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Abstract

We analyze the temporal structure of a novel insurance dataset about home insurance
claims related to rainfall-induced damage in Norway, and employ a hidden semi-Markov model
to capture the non-Gaussian nature and temporal dynamics of these claims. By exploring a
wide range of candidate distributions and evaluating their goodness-of-fit as well as commonly
used risk measures, we identify a suitable model for effectively modeling insurance losses stem-
ming from rainfall-related incidents. Our findings highlight the importance of considering the
temporal aspects of weather-related insurance claims and demonstrate that the proposed hid-
den semi-Markov model adeptly captures this feature. Moreover, the model estimates reveal a
concerning trend: the risks associated with heavy rain in the context of home insurance have
exhibited an upward trajectory between 2004 and 2020, aligning with the evidence of a chang-
ing climate. This insight has significant implications for insurance companies, providing them
with valuable information for accurate and robust modeling in the face of climate uncertain-
ties. By shedding light on the evolving risks related to heavy rain and their impact on home
insurance, our study offers essential insights for insurance companies to adapt their strategies
and effectively manage these emerging challenges. It underscores the necessity of incorporat-
ing climate change considerations into insurance models and emphasizes the importance of
continuously monitoring and reassessing risk levels associated with rainfall-induced damage.
Ultimately, our research contributes to the broader understanding of climate risk in the in-

surance industry and supports the development of resilient and sustainable insurance practices.
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1. Introduction

The proper modeling of losses is of great relevance for insurance companies, as it ensures
efficient management of the organization in calculating precise values for premiums, reserves, and
risk measures, in accordance with regulatory frameworks such as Solvency II and Basel II/111
(Brazauskas and Kleefeld, 2016).

However, the emergence of climate change has introduced new challenges. To effectively adapt
to the rapidly changing climate, the European Union has initiated the Green Deal, aiming to
achieve a climate-neutral Europe by 2050. As part of this initiative, the EU taxonomy has been
implemented, providing clearly-defined and standardized criteria for sustainable business activities.
It encourages companies to adopt more climate-friendly practices and requires large companies in
the EU to assess and report their sustainability performance and alignment with the taxonomy.
Consequently, insurance companies must consider climate change and incorporate forward-looking

models into their operations.

The increasing frequency and severity of extreme weather events suggest that weather-induced
losses and associated claims will rise. This necessitates the quantification of climate risk and its
integration into financial risk models. However, risk teams in the insurance industry face challenges
in adapting their models to address the uncertainties posed by climate change. Traditionally, they
have relied on simplistic Gaussian models to analyze losses. However, it is increasingly evident
that classical actuarial models may no longer suffice to adequately assess and manage risks in this
context. Therefore, it is crucial to explore new statistical approaches that can effectively capture

the complexities associated with climate-related risks.

The major challenge in modeling insurance losses lies in accurately identifying a probability
density function that describes the typical distribution characteristics. These features can be sum-
marized as follows: a positive support (Klugman et al., 2012), right skewness (Eling, 2012; Adcock
et al., 2015), and heavy tails (Hogg and Klugman, 1983; Pigeon and Denuit, 2011). Regarding
the modeling of right-skewed and heavy-tailed insurance losses, the literature has pursued three
major approaches, aiming to achieve parsimonious yet sufficiently flexible models with excellent
goodness-of-fit properties across the entire data support. The first approach focuses on introducing
or investigating distributions to find the best fit for the available data, comparing a wide range of
candidate distributions. Notable examples can be found in works by Vernic (2006); Klugman et al.
(2012); Eling (2012, 2014); Bhati and Ravi (2018). Another approach aims to improve the tail
behavior of the model by considering compound distributions (Cooray and Cheng, 2015; Punzo
et al., 2018).

Recently, much attention has been devoted to the finite mixture approach (McLachlan and
Peel, 2000). Finite mixture models offer another method for modeling heavy-tailed and skewed
losses. These flexible (semi-)parametric models can capture the general features of loss data and
account for multimodality resulting from heterogeneity. This approach has been explored in var-
ious publications within the actuarial literature. For instance, Bernardi et al. (2012) proposes
finite mixtures of skew-normal distributions within a Bayesian analysis framework. Verbelen et al.
(2015) develops finite mixtures of Erlang distributions and utilizes the EM algorithm for model
estimation. Gomez-Déniz et al. (2013) suggests a gamma mixture with the generalized inverse
Gaussian distribution to fit a well-known Danish fire dataset. Miljkovic and Griin (2016) extends

the distribution of finite mixture models to more general forms, such as the Burr, Gamma, Inverse



2 METHODOLOGY 3

Burr, Inverse Gaussian, lognormal, Weibull, and GB2 distributions (Chan et al., 2018). Other
examples using frequentist (Punzo et al., 2018; Miljkovic and Fernandez, 2018; Abu Bakar et al.,
2018; Bignozzi et al., 2018) and Bayesian (Hong and Martin, 2017, 2018) paradigms are available

in the literature.

