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Abstract

Due to the increase in renewable energy production and global socioeconomic turmoil, the

volatility in electricity prices has considerably increased in recent years, leading to extreme posi-

tive and negative price spikes in many electricity markets. Forecasting (the risk of) these prices

accurately in advance can enable risk-informed decision-making by both consumers and generators,

as well as by the grid operators. In this work, focusing on day-ahead markets, we review recent

developments in how price spikes are defined, as well as which explanatory factors and methodolo-

gies have been used to forecast them. The paper identifies seven categories of influencing factors,

which come with over 30 sub-classifications that can cause price spikes. In terms of methodologies,

probabilistic models are being increasingly utilized to capture uncertainty in the price forecast.

The review uncovers a wide range in all of these choices as well as others, which makes it difficult

to compare methods and select best practices for predicting price spikes.

Keywords— Spikes, Electricity markets, Day-ahead market, Point forecast, Probabilistic forecasts

1 Introduction

Electricity markets provide vital information to generators and consumers in liberalized settings, both on short-

and long-term horizons. In the short-term, producers and consumers modulate their electricity demand or gen-

eration in response to price fluctuations [120]. These markets also provide the signals needed by grid operators

to ensure the grid’s resilience to unforeseen disturbances [61]. In the long-term, electricity prices help guide

investment decisions on the construction of new power plants, transmission and distribution infrastructure,

storage facilities, etc. [10].

With a greater proliferation of renewable energy sources (RES) and demand electrification (heat, trans-

port, industry), electricity prices have become increasingly more volatile [66]. This has led to a greater coupling

between electricity prices and the weather - which formerly influenced prices primarily via demand fluctua-

tions [85, 60]. These price variations have been further exacerbated by unprecedented supply-chain disruptions

caused by the COVID-19 pandemic as well as geopolitical tensions, including the war in Ukraine. The increased

exposure of consumers and producers to variations in electricity prices has led to an enormous socioeconomic

∗NHH, Dept. of Business and Management Science, samaneh.sheybanivaziri@nhh.no, Norway

†La Rochelle University, LaSIE UMR CNRS 7356, jledreau@univ-lr.fr, France

‡Dept. of Electrical Engineering, KU Leuven, hussain.kazmi@kuleuven.be, Belgium

1



burden in recent years, as well as a resurgence in energy poverty. This is true both for end users, including

households [4] which have to pay considerably more to purchase energy, as well as electricity generators, in-

cluding renewable energy producers, which have had to shelve projects because of increasing price volatility.

This volatility has underscored the need for a deeper understanding of the various electricity markets that play

a pivotal role in shaping the cost and availability of electricity.

In liberalized markets, several products (or sub-markets) exist, differing in terms of time or duration

between the agreement made in the contract and the actual delivery in real-time as illuminated by [48]:

1. The long-term futures market is used to trade energy far in advance (years) and for long periods;

2. The day-ahead (DA) market, the focus of this paper, is primarily a financial market for the exchange of

forward contracts for energy, with a gate closure time approximately one day in advance (i.e. bids for

energy demand or generation cannot be updated after this time);

3. Intraday markets are forward markets for the exchange of electricity, which open after the gate closing

time of the DA market, and can be used by generators or consumers to rebalance their portfolios;

4. The imbalance market is used to penalize market actors (e.g. producers) for deviating from their stated

bids (nominations) on the DA or intraday markets. The objective is to minimize the imbalance as much

as possible;

5. The imbalances that occur in the system are met by different frequency reserves ranging from very slow

tertiary to almost instantaneous primary reserves in terms of response times. Even though there is

considerable diversity in the naming of these reserves across different countries, the core idea remains

the same;

6. In addition to these markets, several other markets, such as peer-to-peer markets to enable local energy

exchanges and communities, have been explored recently as well [38].

Together these markets cover most of the electricity traded in the system. For instance, in the United

States, approximately 95% of energy transactions are attributed to day-ahead markets [33] and in Nordpool

(one of the largest power exchanges in the EU), more than 90% of all energy transactions occur on the day-ahead

market, with the remaining being handled by the real-time markets1.

