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Abstract

In the past few decades, there has been a considerable increase in real house prices in

Norway. It is therefore important to understand what this increase is based upon. In this

study, we analyse the relationship between price and fundamental factors of the Norwegian

housing market in the period of 1993 to 2022. Applying the methods of Bergman and

Sørensen (2021), we estimate a five variable VAR model and compute a fundamental price.

We find that prices in the Norwegian housing market have generally been aligned with

what fundamentals would suggest across the analysed period. Additionally, we analyse

the interaction between fundamental and actual price through a VECM, where we analyse

whether there is cointegration between the prices, and if the interaction is consistent with

the theory of fundamental valuation. We find that there is a cointegrated relationship,

and that we cannot reject the null hypothesis that the relationship is in line with theory.

These results are consistent when ending the sample from 2013 to 2022.

Keywords – Norwegian Housing Market, Fundamental Valuation, VAR & VECM
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1 Introduction

1.1 Motivation and Purpose

As far as investments go, virtually nothing has been considered as "sure a thing" in

Norway these last few decades as owning your own home. Indeed, according to Statistics

Norway the average Norwegian home has increased in price by more than 200 % in real

terms since the start of this millennium (SSB, 2022a,b).1 This has been no small benefit

to a considerable proportion of the population, as Norway has one of the higher rates of

home ownership in the world, at more than 80% in 2020 (Eurostat, 2022). This historical

development has provided a cushion of wealth creation that the average Norwegian

household has been able to rely on. However, such a seemingly stable return on a specific

commodity begs the question, how long can it last? Logically, the relative value of housing

will surely not keep growing forever. In fact, there is empirical evidence that this has not

always been the case. Eitrheim et al. (2004) find that real house prices in Norway did not

reach their 1899 levels again until the mid-1980s. With this in mind, one might wonder

why prices have been growing so steadily and whether there is any basis for the price level.

In other words, is the price correct?

The question of whether house prices are accurate has been asked many times over the years

by academics, policymakers, and consumers alike. Compared with other commodities,

the scrutiny on house prices is particularly high, as a housing purchase is likely the

largest investment most households will make. Therefore, many different theories and

methods have been introduced over the years to describe, explain and evaluate the level of

house prices. In this respect, one of the more established theories has been the theory of

fundamental valuation (Campbell and Shiller, 1988a,b). From this theory, it is assumed

that a fundamental valuation can be ascertained from underlying fundamental factors,

which can explain the dividend of the asset and rational expectations about the future.

Various methodologies have been constructed with this theoretical framework, and a

range of fundamental prices are estimated across countries and time periods. One paper

that has recently estimated a fundamental valuation of the housing market is titled "The

interaction of actual and fundamental house prices: A general model with an application

1Real-term growth calculated as nominal growth subtracted for CPI development.
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2 1.2 Research Questions

to Sweden", and is written by Michael Bergman and Peter Sørensen (2021). In it, they

estimate a fundamental valuation of the Swedish housing market based on a Supply and

Demand model. This model has its basis in the methods introduced by Campbell and

Shiller (1988a) but extends their work in several ways.

With this thesis, we aim to provide new perspectives on the Norwegian housing market

by estimating a fundamental house price and comparing it with the real price observed

in the market. To do this, we will largely follow the methodology of Bergman and

Sørensen. Although fundamental valuations of the Norwegian housing market have been

conducted in the past, to our knowledge, this specific methodology has not been applied

to Norwegian data. Therefore, we believe that testing the approach in Norway can provide

new understanding and produce valuable insights.

1.2 Research Questions

In order to achieve this, we need to clarify our overall objectives. With this thesis, we

aim to answer two specific research questions. As we have stated, we want to find what

price level the fundamental factors imply that the price should be. Therefore, our first

research question is as follows:

i: "To what degree are Norwegian house prices in line with what fundamental factors

would suggest?"

When the fundamental price in the housing market is determined, it would also be

interesting to ascertain whether there is any consistent relationship between the estimated

price and the actual housing price. Furthermore, if there is a relation, do the prices

interact in the way we expect from the theory of fundamental valuation? One assumption

from theory is that the gap between the prices is stationary, i.e., that in the long run,

prices are aligned. A second aspect is that a fundamental price should not be affected

by a gap between itself and the real price. The implication is that only the actual price

should react to a gap. With this in mind, we define our second research question:
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1.3 Main Findings

In this thesis, we estimate a fundamental price of the Norwegian housing market based

on the methodology introduced by Bergman and Sørensen. In the period of Q2 1993 -

Q2 2022, we find that the Norwegian housing market is largely in accordance with its

fundamentals. Still, we also find that from 2016 until 2020, there was a period where the

fundamental and actual prices moved in different directions, resulting in a significant gap

between them. However, this gap seems to be closing towards the end of the sample.

Considering our second research question, we find that there is a stable, long-term

relationship between fundamental and actual prices in the Norwegian housing market.

Furthermore, we find that the estimated relationship is valid even when restricting the

relationship such that it is in line with the theory of fundamental valuation. These findings

are persistent when ending the sample from 2013 to 2022.

1.4 Structure of Thesis

In order to answer the research questions clearly and coherently, this thesis will have the

following structure.

The next section introduces the relevant literature and theory on fundamental valuation.

This is followed by a discussion of key theoretical concepts and models. The methodology

for this thesis is then presented, followed by an overview of the data that will be used in

the empirical analysis. Thereafter, we present the analysis, where we attempt to answer

the two research questions. Finally, we discuss the results of the analysis and arrive at an

overall conclusion for our thesis.
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2 Literature Review

When considering the housing market, there is a vast range of published scientific papers

and econometric concepts. As a result, the potential scope of relevant literature for our

thesis is considerable. Therefore, in order to be expedient in our literature review, we will

focus on the literature most pertinent to our thesis, i.e., a fundamental evaluation of house

prices in Norway. With this in mind, we begin by introducing the theory of fundamental

value and its use in the housing market, the findings of Bergman and Sørensen, as well as

previous research on fundamental house prices in Norway.

2.1 The Housing Market and Fundamental Valuation

The concept of determining a fundamental value of an asset was introduced in 1988 by

Campbell and Shiller with their dividend discount model (1988b; 1988a). They established

a model for asset valuation, where the valuation is equal to the present value of the

expected future cash flows generated by the asset, e.g., dividends. The agents in the

model are assumed to be rational and form expectations through linear dynamics of

fundamental factors. Here, fundamental factors are interpreted as relevant macroeconomic

and microeconomic variables which should influence the expectations. In order to estimate

the formation of expectations, they apply a vector autoregression (VAR) model to the

variables. We will explain the VAR model in detail in our theoretical concepts section.

The dividend discount model was first introduced to model the behaviour of financial

assets such as stocks. However, the methodology can be applied to the housing market as

well. Where a liquid financial asset like a stock can provide a cash flow through dividends,

owning (and using) a housing unit provides utility to the user. This utility can, thus, be

compared to an agent’s willingness to pay for housing services for a period, making it

possible to derive a fundamental theoretical price for the housing market.

4

2 Literature Review

When considering the housing market, there is a vast range of published scientific papers

and econometric concepts. As a result, the potential scope of relevant literature for our

thesis is considerable. Therefore, in order to be expedient in our literature review, we will

focus on the literature most pertinent to our thesis, i.e., a fundamental evaluation of house

prices in Norway. With this in mind, we begin by introducing the theory of fundamental

value and its use in the housing market, the findings of Bergman and Sørensen, as well as

previous research on fundamental house prices in Norway.

2.1 The Housing Market and Fundamental Valuation

The concept of determining a fundamental value of an asset was introduced in 1988 by

Campbell and Shiller with their dividend discount model (1988b; 1988a). They established

a model for asset valuation, where the valuation is equal to the present value of the

expected future cash flows generated by the asset, e.g., dividends. The agents in the

model are assumed to be rational and form expectations through linear dynamics of

fundamental factors. Here, fundamental factors are interpreted as relevant macroeconomic

and microeconomic variables which should influence the expectations. In order to estimate

the formation of expectations, they apply a vector autoregression (VAR) model to the

variables. We will explain the VAR model in detail in our theoretical concepts section.

The dividend discount model was first introduced to model the behaviour of financial

assets such as stocks. However, the methodology can be applied to the housing market as

well. Where a liquid financial asset like a stock can provide a cash flow through dividends,

owning (and using) a housing unit provides utility to the user. This utility can, thus, be

compared to an agent's willingness to pay for housing services for a period, making it

possible to derive a fundamental theoretical price for the housing market.



2.2 Bergman & Sørensen and a Fundamental House Price in Sweden 5

Following the methodology of Campbell and Shiller (1988a), multiple studies have

estimated fundamental house prices across a variety of different markets, such as Hott and

Monnin (2008), Campbell et al. (2009), and Ambrose et al. (2013). For example, Ambrose

estimated the long-run relationship between rents and prices to determine fundamentals

on 355 years of data on housing in Amsterdam. The subject of fundamental valuation is

compelling because if fundamental factors can be used to determine a fair value of the

housing market, then deviations away from this value can be scrutinised by markets and

policymakers to, e.g., avoid housing bubbles. In fact, one can describe a housing bubble

as a period where actual prices are decoupled from underlying fundamentals, reaching

price levels considerably higher than what the fundamentals would justify (Stiglitz, 1990).

2.2 Bergman & Sørensen and a Fundamental House

Price in Sweden

Michael Bergman and Peter Sørensen have published one such estimation of fundamental

price in their paper, “The interaction of actual and fundamental house prices: A general

model with an application to Sweden” (2021). As mentioned in the introduction, we aim

to apply their methods to Norwegian data. Therefore we choose to devote some time in

this section to explain their methods, motives, and results.

Their paper estimates the relationship between fundamental and actual housing prices

in Sweden. In order to do so, they follow the procedure laid out by Hott and Monnin

(2008) and base their analysis on the development of five variables; the actual house price,

disposable income, housing stock, rent price, and the user cost of housing. In line with

the procedure laid out by Campbell and Shiller, they then apply a vector autoregression

model (VAR) in order to compute the coefficients needed to calculate the expectations

of agents in their model of fundamental price. Moreover, they analyse the interactions

between fundamental and actual prices and test the hypothesis that the actual price will

tend to be drawn towards the level of the fundamental housing price. In contrast, the

fundamental house price will be unaffected by changes in the actual price. Here they

complement earlier research, such as Malpezzi’s error correction model (1999), by creating

a unified vector error correction model (VECM).
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6 2.2 Bergman & Sørensen and a Fundamental House Price in Sweden

Through their approach, Bergman and Sørensen seek to answer questions such as whether

prices converge towards fundamental price estimations and the speed of such a convergence.

As part of this analysis, they identify the impact of shocks on both fundamental and actual

housing prices and analyse how long it would take for prices to return to equilibrium.

Finally, they also investigate the impact of feeding in an exogenous timeline of input

variables on the fundamental price, simulating policy changes. This allows them to infer

what effects such policy changes might plausibly cause on the fundamental valuation of

the Swedish housing market.

Bergman and Sørensen estimate the fundamental price in the Swedish housing market

from a quarterly data set spanning from 1986 to 2019. They find their time series to

contain a structural break, diminishing the sample’s statistical validity to perform the

necessary analysis. The identified break is the Swedish banking crisis at the beginning of

the 1990s. Therefore, the authors implement their approach on a subset with the first

observation after the structural break. They estimate their fundamental price and find

that the Swedish housing market is overpriced at the end of their sample, Q4 2019.

When analysing the interaction between the fundamental and actual price, Bergman and

Sørensen find that the fundamental price has an anchor effect on the actual house price,

i.e., that the actual price is drawn towards the level of the fundamental value. These

results were in accordance with their expectations. This corroborates the earlier research

of Hott and Monnin (2008), who, when examining data on the U.S., United Kingdom,

Japan, and others from the 1970s to 2005, find that actual house prices often deviate

from their fundamentals. Moreover, they find that these deviations can last for extended

periods. They also find that the prices tend to return to equilibrium with fundamentals in

the long run. When analysing the impact of shocks on either price, Bergman and Sørensen

find that the subsequent gap has a half-life of several years, indicating a slow reversion to

the mean.
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2.3 Anundsen and a Fundamental House Price in

Norway

In research published in 2019 and 2021, André Anundsen (2019, 2021) has estimated the

fundamental value of the Norwegian housing market. The research aimed to determine

whether there have been systematic overvaluations in the Nordic housing markets from 2000

to 2019. He applies various methods, including creating a VAR model where fundamental

variables like real interest rate, housing stock, and disposable income are used to estimate

the fundamental house price in Norway, Sweden, Denmark, and Finland.

Anundsen also uses the Johansen trace test to test for co-integration between the

fundamental variables and the actual house price (2019). This is comparable to Bergman

and Sørensen (2021), with the difference being that they analyse the estimated fundamental

price for co-integration with the actual price and not the variables used in its estimation.

The research provides insightful results. He finds that the Norwegian housing market is

priced at a discount from 2010 to 2016. After that, he finds the market is overpriced

until the end of his sample, with a nine percentage overvaluation at the end of 2019. For

Sweden, Anundsen finds that the Swedish housing market has been overvalued since 2014.

At the end of 2019, this gap is estimated to be around seven per cent. Analysing the

evolution of the fundamental price over the sample period, Anundsen finds that most of

the increase in the fundamental valuation in the Nordic housing markets can be explained

through a considerable increase in disposable income (Anundsen, 2021).
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2.4 The Application of the Papers in this Thesis

Both Anundsen and Bergman and Sørensen investigate a fundamental valuation of

Scandinavian housing markets for approximately the same time frame as our analysis

will investigate. Moreover, the methodology applied in these papers broadly follows the

same principles as ours, developing a VAR model to estimate the fundamental price and

analysing the co-integration between the fundamental price and the actual price. We note

that Anundsen uses the same methodology for Swedish and Norwegian data. Consequently,

it is possible to compare Anundsen’s results to the publications of Bergman and Sørensen,

as well as the results of this thesis. This facilitates constructive discussions regarding

results, assumptions, and overall methodology.

However, there are some differences between Anundsen and what this thesis will seek to

do. Anundsen estimates a fundamental price based on a VAR model with three variables.

In contrast, this paper follows Bergman and Sørensen (2021) in estimating the VAR

model on the following five variables; the actual price, user cost, housing stock, disposable

income, and the rent price of housing. Furthermore, the mathematical method used by

Bergman and Sørensen to compute the fundamental price follows Hott and Monnin (2008),

which is also the choice for this thesis. This is not the case with Anundsen, who applies a

different methodological approach. Anundsen also bases his analysis on the assumption

that the fundamental and actual house price is in equilibrium at the start of the sample

in 2000. We do not follow this assumption.

These differences are likely to lead to somewhat different conclusions than what Anundsen

found in his study, despite the otherwise notable similarities in methodology and data.

Therefore, we see our research as complementary to Anundsen. Moreover, Anundsen’s

primary focus is on detecting housing bubbles. Instead, this thesis follows the procedure

in Bergman and Sørensen with a more in-depth analysis of the nature of the relationship

between the actual and the fundamental house price. Therefore, by going beyond the

scope of Anundsen, this thesis can provide new insights into the Norwegian housing market

while also providing more understanding of Anundsen’s research by estimating the data

with comparable methods.
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3 Theoretical Concepts

As mentioned in the introduction, this thesis has two primary objectives. First, to

estimate a fundamental price on the Norwegian housing market, and second, to analyse

the relationship between this estimate and the actual price over time. This endeavour will

demand the application of various methods, tests, and specific terminology with which

the reader may or may not already be familiar. Therefore, we see it as apt to introduce

some of these core concepts we will apply later in the analysis.

3.1 The Concept of Time Series Analysis

First and foremost, this thesis is an exercise in time series analysis, as we have observations

of macroeconomic variables on a quarterly basis. As a result, it is helpful to understand

what this means. Time series analysis is a branch of statistics and econometrics that

focuses on the study of data collected over time (Lütkepohl, 2007). Time series data are

typically collected at regular intervals, such as daily, monthly, or annually, and are most

often used to study trends, patterns, and other changes in observed levels.

Time series can be broken down into sub-components. These sub-components are the trend,

seasonal, and irregular components (ABS, 2022). The trend component indicates the long-

term direction of the time series, the seasonal effects encapsulate any recurring variations

in the data, while the irregular component is what is left, i.e., unsystematic movement

and short-term fluctuations. This unsystematic movement can also be characterized as

the stochastic component of a time series. Depending on the unit roots of the data, this

stochastic component can either be stationary over time or include a random walk process

(Pfaff, 2008).2

In order to conduct predictive analysis on time series with auto-regressive and moving

average modes, the data is required to be stationary. A time series being stationary

refers to it not changing its statistical properties over time (Palma, 2016), i.e., it exhibits

a constant mean, variance, covariance and autocorrelation across time. Taken in the

context of the components described above, this implies no trend or seasonal component.

2Unit roots are stochastic processes, where unit root = 1 means that there is a random walk process,
where, e.g., yesterday’s value is the best predictor of today’s value. See chapters 1 and 3 of "Analysis of
Integrated and Cointegrated Time Series with R" by Bernard Pfaff (2008) for further information.
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However, often this is not the case. For example, macroeconomic data are usually not

stationary as it describes the real world, where there are changes to, e.g., population levels,

economic growth and investment levels, both over time and between seasons. Additionally,

it is sometimes the case that the movement of macroeconomic variables includes a non-

stationary stochastic component, i.e., a random walk (Pfaff, 2008). This increases the risk

of spurious regression, i.e., finding statistically significant results between unrelated data

(Hill et al., 2018).

As a result, it is common to transform the data prior to conducting analysis. A common

transformation is taking the log of the variable(s), which transforms the data such that

we have percentage changes instead of unit changes between observations. Another

transformation is taking the difference of the variables. This is done when there is

integration in the data. We can then identify an order of integration, I(d), where d

denotes the number of differences that needs to be taken in order to produce a stationary

time series. In this context, a time series with an integrated order I(0) is stationary (Pfaff,

2008). In the case of time series with a random walk component, this can be shown to be

a I(1) time series, where taking the first difference will return a stationary time series

(Lütkepohl, 2007).

3.2 Vector Autoregression Model (VAR)

In this thesis, we follow Bergman and Sørensen in using a vector autoregression model

(VAR) in order to arrive at an estimate of a fundamental price. We have also seen that

Campbell and Shiller utilised a VAR model back in 1988 to compute a fundamental

valuation of company shares. However, exactly what a VAR model is and how it works

is not necessarily instantly apparent to most people. Therefore, a section on theoretical

concepts calls for an introduction to this specific type of model.