Extending the existing finite mixture models in the actuarial science literature, we propose
a novel approach for modeling time-series loss data with positive support using a non-Gaussian
hidden semi-Markov model. This approach considers flexible one-, two-, three-, and four-parameter
conditional distributions. To estimate the model parameters, we employ an ad-hoc Expectation-
Maximization (EM) algorithm within a maximum likelihood framework. Specifically, we modify the
Baum-Welch algorithm, which is a special case of the Expectation-Maximization (EM) algorithm
widely used in the context of hidden Markov models (Zucchini et al., 2017). This work can also
be viewed as an extension of the work by Bulla (2011), where the time spent in a certain hidden
state of the semi-Markov chain can follow any count distribution (Bulla and Bulla, 2006; Barbu
and Limnios, 2009; Bulla et al., 2010; Yu, 2015).

The statistical approach we propose is motivated by the analysis of heavy rainfall-related claims
in home insurance products. Home insurance is among the insurance lines most strongly exposed
to climate risk, and previous studies have highlighted the significance of rainfall as an indicator of
home insurance risk (Gradeci et al., 2019; Cheng et al., 2012; Spekkers et al., 2013, 2014, 2015;
Torgersen et al., 2015). As pointed out by Hanssen-Bauer et al. (2009) in their report "Climate in
Norway 2100", heavy precipitation frequency and intensity are expected to increase due to climate
change. Under the most severe climate projections from the Intergovernmental Panel on Climate
Change (IPCC), the number of days with heavy precipitation in Norway is predicted to double,

and annual precipitation is estimated to increase by approximately 18% by the end of this century.

By considering both the characteristics of insurance losses and the impact of climate change,
our proposed non-Gaussian hidden semi-Markov model offers an innovative and flexible approach
to address the complex nature of climate-related risks in insurance. We apply our approach to
a novel insurance dataset from Norway. This dataset provides detailed information on insurance
losses specifically caused by rainfall, enabling a comprehensive understanding of the underlying

dynamics between heavy rain and insurance claims.

We aim to explore the implications of climate change on insurance and the importance of
innovative approaches to modeling and managing climate risk. Our finding is consistent with the
observed effects of climate change. In the following sections, we will present the modeling work and
discuss the implications of our results for insurance companies in the context of climate change.
The paper is organized as follows. We illustrate the Hidden semi-Markov models (HSMM) in
Section 2 and further provide insights on maximum likelihood inference and show details on the
implementation of the Baum-Welch version of the EM algorithm in Section 3. We then perform

data analysis in Section 4. The conclusion with a discussion is set out in the last section.

2. Methodology

2.1. Hidden Semi-Markov models

In this section, we present an overview of hidden semi-Markov models (HSMMs) and their

application in modeling heterogeneous and/or multimodal data. We start by defining the basic
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structure of an HSMM, which is a time-dependent mixture model that involves a finite-state semi-

Markov chain and a sojourn-time distribution associated with each hidden state.

More specifically, let {Y;;t =1,...,T} denote a time series of length T', with each Y; taking
values in RT. Moreover, let {S;;t = 1,...,T} be the underlying hidden process where S; represents
the state of membership of Y; from a finite-state semi-Markov chain taking values on the state space
{1,...,k,..., K}. The process {S;;t = 1,...,T} is constructed as follows. A homogeneous Markov
chain with K states models the transitions between different states, with initial probabilities mp =

Pr(S; = k) and transition probabilities

g = Pr(Seyr =k | St = 4, Se1 # J) (1)

K

where Z mr; = 1 and m;; = 0, i.e., the diagonal elements of the transition probability matrix
k=1

are zeros. In (1), k refers to the current state, whereas j refers to the one previously visited;

this convention will be used throughout the paper. We collect the initial probabilities in the K-
dimensional vector 7, whereas the time-homogeneous transition probabilities are collected in the

K x K transition matrix II.

The observation process is linked to the underlying hidden process by the emission distribution
bi(y¢), which is the conditional distribution of Y; given the unobserved (or hidden) state S; = k,

kE=1,...,K, with Zbk (y:) = 1, in the discrete case, and fyt b (y¢) dy: = 1 in the continuous
Yt
case, t =1,...,T.
Furthermore, we explicitly model the sojourn-time distribution associated with each hidden
state, which models the time the hidden process {S;} spends in the k-th state. More specifically,

the sojourn-time distribution is defined as:
di(u) == Pr(Siyusr # Ky Stqu—w =k,v=0,...,u—2| Sey1 =k, S # k). (2)

This distribution, which is state-specific, captures the duration of each state visit and is a key
feature that distinguishes HSMMs from hidden Markov models (HMMSs), where the sojourn-time
distribution is implicitly geometric. The semi-Markovian hidden process S; of an HSMM does not

have the Markov property at each time ¢, but is Markovian at the times of state changes only.

