions match the observed data. Quantifying the extent to which the

predicted value for a given observation is close to the true observed value is essential to

assess its accuracy (James et al., 2013). The Root Mean Squared Error (RMSE) is a good

measure of accuracy when comparing prediction errors between different models. The RMSE

is calculated as follows;

RMSE =

√√√√ 1
n

n∑
i=1

(r̂i − ri)2

(2)

From the equation above, r̂i is the predicted return for observation i, ri is the observed

return of observation i, and n is the total number of observations.
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how well its predictions match the observed data. Quantifying the extent to which the

predicted value for a given observation is close to the true observed value is essential to
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n
RMusE- } , -

i = l

2)

From the equation above, f\ is the predicted return for observation z, r; is the observed

return of observation i, and n is the total number of observations.
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5 Methodology

This section outlines our approach to predicting corporate bond returns in the US bond

market. We present our definition of corporate bond return and the independent variables

used for predicting said return. Finally, we explain the specifications of the machine learning

models and the trading mechanism used to construct the portfolios.

5.1 Dependent variable

The dependent variable is the monthly corporate bond returns calculated from end-of-month

observations. However, some bonds are not traded on the last possible trading day each

month, and to balance this out, we accept the price if it is observed at most three trading

days before. This may result in multiple price observations for a particular bond on a given

day. The aforementioned is because a bond can be traded multiple times intra-day. However,

Friewald et al. (2012) believe that yield information is reflected more strongly in large trades,

and therefore we will use volume-weighted returns to account for this. Additionally, some

bonds are not traded every month, and for these bonds, we calculate the return for the

holding period. We have used the following formula to calculate the returns;

rt = (Pt+AIt)+Ct−(Pt−1+AIt−1)
Pt−1+AIt−1

(3)

Pt is the price in period t, AIt is accrued interest in period t, and Ct is the coupon amount

paid in period t. However, if the bond is not traded every month, and the return for the

holding period is estimated, Pt refers to the price today, Pt−1 is the last observable price,

and Ct includes all coupon-payments between t and t − 1.

5.2 Independent variables

In the machine learning models, we use credit ratings from Standard & Poor’s to control

for default risk, the Amihud measure to control for illiquidity, and market leverage as a
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proxy for a firm’s creditworthiness. The Amihud illiquidity measure focuses on the price

impacts of trades. In other words, if a bond can be traded with a large volume without any

significant impact on its price, the liquidity is high, and vice versa (Amihud, 2002). The

Amihud measure is estimated as:

ILLIQit = 1
DAY Sit

DAY Sit∑
i=1

|rijt|
V olijt

(4)

From the equation above, |rijt| is the absolute return for bond i on the day j of month t.

DAY Sit tell us how many days bond i has been traded during month t, and V olijt is the

dollar volume. However, to avoid including the realized returns in the models, we use the

lagged Amihud; ILLIQit−1.

Since the Amihud measure is additionally used as a market factor in the Fama-French re-

gression, we expand equation (1) with a market-wide illiquidity measure constructed by

aggregating individual measures over the entire sample quarter by quarter;

ILLIQMarket = 1
Nt

Nt∑
i=1

ILLIQit

(5)

Next, we define market leverage as the firm’s total debt over the sum of total debt and

the market value of equity. The market value of equity is calculated as the number of

outstanding shares times the share price. Additionally, we use cash and working capital

measures as controls for financial flexibility and firm value to control size risk. Lastly, we

will include lagged returns. We believe that, given that bond returns are pre-specified, next

month’s return should equal its lagged value, given everything else equal.

We will present a table below that summarizes all variables used, the estimation, and its

source.
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Table 3: Variable explanation

This table presents our estimated and given variables. Additionally, it shows the mathematical notation,
the estimation, and the source. Explaining the sources written as abbreviations, FISD is the Mergent Fixed
Income database. FED is the Federal Reserve Bank. TRACE is the Trade Reporting and Compliance
Engine. LT is short for "long-term." The Fama factors are downloaded from:
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/, thereby we specify Dartmouth in the table as a
source.