In this paper, focusing on the DA market, we consider how accurate price forecasts can guide generation

or demand nominations, and the risks that extreme price events pose to this exercise. This is motivated by the

fact that while price forecasting algorithms often achieve good performance on average, they exhibit certain

characteristics that warrant attention. Most notably they frequently (1) only produce point forecasts, and

(2) lack reproducibility and report results only on a brief test period [28]. Furthermore, most studies do not

consider the forecast models’ performance during periods of extreme prices, which can expose market parties

to elevated risk. The objective of this work is therefore three-fold: (1) it reviews the different definitions of

electricity price spikes posed by researchers; (2) it identifies the most important factors and algorithms in

forecasting electricity price spikes accurately; and (3) it discusses advances and core challenges in forecasting

spikes in electricity market prices. In the remainder of this section, we describe key motivating factors for

forecasting price spikes accurately, before discussing existing relevant work and the methodology for carrying

out the literature review.

1https://www.nordpoolgroup.com/en/message-center-container/newsroom/exchange-message-list/2023/q1/nord-pool-announces-2022-trading-

figures/: :text=Nord%20Pool%20is%20a%20Nominated,of%201077.35%20TWh%20traded%20power
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1.1 Why is accurate spike prediction important?

Electricity generators as well as large industrial consumers and aggregators of energy demand use price forecasts

to optimize their bidding schedules and asset allocation. For instance, many retailers buy a large portion of

their predictable base-load demand in advance (on the futures market). Subsequently, closer to the time of

delivery, they procure the remainder of the actual demand on the DA and intraday market. The fraction

of electricity demand procured on the DA market depends heavily on the (perceived) confidence in the price

forecast. This is especially relevant when these market players have to also act as balance responsible parties

(BRPs), which is increasingly the case. Combined with possible flexibility from energy storage, this allows for

new avenues of optimal operation of grid-connected assets on several aggregation scales [111, 63].

Consequently, failure to predict spikes accurately is harmful to both the generators as well as retailers (or

large industrial users). Very low or negative electricity prices, for instance, pose a grave risk to generators (i.e.

they might be forced to pay consumers for electricity off-take). Similarly, according to Eichler et al., [88], the

occurrence of price surges might present a significant challenge for retailers as they typically procure electricity

at a fluctuating cost while vending it to customers at a constant rate (e.g. in the Australian electricity market).

This has been considered elsewhere too. For instance, researchers have shown that a retail company, which

is trying to acquire power at the lowest possible price, can potentially lose a yearly dividend due to extreme

fluctuations [106]. Furthermore, researchers have also highlighted the significance of considering the occurrence

of negative prices and spikes when evaluating the profitability of purchasing or selling energy contracts during

periods of low demand [89]. Thus, erroneous spike forecasts undermine risk management [93].

Unlike large consumers (and parties that act as BRPs), small consumers, such as households, are typically

shielded from day-ahead markets by fixed-price contracts. Only a few European countries are proposing

dynamic pricing that follows the spot markets, including Estonia, Sweden, Spain, Finland, and Denmark [23].

These dynamic pricing schemes have been promoted by the EU Directive 2019/944 on the rules of the internal

market for electricity, in order to encourage end-user engagement. As highlighted by Numminen et al. [17],

the limited adaptation rate of such contracts can be explained by the perceived risk and limited benefits.

Large price fluctuations, as evidenced in Fig. 1, may be perceived as a disadvantage, despite the possibility of

contracting a price cap option to avoid price spikes. With greater proliferation of distributed generation and

storage, these types of programs are likely to gain in popularity. As before, mis-forecasts can expose end users

to adverse outcomes.
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Figure 1: Weekly-averaged DA electricity prices in four different bidding zones (BE, ES, FR, SE-1) in the European Union

(EU)

1.2 Related work and reviews

In recent years, research on energy forecasting has developed substantially. This has led to a sizable literature on

probabilistic wind and solar power forecasting [87, 22, 19, 7]. Likewise, Hong and Fan [73] examine probabilistic

electric load forecasting based on four alternative forecast horizons in their instructional review. Another recent

review on energy forecasting as a whole field brings these topics together [36].

In terms of electricity markets, Aggarwal et al. [99] found, upon reviewing and classifying electricity

price forecasting publications across 11 different power markets, that spike prediction was still a developing

field. Subsequently, Weron et al. [86] reviewed the methodologies used to forecast electricity prices between

1998 and 2013, covering the main model types (multi-agent models, fundamental models, reduced-form models,

statistical models, computational intelligence models), with a special emphasis on their forecasting capabilities.

