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1 Introduction

I’ve searched all the parks in all the cities and found no statues of committees.

— Quote attributed to Gilbert K. Chesterton

While committees are a ubiquitous institution for making decisions, they are often de-

rided as ineffective and incompetent. In contrast to popular opinion, however, the experi-

mental evidence has shown that relative to theoretical benchmarks, committees work sur-

prisingly well. In particular, committee members are less strategic, more truthful, and are

ultimately better at aggregating individual information than we should expect.1 Despite this

evidence, to the best of our knowledge there is no systematic study of why, exactly, commit-

tees work better than expected.

A basic theoretical argument for the use of committees, first formalized by de Condorcet

(1785), is that committees aggregate the private information of their members and thus make

more informed decisions than could be made by any one individual in isolation. If all in-

dividuals hold private information that is more likely to be “right” than “wrong,” and if all

individuals vote according to their private information, then a sufficiently large committee

that votes via a majority rule will choose the “right” option with arbitrary precision. How-

ever, starting with Austen-Smith and Banks (1996) and Feddersen and Pesendorfer (1996,

1997) a large theoretical literature emerged showing that, in general, committee members do

not always have incentives to vote sincerely, and that the prediction of information aggrega-

tion in committees is not robust to many real-world concerns.2 Additionally, while truthful

communication may mitigate some of the failures of information aggregation through voting

(Coughlan, 2000), committee members often face incentives to communicate strategically

and misrepresent their individual information (Austen-Smith and Feddersen, 2006; Breit-

1For a seminal reference, see Goeree and Yariv (2011).
2Theoretically, the prediction of information aggregation in committees can fail due to: the decision rule (Fed-
dersen and Pesendorfer, 1998); uncertainty regarding the signal structure (Mandler, 2012); a failure of pref-
erence monotonicity (Bhattacharya, 2013); uncertainty regarding the size of the population (Ekmekci and
Lauermann, 2019); and voters who are bribed (Dal Bó, 2007), who have a preference for winning (Callander,
2007, 2008), who have moral payoffs (Feddersen et al., 2009), who have partisan expressive motives (Morgan
and Várdy, 2012), and are held accountable for their individual vote (Midjord et al., 2017, 2021).
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moser and Valasek, 2022).

This raises a simple question given the empirical evidence on committees: Do we mis-

perceive the efficiency of committees empirically, or are committees more efficient than

predicted theoretically? Despite the large amount of work dedicated to analyzing commit-

tees theoretically and experimentally, we are not aware of prior work directly answering

this simple question, much less of a study answering it for committees allowing for com-

munication. We present a simple experimental design, providing committee members with

incentives to both communicate and vote strategically, that allows us to answer this question.

The design is simple in that we implement standard voting games with (formalized) cheap-

talk communication, but it is sufficiently rich in that we allow for expressive payoffs (that

agents have a preference to vote for one of the options, Breitmoser and Valasek, 2022) under

both majority and unanimity voting. This set-up generates interior equilibria with strategic

communication and voting, in relation to which both over- and undercommunication as well

as naive and sophisticated voting is possible. We find that committees indeed aggregate in-

formation more efficiently than predicted theoretically, largely in line with socially optimal

behavior: subjects tend to communicate truthfully and vote with the majority of messages

(see also Le Quement and Marcin, 2020). This finding raises another question, however:

Why do committee members behave in this fortunate way?

On one hand, our analysis reveals that subjects mostly understand that all of them tend

to communicate truthfully, but in light of this, the expressive payoffs in our experiment

should induce them to vote strategically. The correct anticipation of truthful communication

suggests that limited depth of reasoning is not the key driver of behavior, as we discuss in

more detail below. On the other hand, the truthful communication itself has been linked to

various models in the literature, most prominently lying aversion, guilt aversion and limited

depth of reasoning. While the evidence between the models in the existing literature is

generally inconclusive, as discussed shortly, in our experiment, subjects would nonetheless

have an incentive to vote strategically by collecting the expressive payoff. Our empirical

analysis falsifies this prediction, however, implying that the behavioral foundation of the
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observed truthful communication and sincere voting follows from a different behavioral

bias.

Before we elaborate, let us clarify the exact timing of committee decisions in our model:

Nature draws a state of the world, agents receive an informative signal about the state and

update their belief, agents then send messages and again update their belief, and finally they

vote. In relation to this framework, our central empirical observations can be summarized as

follows: (i) subjects communicate much more truthfully than justified by expected payoffs,

(ii) they correctly anticipate the imperfect truthfulness of their co-players’ messages, and (iii)

they vastly overweigh private signals and public messages in the voting stage. Observations

(i) and (iii) contradict plain Bayesian equilibrium, observation (iii) contradicts Bayesian

equilibrium with lying aversion, and observation (ii) contradicts limited depth of reasoning.

Based on our understanding of human behavior, however, there are two obvious breaking

points in the above chain of events: we are not good at Bayesian updating of our beliefs. Tak-

ing this as given, our behavioral analysis asks how much of behavior is unexplained once we

allow for the one factor that is inevitably at play—imperfect Bayesian updating. The answer

turns out to be “not much,” as seen in our simple but general structural analysis nesting the

three debated biases (lying aversion, limited depth of reasoning and overreaction) besides

a number of other biases such as efficiency concerns and limited foresight. All three main

biases affect behavior significantly, but to varying extents, and by far the most substantial

factor driving behavior is overreaction: While Bayesian equilibrium (with logistic errors)

explains around 40% of observed behavior, allowing for imperfect Bayesian updating ex-

plains another 50%, yielding 87% in total. That is, once we account for imperfect Bayesian

updating, other factors are of limited relevance.

To summarize, we observe behavior compatible with overreaction to the most recent

information (see Bordalo et al., 2020; Afrouzi et al., 2023), which in our setting translates

to a tendency for subjects to overestimate the probability that the state equates with the

private signal(s) . Such overreaction strengthens incentives to message truthfully, and as

subjects overestimate the relevance of their own decisions, it also strengthens incentives
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to vote with the majority. Moreover, it is difficult to learn correct Bayesian updating in

an applied setting, explaining its persistence over the course of the experiment and, as we

discuss in our conclusion, it is a general explanation for many of the related observations

made in prior experiments.

Regarding related literature, in a companion paper (Breitmoser and Valasek, 2022) we

discuss the policy implications of our experimental results for the choice between majority

and unanimity rules, while the present paper discusses the more fundamental question about

the (exceeding) efficiency of committees. Our experimental design builds on Goeree and

Yariv (2011), who analyze voting in committees with pre-play communication and simi-

larly find overcommunication. Their work extends Guarnaschelli et al. (2000) and Ali et al.

(2008), who studied voting in committees without pre-play communication. In relation to

this literature, our experiment adds expressive payoffs which greatly facilitates the identifi-

cation of behavioral factors through implying distinctive predictions of the various concepts

discussed in the literature.

As indicated, the behavioral factors discussed in the existing literature are primarily lying

aversion, guilt aversion and limited depth of reasoning. To begin with, the evidence between

lying aversion and guilt aversion is rather mixed. While the original studies of Gneezy

(2005) and Charness and Dufwenberg (2006) provide rather strong evidence in favor of lying

aversion and guilt aversion, respectively, subsequent studies cast doubt either on the validity

of guilt aversion (Vanberg, 2008; Ellingsen et al., 2010), lying aversion (Hurkens and Kartik,

2009), or both (Charness and Dufwenberg, 2010, 2011). Overreaction, recently highlighted

as a simple behavioral deviation from Bayesian updating in Bordalo et al. (2020) and Afrouzi

et al. (2023), has the potential to be an organizing factor in much of this work, as imperfect

Bayesian updating is a widespread phenomenon of obvious relevance in communication in

the presence of private information.

Another recent paper discussing policy implications of expressive payoffs is Ginzburg

et al. (2022), who observe limited depth of reasoning, which we do not find to be a major

factor after allowing for overreaction. A seminal paper demonstrating that limited depth of
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reasoning is not necessarily driving truthful communication is Cai and Wang (2006), who

find that behavior is well-explained by logit QRE (note that we will also allow for logistic

errors). Sánchez-Pagés and Vorsatz (2007) find that some subjects additionally are lying

averse (while holding rational expectations about the noisy play), and further evidence in-

dicates that subjects expect more truthfulness than predicted in equilibrium (Gneezy, 2005;

Kawagoe and Takizawa, 2008; Lundquist et al., 2009). This phenomenon is known as truth

bias, whereby receivers rely more on the senders’ messages in choosing actions than pre-

dicted by equilibrium. In our set-up with interior equilibria, receivers actually rely more on

the senders’ messages in choosing actions than predicted by rational expectations, which

ultimately points to overreaction as the behavioral bias with the potential of organizing this

large array of observations.

We shall discuss this potential in more detail in our concluding section 5. Aside from this,

Section 2 discusses the theoretical model and the experimental design, section 3 analyzes

the rationality of communication and voting in isolation, while section 4 analyzes both in

conjunction to quantify the relevance of the key behavioral factors. The appendix contains

further information on our theoretical analysis and the experimental instructions.

2 Theory and Experimental Design

2.1 The voting game

We consider a generalized Condorcet setting with pre-vote communication (cheap talk) and

expressive payoffs: First, Nature draws a state of world ω ∈ {R(ed),B(lue)}, and N =

3 experts, i ∈ {1,2,3}, draw independent signals about the state of the world. That is,

each committee member receives a private signal, si ∈ {R,B}, which are identically and

independently distributed across members with Pr(ω = x|si = x) = α. We set α equal to 0.6

in the experiment.

Each expert then sends a message mi ∈ {R,B} to the others and finally the committee
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decision, denoted by X ∈ {R,B}, is made via a vote, where each expert submits a vote,

vi ∈ {R,B}, simultaneously with no abstentions. The voting rule, D, is either Majority or

Unanimity (defined below) and maps votes (vi) to committee decisions (X). All committee

members have a common prior over the state of the world, denoted PR = Pr(ω = R), which

is uninformative, i.e. PR = 1/2.

The payoff of expert i is a function of the committee decision, the state of the world

ω ∈ {R,B}, and the own vote vi. Payoffs consist of a common-value component and an

idiosyncratic component. For the common-value component, each candidate receives a pay-

off of Pc if the committee chooses the decision that matches the underlying state of the

world, and a payoff of zero otherwise. For the idiosyncratic component, each candidate

has a voting bias, and receives a payoff of K < Pc conditional on voting for option R. This

voting bias is unconditional on the state of the world and the decision of the committee –

such an idiosyncratic payoff is commonly referred to as an expressive payoff (Breitmoser

and Valasek, 2022; Ginzburg et al., 2022). To summarize, terminal payoffs as a function of

outcome X ∈ {R,B}, state ω ∈ {R,B}, and the own vote vi ∈ {R,B} are equal to:

πi(X ,ω,vi) =



0, if X ̸= ω and vi = B

Pc, if X = ω and vi = B

K, if X ̸= ω and vi = R

Pc +K, if X = ω and vi = R

Crucially, the addition of idiosyncratic payoffs allows us to distinguish between the theo-

retical predictions of different behavioral models. As we will detail in the theoretical predic-

tions below, an expressive payoff introduces a collective-action problem that gives an incen-

tive to communicate strategically. The main behavioral models we consider, lying aversion

and overreaction, both predict more truthful communication relative to the benchmark, but

give different predictions in the voting stage.

We denote this game by Γ = ⟨K,PR,α,D,N⟩. The timing of the game is as follows:
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1. Nature draws state w ∈ {R,B} and sends private signals (si) ∈ {R,B}N .

2. Committee members observe si and simultaneously send messages (mi) ∈ {R,B}N .

3. Committee members observe (mi) and simultaneously submit votes (vi) ∈ {R,B}N .

4. Votes are counted and payoffs accrue.

The Majority decision rule is defined in the standard way: X = B iff two or more agents

vote for B, and X = R otherwise. For Unanimity, we allow for multiple rounds for the

committee to reach a unanimous decision in our experiment.3 To simplify the exposition of

the theoretical results, however, we use a model of unanimity that mechanically enforces a

unanimous voting profile if agents do not reach a unanimous decision in the first round, since

the additional rounds of straw polls do not impact our theoretical results (see Breitmoser and

Valasek, 2022). That is: X = B iff vi = B for all i; if vi = R for any i, X = R and vi = R for

all i.

We focus on symmetric strategies, so that agents’ strategies are duples (σ,τ), where:

• σ(si) is the probability of message R after signal si ∈ (R,B),

• τ(si,mi,M) is the probability of vote vi =R after signal si, own message mi, and overall

M = #{ j|m j = B} players sending message B (including i).

We consider several different models of behavior, and therefore introduce the associated

equilibrium concepts in the following section.

2.2 Theoretical predictions

In this section we introduce several behavioral models, and summarize the theoretical pre-

dictions of the various models under the parameters used in the experiment: a precision,

α, equal to 0.6; and two levels of expressive/common payoffs, “low” expressive payoffs

(K = 10, Pc = 40), and “high” expressive payoffs (K = 15, Pc = 35). Our benchmark so-

lution concept is efficient symmetric sequential equilibrium, or “equilibrium” for short. In

3This approximates the general process often used in committees (see Guarnaschelli et al., 2000; Goeree and
Yariv, 2011): agents first publicly share their private signals (cheap talk messaging), then “deliberate” using a
sequence of straw polls, and reach a final decision when the outcome of a straw poll is unanimous
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addition, we will provide theoretical predictions for several behavioral models to clarify

how our experimental design allows us to discriminate the main strands of ideas potentially

underlying committee behavior: non-standard preferences (lying aversion and efficiency

concerns), non-Bayesian updating (overreaction), and non-equilibrium beliefs (of which we

focus on level-k).

Next, we will outline the main theoretical findings and brief intuition for the observed

differences. All theoretical predictions are also summarized in Table 15 in the Appendix.

Since there are often multiple equilibria in our setting, we focus on efficient equilibria, i.e.

the equilibrium that maximizes expected payoffs. If there are multiple efficient equilibria,

we focus on the equilibrium that is the limiting logit equilibrium, which is the limiting

agent quantal response equilibrium (McKelvey and Palfrey, 1998) for logit errors as the

error rate tends to zero. As McKelvey and Palfrey demonstrate, this limiting equilibrium

is a sequential equilibrium, which connects to the existing theoretical literature, and as we

shall consider logit errors below, the limiting logit equilibrium also connects to our structural

analysis of behavior reported below.