Parameter Sign Estimation Source
Control Variables
Amihud ILLIQt−1 Sum of absolute mean

return divided by aver-
age dollar volume

FISD/TRACE

Credit ratings RATING Given Standard and Poor’s

Lagged return Rt−1 lag(R, 1) TRACE/FISD

Firm value FV Total debt plus equity Compustat

Market leverage ML Total debt divided by
sum of total debt and
market equity

Compustat

Cash CHQ Given Compustat

Working capital WC Current assets minus the
short-term debt

Compustat

Fama factors and Amihud
Market premium MKT Given Dartmouth

High minus low book to market HML Given Dartmouth

Small minus big (size) SMB Given Dartmouth

Term premium TERM LT (30y) government
bond minus 1M T-bill

Dartmouth/FED

Default premium DEF Investment grade portfo-
lio minus LT (30y) gov-
ernment bond

FED/TRACE/Standard
and Poor’s

Market-wide Amihud ILLIQ Quarterly-aggregated
ILLIQt

FISD/TRACE
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5.3 Period of interest

We are interested in how the importance of the independent variables differs during the

financial crisis and Covid-19 compared to normal market conditions. Therefore, we monitor

two sub-periods: Financial crisis 2007-2009 and Covid-19 from the 11th of March 2020 until

the 31st of March 2021. In the financial crisis, many bonds had overly-optimistic credit

ratings, where the credit- and liquidity quality quickly deteriorated. Both liquidity- and

credit quality are important determinants of bond prices, and it will be interesting to monitor

both during and post the financial crisis. Next, the World Health Organisation declared the

Covid-19 outbreak a pandemic on the 11th of March 2020, which justifies the starting date

of this sub-period. This is of interest due to the declining interest rates observed, where the

FED cuts lowered the rate to as low as 0%.

5.4 Machine learning methods

When predicting future returns, a longer horizon increases the uncertainty of the results.

Leippold et al. (2021) emphasize that model predictability is higher at short horizons, and to

combat this, we utilize a more sophisticated approach of modeling called time-series cross-

validation. Therefore, since we are rebalancing quarterly, we predict only three months at

a time, starting with the first quarter of 2008. As displayed in Figure 4, our train set will

expand with three months for each model, allowing the machine learning algorithm to have

the maximum available information when predicting the upcoming three months. To ensure

that the first model has sufficient data, the initial training set will cover the time period

from the second quarter of 2002 until the end of 2007. As a result, we will fit 53 models per

machine learning method used.

5.4.1 XGBoost

XGBoost is a decision-tree-based ensemble machine learning algorithm utilizing boosting.

Unlike other boosting methods, XGBoost uses regularization extensively. The model will

add penalty terms to avoid overfitting by setting the coefficients of unexplanatory indepen-
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dent variables toward zero, which improves generalization capabilities (James et al., 2013).

In other words, the model selects its predictors, discarding the need for variable selection.

However, García et al. (2016) emphasize that removing irrelevant predictors to obtain a sub-

set that appropriately correlates with the dependent variable increases the models’ ability

to generalize. By selecting fewer variables, we also reduce the search space for the model,

making the process of fitting our models faster and less memory-consuming. Therefore, we

include only the variables mentioned in section 5.2. The same will apply to the Random

Forest model.

For the model to be precise, it tunes a set of hyperparameters. The optimal value for each

parameter is different for each data set. However, XGBoost does this automatically if we

provide the model with an extensive list of different values for each parameter, allowing the

parameters to adjust to more data being added. One parameter of noticeable impact is the

number of rounds. This parameter specifies how many sequences the boosting process is

repeated, as visualized in Figure 3. Additionally, this parameter is the most computationally

demanding. Thus we do not provide a list of different values, thereby specifying the number

of rounds to 50.

5.4.2 Random forest

Random Forest is a decision-tree-based ensemble machine learning algorithm utilizing bag-

ging. The random forest builds n amount of trees using a unique bootstrapped sample from

the data for each tree. When the trees in a random forest are split, only a random sample is

considered from the independent variables specified in the model. However, only one of the

considered variables is used to split the data. In other words, the random sample of predic-

tors is different every time a split is made. Further, each tree has a high variance isolated,

thus, bagged together to create a final prediction (James et al., 2013).

The main strength of using this approach for variable selection is that the trees become

highly uncorrelated. Without the random subsetting, one strong predictor among many weak

predictors would make most trees use this predictor in the first split making the trees highly

correlated, decreasing the gain from fitting multiple trees. The gain in variance reduction is
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substantial when averaging uncorrelated quantities, which is why Random Forest is preferred

over simply bagging trees.