Christopher A. Sims introduced the concept of vector autoregression models (VAR) in his

1980 "Macroeconomics and Reality" as a tool to capture existing relationships between

multiple variables that are allowed to change over time (Sims, 1980). The VAR(p) model

is defined such that it allows for k number of equations and variables, where a linear

regression estimates each variable based on the p number of past values of itself and the

other k − 1 variables, and an error term, ϵt (Stock and Watson, 2001). As such, it is a
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(Hill et al., 2018).
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3.2 Vector Autoregression Model (VAR)

In this thesis, we follow Bergman and Sørensen in using a vector autoregression model

(VAR) in order to arrive at an estimate of a fundamental price. We have also seen that

Campbell and Shiller utilised a VAR model back in 1988 to compute a fundamental

valuation of company shares. However, exactly what a VAR model is and how it works

is not necessarily instantly apparent to most people. Therefore, a section on theoretical

concepts calls for an introduction to this specific type of model.

Christopher A. Sims introduced the concept of vector autoregression models (VAR) in his

1980 "Macroeconomics and Reality" as a tool to capture existing relationships between

multiple variables that are allowed to change over time (Sims, 1980). The VAR(p) model

is defined such that it allows for k number of equations and variables, where a linear

regression estimates each variable based on the p number of past values of itself and the

other k - l variables, and an error term, ft (Stock and Watson, 2001). As such, it is a
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multivariate model. This differentiates it from univariate autoregression models, which

estimate a variable as a function of its own lagged values exclusively.

Sims (1980) presents three separate VAR models, the structured VAR model (SVAR), the

recursive VAR model, and the reduced-form VAR model. In this thesis, we will focus on

the reduced-form VAR model. Instead of attempting to identify the structural parameters

that underlie the equations, as for example the SVAR model does, the reduced-form VAR

model uses historical data to estimate the relationships between variables. Additionally,

the error term of the reduced-form VAR model is distinguishable from the other VAR

models by its serially uncorrelated error terms. In its general form, a reduced-form VAR(p)

model can be described in the following mathematical notation:

yt = c+ A1yt−1 + A2yt−2 + ...+ Apyt−p + ϵt (3.1)

Here, yt is a (k x 1 ) vector and is the predicted value of the k number of variables.

The variable c is defined as a (k x 1 )-vector of constants and is the model’s intercepts.

Meanwhile, yt−i is the i number of (k x 1 )-vectors containing the prior observations of the

variables, up to the lag length p.3 Ai is a (k x k)-matrix containing the estimated regression

coefficients of the variables in a given lag length, while ϵt is the serially uncorrelated error

term.

3.2.1 Checking the Residuals of a VAR model

When estimating a VAR model and deciding on the parameters, it is beneficial to conduct

some statistical tests on the residuals the model will return, i.e., the error term. If a

model has significant issues with the residuals, then this can draw into question the

level of inference one can make from a model’s estimations. Common aspects to test

for include autocorrelation, heteroscedasticity, and normality of the residuals. In the

following paragraphs, we will briefly explain these three aspects and the specific tests we

will employ in our case to test for them.

3We generally define i as being an expression for the values (1, ..., p )
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3.2.1.1 Autocorrelation and the Breusch-Godfrey Test

Autocorrelation is when an observation can be seen as a function of lagged observations of

the same variable (Palma, 2016). A variable can have positive and negative autocorrelation,

which signifies that the value of the variable is positively or negatively correlated with the

former observation(s). There is no autocorrelation if the past observations cannot predict

the level or trend of the variable. Autocorrelation is an issue in the reduced-form VAR

model and in time series generally, as it violates the assumption of serially uncorrelated

error terms. Implicitly, it implies that better-specified models are available, as there

is some trend or seasonal effect that the specified model cannot capture. In order to

test for autocorrelation in a multivariate VAR model, we can employ the multivariate

Breusch-Godfrey test for serial correlation (Breusch, 1978). The statistical procedure

tests whether autocorrelation is present in the data and returns a p-value, with the null

hypothesis that there is no autocorrelation in the error terms.

3.2.1.2 Heteroscedasticity and the ARCH Test

Heteroscedasticity refers to situations where the variance of a time series’s residuals

fluctuates (Palma, 2016). More specifically, a time series is said to be heteroscedastic if

there is a systematic change in how the residuals are spread out throughout the range of

the measured values. A non-constant variance complicates analysis as this violates the

assumptions of ordinary least squares (OLS) analysis. It also implies that the model varies

in its predictive accuracy over time. This, in effect, means that there are some changing

effects that the model is failing to estimate. Heteroscedasticity in a multivariate VAR

model can be tested through an autoregressive conditional heteroscedasticity (ARCH)

model. We will specifically use the ARCH-LM test by R.F. Engle, which describes the

variance of the relevant error term as a function of actual sizes from the error terms of

previous periods (Engle, 1982).4 The test will return a p-value of the null hypothesis that

there is no heteroscedasticity in the residuals.

4The autoregressive conditional heteroscedasticity - Lagrange multiplier (ARCH-LM) test was initially
intended for univariate tests only, but multivariate versions have been developed. We will compute this
extension of the test through the statistical software package R.
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3.2.1.3 Normality and the Jarque-Bera Test

Concluding the standard residual tests, normality refers to the distribution of the residuals.

Specifically, it is a test to check whether they are normally distributed, as is the base

assumption. The central limit theory states that when the sample increases, it is possible

to infer that the data will be normally distributed (Fischer, 2011). Significant deviations

from a normal distribution will impact the confidence one can have in many statistical

tests’ ability to discern the true difference in the data. In the case of a multivariate

VAR model, a Jarque-Bera test can be applied to test for normality in the data. This

is a goodness-of-fit test of whether the data has kurtosis and skewness corresponding

to a normal distribution. A test statistic far from zero indicates that the data is not

normally distributed (Jarque and Bera, 1980). The null hypothesis with this test is that

the residuals of the VAR model are normally distributed.

3.2.2 Granger Causality: The Relative Importance of Variables

We also want to assess the VAR model estimates in our analysis. One applicable test in

order to derive such insight is a test for Granger Causality. This test determines to what

degree one variable is important in forecasting future values of other variables in the VAR

model. Functionally, it works by conducting t-tests and F -tests on the lagged values of

each variable and ascertaining the likeliness of that variable explaining future levels of the

other variables.5 As not to confuse Granger causality with actual causality, variables are

said to "Granger-cause" other variables (Granger, 1969).

5t-tests and F-tests are statistical tests used in order to test for similarity of two populations mean
and variance respectively. Varieties of the tests exist for different needs (Enders, 2008).

3.2 Vector Autoregression Model (VAR) 13

3.2.1.3 Normality and the Jarque-Bera Test

Concluding the standard residual tests, normality refers to the distribution of the residuals.

Specifically, it is a test to check whether they are normally distributed, as is the base

assumption. The central limit theory states that when the sample increases, it is possible

to infer that the data will be normally distributed (Fischer, 2011). Significant deviations

from a normal distribution will impact the confidence one can have in many statistical

tests' ability to discern the true difference in the data. In the case of a multivariate

VAR model, a Jarque-Bera test can be applied to test for normality in the data. This

is a goodness-of-fit test of whether the data has kurtosis and skewness corresponding

to a normal distribution. A test statistic far from zero indicates that the data is not

normally distributed (Jarque and Bera, 1980). The null hypothesis with this test is that

the residuals of the VAR model are normally distributed.

3.2.2 Granger Causality: The Relative Importance of Variables

We also want to assess the VAR model estimates in our analysis. One applicable test in

order to derive such insight is a test for Granger Causality. This test determines to what

degree one variable is important in forecasting future values of other variables in the VAR

model. Functionally, it works by conducting t-tests and F-tests on the lagged values of

each variable and ascertaining the likeliness of that variable explaining future levels of the

other variables.5 As not to confuse Granger causality with actual causality, variables are

said to "Granger-cause" other variables (Granger, 1969).

5 t-tests and F-tests are statistical tests used in order to test for similarity of two populations mean
and variance respectively. Varieties of the tests exist for different needs (Enders, 2008).



14 3.2 Vector Autoregression Model (VAR)

3.2.3 Cointegration and the Johansen Tests

When estimating the VAR model, we will also want to test for cointegration. Cointegration

refers to the existence of a long-term equilibrium relationship between two or more time

series (Pfaff, 2008). This equilibrium can be a difference of zero or some other stable

ratio. Specifically, cointegration refers to the time series being non-stationary, i.e., of

integration order I(1), and there being some form of a linear combination of the variables

that is stationary, i.e., I(0) (Lütkepohl, 2007). In a multivariate system, there is a max

of k cointegration relationships, denoted as r. A rank of r = k implies that the time

series are already stationary with I(0). We note that a cointegration relationship between

two variables represents an exception to the general rule of using stationary data when

conducting time series analysis. As a result, regression will not increase the risk of spurious

regression (Hill et al., 2018).

Various tests allow for short-term deviations between the time series as long as the long-

term relationship exists. One way to test for cointegration between the variables is the

Johansen test (Johansen, 1988, 1991). The test evaluates the validity of a cointegration

relationship through an approach of maximum likelihood estimates. The Johansen trace

test is useful in the case of a multivariate VAR model, as it allows for several cointegration

relationships. Moreover, it allows for short-term deviations as long as a long-term

relationship between the time series exists Johansen (1991).

Describing the test in further detail, the null hypothesis of the Johansen trace test is that

the actual number of cointegration vectors (r∗) are such that r∗ ≤ r, for r = (0, 1, ..., (k−1)).

The alternative hypothesis for each evaluated rank is that r∗ > r. Starting at a hypothesis

of r = 0, the test is repeated until one cannot reject the null hypothesis. There is also a

second version of the Johansen test, the Johansen eigen test. The tests are quite similar,

with the main difference being that the alternative hypothesis is instead r = r∗ + 1. Like

the trace test, this test is evaluated on increasing ranks until the null hypothesis is not

rejected (Hänninen, 1998).
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3.3 Vector Error Correction Model (VECM)

When estimating a VAR model, one assumes that the time series in the model are

stationary or that the variables are cointegrated with a full rank, i.e., r = k and thus I(0)

(Hill et al., 2018). However, sometimes we have some cointegration between the variables

in a multivariate system, but not full rank. Alternatively, we might be interested in further

analysing the cointegration relationship between variables. A vector error correction model

(VECM) can be applied in both cases. A VECM is, in its purest definition, a VAR model

which is stationary in first differences, I(1) (Lütkepohl, 2007). In other words, it takes the

time series and estimates a VAR model with the lag order p− 1, where p is the estimated

lag order of the VAR model on the original data.

Crucially, the VECM can account for the number of cointegration relationships between

the variables. Thus it is an option when a VAR model is not of full rank, and to see if the

VECM returns similar results. Furthermore, a VECM can test hypotheses regarding the

cointegration relationships between variables. As its name applies, it is an error correction

model. The error correction here refers to the model’s assumption that there are error

correction coefficients in the cointegrated linear equations that ensure that the relationship

between variables is stationary I(0), as is the assumption with cointegration (Hill et al.,

2018). There are two classes of VECMs: the transitory and the long-term model. We

mainly focus on the former in this thesis. In its general form, the transitory VECM can

be written as follows:

∆yt = Γ1∆yt−1 + ...+ Γp−1∆yt−p+1 +Πyt−1 + µ+ ΦDt + ϵt (3.2)

In the equation above, we measure the first difference of the (k x 1 )-vector of variables

yt, i.e., ∆yt. Γp−1 is a coefficient matrix of lags of the observations in differences, up to

the p-1 lag length, and thus can be thought of as the equivalent of the A matrices in the

VAR model.6 ΦDt represents the deterministic trends in the variables. Finally, Π is a

matrix of the cointegration relationships between the variables, i.e., the error correction.

The matrix of the cointegration relationships can also be defined as Π = αβ′, where the

dimensions of the matrices depend on the number of cointegrations. Here, the matrix β

6We go up to a lag length of p-1 because, as stated earlier, the VECM is computed on p− 1 lags.
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contains the cointegration relationships between the input variables in the model, where

the number of columns represents the rank (r) of the k number of time series. Meanwhile,

α is a matrix that shows the speed of convergence towards the cointegration equilibrium(s).

Through restrictions to the β and α vectors, one can test hypotheses of a cointegration

relationship and the rate of convergence, respectively (Pfaff, 2008). Introducing this

notation and making the lagged observations more concise, we can rewrite the equation

above as:

∆yt = µ+ αβ′yt−1 + Σp−1
i=1Γ∆yt−i + ΦDt + ϵt (3.3)

This alternative VECM representation wraps up the theoretical concepts section. We will,

however, return to these introduced concepts throughout the thesis.
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4 Methodology

Having familiarised the reader with previous research in the field and key theoretical

concepts, we now move on to detailing the specifics of the methodology we will use in

order to answer our research questions. This section will first outline the steps necessary

to calculate the fundamental price and the theoretical reasoning behind the procedure.

This will be the primary focus of this section. Then, when this method has been presented,

we will detail how we apply a VECM to analyse the interaction between fundamental and

actual price. Overall, our procedure is heavily influenced by the methods of Bergman

and Sørensen (2021), as mentioned in the introduction. However, we do deviate on some

specific choices and assumptions.

4.1 Modeling a Fundamental House Price

In order to determine the fundamental price of the housing market, we begin by interpreting

the house price. We start with a simplified example. Consider an agent with rational

expectations that plans to purchase a unit of housing in one period, and sell it in the

following period. This rational agent should be be willing to pay according to the expected

utility of owning and using the unit for this one period. Following Campbell and Shiller,

we can deconstruct this utility into three separate factors (1988a).

The first factor is the utility received if the house price is expected to increase after time

of purchase, which would provide a utility gain when the unit is sold. The second factor

is the cost of owning and using the unit of housing for the period. We follow Bergman

and Sørensen in defining this user cost as γ. The third and final factor, is the utility the

agent will get from consuming the housing service. This utility will hereafter be defined as

the imputed rent of housing. A high utility gained from consumption of housing services

will, ceteris paribus, increase the willingness to pay for the unit. Mathematically we can

therefore define the agent’s willingness to pay for a unit of housing at time t before selling

in the future period t+1 as:

Pt =
RH

t + Et[Pt+1]

1 + γt
, (4.1)
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where the price (Pt) is a function of the imputed rent (RH
t ) and the expected house price

in the next period (Et[Pt+1]). Both are discounted with the period’s user cost of housing

(γt).

Having defined the factors that influence an agent’s willingness to pay for housing, we

generalize and explain how imputed rents and user costs are calculated in our model.

As it serves as the representation of utility, the imputed rent can be thought of as the

marginal rate of substitution between housing services and other services and goods and

is by Bergman and Sørensen assumed to be represented as shown below in equation (4.2).

RH
t = [it(1− τ it )−

Et[CPIt+1]− CPIt
CPIt

+ τ + δ + η]Pt − [Et[Pt+1]− Pt] (4.2)

Here, it is the nominal interest rate, τ it is the capital income tax rate, CPIt represents

the consumer price index (CPI), while E[CPIt+1] is the expected CPI level for time t+ 1,

held at time t. Meanwhile, τ is the effective property tax rate, and δ is the depreciation

rate of the housing stock. Finally, η is a premium of owning a unit of housing, due to risk

and credit constraints. We note that these last three factors are assumed to be constants

and do not vary with time. Here we follow both Bergman and Sørensen (2021) and Hott

and Monnin (2008). To ease interpretability of the equation, we remark that it(1− τ it )

is the nominal after tax interest rate in period t, and Et[CPIt+1]−CPIt
CPIt

is the expected

percentage change in inflation from period t to period t+ 1. Additionally, Et[Pt+1]− Pt is

the expected change in the house price.

Next, we return to the above-mentioned user cost, γt. This represents the relevant costs

related to owning and using a unit of housing for a period. Following Bergman and

Sørensen, γt can be neatly defined from equation (4.2) above as the following in equation
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), where the nominal after tax interest

rate is subtracted for expected inflation, and the constants of property tax, depreciation

rate, and premium costs.
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4.1.1 House Price and Forward Iteration

The theory of fundamental valuation assumes that agents are rational and forward-looking.

At the start of this section, we introduced an example of an agent owning a unit of housing

for one period before selling in the next. This example can, however, be expanded to last

several periods, ultimately as far as infinity. This is what Campbell and Shiller (1988a)

identified, which has since become the foundation of fundamental pricing. As we have

now determined the relationship between house prices, imputed rents and user costs, we

consider a new situation where the agent buys the unit of housing in period t but never

sells.

In this case, we can refer back to the utility equation (4.2), and see that this implies that

the numerator becomes solely the imputed rent (RH
t ). Thus, when time goes towards

infinity, the unit’s value becomes a function of the expected imputed rents and user costs

of the period. Formally, this is the concept of forward iteration.7 Following this principle,

we follow Bergman and Sørensen (2021) and define the house price as equation (4.4)

below.

Pt = Et[Σ
∞
i=0

RH
t+i

Πi
j=0(1 + γt+j)

] (4.4)

Here, the equation specifically allows for different period-by-period values of the discount

factor, user costs. They are based in expectations held at time t.

4.2 Introducing the Supply and Demand Model

We have now determined how future imputed rents directly influence the house price.

However, following our definition of imputed rents as the marginal substitution rate between

housing services and other goods and services, future imputed rents thus represent the

future willingness to pay for housing services. However, imputed rent values are based

in theory, i.e., we do not know concretely what amount of utility it provides, as this

is not directly observable. To deal with this issue, we follow Hott and Monnin (2008),

who consider a model where imputed rents are used to adjust the supply and demand of

housing services with regards to the long-term equilibrium. In other words, RH
t is used as

an adjustment factor. Specifically, we assume the demand for housing services is positively
7For further information regarding forward iteration applied to a fundamental pricing of an asset, we

refer the reader to Blanchard and Fischer (1989), chapter 5.
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influenced by aggregate real disposable income and negatively influenced by imputed rents.

Thus, we have the following expression of long-term demand for housing services:

Dt = B ∗ Y ϵY
t ∗RH

t
−ϵR , (4.5)

where demand D is determined by a constant B, the real aggregate disposable income Y ,

and the imputed rent. The impact of Y on level of demand is influenced by the long-run

income elasticity of housing demand, ϵY , while the impact of imputed rent is determined

by the price elasticity of housing demand, ϵR.

Regarding the supply of housing services, the aggregate housing stock, H, is assumed

to be equal to the long-term supply of housing services. Since we are considering the

situation of a long-term equilibrium, we can make use of the fact that demand equals

supply. Therefore, we can substitute the demand for housing services with the aggregate

level of housing stock, as seen in equation (4.6).

Ht = B ∗ Y ϵY
t ∗RH

t
−ϵR (4.6)

From this, we can isolate imputed rent of housing. This gives us the following equation

where RH
t is defined as a function of the constant B, the aggregate real disposable income,

the real aggregate housing stock, and the elasticities: ϵY and ϵR.8

RH
t = B1/ϵR ∗ Y

ϵY
ϵR
t ∗H

−1
ϵR
t (4.7)

The assumption that imputed rents can be used as an adjustment factor in equation (4.6)

is an important foundation for the following sections of our methodology. Furthermore,

when equation (4.7) is combined with an estimate of fundamental price based on forward

iteration as in equation (4.4), essential principles are in place to determine the fundamental

house price later on in this section.