2.1.1. Sojourn distributions

In analogy with O’Connell and Hgjsgaard (2011a), we adopt the shifted Poisson and gamma
distributions as models for the sojourn distribution. Other commonly used sojourn distributions
can be found in Zucchini et al. (2017, Chapter 12.6).

The shifted Poisson distribution has the probability mass function (pmf)

— u—C¢,
e Ak )\](c lc)

di (u; A, Cr) = =)

u:(k,gk—l—l,..., (3)
where A\, > 0 and (j; € {1,2,...} is the shift parameter. This parameter sets the minimum sojourn
time in state k, k =1,..., K, and is an additional parameter with respect to the classical Poisson

distribution. In practice, the shift parameter (j is often fixed to 1 (see, e.g., Zucchini et al., 2017,
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p. 178) and not estimated.

The gamma distribution has the probability density function (pdf)

w1 u
dy, (u;)\k,Ck)ZWexp (—<k> , u>0, (4)
k

where A\ > 0 and (i > 0 are the shape and scale parameters, respectively.

2.1.2. Emission distributions

We consider several parametric members of the GAMLSS (generalized additive models for lo-
cation scale and shape; Stasinopoulos et al., 2017) family of distributions. All the models of the
family are defined with a maximum of 4 parameters, say u, o, v, and 7, and with a probability
density function (pdf) that can be denoted by b (y; s, 0, v, 7). In particular, we consider the fol-
lowing 11 candidate distributions for b (y; u, o, v, 7): exponential (EXP), gamma (GA), log-normal
(LOGNO), inverse Gaussian (IG), Weibull (WEI), Box-Cox Cole and Green (BCCG), generalized
gamma (GG), generalized inverse Gaussian (GIG), Box-Cox t (BCT), Box-Cox power exponential
(BCPE) and Generalized beta type 2 (GB2); for details about these distributions, see Rigby et al.
(2014) and Stasinopoulos and Rigby (2017). These one-, two-, three- and four-parameter paramet-
ric distributions are commonly employed in modeling loss data and are thus used as basic building

blocks to generate more flexible distributions by incorporating them into the HSMM framework.

2.2. Marginal risk measures: VaR and ES

The Value-at-Risk (VaR) is a widely used risk measure for a risky asset, defined as the (1 —«)-
quantile of the asset return distribution at a given confidence level a. It represents the minimum
loss in the worst 1 — a cases (Jorion, 1997). Mathematically, for a random variable Y with an
absolutely continuous density function f(y) and cumulative density function F(y), the VaR at
level a € (0,1) can be calculated as VaR,(Y) = F~1(1 — a). However, the VaR only reflects the
maximal probable losses at a a x 100% chance and does not provide sufficient information about
the tail behavior of a distribution. Hence, VaR may not provide a proper measurement of risk if

the distribution has a heavy tail and if extreme losses are of major concern.

To address this limitation, Acerbi (2002) introduced spectral risk measures, with the Expected
Shortfall (ES) being a popular choice. The ES represents the Conditional Tail Expectation (CTE)
of Y conditioned on its VaR level. Specifically, it is expressed as ES(Y) = CTE[VaR,(Y)] = E[Y |
Y > VaR,(Y)]. It provides a more conservative measure of risk compared to VaR at the same
confidence level v and is effective in analyzing the tail behavior of the distribution (Nadarajah
et al., 2014). Since it has been widely recognized as a coherent measurement of risk in situations
with a non-normal distribution of losses, CTE, also known as "Tail VaR" or "expected tail loss",
is adopted by financial regulators in the U.S. and Canada as capital standards for the insurance

industry.

In addition, it is worth noting that Bernardi (2013) demonstrated that for a mixture model,
the ES can be expressed as a convex linear combination of component-specific ESs. This property
of the ES is further explored in the context of multiple risk components by Bernardi et al. (2017).
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3. Likelihood inference

To estimate 3, the vector of all parameters of the proposed HSMM, we utilize a version of
the expectation-maximization (EM) algorithm (Baum et al., 1970), although other alternatives
are available in the literature (see, e.g., Rydén, 2008; Bulla and Berzel, 2008; MacDonald, 2014).
Once the number of latent states K has been assigned or fixed, the algorithm operates based on
the complete-data likelihood. The complete data likelihood of the HSMM is defined as:

R—1
L. (9) = mspds; (ur) { II 7epse des (Ur)} o lsn, Das (ur) [ [ 0we | Se = ks px, o, v, 7)) (5)
r=2 t=1

where 7, d and b represent the transition probability, the sojourn-time distribution and the emission
distribution, respectively. s represents the rth visited state, u, denotes the time spent in that
state (i.e., the duration of the rth visit), and R — 1 is the number of state changes up to time 7.

Guédon (2003) proposed using the survivor function

Dy (u) = Y dy (0). (6)

v>u

Working on L. (¢) in (5), the EM iterates the following steps, until convergence:

E-step: compute the conditional expected value of the complete-data log-likelihood given the

observed data and 19(h), the current estimate of ¥ at the hth iteration; and

M-step: maximize the preceding expected value with respect to 9.