Although bagging increases model accuracy, it is at the expense of the interpretability of the

model. For instance, it is challenging to display how a model of multiple trees works because

every tree will be unique, making it unclear which variable is key to making good predic-

tions. However, we can obtain an overall summary of importance based on each variable’s

contribution to reducing the Residual Sum of Squares (RSS).

When tuning the hyperparameters, we will consider the number of predictors the model

will be allowed to choose from at each split and the number of decision trees to build. The

prediction subset allowed at each split is commonly set to the square root of the total amount

of predictors. We have included seven predictors as outlined in section 5.2. Therefore, we

round up the squared number of predictors and allow the model to consider three randomly

chosen at each split. We decided how many trees to grow based on the marginal decrease in

the prediction error from growing one more tree. Growing many trees is also computationally

expensive, so to prevent the model from taking a long time to fit, we found the suitable value

to be 50 trees. A plot of the marginal error reduction for fitting one additional tree is supplied

in the appendix; Figure A1, emphasizing that 50 trees are sufficient.

5.5 Trading mechanism

Our portfolio will be quarterly rebalanced, allowing for short and long positions. The rebal-

ancing takes place on each quarter’s last possible trading day, selling all positions held, and

placing new positions for the upcoming quarter. In other words, a buy-and-hold strategy.

To be able to fulfill this strategy, a set of assumptions are made;

1. Bonds must be traded at the end of two consecutive quarters.

2. All bonds can be shorted.

3. All returns are reinvested.

4. Equal weights in all positions.

5. The investor has the capital required to fulfill all quarterly positions.
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To be able to rebalance all positions quarterly, all bonds we take a position in must have

an observed transaction at the end of the next quarter. This makes our strategy forward-

looking, consequently introducing liquidity bias by not allowing us to buy less frequently

traded bonds. Additionally, if firms have several outstanding bonds, a portfolio with equal

weights will be overweighted in those firms. Since we have equal weights in our portfolios,

such overweights will increase idiosyncratic risk.

When constructing the portfolios, we calculate the quarterly return for each bond based on

the monthly predicted returns using the following formula;

r̂quarterly =
 ∏

tϵmonth
(1 + r̂t)

 − 1

(6)

Then, using the quarterly returns, r̂quarterly, we select bonds for our long-short portfolio

based on the following;

1. A long position will be taken in the top 5% performing bonds.

2. A long position will not be taken if r̂quarterly < 0.

3. A short position will be taken in the 5% worst performing bonds.

4. A short position will not be taken if r̂quarterly > 0.

This implies that if there are no bonds with a r̂quarterly < 0, no short positions will be

taken, and vice versa, conceivably leading to quarters with no short or long positions. In other

words, this is not a zero-investment strategy where short and long positions have to null each

other out. If we were to create a self-financing strategy, we would potentially have to force

short positions in bonds predicted to have r̂quarterly > 0 during time with conservative

predictions. Finally, we will create a value-weighted market portfolio as a benchmark to

compare the results.
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compare the results.
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6 Results

This section will compare the two models by assessing model accuracy, variable importance,

portfolio positions, and the predicted return series. Furthermore, we will test for significant

alpha to determine whether the models can construct portfolios that generate returns in

excess of the market portfolio. We present our results without accounting for transaction

costs due to inequalities between institutional and retail investors. However, we will discuss

the effects regarding transaction costs and supply results for both scenarios in the appendix.

6.1 Model accuracy

To be able to see the development of the prediction accuracy, we will plot the RMSE for all

models, visualizing it over the entire prediction time period;
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Figure 5: Model performance
This figure displays the Root Mean Squared Error (RMSE) of all 53 models for both XGBoost and Random
Forest. One quarter indicates one model.

From the figure above, we observe that the variance of the RMSE for both methods is

declining up until 2019. However, in the last few years, RMSE seems to show evidence of
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an upward trend in coherence to the Covid-19 outbreak. A more unstable RMSE tied to the

years of the financial crisis and the Covid-19 outbreak is expected due to high default risk and

drastic interest rate cuts. This signalizes that externalities such as recessions and pandemics

are problematic for a model to capture. Another explanation could be the amount of data

included in the training sets. We can observe a more unstable RMSE when the models only

have a few years to be trained on compared to the end of our time period with over 15 years

of data.