The following table (Table 1) summarizes the predictions of our main behavioral models

under Majority, indicating whether subjects send truthful messages, and whether the com-

mittee votes with the majority of messages. The main differences in predictions between our

benchmark equilibrium and the behavioral equilibria are highlighted, showing that there are

substantial differences in the predictions across the different models of behavior. Note that,

while illustrative, the coarse predictions in Table 1 obscure some substantial variation; for

example, while both lying aversion and level-L (to be defined) predict that the committee

votes with the majority of messages when M = 3 for low expressive payoffs, the individual

probability of vi = B is 0.64 under lying aversion, while the individual probability of vi = B

is 1 under level-L (see Table 15 in the Appendix for additional detail).

Benchmark Equilibrium As indicated, the baseline equilibrium concept we consider is

symmetric sequential equilibrium. By symmetry, we mean that agents with the same infor-
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Table 1: Summary of theoretical predictions: Majority

Messages Voting
si = R si = B M = 0 M = 1 M = 2 M = 3

Majority 40-10
Equilibrium × ×
Lying Aversion ×
Overreaction ×
Level-K (1) × × × ×
Level-L (1) ×
Altruism × ×

Majority 35-15
Equilibrium × × × ×
Lying Aversion × ×
Overreaction ×
Level-K (1) × × × ×
Level-L (1) × ×
Altruism × ×

Note: For Messages: indicates truthful message, and × indicates non-truthful mes-
sage. For Voting: indicates that the committee votes with the majority of messages
with over 50% probability, and × indicates that the committee votes with the majority of
messages with under 50% probability. Highlighted cells indicate that predictions differ
from “Equilibrium.”

mation sets take the same strategies.

Definition 1. Our benchmark equilibrium (equilibrium) is symmetric sequential equilib-

rium. In cases of multiple equilibria, we focus on the equilibrium that maximizes ex ante

expected utility.

In Breitmoser and Valasek (2022), we characterize the set of equilibria for the parameters

we use in our experiment in greater detail. In particular, we show that under Majority, the

probability that the committee selects X = B when there are three signals for B is strictly

smaller than 1 in all equilibria. For intuition, assume agents communicate truthfully and

vote for the state supported by the majority of messages. Under Majority, the players are not

pivotal given this voting behavior, and therefore have an incentive to unilaterally deviate to

vote R whenever B has the higher number of messages (and signals). This shows that voting

with the majority of signals cannot be an equilibrium. This “collective action” problem

prevents the committee from selecting the optimal committee outcome given the profile

of messages and causes strategic communication in any equilibrium where agents’ voting

strategies respond to the aggregate profile of messages.
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Prediction 1 (Equilibrium: Majority). For low expressive payoffs, σ(R) = 1, σ(B) = 0.56

and vi = B iff si = B and M = 2. For high expressive payoffs, σ(R) = 0.5, σ(B) = 0.5

(babbling) and vi = R for all message profiles.

That is, for high expressive payoffs, the collective action problem causes information

aggregation to collapse completely, in the sense that the committee selects X = R for all

message profiles. For low expressive payoffs, the committee partially aggregates informa-

tion. In particular, when there are two messages for B, agents with mi = B vote for B and the

agent with mi = R votes for R, which implies that agents voting for B are pivotal. In turn, it

is a best reply for agents to vote for B when pivotal when M = 2 because the probability that

there are three signals for B when M = B is strictly positive given µ(B)< 0 (which is not the

case under truthful communication).

Lying aversion As discussed above, the evidence from previous experiments on com-

munication in committees shows that communication is more truthful than predicted in

equilibrium—a finding that we replicate in our setting. A potential explanation for this

finding is that agents are averse to lying (Gneezy, 2005; see Abeler et al., 2019 for evidence

on lying aversion). We therefore consider a simple model of lying aversion, where agents

play truthful messaging strategies.

Definition 2 (Lying aversion). We define lying aversion as agents playing a fixed messaging

strategy, σ̄ = {σ(a) = 1,σ(b) = 0}.

The model under lying aversion reduces to a game where all agent’s signals are publicly

shared, which results in the following voting behavior under majority:

Prediction 2 (Lying Aversion: Majority). By definition, σ(R)= 1, σ(B)= 0. For low expres-

sive payoffs, agents only vote for B if M = 3 (Pr(vi = B|M = 3) = 0.64). For high expressive

payoffs, vi = R for all message profiles.

Note that lying aversion results in truthful messaging by assumption, but does not address

the collective action problem in the voting stage. Therefore, since agents report truthfully
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and voting B is only individually rational given three signals for B, agents will only vote for

B with positive probability when expressive payoffs are low, and there are three messages

for B.

Overreaction Players exhibit overreaction if they tend to ignore prior information as new

information arrives (see Bordalo et al., 2020; Afrouzi et al., 2023). For our theoretical bench-

mark, we implement (perfect) overreaction as the tendency to assume that the most recent

information is correct with high probability, regardless of the prior information about the

state of the world and the probabilities of signals in each state.

Definition 3 (Overreaction). We define overreaction as agents perceiving private signals to

be correct with a probability close to 1—i.e. Pr(ω = si) → 1—and where this is common

knowledge.

Our model of overreaction presumes that agents are “rational,” in the sense that they

choose strategies to maximize their individual payoffs and play according to the benchmark

equilibrium concept, but that their beliefs are not consistent with Bayesian updating. Un-

der Majority, similar to lying aversion, incorrect Bayesian updating leads to more truthful

communication relative to the benchmark. The reason is that since players with overreaction

overestimate the probability that their own signal is correct, these players underestimate the

value of sending a strategic message. That is, conditional on receiving a message of R, the

strategic incentive to report B to increase the probability that B is chosen when the other

agents received signals of B is outweighed by the chance that the committee incorrectly

chooses B when the other agents’ signals are split.

Prediction 3 (Overreaction: Majority). With Overreaction, agents truthfully communicate

σ(R) = 1, σ(B) = 0. For M = 2 agents with mi = B set vi = B with both high and low ex-

pressive payoffs, and for M = 3 all agents set vi = B with probability 0.85 for low expressive

payoffs and 0.69 with high expressive payoffs.

That is, in contrast to lying aversion, overreaction impacts voting relative to the bench-

mark behavior. Since agents anticipate that messaging will be truthful, but overestimate the
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accuracy of the signals, they will vote for B with positive probability given two messages of

B. In contrast, with lying aversion, agents only vote for B given three messages of B. There-

fore, while lying aversion and overreaction both predict more truthful messaging relative to

the benchmark, only overreaction predicts that agents will vote according to the majority of

messages at a higher rate than the benchmark in equilibrium.

Limited depth of reasoning Here we consider two models of limited depth of reasoning.

First, adopting the standard assumption that players at level 0 randomize uniformly and that

players at level k ≥ 1 best respond to players at level k− 1, yields the following prediction

of level-1 behavior.

Definition 4 (Level-K). Under k = 1, agents best response to the belief that all opponents

randomize uniformly in both the communication and voting stages.

Given uninformative communication and randomized voting, agents have a best response

of voting for R for all profiles of signals. The predictions of cursed equilibrium, specifically

for fully cursed players, are very similar, and for this reason, we shall skip a detailed discus-

sion. Due to their similarities in our setting, we will jointly refer to these models as models

of limited depth of reasoning.

Arguably, however, the idea that level-K agents believe that others will randomize uni-

formly in the communication stage is implausible in our context, considering our knowledge

of lying aversion. For this reason, we also consider the alternative model of limited depth of

reasoning where agents are level-K with infinitesimal lying aversion: in cases of indifference

agents will communicate truthfully (including agents at level 0), and level 0 agents will vote

by randomizing uniformly. We shall refer to this combination of level-K and lying aversion

as the level-L model.

Definition 5 (Level-L). Under level l = 1, agents best response to the belief that all oppo-

nents communicate truthfully and randomize uniformly in the voting stage.

The predictions of the model in the voting stage change with Level-L relative to Level-K
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since, given three signals for B, agents best respond to randomized voting by voting B with

low expressive payoffs.

Altruism Another point of view is that players might be (imperfect) altruists, and place a

higher weight on the common payoffs (see for example Ginzburg et al., 2022).4

Definition 6 (Altruism). We define “Altruism” as agents disregarding the expressive payoffs,

and playing strategies that maximize common payoffs.

The predictions under altruism are straightforward: agents babble in the communication

stage, but vote according to their signal (vi = si), ensuring that the option with the majority

of signals is selected by the committee.

2.2.1 Unanimity

Here we briefly address the predictions under Unanimity, summarized in Table 2 (note that

the table list voting behavior as a function of signals rather than of messages as in Table

1). In contrast to Majority, under Unanimity there is no collective action problem—the

committee will select B if and only if all agents vote for B. In general, this implies that

there are many voting strategies that result in the same committee outcome, and there are

multiple efficient equilibria for many of our models. Again, when there are multiple efficient

equilibria, we focus on the limit logit equilibrium.

In our benchmark model, the committee will only select X = B when there are three sig-

nals for B using a messaging strategy of babbling, µ(A) = µ(B) = 0.5, and a voting strategy

of vi = si. Under lying aversion, the committee will also only select X = B when there are

three signals for B, but will play truthful strategies in the messaging stage.

Under overreaction, agents communicate truthfully. However, they vote for the option

that is optimal given their beliefs, which implies that agents will vote for the option with

the majority of messages. That is, the committee will select X = B if there are two or more

4Alternatively, agents may derive utility from voting for the correct alternative (see Midjord et al., 2021).
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Table 2: Summary of theoretical predictions: Unanimity

Messages Voting
si = R si = B S = 0 S = 1 S = 2 S = 3

Unanimity 40-10
Equilibrium × × ×
Lying Aversion ×
Overreaction
Level-K (1) × × × ×
Level-L (1) ×
Altruism

Unanimity 35-15
Equilibrium × × ×
Lying Aversion ×
Overreaction
Level-K (1) × × × ×
Level-L (1) ×
Altruism

Note: For Messages: indicates truthful message, and × indicates non-
truthful message. For Voting: indicates that the committee votes with
the majority of signals with over 50% probability, and × indicates that the
committee votes with the majority of signals with under 50% probability.
Highlighted cells indicate that predictions differ from “Equilibrium.”

messages for B. Similar to under Majority, overreaction predicts that the committee will

select B more often than the benchmark equilibrium or lying aversion (the same is true for

altruism).

For level-K, the predictions are the same for Majority—agents babble in the messaging

stage and vote for R for all message profiles. Under level-L, however, the committee selects

B iff there are three signals for B since agents communicate truthfully and vote for B given

three messages for B.

2.3 Experimental design

The experiment closely implements our model of voting with expressive payoffs, using a

2×2 design with “High” and “Low” expressive payoffs under Majority and Unanimity. The

experimental implementation closely follows the related experiments of Guarnaschelli et al.

(2000) and Goeree and Yariv (2011). In particular, we use neutral language, communicate

probabilities and signals to subjects using balls drawn from urns, and provide feedback about
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the actual state of world and composition of payoffs after each round. A detailed description

follows and a translation of the instructions and a screenshot are provided as supplementary

material. The experiments were conducted at the WZB/TU experimental laboratory in Berlin

in May, June and November of 2016. Subjects were recruited using ORSEE (Greiner, 2015)

and the experiment was programed in Z-Tree (Fischbacher, 2007).

The four treatments are summarized in Table 3. The sum of the expressive payoff K,

which committee members get after voting R, and social payoff Pc, which committee mem-

bers get after voting in line with the state of the world, is always equal to to 50 points. In the

treatments with “low” expressive payoffs, we set K = 10 and Pc = 40, and in the treatments

with “high” expressive payoffs, we set K = 15 and Pc = 35. The payoffs were calibrated

such that in both the Low and High treatments, voting for B is not individually rational when

there are only two signals for B (as discussed above). For both cases of expressive payoffs,

we conduct sessions with either Unanimity or Majority voting, implementing all treatments

strictly between subjects. The precision of each subject’s signal was constant across treat-

ments and equal to α = 0.6. Subjects were paid according to the sum of points accumulated

across all 50 games, and one point corresponded to one euro cent in all treatments. The ex-

periment lasted between 75 and 105 minutes and subjects earned between 19 and 22 Euros

on average across sessions.

Table 3: Overview of experimental treatments

Label Decision rule Pc K #Subjects #Sessions #Games

Majority-Low Majority 40 10 48 4 50
Majority-High Majority 35 15 45 4 50
Unanimity-Low Unanimity 40 10 45 4 50
Unanimity-High Unanimity 35 15 48 4 50

For each treatment, we ran four sessions with either 9 (two sessions) or 12 (fourteen ses-

sions) participants. In all cases, two sessions were run simultaneously to increase anonymity.

Upon arrival at the laboratory, subjects were seated randomly. An experimental assistant

then handed out printed versions of the instructions and read the instructions out loud. Sub-

sequently, subjects filled in a computerized control questionnaire verifying their understand-
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ing of the instructions, and the experiment did not start until all subjects had answered all

questions correctly. The subjects then played 50 voting games in committees of size three

(N = 3), with random rematching after each game (see Figure 2 in Appendix B for a com-

posite screenshot). After each game, the subjects received feedback on payoffs, aggregate

behavior and the aggregate signal profile. Under Majority, the timing of each round was as

follows.

Definition 7 (Implementation: Majority voting). Observe private signal si ∈ {R,B}. Send a

public message to their group mi ∈{R,B}. Observe message profile. Submit vote vi ∈{R,B}.

Observe state, votes, outcome, and payoffs for this game.

Under Unanimity, the timing of each round was identical to Majority aside from the

voting stage. Subjects were given three chances to reach a unanimous decision—again, the

additional rounds of “straw polls” do not impact our theoretical predictions—after which all

subjects were assigned a default vote of R.

Definition 8 (Implementation: Unanimity voting). The only difference to Majority is in the

voting stage: Submit vote v1
i ∈ {R,B}. If vote is unanimous proceed to Outcome Stage.

Otherwise, again submit a vote v2
i ∈ {R,B}. If vote is unanimous proceed to Outcome Stage.