In the E-step, we calculate the expected complete data log-likelihood given the observed data

as:

Q (919™) = By {n[L (9] |91, e} (7)

where the expectation operator E with the subscript 9 indicates that this expectation is computed

using 9 for 9. The E-step involves the calculation of three quantities:

1. the probability
VM (k) = Py (Se =k | y1,-..,yr) 8)

of being in state k at time t given the observed sequence;

2. the probability
&M (k) = Py (o1 =4, St =k | g1, yr) (9)

that the process left state j at time ¢t —1 and entered state k at ¢ given the observed sequence;

3. the expected number of times a process spends u time steps in state k,

" (k,u) =Py (St—ugr =k, Se =k | y1, ... yr). (10)
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Therefore, Equation (7) can be expressed as:

K
(h) _ (h)
Q(o]0M) = >0 log (11)
e G G R)
+ Z Z D) log 7k (12)
t=1k=1k#j Tt
+D DY g logdi(u) (13)
=1 hm1u=1 Vi (k)
T K
+ 3N (k) log blye | St = ks i, ok, vk, 7). (14)
t=1 k=1

The M-step returns the maximum likelihood estimates for parameters as follows:
71(k)

A (15)
Z%(k)
k=1

T =

My = e (16)

The maximization of the sojourn distribution parameters depends on the chosen sojourn distri-
bution. If the shifted Poisson in considered, for each state k, k = 1,..., K, \; is estimated for

each possible shift parameter value (; € {17 ..., min (u : 771(@};) > O)} by classical point estima-

tion procedures from the quantities 7],(;? (Johnson et al., 2005). The pair (A, (x) which gives the
maximum value of (13), say ()\,(chH), ,ghﬂ)), is retained. Guédon (2003) states that this ad hoc
procedure works well in practice and this statement is further corroborated by O’Connell and
Hgjsgaard (2011b) via simulations. If the gamma is considered as sojourn distribution, then the
maximization of (13) is performed following the methodology of Choi and Wette (1969) which is
implemented by the gammafit () function of the R package mhsmm (O’Connell and Hgjsgaard,
2011Db).

To maximize (14) we use the nonlinear maximization algorithms optim() and nlminb() avail-
able in the R package gamlss, which improves the fitting speed and allows us to obtain parameters
estimates even if a closed form solution of the M-step equation is not available. For details about

these algorithms, see Stasinopoulos et al. (2023).

3.1. Operational aspects: algorithm initialization, standard errors, and model se-
lection

When implementing a hidden semi-Markov model (HSMM), certain operational aspects require

careful attention. In the following we outline and discusse some of these aspects:

First, regarding the initialization of the EM Algorithm, the choice of initial values for the
EM algorithm in mixture models is crucial. In our HSMM with K states, we initialize the EM

algorithm using the approach described in Maruotti and Punzo (2021). Initially, we obtain a state
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partition using the K-means method, assuming the independence of the observations. From this
partition, the off-diagonal elements of the transition probability matrix are computed as transition
proportions. The initial parameters for the sojourn distribution are derived by computing the
sequence of sojourn times in state k from the initial state sequence, and the sojourn probabilities
are obtained from the corresponding relative frequencies. Finally, the initial parameters for the
observed conditional distribution are estimated using the maximum likelihood method on the

observations in state k.

Second, the EM algorithm may converge to local maxima of the log-likelihood function or
encounter singularities at the edge of the parameter space, leading to unbounded log-likelihood
values. To address convergence, we employ the Aitken acceleration method as a criterion to
determine whether the log-likelihood is sufficiently close to its estimated asymptotic value. The

Aitken acceleration at the hth iteration is computed by

J(h+1) _ p(h)

() — -~ -
[(h) — [(h—1)°

(17)

where [ 1) "and 1("=1) represent the log-likelihood at iterations h+1, b, and h—1, respectively.
The asymptotic estimate of the log-likelihood at iteration i + 1 is then obtained as

1

(ht+1) —_g(h) oo = (7(h+1) _ 4(h)
G =1 4 sl 1), (18)

Convergence is considered achieved when the absolute difference between lS.Z“’ and lég) is smaller

than a predefined threshold e.

Third, when maximizing the likelihood with respect to the parameters, it is necessary to address
technical issues such as numerical underflow. For detailed information on how to handle these

problems, refer to Zucchini et al. (2017).

It is crucial to underscore that while initialization strategies, standard errors computation
and convergence to local maxima are pivotal operational aspects when implementing an HSMM,
they represent merely the tip of the iceberg. Additional contemplations might become imperative,
contingent upon the intricate interplay between the model’s unique requisites and the idiosyncrasies
of the dataset under examination. For example, depending on the dataset size and complexity,
computational efficiency becomes significant. Techniques to optimize computations, such as parallel
processing or specialized algorithms for large datasets, might be required. Simlarly, applying
appropriate regularization techniques might prevent overfitting while ensuring model flexibility is

a delicate balance.