Regarding spikes, reduced-form models (such as jump diffusion and Markov-regime Switching) were discussed

and reported to perform well. Additionally, probabilistic forecasts were considered as well, but this was not the

main focus of the paper. A follow-up review, specifically on probabilistic electricity price forecasting, can be

seen in [59], in which the lack of research on probabilistic electricity price forecasting compared to wind power

is addressed. Using existing literature, the authors illustrate four approaches to make probabilistic forecasts,

but this review does not focus on price spikes and does not cover the recent volatility in electricity markets.

Finally, a more recent review by Lago et al. [28] covers best practices and algorithms in forecasting day-ahead

electricity prices, but the focus of the article is on point forecasting and does not explicitly discuss spikes as

well as not considering the recent high volatility.

Despite these reviews, to the best of our knowledge, no existing review has actually focused on forecasting

price spikes. With the recent volatility in DA prices, this paper is meant to address this gap in the published

literature.

1.3 Literature selection methodology

To provide a snapshot of the research studies focusing on price spikes in energy markets, we utilized the Scopus

[12] database. Query 1 was focused on spikes in energy markets2, resulting in a total of 450 documents. From

2We used the following Scopus query: ((TITLE-ABS-KEY(electricity) AND TITLE-ABS-KEY(spike) AND TITLE-ABS-KEY(”energy market”)

OR TITLE-ABS-KEY(”electricity market”) OR TITLE-ABS-KEY(”market”)) AND PUBYEAR > 1998 AND PUBYEAR < 2024)

4



1999 until 2014, the number of publications has increased with a significant spike observed in 2014 (37), which

represents a peak in research activity. There’s a consistent high level of research activity from 2012 to 2018,

with the number of publications staying above 20 per year. There are some fluctuations in the later years

(2019-2023), but the overall trend remains relatively stable.

Narrowing down our query to probabilistic electricity price spikes3 resulted in 64 publications, while

supporting an upward trend in recent years, shown by query 2 in Fig. 2. The plot highlights a clear gap

in this field, indicating a need for further research. With increasing electricity prices in global markets since

2021, addressing this gap becomes crucial for future analysis. We ran the queries initially in January 2023, and

then again in August 2023 to ensure our research remained up-to-date and comprehensive. Fig. 2 summarizes

the overall trend throughout the years, revealing increasing attention being paid to the topic of spikes in the

electricity and energy markets.

Figure 2: Scopus-indexed publications from 1999 to 2023 studying price spikes in energy markets

Figure 3 offers a condensed overview of our review study spanning from 2006 to 2023. It visually sum-

marizes the breadth of our research, encompassing geographical regions, timeframes, forecast methodologies,

models employed, and the number of external factors, providing a holistic view of our study’s coverage.

3((TITLE-ABS-KEY(spikes) OR TITLE-ABS-KEY(”extreme price”) OR TITLE-ABS-KEY(”extreme observations”) OR TITLE-ABS-KEY(”price

jumps”) AND TITLE-ABS-KEY(”price forecasting”) OR TITLE-ABS-KEY(”probabilistic forecasting”) AND TITLE-ABS-KEY(”energy market”)

OR TITLE-ABS-KEY(”electricity market”)) AND PUBYEAR > 2004 AND PUBYEAR < 2024)
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Figure 3: An overview of different dimensions of consideration for the papers reviewed in this study.

1.4 Structure of this review

Using this selection methodology, we will review the resulting articles on price spikes and high volatility in the

day-ahead electricity market. The following is an overview of the remainder of the paper. Section 2 provides

an overview of the different methods used to define electricity price spikes. Section 3 presents an overview of

the factors that can lead to extreme electricity prices. Section 4 covers forecast models that have been used in

the literature to forecast electricity price spikes. Section 5 describes how price spike forecasts are evaluated in

practice, while Sections 6 and 7 conclude the review with a discussion on open challenges and an outlook on

the future.

2 How are spikes defined?

Before discussing price spike forecast methods, we consider different techniques that researchers have employed

to detect price spikes. This detection often forms the first step in the subsequent prediction task. Towards this

end, researchers have proposed many different algorithms to estimate price ranges (either static or dynamic)

beyond which market behavior is considered abnormal. We distinguish these techniques into those that work

directly with the price time series and those that preprocess it using some transformation.

2.1 Price spike identification using thresholds and data distributions

2.1.1 Fixed thresholding-based methods

Thresholding-based methods rely solely on the historical price time series data to decide whether a specific

price at a given time step can be considered a spike or not and are arguably the most common strategy in the

published literature on electricity price spike forecasting [3, 11, 21, 32, 31, 30, 45, 52]. These methods typically
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disregard the context in which the market is operating under and often focus on positive price spikes rather

than negative ones. This is due, at least in part, to many markets not experiencing negative electricity prices

until very recently or at all.