Otherwise, submit a final vote v3
i ∈ {R,B}. If vote is not unanimous, all subjects are assigned

the vote vi = R. Proceed to Outcome stage.

Upon completion of the experiment, subjects left the laboratory and were paid individu-

ally in a separate room by an experimental assistant.

3 Are committees as efficient as predicted?

Table 4 displays the average strategies across treatments and Table 5 provides the implied ef-

ficiency of information aggregation, i.e. the relative frequencies that the committees choose

the options corresponding with the majority of their private signals. Theoretically, efficient

information aggregation is achieved if, under majority, subjects simply vote according to
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Table 4: Observed choices in the experiment

Messages Voting
µ(A) µ(B) π(A,A,0) π(B,A,0) π(A,A,1) π(A,B,1) π(B,B,1) π(B,A,1) π(A,A,2) π(A,B,2) π(B,B,2) π(B,A,2) π(A,B,3) π(B,B,3)

Observations across treatments
Majority 40-10 0.9

(0.01)
0.16
(0.01)

0.98
(0.01)

0.77
(0.06)

0.94
(0.01)

0.86
(0.06)

0.92
(0.02)

0.82
(0.04)

0.64
(0.03)

0.68
(0.06)

0.44
(0.02)

0.51
(0.08)

0.55
(0.11)

0.31
(0.03)

Majority 35-15 0.79
(0.01)

0.13
(0.01)

0.98
(0.01)

0.92
(0.06)

0.96
(0.01)

0.91
(0.04)

0.92
(0.02)

0.78
(0.05)

0.75
(0.03)

0.94
(0.02)

0.6
(0.02)

0.69
(0.06)

0.84
(0.04)

0.32
(0.03)

Unanimity 40-10 0.96
(0.01)

0.14
(0.01)

0.99
(0)

0.88
(0.05)

0.94
(0.01)

0.76
(0.11)

0.94
(0.01)

0.91
(0.03)

0.28
(0.03)

0.53
(0.12)

0.26
(0.02)

0.26
(0.08)

0.17
(0.11)

0.02
(0.01)

Unanimity 35-15 0.94
(0.01)

0.14
(0.01)

1
(0)

0.95
(0.03)

0.96
(0.01)

0.59
(0.12)

0.92
(0.02)

0.87
(0.04)

0.48
(0.03)

0.67
(0.07)

0.43
(0.02)

0.28
(0.07)

0.38
(0.14)

0.03
(0.01)

Table 5: Efficiency across treatments in relation to predictions

Majority Unanimity
40-10 35-15 40-10 35-15

Predictions
Exp. Payoff 0.617 0.5 0.64 0.64
Lying Aversion 0.599 0.5 0.64 0.64
Base Rate Fallacy 0.92 0.789 1 1
Level-K (1) 0.5 0.5 0.5 0.5
Level-L (1) 0.64 0.5 0.64 0.5

Observations
Aggregate 0.681 0.669 0.777 0.732
Inexperienced 0.690 0.667 0.768 0.748
Experienced 0.672 0.671 0.787 0.718

Note: The table lists predicted and observed relative frequencies of committees choosing “optimally” contingent on their aggregate private information, i.e. choosing the
option corresponding to the majority of private signals.



their signals, and under unanimity, if subjects message truthfully and vote according to the

majority of messages. As discussed above, subjects may want to deviate from voting ef-

ficiently to collect the expressive payoff, and in this respect, truthful messaging may be

detrimental: The more subjects know about their co-players’ signals, the more they can in-

fer about their subsequent voting behavior and the easier it is to identify opportunities for

collecting the expressive payoffs. Indeed, theoretically lying aversion implies more truthful

messages than Bayesian equilibrium for expected payoffs but weakly less efficient com-

mittee decisions. Overall, socially efficient Bayesian equilibrium is the most optimistic

prediction and predicts efficiency rates 0.617, 0.5, 0.64 and 0.64 across treatments (Table 5).

The observed efficiency rates, across treatments and for both inexperienced and expe-

rienced subjects (first and second halves of sessions, respectively), are substantially higher

than this prediction: 0.681, 0.669, 0.777 and 0.732. Indeed, taking each of the sixteen ses-

sions as independent observations, the observed efficiency rate is below the most optimistic

equilibrium prediction in only one half of one session: the subjects in the second half of

session 4 on the 35-15 unanimity treatment. One out of 2×16 half sessions is clearly within

the limits of chance for any statistical test, and for example, using Wilcoxon tests, the Null

hypothesis that efficiency rates do not exceed the most optimistic Bayesian equilibrium pre-

dictions is rejected at p < 10−5. That is, committees do work better than predicted by the

models discussed prominently in the existing literature (equilibrium, lying aversion, and

limited depth of reasoning).

Result 1. Committees are much more efficient in aggregating information than predicted by

Bayesian equilibrium.

While this was our initial hypothesis, let us note that the only concepts predicting more

efficient information aggregation than Bayesian equilibrium are overreaction and altruism,

of which only overreaction predicts an asymmetry between unanimity and majority voting.

Table 5 provides the predictions for full overreaction, i.e. that subjects believe their signal is

correct with a probability close to 1 (which is true for all players and common knowledge).

This predicts much more efficient information aggregation than we actually observe, but it
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seems that the deviations from Bayesian equilibrium point to this direction, including the

asymmetry, e.g. that subjects potentially exhibit overreaction to an intermediate degree. In

the remainder of the paper, we shall analyze potential explanations in detail, starting by

looking at messages and votes in isolation.

4 Do subjects communicate rationally?

We begin with analyzing communication behavior in relation to the actually expected pay-

offs associated with the messages across information sets in the experiment. To this end,

we determine the expected payoffs of subjects in the experiment, conditional on the signal

received and message sent (Table 6). The right-most columns (“Rel Freq R”) in the panels

of Table 6 provide the observed relative frequencies of R messages. Following an R sig-

nal, they are largely constant around 0.9, and following a B signal and they are also largely

constant around 0.15, implying that messages are slightly more truthful in unanimity treat-

ments. Messages appear to be largely independent of the expected payoffs associated with

messaging R or B, however, which are displayed in the other two columns. The probabil-

ities of R messages following B signals are always around 0.15, but expected payoffs vary

from favoring B message (majority 40-10) over indifference (unanimity 40-10) to favoring R

messages (35-15 treatments). Similarly, following R signals, by expected payoffs subjects in

both majority treatments should be practically indifferent between R and B messages, but the

probability of R messages is always high, and without obvious reason, it drops from 0.904

to 0.787 between these treatments. In unanimity treatments, subjects are more truthful fol-

lowing R signals than following B signals, and indeed, incentives are strongly in favor of R

messages in these cases. In isolation, the latter may relate to expected payoffs, but the overall

impact of expected payoffs (under rational expectations) seems limited in communication.

In order assess this relationship rigorously, we regress the probability of messaging m =

R on signal and expected payoffs in the ensuing voting stage. Formally, we use dEP(s) to

denote the difference in expected payoffs between messages R and B given a subject’s signal
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Table 6: Expected payoffs and relative frequencies of messages contingent on signal

(a) Majority decisions

Exp Payoff

Mess R Mess B Rel Freq R

40-10 Signal R 32.86 32.3 0.904
Signal B 25.48 27.94 0.163

35-15 Signal R 33.59 33.34 0.787
Signal B 27.69 26.44 0.128

(b) Unanimity decisions

Exp Payoff

Mess R Mess B Rel Freq R

40-10 Signal R 33.66 28.12 0.958
Signal B 27.19 27.37 0.14

35-15 Signal R 35.76 30.83 0.94
Signal B 29.64 27.67 0.137

Note: This tables provides the conditional payoffs observed in the experiment, conditional on the signal being
R or B and the subject sending either an R or a B message (columns “Pay R” and “Pay B”, respectively). In
addition, the columns “Prob R” list the actual relative frequencies of R messages conditional on the signal
being R or B.

s ∈ {R,B}, i.e. the difference between the values in the first two columns in the panels of

Table 6. Further, we use Is=R to denote the indicator checking if the signal is R (evaluating

to 1 in this case and to 0 otherwise) and allow for logistic errors, implying

Pr(m = R) =
1

1+ exp{λ ·dEP(s)−κ · (Is=R −0.5)}
. (1)

We normalize the indicator by subtracting 0.5. In addition, the differences in expected pay-

offs of R and B messages, dEP(s), are estimated from the data and correspondingly subject

to measurement error. To account for this, we estimate the standard errors of dEP(s) for

each signal s ∈ {R,B} in each treatment and then use the obtained standard errors in an

MCMC approach following Hadfield (2010) to correct for measurement error. We account

for the panel structure of the data by including random effects at the subject level. The re-

sults are provided in Table 7. They are fairly clear and confirm the above impression: the

own signal is highly significant in all cases, but the expected payoffs are largely irrelevant.

Their coefficients are significant in three out of four treatments, but they are of negligible

economic significance in the majority treatments5 and equally in the unanimity treatments.

Hence, we conclude that messages are non-strategic, being mostly independent of expected

5Note that in the majority treatments, the differences in expected payoffs (the first two columns in the panels
of Table 6) are generally less than 2, and hence if weighed with factors less than 1 they are dominated by the
signal which has weights at or above 5.
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payoffs while correlating strongly with signals

Table 7: Expected payoffs of messages contingent on the private signal

Majority Unanimity
40-10 35-15 40-10 35-15

Estimates
Exp. payoff 0.557

(0.161)

∗∗ 0.771
(0.472)

−0.531
(0.092)

∗∗∗ −0.234
(0.059)

∗∗

Own signal 7.295
(0.505)

∗∗∗ 5.061
(0.493)

∗∗∗ 5.891
(0.567)

∗∗∗ 5.987
(0.372)

∗∗∗

Additional information
Number observations 2400 2250 2250 2400
DIC 1442.9 1367.5 957.0 1086.9
Measurment error correction
Random effects

Note: One asterisk indicates p-values p < 0.05, two asterisks indicate p < 0.01 to approximate the Bonferroni
correction (there are four simultaneous tests per hypothesis), and three asterisks indicate p < 0.001.

In light of our ex-ante predictions (Table 15), possible explanations are lying aversion

and overreaction (besides potentially altruism, which we discuss below). Lying aversion

asserts a preference for sending truthful messages, and this preference may outweigh differ-

ences in expected payoffs. Overreaction, i.e. overshooting when inferring the state of Nature

from signals, strengthens the incentives for sending truthful messages in other ways. On one

hand, there is an indirect effect in that co-players overshoot when voting based on the mes-

sage one sends, and hence sending wrong messages impedes voting efficiency. On the other

hand, and this effect can be identified analyzing messages, overreaction dilutes one’s payoff

expectations.

To clarify, we use dP(ω = B) to denote the difference of the expected payoffs from

messaging R or B given the (unknown) state ω,

dP(ω) = P(m = B|ω)−P(m = R|ω), (2)

and thus can define the expected difference in payoffs from messaging R and B, given one’s
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Table 8: Expected payoffs of messages contingent on the unknown state of the world

(a) Majority decisions

Mess R Mess B

40-10 State R 46.01 33.51
State B 14.89 24.75

35-15 State R 46.72 37.06
State B 15.94 20.88

(b) Unanimity decisions

Mess R Mess B

40-10 State R 46.04 27.54
State B 15.38 27.32

35-15 State R 46.70 32.24
State B 17.54 24.62

Note: This tables provides the conditional payoffs observed in the experiment, conditional on the signal being
R or B and the subject sending either an R or a B message (columns “Pay R” and “Pay B”, respectively). In
addition, the columns “Prob R” list the actual relative frequencies of R messages conditional on the signal
being R or B.

belief Pr(ω = R|s) about the unknown state of Nature ω given signal s, as

dEP(s) = Pr(ω = R|s) ·dP(ω = R)+Pr(ω = B|s) ·dP(ω = B). (3)

Overreaction implies the belief Pr(ω|s) to be biased toward one’s private signal s, which in

turn biases the payoff expectation in favor of messaging truthfully. To illustrate, Table 8

shows the empirically expected payoffs (in the experiment) of messaging R or B contingent

on the unknown state of Nature, i.e. the items denoted P(m=B|ω) and P(m=R|ω) above. In

all treatments, sending the message equating with the unknown state is vastly more profitable

than sending the wrong message. Hence, if subjects overestimate the probability that the true

state equates with their signal, then they have a strong preference for messaging truthfully.

To verify this point econometrically, let us finally estimate the degree of overreaction, i.e.

the beliefs about the true state of Nature, that would rationalize the choices given rational

expectations about contingent payoffs dP(ω). To this end, we capture the mapping from

signal s to belief Pr(ω = R|s) with a simple logistic function

Pr(ω = R|s) = 1
1+ exp{αm · (Is=B −0.5)}

= 1−Pr(ω = B|s), (4)

which allows us to estimate the weight on the own signal (αm) alongside precision λ in

communication, see Eq. (1), simply by maximum likelihood over observed messages, us-
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ing the system of structural equations (1)–(4). Note that Eq. (4) captures potential viola-

tions of Bayesian updating in a fairly general manner. Perfect Bayesians have αm = 0.79,

which implies the Bayesian posteriors Pr(ω = R|s = R) = 0.6 and Pr(ω = B|s = R) = 0.4.

Overreaction obtains if αm > 0.79, i.e. subjects overshoot in response to their signal, and

conservatism in Bayesian updating obtains if αm < 0.79.

Table 9 summarizes the results. We compare the empirically observed voting proba-

bilities P̂r(m = R|s) to the voting probabilities predicted without overreaction (“expected

payoffs”) and with overreaction. For clarity, we also show the implied beliefs Pr(ω = R|s)

about the true state ω contingent on the own signal s and the actual parameter estimates

(λ,αm). For brevity, we pool majority and unanimity treatments in Table 9.