The main difference between the two methods is that the prediction accuracy for the Random

Forest is less volatile, given a more narrow range interval of the RMSE values. Addition-

ally, the prediction errors are generally lower than XGBoost given the lower scale, signaling

more accurate predictions. Next, to better understand how the models work, we assess the

importance of the model’s independent variables.

6.2 Variable importance

We will plot an importance score over time to better understand how the models weigh

and use their control variables. The importance score for each variable is dependent on its

contribution to reducing the RSS. Visualizing this allows us to see if some variables are more

prominent in periods impacted by a financial crisis, pandemics, or under normal market

conditions.
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Figure 6: Variable importance XGB

The importance scores are measured by the variables’ contribution to a loss in Residual Sum of Squares as
a consequence of a decision made by a given variable. The higher value, the more influential the variable is
in the decisive process. One quarter refers to one model.

Figure 6 shows which variables contribute the most to XGBoost’s performance. During the

financial crisis the credit- and liquidity quality quickly deteriorated. This emphasizes the

importance of market leverage, which proxies for creditworthiness, and the lagged illiquidity

measure in those years.

Further, it shows that all models after 2015 heavily rely on the lagged excess return. Figure 1

shows an increase in transaction amounts after 2015, which may indicate that lagged excess

return becomes more effective when more data is included. On the other hand, lagged

excess return should, conceivably, be more influential in times of low volatility. Thus more

prominent after the financial crisis. However, the high importance in recent volatile years

does not support this.

Lastly, firm value shows consistent importance throughout the entire time period. We in-

terpret this as coupons varying due to risk measured by firm size being relatively influential

throughout the entire time period. Similarily to the firm value, credit ratings seem to have

stable importance. Its importance is likely because credit ratings indicate the quality and

stability of bonds. The remaining variables, cash holdings and working capital, have low

overall importance. The same assessment will be done for the Random Forest method.
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Figure 7: Variable importance Random Forest

The importance scores are measured by the variables’ contribution to a loss in Residual Sum of Squares as
a consequence of a decision made by a given variable. The higher value, the more influential the variable is
in the decisive process. One quarter refers to one model.

Figure 7 shows that the firm value measure scores the highest out of all the predictors,

indicating that the firm’s size is essential in determining how much excess return an investor

can expect. Additionally, the importance of firm value is spiky, with one peak tied to the

financial crisis and one to Covid-19, which indicates that this variable is particularly helpful

in splitting the data for these periods. This may signalize that during periods of economic

distress, big firms are more likely to fulfill their obligations to the bondholders in the event of

default. In contrast to the XGboost, the Random Forest does not find lagged excess return

as influential and seems to have similar gains in reducing RSS compared to the remaining

variables. Next, we will visualize how the trading mechanism outlined in section 5.5 impacts

the distribution of long and short positions.

6.3 Portfolio positions

The assumptions and criteria outlined in section 5.5 will impact the distribution between the

number of long and short positions. Below we visualize the portfolio positions derived from

both methods’ predictions.
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Figure 7 shows that the firm value measure scores the highest out of all the predictors,

indicating that the firm's size is essential in determining how much excess return an investor

can expect. Additionally, the importance of firm value is spiky, with one peak tied to the

financial crisis and one to Covid-19, which indicates that this variable is particularly helpful

in splitting the data for these periods. This may signalize that during periods of economic

distress, big firms are more likely to fulfill their obligations to the bondholders in the event of

default. In contrast to the XGboost, the Random Forest does not find lagged excess return

as influential and seems to have similar gains in reducing RSS compared to the remaining

variables. Next, we will visualize how the trading mechanism outlined in section 5.5 impacts

the distribution of long and short positions.

6.3 Portfolio positions

The assumptions and criteria outlined in section 5.5 will impact the distribution between the

number of long and short positions. Below we visualize the portfolio positions derived from

both methods' predictions.
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Figure 8: Portfolio positions
A long position means buying the bond at the start of the current quarter and selling at the end. Shorting
means borrowing the bond, then selling it before repurchasing it at the end of the quarter. One quarter
refers to one model. Lastly, number of positions refers to the number of unique bonds we have bought or
short-selled.