8We note that we follow Bergman and Sørensen, and assume B to be an unimportant constant as a
result of later normalization of the data. As such, B is assumed to be equal to 1
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4.2.1 Addressing Issues of Stationarity

From section 3.1 on time series analysis, we know that stationarity is necessary to make

accurate estimations on time series data. To deal with this issue, we take the logarithm

and the first difference in logarithms of the variables, yielding variables that are I(0). We

introduce new notation and define the logarithm of housing as rHt , where rHt = ln(rHt ).

We do the same for the other variables where deemed necessary. We also take the first

differences, e.g., defining ∆rht as ∆rHt = rHt − rHt−1. This also applies to our other variables.

We will use these notations in the following sections.

4.2.2 Estimating a Price-to-Imputed-Rent Ratio

This subsection aims to use what we have already defined and calculate an estimate of

the price-to-imputed-rent ratio. Such a ratio is beneficial for our analysis as it captures

changes to both the house price and the imputed rent level. Thus, it is an efficient

ratio for our specific purpose of estimating a fundamental house price. We define the

price-to-imputed-rent ratio as follows:

St ≡
Pt

RH
t

(4.8)

Next, we introduce a new notation and let the expectation of the house price in the

next period be defined as P e
t+1 so that we have: Et[Pt+1] = P e

t+1. This notation is also

introduced for other variables. This lets us rewrite equation (4.1) from earlier as follows,

where we also multiply both sides with (1 + γt).

(1 + γt)Pt = RH
t + P e

t+1 (4.9)

Next, we can introduce the price-to-imputed-rent ratio into the equation by dividing by

the imputed rent (RH
t ). Moreover, we substitute P e

t+1 with Se
t+1 ∗RHe

t+1, as we can do from

equation (4.8) . This results in the following expression:

(1 + γt)St = 1 + Se
t+1 ∗

RHe
t+1

RH
t

(4.10)
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t
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From here, it is possible by the use of logarithms and algebra to show that the logarithm

of the price-to-imputed-rent ratio can be written as:

st = ln(1 + exp(set+1 +∆rHe
t+1))− ln(1 + γt) (4.11)

In appendix section (A2), we show how the estimate of st in the equation above can be

transformed into the the notation we see below in equation (4.12).

st = c+ Σ∞
j=1Ψ

jEt[∆rHt+j − γt+j]− γt (4.12)

Here, there are two notable changes from the prior equations. Firstly, by applying the

principle of forward iteration, we represent the logarithm of the price-to-imputed-rent-ratio

as an infinite series of differenced imputed rents and user costs. Next, we introduce an

adjustment parameter Ψ. Here, we follow Bergman and Sørensen (2021). Of note is that

they decide to model it endogenously in their model. In our case however, we find it

practical to set its value exogenously, as they state has often been the case previously

(Bergman and Sørensen, 2021).

With the definition of st in (4.12), we return to our supply and demand model. We

adjusted the imputed rent so that the supply was equal to the demand of housing services

in equation (4.7). We now transform the equation and calculate the differenced log of the

imputed rent of housing. This estimate consists of the first differences of the aggregated

real disposable income and the aggregate disposable incomes and is as follows:

∆rHt+j = (
ϵY
ϵR

)∆yt+j + (
−1

ϵR
)∆ht+j (4.13)
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The last step in estimating our final price-to-imputed-rent ratio is done by substituting

(4.13) into (4.12). The result is an estimate of the price-to-imputed-rent ratio that

encapsulates forward iteration and adjustments of imputed rents. Importantly, it will

serve as a point of departure for the estimation of fundamental price. Below in equation

(4.14), we show this new definition of st. 9

st = c+ Σ∞
j=1ΨEt[(

ϵY
ϵR

)∆yt+j + (
−1

ϵR
)∆ht+j − γt+j]− γt (4.14)

4.2.3 Comments on the Adjustment Parameter Ψ

In order to estimate st, we need an estimate of Ψ, where the parameter is defined to

be [0 ≤ Ψ ≤ 1]. Through several calculations, Bergman and Sørensen estimate their Ψ

parameter as an endogenous parameter in their model. However, as previously mentioned

it has been common to estimate this parameter exogenously. As such, we will follow this

principle. We base our choice in the following logic.

In the section above, we introduced the price-to-imputed-rent ratio as St = Pt/Rt, which

is also equivalent to: st = pt − rHt . In a long-term equilibrium then, we will expect the

equation to hold. An approximation of this long-term value is the mean value of the

variables. Then we get the following relationship:

s = p− rH (4.15)

Bergman and Sørensen also point out that they calibrate the imputed rent so that:

rH = p+ log(γ) (4.16)

Substituting this definition into equation (4.15) above, we find that one can assume

that s = log(γ). Following this reasoning, we decide to calibrate Ψ such that the the

mean price-to-imputed-rent ratio equals the logarithm of the mean value of user cost.

However, as the logarithm of low percentages would return a considerably large value, and

9We note that this equivalent to Bergman and Sørensen (2021) and their equation 6.
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considering some ambiguity from Bergman and Sørensen, we make the assumption that

Ψ = log(1 + γ) (4.17)

Regarding the robustness of our estimate of Ψ, the choice to estimate Ψ exogenously

might provide limitations to our Ψ estimate. This is something that will be addressed in

both the analysis and the discussion section.

4.3 Applying a VAR Model Framework

Now that we have calculated an estimate of the price-to-imputed-rent ratio, this section

aims to explain the necessary steps of applying the VAR model. The estimated coefficients

can be used to calculate the fundamental house price based on concepts introduced in the

theory section (3.2).

A first step, is to determine the input variables, i.e., what variables we are determining

the coefficient of. The VAR model must, at a minimum, include the variables introduced

earlier that determines the fundamental house price. Therefore, we will include time

series of the differenced logarithm of aggregated real housing stock (∆ht), the differenced

logarithm real disposable income (∆yt), and the user costs of housing (γt). Bergman and

Sørensen also include the differenced logarithm of actual house prices (∆pat ) in their model.

This is further backed by Campbell and Ammer (1993) and Engsted et al. (2012) who

underpin the importance of including the actual price when estimating how fundamental

factors influences stock price. Therefore, we include actual price in our VAR model.

Lastly, Bergman and Sørensen consider the differenced logarithm of real housing rent

costs (∆rt).10 This rent cost variable is not strictly needed from theory or as a direct

input in calculating fundamental price. However, Bergman and Sørensen include it as a

useful proxy to a host of other variables that might influence the level of house prices,

and the estimated coefficients of the other variables.

10This is not to be confused with the aforementioned imputed rent of housing (rHt ), which is the
unobservable utility of using some unit of housing.
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Thus, we follow Bergman and Sørensen (2021) in their choice of variables, and rely on a

five variable VAR model. Following this, we introduce bt below in equation (4.18). This is

a time series vector consisting of the VAR variables, and is our model’s definition of yt

from the VAR model defined in section (3.2) on VAR models.

bt ≡




∆pat

∆rt

γt

∆yt

∆ht




(4.18)

4.3.1 Implementation of VAR Model

When applying the VAR model, the intent is to estimate the explanatory effect the

previous observations might have on the present levels of the variables. In equation (4.19)

below, our Φ is the equivalent to the A in equation (3.1) in the theory section. In our

case, each Φ represents a (5 x 5 )-matrix containing the coefficients of the variables in

each lag, up to the lag length p. The error term, ϵt, is a (5 x 1 )-column vector. In matrix

notation, our VAR(p) model can be written as follows:

bt = c+ Φ1bt−1 + Φ2bt−2 + ...+ Φpbt−p + ϵt (4.19)

In section (A2.3) in the Appendix, we also show how equation (4.19) can be written more

concisely as equation (4.20).

Φ(L)bt = ϵt (4.20)
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4.3.2 Modeling Expectations from the VAR Output

After defining the five variable VAR model(p), the next step in estimating the fundamental

house price is computing an interpretation of expectations. This is needed in order to

specify the price-to-imputed-rent ratio, st, as shown in equation (4.14). This subsection

will outline the necessary steps to arrive at such an estimate, using the output of the

VAR(p).

We begin by defining the vector zt, as a collection of the variable vectors bt, bt−1, up to

bt−p−1. zt is defined below. This notation is convenient, as zt can be estimated purely by

zt−1, as it contains the correct number of lagged observations, as defined by lag length p.

zt ≡




bt

bt−1

.

.

bt−p+1




(4.21)

From the properties of zt, we can thus rewrite our VAR(p) model as a VAR(1) model, also

called the companion-form (Kotze, 2022).11 From this definition we can rewrite (4.21) as:

zt = Azt−1 + ξt (4.22)

We see that zt is defined by zt−1, i.e., the p number of lagged observations, multiplied

with A, a companion matrix containing the coefficient estimates Φ of the lag lengths. The

companion matrix can be shown to be of dimension (kp x kp), and as number of variables

k equals five, we have that the companion matrix is of dimension (5p x 5p). Meanwhile, ξ

is a (p x 1 )-matrix containing only the error terms of the equation for the current period.

This is because we do not need the error term of previous periods, as we have the actually

observed values. We rewrite (4.22) to the following format in equation (4.23) to better

visualise the definition of zt.

11We note that according to Kotzé, Bergman and Sørensen, and others, we can always rewrite a
VAR(p) model as a VAR(1) model
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4.3.2 Modeling Expectations from the VAR Output
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zt =




Φ1 Φ2 . Φp−1 Φp

I5 0 . 0 0

0 I5 . 0 0

. . . . .

0 0 . I5 0







bt−1

bt−2

.

.

bt−p




+




ϵt

0

.

.

0




(4.23)

At this point, we follow Bergman and Sørensen in assuming the expected value of a

variable in the model from (4.22) can, in the general case, be rewritten as:

Et[zt+j] = Ajzt (4.24)

Specifically, it can be shown to be the case for j = 1, 2, ...n periods ahead. To help

interpretation we provide step-by-step calculations for the instances of j = 1 and j = 2.

In the case of j = 1, we get the equation (4.25).12 Meanwhile, equation (4.26) represents

the case of j = 2.

Et[zt+1] = Azt (4.25)

Et[zt+2] = Et[Et+1[zt+2]] = Et[Azt+1] = AEt[zt+1] = A2zt (4.26)

It follows from this mathematical definition, that we can model expectations of the future

as a function of the estimated coefficients tied to the lags of the variables, based on today’s

(zt) values. However, we note that in order to compute the companion matrix, and thus

the VAR model, must be stable. In effect, this implies that the eigenvalues of the VAR

model should be inside the unit circle, i.e, less than one in absolute terms. A stable VAR

model also implies full rank, i.e., the number of cointegrations is such that r = k. We will

test for these assumptions in the analysis.

12The error term is not included in the above equation. This is because the expected value will only
be measurable when looking backwards.
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4.4 Final Steps Towards the Fundamental Price

4.4.1 Quantifying the Price-To-Imputed-Rent Ratio

We have now shown how to define the price-to-imputed-rent ratio as required by the supply

and demand model of Bergman and Sørensen, and how we will apply a VAR(p) framework

in order to model expectations. In this subsection we will tie these pieces together and

arrive at an estimate of fundamental house price, which of course is a prerequisite in order

to answer our research questions. This section is closely aligned with the procedure laid

out by Bergman and Sørensen.

We start this section by introducing a pair of column vectors, g1 and g2. The dimensions

of the vectors are (1 x 5p), with column length decided by lag length p. The definition is

shown below in equation (4.27) and (4.28).

g1 ≡

0 0 −1 ϵY

ϵR

−1
ϵR

0 . 0


(4.27)

g2 ≡

0 0 −1 0 0 0 . 0


(4.28)

The position of the values in the vectors corresponds to the position of the variables in

our VAR(p) model. For instance, g2 ∗ zt = (−1) ∗ γt. This is because γt is located in the

third row of equation (4.18). Using these characteristics of g1 and g2, we can reintroduce

the definition of st in equation (4.14) and redefine the price-to-imputed-rent ratio as:

st = c+ Σ∞
j=1Ψ

jg1Et[zt+j] + g2zt (4.29)

Next, we rewrite the expression by implementing the new definition of future expectations

as a function of the companion matrix A, as shown in (4.24). Furthermore, we remove

the constant c, which according to Bergman and Sørensen is not important for present

purposes. From this we then get:
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st = Σ∞
j=1Ψ

jg1A
jzt + g2zt (4.30)

Which is equivalent to:

st = [(Σ∞
j=1Ψ

jg1A
j) + g2]zt (4.31)

Following Bergman and Sørensen (2021), we rewrite this equation to arrive at the final

representation of the price-to-imputed-price ratio, shown below in equation (4.32).

st = [g2 +Ψg1A(I −ΨA)−1]zt (4.32)

With this definition, we have all necessary parameters to calculate st in quantifiable sizes.

4.4.2 Computing the Fundamental Price

With the price-to-imputed-rent ratio now defined in a way that allows us to calculate

its period-by-period value, we can finally turn to the main issue at hand, estimating the

fundamental house price. In order to arrive at a mathematical construct of the price, we

make use of the definition st ≡ pt − rH , which can be seen from equation 4.8.13 Changing

the expression, we see that we can define price as pt ≡ st + rH . By substituting the log of

imputed rent, rH , with its definition in equation (4.7), we arrive at the final, quantifiable

expression of fundamental price in equation (4.33).14

p̂ft = st + ((
ϵY
ϵR

)yt − (
1

ϵR
)ht) (4.33)

We will employ this equation in order to estimate a fundamental valuation of the Norwegian

housing market, and to evaluate the estimate against the observed levels of real house

prices.

13Because St = Pt/R
H
t , st = ln(Pt/R

H
t ) = pt − rHt

14Given the previous assumption of B = 1
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Af fy l
Pt = S t + ( ( - ) Y t - ( - ) h t )

cu en
(4.33)

We will employ this equation in order to estimate a fundamental valuation of the Norwegian

housing market, and to evaluate the estimate against the observed levels of real house
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1 3 B e c a u s e S t = Pt/ R f , St= ln(Pt/ R f ) = Pt - rf
1 4 G i v e n the previous assumption of B = l
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4.5 Modeling the Relationship between Real and

Fundamental Price

4.5.1 Estimating the VECM and Assessing Cointegration

Having presented the method necessary to estimate the fundamental house price, we turn

to our second research question, i.e., the interaction between the actual and fundamental

house prices. We will show how we implement a VECM, introduced in section (3.3), in

order to determine if there is such a relationship, through a test of cointegration.

To do this, we introduce a vector of both the fundamental and actual price, defined as the

following: qt ≡ [pat , p
f
t ]

′. As stated in the theoretical concepts in section (3.3), it is always

possible to rewrite a VAR model as a VECM, provided it has a lag length p ≥ 2 (Pfaff,

2008). With this as a basis, we begin by following Bergman and Sørensen and assume qt

can be generated through a VECM, where both time series are I(1). This general notation

is shown in equation (4.34).

∆qt = Γ1∆qt−1 + ...+ Γp−1∆qt−p+1 +Πqt−1 + µ+ ΦDt + ϵt (4.34)

Simplifying the notation above, we note that we follow Bergman and Sørensen in removing

all deterministic trends, i.e., ΦDt. Next, we can rewrite the Π representation from this

theoretical approach as αβ′. Summarizing the lags, we get the following, more specific

VECM for our purposes:

∆qt = µ− αβ′qt−1 + Σp−1
i=1Γ∆qt−i + ϵt (4.35)

Here, ∆qt represents the first difference of the (2 x 1 ) qt vector of the time series. We also

have the (2 x 1 )-vector of constants, µ, as well the error term, ϵt, of the same dimension.

Meanwhile, Γ will contain the estimated coefficients of the VECM. The loading matrices

α and β have dimensions conditional on the rank r, and conitaing the cointegration

relationship(s) and thus the error correction. When applying this model in the analysis,

the first issue at hand will be assessing the interaction between the fundamental and

actual price. We will test this by analysing the number of cointegrations, i.e., long-term
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relationships between variables as explained in section (3.2.3). In order do to this, we

will utilise the Johansen Trace Test for cointegration (Johansen, 1991). Applying this

test on the estimated VECM, we will test for the validity of different values of rank r. A

cointegration rank of one between pft and pat would imply a cointegrated relationship. We

will come back to this in the analysis section.

4.5.2 Restrictions on the αβ Loading Matrices

We now turn to the next aspect of our second research question. We are not only interested

in evaluating if there is a cointegration relationship between actual and fundamental price,

but also if the relationship is consistent with the theory of fundamental valuation.

The first assumption that we will test for is the assumption of a stationary gap between

actual and fundamental prices. Effectively, this implies that pat − pft ∼ I(0), as defined by

Bergman and Sørensen (2021). Thus, the gap has to be mean reverting, as if it were not,

it would have a trend component and therefore not be stationary. We test for this specific

assumption by use of the VECM defined in (4.35). We will restrict the cointegration

matrix β such that β′ = [1,−1]. This restriction implies that a gap between the two time

series will be adjusted by the error correction term.

The second assumption we introduced in our introduction, was the assumption that only

actual house price would react to a gap between the prices. Tying into the assumption

above, this implies that only the actual price is actively mean reverting in the error

correction term. We can test the validity of this assumption through further restrictions to

the VECM, this time to the adjustment coefficient matrix α. From our definition of qt, we

have that the first row in the vector is actual price (pat ), and the second is the fundamental

price (pft ). Therefore, we will test for restrictions to the adjustment coefficient matrix such

that α1 < 0 and α2 = 0. These restrictions thus assures that the actual price should react

negatively to a gap between the two prices, while an adjustment coefficient value of zero

for the fundamental price should ensure that the price estimate is modeled independently

of any gap between the series.

We will in the analysis test whether these assumptions, i.e., restrictions, return a VECM

that can plausibly describe a relationship between the two time series, given that there is

a cointegration relationship between them.
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5 Data

So far, we have introduced the aim of this thesis, discussed previous literature on the

subject, introduced relevant theoretical concepts and laid out our chosen methodology.

The following section introduces the data on which we apply our methodology. Since this

thesis aims to create a representative analysis of the Norwegian housing market, this has

been the focus when gathering necessary data.

Our primary data source is Statistics Norway and their statistics on the Norwegian national

accounts. Most of the data is taken from Statistics Norway’s database KVARTS, a large

macroeconometric model used to analyze quarterly business cycle forecasts and policy

analyses in the short and medium term (SSB, 2022c). KVARTS data is available upon

request. The main data we need to estimate a fundamental price, are the five variables

specified in our methodology as inputs for the VAR model. The variables were presented

in equation (4.18), where we defined the vector bt as b′t ≡

∆pat ∆rt γt ∆yt ∆ht


.