Table 9: Predicted messages with and without overreaction

Empirical Beliefs under expected payoffs Beliefs with overreaction
P̂r(m = R|s) λ Pr(ω = R|s) Pr(m = R|s) (λ,αm) Pr(ω = R|s) Pr(m = R|s)

Majority (40-10 and 35-15 pooled)
s = R 0.847 0.41 0.6 0.821 (0.20,4.94) 0.92 0.877
s = B 0.146 0.4 0.495 0.08 0.233

Unanimity (40-10 and 35-15 pooled)
s = R 0.949 0.33 0.6 0.879 (0.21,5.57) 0.94 0.956
s = B 0.138 0.4 0.574 0.06 0.169

The weight αm is consistently around 5 across treatments, vastly in excess of the Bayesian

αm = 0.79. Implicitly, subjects’ messages are rationalized (consistently across conditions)

by the belief the unknown state ω equates with the own signal with probabilities slightly

above 0.90. In relation to the Bayesian posterior of 0.60, this indicates possible overreaction

to a large degree, and consequently subjects vastly overestimate the payoffs from messaging

truthfully. The implied probabilities of messaging R, listed in the right-most column of Table

9, closely match the observed relative frequencies across conditions (listed in the left-most

column). In absolute terms, the differences between predictions and observations are 3, 9, 1,

and 3 percentage points. In contrast, Bayesian updaters would not generally message truth-

fully, in particular not after B signals, and the implied predictions for “expected payoffs” are

far off the observed truthfulness after B signals.
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We reiterate that lying aversion is similarly adequate in rationalizing truthfulness of

messages. This point is trivially true in all conditions, it does not even require the state-

contingent payoffs in Table 8 to align with truthfulness. That is, both overreaction and lying

aversion match the evidence well, and looking at messages alone, differences between these

concepts are far from being significant. Analyzing messages does not suffice to disentan-

gle these explanations, but analyzing voting behavior in addition will allow us to progress

further, as overreaction also imposes restrictions on voting.

Result 2. Messages are non-strategic, being mostly independent of expected payoffs while

correlating with signals. Lying aversion and overreaction are both compatible with the

observed messages.

5 Do subjects vote rationally?

Now, let us turn toward the decisions in the voting stage. Figure 1 provides an overview

across information sets. Voting strategies are depicted as functions of the own signal (R or

B) and the number of co-players’ messages that are B (0, 1 or 2). For both majority and

unanimity treatments, subjects vote R with high probability (around 0.9) if the co-players’

messages are both R, with relatively low probability if the co-players’ messages are both B,

and with intermediate probability otherwise. Across information sets, the relative frequency

of voting R ranges from 0.1 to 0.95, responding in the intuitive manner to the information

available to subjects.

In the following, we analyze to which degree the responsiveness is statistically signif-

icant. The pieces of information available to subjects are their own signal s, their own

message m1, and their co-players’ messages m2,m3. Based on those, a subject’s belief about

the state of the world can be expressed using the logistic function

Pr(ω = R) =
1

1+ exp{α1 · (Is=B −0.5)+α2 · (Im2=B + Im3=B −1)}
. (5)
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Figure 1: Relative frequency of voting R as functions of own signal and the number “OBlue”
of blue messages sent by co-players

(a) Majority treatments
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(b) Unanimity treatments
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By regressing the unknown state of the world on the available information, we estimate the

weights a subject with rational expectations would put on each of these pieces of information

when predicting the state. Similarly, we can represent the probability Pr(X = R|v) that the

voting outcome X is R based on the available pieces of information (including the own vote

v). Our preferred specification is as follows.

Pr(X = R|v) = 1
1+ exp{β1 · Iv=B +β2|0Im2=m3=R +β2|1Im2 ̸=m3,m1=R +β2|2Im2 ̸=m3,m1=B +β2|3Im2=m3=B}

,

(6)

and the complemetary probability that B results is Pr(X = B|v) = 1−Pr(X = R|v). Thus,

the voting outcome is expressed as a logistic function of the own vote v (weight β1) and of

the co-player’s messages in relation to the own message. In our preferred specification, we

allow for four cases: the co-players’ messages are either both R, both B, or mixed, and in

the latter case, we distinguish two cases based on the own signal (since this signal is visible

to the co-players). In general, six cases are possible, as discrimination based on the own

signal would be possible also in the two cases with unanimous messages of co-players, but

the adequacy of the representation does not improve significantly when we do so. In this

sense the extension is not needed to express rational expectations about the voting outcome
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and can be skipped to maintain parsimony.

Now, with these expressions of rational expectations about state and voting outcome in

hand, it is straightforward to compute the expected payoffs given rational expectations. The

probability that the voting outcome equates with the true state of Nature is

Pr(X = ω|v) = Pr(ω = R) ·Pr(X = R |v)+Pr(ω = B) ·Pr(X = B |v). (7)

Thus, using Pc and K to denote the payoff from the voting outcome being correct and the

bonus from voting R, respectively, the expected payoffs of voting v ∈ {R,B} are expressed

straighforwardly. In majority treatments, we obtain

EP(v = R) = Pc ·Pr(X = ω|v = R)+K EP(v = B) = Pc ·Pr(X = ω|v = B), (8)

and in unanimity treatments, we obtain for both v ∈ {R,B},

EP(v) = Pc ·Pr(X = ω|v)+K ·Pr(X = A|v). (9)

The belief weights in Eqs. (5) and (6) are simply estimated by maximum likelihood

and with these estimates, we obtain estimates of the expected payoffs using Eqs. (7)–(9).

We bootstrap the distribution of the belief weights obtained by regression, stratifying at the

subject level to account for the panel structure of the data, and by recomputing the expected

payoffs for each bootstrap sample, we obtain estimates for the standard errors of expected

payoffs across information sets. Table 10 presents the results, and to put the estimates into

context, it also includes the observed relative frequencies of voting R.

Two observations are striking. First, in all information sets of both majority treatments,

subjects would maximize expected payoffs by voting R. The differences in expected payoffs

are always close to the payoff from voting expressively, 10 or 15 points, suggesting that

subjects actually have little impact on the voting outcome (i.e. on the probability that the

voting outcome equates with the state of the world). In line with this observation, a majority
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Table 10: Expected payoffs and decisions when voting

Majority 40-10
EP(R) EP(B) P̂r(R)

S-R M-R , OBlue 0 38.17
(0.57)

26.4
(0.49)

0.98
(0.007)

S-R M-R , OBlue 1 33.67
(0.38)

22.64
(0.29)

0.93
(0.011)

S-R M-R , OBlue 2 29.61
(0.22)

20.89
(0.49)

0.64
(0.031)

S-R M-B , OBlue 0 38.17
(0.57)

26.4
(0.49)

0.86
(0.056)

S-R M-B , OBlue 1 32.35
(0.27)

18.29
(0.21)

0.68
(0.058)

S-R M-B , OBlue 2 29.61
(0.22)

20.89
(0.49)

0.55
(0.111)

S-B M-R , OBlue 0 31.21
(0.67)

20.95
(0.52)

0.77
(0.057)

S-B M-R , OBlue 1 26.33
(0.38)

17.36
(0.29)

0.82
(0.037)

S-B M-R , OBlue 2 27.4
(0.35)

25.96
(0.45)

0.51
(0.073)

S-B M-B , OBlue 0 31.21
(0.67)

20.95
(0.52)

0.92
(0.015)

S-B M-B , OBlue 1 27.65
(0.27)

21.71
(0.21)

0.44
(0.021)

S-B M-B , OBlue 2 27.4
(0.35)

25.96
(0.45)

0.31
(0.03)

Majority 35-15
EP(R) EP(B) P̂r(R)

39.44
(0.54)

23.38
(0.48)

0.98
(0.008)

35.65
(0.34)

19.89
(0.27)

0.95
(0.009)

31.96
(0.38)

17.94
(0.3)

0.75
(0.028)

39.44
(0.54)

23.38
(0.48)

0.91
(0.04)

35.18
(0.29)

17.47
(0.12)

0.94
(0.023)

31.96
(0.38)

17.94
(0.3)

0.84
(0.039)

33.41
(0.63)

18.27
(0.53)

0.92
(0.057)

29.35
(0.34)

15.11
(0.27)

0.78
(0.05)

28.35
(0.39)

20.83
(0.33)

0.69
(0.06)

33.41
(0.63)

18.27
(0.53)

0.92
(0.019)

29.82
(0.29)

17.53
(0.12)

0.6
(0.021)

28.35
(0.39)

20.83
(0.33)

0.31
(0.026)

Unanimity 40-10
EP(R) EP(B) P̂r(R)

39.17
(0.55)

37.21
(0.49)

0.98
(0.007)

33.73
(0.4)

31.82
(0.33)

0.95
(0.009)

25.71
(0.21)

23
(0.56)

0.3
(0.033)

39.17
(0.55)

37.21
(0.49)

0.71
(0.113)

29.72
(0.27)

20.52
(0.29)

0.53
(0.109)

25.71
(0.21)

23
(0.56)

0.25
(0.125)

32.03
(0.77)

31.06
(0.67)

0.74
(0.062)

25.99
(0.4)

25.78
(0.31)

0.87
(0.039)

23.89
(0.16)

28.11
(0.41)

0.31
(0.079)

32.03
(0.77)

31.06
(0.67)

0.87
(0.02)

25.54
(0.21)

24.49
(0.2)

0.2
(0.017)

23.89
(0.16)

28.11
(0.41)

0.03
(0.01)

Unanimity 35-15
EP(R) EP(B) P̂r(R)

40.74
(0.5)

39.56
(0.48)

0.99
(0.004)

35.6
(0.36)

33.45
(0.32)

0.96
(0.009)

27.32
(0.28)

22.29
(0.33)

0.48
(0.031)

40.74
(0.5)

39.56
(0.48)

0.47
(0.118)

32.75
(0.3)

23.47
(0.28)

0.62
(0.061)

27.32
(0.28)

22.29
(0.33)

0.54
(0.144)

34.54
(0.6)

33.83
(0.57)

0.92
(0.032)

28.91
(0.36)

28.11
(0.3)

0.81
(0.049)

24.6
(0.22)

25.47
(0.25)

0.31
(0.071)

34.54
(0.6)

33.83
(0.57)

0.84
(0.022)

27.86
(0.27)

24.44
(0.11)

0.38
(0.019)

24.6
(0.22)

25.47
(0.25)

0.05
(0.013)

Note: The tables show, for each information set in the voting stage, the expected payoff from voting R, denoted
EP(R), the expected payoff from voting B, denoted EP(B), and the relative frequency of R votes, denoted
P̂r(R). These relative frequencies are set in bold-face type if the observation contradicts payoff maximization,
and specifically if subjects predominantly vote B although expected payoffs predict R to be more profitable.

of subjects votes B only in three out of the 24 information sets. Second, the differences

in expected payoffs are much smaller in unanimity treatments, in particular if signals and

messages suggest that R should result—as B can be vetoed. If at least one subject on each

committee sticks to voting R, then R results, and both other subjects are indifferent between

R and B. In contrast, if B is the likely state of the world, then the decision of voting R or B is

payoff relevant and subjects indeed are best off voting B. Again, however, subjects tend to

vote B too often, i.e. even in some of the information sets where voting A is optimal. They

do so when signals and messages suggest they should, but this tendency is incompatible with

rational expectations about expected payoffs.

Econometrically, we verify the relevance of expected payoffs in voting by regressing

votes on signals and messages, and by additionally including the difference in expected pay-

offs as reported in Table 10. Under rational expectations, the expected payoffs should be of

significant relevance, as they contain all relevant information, while signals and messages

should be insignificant. As above, the estimated expected payoffs are subject to measure-

ment error, which we account for using the MCMC approach of Hadfield (2010) using the

bootstrapped standard errors reported in Table 10, and we include random effects at the sub-
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ject level to account for the panel structure of the data. The results are reported in Table

11.

Table 11: Relevance of expected payffs, signal and co-players’ messages in voting

Majority Unanimity
40-10 35-15 40-10 35-15

Estimates
Exp. Payoff −0.083

(0.055)
−0.023
(0.048)

0.337
(0.007)

∗∗∗ 0.152
(0.038)

∗∗∗

Own signal 1.804
(0.327)

∗∗∗ 2.452
(0.179)

∗∗∗ 4.752
(0.019)

∗∗∗ 3.564
(0.112)

∗∗∗

Opp’s messages 1.403
(0.219)

∗∗∗ 1.607
(0.167)

∗∗∗ 3.585
(0.016)

∗∗∗ 2.771
(0.116)

∗∗∗

Constant −3.122
(0.821)

∗∗∗ −4.732
(0.879)

∗∗∗ −7.268
(0.217)

∗∗∗ −6.2
(0.273)

∗∗∗

Additional information
Number observations 2400 2250 2250 2400
DIC 1985.6 1608.0 1347.0 1576.4
Measurment error correction
Random effects

Note: Logit regression with random effects at subjects level, across all rounds per ses-
sion; robustness checks for each half session could go into supplement/appendix; exp.
payoff is EP(v = R)−EP(v = B), DIC is the deviance information criterion

To begin with, the own signal and the co-players’ messages are of similar relevance. The

own signal gets higher weight than the co-players’ messages individually, but jointly their

messages have higher weight than one’s signal. This corresponds with the general level of

truthfulness, which is not quite 100% and implies that the opponents’ messages need to be

discounted, indeed. In contrast, expected payoffs are entirely insignificant in the majority

treatments, and significant but economically of minor relevance in the unanimity treatments.

The difference in expected payoffs has the highest weight in the 40-10 unanimity treatment

(weight 0.337), and the difference itself is generally less than 10 points across information

sets in this treatment. The maximal impact on choice propensities by expected payoffs is

therefore less than 3.37, mostly substantially less, and as such it is still much less relevant in

choice than any co-player message, let alone the own signal. This obtains, even though the

rationally choice relevant information that is contained in messages and signals already has

been accounted for in the computation of expected payoffs.

Result 3. Subjects message truthfully, slightly discount the co-players’ messages, vote re-
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sponsively, but do not consistently vote for the option that would maximize their individual

payoffs. They tend to vote for the option supported by the majority of signals and messages.

This over-weighting of the information contained in messages and signals again suggests

that subjects exhibit an overreaction, indeed it is predicted by the above findings from ana-

lyzing messages. An alternative explanation is, however, that subjects do not hold rational

expectations about their co-players’ voting strategies—as proposed by level-k (and cursed-

ness). For, intuitively, if one overestimates the noise in the co-players’ voting, then one also

overestimates the probability that one’s vote will be pivotal, and consequently, one overesti-

mates the expected gain from voting in line with the majority of signals and messages.