Figure 8 shows the distribution between the portfolio’s long and short positions for each

quarter. As expected, the number of positions in total increased during the time period and

can be seen as a natural outcome of more transactions in recent years, also illustrated in

Figure 1. More interestingly, the number of short positions exceeded the number of long

positions during the beginning of the financial crisis in 2008, indicating that there were more

bonds predicted to provide negative returns. During the financial crisis, many bonds had

overly-optimistic credit ratings, misleading investors to buy “safe” bonds. Consequently,

many high-quality bonds declined a lot, which might explain why our models predict such

high ratios of short positions in those years.

Prior to the drastic interest rate cuts observed in 2020, the rates were approximately 2.5%,

the highest since the financial crisis. The interest rates were expected to keep increasing,

which may be the reason for the high short exposure before the entry of Covid-19. Moreover,

the number of long positions appreciated to new heights during 2020. The bullish bond
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refers to one model. Lastly, number of positions refers to the number of unique bonds we have bought or
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Figure 8 shows the distribution between the portfolio's long and short positions for each

quarter. As expected, the number of positions in total increased during the time period and

can be seen as a natural outcome of more transactions in recent years, also illustrated in

Figure l. More interestingly, the number of short positions exceeded the number of long

positions during the beginning of the financial crisis in 2008, indicating that there were more

bonds predicted to provide negative returns. During the financial crisis, many bonds had

overly-optimistic credit ratings, misleading investors to buy "safe" bonds. Consequently,

many high-quality bonds declined a lot, which might explain why our models predict such

high ratios of short positions in those years.

Prior to the drastic interest rate cuts observed in 2020, the rates were approximately 2.5%,

the highest since the financial crisis. The interest rates were expected to keep increasing,

which may be the reason for the high short exposure before the entry of Covid-19. Moreover,

the number of long positions appreciated to new heights during 2020. The bullish bond



6 RESULTS 31

market arising from the interest rate cuts can somewhat explain the high number of long

positions because bond prices appreciate when the interest rates drop.

Additionally, several quarters only include long positions. This means that the models do

not predict any bonds to have a negative return. Given our constraint to not short any bonds

with r̂quarterly > 0, multiple quarters have zero short positions. This indicates that our

models, in general, are more conservative in predicting negative returns.

Lastly, the main difference between the two methods is that the Random Forest portfolio has

longer periods of short positions during times of uncertainty. This indicates that the Random

Forest has more periods where it predicts bonds with negative returns resulting in a broader

distribution of short positions. Conversely, the XGBoost model predicts fewer periods with

a negative return, thus a more narrow distribution of periods going short. However, when

initially predicting a negative return, the ratio of short positions is higher.

6.4 Return series

When the positions are made, we calculate the portfolios equally weighted predicted- and

realized return each quarter throughout the entire time period from January 2008 until the

end of March 2021.
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Figure 9: Portfolio performance

The realized return is the portfolio’s actual return, whereas the predicted returns are the model’s guess. All
returns are outcomes from an equally weighted portfolio. One quarter refers to one model. ρ is the
correlation between the predicted- and realized return for the entire period.

Figure 9 indicates that all models in both methods struggle to capture the variance in the

excess returns, especially during times of high volatility. The models’ lack of capability to

capture the variance is also emphasized by low correlation and corresponding R-squared

values consistent around 2-4% for both methods.

For XGBoost, the models’ predictions are rarely extreme past 2012 and seem to stabilize at

1.5%, which in most periods seems reasonable. On the other hand, this could potentially lead

to negative realized returns when volatility increases, as seen in 2018. Unlike XGboost, which

seemingly finds a reasonable value for its predictions that are neither too high nor too low,

the Random Forest is consistently overpredicting. Nevertheless, the overall model has lower

RMSE values than XGboost, outlined in Figure 5, and it evidently predicts specific periods

quite accurately, particularly in the period from 2012 to 2015. However, contradictory to

the RMSE, the portfolio predictions are more inaccurate than the realized returns during

the period with lower corresponding RMSE. Because our portfolios consist solely of the most
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extreme bonds, we may interpret this as the Random Forest not being as adequate compared

to XGBoost at predicting the most volatile bonds.

Moreover, there is no quarter where our portfolios provide negative returns. However, given

a consistent gap between realized and predicted returns, we can not entirely credit that all

quarters provide a positive return to the models’ ability to predict returns accurately. We

believe that our trading strategy limits the risk of negative realized returns by only selecting

the most extreme predictions. In other words, implementing this strategy in combination

with the models’ predictions provides a low probability of negative realized returns.