Therefore we requested data on the actual housing price, rent price of housing, disposable

income, and housing stock. We also requested data on the real interest rate after tax,

which we need to calculate the user cost, and the Consumer Price Index (CPI). The

variables are all provided on a quarterly basis and are not seasonally adjusted. They

cover the period from Q1 1982 to Q2 2022. Where appropriate, we have transformed the

data into real terms with 2019 as the base year (i.e., with a value of 100). In addition,

because we are working with macroeconomic data, we calculate the logarithm and the

first difference of the logarithm for some of the variables. 15 We will now describe each

variable and the steps we took to transform the data into a uniform format suitable for

our analysis.

15A detailed overview of our data set and its descriptive statistics can be found in the appendix in
tables (A3.1) and (A3.2), respectively.
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5.1 Inflation and Population Variables

As mentioned, our data set includes variables of various types, including nominal and

real values as well as aggregated and indexed data. In order to make our analysis more

straightforward, we need to transform the data into a more uniform format. We will first

introduce the necessary components in such a transformation before moving on to the

main variables in our analysis.

Consumer Price Index

The consumer price index (CPI) is a measure that describes the price development of

goods and services that private households purchase and is thus a measure of inflation

(SSB, 2022a). Since some of our variables are in nominal terms, the CPI deflates the

nominal values to real ones. Here we specifically follow the principle that nominal value /

CPI = real value. CPI data comes from the KVARTS database and has the average of

the four quarters of 2019 as the basis, equaling 1.

Population Data

Data on Norwegian population levels are gathered from Statistics Norway’s table 06913,

containing the yearly population in Norway from 1951 to 2022. We transform the data to

a quarterly basis under the assumption that the population growth is evenly spread out

throughout the quarters.

5.2 Introducing the Main Variables

Actual House Price

Statistics Norway calculates the quarterly house price as a nominal index in their KVARTS

database with the average of the four quarters of 2019 as the basis, equal to 100. The index

represents the development of the aggregated Norwegian housing market and contains the

change in the price of apartments and one- and two-family dwellings per quarter from Q1

1982 to Q2 2022. For our analysis, we require variables in real terms and therefore deflate

the nominal index by the CPI for each observation. In addition, we choose to seasonally

adjust the data of actual house prices. When comparing adjusted to unadjusted data, we

see clear seasonal trends - potentially reducing the preciseness of our econometric analysis.
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1982 to Q2 2022. For our analysis, we require variables in real terms and therefore deflate

the nominal index by the CPI for each observation. In addition, we choose to seasonally

adjust the data of actual house prices. When comparing adjusted to unadjusted data, we

see clear seasonal trends - potentially reducing the preciseness of our econometric analysis.
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Moreover, this thesis aims to provide an overview of the Norwegian housing market and

its overall long-term trends rather than monitoring the specific period-by-period situation.

We also take the logarithm of each observation and calculate the period-by-period change

in the logarithm.

Figure 5.1: Real Actual House Price: Logarithm and First Difference

(a) Logarithm of Actual Real House Price. (b) First Difference of Actual Real House Price.

Figure 5.1 displays the logarithm of the real actual house price and the period-by-period change of the
logarithm of actual house price for Q1 1982 to Q2 2022. The logarithm of actual house price is in the
first period normalized to one. So does Bergman and Sørensen in their figure 1 2021.

We plot the logarithm of actual house price in Norway in figure (5.1a) above. We can see

that prices decreased substantially at the beginning of the sample period, hitting bottom

around 1993. However, from this point onward, there has been a steady increase in real

house prices over the sample. Regarding the period-by-period change in the logarithm of

the actual house price in figure (5.1b), we see more marked trends in the first part of the

sample. From then on, the mean of the time series seem relatively consistent across the

periods, although one could argue that there has been a decrease of the variance since

2010.

Our data on actual house price differs from Bergman and Sørensen (2021), who only

include one- and two-family dwellings in their analysis, thus excluding apartments from

their sample. We argue that utilising data on the whole Norwegian housing market could

lead to a more comprehensive analysis, as apartments represent a substantial proportion

of the housing supply in Norway. Moreover, not including apartments could skew the

results when comparing housing supply to other variables.
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Rent Prices of Housing

Our house rent price data also stems from the KVARTS database. The data shows

the development in the average paid house rent in the Norwegian market for a unit of

housing. Structurally, it is a nominal index of quarterly data, with the average of the

four quarters of 2015 as its basis, equal to 100. To compute the index in real terms,

we deflate by CPI. After that, we transform the data to 2019 = 100. This is done by

dividing each observation by the average value of the 2019 observations before multiplying

all observations by 100. We also transform it by taking the observations’ logarithm and

calculating the first difference in logarithm as with the other variables. Below we have

plotted the evolution of the log of the rent variable and the first difference change in

the logarithm of rent prices in figure (5.2). In figure (5.2a), we see the same downward

trend in the early observations as in the house prices. However, the upturn after this

point is markedly more jagged, and after 2016 we see a fall in real rent prices of housing

in Norway. In the same period, we see that real house prices continued their upwards

trajectory. Commenting on figure (5.2b), we see no trajectory or change in variance over

the sample.

Figure 5.2: Real House Rent Price: Logarithm and First Difference

(a) Logarithm of Rent Price of Housing. (b) First Difference of Rent Price of Housing.

Figure 5.2 shows the logarithm of the rent price of housing in Norway and the period-by-period change in
the logarith of the rent price. The data spans Q1 1982 - Q2 2022.
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Figure 5.2 shows the logarithm of the rent price of housing in Norway and the period-by-period change in
the logarith of the rent price. The data spans Ql 1982 - Q2 2022.
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Stock of Housing

The estimate of the Norwegian housing stock is the aggregated real capital housing stock

from Statistics Norway found in the KVARTS database. We have data from Q1 1982

to Q2 2022 showing the real capital allocation in Norway in NOK million. To find the

housing stock on a per capital level we divide the aggregated data with the population

data, before taking the logarithm and calculate the first difference of the logarithm. We

see that the housing stock steadily increases throughout the entire sample period, as shown

in figure (5.3a). The data is otherwise stable, and does not seem to have much volatility

over the sample period. However, in figure (5.3b) we see that the period-by-period change

of the logarithm is marked by clear trends in the growth rates. There is also a period of

seemingly higher volatility in growth rates at the beginning of the sample, which seems to

dissipate around 1990.

Figure 5.3: Real Housing Stock: Logarithm and First Difference

(a) Logarithm of Housing Stock. (b) First Difference of the Housing Stock.

Figure 5.3 shows the logarithm of the housing stock in Norway per capita and the period-by-period
change in the logarithm of the housing stock for the sample of Q1 1982 - Q2 2022.

Disposable Income

We also need data on levels of disposable income over the sample period. Here we turn back

to the KVARTS database. The data is the aggregated real disposable income of Norwegian

households from the national accounts in NOK million from Q1 1982 to Q2 2022. For

this thesis, however, the real disposable income per capita is a better choice. Therefore,

we divide the observations on the population data. Moreover, we seasonally adjust the

variable. When examining adjusted and un-adjusted data, the latter contained repeating
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change in the logarithm of the housing stock for the sample of Ql 1982 - Q2 2022.
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seasonal patterns, perhaps influenced by remuneration like yearly bonus payments. As

a result, this data is less stable than seasonally adjusted data. Another argument for

seasonally adjusting the variable is that households probably are more likely to plan their

purchasing decisions for significant purchases with a basis on an average disposable income

over a longer period, rather than the disposable income of a specific quarter. Analysing

the logarithm of disposable income shown in figure (5.4a), we can see that it increases

steadily over the entire sample. However, the period-by-period change in the logarithm in

figure (5.4b) does not seem to indicate any clear trend with a similar mean and standard

deviation across the sample.

Figure 5.4: Real Disposable Income: Logarithm and First Difference

(a) Logarithm of Disposable Income. (b) First Difference of Disposable Income.

Figure 5.4 shows the logarithm of the disposable income in Norway and the period-by-period change in
the logarith of the disposable income.

User Cost of Housing

A critical variable in determining the fundamental house price is the user cost of housing.

This variable is determined as a function of the real interest rate after tax, depreciation of

the housing stock, effective property tax, and risk premium, as laid out in equation (4.3)

in the methodology section.

The real interest rate after tax variable comes from the KVARTS database and is the

average nominal interest rate paid by Norwegian households per quarter, deflated with

CPI to real terms. The after-tax component is calculated by subtracting the tax benefit

associated with paying interests, which is determined by the capital- and interest-tax rate.

Because of the tax benefit, the after-tax interest rate is lower than the pre-tax rate.
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To compute the user cost, we also need an estimation of the rate of depreciation of the

housing stock, which is a proxy for the quarterly necessary investment costs to maintain

a unit of housing for a quarter. The depreciation rate, δ is calculated based on yearly

data from Statistics Norway on housing depreciation and total real capital in housing

from 1970 to 2021 from their table 09181, with real values indexed to 2015 = 100. The

depreciation rate can also be shown in the following way:

Dep.ratet =
Dept
Capt−1

(5.1)

Here, Dep.ratet is the depreciation rate of the housing stock at period t, Dept is the

aggregated depreciation of the Norwegian housing stock at year t, and Capt−1 equals

the aggregated real capital stock in the Norwegian housing stock of the previous period.

Calculating the average depreciation rates across our sample period yields an average rate

of 2, 1155% ≈ 2% on a yearly basis. We assume this depreciation rate to be representative

for the entire sample period. Therefore, with a basis in our calculations we assume a

constant depreciation rate of the housing of (1.02)1/4 − 1 ≈ 0.5% per quarter.

Next, we also need to estimate the effective property tax. Bergman and Sørensen find this

to be a challenging component to quantify, as is the situation in our case. We have not

been able to find any existing data for the effective property tax for the aggregate of the

Norwegian households, and a large variety of factors might plausibly influence it. As such,

this paper follows Bergman and Sørensen in assuming that the effective property tax rate

is constant across the sample. In this regard, our chosen proxy is the mean of the yearly

paid property tax from housing in Norway divided on the total nominal capital allocation

of housing in Norway. The data is available yearly from 2007 to 2021 in Statistics Norway’s

table 06980 and 09181, respectively. This yields an estimated average property tax of

0.143%, approximately corresponding to a quarterly rate of (1.00143)1/4 − 1 ≈ 0.035%

per quarter from 2007 to 2021. Although it should be noted that the property tax as

we know it in Norway today was implemented in 2006, there have been other similar

taxes in Norway in earlier periods (Bergsholm, 2022). We assume that these former tax

policies are of approximately the same magnitude as the existing tax regime, and that our

calculated effective tax rate is constant and representative for the whole sample period.
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The last variable needed to calculate the user cost is the risk and capital constraint

premium, as seen in equation (4.3). Bergman and Sørensen (2021) assume this to be

constant for their sample. We assume it to be zero across our sample. This is equivalent to

assuming agents are risk-neutral and are not significantly influenced by credit constraints.

Thus, we can compute the user cost described in the methodology section. Below, the

user cost of each quarter of the sample is plotted in figure (5.5). As we can see, the user

cost peaked in 1993, rising sharply from low levels at the start of the sample. Since the

peak, user costs have slowly decreased, and are, as of last observation Q2 2022, equal to

−3% , mainly driven by a negative real interest rate component.

Figure 5.5: Real User Cost of Housing.

Figure 5.5 shows the real user cost of housing for the Norwegian households on a quarterly basis from Q1
1982 to Q2 2022. The user cost consists of the after tax real interest rate, depreciation rate of housing
stock, effective property tax and risk- and capital premium.
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Figure 5.5 shows the real user cost of housing for the Norwegian households on a quarterly basis from Ql
1982 to Q2 2022. The user cost consists of the after tax real interest rate, depreciation rate of housing
stock, effective property tax and risk- and capital premium.
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6 Analysis

In this part of the thesis, we aim to answer our research questions by first estimating the

fundamental house price in Norway and testing the robustness of our estimate. Thereafter,

we will analyse whether there is a stable relationship between the fundamental house price

and the actual price and whether this potential relationship is in accordance with what

the theory of fundamental valuation suggests. For the specifics of our computation, we

will primarily rely on the R-packages vars and urca for VAR and VECM, respectively.

Both packages are authored by Pfaff (2008)

6.1 Addressing a Potential Structural Break

As presented in the methodology section, a prerequisite for analysing time series with an

autoregressive model is a stable mean and variance of the variables throughout the sample.

Deviation from this can indicate a structural break in the data, i.e., that some variables

behave differently in different periods. Concerning a VAR model, this would indicate that

the coefficients would be significantly different if estimated on different subsets of the data.

This is problematic, as different behaviour of the variables in subsets of the data will likely

cause some adjustment of the coefficients. The result is that the model loses accuracy in

estimating the actual behaviour of the variables since the model will attempt to create

one uniform estimate (Antoch et al., 2019). When dealing with macroeconomic variables,

reasons for such structural breaks can be a change in collective preferences, tightening

or loosening of the regulatory environment or major geopolitical events, to name a few

(Hailegiorgis et al., 2011).

Assessing the plots of our variables from the previous section on data, we see indications

that we have a structural break in our data set. Figure (5.1) indicates that the behaviour

of actual house prices changed notably in the early 1990s. We also note that when

taking the first differences of the observations in (5.1b), there are indications that the

early observations exhibit a distinguishable pattern. This seems to dissipate towards the

mid-90s. Furthermore, figure (5.3) indicates an apparent change in the variance and the

mean of the housing stock differences. Finally, our calculated variable of user costs also

indicates a break. Figure (5.5) shows how user cost increased towards the early 1990s,
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reaching a peak in Q1 1993, before trending steadily downwards for the remainder of the

sample period.

Comparing these observations with the housing market at the time, it has been reasonably

established that the Norwegian housing market had bubble-like characteristics at that

time, bursting in the early 90s (Eitrheim et al., 2004). The period also coincides with

a loosening of government regulations on housing and financial markets, as mentioned

by Moe et al. (2004). These circumstances add additional weight to the argument of a

meaningful structural break in our data. Furthermore, dealing with bubbles in data is

particularly important from an econometric point of view, as they are clear breaks that

do not explain changes in the fundamental variables (Escobari et al., 2015).

Comparing our data with Bergman and Sørensen, they state that they found a clear

structural break in their data set due to the Swedish housing bubble in the early 1990s,

followed by a banking crisis lasting until 1994. They find these factors to lead to

exceptionally volatile housing prices and user costs for the period. They offer two

solutions, i) estimating a model which can distinguish between the housing markets before

and after this structural shift, or ii) excluding this period from the sample and estimating

the fundamental price starting after this period. They choose to exclude the period from

their estimation of the fundamental pricing model.

6.1.1 Impact for our Analysis

Although there are drawbacks to voluntarily reducing the size of a data set when estimating

a model, the arguments in favour of excluding the early part of our data set from our

estimation are well founded. Thus, we follow Bergman and Sørensen and will not use our

entire sample. Specifically, we estimate our VAR model on data from Q2 1993, which

corresponds to the quarter after the user cost peaked and the house prices bottomed out.

We will later on test this assumption and analyse the implications of estimating with the

entire data set.
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6.2 Estimating the VAR Forecasting Model

6.2.1 Assessing the Specifications of the VAR(p) Model

To calculate the VAR(p) model, we will use the vars package in R, as suggested by Pfaff

(2013). This will allow us to estimate the coefficients needed to compute the price-to-

imputed rent ratio st, which is a key component of the fundamental price calculation

outlined in the methodology section. As part of this process, we will first need to determine

the optimal lag length for our model, as we will be including lagged versions of the variables

in our analysis.

For this purpose, we use the function VARselect(), which returns four estimates of the

optimal lag length for a VAR(p) model based on four different information criteria; Aikake

information criterion (AIC), Hannan-Quinn criterion (HQ), the Final Prediction Error

criterion (FPE), and Schwarz criterion (SC), also known as the Bayesian Information

Criterion (BIC). The test results are shown in table (6.1). We find that the AIC and FPE

criteria indicate an optimal lag length of five, while HQ and SC criteria return a length of

one. The optimal lag length should have no issues in the residuals. Using the HQ and SC

prediction as a lower bound, we use an iterative process starting at one lag, where we

test for autocorrelation, heteroscedasticity, and normality of the residuals. If these tests

indicate significant issues with the residuals, we add one more lag and re-estimate the

VAR(p) model.

Table 6.1: Testing For Optimal Lag Selection for a VAR(p) Model

Test AIC(n) HQ(n) BIC(n) FPE(n)
Lags 5 1 1 5

Table (6.1) displays the four different lag options and their respective proposed lag lengths. We consider
the different information criteria: Aikake information criterion (AIC), Hannan-Quinn criterion (HQ), the
Final Prediction Error criterion (FPE), and Schwarz criterion (SC). n is the number of lags the tests are
evaluated in, which in this case, a maximum lag length of 12.

42 6.2 Estimating the VAR Forecasting Model

6.2 Estimating the VAR Forecasting Model

6.2.1 Assessing the Specifications of the VAR(p) Model

To calculate the VAR(p) model, we will use the vars package in R, as suggested by Pfaff

(2013). This will allow us to estimate the coefficients needed to compute the price-to-

imputed rent ratio S t , which is a key component of the fundamental price calculation

outlined in the methodology section. As part of this process, we will first need to determine

the optimal lag length for our model, as we will be including lagged versions of the variables

in our analysis.

For this purpose, we use the function VARselect(), which returns four estimates of the

optimal lag length for a VAR(p) model based on four different information criteria; Aikake

information criterion (AIC), Hannan-Quinn criterion (HQ), the Final Prediction Error

criterion (FPE), and Schwarz criterion (SC), also known as the Bayesian Information

Criterion (BIC). The test results are shown in table (6.1). We find that the AIC and FPE

criteria indicate an optimal lag length of five, while HQ and SC criteria return a length of

one. The optimal lag length should have no issues in the residuals. Using the HQ and SC

prediction as a lower bound, we use an iterative process starting at one lag, where we

test for autocorrelation, heteroscedasticity, and normality of the residuals. If these tests

indicate significant issues with the residuals, we add one more lag and re-estimate the

VAR(p) model.

Table 6.1: Testing For Optimal Lag Selection for a VAR(p) Model

Test AIC(n)
Lags 5

HQ(n)
l

BIC(n)
l

FPE(n)
5

Table (6.1) displays the four different lag options and their respective proposed lag lengths. We consider
the different information criteria: Aikake information criterion (AIC), Hannan-Quinn criterion (HQ), the
Final Prediction Error criterion (FPE), and Schwarz criterion (SC). n is the number of lags the tests are
evaluated in, which in this case, a maximum lag length of 12.



6.2 Estimating the VAR Forecasting Model 43

Using this process, we find that a lag length of five is desirable for our sample period.

This is in accordance with the optimal lag length indicated by the AIC and FPE criteria,

which is reassuring. The residual tests for this VAR(5) model are plotted in table (6.2).