6 Why do subjects deviate from rational behavior?

The previous sections have shown that the exceeding efficiency of information aggregation

in committees relates to two basic observations: Committee members communicate more

truthfully than predicted by expected payoffs, and they vote more sincerely than predicted

by expected payoffs, over-weighting signals and messages in relation to the expected payoffs

actually implied by signals and messages. Lying aversion can explain truthful messages but

not sincere voting. Limited depth of reasoning can partially explain sincere voting, as it

biases payoff expectations, but it does not explain the high weights subjects put on their

co-players’ messages—those would be perceived as uninformative by players with limited

depth of reasoning. Overreaction is in principle compatible with both observations, but

the above analysis left open if the degree of overreaction is consistent in messaging and

voting, and sufficient to jointly explain both aspects. The purpose of the present section is

to econometrically disentangle and test these potential explanations.

To this end, we merge the models of voting and messaging introduced above. On one

hand, using the expected payoffs of voting v ∈ {A,B} as defined above, EP(v = R) and

EP(v = B) following Eqs. (6)–(9), and allowing for logistic errors, the subject will vote R
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with probability

Pr(v = R) =
1

1+ exp{−λ1 · (EP(v = R)−EP(v = B))−λ2 ·K}
(10)

Initially, we allow for λ1 ̸= λ2, i.e. for subjects to exhibit efficiency concerns (λ1 > λ2) or to

otherwise deviate from equally weighing the two payoff dimensions, but this will prove to

be an unnecessary degree of caution. Following the above result, that messages following R

signals tend to be more likely to be truthful than messages following B signals, we extend

the model introduced above by allowing for such asymmetry also in the own belief updating.

Pr(ω = A) =
1

1+ exp{αm(Is=B −0.5)+α1 · Im2=R∨m3=R +α2 · Im2=B∨m3=B}
= 1−Pr(ω = B)

(11)

By Eqs. (6)–(9), the weights αm,α1,α2 as well as β1,β2|· are free parameters characterizing

Bayesian updating (αm,α1,α2) as well as beliefs about voting strategies (β1,β2|·).

On the other hand, using expected payoffs from communicating given the own signal,

dEP(s) as defined in Eqs. (2)–(4) with free parameters (αm,dEP(R),dEP(B)), the subject

will send message R with probability

Pr(m = R|s) = 1
1+ exp{λ3 ·dEP(s)−λ4Is=A +λ4Is=B}

. (12)

Besides allowing for stochastic errors, this formulation allows us to test for the significance

of lying aversion (λ4 > 0) and incorrect Bayesian updating (αm ̸= 0.79). In relation to above,

we make the identifying assumption that messaging agents hold rational expectations about

the expected payoffs from R or B messages conditional on the state of the world, i.e. dP(ω)

are anticipated correctly. As indicated, agents may deviate from truthful communication

because of wrong Bayesian updating or lying aversion.

We start the analysis with a general model of behavior containing all parameters α1,α2,

β1, β2|· and λ1–λ4 as degrees of freedom. In the analysis, we will successively restrict this
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general model of behavior, in order to identify the biases actually present in behavior. That

is, we determine the weights α1,α2 as well as β1,β2|· actually used by subjects, test whether

and how subjects deviate from rational expectations and Bayesian updating, and restrict the

model when appropriate. In this way, starting at the general model and successively identi-

fying the behaviorally relevant biases, we can analyze behavior without making inadequate

assumptions at any step in the analysis.

All parameters are estimated by maximum likelihood, standard errors are Huber-Sandwich

estimates clustered at the subject level, and the hypothesis tests discussed next are imple-

mented as likelihood ratio tests evaluating the general model against specifically restricted

models, bootstrapping the test statistic by replacement again at the subject level (to control

for the panel character of the data). Table 12 presents the parameter estimates discussed in

the following. In addition, Table 12 presents the results of all likelihood ratio tests investigat-

ing significance of specific biases, to be discussed, and the empirical estimates α̂ and β̂ that

represent the respective values if subjects held rational expectations and obeyed Bayesian

updating.

We start by estimating the model parameters for each treatment in isolation, either for

all periods, or separately for the first half of periods (1 . . .25) and the second half of periods

(26 . . .50). In likelihood ratio tests, we evaluate the differences between the two unanimity

treatments, on the one hand, and the two majority treatments, on the other hand. They prove

to be far from significant, the p-values being above p = 0.8 at all levels of experience and

also pooled across all rounds, which shows that we can pool the two majority treatments and

two unanimity treatments, respectively; naturally, we control for the treatment differences

in expressive payoffs K. Based on this, we test for learning effects. If each treatment is

considered in isolation, behavior does not differ significantly between first and second halves

of the sessions, the p-values being around p = 0.1 in all four treatments, but when we pool

majority treatments and unanimity treatments, respectively, the experience effects exceed

the conventional level of significance, with the p-values being p = 0.027 and p = 0.035 in

majority and unanimity treatments (respectively). That is, with experience, behavior adapts,
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Table 12: Analysis of the motives underlying communication and voting

Majority decision Unanimous decision
First half Second half First half Second half

Null Hypothesis Alternative Rational Behav Rational Behav Rational Behav Rational Behav
αm 0.771

(0.086)
22.601
(181.016)

0.746
(0.086)

3.388
(4.223)

0.738
(0.086)

25.379
(384.213)

0.875
(0.088)

4.919
(3.146)

α1 0.574
(0.074)

12.248
(90.552)

0.556
(0.074)

−0.515
(1.266)

0.449
(0.081)

14.511
(192.381)

0.893
(0.08)

4.201
(2.169)

α2 0.377
(0.074)

12.021
(90.352)

0.469
(0.075)

4.151
(3.853)

0.574
(0.067)

13.559
(192.428)

0.644
(0.074)

3.68
(1.735)

β1 2.407
(0.094)

4.746
(0.475)

2.397
(0.101)

3.092
(0.373)

2.236
(0.103)

5.105
(2.018)

2.169
(0.1)

6.573
(3.542)

β2|0 −3.466
(0.189)

−1.837
(0.688)

−4.361
(0.297)

0.083
(0.09)

−3.98
(0.183)

2.731
(1.282)

−4.323
(0.265)

4.701
(1.987)

β2|1 −2.678
(0.091)

−3.406
(0.427)

−3.434
(0.115)

0.299
(0.399)

−3.23
(0.112)

3.471
(1.295)

−3.352
(0.116)

5.137
(1.996)

β2|2 −0.387
(0.059)

−2.795
(0.158)

−0.791
(0.062)

−3.818
(1.173)

−0.247
(0.062)

−3.709
(1.458)

−0.513
(0.059)

5.02
(2.146)

β2|3 0.861
(0.096)

−1.8
(0.338)

0.394
(0.094)

1.425
(1.216)

0.768
(0.112)

−0.243
(16.197)

1.104
(0.104)

0.216
(41.164)

λ1 0.969
(0.063)

1.218
(0.275)

1.542
(0.257)

3.63
(0.768)

λ2 1.105
(0.164)

0.38
(0.183)

2.007
(0.27)

6.341
(1.47)

λ3 0.029
(1.034)

0
(1.055)

1.501
(0.403)

1.778
(0.847)

λ4 1.668
(1.055)

1.774
(0.769)

0.244
(0.505)

0.663
(0.915)

No of observations 2325 2325 2325 2325
Log-likelihood -2081.1 -1905.06 -1632.48 -1516.48

Efficiency concerns
(A) HA : λ1 = λ2 = λ3 HBase 3.05

(0.605)
9.35
(0.28)

0.83
(0.795)

6.84
(0.244)

State beliefs: overshooting
(B) HB : HA ∧αm,1,2 = α̂m,1,2 HA 37.62∗∗∗

(0.006)
39.79∗∗
(0.033)

98.44∗∗∗
(0.001)

50.29∗∗
(0.042)

(C) HC : HA ∧αm,1,2 ∝ α̂m,1,2 HA 4.46
(0.258)

26.26
(0.143)

8.39∗
(0.07)

6.25
(0.44)

Voting beliefs: rational expectations with pivotality illusion
(D) HD : HC ∧β1 = β̂1 HC 0

(1)
0
(1)

4.03
(0.442)

11.7
(0.106)

(E) HE : HD ∧β2|0...3 = β̂2|0...3 HD 32.69∗∗∗
(0)

30.44∗∗∗
(0)

340.34∗∗∗
(0)

301.08∗∗∗
(0)

(F) HF : HD ∧β2|0...3 ∝ β̂2|0...3 HD 15.09∗∗
(0.019)

9.35∗
(0.088)

31.66∗∗
(0.036)

8.94
(0.3)

(G) HG : HD ∧β2|0...3 = 0 HD 16.46∗∗
(0.032)

10.78∗
(0.092)

31.66∗∗
(0.036)

10
(0.27)

Lying aversion develops with experience
(H) HH : HD ∧λ4 = 0 HD 19.91

(0.109)
37.94∗
(0.058)

0.1
(0.916)

17.55
(0.194)

Note: The rows αm–λ4 reports the parameters estimated by maximum likelihood, the standard errors reported in parentheses are Huber-Sandwich estimates clustered at the subject level. For
each hypothesis test, we present the logarithm of the likelihood ratio of restricted model over general model and the bootstrapped p-value in parentheses, and asterisks to indicate the level of
significance: one asterisk indicates significance at the 0.1 level, and two asterisks indicate significance at 0.01. HBase represents the hypothesis that all parameters are free, and α̂, β̂ refer to
the empirical estimates. The notation α1,2 refers to the vector (α1,α2), and the symbol ∝ indicates proportionality of one vector to another.



presumably behavioral biases diminish in relevance. For this reason, we do not pool the data

across all rounds, but focus on the results for each half session in isolation.

The question to be answered now is which of the biases actually are indeed significant.

First, we verify if subjects equally weigh expected payoffs in voting and message stage

(λ1 = λ3), and simultaneously if subjects over- or underweigh expressive payoffs (λ1 =

λ2). Efficiency concerns have been observed by Charness and Rabin (2002), Engelmann

and Strobel (2004) and many subsequent studies, and applied to voting games, this may

lead subjects to overweigh the payoff from getting the state right. Overweighing expressive

payoffs can also be interpreted as a tribute to bounded rationality, as securing the bonus

payment is a much less complex problem to solve than inferring the state of the world.

Question 1. Do subjects weigh expressive payoffs proportionally (λ1 = λ2 = λ3)? – Yes

We test for efficiency concerns in a two-sided test of the null hypothesis λ1 = λ2 = λ3,

against the alternative that the unrestricted model HBase, allowing for arbitrary (λ1,λ2,λ3),

better represents behavior. The results, displayed in row (A) in Table 12, show that the

null is maintained with high p-values, being above 0.2 in all four data subsets. Thus, there

is no indication that subjects actually deviate from weighing the three payoff dimensions

asymmetrically. Given this, let us turn to analyzing belief updating about the state of Nature.

Question 2. Do subjects hold Bayesian beliefs about the true state of Nature? – No

Subjects have Bayesian beliefs about the true state of Nature if they correctly weigh their

own signal (αm = α̂m) and their opponents’ messages (α1,2 = α̂1,2), which in turn requires

rational expectations about the opponents’ strategies mapping signal to messages. If subjects

hold rational beliefs, or act behaviorally equivalently, then imposing these restrictions on

parameters will not induce a significant drop in the log-likelihood. Row (B) in Table 12

reports on the results of this test, showing that subjects significantly deviate from rational

beliefs in all four (sub-) sets of the data, with p-values ranging from .001 (inexperienced

subjects under unanimity) to .042 (experienced subjects under unanimity) This raises the
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question how subjects fail to form rational beliefs. The most prominent such conjectures,

limited depth of reasoning or cursedness (Eyster and Rabin, 2005), is tested next.

Question 3. Do subjects have cursed beliefs about the true state of Nature? – No

Cursedness and similarly level-1, asymmetric logit equilibrium, and noisy introspection

posit that players believe their opponents’ messages are less informative than they actu-

ally are. Subjects put therefore a relatively higher weight on their own signal (αm) than

on the opponents’ messages (α1,2) judged in relation to the their truthfulness. Correspond-

ingly, the ratios αm/α1,2 are greater than α̂m/α̂1,2, which we again test in a two-sided test,

thus allowing for deviations also in the alternative direction as control. The results are

reported in row (C) in Table 12, and the likelihood ratios are insignificant across all treat-

ments and levels of experience. For example, in the first session halves on majority treat-

ments, the rational weights are (α̂m, α̂1, α̂2) = (.771, .574, .377), and the subjects’ weights

are (αm,α1,α2) = (22.6,12.2,12.0). These weights differ significantly, as observed above,

but their ratios do not differ notably (let alone significantly) in the sense that these vectors are

proportional to one another. That is, subjects do not exhibit cursed beliefs, and they do not

ignore the rationality of others in other respects. They simply overshoot (rather drastically)

when forming beliefs about the true state of Nature based on their information.

Next, we turn to analyzing expectations about the voting outcome.

Question 4. Do subjects hold rational expectations about the impact of their own vote? –

Yes

Line (D) reports the test of our next hypothesis that subjects hold rational expectations

of the relevance of their own vote for the ultimate voting outcome. The null hypothesis

β1 = β̂1 is never rejected significantly, and in the most extreme case, experienced subjects

in unanimity, the p-value of this null hypothesis is .106. This cannot be called weakly

significant, specifically not in light of the multiple testing problem we are analyzing. Next,

we ask the complementary question whether subjects hold rational expectations about their

opponents’ voting behavior conditional on their messages.
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Question 5. Do subjects hold rational expectations about their opponents’ voting? – No

Rational expectations about the (conditional) voting outcome requires correct inference

about the other votes from the list of messages, which requires Bayesian updating about

the opponents’ signals, given their messages, and rational expectations about their voting

strategies given signals and messages, plus adequate weighting of the known own vote in

relation to the probabilistic beliefs about the opponents’ votes. Using the notation introduced

above, subjects hold rational expectations if β1,2|0...3 = β̂1,2|0...3, which we again verify in

(two-sided) likelihood ratio tests. The results are reported in row (E) in Table 12, showing

that subjects singificantly violate rational expectations in all four cases. The deviation from

rational expectations is probably not very surprising and leads to the more subtle question of

how subjects actually deviate from rational expectations. We test three possible conjectures.