6.5 Alpha

So far, we can not conclude that either the XGBoost or the Random Forest portfolio of bonds

provides a consistent return in excess of the market. Therefore, we run a Fama and French

regression as outlined in section 4.1, including Amihud, on the realized return series of both

models to check whether the intercept term (alpha) is significant. If we observe a significant

alpha, the models find relations between the control variables and excess return that are not

entirely explained by the Fama-factors or Amihud.

Fama and French (1993) proved that the stock-market factors alone explain some of the

variation in bond returns. However, when the two term-structure factors are included, the

explanatory power of the stock-market factors disappears for all but the low-grade corporate

bonds. The table below emphasizes this, providing both term-structure factors a significance

of 1%, where the stock-market factors are insignificant for the market portfolio. Additionally,

as expected, the alpha term is indistinguishable from zero.
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Table 4: Fama-regression

Dependent variable: Excess return

XGBoost Random Forest Market
(1) (2) (3)

MKT −0.005 −0.025 −0.012
(0.018) (0.017) (0.008)

SMB 0.046 0.022 −0.004
(0.036) (0.034) (0.016)

HML 0.014 −0.004 −0.004
(0.030) (0.028) (0.009)

TERM 0.455 1.138∗∗∗ 1.625∗∗∗

(0.342) (0.316) (0.236)
DEF 0.594∗ 1.234∗∗∗ 1.507∗∗∗

(0.327) (0.302) (0.235)
Amihud −0.275 −0.146 0.023

(0.195) (0.180) (0.118)
Alpha 2.111∗∗∗ 1.446∗∗∗ 0.430

(0.542) (0.501) (0.328)
Observations 53 53 53
Adjusted R2 0.068 0.245 0.525

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Similar to the market results, both the TERM and DEF factors are significant at 1% for

the Random Forest method, indicating that those market factors can somewhat explain the

excessive returns generated from this portfolio. However, since the adjusted R-squared is

only at 24.5%, and the alpha is significant at 1%, there is still unexplained information left

in the variance of the excess return. Furthermore, XGBoost provides similar results regarding

a significant alpha. However, TERM is not significant, and DEF is only significant at 10%,

thus explaining less of the variance in the excess return, which is also emphasized by the

lower adjusted R-squared of 6.8%.

However, these results do not account for transaction costs. According to Leippold et

al. (2021), the inclusion of transaction costs is essential to determine the economic sig-

nificance. According to Harris (2015), transaction costs on institutional trades (trades >

100,000$) are on average 52.1 basis points and 84 basis points for Retail trades (trades <

100,000$). In other words, our alpha will be reduced by 0.521% if implemented by insti-

tutional investors. This impacts the alpha generated by the Random Forest, reducing its
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significance to 10%, while XGBoost’s alpha remains unaffected. Moreover, if implemented

by Retail investors, alpha becomes insignificant for Random Forest and reduced to 5% signifi-

cance for XGBoost. Given XGBoost’s robust results, this reassures the institutional investors

with a quite high margin on the transaction costs before alpha becomes less significant. Both

scenarios are visualized in the appendix: Table A1 & A2.

These results imply that using machine learning methods, specifically decision trees utilizing

boosting, to predict bond returns brings better measurements of complex relationships, evi-

dently generating significant alphas. Further, this disproves the EMH and indicates that the

bond prices do not reflect all information.

Finally, since generating alpha on behalf of taking upon enormous risk is not desirable, we

monitor the portfolios’ risk-adjusted return over time. However, each investor has a different

risk aversion, meaning that investors would pick a different portfolio based on their risk

preference. Nevertheless, a portfolio that maximizes the Sharpe ratio would be preferred

for all investors if the assumption about lending or borrowing the risk-free asset is viable.

Although all investors would pick the same portfolio, they would weigh the risky portfolio

and the risk-free asset differently.
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Figure 10: Sharpe ratio

This table displays the yearly Sharpe ratio for all portfolios. Sharpe ratio is calculated as the return minus
the risk-free rate divided by the standard deviation. The Sharpe ratio indicates how much return the
investor will receive per unit of risk taken. In the top right corner of the figure, the mean Sharpe ratios for
the entire time period is provided.
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It is important to note that since our strategy is to buy and hold the portfolio with quarterly

rebalancing for 13 years, the Sharpe ratio for the entire period is the one that is proposed to

the investor. However, yearly changes are interesting to monitor due to their visualization of

the portfolios’ performance during the financial crisis and the Covid-19 outbreak.