4. Model application

To illustrate the flexibility of the proposed HSMM for data on positive support, it is now applied
to the time series of home insurance claims caused by rainfall-induced water damage in Norway.
The fitted model is then used to compute the VaR and the CTE, and these two estimates are

compared with the empirical counterparts.
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4.1. Data description

In this section, we study rainfall-related insurance claims in Norway. Insurance data are pro-
vided by one of the largest Norwegian insurance companies. We have policy and claim data for
all private buildings insured by the company in Norway for the period between 2004 and 2020.
This novel data set has a relatively long time span. The claim amounts are aggregated weekly
over all municipalities in Norway and the value is normalized in Euro (EUR) 2021'. The number
of observations is n = 888. For a fair comparison between years, we use the “loss costs (in euro)”,
which are the total claim amounts divided by the number of policies as the variable of interest (V")
in our analysis. The weekly temporal evolution of loss costs between 2004 and 2020 is displayed

in Figure 1.

In Norway, claims for damage caused by defined natural hazards are covered by a national
insurance pool called Norwegian Natural Perils Pool?. When a claim caused by weather events
is made to the insurance companies, it will be compensated under this insurance scheme if the
damage is deemed to be incurred by natural perils. Claims for damage by extreme weather events
at a local scale, which is not covered to this natural perils insurance scheme, are then covered by
insurance companies. Evidence based on long-term observations of weather and insurance records
shows that local extreme weather events generally cause more insurance losses than large natural
disasters (Lyubchich et al., 2019). Torgersen et al. (2015) also point out that in Norway, only 4%
of water-related claims were defined as natural hazards from 2008 to 2011. Thus, we only focus on

non-catastrophic weather events covered by the insurance company in this study.

304

204

Loss costs

104

2005 2010 2015 2020
Week

Figure 1. Weekly time series of loss costs (in euro) in rainfall-related home insurance claims
across Norway between 20042020

Table 1 displays some quantiles from the empirical distribution of loss costs in rainfall-related

L According to the average exchange rate in 2021 provided by European Central Bank, EUR 1 = NOK 10.1633.
2"Norsk Naturskadepool" in Norwegian.
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home insurance claims over all municipalities in Norway during the period 2004—2020. Obviously,
the distribution is non-symmetric. The histogram (Figure 2) further shows that the empirical
distribution is right-skewed, which is quite common in insurance (Furman, 2008 and Jeon and Kim,
2013). The distribution of insurance claims often has a heavy tail since an insurance company can
experience incidents that have a low probability of occurrence but lead to extremely large losses
(Ahn et al., 2012, Abu Bakar et al., 2015, and Tomarchio and Punzo, 2020). Correspondingly,
incidents that result in smaller claims happen more often and therefore have a higher probability
of occurrence. The positive support of the data suggests that classical real-valued distributions,
like the Gaussian and ¢, are not suitable to describe the distribution of claim amounts since these
models cause boundary bias, that is, allocation of probability mass outside the theoretical support
(see, e.g., Bagnato and Punzo, 2013, Mazza and Punzo, 2014, 2015, and Tomarchio and Punzo,
2019).

Table 1. Some quantiles from the empirical distribution of loss costs (in euro) in Norway between
2004-2020

Quantiles Loss costs

Min. 0.003
0.25 0.208
0.5 0.414
0.75 0.819
0.9 1.449
0.99 8.038
0.999 30.050
Max. 33.076

15

Density

0.5

0.0

Figure 2. Histogram of loss costs in rainfall-related home insurance claims across Norway between
2004—-2020. The red curve is the kernel density estimate — a smoothed version of the histogram.
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4.2. Model fitting and selection

We fit the proposed HSMM to the weekly amounts of rainfall-related home insurance claims
in Norway. For the sojourn distribution, initial attempts indicate that Gamma sojourns always
3

perform better than the shifted Poisson sojourns °. Thus, we adopt the Gamma distribution as

the sojourn-time distribution in this analysis.

Having the candidate models a differing number of parameters, we compare their goodness-of-
fit via the Akaike information criterion (AIC; Akaike, 1974) that, in our formulation, is defined
as

AIC =2In [L ({9)} —om, (19)

where m is the number of estimated parameters in the model and £ (19) is the maximized value
of the (observed-data) likelihood function. Under this formulation, the preferred model is the one
with a higher AIC value.

4.2.1. Fitting the model to the whole period

We first fit the HSMMs having the gamma as the sojourn distribution to the full data set from
2004 to 2020 and examine different emission distributions for a different number of hidden states
(K) with AIC and log-likelihood (LL). Results — in terms of the total number of parameters (m),
maximized (observed-data) log-likelihood (LL), and AIC — are shown in Tables 2, 3, 4, and 5 for

values of K ranging from 1 to 4.