Question 6. Do subjects over-/undershoot forming beliefs about the voting outcome? – Yes,

when they are experienced

If subjects merely over- or undershoot forming beliefs about the voting outcome, based

on their own vote and the message profile, then β2|0...3 is proportional to β̂2|0...3, i.e. a linear

transformation thereof. We test for proportionality in likelihood ratio tests again, row (F)

in Table 12 reports the results. The null hypothesis of proportional weights, i.e. unbiased

beliefs, is rejected when subjects are inexperienced (where the beliefs deviate widely from

rational expectations), but not anymore when subjects are experienced.

This suggests that subjects may hold rational expectations about the voting strategies and

simply over- or undershoot when predicting the voting outcome based on their opponents’

messages, perhaps because of having biased beliefs as hypothesized by cursed equilibrium

and level-k theories. Subjects with cursed beliefs have rational expectations about their

opponents’ voting strategies but underestimate the predictability of their opponents’ votes

conditional on their messages. In this case, β1,2|0...4 will not be proportional to β̂1,2|0...3,

while β2|0...3 is proportional to β̂2|0...3 and only scaled down in relation to β1. This corre-

sponds with the observation that we just made. As a control, let us next test the more extreme

hypothesis that the beliefs about the opponents’ voting strategies actually correspond with
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level-1 beliefs (that opponents randomize uniformly during voting): β2|0...3 = 0.

Question 7. Do subjects have level-1 beliefs when voting? – Yes, when they are experienced

If subjects have limited depth of reasoning in the sense of level-k, and in particular if

they hold level-1 beliefs, then they expect opponents to randomize uniformly when sending

messages or voting. Formally, level-1 therefore predicts β2|· = 0, and as shown in row (G)

in Table 12, level-1 behavior is rejected when subjects are inexperienced, but not anymore

when subjects are experienced – essentially at the same levels as we observed for cursed

beliefs before. That is, the apparent learning that we observed is that subjects stop holding

wrong beliefs about their opponents’ votes and transition to very noisy beliefs. The result

is that subjects vote as if believing that their vote will be pivotal with .5 probability (against

uniformly randomizing opponents), which greatly inflates their pereption of the pivotality

of their vote. Notably, however, subjects do not hold level-1 beliefs about their opponents’

messages, i.e. they are not textbook level-1 players. For this reason, we shall refer to this

behavioral bias as pivotality illusion in this paper.

Question 8. Is lying aversion a significant behavioral factor? – No

The results of our test of lying aversion (λ4 = 0) are reported in row (H) of Table 12. Row

(H) shows that lying aversion is not generally a significant factor, but it is weakly significant

for experienced subjects in the majority treatments. In this case, the subjects’ messages are

entirely independently of the expected payoffs empirically associated with the messages,

as indicated by the estimated λ3 = 0, and as result, voting strategies can be explained only

referring to lying aversion. In the grand scheme of things, this single detection of a weak

significance (p = 0.058) in this multiple-testing analysis with four tests is not robust to a

Bonferroni correction, suggesting that lying aversion is actually not a behavioral factor in

our experiment.

Importantly, this obtains once we allow for imperfect Bayesian updating. When we

were to assume perfect Bayesian updating, lying aversion would be significant—but perfect

Bayesian updating was rejected highly significantly even allowing for the other biases, lim-
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ited depth of reasoning (pivotality illusion) and lying aversion. In contrast, lying aversion is

not significant when allowing for the other biases. Hence, imperfect Bayesian updating is

an inevitable part of the explanation, and lying aversion is not.

Result 4. In voting games with communication, subjects mainly violate Bayesian updating:

they overshoot when forming beliefs about the true state of Nature (“overreaction”) and

undershoot when predicting the voting outcome (“conservatism”).

1. Overreaction is a highly significant behavioral bias even when we allow for lying

aversion and limited depth of reasoning.

2. Once we allow for overreaction, lying aversion is not significant.

3. Limited depth of reasoning helps explain voting behavior, but it is not compatible with

the (large) extent to which subjects infer information from messages, suggesting that

this behavioral bias represents a “pivotality illusion”.

Result 4 provides a qualitative assessment of the behavioral factors, which we comple-

ment by a quantitative assessment next. That is, having seen that overreaction seems to be a

substantial factor, how much can we actually explain by overreaction, and is it important to

account for limited depth of reasoing (pivotality illusion) in addition? In turn, lying aversion

does not seem to be a substantial factor, in the sense that overreaction explains all that lying

aversion explains and more, but how much more is it actually? In order to answer these

questions, we look at the models allowing for limited depth of reasoning (β2|0...3 ∝ β̂2|0...3),

lying aversion (λ4 ̸= 0), and overreaction (αm,1,2 ∝ α̂m,1,2)—either in isolation, or in con-

junction, or not all. The model allowing for all biases in conjunction provides an upper

bound (LLmax) of the log-likelihood that we can reach given our understanding of behav-

ioral biases. The model allowing for none of the biases merely allows for logit response to

rational expectations, corresponding to the logit QRE of McKelvey and Palfrey (1998). The

models allowing for any one of the behavioral biases in isolation informs us how big a factor

this particular bias is, in relation to the full model and the unbiased QRE. Based on this,

we quantify the explanatory power of each model using the pseudo-R2 (Nagelkerke, 1991),
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R2 = LL−LLmin
LLmax−LLmin

, where LLmin is the absolute lower bound attained by predicting uniform

randomization for all decisions, which allows us to also put QRE into perspective.

Table 13: Adequacy of simple models in describing behavior (majority and unanimity
pooled)

1st halves of sessions 2nd halves of sessions
LL R2 γ1 γ2 γ3 LL R2 γ1 γ2 γ3

QRE -5546.63 0.35 1 0 1 -5045.16 0.47 1 0 1
+ overreaction -4123.14 0.87 6.15 0 1 -3860.76 0.87 3.97 0 1
+ lying aversion -4573.18 0.71 1 1.36 1 -4175.56 0.77 1 0.9 1
+ lim dep reasoning -5102.9 0.49 1 0 0 -4715.25 0.57 1 0 0.19

Note: γ1 denotes the degree of overreaction (formally α1/α̂1), γ2 denotes the degree of of lying aversion
(formally λ4/λ1), and γ3 denotes the depth of reasoning (formally β2|0/β̂2|0).

Table 13 reports the results, distinguishing inexperienced and experienced subjects in

our experiment, i.e. first and second halves of sessions. QRE on its own explains 35% and

47% of observed noise for inexperienced and experienced subjects (respectively). Limited

depth of reasoning adds 10–15 percentage points in either case, suggesting that it is of mi-

nor economic relevance despite the statistical significance observed above. Lying aversion

explains about 20 percentage points more than limited depth of reasoning in either case,

putting the explanatory power of limited depth of reasoning further into perspective. Over-

reaction, however, pushes QRE’s explanatory power to 87% robustly for both inexperienced

and experienced subjects. This show that overreaction, a simple model allowing for the vec-

tor αm,1,2 to be proportional to its Bayesian counterparts α̂m,1,2, captures a large fraction of

observed noise on its own (40–50 percentage points), raising QRE’s explanatory power to

87% for both inexperienced and experienced subjects.

Result 5. To a large extent (87%), behavior is well-approximated by a tractable, one-

parametric generalization of quantal response equilibrium allowing for overreaction.

In turn, QRE with overreaction leaves 13 percentage points to be explained when applied

in addition to logistic errors (QRE). As seen above, the residual 13 percentage points of

observed noise amount largely to limited depth of reasoning, but in the grand scheme of

things, it of comparably minor economic relevance.
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7 Conclusion

We report the results of an experiment on committee decision making where committee

members communicate via formalized cheap talk, vote for a committee decision under either

majority or unanimity, and may collect either high or low expressive payoffs when voting for

one of the options. The novelty of this 2× 2 design is that it separates the leading theories

about committee behavior (lying aversion and limited depth of reasoning) from each other

and from a third widely documented bias known as overreaction in response to news. Our

central observations are that subjects communicate more truthfully than justified by expected

payoffs, they correctly anticipate the imperfect truthfulness of their co-players’ messages,

and they overweigh private signals and public messages in the voting stage – which contra-

dicts limited depth of reasoning as well as lying aversion, but has been predicted by over-

reaction. As simple model generalizing logit equilibrium by a single parameter quantifying

this overreaction explains 87% of observed behavior in our experiment.

Qualitatively, this extends directly to the array of experiments with seemingly diverging

observations discussed in the introduction. Most notably, Goeree and Yariv (2011) analyze

voting in committees with pre-play communication and similarly find overcommunication.

In their setting, overcommunication is implied by overreaction to news (signals) for the same

reason as it is in our framework, which differs only by additionally allowing for expressive

payoffs in voting. If an agent overestimates the information contained in their signal, then

she will overestimate the importance of communicating it correctly. Le Quement and Marcin

(2020) extend Goeree and Yariv’s framework by allowing for publicly known diverse prefer-

ence and similarly to us, they find that a large majority of subjects communicates truthfully

and votes with the the majority of communicated messages. While our framework differs

substantially—allowing for both expressive payoffs and unanimity voting—our model al-

lowing for overreaction intuitively applies equally in their framework, by predicting the

same set of behaviors and thus providing a microfoundation also for the findings of Le Que-

ment and Marcin (2020). Most recently, Ginzburg et al. (2022) analyze committee voting

about donations to charity, focusing on comparative statics of behavior with respect to the
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pivotality of individual committee members and seeking to examine if subjects implicitly

hold expressive payoffs when voting about charitable donations. Their results are in the

affirmative, thereby providing a foundation for explicitly inducing expressive payoffs as in

our experiment, which in turn was the key to our identification of overreaction.

To our knowledge imperfect Bayesian updating has not been discussed in the context of

committee behavior, but outside committee behavior, a large literature has established be-

havioral overreaction of subjects as new information arrives (Kahneman and Tversky, 1973;

Tversky and Kahneman, 1982; Bar-Hillel, 1980; Bordalo et al., 2020; Afrouzi et al., 2023)

and its relevance in many applied contexts such as auctions and signaling games (Eyster

and Rabin, 2005). While Eyster and Rabin’s concept cursed equilibrium implies that sub-

jects tend to underestimate the information contained in the actions of others, which is not

compatible with our observations in committee behavior, the underlying idea of imperfect

Bayesian updating works similarly. The existing literature contains several promising mod-

els of non-Bayesian updating (Epstein, 2006; Epstein et al., 2008; Ortoleva, 2012; Massari,

2021) and more recently asymmetric updating (De Filippis et al., 2022), all of which re-

lax the axiomatic foundation of Bayesian updating (Alós-Ferrer and Mihm, 2023) in one

way or the other and thus are potential models for future analyses of committee behavior.

Our experiment was not designed to discriminate between these models, being designed to

discriminate between lying aversion, limited depth of reasoning and imperfect Bayesian up-

dating. Based on our results and the models developed in this literature, however, allowing

for imperfect Bayesian updating of committee members has great potential for modeling

committee behavior, towards a better understanding of the optimal design of voting rules

and communication structures in committees.
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A Efficient limiting-logit equilibria across treatments

We compute the sequential equilibria numerically as limiting logit agent quantal response
equilibria, following McKelvey and Palfrey (1998). This section presents the sequential
equilibria that can be expressed as limiting-logit equilibria (precision λ = 106) and are
socially efficient within the set of equilibria. The notation of the equilibria is fairly self-
explanatory. On the one hand, the message strategy σ() has two components, namely the
probabilities to send message R after the two possible signals (R and B, in that order). On the
other hand, for each combination of signal si and message mi, the voting strategy τ(si,mi,)
has N components: the probabilities of voting for R given the number of players voting in
favor of B, i.e. for the N possible values of Ai = #{ j|m j = b} in increasing order. For clarity,
the possible values are (1,2, . . . ,N) if i sent message B, and (0,1, . . . ,N −1) if i sent R.

There are two pieces of additional information: π denotes the expected payoffs of the
(symmetric) players implied in equilibrium and c denotes the probability that the decision
of the committee coincides with the majority of (private) signals of the committee members.

Expected payoffs in the various information sets

For clarity, we spell out the payoffs as functions of the strategy. The notation is as follows:

• Players i ∈ {1, . . . ,n}, state of the world ω, signal profile s = {s1, . . . ,sn}, message
profile m = {m1, . . . ,mn}, vote profile v = {v1, . . . ,vn}

• Terminal payoff pi(ω,v,m,s) ≡ pi(ω,v,mi,si), of player i, as a function of above
terms, and under our assumptions it is even independent of (mi,si)

• Message strategy Pr(mi|si) assigns probabilities to messages mi ∈ {R,B} conditional
on signal si

• Voting strategy Pr(vi|m,si) assigns probabilities to votes vi ∈ {R,B} conditional on
signal si and message profile m. In the representation above, payoff equivalent infor-
mation sets are merged. In particular, all message profiles corresponding to a given
own signal mi and a number of aggregate R-signals (#R) are payoff equivalent. We
denote “the set of all message profiles m corresponding to some mi,#R” as m=̂#R,mi.

Preliminaries Conditional expectation E(X |Y = y) = ∑x x · P(X=x,Y=y)
P(Y=y) . Here and in the

following, a comma (“,”) indicates “logical and”. To further simplify notation, we suppress
the distinction between random variables and realizations, as the expressions would other-
wise be too messy. For example, the above would be written as E(x|y) = ∑x′ x′ ·

P(x′,y)
P(y) .

Terminal node probabilities The probability of reaching node (ω,s,m,v) is

Pr(ω,v,m,s) = Pr(ω) ·Pr(s|ω) ·Pr(m|s) ·Pr(v|m,s)

= Pr(ω) ·∏
i≤n

Pr(si|ω) ·∏
i≤n

Pr(mi|si) ·∏
i≤n

Pr(vi|m,si),
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i.e. a function of game parameters, signaling strategy, and voting strategy.

Expected payoffs in voting stage A player votes in information sets (m,si) or Markovian
in (#A,mi,si). Thus, we are looking for E(p|vi,#A,mi,si), i.e. the expectation of payoff p
conditional on vote vi in state (#A,mi,si). First, as an illustration, we define a few simpler
terms and successively merge nodes to derive at the expectation in the relevant information
sets.

First, the expectation in a terminal node is given (and trivial).