In many such proposed methods, defining the threshold therefore takes central importance. As a case

in point, [93] classifies prices beyond a certain level as “extreme pricing occurrences”, but the thresholds, in

general, remain open to interpretation depending on the market and the researcher. For instance, noting con-

ditions for the Australian electricity market, Christensen et al. classify mild spikes as ranging from $100/MWh

to $300/MWh, and severe spikes as price events ranging from $300/MWh to $10,000/MWh [93]. Eichler et

al.[88] also follow this approach outlined by categorizing prices above $ 100 and $ 300/MWh as spikes and

extreme spikes respectively. Likewise, for European markets, researchers have often used thresholds of 100

EUR/MWh or 200 EUR/MWh to identify positive price spikes, depending on the bidding zone.

These fixed thresholds assume that prices remain stationary over time - an assumption that can lead

to issues with too many (or too few) spikes being identified at different periods in time. Fig. 4 shows the

price in Belgium for five years between 2018 and 2022 (inclusive). It is obvious that the time series under

consideration is non-stationary, with several price spikes over the years. Applying a price spike threshold of

200 EUR/MWh leads to very different price spikes over the years i.e. almost none in 2019 and 2020, over

10% in 2021, and almost 60% of the year in 2022. Consequently, according to this thresholding scheme, the

electricity price spike lasted more than half of the entire year. Notwithstanding the extreme conditions the

European electricity market went through in 2022, this still does not line up with the notion that a spike is

meant to signify extraordinary conditions.

2.1.2 Adaptive thresholding-based methods

While the fixed threshold-based definition of electricity price spikes is widely used due to its simplicity, it is

fundamentally limited by its non-adaptive nature. To address this issue, researchers have turned to dynamic

or adaptive thresholds. For instance, Muninan and Weron identified extremely low and high electricity prices,

by analyzing histograms and density functions of observed prices [43]. These visualizations showed that there

were infrequent but significant deviations from typical price values, creating tails in the distribution of price

changes. This idea has also been explored by Janczura et al. in setting the thresholds at the 2.5% and 10%

percentiles of observed prices [90], and Jin et al. [13] considering the top 1% highest prices and the lowest 2.5%

prices to identify spikes in the German electricity market. Different time windows ranging from one month to

one year are typically used to estimate the percentiles or distributions, and the results have been demonstrated

in several markets ranging from France and Italy to Hungary. Likewise, using the Australian NEM market

as a motivating example, Lu et al. [106] show that the entire probability distribution of observed electricity

prices can be used to define the threshold for abnormal market operation.

By establishing a linear correlation between predictors and log-odds of spikes, Bajai’s study [11] on the

Hungarian DA Market, employs a logit model to pinpoint price spikes beyond the hour-specific 30-day moving

average of −/+30 euros/MWh. This method adeptly accommodates intraday fluctuations by calculating

moving averages for each of the 24 hours, ensuring spike identification in relation to the specific hourly moving

average. This methodology has been further extended by Zhang et al. to consider thresholds that depend on

the time of day in several markets (PJM, MISO, NYISO, ISO-NE, Spain), i.e. the method leads to a vector of

24 price thresholds for any given day, and then adapts it using the fixed calibration window [21]. This accounts
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Figure 4: Spike detection methods applied to electricity day-ahead price data from Belgium: (Left top) Electricity prices in

Belgium between 2018 and 2022; (Left bottom) Kernel density estimate of the electricity price distribution; (Middle) Electricity

prices along with thresholds calculated using three different methods; (Right) Histogram showing frequency of spikes detected

between 2019 and 2022 using three different methods

for the seasonal (daily, weekly, and yearly) trends in electricity prices. Another example of such a threshold

includes defining prices that are 3 standard deviations away from the historic data mean as a spike [52, 31, 11,

53]. As an example, Sandhu et al. have identified price spikes in the Ontario electricity market by comparing

prices to a threshold level computed from the mean and standard deviation of historical prices [78].

Fig. 4 shows the results of applying three different methods to the Belgian electricity prices between 2019

and 2022 (static threshold of 200 euros/MWh, adaptive three sigma threshold over the past twelve months,

adaptive three sigma threshold conditioned on individual hours of the day). As expected, the amount of price

spikes identified until 2021 remains roughly the same with all three methods, but changes dramatically in 2022

when the static threshold flags an unrealistically high percentage of spikes.