Regarding autocorrelation, we can see that when estimating the VAR model with five

lags, the null hypothesis of no autocorrelation of the Breusch-Godfrey test cannot be

rejected as we get a p-value of 0.341. There are no issues with heteroscedasticity either, as

a p-value of 0.4462 from the ARCH test indicates that our residuals have little issue with

changes to the mean and variance across the sample. Lastly, the VAR model seems to

fulfil all requirements of multivariate normality of the residuals, with a p-value of 0.4471

of the Jarque-Berra multivariate normality test and exhibiting no clear indications of

kurtosis or skewness.

Table 6.2: VAR Residual Tests for Autocorrelation, Heteroscedasticity and Normality

Autocorrelation Heteroscedasticity Normality
Test LM(5) ARCH(5) Jarcue-Bera Skewness Kurtosis

p-value 0.341 0.4462 0.4471 0.3103 0.5542

Table (6.2) displays the results of our Breusch-Godfrey test of autocorrelation, the ARCH-test of
heteroscedasticity, the Jarque-Bera test for normality, as well as multivariate tests for skewness and
kurtosis.

6.2.2 Granger Causality Test of the VAR Variables

Going further, we decide to conduct a Granger Causality test on our VAR(5) model. As

mentioned in the theoretical framework, this should not be mistaken for actual causality

but as predictive causality. Therefore we instead refer to variables as "Granger-causing"

other variables. Applying the function causality() from the vars-package, we run the tests

and list the results in table (6.3). Here the null hypothesis is that a variable does not

Granger-cause the other variables. The table shows that the variables "Real price" and

"Real rent price" are evaluated as significant in estimating the other variables at a 5%

confidence level. This is somewhat outside what we would expect as, per our methodology,

we assume that it will be the fundamental factors γt, ∆yt, and ∆ht, which would cause

changes to real price (pat ) and not the opposite. 16

16Regarding one variable Granger-causing the other variables, we note that we cannot separate which
specific variables are Granger-caused by the variable.
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Table 6.3: Granger Causality Tests for our VAR(5) Variables

Variable p-value
∆pat Real price 0.03904**
∆rt Real rent price 0.01738**
γt User cost 0.2614
∆ht Housing stock 0.7539
∆yt Disposable income 0.1797
* p<0.10, ** p<0.05, *** p<0.01

Table (6.3) displays the Granger causality tests with the null hypothesis that a given variable does not
Granger-cause the other variables.

6.2.3 Considering the Stability of the VAR(5) Model

The theoretical procedure by which we estimate our VAR(5) model is based on the

assumption that our model is stable. We want to use the coefficient output of the

VAR(5) model in order to calculate the companion matrix A, which we need to compute

a fundamental price estimate. However, this requires that the VAR(5) model is stable.

This implies that there must be no unit roots in our data and that the model should

ideally be full rank. To formally test these assumptions, we conduct a Johansen trace

test and a Johansen eigen test for cointegration. The results of these tests are plotted

in table (6.4), where we also report the eigenvalues (λr) for each corresponding rank. In

our VAR(5) model, a full rank would imply that five cointegration vectors exist between

our five variables. Analysing the output in table (6.4), our results indicate that we can

at most reject the null hypothesis of up to 2 cointegrations at 5% significance level in

our trace test. Meanwhile, the eigen test rejects a rank of 1 at the same critical level.

These tests suggests that our rank is likely 3 or 2, and we can thus not conclude that our

VAR(5) model is full rank.
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Table 6.4: Cointegration Tests of VAR Model Variables.

Rank ≤ r Eigenvalue (λr) Trace test Eigen test
0 0.360 127.41*** 49.57***
1 0.271 77.83*** 35.09**
2 0.205 42.74** 25.44*
3 0.103 17.30 12.02
4 0.047 5.28 5.28
* p<0.10, ** p<0.05, *** p<0.01

Table (6.4) displays the results of the Johansen Trace test and the Johansen Eigen test. The eigenvalues
are provided alongside critical values of the tests, respectively. The test statistics are calculated on
(n = 116) observations.

Noting these results, we verify if other tests can indicate whether our model is stable.

Chiefly, we must check the modulus of the companion matrix of the coefficients from the

VAR(5) model to verify if there are any unit roots in our data. If there are, we would

expect to find unit roots larger than one in absolute terms, i.e., outside the unit circle.

This would be a major issue, as this would imply that the matrix of the coefficients is not

invertible and thus make the companion matrix unstable. Therefore, we test for unit roots

in our data using the function roots() from the vars-package. According to Pfaff, stability

in a VAR model implies that all eigenvalues have a modulus of less than one (2008). This

is the same as no unit roots with an absolute value more than or equal to one. Table (6.5)

below shows the calculated eigenvalues of our VAR(5) model, totalling 25 from our five

variable models with five lags. We find that the largest eigenvalue has a value of 0.934.

This indicates that our VAR(5) model might indeed be stable and able to be inverted, as

needed to compute the fundamental price. However, we do see that the largest modulus is

quite large. Therefore, we test the VAR(5) model by varying the number of lags. Testing

iteratively with a lag length of 1 up to 8, our VAR model returns eigenvalues of at most

0.96. Therefore, we move on with the analysis under the presumption that our VAR(5)

model is stable and able to be inverted.
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Table 6.5: Eigenvalues of the VAR(5) Model

0.934 0.907 0.881 0.881 0.864
0.864 0.831 0.831 0.808 0.808
0.797 0.797 0.767 0.767 0.735
0.735 0.653 0.653 0.619 0.619
0.615 0.615 0.518 0.518 0.376

Table (6.5) displays the eigenvalues generated by the VAR(5) model. They are sorted from largest
modulus to smallest. An eigenvalue | ≥ 1| signifies the model is not stable, i.e., unit roots larger than one.

6.2.4 Impact for our Analysis

Comparing our findings for rank and unit roots, we get somewhat conflicting results. The

indication that our model might not be full rank is worrisome. At the same time, the

eigenvalues tell us that the companion matrix A is likely stable. We opt to move forward

with our fundamental price analysis considering these factors. However, to account for the

implication of less than full rank, after arriving at a fundamental price, we will estimate a

vector error correction (VEC) representation of our VAR(5) model under the assumption

of reduced rank. Specifically, we will estimate a VEC under the assumption that rank

is equal to two, as that is the lowest level of cointegration we cannot reject with a 5%

confidence level in both tests. If the estimated fundamental price is similar to the one

predicted by our VAR(5) model, it will give us more confidence in the stability and

reliability of the model for further analysis.

6.3 Estimating The Fundamental Price

After we have estimated the VAR model and found the tests of the model’s stability to be

adequate for further analysis, our next step is to compute the fundamental price estimate

as outlined in our methodology. As per our equation (4.22), we need an estimate of the

companion matrix A in order to rewrite the VAR(5) model into its VAR(1) format. We

extract the coefficients from the VAR(5) model and recreate the corresponding companion

matrix. The matrix is shown in its entirety in table (A6.1) in the appendix. One

advantageous point regarding calculating the fundamental price this way is that it reduces

the loss of observations from potentially five observations to one.
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After computing the companion matrix A, we create the g1 and g2 vectors with the

elasticity parameters ϵY and ϵR. Regarding their value we follow Bergman and Sørensen

(2021) and Hott and Monnin (2008) in assuming a base case with ϵY = ϵR = 1. 17 After

this, we still need to calibrate the adjustment parameter Ψ to arrive at the most accurate

estimation of st. In order to compute this, we compute an iterative loop where we calculate

st using equation (4.32) given various Ψ values. Using this method, we find that a Ψ of

0.73 is the optimal value in order to adjust st such that average price-to-imputed-rent

ratio is as close to the average user cost as possible, in line with our methodology. Having

calculated the price-to-imputed-rent ratio, we compute the fundamental price time series

estimate as per equation (4.33). Finally, we plot the resulting time series below in figure

(6.1).

Figure 6.1: Estimate of Fundamental Price

Figure (6.1) displays the estimated fundamental price for the Quarters Q2 1993 - Q2 2022. On the y-axis
we have plotted the fundamental price.

17We will later test the robustness of these estimates through a sensitivity analysis of ϵR.
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Figure (6.1) displays the estimated fundamental price for the Quarters Q2 1993 - Q2 2022. On the y-axis
we have plotted the fundamental price.

1 7 W e will later test the robustness of these estimates through a sensitivity analysis of E R .
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Naturally, the fundamental price has limited interpretability and use in the analysis without

being plotted against the real price. However, as we discussed earlier, when testing the

VAR model for stability, we will first compute a vector error correction representation

(VEC) under the assumption of rank = 2. If this test indicates a sufficiently stable model,

despite its lack of stationary, then we continue our analysis and can reasonably draw

insights from comparing the fundamental and actual price.

6.3.1 A Vector Error Correction Representation

In order to compute the VEC representation, we first utilize the ca.jo() function from the

urca-package, which produces a VECM estimate. Here we compute the VECM under the

condition of rank equal to two. We then transform the VECM estimation into a VAR in

levels, using the vec2var()-function. We now have the coefficients of a VAR model on our

data, which have been computed under the assumption of rank being two.

Having acquired the coefficients, the remaining steps in computing the fundamental

estimate are the same as with the original VAR(5) model. We calculate the companion

matrix in equation (4.23) given the new coefficients and conduct the iterative loop for

the price-to-imputed rent ratio. We find that a slightly lower Ψ value of 0.71 is a more

appropriate adjustment factor in this case and thus calculate the price-to-imputed rent

ratio st. Using this estimate, we find the VEC representation’s estimate of fundamental

price. Below in figure (6.2) we plot the VAR and the VEC estimates of fundamental price.

The two time series seem to be considerably aligned from a purely visual analysis. The

VEC estimate can be said to be slightly more volatile, going beyond the VAR model in

most peaks and dips in the data. However, there does not seem to be a considerable

deviation.

48 6.3 Estimating The Fundamental Price

Naturally, the fundamental price has limited interpretability and use in the analysis without

being plotted against the real price. However, as we discussed earlier, when testing the

VAR model for stability, we will first compute a vector error correction representation

(VEC) under the assumption of rank = 2. If this test indicates a sufficiently stable model,

despite its lack of stationary, then we continue our analysis and can reasonably draw

insights from comparing the fundamental and actual price.

6.3.1 A Vector Error Correction Representation

In order to compute the VEC representation, we first utilize the ca.jo() function from the

urea-package, which produces a VECM estimate. Here we compute the VECM under the

condition of rank equal to two. We then transform the VECM estimation into a VAR in

levels, using the vec2var()-function. We now have the coefficients of a VAR model on our

data, which have been computed under the assumption of rank being two.

Having acquired the coefficients, the remaining steps in computing the fundamental

estimate are the same as with the original VAR(5) model. We calculate the companion

matrix in equation (4.23) given the new coefficients and conduct the iterative loop for

the price-to-imputed rent ratio. We find that a slightly lower value of 0.71 is a more

appropriate adjustment factor in this case and thus calculate the price-to-imputed rent

ratio S t , Using this estimate, we find the VEC representation's estimate of fundamental

price. Below in figure (6.2) we plot the VAR and the VEC estimates of fundamental price.

The two time series seem to be considerably aligned from a purely visual analysis. The

VEC estimate can be said to be slightly more volatile, going beyond the VAR model in

most peaks and dips in the data . However, there does not seem to be a considerable

deviation.



6.3 Estimating The Fundamental Price 49

Figure 6.2: VAR and VEC Representation

Figure (6.2) displays the estimated fundamental price of the VAR model for the Quarters Q2 1993 - Q2
2022 under the assumption of full rank together with the VEC model estimate under the assumption that
rank = 2.

We perform additional quantitative analysis on the two time series estimates to check for

any significant differences that may not be apparent in the visual plot. The summary

statistics of both series are displayed in Table (6.6). Upon comparing the values, we see

that the statistics are consistent with what we can see from Figure (6.2), indicating that

the time series have roughly the same mean and standard deviation. Therefore, our VAR

model seems to provide a stable estimate of the fundamental price, even when considering

the potential non-stationarity of the data. Based on these findings, we can continue with

the assumption that the model is stable.
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Figure (6.2) displays the estimated fundamental price of the VAR model for the Quarters Q2 1993 - Q2
2022 under the assumption of full rank together with the VEC model estimate under the assumption that
r a n k = 2.

We perform additional quantitative analysis on the two time series estimates to check for

any significant differences that may not be apparent in the visual plot. The summary

statistics of both series are displayed in Table (6.6). Upon comparing the values, we see

that the statistics are consistent with what we can see from Figure (6.2), indicating that

the time series have roughly the same mean and standard deviation. Therefore, our VAR

model seems to provide a stable estimate of the fundamental price, even when considering

the potential non-stationarity of the data. Based on these findings, we can continue with

the assumption that the model is stable.
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Table 6.6: Descriptive Statistics of VAR and VEC

Variable Min Median Mean Max St. Dev
VAR -0.14398 -0.01848 -0.01808 0.09516 0.05848
VEC -0.15937 -0.01591 -0.01916 0.11870 0.06625

Table (6.6) displays a comparison of descriptive statistics of the fundamental price calculated by our VAR
(5) model and the VEC model representation estimate.

6.4 Fundamental Versus Actual House Price

With the fundamental price estimated and evaluated as built on a stable VAR(5) model,

we can compare it to the actual house price and analyse the degree to which the Norwegian

housing market is in line with what fundamentals would suggest. In figure (6.3) below,

we have plotted our fundamental house price against the log of the actual house price.

Additionally, we apply 95% confidence bands to the fundamental house price.

From the plot, we can see that the fundamental house price at the start of the sample

was decently higher than the actual price levels. This is a reasonable estimate, as we have

estimated the fundamental price on a subset of the data beginning at the lowest point after

the bursting of the Norwegian housing bubble in the early 90s. We can hypothesize that

the real price would have dropped significantly more than the fundamentals underpinning

it. The two prices then gradually converge, and the actual price briefly crosses above the

fundamental price for the first time in Q4 2000. Then, in Q3 2001, we see a diverging

path, as the fundamental price drops significantly, bottoming out in Q2 2002. However,

we note that the difference is still comfortably within the limits of the 95% confidence

bands of the fundamental price. The two time series then converge again, largely in sync

until 2006, when they diverge. Interestingly, this time we see a marked discrepancy in

price development. The fundamental price declined sharply, hitting a low in Q3 2007,

before recovering swiftly. Meanwhile, the actual price started to rise at a faster growth

rate, hitting a peak in the same quarter, before beginning a slow decline until Q4 2008. In

this case, we can see that the actual price verges on crossing the upper confidence band

at the peak.
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Table 6.6: Descriptive Statistics of VAR and VEC

Variable
VAR

Min Median Mean
-0.14398 -0.01848 -0.01808

Max
0.09516

St. Dev
0.05848

VEC -0.15937 -0.01591 -0.01916 0.11870 0.06625

Table (6.6) displays a comparison of descriptive statistics of the fundamental price calculated by our VAR
(5) model and the VEC model representation estimate.

6.4 Fundamental Versus Actual House Price
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we can compare it to the actual house price and analyse the degree to which the Norwegian

housing market is in line with what fundamentals would suggest. In figure (6.3) below,
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Additionally, we apply 95% confidence bands to the fundamental house price.

From the plot, we can see that the fundamental house price at the start of the sample
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Figure 6.3: Fundamental and Actual House Prices

Figure (6.3) displays the estimate of fundamental house prices generated by the VAR model together
with the logarithm of the actual house price. The confidence bands are at the 95 % significance level,
represented by two standard deviations added or subtracted to the fundamental price.

Analysing changes in the variables utilised to calculate fundamental price, we find that

rises in user costs likely drive the decline of fundamental price in both 2001 and 2006.

We explore further and compare our user cost variable with the statistics on inflation

we received from Statistics Norway, as well as the historical development of the policy

rate set by Norges Bank (2022). We find that in the case of the 2001 drop, there were

high interest rates and inflation initially. However, when inflation dropped, the interest

rates maintained a high level for some time. Meanwhile, in 2006, we find that this period

coincides with a sharp increase in the policy rate, increasing from 2.75% in Q2 2006, to

4.5% a year later. We expect that the policy rate will influence Norwegian household

mortgage rates, a key component in the user cost. Furthermore, inflation fell significantly

in 2007, giving further credence to a significant increase in the real user costs of the period.
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Figure (6.3) displays the estimate of fundamental house prices generated by the VAR model together
with the logarithm of the actual house price. The confidence bands are at the 95 % significance level,
represented by two standard deviations added or subtracted to the fundamental price.

Analysing changes in the variables utilised to calculate fundamental price, we find that

rises in user costs likely drive the decline of fundamental price in both 2001 and 2006.

We explore further and compare our user cost variable with the statistics on inflation

we received from Statistics Norway, as well as the historical development of the policy

rate set by Norges Bank (2022). We find that in the case of the 2001 drop, there were

high interest rates and inflation initially. However, when inflation dropped, the interest

rates maintained a high level for some time. Meanwhile, in 2006, we find that this period

coincides with a sharp increase in the policy rate, increasing from 2.75% in Q2 2006, to

4.5% a year later. We expect that the policy rate will influence Norwegian household

mortgage rates, a key component in the user cost. Furthermore, inflation fell significantly

in 2007, giving further credence to a significant increase in the real user costs of the period.



52 6.4 Fundamental Versus Actual House Price

Comparing the time series further, we see that the real price was more or less aligned

with fundamentals from this point on and until Q3 2016. At that point, the fundamental

price hit a peak which would only be surpassed by our last quarter, Q2 2022. From late

2016, the figures indicate that actual and fundamental price started to diverge. The gap

reached its greatest size in Q1 2020. The figure indicates that the actual price crossed

the upper 95% confidence band for a limited number of quarters. After that, we see a

general convergence until the end of the sample. However, it is driven purely by a marked

increase in the fundamental price. At the end of the sample period, fundamental price is

still considered below actual price levels, but the gap is insignificant at a 95 % confidence

level.

Overall, we see that the fundamental price is fairly consistent with the actual price over

the sample period, although there are periods of diverging trends. Moreover, we find that

the difference between the mean actual price p̄a and mean fundamental price pf is only

≈ 2%. We note that this is similar to the results of Bergman and Sørensen.

6.4.1 Testing Sensitivity of the Fundamental Price

Our estimate of fundamental price is based on several important assumptions. Therefore,

it is useful to test our estimate’s robustness to variations to some of these assumptions. In

this part, we will conduct a sensitivity analysis of our price estimate given variations of the

long-run imputed rent elasticity of housing demand, ϵR, and the adjustment parameter Ψ.