Table 2. Total number of parameters (m), maximized (observed-data) log-likelihood (LL), and
AIC for HSMMs having the gamma as sojourn distribution and varying in terms of emission
distribution. The table refers to the case K = 1.

Emission distribution m LL AIC

EXP 3 -T731.28 -1464.56
GA 4 -716.95 -1437.89
LOGNO 4 -574.16 -1152.32
1G 4 -697.79 -1399.59
WEI 4 -678.29 -1360.59
BCCG 5 -573.72 -1153.43
GG 5 -573.76 -1153.52
GIG 5 -658.37 -1322.75
BCT 6 -552.07 -1112.14
BCPE 6 -555.05 -1118.10
GB2 6 -551.66 -1111.32

Generally, we can see that the result, in terms of LL, improves as the number of hidden states
rises but it also leads to more computation. Taking these factors into consideration, among the
HSMMs having the Gamma as the sojourn distribution, the AIC chooses the GB2 distribution
for the emission distribution and K = 3 hidden states. The estimated parameters for the best-
AIC model are summarized in Table 6. The density plots for estimated emission distributions
and sojourn distributions are displayed in Figure 3 and Figure 4, respectively. According to the

mean and 95% quantile for emission distributions in Table 7, the order of the three states from

3Results for the HSMMs having the shifted Poisson as the sojourn distribution can be found in Tables 14, 15,
16, and 17 of Appendix A.1l.
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Table 3. Total number of parameters (m), maximized (observed-data) log-likelihood (LL), and
AIC for HSMMs having the gamma as sojourn distribution and varying in terms of emission
distribution. The table refers to the case K = 2.

Emission distribution m LL AIC

EXP 4 -561.89 -1137.78
GA 6 -540.99 -1099.97
LOGNO 6 -538.07 -1094.14
1G 6 -557.22 -1132.44
WEI 6 -542.16 -1102.32
BCCG 8 -568.33 -1158.66
GG 8 -508.70 -1039.40
GIG 8 -509.38 -1040.77
BCT 10 -508.04 -1042.09
BCPE 10 -532.67 -1091.33
GB2 10 -506.38 -1038.75

Table 4. Total number of parameters (m), maximized (observed-data) log-likelihood (LL), and
AIC for HSMMs having the gamma as sojourn distribution and varying in terms of emission
distribution. The table refers to the case K = 3.

Emission distribution m LL AIC

EXP 5 -541.82 -1111.64
GA 8 -516.01 -1066.01
LOGNO 8 -495.19 -1024.38
1G 8 -517.58 -1069.15
WEI 8 -517.28 -1068.56
BCCG 11  -555.61 -1151.22
GG 11 -489.41 -1018.82
GIG 11  -493.32 -1026.64
BCT 14  -496.60 -1039.20
BCPE 14  -495.45 -1036.89
GB2 14 -485.04 -1016.08

Table 5. Total number of parameters (m), maximized (observed-data) log-likelihood (LL), and
AIC for HSMMs having the gamma as sojourn distribution and varying in terms of emission
distribution. The table refers to the case K = 4.

Emission distribution m LL AIC

EXP 6 -540.83 -1127.66
GA 10 -496.85 -1047.71
LOGNO 10 -487.27 -1028.55
1G 10 -488.87 -1031.73
WEI 10 -505.92 -1065.83
BCCG 14 -504.43 -1070.85
GG 14 -484.41 -1030.83
GIG 14 -487.40 -1036.80
BCT 18 -479.82 -1029.65
BCPE 18 -487.60 -1045.20
GB2 18 -477.14 -1024.28

high to low risk is State 1, State 3, and State 2. Furthermore, we carry out a comparison to the

actual empirical values of the mean and the quantiles within each of the predicted states. A good
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enough agreement between empirical end estimated values of mean and 95% quantile appears by

comparing Table 7 with Table 8.

Table 6. Estimated parameters for the best-AIC HSMM (gamma sojourn, GB2 emission distri-
bution, and K = 3)

Parts of the HSMM State 1  State 2 State 3
Initial probabilities () 0.000 1.000 0.000
Transition matrix (IT) State 1 0.000 0.000 1.000

State 2 1.000 0.000 0.000
State 3 0.276 0.724 0.000

Sojourn distributions (Gamma) Ak 13.181 5.742 7.036
Ck 0.757 3.071 3.361
Emission distributions (GB2) i 0.882 0.430 0.267
o 2.615 1.324 0.544
Vg 0.466 1.028  12.458
Tk 0.459 2.175 9.741
2.
State
P
G state 1
é state 2
state 3
1]
0.
0 2 4 6 8

X

Figure 3. Density plots for estimated emission distributions

Table 7. Estimated mean and 95% quantile from the emission distributions for the period 2004—
2020

State 1  State 2 State 3

Mean 3.363 0.330 0.597
95% quantile 7.211 0.994 1.628




4.2 Model fitting and selection 14

0.154
0.10 -
State
2
‘@ state 1
g tate 2
a state
state 3
0.05
0.00 -

Figure 4. Density plots for estimated sojourn distributions

Table 8. Actual empirical mean and 95% quantile for the predicted states for the period 2004—2020

State 1  State 2 State 3

Mean 2.140 0.317 0.595
95% quantile 7.860 0.857 1.400

Figure 5 clearly demonstrates that our proposed model is a good choice for modeling rainfall-
related insurance claims. Almost all large claims are captured by state 1, which is the riskiest
state. At the same time, we can see that the model contains two fairly similar states (states 2 and
3) for normal claim sizes, and state 3 gradually takes over. Since state 3 corresponds to slightly
higher risk than state 2, this fact indicates that there is a development over time towards increased

risk.