2.1.3 The specific case of negative prices

Various methodologies have been also proposed by researchers to set fixed thresholds for extremely low (or

even negative) prices in electricity markets. Lu et al. use a threshold of 0 EUR/MWh, which is arguably not

a very well-motivated choice, given that prices can fall significantly below this level and, as such, suffers from

all the same limitations of fixed threshold-based methods highlighted above [106]. Some researchers have also

employed the same three sigma standard deviations from the mean value as the dynamic threshold as described

above.

2.2 Transformations and pre-processing

Alternatively, several researchers have proposed to transform the price time series in some way before applying

the thresholding function. A simple example of this method is calculating the difference in price between

two adjacent time periods and comparing it to the maximum difference within the normal price range. If the

difference exceeds the threshold, the current time price is classified as an abnormal price jump. For instance,

[3] propose using a stochastic process to capture the fluctuations in prices over time. The first step of this

strategy is selecting a suitable stochastic model that can accurately represent the price data. After that,

statistical filtering techniques, such as Sequential Monte Carlo algorithms, can be used to differentiate between

sudden price spikes and normal price movements. Curiously enough, the authors chose to use a fixed threshold

for detecting negative spikes, which allows them to bypass the technical difficulties involved in the statistical

filtering technique. Another related approach, as exemplified in Bello’s study [69], involves utilizing a cut-off

value to differentiate prices between normal and unusually low, depending on the probability predicted by a
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model.

A different approach has been proposed by Fanone et al. who utilized hourly EPEX DA price data

from 2007 to 2010 to identify price spikes after removing the annual mean [89]. They suggested identifying

and eliminating extreme prices before estimating other components as the presence of price spikes in the de-

meaned time series can affect the analysis of seasonality and mean reversion. To do so, they use the “Peak

Over Threshold (POT)” method to detect price spikes and choose a threshold value based on the mean excess

function. The identified threshold values were then used to filter out the distributional properties of the spike

processes. Consequently, a price of -37.99 EUR/MWh was established as the threshold for the lower tail, while

prices exceeding 54.21 EUR/MWh were classified as notably positive. This definition would obviously need to

be tweaked over time with the latest price data. This method can also be seen as a special case of dynamic

thresholding.

Several extensions and generalizations of this method exist as well, for instance using time series decompo-

sitions such as STL or time-frequency methods (including the wavelet transform). The extracted seasonal and

trend components can then be used to deseasonalize and detrend the time series before price spike detection

thresholds or techniques are applied. For instance, using data from New York, Karakoyun et al. deseason-

alize prices before labeling the highest five percent and the lowest five percent of the time series as spikes

[6]. Markov-Regime-Switching models are also sometimes used on deseasonalized and/or detrended data and

threshold probabilities are defined to identify regime switching [39].

3 Factors affecting day-ahead market prices

In this section, we begin with an overview of factors that affect day-ahead market prices, before turning our

attention to the different causes of price spikes in practice - both in the positive and negative direction.

3.1 Factors affecting electricity prices

Several factors influence electricity day-ahead market prices. These include electricity supply and demand,

prevailing weather conditions, interconnection capacity and availability, and fuel and carbon prices among

many others [64, 93]. The supply mix determines the merit order dispatch, which defines the order in which

generating units are activated. Renewable energy sources, such as wind and solar, have very low operational

production costs, and therefore play an important role in defining electricity market prices, specially when they

are widely adopted and integrated into the electricity grid to a significant extent [64]. Likewise, fuel prices for

a given generation mix (e.g. coal or gas) also directly influence electricity prices. The demand side, on the

other hand, dictates how much generation will be required. During peak demand times, this can therefore lead

to the activation of peaking plants, such as gas-fired plants, often leading to substantial increases in electricity

prices [57].

Weather is one factor that has historically been closely tied to peak demand, but it also increasingly

affects the supply side in renewable-dominated systems. In fact, in such systems, weather-related phenomena

such as Dunkelflaute (i.e. the prolonged absence of both solar and wind energy), will have a profound effect

on market operation as well as security of supply [18]. Likewise, exogenous factors including calendar events,

such as holidays and sporting events, also have the potential to influence market prices, mediated by higher or

lower demand [86].
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3.2 Factors triggering upward price spikes

In this section, we begin with describing early experiences of price spikes in electricity markets, followed by

more recent findings pertaining to both positive and negative price spikes.