6.4.1.1 Sensitivity of Elasticities

When testing the sensitivity of the elasticities, we follow Bergman and Sørensen in keeping

ϵY constant and varying ϵR. This is further motivated by Englund (2011) who emphasises

that ϵY is equal to 1 while ϵr is less than 1. Therefore, in figure (6.4) below, we have

estimated the fundamental price for the three instances of ϵR = 1.0, 0.7 & 0.5. Looking at

the plot we see that there are some changes with a reduced elasticity. The figure suggests

that a lower elasticity will return a lower fundamental valuation in the early parts of the

data set, until the early 2000s. The estimates are then more or less in line until 2010

when we see that the lower elasticities indicate a consistently higher fundamental estimate

until 2016. From then on until the end-of-sample, the estimates are again in line with
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each other. More generally, we see that the discrepancy is higher with a larger difference

in the elasticities.

Figure 6.4: Fundamental House Prices With Different Elasticities

Figure (6.4) displays the fundamental house price and the effect of changes to the elasticity parameter ϵR.
The test are for sensitivity of it being 1, 0.7, 0.5.

All things considered, we see that plot seems to indicate that there is some effect on

the final fundamental price of a variation in ϵR. However, the differences are not overly

large. Furthermore, the fact that the periods of increased differences return estimates that

are both higher and lower than the base case (ϵR = 1) suggests that the estimate is not

overly sensitive to changes in elasticity, as the mean of the time series is not meaningfully

affected. Overall, we presume that the fundamental price estimate is robust to variances

of the long-run imputed rent elasticity of housing demand.
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are both higher and lower than the base case (en = l) suggests that the estimate is not

overly sensitive to changes in elasticity, as the mean of the time series is not meaningfully

affected. Overall, we presume that the fundamental price estimate is robust to variances

of the long-run imputed rent elasticity of housing demand.
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6.4.1.2 Sensitivity of Adjustment Parameter Ψ

Next, we test the robustness of our estimate to variations of Ψ. This value must be between

0 and 1, as we showed in the methodology section. We test our chosen Ψ value of 0.73

against the following Ψ values: 0.63, 0.68, 0.78, 0.83, which equal a 0.05 and 0.10 variation

around the optimal level. The resulting variations of price estimates are plotted in figure

(6.5) below. Analysing the effects of changes in the adjustment parameter, we note that

the effect seems to be most notable in the first half of our estimate, with the estimates

converging into a somewhat smaller overall plain from then on. However, evaluating the

effect more broadly, it does not seem to be large variances nor any meaningful changes

to the directions of fundamental price. We therefore conclude that the estimate is fairly

robust for changes in Ψ.

Figure 6.5: Fundamental House Price and Sensitivity of Ψ Estimate

Figure (6.5) displays the fundamental house price and the effect of changes of in Ψ. The sensitivity of
this parameter is tested by adding and subtracting 0.05 and 0.10 to our base estimate. The base case Ψ
has a value of 0.73.
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Figure (6.5) displays the fundamental house price and the effect of changes of in '1!. The sensitivity of
this parameter is tested by adding and subtracting 0.05 and 0.10 to our base estimate. The base case '1!
has a value of 0.73.
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6.4.2 Fundamental House Price and the Effect of Sub-Samples

Our analysis focuses on a subsample from Q2 1993 to Q2 2022. However, as mentioned

at the beginning of the analysis, we will now evaluate the fundamental price with the

whole sample set, including Q1 1982 to Q1 1993. The choice to limit the scope of the data

set was made on the assumption of a potential structural break in the data. Thus, we

would expect to see apparent differences in the coefficients and, thus, the estimates. We,

therefore, compare our above estimate with an estimate of the fundamental price for the

complete sample (Q1 1982 to Q2 2022) and the disregarded sample period (Q1 1982 to

Q1 1993).

We construct the two new estimates following the computational method explained earlier

in the analysis, with the new input data. The results are plotted below in figure (6.6),

together with the actual price over the entire period. As the VAR model has been

estimated on scaled data, we subtract the mean of the full actual price and the full sample

plot in the period (Q2 1982 to Q1 1993) and for the period (Q3 1993 to Q2 2022).18 So as

to remove doubt on how to interpret the plot, we distinguish between the two demeaned

subsamples with a vertical line at the point of junction.

When analysing the graph, we assume that if there was no structural break, then the

expectation would be that the full sample estimate returns a somewhat similar estimate

in both sub-periods as the period-specific estimates. Thus, comparing the full sample and

the subset for 1982-1993, we would expect to see at most minor differences. However,

there seems to be a clear deviation between the two estimates, starting at the peak of the

housing bubble in the Norwegian market. This could indicate that the data are structurally

different, although we note that there is not an overly major difference. Comparing the

full sample and our chosen sample from 1993 to 2022, we find further discrepancies. The

plots indicate that the inclusion of earlier observations affects the coefficients such that

the full sample estimates a higher fundamental price on average than our chosen subset.

This further strengthens the argument of the estimated price being sample dependent in

our case.

18We note that the fundamental price is now estimated as a VAR(1) model, which requires an initial
period in order to begin estimation, thus all estimates on the subsets are one period ahead.
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Figure 6.6: Fundamental House Prices on Different Sub-Samples

Figure (6.6) displays the fundamental house price and the effect of calculating the estimate on different
sub-samples. We here test how sample Q1 1982 - Q1 1993, Q1 1982 - Q2 2022, and Q3 1993 - Q2 2022.
The actual price is also plotted for reference for the entire period. All sub-samples are demeaned, so
that the individual period has a mean of zero. The full sample uses the estimated Ψ so that we can see
to what degree it is useful in predicting the results in the main sample. For the disregarded sample we
re-estimate Ψ to get an as precise estimate as possible on the fundamental price of the period.

In addition to an analysis of the fundamental estimations, we investigate other structural

differences. Specifically, differences in unit roots can inform us of underlying differences in

the subsets. As such we use the function roots() to find the eigenvalues of the Q2 1982 -

Q1 1993 estimate. We find that the VAR model has eigenvalues larger than one19. This

indicates that the companion matrix of the coefficients is unstable. Considering these

aspects, we find that there seems to be reasonable evidence for our choice of estimating

the fundamental price the Q2 1993 - Q2 2022 subset of the data.

19The complete set of eigenvalues belonging to this subset are presented in the Appendix table (A8.1)
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Figure (6.6) displays the fundamental house price and the effect of calculating the estimate on different
sub-samples. We here test how sample Ql 1982 - Ql 1993, Ql 1982 - Q2 2022, and Q3 1993 - Q2 2022.
The actual price is also plotted for reference for the entire period. All sub-samples are demeaned, so
that the individual period has a mean of zero. The full sample uses the estimated \[I so that we can see
to what degree it is useful in predicting the results in the main sample. For the disregarded sample we
re-estimate \[I to get an as precise estimate as possible on the fundamental price of the period.

In addition to an analysis of the fundamental estimations, we investigate other structural

differences. Specifically, differences in unit roots can inform us of underlying differences in

the subsets. As such we use the function roots() to find the eigenvalues of the Q2 1982 -

Ql 1993 estimate. We find that the VAR model has eigenvalues larger than one19. This

indicates that the companion matrix of the coefficients is unstable. Considering these

aspects, we find that there seems to be reasonable evidence for our choice of estimating

the fundamental price the Q2 1993 - Q2 2022 subset of the data.

1 9 T h e complete set of eigenvalues belonging to this subset are presented in the Appendix table (AS.l)
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6.5 Analysing the Interaction of Actual and

Fundamental House Prices

With the fundamental house price determined, we can analyse the relationship between

the fundamental and actual price in the Norwegian housing market, as per our second

research question. Concretely, we are looking to evaluate whether there is a cointegration

relationship between the fundamental and actual price. We are also interested in assessing

the nature of the potential relationship. As outlined in section (4.5.2) in the methodology,

we will expect a convergence towards an equilibrium, in the long run, and for the

convergence to be purely one-sided.20 I.e., the actual price is influenced by levels of

fundamental price, while the fundamental price is independent of the actual price. In this

part of the analysis we aim to analyse both the existence of a potential relationship, and

whether theoretical assumptions on the nature of the relationship hold true.

6.5.1 Finding the Optimal Lag Length for VECM

In order to analyse the relationship between fundamental and actual price, we must

model the relationship between the time series. As laid out in our methodology, we follow

Bergman and Sørensen in doing this through estimating a vector error correction model

(VECM). Our inputs in the VECM is the fundamental price and the actual house price

between 1993 and 2022. We thus combine these time series in a common a vector, qt.21

Before we can model a VECM and test the validity of imposing restrictions on the α and

β vectors however, we must first decide on the lag length of the new model representation.

Drawing upon the theoretical framework of VECMs, we can find an estimate of lag length

from the underlying bivariate VAR model.22 Thus, we again make use of the vars-package

and the function VARselect(), which returns four estimates of the optimal lag length for

a potential VAR model of pat and pft . In table (6.7) we see the suggested lag lengths of

the four returned information criteria. We see that three tests out of four indicate a lag

length of five, while the SC (BIC) tests indicate an optimal lag length of 2.

20In the short- and medium run, however, temporary housing bubbles and other factors of friction
might create deviations counteracting this convergence.

21The definition of the vector is qt ≡ [pat , p
f
t ]

′, and was introduced in section (4.5).
22As mentioned in section (3.3), a VECM is a VAR model in first differences, (I(1). The changes in qt

per period (∆qt) is therefore the estimated vector.
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Table 6.7: Test for Optimal Lag Selection of VECM

Test AIC(n) HQ(n) SC(n) FPE(n)
Lags 5 5 2 5

Table (6.7) displays the four different proposed lag lengths for our VECM. We in this context opt for the
lag length indicated by AIC HQ and FPE, and choose 5 as our lag length.

For estimating the lag length of the VECM, we put a high emphasis on the different

information criteria. This is because we are interested in testing the theoretical relationship

between real and fundamental price. Assessing which lag length to use, we consider that

three out of four information criteria return the same lag length, including the AIC.

Therefore, although there are advantages to using the SC, we ultimately choose to move

forward with a lag length of 5 for the VECM.23 We conduct tests of the residuals, and

find that there is no issue with autocorrelation nor normality in our estimate. The tests

do note some issues with heteroscedasticity, but overall we find the lag length as suitable

for our analysis.24

6.5.2 Testing Whether Cointegration Rank Equals One

Now that we have the found the suitable specifications for our VECM, we can evaluate

whether there is a cointegration vector between the actual house price, pat , and the

fundamental house price, pft . Using the ca.jo()-function we estimate our VECM.

Importantly, we clarify that the lag length will be 4, and not 5 as returned by the

tests above. This is because the tests were for the underlying VAR in levels. However,

when estimating the VECM, lag length is (p− 1) of a VAR model.25

The results are shown in table (6.8). We find that a rank of at most one cointegration

cannot be rejected at a 5% confidence level. Meanwhile the hypothesis of at most 0

cointegrations can be rejected at the 1% level. Therefore, we reasonably assume that we

have one cointegration vector in our model.

23Schwarz Criterion is considered to have a higher probability of containing the "true" model when
estimating a model to fit historical data (Chakrabarti and Ghosh (2011).

24We have included the results of these residual tests in table (A4.1), which can be found in the
Appendix.

25We note that this is also how the ca.jo()-function computes the VECM, i.e., the input is p.
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three out of four information criteria return the same lag length, including the AIC.

Therefore, although there are advantages to using the SC, we ultimately choose to move

forward with a lag length of 5 for the VECM.23 We conduct tests of the residuals, and

find that there is no issue with autocorrelation nor normality in our estimate. The tests

do note some issues with heteroscedasticity, but overall we find the lag length as suitable

for our analysis.24

6.5.2 Testing Whether Cointegration Rank Equals One

Now that we have the found the suitable specifications for our VECM, we can evaluate

whether there is a cointegration vector between the actual house price, pf, and the

fundamental house price, p{. Using the ca.jo()-function we estimate our VECM.

Importantly, we clarify that the lag length will be 4, and not 5 as returned by the

tests above. This is because the tests were for the underlying VAR in levels. However,

when estimating the VECM, lag length is (p - l) of a VAR model.25

The results are shown in table (6.8). We find that a rank of at most one cointegration

cannot be rejected at a 5% confidence level. Meanwhile the hypothesis of at most 0

cointegrations can be rejected at the l% level. Therefore, we reasonably assume that we

have one cointegration vector in our model.

2 3 S c h w a r z Criterion is considered to have a higher probability of containing the "true" model when
estimating a model to fit historical data (Chakrabarti and Ghosh (2011).

2 4 W e have included the results of these residual tests in table (A4.1), which can be found in the
Appendix.

2 5 W e note that this is also how the ca.jo()-function computes the VECM, i.e., the input is p.
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Table 6.8: Cointegration Tests for VECM

Rank ≤ r Eigenvalue Trace test
0 0.179 30.64***
1 0.076 8.72*

* p<0.10, ** p<0.05, *** p<0.01

Table (6.8) displays the results of the Johansen Trace test, where the null hypothesis is a rank lower than
or equal to the evaluated rank. The eigenvalues are also provided.

We display the loading matrices of the estimated VECM in table (6.9) below. These are

the α and β matrices mentioned previously. The β matrix has been normalized so that

the first row is equal to one. The VECM has been estimated with a constant, but no

linear trend. We note that this VECM is unrestricted, i.e., αβ are allowed to freely choose

the optimal value.

Table 6.9: Estimated αβLoading Matrices for Unrestricted VECM

Adjustment Coefficients α
Variable pa.l1 pf .l1 Constant

pa.l1 -0.0201 0.0004 0.0000
pf .l1 0.0041 0.0786 0.0000

Coefficients of the Cointegration Matrix β
Variable pa.l1 pf .l1 Constant

pa.l1 1.0000 1.0000 1.0000
pf .l1 -1.1953 -2.2709 0.5251

Constant -0.1360 -0.0199 0.0559

Table (6.9) displays the estimated α and β loading matrices of the unrestricted VECM, where we have
allowed for a constant, but not no linear trend. The VECM is estimated on (n = 116) number of
observations.

6.5.3 Imposing Cointegration Restrictions On α and β

The next issue at hand is imposing the necessary restrictions on our VECM, such that it is

consistent with the theory of fundamental valuation. We begin by referring back to table

(6.9), where we returned the matrices of the unrestricted VECM. It is these matrices that

will now be restricted, so that the relationship can be estimated under the assumption

that the relationship is of a specific nature.

Here we follow the method we outlined in our methodology. The restrictions on β are

imposed on the assumption that there exists one cointegration relationship between

the variables such that β = [1,−1], meaning the variables are mean-reverting.26 The

26We note that restrictions can be thought of as functionally removing columns of the identity matrix
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restrictions on the adjustment coefficient vector α, such that α1 < 0 and α2 = 0, imply

that the fundamental house price is unaffected by a gap in prices, while the actual house

price is assumed to be negatively influenced by a gap between the actual and fundamental

house price. 27

Using the ablrtest()-function from the urca-package, we implement the chosen restrictions

to the α and β matrices28. The results are shown below in table (6.10), where we

plot the test statistic and p-value of the log-likelihood test, as well as the returned

eigenvalues. The null hypothesis is that a VECM based on these restrictions is a plausible

representation of the relationship between real and fundamental price, given the existence

of one cointegration.

Table 6.10: Hypothesis and Result of VECM

Hypothesis Test stat p-value λ̃1 λ̃2

H1,1|H1(r = 1) 0.2004 0.6544 0.1777 0.0000

Table (6.10) Displays the test statistics, p-value and eigenvalues for the restricted VECM. The null
hypothesis H1,1|H1(r = 1) is for these restrictions to return α and β values which are significant, i.e., the
restricted VECM can plausibly describe the relationship between fundamental and actual price. This is
given a cointegration rank of one between the two time series.

The p-value suggests that the hypothesis of the restrictions on α and β cannot be rejected.

In equation (6.1), we show the returned estimate of the α and β vectors of the restricted

VECM. Here, we see that α1 takes a value less than one, which fits neatly with the

assumption of a negative reaction by actual price to an increase in the gap. Overall, we

see that the theoretical assumptions seem to hold.29

α =


−0.0178

0.0000


 , β =




1.0000

−1.0000

−0.1478


 (6.1)

of β, as shown by Pfaff in his book "Analysis of Integrated and Cointegrated Time Series with R (2008).
27α1 and α2 refer to real and fundamental price, respectively, because it refers to the row order of the

vector qt.
28The matrices of the restrictions are provided in the Appendix in section (A7)
29As we have included a constant term estimating the VECM, the cointegration vector β also includes

the constant -0.1478
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6.5.4 Evaluating Cointegration and Gap Stationarity Over Time

In addition to determining the significance of the tests for the subset of 1993-2022 as a

whole, it is useful to evaluate the test scores over time. By doing such an analysis, we can

evaluate to what degree the relationship between the variables is stable throughout the

sample. If either the hypothesis of a cointegration relationship or stationarity of the gap

can be rejected at different points during the period, then this can indicate a disconnect

between the real and fundamental price. We follow Bergman and Sørensen and test for

cointegration and restrictions on a smaller sample set. We then recursively add one more

observation and recalculate, until we reach the end of the sample.

We begin by dividing our data set into a training and a test data set. We decide to

split the sets such that roughly 2/3 of the observations are in the training set, and the

remaining 1/3 in the test set.30 In figure (6.7), we plot the recursively estimated scores

of both statistical tests. It is useful to briefly explain what the figure shows. In the

trace test plot in (6.7a), we follow Bergman and Sørensen in plotting the test level of the

probability for both r = 0 and r ≤ 1. To ease visual interpretability, we divide the 5%

critical level score by the test statistics for each test. The result is that if either of the test

statistic has a value less than one, then that implies a rejection of that null hypothesis.

Correspondingly, a value above one, indicates that we cannot reject the null hypothesis.

Meanwhile, figure (6.7b) shows the evolution of the log-likelihood test’s p-value of the

restricted VECM being a plausible representation of the cointegration relationship, where

we have added horizontal lines at the 5 and 10% significance level.

30This split corresponds to the period Q3 1993 : Q4 2012 and Q1 2013 : Q2 2022, respectively.
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Figure 6.7: Recursive Trace Test and LR Test.

(a) Recursive Trace Test (b) Recursive LR plot

Figure (6.7a) displays the recursive Trace test where we test the null hypotheses that the rank (number
of cointegrations) is zero or one. Figure (6.7b) displays the recursive likelihood-ratio test for the null
hypothesis that the gap between actual and fundamental price is stationary.

Assessing the results of the trace statistics, we note that the trace test for rank ≤ 1 is

fairly stable. We see that the statistic never crosses below the 5% significance level during

the estimated period. There we cannot reject the null hypothesis at any point. Comparing

with the test for rank = 0, we see that we can always reject the null hypothesis of zero

cointegration. At the same time, we see that there are instances where the test for rank

= 1 is closer to crossing the threshold, particularly during the final observations. There

are also some indications that the test statistic is trending towards a drop below the 5%

threshold. However, on the whole we find that the tests indicate that the assumption of

cointegration is time consistent.
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Figure (6.7a) displays the recursive Trace test where we test the null hypotheses that the rank (number
of cointegrations) is zero or one. Figure (6.7b) displays the recursive likelihood-ratio test for the null
hypothesis that the gap between actual and fundamental price is stationary.