E(p|v,m,s,ω) = p(v,m,s,ω)

Second, merging across (unobserved) states ω yields

E(p|v,m,s) = ∑
p′

p′ · Pr(p = p′,v,m,s)
Pr(v,m,s)

= ∑
ω

p(v,m,s,ω) · Pr(ω,v,m,s)
Pr(v,m,s)

=
∑ω p(v,m,s,ω) ·Pr(ω,v,m,s)

∑ω Pr(ω,v,m,s)

Note that Pr(v,m,s) can be equivalently defined as

Pr(v,m,s) = ∑
ω

Pr(ω,v,m,s)≡ ∑
ω

Pr(v,m,s|ω) ·Pr(ω),

above, the first expression is used. Now, merging across opponent votes and next across
signals (again, “v=̂vi” denotes all vote profiles v compatible with the own vote vi)

E(p|vi,m,s) = ∑
ω

∑
v=̂vi

p(v,m,s,ω) · Pr(ω,v,m,s)
Pr(vi,m,s)

E(p|vi,m,si) = ∑
ω

∑
v=̂vi

∑
s=̂si

p(v,m,s,ω) · Pr(ω,v,m,s)
Pr(vi,m,si)

=
∑ω ∑v=̂vi ∑s=̂si p(v,m,s,ω) ·Pr(ω,v,m,s)

∑ω ∑v=̂vi ∑s=̂si Pr(ω,v,m,s)

Finally, merging to reach the Markovian information sets, we get

E(p|vi,#A,mi,si) = ∑
ω

∑
v=̂vi

∑
m=̂#A,mi

∑
s=̂si

p(v,m,s,ω) · Pr(ω,v,m,s)
Pr(vi,#A,mi,si)

=
∑ω ∑v=̂vi ∑m=̂#A,mi ∑s=̂si p(v,m,s,ω) ·Pr(ω,v,m,s)

∑ω ∑v=̂vi ∑m=̂#A,mi ∑s=̂si Pr(ω,v,m,s)
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Expected payoffs in message stage We are looking for the expectation of payoff of p
conditional on message mi after signal si.

E(p|mi,si) = ∑
ω

∑
v=̂vi

∑
m=̂mi

∑
s=̂si

p(v,m,s,ω) · Pr(ω,v,m,s)
Pr(mi,si)

=
∑ω ∑v=̂vi ∑m=̂mi ∑s=̂si p(v,m,s,ω) ·Pr(ω,v,m,s)

∑ω ∑v=̂vi ∑m=̂mi ∑s=̂si Pr(ω,v,m,s)
.

Finally, note that Pr(mi,si) is equivalently defined as

Pr(mi,si) = ∑
ω

Pr(ω) ·Pr(si|ω) ·Pr(mi|si).

B Experimental Instructions (original)

Instruktionen

Dies ist ein Experiment zur Entscheidungsfindung. Vielen Dank für Ihre Teilnahme!

Bitte lesen Sie diese Instruktionen sorgfältig. Es ist wichtig, dass Sie während des gesamten
Experimentes nicht mit anderen Teilnehmer kommunizieren. Falls Sie Fragen habe, lesen Sie bitte
noch einmal in diesen Instruktionen nach. Bei weiteren Fragen melden Sie sich bitte. Wir werden
dann zu Ihnen kommen und die Fragen persönlich beantworten. Bitte fragen Sie nicht laut.

Das gesamte Experiment läuft über die Computer Terminals, und jedwede Interaktion zwischen
Ihnen wird über die Computer laufen. Sie werden für Ihre Teilnahme am Ende des Experimentes in
bar bezahlt. Unterschiedliche Teilnehmer werden unterschiedliche Beträge verdienen. Ihr Verdienst
hängt sowohl von Ihren Entscheidungen ab als auch von den Entscheidungen anderer Teilnehmer und
Zufall.

Das Experiment läuft über 50 Runden. Die Regeln sind über alle Runden und für alle Teilnehmer
dieselben. Zu Beginn jeder Runde werden Sie zufällig in Gruppen aus drei Teilnehmern eingeteilt.
In jeder Runde werden Sie nur mit den Teilnehmern in Ihrer Gruppe interagieren. Sie werden die
Identität der anderen Teilnehmer in Ihrer Gruppe nicht erfahren. Wir werden die anderen Teilnehmern
in Ihrer Gruppe als “Teilnehmer 2” und “Teilnehmer 3” bezeichnen, aber beachten Sie, dass nach
jeder Runde die Gruppen neu eingeteilt werden. Ihre Gruppe wird eine Entscheidung basierend auf
einer Abstimmung fällen. Diese Entscheidung ist einfach die Wahl zwischen zwei Urnen, der blauen
Urne und der roten Urne. Das genaue Prozedere erklären wir Ihnen im Folgenden.

Die Urne. Es gibt zwei Urnen: die blaue Urne und die rote Urne. Die blaue Urne enthält 3 blaue
Kugeln und 2 rote Kugeln. Die rote Urne enthält 3 rote Kugeln und 2 blaue Kugeln. Zu Beginn jeder
Runde wird eine der Urnen zufällig gewählt. Diese Urne bezeichnen wir als gewählte Urne. Jede
Urne wird mit gleicher Wahrscheinlichkeit gewählt, also jeweils mit 50% Wahrscheinlichkeit. Sie
werden nicht erfahren welche Urne gewählt wurde bevor Sie Ihre Entscheidung treffen.
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Table 14: The sequential equilibria that can be represented as limiting logit equilibria in the
four treatment

(a) Majority: N = 3, P = 1, K = 10/40, α = 0.6

σ τ(a,b,) τ(b,a,) τ(b,b,) π c

Equilibrium 1 0.56 1 1 1 1 1 1 1 0 1 0.7696 0.6165
Lying Aversion 1 0 1 1 1 1 1 1 1 1 0.36 0.7811 0.5987

Base Rate Fallacy 1 0.1 1 1 1 1 1 1 1 0 0.15 1.102 0.9532
Level-K (1) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.625 0.5

0.5 0.5 1 1 1 1 1 1 1 1 1 0.75 0.5
0.5 0.5 1 1 1 1 1 1 1 1 1 0.75 0.5
0.5 0.5 1 1 1 1 1 1 1 1 1 0.75 0.5

Level-L (1) 1 0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.625 0.5
1 0 1 1 1 1 1 0 1 1 0 0.791 0.64
0 0 1 1 1 1 1 1 1 1 1 0.7495 0.5
1 0 1 1 1 1 1 1 1 1 1 0.75 0.5

(b) Majority: N = 3, P = 1, K = 15/35, α = 0.6

σ τ(a,b,) τ(b,a,) τ(b,b,) π c

Equilibrium 0.5 0.5 1 1 1 1 1 1 1 1 1 0.9286 0.5
Lying Aversion 1 0 1 1 1 1 1 1 1 1 1 0.9286 0.5

Base Rate Fallacy 1 0.28 1 1 1 1 1 1 1 0 0.31 1.1571 0.8446
Level-K (1) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.7143 0.5

0.5 0.5 1 1 1 1 1 1 1 1 1 0.9286 0.5
0.5 0.5 1 1 1 1 1 1 1 1 1 0.9286 0.5
0.5 0.5 1 1 1 1 1 1 1 1 1 0.9286 0.5

Level-L (1) 1 0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.7143 0.5
1 0 1 1 1 1 1 1 1 1 1 0.9286 0.5
1 0 1 1 1 1 1 1 1 1 1 0.9286 0.5
1 0 1 1 1 1 1 1 1 1 1 0.9286 0.5

(c) Unanimity: N = 3, P = 1, K = 10/40, α = 0.6

σ τ(a,b,) τ(b,a,) τ(b,b,) π c

Equilibrium 0.5 0.5 1 1 1 0 0 0 0 0 0 0.791 0.64
Lying Aversion 1 0 1 1 1 0.99 1 0 0.95 0 0 0.791 0.64

Base Rate Fallacy 1 0 1 1 0 1 0 0 1 0 0 1.114 1
Level-K (1) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.6777 0.5

0.5 0.5 1 1 1 1 1 1 1 1 1 0.75 0.5
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.6777 0.5
0.5 0.5 1 1 1 1 1 1 1 1 1 0.75 0.5

Level-L (1) 1 0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.6777 0.5
1 0 1 1 1 1 1 0 1 1 0 0.791 0.64
1 0 0.5 0.5 1 0.5 0.5 0.5 0.5 0.5 0 0.7069 0.5995
0 0 1 1 1 1 1 0 1 1 0 0.7905 0.64

(d) Unanimity: N = 3, P = 1, K = 15/35, α = 0.6

σ τ(a,b,) τ(b,a,) τ(b,b,) π c

Equilibrium 0.5 0.5 1 1 1 0 0 0 0 0 0 0.9446 0.64
Lying Aversion 1 0 1 1 1 1 1 0 0.99 0 0 0.9446 0.64

Base Rate Fallacy 1 0 1 1 0 1 0 0 0.97 0 0 1.2032 0.9999
Level-K (1) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.8047 0.5

0.5 0.5 1 1 1 1 1 1 1 1 1 0.9286 0.5
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.8047 0.5
0.5 0.5 1 1 1 1 1 1 1 1 1 0.9286 0.5

Level-L (1) 1 0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.8047 0.5
1 0 1 1 1 1 1 0 1 1 0 0.9446 0.64
1 0 0.5 0.5 1 0.5 0.5 0.5 0.5 0.5 0 0.8161 0.5995
0 0 1 1 1 1 1 0 1 1 0 0.9441 0.64
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Table 15: Theoretical predictions across treatments

Messages Voting
µ(R) µ(B) π(R,R,0) π(B,R,0) π(R,R,1) π(R,B,1) π(B,B,1) π(B,R,1) π(R,R,2) π(R,B,2) π(B,B,2) π(B,R,2) π(R,B,3) π(B,B,3)

Majority 40-10
Equilibrium 1 0.56 1 1 1 1 1 1 1 1 0 1 1 1
Lying Aversion 1 0 1 1 1 1 1 1 1 1 1 1 1 0.36
Base Rate Fallacy 1 0.1 1 1 1 1 1 1 1 1 0 1 1 0.15
Level-K (1) 0.5 0.5 1 1 1 1 1 1 1 1 1 1 1 1
Level-L (1) 1 0 1 1 1 1 1 1 1 1 1 0 1 0

Majority 35-15
Equilibrium 0.5 0.5 1 1 1 1 1 1 1 1 1 1 1 1
Lying Aversion 1 0 1 1 1 1 1 1 1 1 1 1 1 1
Base Rate Fallacy 1 0.28 1 1 1 1 1 1 1 1 0 1 1 0.31
Level-K (1) 0.5 0.5 1 1 1 1 1 1 1 1 1 1 1 1
Level-L (1) 1 0 1 1 1 1 1 1 1 1 1 1 1 1

Unanimity 40-10
Equilibrium 0.5 0.5 1 0 1 1 0 0 1 1 0 0 1 0
Lying Aversion 1 0 1 1 1 1 1 1 1 1 0 0 1 0
Base Rate Fallacy 1 0 1 1 1 1 1 0 0 1 0 0 0 0
Level-K (1) 0.5 0.5 1 1 1 1 1 1 1 1 1 1 1 1
Level-L (1) 1 0 1 1 1 1 1 1 1 1 1 0 1 0

Unanimity 35-15
Equilibrium 0.5 0.5 1 0 1 1 0 0 1 1 0 0 1 0
Lying Aversion 1 0 1 1 1 1 1 1 1 1 0 0 1 0
Base Rate Fallacy 1 0 1 1 1 1 1 0 0 1 0 0 0 0
Level-K (1) 0.5 0.5 1 1 1 1 1 1 1 1 1 1 1 1
Level-L (1) 1 0 1 1 1 1 1 1 1 1 1 0 1 0

Note: µ(s) is the probability of sending message A given the signal s ∈ {A,B}. π(s,m,M) is the probability of voting A as a function of one’s signal s, message m, and
the number M of B messages overall (i.e. in aggregate over all players). The parameters (πLie,πLow,πMed,πHigh) allow adaptation to subjects’ behavior, with the theoretical
ex-ante hypothesis πLow < πMed < πHigh.



Die Kugel. Nachdem die Urne gewählt wurde, zeigt der Computer jedem von Ihnen eine Kugel,
die zufällig aus der Urne Ihrer Gruppe gezogen wurde. Für jeden von Ihnen wird eine eigene Kugel
gezogen (“mit Zurücklegen”). Jede Kugel in der Urne hat die gleiche Wahrscheinlichkeit, gezogen zu
werden. Falls die blaue Urne für Ihre Gruppe gewählt wurde, ist für jeden von Ihnen die Wahrschein-
lichkeit, eine blaue Kugel zu sehen, genau 60%, und die Wahrscheinlichkeit eine rote Kugel zu sehen
ist 40%. Falls die rote Kugel für Ihre Gruppe gewählt wurde, ist für jeden von Ihnen die Wahrschein-
lichkeit, eine blaue Kugel zu sehen, genau 40%, und die Wahrscheinlichkeit eine rote Kugel zu sehen
ist 60%.

Die Nachricht. Nachdem jedem von Ihnen eine Kugel präsentiert wurde, kann jeder eine Nachricht
senden. Die Nachricht ist entweder “rote Kugel” oder “blaue Kugel”. Die Nachricht, die Sie senden,
kann der Ihnen präsentierten Kugel gleichen, kann aber auch anders sein. Dies hängt von Ihrer Strate-
gie und Ihren Präferenzen ab. Wenn alle Teilnehmer Ihre Nachricht versendet haben, werden Ihnen
die Nachricht Ihrer Gruppe gezeigt. Da sie zu dritt sind, sieht jeder von Ihnen drei Nachrichten
(inklusive der eigenen Nachricht), und jede dieser Nachrichten ist eine rote Kugel oder eine blaue
Kugel.

Die Abstimmung [Mehrheit]. Nachdem Sie alle Nachrichten gesehen haben, erfolgt die Ab-
stimmung. Sie können entweder für “rote Urne” oder “blaue Urne” stimmen. Ihre Stimme kann der
Kugel, die Ihnen gezeigt wurde, oder der Nachricht, die sieht versendet haben, gleichen, muss aber
nicht. Nur die Abstimmung zählt für Ihre Auszahlung.