It is well known that climate change leads to more heavy rain in Norway, which in turn causes a
lot of damage to private property. According to the report Climate in Norway 2100, it is projected
that under the RCP8.5 scenario - the most severe climate projections from the Intergovernmental
Panel on Climate Change (IPCC), the number of days with heavy precipitation in Norway will
double, and the annual precipitation will increase by approximately 18% by the end of this cen-
tury. Kundzewicz et al. (2017) point out that high-intensity rainfall is causing large damage to

infrastructure and buildings in Norway.

Our finding adds new evidence to the literature that there is a sign of growing risk in weather-
related insurance claims due to climate change. Motivated by the finding that there might be a
shift over time for the distribution of normal claims, we split the long time series into two sub-
periods (20042012 and 2013-2020) and fit the model with two hidden states to the first and last
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half of time series respectively.
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Figure 5. Time series plot with estimated states in the background (2004-2020)

4.2.2. Fitting the model to two sub-periods

To further confirm our finding above, we conduct the same analysis on the two sub-periods as
we do above for the entire period, using the Gamma distribution as the sojourn distribution and
the Generalized Beta type 2 distribution as the emission distribution. We employ a model with
two hidden states: one for normal claims and one for extremes. Again, we find that the high-risk

state continues to effectively capture all large claims.

For the period 2004-2012, according to the mean and 95% quantile for emission distributions
in Table 9, state 1 corresponds to higher risk than state 2. From Figure 6 we can find that state
1 is visited more frequently during the period 2004-2012, and almost all extreme observations
are captured by state 1. For the period 2013-2020, as shown in Table 10, state 1 is riskier than
state 2. Looking at Figure 7, all large claims appear in this high-risk state. In addition, we also
discover that risk has been increasing over time, not just for normal claims, but also for extreme
claims. This finding supports our conclusion in the previous section when fitting the model to the
whole period, which highlights the need for insurers to continually update their risk management

strategies to adapt to the changing climate.

4.3. Computation of the risk measures

To investigate the appropriateness of the fitted model in reproducing empirical risk measures,
we compute the Value at Risk (VaR) and conditional tail expectation (CTE), using the estimated
parameters, at the 90%, 95%, and 99% confidence levels. For the entire period 2004-2020, according
to Table 6 in Section 4.2.1, we generate a test sequence of length 1,000,000 from a three-state
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Table 9. Estimated mean and 95% quantile from the emission distributions (left) and actual
empirical mean and 95% quantile for the predicted states (right) for the period 2004-2012

State 1  State 2 State 1  State 2
Mean 1.324 0.366 Mean 1.360 0.338
95% quantile 4.116 1.047 95% quantile 4.520 0.922
404
304
2 State
§ 20 1
ks 2
104
ol
2004 2006 2008 2010 2012

Figure 6. Time series plot with estimated states in the background (2004-2012)

HSMM with the estimated GB2 distributions. Table 11 summarizes the estimation results from
the test series and the empirical value from the true series. Generally, we can see that our model
estimates the risk measures close to the empirical values, but we also find a discrepancy between the
estimated 99% CTE and the empirical value. In addition, we calculate these two risk measures using
simulated data of the same length from three-state HSMMs with the other considered emission
distributions. We can easily detect that compared to GB2 distribution, the other candidates
give a more conservative estimation at the higher risk level (see 99% VaR and 99% CTE). This
indicates that GB2 can be a better choice if extreme losses are of major concern and/or if insurance
companies prefer to adopt a safer risk management strategy. For further reference, estimated results
using GB2 distribution and the empirical values for the two sub-periods are given in Table 12 and

Table 13, respectively.