The figure shows that the market portfolio offers the investor a Sharpe ratio of 1.742 over the

entire period for the strategy, which is considered very good. The market portfolio’s Sharpe

ratio may be artificially high given our sample, outlined in section 3. Although the portfolios

derived from the machine learning result in a significant alpha, evidence through lower Sharpe

ratios states that the alpha generated results from taking more risk. This implies that the

portfolios bet on some risky metrics not entirely captured by the factors controlled for in

table 4.

Based on the Sharpe ratios, all investors would prefer the market portfolio, given the assump-

tion of borrowing/lending the risk-free asset. Thus the optimal strategy for any investors

would be to adjust the weights between the market portfolio and the risk-free asset, given

their level of risk-aversion. However, that individual investors can borrow/lend money at a

risk-free rate is unrealistic. Thus, it is more realistic to believe that some investors, based on

risk-aversion, would prefer the XGBoost portfolio, given its excess returns.

The yearly Sharpe ratios contain high variation, and the market portfolio displays four periods

of Sharpe > 2, being 2009, 2014, 2015, and 2016. In 2009, the bond market experienced

extreme returns, conceivably due to interest rate cuts as a ripple effect of the financial crisis.

Thus the market had to experience a relatively high increase in return compared to risk,

consequently providing a high Sharpe ratio that year. Low-interest rates were observed until

2016 when the FED started to increase the interest rate from 0.25% to 2.5% in 2019. This

increase negatively impacts the relative value of discounted cash flows, consequently reducing

expected returns while increasing risk, thus providing lower Sharpe ratios. Finally, during

the outbreak of Covid-19, the Sharpe ratios are recovering to higher values due to drastic

interest rate cuts, emphasizing the interest rate’s effect on bond returns.

Like Leippold et al. (2021), we find that portfolios derived from machine learning still provide

adequate Sharpe ratios, even with transaction costs as high as 84 basis points. Both portfolios
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have Sharpe > 1 given the two scenarios of transaction costs, as outlined in the appendix:

Table A3, signaling acceptable performance for the investors compared to the performance

of the risk-free investment.

Next, to provide the investor information about how much return the portfolios would gen-

erate throughout the period, we visualize the cumulative return.
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Figure 11: Cumulative return
The cumulative return displays the total return from investing in portfolio x in 2008, then reinvesting all
returns every quarter until the first quarter of 2021.

Figure 11 shows that the market portfolio provides higher returns in the first three years.

In other words, investors have to hold the XGBoost portfolio longer than three years to

achieve cumulative returns above the market and more than five years with the Random

Forest portfolio. Ultimately, XGBoost offers the highest cumulative return. However, if

institutional investors implement this strategy, the Random Forest portfolio will generate

a lower cumulative return than the market portfolio. Conversely, the XGBoost portfolio

will still be able to generate a cumulative return of 30% excess of the market portfolio for

institutional investors and ~20% for retail investors. This further emphasizes its significant

alpha, indicating that the excess return generated by XGBoost is not entirely due to an

assumption of no transaction costs. Both scenarios are visualized in the appendix; Figures

A2 & A3.
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7 Conclusion

We investigate two different machine learning methods’ predictive power in the US corporate

bond market. We find that the most influential variables are associated with size risk and

historical return. What surprises us is that variables controlling for credit and liquidity risk

are not as prominent after the financial crisis, especially during Covid-19. Further, the high

predictability at short horizons combined with the investment strategy employed translates

into highly significant alphas and superior cumulative returns for the long-short portfolios

compared to the market. In particular, XGBoost provides a statistically significant perfor-

mance even under the two scenarios of transaction costs. This strategy reassures Institutional

investors with a high margin on the transaction costs before alpha becomes less significant.

Machine learning methods bring better measurements of complex relationships, evidently

through generating return excess of the market. The overall success of XGBoost’s return

prediction signalizes an inefficient market, disproving the EMH. However, our discoveries in-

dicate that a large portion of the excess return is explained by taking more risk. Nevertheless,

no stock-market, term-structure, or liquidity factors could explain the said risk. Finally, our

findings suggest that using machine learning methods, particularly decision trees that utilize

boosting, to predict the corporate bond market brings promise for future portfolio choice and

financial modeling.
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8 Critique and further research

Even though our study finds a significant alpha, the assumptions made to create the portfolio

likely bias our results. Moreover, our study is forward-looking, whereas, in the real world,

we would not know if we could liquidate all positions each quarter, introducing liquidity

bias. Additionally, we only have data on observed transactions. If a bond defaults and is

never bought or sold again, we will not observe the negative return related to that bond.