3.2.1 Early experiences in North America

California presented an early example of an electricity market failure around the turn of the century. Woo [118]

pinpointed price surges as a significant factor contributing to this malfunction. These spikes were not isolated

issues; they occurred in conjunction with recurring capacity deficiencies, power outages, and increased price

fluctuations. The root causes revolved around deficient market structuring, manipulation of the market by

influential players, financial precariousness, imbalances between supply and demand, and mounting marginal

costs [118]. These findings were echoed in [114], while investigating price fluctuations in the UK, Alberta, and

Norway.

In this context, [116] contended that energy providers’ and customers’ bidding behavior play a role in price

spikes. They specifically proposed “opportunistic tacit collusion” as an explanation for how bidding patterns

may lead to spikes in prices. A subsequent study by [107] extends this notion and authors hypothesize that

collusion occurs when firms coordinate their behavior tacitly, taking advantage of weak enforcement structures,

a lack of transparency, or market uncertainty. Even if there is no explicit communication or coordination

among enterprises, their activities might be consistent with collusion and impair customer welfare. Likewise,

[119] identify “market rules, cost recovery, transmission congestion, lack of dispatchable demands, unbalanced

demand and supply, market power, volatility, and uncertainty” as the variables that can cause price surges, and

propose various monitoring indicators, such as clearing price and transmission congestion, in order to maintain

a dynamic market.

Besides market shortcomings and failures, extreme fluctuations in prices across different sources of pro-

duction can directly influence and contribute to higher electricity costs, highlighting the interconnected nature

of energy markets. An early example of this is found in [115], where the authors explore how the transition

to natural gas as a key power source in the United States may be properly managed if unexpected gas price

fluctuations occur. In the years since then, this has been extended to other sources of generation.

3.2.2 Early experiences in Europe and Australia

In many aspects, early European experiences with market reform mirrored those in North America. To shed

light on market design limitations and conditions, such as weather variability and power commodity storage

limitations, leading to its potential failure [110], [117] examined the UK deregulation model and compared it

with the Nordic approach. The authors claimed that since the Nordic model contains both massive hydropower

sources and high-quality spot prices, modifications could be made quickly to prevent price spikes and improve

financial contract pricing. Consequently, in order to create an effective financial power market in the UK,

the authors suggest that several factors must be taken into consideration, including the type of power pool

model utilized, the implementation of price indexes to ensure transparency within the market, the use of simple

derivative contracts, and the ability to adjust the power supply source, such as through the utilization of a

hydro-based system [117]. Additionally, to bolster market flexibility, Burger et al. advocate optional contracts

and enabling fixed-rate energy purchases for defined periods [110].
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A few years later, highlighting issues with the Nordic approach, a different set of researchers used market

deregulation failures in Sweden to identify several factors that contribute to the long-term increase in energy

prices [109]. These include unclear management strategies for hydroelectric resources, inadequate investment

in domestic power infrastructure, excessive energy taxes, and a policy of phasing out nuclear power. However,

this long-term increase in price is different than increasing volatility or spikiness in prices. In the years since the

EU has also made remarkable progress towards a single market (also known as the single day-ahead coupling

or SDAC). An example of this market coupling can be seen in the very similar prices in Belgium, France, and

Germany, as seen in Figs. 1 and 5.

Focusing on the Australian market, which is much smaller compared to the European and American

markets and consequently, the factors for price spikes are unsurprisingly a bit different such as market ma-

nipulation or exercising power during high-demand/low-supply periods that cause supply curve adjustments,

through withholding the reserved capacity or bidding strategies aimed at pushing the prices up [106, 81, 84].

Additionally, extreme weather events [106, 84], underestimation of demand, inventory constraints [106] and

strong inelastic demand [84] have been among spike triggers in this market as well.

3.2.3 Recent perspectives

In recent years, researchers have considered additional elements influencing price surges, for instance the

history of spikes leading to a high level of persistence for future spikes [93], the time interval between prior

spikes impacting the likelihood of future severe observations [93, 88], and duration and magnitude of the spikes

[88]. Thus, peaks occur in bursts, indicating that values above the threshold tend to occur in succession

[88]. Building on previous research, Mauritzen et al. [91] further include unexpected power disruptions and

shortages, the inability to store electricity, retailers’ inflexible demand, and the bidding strategies of auctioneers

as possible factors causing price spikes.

Maryniak et al. [42] suggest that low reserve margins are a significant driver of electricity price hikes.