Assessing the results of the trace statistics, we note that the trace test for rank l is

fairly stable. We see that the statistic never crosses below the 5% significance level during

the estimated period. There we cannot reject the null hypothesis at any point. Comparing

with the test for rank = 0, we see that we can always reject the null hypothesis of zero

cointegration. At the same time, we see that there are instances where the test for rank

= l is closer to crossing the threshold, particularly during the final observations. There

are also some indications that the test statistic is trending towards a drop below the 5%

threshold. However, on the whole we find that the tests indicate that the assumption of

cointegration is time consistent.
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Evaluating the tests of the restricted VECM, we see that the p-values are consistently

above significance level of 5%. However, the first few observations indicate a p-value below

a 10% significance level, questioning somewhat the validity of the restrictions in the early

part of the test data set. At the same time, we see that the p-value rises quickly, reaching

a comfortable level above both the 5 and 10% level by 2014 onward. The plot indicates a

continues rise in the p-value over the period. This development could be explained by

the sample size of the estimation, where each added observation leads to less significance

of any observation with sizeable gap in the price levels. Overall, the results suggest that

we can not reject the null hypothesis of a VECM based on our restrictions on the α and

β loading matrices represent a plausible representation of the cointegration relationship

over time.

6.5.5 Concluding an Analysis of Fundamental and Actual Price

Bergman and Sørensen remark that a disconnect in the housing market can be seen

through a combined analysis of the trace test and the LR test of the bivariate VECM.

In this instance, for the Norwegian housing market, we see that the trace tests do not

indicate a rejection of a cointegration relationship between fundamental and actual price.

Additionally, the log-likelihood tests indicate that our restrictions are valid, meaning

that the VECM is a plausible representation of the cointegration relationship, under the

restrictions that the gap is stationary I(0), and that only actual price is influenced by

a gap between the two time series. All things considered, we do not have any empirical

reason to suggest that there has been a disconnect between fundamental and actual price

in the Norwegian housing market from Q1 2013 to Q2 2022.
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7 Discussion

In the analysis, we have derived a fundamental price estimate and analysed the development

and relationship between the fundamental and actual house price in the Norwegian housing

market for the last 29 years. In this section, we will explore the implications of our findings,

discuss the validity of our results, and suggest areas of future research beyond the scope

of this thesis.

7.1 Robustness of Analysis

7.1.1 Robustness of Results

Before comparing and discussing our analysis, we briefly summarize our results. Our

analysis shows that our VAR model is reasonably stable. Regarding the estimate of

fundamental price, we find the actual price to be relatively aligned with what the

fundamentals indicate for the examined sample. Regarding our second research question

we find that there is a cointegration relationship. Furthermore, we can estimate a plausible

representation of the relationship where there is a stationary gap and only actual price

reacts to a difference between the prices. An important question is to what degree these

findings hold and how robust the fundamental price estimate is.

Evaluating the results, we conducted tests in the analysis to gauge the robustness

fundamental price estimate. This is the foundation of the entire analysis. Specifically

we tested the sensitivity of fundamental price to differences in the elasticity parameter

ϵR and the adjustment parameter Ψ. Regarding the elasticity parameter, we find that

the fundamental house price estimate is relatively robust to changes in this factor, with

minor deviations in fundamental price as the elasticity is changed considerably. The

circumstances are similar with the adjustment parameter. These tests indicate a relatively

stable result with limited estimated price variance. However, it is likely that larger

differences in the parameter level could return quite different estimates of fundamental

price. This could be a weakness that our analysis does not account for and could influence

the validity of our findings. However, as stated by Bergman and Sørensen, this adjustment

coefficient has previously also been subject to arbitrary choice. This history of the
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parameter value being more or less subjectively considered, indicates that well-founded

reasoning for the chosen level of Ψ can be justified.

7.1.2 Comparing Our Results to Previous Research

A discussion of the results themselves is most useful as a comparative exercise. We have

mentioned Bergman and Sørensen (2021), and Anundsen (2021) frequently in this thesis.

Therefore, we base a discussion of our findings primarily on these papers.

Bergman and Sørensen argue that the Swedish housing market has been overpriced since

2014. In our analysis, we can see the same trend in Norway, albeit less pronounced.

Anundsen, on the other hand, found the Norwegian house prices to be undervalued until

2016 in his analysis. Anundsen also applied his procedure to Swedish data, finding that the

fundamental price was much closer to the actual price than what Bergman and Sørensen

found. Comparing our results, we see that although we have applied a method based on

Bergman and Sørensen, we find results which are more aligned with Anundsen.

This might be because of several reasons. Firstly, different results might be a consequence

of deviations related to the applied methodology and assumptions. Although we have

followed Bergman and Sørensen to a large extent, there are deviations. Secondly, there is

likely systematic differences between the Norwegian and Swedish data. This can be due to

differences in e.g., policies, demographics, or individual features of the respective housing

markets. Anundsen on his side analyses both markets, but does not further elaborate on

their similarities. This is an apt example of why estimating an “intrinsic” price, such as

a fundamental value, is a complex endeavour, as somewhat different methods can yield

markedly different results.

Considering the cointegration relationship between the fundamental estimate and the

actual house price, Bergman and Sørensen also test for cointegration and stationarity of

the gap between actual and fundamental house prices. They find that the Swedish housing

market for most of their sample has a cointegration vector, except for when ending the

estimation period in 2012. We find similar results. Regarding the likelihood-ratio test and

stationarity of the gap, we find somewhat different results from Bergman and Sørensen.

Our analysis suggests that the restrictions were valid over most of the sample, but there

were indications that the restricted VECM could be rejected early on. Meanwhile, they
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found opposite results, where the p-value became much smaller towards the end of the

sample. Based on these results, it would be interesting to examine what differences in

either the underlying data or model there might be. However, on the whole they do not

find solid arguments for a disconnect between the Swedish fundamental and actual house

prices, which is the same results as ours.

7.2 A Discussion on Assumptions

In the process of estimating a fundamental price, we have made a number of assumptions.

These range from the choice and accuracy of various variables, to the validity of a VAR or

VECM model in the first place. In this section some of these assumption will be discussed,

and the potential influence these assumptions could have.

7.2.1 Implications of a VAR Model and Time Series Analysis

The choice of model is an important assumption for our thesis, especially related to the

different types of VAR models. We chose to follow Bergman and Sørensen in utilising

a reduced-form VAR model. As mentioned in the theoretical framework section, the

reduced-form VAR version deviates from the other versions as it does not allow for

contemporaneous interactions, and only estimates on a basis of prior observed data. If we

had chosen another VAR model as e.g., the SVAR, our analysis could have yielded different

results. Another issue with our analysis is that we use macroeconomic variables that are

integrated of order I(1). Consequently, we difference the variables once in order to have

stationary input variables to our model. As a result, we lose one potential observation

to estimate the VAR model and therefore, the fundamental price on. In our case one

observation is not a significant portion of our data set, but any loss of information is a

loss for the analysis.

We also note that this analysis is a time series analysis. While this is a well-documented

form of analysis for making in-depth analysis regarding both the past and future, several

adverse factors are worth noting. In this regard, one risk is combining aggregated

information, indexes and macroeconomic values to make an economic analysis. Using

data in different formats increases the chance of measurement errors, or the difficulty

in calculating the correct relationship between variables. Furthermore, there is the case
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of seasonal adjustment. When correcting for seasonality, it also represents a loss of

information, as the correction itself is only an estimate of the level of seasonal effect. This

can affect the VAR model’s accuracy at arriving at the true coefficients.

7.2.2 Fundamental Price: a Product of its Input Variables

Our thesis also has had to make assumptions regarding the data and variables. In this

part we will address the assumptions and how they might influence our results.

In our thesis we only rely on data which we received directly from Statistics Norway.

This is an objective, and well regarded source of information. However, we should note

that considering other sources could have led to different outcomes in our analysis, and

in certain ways improved the analysis. We could for example considered to utilise only

publicly available data published online, in order to increase reproducibility. However, all

considered, we feel that the thesis has been well served by utilising this specific data set.

When discussing the variables used in the VAR model, the main issue is to what degree

the variable selection is correct. We have assumed that all changes in the fundamental

house price are due to changes in the five input variables: actual price, disposable income,

user cost, housing stock and rent prices. Assuming that this selection is an exhaustive list

of the potential explanatory variables is likely a gross oversimplification of the real world.

There are likely other variables that could or should be included in our analysis to make

even more accurate analysis.

Furthermore, we have in our analysis had an implicit assumption that an aggregate model

is a good description of the outcome on a market where many individuals make decisions.

However, this might not be the most applicable approach to provide useful information

beyond looking at averages. These issues are also discussed by Bergman and Sørensen,

who we base our variable selection on. However, issues like these are ever-present for

researchers when estimating or predicting the significance of variables.

Actual House Prices

Moving on to a discussion of specific variables, we ought to discuss the nature of house

prices. Housing units are not homogeneous commodities, and are an apt example of the

issues of aggregation discussed above. In the case of Norway, it is a long and sparsely
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populated country with lots of different units of housing and local economies. Therefore,

our method should only be regarded as a way to better understand the fundamentals

of the aggregated housing market. We do not, for example, encourage people to buy a

house because our results show that the overall housing market is mildly underpriced.

Furthermore, the data on actual house prices does not consider the effect of dividing the

property’s assets into various pieces. For example, the construction of a new garage, or

adding a new bedroom during renovations, would be calculated by Statistics Norway as

pure price hike on the property, which will later be put on the market. This represents a

further issue with aggregation in the input data.

User Costs

Beyond the actual price, we also want to discuss the user costs variable. This specific

variable has been shown in our analysis to be of considerable importance in deciding

the fundamental price estimate. Assessing the user costs, the main input in calculating

the user costs is the data on interest rates. Our interest rate data is, however, based

on average levels of a range of interest rates. This thus represents yet another issue of

aggregation, and we note that different segments of the market might have access to

substantially different interest rates.

Furthermore, user costs consists of an additional three factors, i.e., depreciation rate,

property tax and a premium based on risk- and capital constraints. While they were

assumed to be constant, this is likely not the case in the real world. One would expect

that changes over time in the tax regime might change e.g., the average property tax rate

considerably and thus become a more significant aspect of the level of user cost. The

risk premium might also have changed e.g., if people have become more risk averse after

for example the financial crisis. Consequently, our analysis could likely have been more

precise and, more importantly, interesting if we had the necessary variable data available

for these constants.
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7.3 Considerations of Fundamental Analysis

We have discussed the results of our analysis, and pointed out some key issues that

our thesis faces regarding the various assumptions that we make. However, our thesis

necessitates a discussion surrounding the theoretical framework that our method relies on.

In this section, we will will begin by discussing the topic of rationality and agents in the

market behaving as our economic models assume, before assessing the validity of using

the theorem of fundamental asset pricing on housing and in general.

7.3.1 Regarding Infinitely Long Time Horizons

An important assumption of our analysis is that agents are assumed to have infinitely

long time horizons when buying a unit of housing. This makes it possible to price housing

solely by its imputed rent. If, however, their time horizon is not infinitely long, we will

need to consider what price the agent can expect to sell the unit of housing for at a

given point in the future. A real-life example of agents having an infinitely long time

horizon, is that many people expect to scale their housing needs during their lifetime, e.g.,

when starting a family or as kids start to move out. Thus, assuming infinite horizons is a

convenient, but ultimately unrealistic assumption, made by this thesis and by research on

the housing market in general. On the other hand, by not making the assumption, we

would struggle to compute the agents’ behaviour. For example, there is likely not much

data available on what consumers expect to sell their house for in the future. One can

therefore argue that it is a necessary assumption, however, one should be aware of its

limitations.

7.3.2 On the Topic of Rationality

In this thesis, we have calculated a fundamental aggregated house price. Theoretically,

this will coincide with the price a rational agent would be willing to pay for an average

unit of housing. This simplifies modeling behaviour. However, agents are repeatedly

found not to act rationally at the aggregated or individual level. While it is convenient

to assume agents are rational, it is worthwhile to consider the effect the assumption has

on our case. Likely the most troubling assumption tied to rational agents is that they

have access to perfect information, and that they can calculate the value of all relevant
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information based on their preferences. In our analysis of the Norwegian housing market,

it might be unrealistic to assume that agents correctly calculate their expectations of

future values of rents, prices and user costs to determine their willingness to pay for

housing. The discussion on whether agents at the aggregate level behave more or less

rationally, however, is a discussion which is still heated in academia.

7.3.3 Limitations of Fundamental Valuation

Another important discussion is about the limitations and assumptions of fundamental

valuation. The dividend discount model, which our methodology is based upon, is a

method for pricing assets based on their expected stream of income. While this model

has certain theoretical advantages, it should be addressed that it is based on a number of

assumptions that can limit its usefulness. For example, the model relies on assumptions

about the rate of return, dividend ratio, and tax and growth rates. These assumptions

can make the model more complex and difficult to interpret. In the context of the housing

market, the fundamental valuation model may furthermore be less effective due to the

difficulty of obtaining reliable and comprehensive data on the market and expectations

about the future. Additionally, other theoretical approaches, such as the efficient market

hypothesis, state that fundamental valuation is of little use. This hypothesis suggests that

all relevant information about a house is reflected in its price, and therefore fundamental

analysis may not provide any additional value (Fama, 1998). Despite these limitations,

the fundamental valuation model is still widely used in the housing market. One should,

however, note that it is important to be aware of the assumptions and limitations of the

model and use it with caution.
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7.4 Application for Future Research

We have so far focused our discussion backwards, i.e., on what we have found and the

validity of those results. Looking forwards, we see several interesting topics of future

research.

An interesting extension of our work on Norwegian data would be to make it more

applicable in describing the actual world. This could be done by making the analysis

more specific in terms of, e.g., geographical markets, and types of housing. In this way,

one could use our methods to compute an estimate of the fundamental price of the Oslo

apartment market. This would help shed new light on the nature of the actual housing

market, as experienced by real-world individuals. Of course this requires access to specific

data on only Oslo apartments in order to conduct such an analysis, something that might

not be easily accessible.

Another interesting topic for research, would be to investigate whether socioeconomic

status has an effect on the behaviour in the housing market. With access to the appropriate

data, one could perhaps divide population into different segments based on the level of

e.g., disposable income. Alternatively, one could approximate the socioeconomic status

through classification based on the price of housing, adjusted for geographical area and

prevalence of different socioeconomic classes. Obtaining the necessary data for this type of

research may be a challenge. However, if these obstacles can be overcome, the results of the

research could be valuable in informing government policy and assessing the effectiveness

of enacted policies.

A last interesting extension of our research would have been to use our data as a basis for

forecasting. Bergman and Sørensen suggests that the model can be used to estimate the

effect of policy changes going forward. They specifically test for a situation where paid

interest deduction is removed, and evaluate the effect this policy change would have for

the Swedish housing market. They do this by feeding an exogenous time line for their

user cost variable, and then re-estimating their fundamental price. Such an analysis could

also be of interest in a Norwegian context.
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8 Conclusion

The purpose of this thesis has been to provide new insights into the Norwegian housing

market. We chose to do so through an approach based in the theory of fundamental

valuation, and the methods introduced by Bergman and Sørensen (2021). In doing so, we

sought to answer two specific research questions.

Firstly, we asked to what degree the Norwegian house prices align with what fundamental

factors would suggest. On this topic, we estimated a five variable VAR model consisting

of housing stock, disposable income, user costs, rent prices and actual prices. We applied

the results and estimated a fundamental price of the Norwegian housing market in the

period of 1993 to 2022. The analysis shows that the two time series are comparable, but

there are instances where they diverge. However, except for a short time frame around

2020, the difference is not significant on a 95% confidence level. Overall, we therefore find

that the actual price is largely aligned with fundamentals suggest.

Secondly, we asked whether there is a relation between fundamental and actual price, and

if there is, is the relationship in line with what the theory of fundamental valuation would

predict? To answer these questions, we applied the computed fundamental price and

estimated a VECM based on the two time series of prices. Furthermore, we checked if our

results would be time consistent, evaluating the period from 2013 to 2022. We find that

that there consistently is one cointegration vector between the actual and fundamental

price, indicating a stable, long-term relationship. Next, we imposed restrictions to our

VECM in order to test hypotheses of a stationary gap (I(0)) and that only actual price

adjusts to a difference between them. We then conducted a likelihood-ratio test to

determine whether this restricted model is a plausible representation of the cointegration

relationship. We evaluated whether these results too, would be time consistent. We

consistently find p-values above 5% of our restricted model. We therefore cannot reject

the assumptions, indicating that the relationship between the actual and fundamental

price is consistent with the theory of fundamental valuation.
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Appendix

A1 Introduction of Variables

Throughout this thesis we have introduced and defined several variables. To ease

understanding of the used variables, this subsection will provide an overview of introduced

mathematical notation and defined variables.

Table A1.1: Mathematical Definitions

Variable Mathematical Definition

RH
t [it(1− τ it )−

Et[CPIt+1]−CPIt
CPIt

+ τ + δ + η]Pt − Et[Pt+1]− Pt

γt it(1− τ it )−
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St Pt/R
H
t

m se +∆rHe
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)∆yt+j − ( 1

ϵR
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Table A1.2: Definitions of Variables

Variable Definitions

Pt Real house price of a unit of owner-occupied housing

pt Logarithm of Pt

γt User cost of housing

RH Imputed rent of housing

rH Logarithm of RH

Ht Housing stock

ht Logarithm of housing stock

pft Logarithm of fundamental price

St Price-to-imputed-rent ratio

st Logarithm of St

ϵR long-run imputed rent elasticity of housing demand

ϵY long-run income elasticity of housing demand

i Nominal interest rate

τ i Capital income tax

τ Effective property tax

η User cost premium for risk and credit constraints

δ Rate of depreciation of the housing stock

Ψ Adjustment parameter

Φ Coeffisient of lag effect

A Companion matrix

∆ Indication of First Difference
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A2 Further Details on Estimation of the Fundamental

House Price

In this part of the appendix we show the steps necessary for going from (4.11) to (4.12) in

the methodology section.

st = ln(1 + exp(set+1 +∆rHe
t+1))− ln(1 + γt) (.1)

Following this equation, we now define a new variable m to be equal to the sum of

the average of the logarithm of price-to-imputed-rent ratio (se) and the average period-

by-period change in the logarithm of the imputed rent (∆rHe). It is thus defined as

follows:

m ≡ se +∆rHe (.2)

Before moving further, we need to introduce the concept of Taylor approximation. This is

a necessary step in defining the price-to-imputed-rent ratio.