This means that our model will never be able to pick a bond and lose the investment. One

possible solution would be to investigate which bonds default, thus setting their return equal

to -100%.

Due to computational limitations, we had to reduce the number of observations in the data

set for the feasibility of running the machine learning models. Consequently, we excluded

numerous types of bonds embedding different types of characteristics mentioned in section

3. In other words, our results are likely not applicable to all types of corporate bonds.

Moreover, additional research could be done to investigate if using a rolling window of data

to create the models could be more beneficial in predicting returns. The idea behind this

is that old information might not be as relevant as market conditions and psychology might

change. By discarding older information, one might better capture how the current market

behaves.

Nevertheless, Table 4 shows that we have a significant alpha, and further research could be

done to find a market factor that captures the information found by the machine learning

models. Suppose it is possible to find what causes the alpha. In that case, one could better

understand the underlying factors that generate excess return.
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Figure A1: Marginal decrease in MSE

Table A1: Fama-regression for Institutional investors

Dependent variable: Excess return - transaction cost

XGBoost Random Forest Market
(1) (2) (3)

MKT −0.005 −0.025 −0.012
(0.018) (0.017) (0.008)

SMB 0.046 0.022 −0.004
(0.036) (0.034) (0.016)

HML 0.014 −0.004 −0.004
(0.030) (0.028) (0.009)

TERM 0.455 1.138∗∗∗ 1.625∗∗∗

(0.342) (0.316) (0.236)
DEF 0.594∗ 1.234∗∗∗ 1.507∗∗∗

(0.327) (0.302) (0.235)
Amihud −0.275 −0.146 0.023

(0.195) (0.180) (0.118)
Alpha 1.590∗∗∗ 0.925∗ 0.430

(0.542) (0.501) (0.328)
Observations 53 53 53
Adjusted R2 0.068 0.245 0.525

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A l : Fama-regression for Inst i tut ional investors

Dependent variable: Excess return - transaction cost

XGBoost Random Forest Market

(1) 2) (3)

MKT -0.005 -0.025 -0.012
(0.018) (0.017) (0.008)

SMB 0.046 0.022 -0.004
(0.036) (0.034) (0.016)

HML 0.014 -0.004 -0.004
(0.030) (0.028) (0.009)

TERM 0.455 1.138*** 1.625***
(0.342) (0.316) (0.236)

DEF 0.594* 1.234*** 1.507***
(0.327) (0.302) (0.235)

Amihud -0.275 -0.146 0.023
(0.195) (0.180) (0.118)

Alpha 1.590*** 0.925* 0.430
(0.542) (0.501) (0.328)

Observations 53 53 53
Adjusted R? 0.068 0.245 0.525

Note: p < 0 . 1 : " p < 0 . 0 5 ; " p < 0 . 0 1
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Table A2: Fama-regression for Retail investors

Dependent variable: Excess return - transaction cost

XGBoost Random Forest Market
(1) (2) (3)

MKT −0.005 −0.025 −0.012
(0.018) (0.017) (0.008)

SMB 0.046 0.022 −0.004
(0.036) (0.034) (0.016)

HML 0.014 −0.004 −0.004
(0.030) (0.028) (0.009)

TERM 0.455 1.138∗∗∗ 1.625∗∗∗

(0.342) (0.316) (0.236)
DEF 0.594∗ 1.234∗∗∗ 1.507∗∗∗

(0.327) (0.302) (0.235)
Amihud −0.275 −0.146 0.023

(0.195) (0.180) (0.118)
Alpha 1.271∗∗ 0.606 0.430

(0.542) (0.501) (0.328)
Observations 53 53 53
Adjusted R2 0.068 0.245 0.525

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table A3: Sharpe ratio scenarios

This table presents the Sharpe ratio for all scenarios with and without transaction cost.

Portfolio 0 bp 52.1 bp 84 bp
XGBoost 1.369 1.247 1.172
Random Forest 1.243 1.106 1.023
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Figure A2: Cumulative return for Institutional investors
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