Reserve margins refer to the excess generating capacity available in the system above and beyond what is

necessary to meet demand under normal operating conditions. When reserve margins are low, unexpected

events such as power plant failures or extreme weather can cause a shortage in supply, leading to a surge

in prices. However, the availability of reserve margin data varies among markets, and in many cases, this

information may not be easily accessible. A somewhat related measure is the “load-to-capacity ratio” (LCR),

which is used by [24] to show its correlation with the magnitude of price surges. Notably, the study identifies

that extreme situations, characterized by significant wind generation losses during periods of peak demand,

serve as the primary catalysts behind sudden price spikes. This finding emphasizes the critical role of wind

power and the limited influence of nuclear generation and natural gas prices in the occurrence of extreme price

events [24]. Likewise, a recent study by Bajai et al. [11] reveals that certain variables, such as liquidity ratio

4 and high net exports also have a significant impact on the higher conditional probability of spikes. Very

recently, a study by Galarneau et al. [3] suggests that the occurrence of price spikes can also be attributed to

the delayed reaction of major low-cost electricity producers.

Furthermore, validating earlier concerns on market operation, high gas, and fuel price spikes have con-

tributed greatly to the electricity price spikes seen in Europe. As a result, average electricity prices in most

European countries soared by more than five times on average in 2022 (see Fig. 1 for an overview). In this

4Bid-ask spread
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figure, France and Belgium stand out in particular as prices surged by almost an order of magnitude from 32

euros/MWh on average in 2020 to almost 250 euros/MWh in 2022. In the coming years, the Belgian trans-

mission system operator Elia expects average prices to fall once again depending on several factors, contingent

primarily on gas and CO2 prices. In case of high gas and CO2 prices, electricity prices might converge at over

100 euros/MWh, which is two- to three-fold higher than its historical value. Only in the case of low fuel and

CO2 prices will electricity prices return to their long-term historic average of less than 50 euros/MWh [2]. The

same holds in many other countries which still rely on fossil-based generation to meet either the base load or

peak demand.

Table 1 summarizes the different factors we have identified in this section and categorizes them in broader

groups. This categorization reveals a total of 34 factors that contribute to extreme price increases. The

majority of these factors are associated with groups G2 (market features, i.e. the characteristics or dynamics

inherent to the electricity market itself) and G3 (market participants’ actions or decisions). In addition to

enabling researchers to better understand price spikes, many of these features also serve as the foundation for

building forecasting models, a topic we will return to in section 4 in greater detail.

Table 1: Contributing factors to positive upward spikes

Group Factor

G1: commodity features Non-storability [91, 110], length of spikes [88], volatility [119]

G2: market features Market rules [119], lack of transparency [107], transmission congestion [119], im-

proper market design [118, 119], supply-demand imbalance [119, 118], liquidity [11],

inventory constraint [106], low reserve margin [42], load-to-capacity ratio [24], weak

enforcement structure [107]

G3: participant actions / decisions Bidding strategies [116, 91, 81], market power [119, 118], unclear hydro-power man-

agement strategies [109], insufficient investment in domestic energy infrastructure

[109], large reserve capacity [106], delayed reaction of low-cost producers [3], pric-

ing strategies [113], financial insolvency [119, 118], underestimation of demand [106],

supply curve adjustment [84], retailer inflexible demand [91]

G4: political considerations Excessive energy taxes [109], nuclear disengagement [109]

G5: temporal effects Inelastic demand [114, 84], lack of dispatchable demand [119], history of spikes [93],

time interval between prior spikes [93, 88]

G6: unexpected incidents Extreme weather conditions [110, 106, 42, 84], power outages [91, 42], uncertainty

[119]

G7: external factors Gas prices [115], electricity trade disparity[11]

3.3 Factors triggering downward price spikes

Historically, negative prices have been a rare occurrence in most markets. However, many of the conditions

discussed above, which lead to positive price spikes, can also lead to negative price spikes when inverted. For

instance, an ongoing surplus of renewable sources, such as wind and solar, can lead to sustained periods of

very low electricity prices. This has been shown in research by several authors. Notably, Nicolosi et al. show

that a significant amount of intermittent renewable energy sources being fed into the system during periods of

low demand leads to negative or suppressed prices [98]. Additionally, limited flexibility of the power system

components and a lack of alignment between power markets can also exacerbate this. Similarly, [64] highlights
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the connection between renewable energy integration and extremely low prices, as well as the need for the

power system to become more flexible to tackle these challenges (these were also identified as challenges in the

previous section).