Die Gruppenentscheidung ergibt sich aus der Mehrheitsregel. Falls mindestens zwei Teilnehmer
Ihrer Gruppe (einschließlich Ihnen selbst) für die “rote Urne” stimmten, ist die Gruppenentschei-
dung “rote Urne”. Falls mindestens zwei Teilnehmer für die “blaue Urne” stimmten, ist die Gruppe-
nentscheidung “blaue Urne”.

Auszahlung. Ihre Auszahlung pro Runde ergibt sich als Summe zweier Komponenten. Einerseits,
wenn die Gruppenentscheidung mit der vom Computer gewählten Urne übereinstimmt, erhält jedes
Mitglied Ihrer Gruppe 40 Taler. Wenn die Gruppenentscheidung nicht richtig ist, erhält jeder von
Ihnen 0 Taler aus der Gruppenentscheidung. Andererseits, wenn Sie individuell für die “rote Urne”
gestimmt haben, erhalten Sie persönlich zusätzlich 10 Taler. Wenn Sie für die “blaue Urne” stimmten,
ist Ihr zusätzlicher Verdienst 0 Taler. Die folgenden Tabellen fassen dies noch einmal zusammen.

Der Computer wählte die blaue Urne
Die Stimmen der anderen Gruppenmitglieder sind

Ihre Stimme Blau + Blau Blau + Rot Rot + Blau Rot + Rot
Blaue Urne 40 40 40 0
Rote Urne 50 10 10 10

Der Computer wählte die rote Urne
Die Stimmen der anderen Gruppenmitglieder sind

Ihre Stimme Blau + Blau Blau + Rot Rot + Blau Rot + Rot
Blaue Urne 0 0 0 40
Rote Urne 10 50 50 50

Informationen am Ende jeder Runde. Sobald Sie und die anderen Teilnehmer abgestimmt
haben, ist die Runde beendet. Zum Ende jeder Runde erhalten Sie die folgenden Informationen:
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Nachrichten und Stimmen aller Teilnehmer Ihrer Gruppe, die Gruppenentscheidung, die vom Com-
puter gewählte Urne, Ihre Auszahlung.

Abschließender Verdienst. Am Ende des Experimentes werden die erworbenen Taler aller 50
Runden addiert und in Euro umgewandelt. Jeder Taler ist dann einen Cent wert. 100 Taler sind also
1 Euro wert. Zusätzlich erhalten Sie eine Basiszahlung von 5 Euro. Die Auszahlung erfolgt privat
und für Sie ergibt sich keine Verpflichtung, anderen Ihren Verdienst mitzuteilen.

Die Abstimmung [Einstimmigkeit]. Nachdem Sie alle Nachrichten gesehen haben, erfolgt die
Abstimmung. Sie können entweder für “rote Urne” oder “blaue Urne” stimmen. Ihre Stimme kann
der Kugel, die Ihnen gezeigt wurde, oder der Nachricht, die sieht versendet haben, gleichen, muss
aber nicht. Nur die Abstimmung zählt für Ihre Auszahlung.

Die Gruppenentscheidung muss einstimmig sein. Wenn alle Teilnehmer in Ihrer Gruppe für die
“rote Urne” stimmen, ist die Gruppenentscheidung “rote Urne”. Wenn alle für die “blaue Urne” stim-
men, ist die Gruppenentscheidung “blaue Urne”. Ansonsten beginnt eine zweite Abstimmungsrunde.
Wenn nun alle drei Stimmen gleich sind, ergibt sich daraus die Gruppenentscheidung. Ansonsten gibt
es eine dritte, finale Abstimmungsrunde. Wenn jetzt alle drei Stimmen gleich sind, ergibt sich daraus
die Gruppenentscheidung. Andernfalls werden alle Stimmen, und damit die Gruppenentscheidung,
auf rote Urne gestellt.

Fragebogen

1. Zuerst wählt der Computer eine Urne. Wie hoch ist die Wahrscheinlichkeit, dass der Computer
die rote Urne wählt?

□ 25% □ 50% □ 75%

2. Der Computer zeigt Ihnen eine Kugel, die zufällig aus der gewählten Urne gezogen wurde.
Wenn die gewählte Urne blau ist, wie hoch ist die Wahrscheinlichkeit, dass Ihnen eine rote
Kugel gezeigt wird?

□ 40% □ 60% □ 80%

3. Richtig oder falsch?
Nachdem Ihnen die Kugel gezeigt wurde, können Sie eine Nachricht versenden: rote Kugel
oder blaue Kugel. Diese Nachricht muss mit der Ihnen gezeigten Kugel übereinstimmen.

4. Richtig oder falsch?
Die Nachrichten aller drei Gruppenmitglieder werden allen Gruppenmitgliedern gezeigt. Danach
können Sie abstimmen, und ihre Stimme darf nicht mit Ihrer Nachricht übereinstimmen.

5. Falls die gewählte Urne rot ist, Sie für die blaue Urne stimmten und die anderen beiden Teil-
nehmer für die rote Urne stimmten, wie hoch ist Ihre Auszahlung?

□ 10 Taler □ 40 Taler □ 50 Taler

6. Falls die gewählte Urne blau ist, Sie für die rote Urne stimmten, ein anderer Teilnehmer für
die rote Urne stimmte, und der dritte Teilnehmer für die blaue Urne stimmte, wie hoch ist Ihre
Auszahlung?

□ 10 Taler □ 40 Taler □ 50 Taler
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7. Richtig oder falsch?
Der Computer wird alle Teilnehmer zufällig in Gruppen einteilen, und in jeder Runde wird
eine neue Einteilung vorgenommen.

C Experimental Instructions (translation)

This section contains a literal translation of both experimental instructions and control questionnaire
(which originally are in German and available from the authors), and a composite screenshot display-
ing all the (German) words actually used in the experiment and their arrangement on the screen. This
screenshot is composite in the sense that it displays all items at once (the message query, the vote
query and the resulting payoff table) which in the experiment were displayed sequentially.

Instructions

This is an experiment in group decision making. Thank you for participating!

Please read these instructions very carefully. It is important that you do not talk to other partic-
ipants during the entire experiment. In case you do not understand some parts of the experiment,
please read through these instructions again. If you have further questions after hearing the instruc-
tions, please give us a sign by raising your hand out of your cubicle. We will then approach you in
order to answer your questions personally. Please do not ask anything aloud.

The entire experiment will take place through computer terminals, and all interaction between
you will take place through the computers. You will be paid for your participation in cash, at the end
of the experiment. Different subjects may earn different amounts. What you earn depends partly on
your decisions, partly on the decisions of others, and partly on chance.

The experiment consists of 50 rounds. The rules are the same for all rounds and for all partic-
ipants. At the beginning of each round you will be randomly assigned to a group of 3 participants
(including yourself). You will not know the identity of the other participants. After each round,
groups will be randomly reassigned, but for simplicity we will always refer to the other participants
in your group as “Participant 2” and “Participant 3”. In each round you will only interact with the
participants in your group. Your group will make a decision based on the votes of all group members.
The decision is simply a choice between two jars, the blue jar and the red jar. In what follows we will
explain to you the procedure in each round.

The Jar. There are two jars: the blue jar and the red jar. The blue jar contains 3 blue balls and 2
red balls. The red jar contains 3 red balls and 2 blue balls. At the beginning of each round, one of the
two jars will be randomly selected. We will call this the selected jar. Each jar is equally likely to be
selected, i.e. each jar is selected with a 50% chance. You will not be told which jar has been selected
when making your decision.

The Ball. After a jar is selected for your group, the computer will show each of the participants
in your group (including yourself) the color of one ball randomly drawn from that jar. Since you are
three in your group, the computer performs this random draw three times. Each ball in the jar will be
equally likely to be drawn for every member of the group. If the selected jar is blue, each member of
your group has a chance of 60% of receiving a blue ball and a chance of 40% of receiving a red ball.
If the selected jar is red, each member of your group has has a chance of 40% of receiving a blue ball
and a chance of 60% of receiving a red ball. You will only see the color of your own ball.
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The Message. After the ball has been presented to each of you, each player may send a message.
The message is either “red ball” or “blue ball”. The message you send may be equal to the ball you
have been shown, or it may be different. It depends on your strategy and your preferences which
message to send. When all group members have entered their messages, all of you will be shown all
messages. Since there are three participants per group, each of you will see the same three messages,
and each of these messages is either a red ball or a blue ball.

The Vote [Majority]. After all messages have been presented to each of you, each player is
called to vote. You may vote either “red jar” or “blue jar”. Your vote may but need not be related to
the ball you have been shown or to the message you have sent. Only your vote and the group decision
will affect your payoffs.

The group decision is determined by majority. If at least two participants in your group (including
yourself) vote “red jar”, then the group decision is “red jar”. If at least two vote “blue jar”, then the
group decision is “blue jar”.

The Vote [Unanimity]. After all messages have been presented to each of you, each player is
called to vote. You may vote either “red jar” or “blue jar”. Your vote may but need not be related to
the ball you have been shown or to the message you have sent. Only your vote and the group decision
will affect your payoffs.

The group decision has to be unanimous. If all participants in your group (including yourself)
vote “red jar”, then the group decision is “red jar”. If all vote “blue jar”, then the group decision
is “blue jar”. Otherwise, a second voting round starts. If all three votes are unanimous now, the
decision is made. If it is again not unanimous, a third and final voting round starts. If all three votes
are unanimous now, the decision is made. Otherwise, the group decision, and all individual votes,
are set on red jar.

Payoff. Your payoff in each round is the sum of two components. First, if your group decision
is equal to the correct jar, each member of your group earns 40 Talers. If your group decision
is incorrect, each member of your group earns 0 Talers from the group decision. Second, if your
individual vote is “red jar”, you earn an additional 10 Talers. If your individual vote is “blue jar”,
your additional payoff is 0 Talers. Depending on which jar had been selected by the computer, the
following tables summarize the possible outcomes.

The computer selected the blue jar
The other two votes are

Your vote Blue + Blue Blue + Red Red + Blue Red + Red
Blue jar 40 40 40 0
Red jar 50 10 10 10

The computer selected the red jar
The other two votes are

Your vote Blue + Blue Blue + Red Red + Blue Red + Red
Blue jar 0 0 0 40
Red jar 10 50 50 50
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Information at the end of each Round. Once you and all the other participants have voted,
the round will be over. At the end of each round, you will receive the following information about
the round: messages and votes of all players, the group decision, the jar selected by the computer,
your payoff.

Final Earnings. At the end of the experiment, the Talers earned in all 50 rounds are added up
and converted to Euro. Each Taler is converted to 1 Cent. Thus, 100 Talers are converted to 1 Euro.
Additionally, you will earn a show-up fee of 5.00 Euros. Everyone will be paid in private and you
are under no obligation to tell others how much you earned.

Questionnaire (computerized)

1. What is the probability that the computer selects the red jar?

□ 25% □ 50% □ 75%

2. The computer shows you exactly one ball drawn randomly from the selected jar. If the selected
jar is blue, what is the probability that you are shown a red ball?

□ 40% □ 60% □ 80%

3. Right or wrong?
After having been shown the ball, you can send a message: red ball or blue ball. This has
message has to be equal to the ball you have been shown.

4. Right or wrong?
The messages of all three group members are shown to all group members. Subsequently, you
can vote, and the vote must be different from the message you have sent.

5. If the selected jar is red, you voted “blue jar” and the other two players voted “red jar”, what
is your payoff?

□ 10 Taler □ 40 Taler □ 50 Taler

6. If the selected jar is blue, you voted “red jar”, one other player voted “red jar”, the third one
voted “blue jar”, what is your payoff?

□ 10 Taler □ 40 Taler □ 50 Taler

7. Right or wrong?
The computer will assign all participants randomly to groups, and in each round, a new random
assignment will be made.
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Figure 2: Composite screenshot (in German)

Note: This screenshot simultaneously displays all queries and all pieces of information that were available
at some point during the experiment. All items are in the positions they had been displayed, and they were
displayed in the following order.

1. Show drawn ball (entire game)
Shows the two jars (“Blaue Urne” and “Rote Urne” means “blue jar” and “red jar”) and the ball drawn (“Ihre Kugel” means
“Your ball”). These items remain on the screen for the entire game.

2. After five seconds, query for message (no time limit)
Now the box “Nachricht – Blaue Kugel oder Rote Kugel” (Mesage – Blue Ball or Red Ball) appears with the two balls underneath
to choose from. Subjects submit the message by clicking “OK”, there is no time limit. Once the message is submitted, the box
disappears.

3. When all messages are submitted, they are displayed (for rest of game)
Now the box “Nachrichten” (Messages) on the left appears, with the messages of all three subjects. “Sie” means “You”, “Teiln.
2” means “Co-Participant 2”, and “Teiln. 3” means “Co-Participant 3”. These items remain on the screen for the rest of the game.

4. After five seconds, query for vote (no time limit)
Now the box “Abstimmung – Blaue Urne oder Rote Urne” (Vote – Blue Jar or Red Jar) appears with the two rectangular jars
underneath to choose from. Subjects submit their vote by clicking “OK”, there is no time limit. Once the vote is submitted, the
box disappears.

5. When all votes are submitted, they are displayed (for rest of game)
Now the box “Abstimmung” (Votes) on the left appears, with the votes of all three subjects. “Sie” means “You”, “Teiln. 2”
means “Co-Participant 2”, and “Teiln. 3” means “Co-Participant 3”. These items remain on the screen for the rest of the game (in
Majority or in Unanimity if decision unanimous or the third vote was taken) or disappear (in Unanimity otherwise, where voting
stage is restarted).

6. After five seconds, the decision taken by the committee (“Mehrheit” means majority), the true jar chosen by Nature (“Richtige
Urne” means true jar) and the payoff information is displayed. “Auszahlung” means payoff, “Mehrheit richtig” means “majority
correct”, “Ihre Stimme: Rote Urne?” means “Your Vote: Red Jar?”, and “Taler insgesamt” means “Taler in total” (where “Taler”
is our experimental currency unit). This information remains on the screen for 10 seconds. Note that voting “Red” in this
screenshot is associated with minus 15 Taler for testing purposes, the payoffs used in the experiment were plus 10 or plus 15, as
described in the paper.
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