Table 10. Estimated mean and 95% quantile from the emission distributions (left) and actual
empirical mean and 95% quantile for the predicted states (right) for the period 2013-2020

State 1 State 2 State 1 State 2

Mean 3.231 0.418 Mean 1.970 0.390
95% quantile 6.152 1.094 95% quantile 6.960 0.975
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Figure 7. Time series plot with estimated states in the background (2013-2020)

Table 11. Risk measures for the period 2004-2020

VaR CTE
90% 95%  99%  90% 95% 99%
Empirical Value 1.449 2.475 8.038 4.297 6.716 16.694

GB2 1.478 2.1656 6.461 6.339 10.922 41.382
EXP 1.492 1.768 2365 1877 2138 2.714
GA 1.504 1.825 2584 1971 2296  3.054
LOGNO 1.563 2.139 4.203 2.607  3.107  4.278
IG 1.651 2.209 3.832 238 2780 3.674
WEI 1.530 1.932 2959 2111 2459  3.267
BCCG 1.617 2.140 4.139 2.730 3.380  5.099
GG 1.495 2.046 4.226 2.761  3.353  4.799
GIG 1474 2.151 5.021 2.964 3.535 4.750
BCT 1.419 2.182 6.381 4.579  5.668  8.231
BCPE 1.552  2.125 3.905 2.471  2.895  3.853

Table 12. Risk measures for the period 2004-2012

VaR CTE
90%  95% 99%  90%  95%  99%
Empirical Value 1.488 2474 5.889 3.452 5.001 9.336
GB2 1.425 1.997 4.141 2.613 3.560 7.049

5. Concluding Remarks

This study contributes to the literature in three significant aspects. Firstly, we utilize a novel
insurance dataset on rainfall-related claims obtained from a leading insurance company in Norway.

This unique dataset covers private building claims from all municipalities in Norway, spanning a
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Table 13. Risk measures for the period 2013-2020

VaR CTE
90% 95% 99%  90% 95% 99%
Empirical Value 1.426 2.392 9.561 5.194 8.676 22.069
GB2 1.528 2.441 8.846 7.506 13.127 49.098

long time period of 17 years. As the dataset has not been previously used for research purposes,
it presents an exceptional opportunity for studying the impact of rainfall on insurance claims and

offers a new perspective for investigating the effects of weather-related claims.

Secondly, we propose an effective model for modeling rainfall-related insurance claims, which is
of great importance to the insurance industry. Although our study only focuses on insurance losses
caused by rainfall, the methods could also be applied to other weather-related claims. The model
can provide a more accurate estimation of potential insurance losses and can be used to improve

risk management strategies to deal with the pressure posed by the fast-changing climate.

Lastly, our model estimates suggest that the risks associated with heavy rain in home insurance
appear to have been increasing during the period 2004-2020, which is consistent with a changing
climate. The findings offer useful insights to insurance companies for accurate modeling in the
face of climate change. By incorporating these findings into their risk management framework,
insurance companies can better prepare for future losses and minimize the impact of weather

events on insured buildings.
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Appendix

A.1. HSMMs having the shifted Possion as sojourn distribution.

Here are the results of the total number of parameters (m), maximized (observed-data) log-
likelihood (LL), and AIC for HSMMs having the shifted Poisson as sojourn distribution, when the

number of hidden states (K) ranges from 1 to 4.
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Table 14. The table refers to the case K = 1.

Emission distribution m LL AIC

EXP 3  -731.28 -1464.56
GA 4 -716.95 -1437.89
LOGNO 4 -574.16 -1152.32
1G 4 -697.79 -1399.59
WEI 4 -678.29 -1360.59
BCCG 5 -573.72 -1153.43
GG 5 -573.76 -1153.52
GIG 5 -658.37 -1322.75
BCT 6 -552.07 -1112.14
BCPE 6 -555.06 -1118.10
GB2 6 -551.66 -1111.32

Table 15. The table refers to the case K = 2.

Emission distribution m LL AIC

EXP 4  -574.35 -1162.70
GA 6 -565.95 -1149.91
LOGNO 6 -545.81 -1109.62
1G 6 -567.37 -1152.74
WEI 6 -567.11 -1152.23
BCCG 8 -571.50 -1165.01
GG 8 -b45.14 -1112.27
GIG 8 -550.20 -1122.40
BCT 10 -551.68 -1129.36
BCPE 10 -548.87 -1123.75
GB2 10 -549.07 -1124.14

Table 16. The table refers to the case K = 3.

Emission distribution m LL AIC

EXP 5 -564.47 -1156.94
GA 8 -537.42 -1108.84
LOGNO 8 -513.83 -1061.66
1G 8 -519.60 -1073.20
WEI 8 -540.10 -1114.21
BCCG 11  -571.50 -1165.01
GG 11 -499.20 -1038.40
GIG 11  -500.60 -1041.21
BCT 14  -504.97 -1055.95
BCPE 14 -517.90 -1081.80

GB2 14 -499.07 -1044.14
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Table 17. The table refers to the case K = 4.

Emission distribution m LL AIC

EXP 6 -550.91 -1147.81
GA 10 -505.61 -1065.22
LOGNO 10 -499.86 -1053.71
1G 10 -490.20 -1034.40
WEI 10 -510.49 -1074.98
BCCG 14 -521.10 -1104.19
GG 14 -489.35 -1040.71
GIG 14  -492.61 -1047.21
BCT 18 -489.25 -1048.50
BCPE 18 -495.02 -1060.04
GB2 18 -487.35 -1044.69

20
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