A2.1 Taylor Approximation of Two Variables

In general terms, we can define the first-order Taylor approximation formula as follows:

f(x) = f(x0) + f ′(x0) + (x− x0) (.3)

In our situation however, we have two variables which have to be estimated, m+∆rHe and

γt. Therefore,we have to complete Taylor approximations around both variables. Bergman

and Sørensen 2021 introduced m = se +∆rHe and γt = 0 as their approximations. We

follow their approach, and get an approximation of:

st = f(s1) + f ′(s1)(s− s1)− (g(s2) + (g′(s)2)(s− s2)) (.4)

We first approximate se+∆rHeand use the general Taylor expression with s1 and thereafter

include the actual values for s and s1:

78 A2 Further Details on Estimation of the Fundamental House Price

A2 Further Details on Estimation of the Fundamental

House Price
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the methodology section.

(. l)

Following this equation, we now define a new variable m to be equal to the sum of

the average of the logarithm of price-to-imputed-rent ratio (:?') and the average period-

by-period change in the logarithm of the imputed rent (D..rHe). It is thus defined as

follows:

(.2)

Before moving further, we need to introduce the concept of Taylor approximation. This is

a necessary step in defining the price-to-imputed-rent ratio.

A2. l Taylor Approximation of Two Variables

In general terms, we can define the first-order Taylor approximation formula as follows:

f (x) = f (xo) + J'(xo) + (x - xo) (.3)

In our situation however, we have two variables which have to be estimated, m+D..rHe and

r t · Therefore,we have to complete Taylor approximations around both variables. Bergman

and Sørensen 2021 introduced m= se+ D,,.yHe and rt = 0 as their approximations. We

follow their approach, and get an approximation of:

S t = f ( s i ) + J'(s1)(s - s1) - (g(s2) + (g'(sh)(s - s2)) (.4)

We first approximate se+i6.rHeand use the general Taylor expression with s1 and thereafter

include the actual values for s and s1:
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(ln(1 + exp(s1)) + (
exp(s1)

1 + exp(s1)
) ∗ (s− s1) (.5)

Which can be rewritten as:

(ln(1 + exp(m))) +
exp(m)

1 + exp(m)
∗ (set+1 +∆rHe −m) (.6)

For the second part of the approximation we use γt = 0 and use the general Taylor

expression with s1 and thereafter include the actual values for s and s2:

(ln(1 + s2 +
1

1 + s2
(s− s2) (.7)

Which can be rearranged to:

(ln(1 + 0) +
1

1 + 0
(γt − 0)) (.8)

This can further be combined. Here we also introduce an adjustment parameter, Ψ, which

will be explained below. Using it, we get the following:

st ≈ ln(1 + exp(m)) + Ψ(set+1 +∆rHe
t+1 −m)− γt (.9)

At this point it is convenient to introduce new notation. m is defined as follows:

m ≡ se +∆rHe (.10)

Which is equivalent to:

st ≈ (ln(1 + exp(m))−Ψ ∗m+Ψ(set+1 +∆rHe
t+1 −m)− γt (.11)

A2 Further Details on Estimation of the Fundamental House Price

Which can be rewritten as:

exp(m)
(ln(l + exp(m)))+ ( - ) * ( s + l + t:::,.yHe - m)l+ exp m

79

(.5)

(.6)

For the second part of the approximation we use rt = 0 and use the general Taylor

expression with s1 and thereafter include the actual values for s and s2:

(.7)

Which can be rearranged to:

l
(ln(l + 0) + - h t - 0))

1 + 0
(.8)

This can further be combined. Here we also introduce an adjustment parameter, W, which

will be explained below. Using it , we get the following:

S t ln( l + exp(m))+ W(s+1+ !:::,.r{l/1 - m) - rt (.9)

At this point it is convenient to introduce new notation. m is defined as follows:

(.10)

Which is equivalent to:

S t (ln(l + exp(m)) - W* m + W(s+1+ !:::,.r{l/1 - m) - rt (.11)
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A2.2 Further Details on Estimation of the Fundamental House

Price

At this point we can follow Bergman and Sørensen (2021) who define that:

ln(1 + exp(m)) = −ln(1−Ψ) (.12)

and that:

ln(Ψ) = m− ln(1 + exp(m) = m+ ln(1−Ψ) (.13)

Which in turn means that:

m = ln(Ψ)− ln(1−Ψ) (.14)

Our expression can then be rewritten as:

ln(1 + exp(m))− (
exp(m)

1 + exp(m)
)m = −Ψ(ln(Ψ)− ln(1−Ψ) (.15)

And since we know that:

ln(1 + exp(m)) = −ln(1−Ψ) (.16)

We get:

−ln(1−Ψ)−Ψ(ln(Ψ) + Ψln(1−Ψ) (.17)

−Ψln(Ψ)− (1−Ψ)ln(1−Ψ)) (.18)

Following Bergman and Sørensen (2021)k, which is determined as follows:

k ≡ −ΨlnΨ(1−Ψ)ln(1−Ψ) (.19)

This takes us back to .11 which we now can rewrite as:

st = k +Ψ(set+1 +∆rHe
t+1)− γt (.20)

This thesis assumes that agents are rational and forward looking. Using the principle of
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Price

At this point we can follow Bergman and Sørensen (2021) who define that:

ln(l + exp(m)) = - l n ( l - w)

and that:

ln(w) = m - ln( l + exp(m) = m + ln(l - w)

Which in turn means that:

m= ln(w) - ln( l - w)

Our expression can then be rewritten as:

ln( l + exp(m)) - ( e x p ( ) ) m = -w(ln(w) - ln(l - w) (.15)
l+ exp m

And since we know that:

ln(l + exp(m)) = - l n ( l - w)

We get:

- l n ( l - w) - w(ln(w) + wln(l - w)

-wln(w) - (l - w)ln(l - w))

k -wlnw(l - w)ln(l - w)

This takes us back to .11 which we now can rewrite as:

(.12)

(.13)

(.14)

(.16)

(.17)

(.18)

Following Bergman and Sørensen (2021)k, which is determined as follows:

(.19)

(.20)

This thesis assumes that agents are rational and forward looking. Using the principle of
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forward iteration we get the following expression of the price-to-imputed-rent of:

st = c+ Σ∞
j=1Ψ

jEt[∆rHt+j − γt+j]− γt (.21)

Where c is defined as:

c ≡ k

1−Ψ
(.22)

A2.3 Simplified VAR Model Notation

To simplify the notation regarding lag operators in the VAR model matrix representation,

we can move the Φ over and isolate the error term. Then the equation (4.19) becomes:

bt − Φ1bt−1 + Φ2bt−2 + ...+ Φnbt−n = (.23)

We also need to introduce the concept of lag operators to implement the VAR model. This

operator can replace the bt−n expression letting us use the general notation as b2L = bt−2

and btL
n = bt−n. In our model, we use this and simplify .23 to:

bt − Φ1L
1bt + Φ2L

2bt + ...+ ΦnL
nbt = ϵt (.24)

Which in turn can be rewritten as:

(I5 − Φ1L
1 − ...− ΦnL

n)bt = ϵt (.25)

Above, since bt is a vector, we use an identity matrix to recreate the vector. A common

way to shorten notation for a series of lagged Φ values in a time series is to introduce the

simplified and convenient notation.

Φ(L)bt = ϵt (.26)

From this state, we follow Bergman and Sørensen, and define Φ(L) as

Φ(L) = I5 − Σn
j=1AjL

j (.27)
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forward iteration we get the following expression of the price-to-imputed-rent of:

(.21)

Where c is defined as:
kc --

1 - W
(.22)

A2.3 Simplified VAR Model Notation

To simplify the notation regarding lag operators in the VAR model matrix representation,

we can move the <I>over and isolate the error term. Then the equation (4.19) becomes:

(.23)

We also need to introduce the concept of lag operators to implement the VAR model. This

operator can replace the bt-n expression letting us use the general notation as b'i = bt_2

and b.L" = bt-n· In our model, we use this and simplify .23 to:

Which in turn can be rewritten as:

(.24)

(.25)

Above, since b; is a vector, we use an identity matrix to recreate the vector. A common

way to shorten notation for a series of lagged <I>values in a time series is to introduce the

simplified and convenient notation.

<I>(L )bt = tt (.26)

From this state, we follow Bergman and Sørensen, and define <I>(L) as

(.27)
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Which we, in our case, can rewrite as:

(I5 − Σn
j=1AjL

j)bt = ϵt (.28)

The result is precise notation on how our VAR model utilises the lag operator.

A3 Data Desription

In the thesis we utilise several data variables. Below we provide descriptive statistics on

the variables in their original format, as received by Statistics Norway. Below in table

(A3.1) we show information about the data set we received.

Table A3.1: Information About Original Variables in Data Set

VARIABLE NOMINAL/REAL INDEX/OBSERVED VALUE BASE YEAR

HOUSE PRICE NOMINAL INDEX 2019 = 1

RENT PRICE NOMINAL INDEX 2015 = 100

HOUSE STOCK REAL OBSERVED VALUE

DISP INCOME REAL OBSERVED VALUE

REALRES REAL OBSERVED VALUE

POPULATION OBSERVED VALUE

CPI INDEX 2019 = 1

Table A3.1 contains summary information about original variables in our data set. The table displays if
the data is gathered in a nominal or real format, if it is indexed or observed values, and for the indexes,
what year is the base year. The REALRES variable is the real interest rate after tax.
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Which we, in our case, can rewrite as:

(.28)

The result is precise notation on how our VAR model utilises the lag operator.

A3 Data Desription

In the thesis we utilise several data variables. Below we provide descriptive statistics on

the variables in their original format, as received by Statistics Norway. Below in table

(A3.1) we show information about the data set we received.

Table A3.1: Information About Original Variables in Data Set

VARIABLE NOMINAL/REAL INDEX/OBSERVED VALUE

HOUSE PRICE NOMINAL INDEX

RENT PRICE NOMINAL INDEX

HOUSE STOCK REAL OBSERVED VALUE

DISP INCOME REAL OBSERVED VALUE

REALRES REAL OBSERVED VALUE

POPULATION OBSERVED VALUE

CPI INDEX

BASE YEAR

2019 = l

2015 = 100

2019 = l

Table A3.1 contains summary information about original variables in our data set. The table displays if
the data is gathered in a nominal or real format, if it is indexed or observed values, and for the indexes,
what year is the base year. The REALRES variable is the real interest rate after tax.
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Moreover, below in table (A3.2), we provide summary statistics for the original variables

in our data set.

Table A3.2: Summary Statistics for All Original Values in Data Set

VARIABLE MEAN ST.DEV MIN MAX

HOUSE PRICE 0.479273866 0.319448235 0.134270608 1.247431472

RENT PRICE 71.5372428 24.03146241 28.23333333 112.6333333

HOUSING STOCK 2872617.694 765557.7966 1716484.714 4442104

DISP INCOME 260913.9772 78549.40959 152975.2016 416700.1041

REALRES 0.017832989 0.022015712 -0.037377707 0.069426458

POPULATION 4638869 4107063 5440426

N 162 162 162 162

Table A3.2 contains summary statistics for the original variables in our data set. The table displays the
mean, standard deviation, minimum and maximum value for all the original variables. The REALRES
variable is the real interest rate after tax.

A4 VECM Residual Tests for Autocorrelation,

Heteroscedasticity and Normality

In the process of estimating our VECM we tested the statistical properties of our model,

given our assumed lag length of five lags. The results of these tests are provided here.

Table A4.1: VECM Residual Tests for Autocorrelation, Heteroscedasticity and Normality

Autocorrelation Heteroscedasticity Normality
Test LM(5) ARCH(5) Jarcue-Bera Skewness Kurtosis

p-value 0.1491 0.0247 0.3626 0.2086 0.5489

Table A4.1 displays the results of our Breusch-Godfrey test of autocorrelation, the ARCH-test of
heteroscedasticity, the Jarque-Bera test for normality, as well as multivariate tests for skewness and
kurtosis.
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variable is the real interest rate after tax.

A4 VECM Residual Tests for Autocorrelation,

Heteroscedasticity and Normality

In the process of estimating our VECM we tested the statistical properties of our model,

given our assumed lag length of five lags. The results of these tests are provided here.

Table A4.1: VECM Residual Tests for Autocorrelation, Heteroscedasticity and Normality

Test
p-value

Autocorrelation
LM(5)
0.1491

Heteroscedastieity
ARCH(5)

0.0247
Jarcue-Bera

0.3626

Normality
Skewness

0.2086
Kurtosis
0.5489

Table A4.1 displays the results of our Breusch-Godfrey test of autocorrelation, the ARCH-test of
heteroscedasticity, the Jarque-Bera test for normality, as well as multivariate tests for skewness and
kurtosis.
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A5 Granger Causality Test of the VECM Variables

As a part of the analysis, we apply the Granger test for causality on the time series of

actual and fundamental price. Below in table (A5.1) we test and see that both variables

Granger-cause each other at a 5 % significance level.

Table A5.1: Granger Cauality Tests for VECM Variables

Variable p-value
pt Fundamental Price 0.02049**
pat Actual Price 0.04625**
* p<0.10, ** p<0.05, *** p<0.01

Table A5.1 displays the Granger causality tests with the null hypothesis that the specific variable does
not Granger-cause the other variables that go into our VECM.

A6 Companion Matrix of VAR(5) Model

In table (A6.1) on the next page we have plotted all factors in the companion matrix.

It is a (kp x kp)-matrix. In our case we have k = 5 and p = 5, and we thus have a (25

x 25 )-matrix, where each group of five columns represent one lag length. Meanwhile,

looking at the rows, the first five rows corresponds to the five variables. A characteristic of

a companion matrix is a the diagonal 1’s until the p-1 column(s). In our case this means

that the final five columns, i.e., the last lag length, is without any 1’s in the diagonal.

Each of the five first rows can be interpreted as the coefficients in the linear regression

estimated on the variables. For example, the coefficient value for the second lag of actual

house price on user costs, is 0.42, specified in row 3, column 6.
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Table A6.1: Companion Matrix

pa1 r1 γ1 y1 h1 pa2 r2 γ2 y2 h2 pa3 r3 γ3 y3 h3 pa4 r4 γ4 y4 h4 pa5 r5 γ5 y5 h5

pa 0.39 0.15 −0.27 −0.02 1.13 0.05 −0.04 0.27 −0.02 −0.20 −0.03 −0.00 0.01 0.04 −0.47 −0.24 −0.08 −0.13 0.09 −0.26 −0.09 −0.22 −0.01 0.11 −0.08

r −0.44 0.27 −0.34 −0.11 3.25 0.12 −0.11 0.34 0.08 −2.50 −0.02 −0.02 −0.03 0.04 1.39 −0.33 0.24 −0.11 0.09 −2.36 −0.15 0.30 0.02 0.04 0.95

γ 0.46 0.18 0.82 −0.08 2.46 0.42 0.05 −0.06 0.14 −2.37 −0.04 0.10 0.10 0.09 1.32 −0.41 −0.42 −0.24 −0.01 −1.49 0.19 0.01 0.00 −0.01 0.57

y 0.14 0.46 −0.26 −0.60 0.58 0.28 0.14 0.09 −0.01 −0.09 −0.44 −0.04 0.16 0.19 0.87 −0.03 −0.14 −0.05 −0.01 −2.24 0.07 −0.17 −0.14 −0.08 1.11

h 0.03 0.01 −0.00 −0.02 0.79 −0.01 0.01 −0.01 −0.02 0.02 0.02 0.01 0.01 −0.01 −0.01 −0.01 0.01 −0.00 −0.00 0.57 −0.00 0.02 −0.00 −0.00 −0.48

6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

14 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

17 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

18 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

19 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

Table A6.1 displays the complete companion matrix with 5x5 rows and 5x5 columns where the five VAR model variables are influencef by past lags.
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Table A6.1 displays the complete companion matrix with 5x5 rows and 5x5 columns where the five VAR model variables are influencef by past lags.
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A7 Coded Restrictions

Below, in equation (.29) we have plotted the coded restrictions in our VEC model. Here,

we implent restrictions on α to be a vector of 1 and 0, corresponding to the speed of

convergence in the model. For our β restrictions we allow for a -1, 1 relationship, assuming

mean-reversion between the fundamental and actual housing price. Lastly we allow for a

constant term at 1. Combined this provides our H1.1 as introduced in the analysis section,

which can be seen below:

H1.1 : α =


0
1


 , β =




−1 0

1 0

0 1


 (.29)

A8 Unit Roots of 1982 - 1993 Sample

Below we have plotted the eigenvalues from our pre-sample VAR model. The pre-sample

goes from 1982 - 1993. As we can see, there are eigenvalues with a modulus above 1.

These results, ceteris paribus, would suggest that the model is not stable, and therefore

that the coefficient matrix cannot be inverted, and used in creating the companion matrix.

Table A8.1: Matrix of Eigenvalues of The Pre-Sample

1.1007671 1.1007671 1.0641429 1.0641429 1.0400758
1.0400758 1.0348830 1.0348830 0.9751212 0.9751212
0.9570151 0.9570151 0.9479193 0.9479193 0.9423766
0.9423766 0.9324080 0.9324080 0.9141851 0.9141851
0.8856885 0.8856885 0.8824554 0.8824554 0.8316904
0.8316904 0.8299481 0.8299481 0.7917967 0.7917967

Table A8.1 displays the eigenvalues generated by the VAR model for the pre-sample. They are sorted
from largest modulus to smallest. An eigenvalue | > 1| signifies the model is not stable
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Below, in equation (.29) we have plotted the coded restrictions in our VEC model. Here,

we implent restrictions on a to be a vector of l and 0, corresponding to the speed of

convergence in the model. For our j3restrictions we allow for a -1, l relationship, assuming

mean-reversion between the fundamental and actual housing price. Lastly we allow for a

constant term at l. Combined this provides our 1 i 1 . 1as introduced in the analysis section,
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0 l
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A8 Unit Roots of 1982 - 1993 Sample

Below we have plotted the eigenvalues from our pre-sample VAR model. The pre-sample

goes from 1982 - 1993. As we can see, there are eigenvalues with a modulus above l.

These results, ceteris paribus, would suggest that the model is not stable, and therefore

that the coefficient matrix cannot be inverted, and used in creating the companion matrix.

Table A8.1: Matrix of Eigenvalues of The Pre-Sample

1.1007671 1.1007671 1.0641429 1.0641429 1.0400758
1.0400758 1.0348830 1.0348830 0.9751212 0.9751212
0.9570151 0.9570151 0.9479193 0.9479193 0.9423766
0.9423766 0.9324080 0.9324080 0.9141851 0.9141851
0.8856885 0.8856885 0.8824554 0.8824554 0.8316904
0.8316904 0.8299481 0.8299481 0.7917967 0.7917967

Table AS.l displays the eigenvalues generated by the VAR model for the pre-sample. They are sorted
from largest modulus to smallest. An eigenvalue I > l I signifies the model is not stable
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