One example of this phenomenon has been in the low prices observed in the Spanish electricity market

during the last decade (i.e. prior to COVID-19 disruptions). To understand the factors contributing to this

trend, researchers have identified several factors, including the rise of low-cost renewable energy, the retirement

of thermal power plants, and the limited capacity for interconnection to handle surplus renewable energy [69].

Additionally, the authors note that price-taking technologies such as zero-variable-cost run-of-river hydro and

inflexible nuclear power plants are able to produce electricity at a very low marginal cost, which puts downward

pressure on prices. In a similar vein, [89] claims that the expansion of renewable electricity production is the

primary cause of negative price fluctuations in the German electricity market besides other factors, such as

low demand meeting high supply, sudden declines in industrial activity, limited flexibility in power plant

operations, and constrained transmission capacities. However, the research findings imply that when wind

generation increases, it tends to lower the average spot prices, affecting both low and high-price components

[24].

More recently, in the aftermath of large-scale demand destruction due to COVID-19, electricity market

prices fell precipitously in many countries across the world. In the US, average electricity market prices fell

to $21/MWh, the lowest in the twenty-first century [29]. In fact, negative prices were observed in 4% of

all hours, either due to transmission interconnection limits leading to local supply-demand imbalance or due

to system-wide oversupply. Very low fossil fuel prices along with a rapidly expanding renewable build-up

contributed greatly as well. Similar observations have been reported for many European markets with the

German day-ahead market prices dropping by over a half in 2020 when compared to 2019 [25]. Many of the

factors identified in this section have meant that, even during the unusually high prices witnessed in 2022,

electricity prices were negative for a considerable amount of time (this is true, especially on sunny and windy

days with limited demand).

To summarize, our analysis has identified 10 elements that contribute to significant downward price

movements, which are summarized in Table 2. Notably, none of these factors can be attributed to the decisions

made by market participants (G3).

Table 2: Contributing factors to downward price spikes

Group Factor

G1: commodity features Non-storability [91, 110]

G2: market features Low demand [89], insufficient interconnection infrastructure to accommodate excess

renewable energy/ constrained transmission capacity [69, 89], low-cost renewable en-

ergy [69, 64, 89, 98, 24]

G4: political considerations Retirement of thermal power plants [69]

G5: temporal effects Limited flexibility of power system components/operations [89, 98], inflexible nuclear

power plants [69]

G6: unexpected incidents Sudden declines in industrial activity [89]

G7: external factors Price taking technologies [69]
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3.3.1 Evidence from the European DA market

Despite increasing price harmonization across European DA markets, considerable price differences can exist

due to the factors discussed previously (excess or shortfall of renewable generation coupled with interconnection

bottlenecks invariably play a large role here). Fig. 5 provides an illustrative example by comparing the

distribution of hourly DA prices in four different EU countries, France, Spain, Sweden (BZ1), and Belgium,

for the years 2020 and 2022 5. The plots show that while the different markets are coupled to an extent, there

is no guarantee that a price spike in Belgium will also translate to a spike in Spain or Sweden. In fact, we

see clear bimodal distributions in many markets such as Spain and France in 2022, where prices are either

harmonized or much higher in France. The same behavior is also evident between Sweden and Belgium, and

Sweden and France. If we consider price data from 2020, it is immediately evident that prices in all markets

were lower and less spiky, and the correlation between different markets was also much higher.

Figure 5: Distribution and association of hourly day-ahead prices for four EU countries in 2020 (left) and 2022 (right)

4 Forecast methodologies

We classify electricity price spike forecasting methods into four different categories, depending on their output.

These include (1) point forecasts, (2) interval, quantile, and scenario forecasts, (3) spike probability forecasts,

and (4) threshold forecasts. In doing so, we choose to focus on time series related methods, rather than game

theoretic or simulation-based approaches [105].

4.1 Point forecast methods

Methods which produce a point forecast for day-ahead electricity prices have arguably been the most common

in published literature [20, 30, 46, 45, 78, 83, 28]. Historically, these models typically belong to the general

SARIMAX (seasonal autoregressive moving average with exogenous factors) family of algorithms. The simplest

and most common variants of such techniques include the AR (autoregressive) and ARX (autoregressive with

exogenous factors) model types. AR models rely solely on the time series’ history when making forecasts,

while ARX models additionally consider exogenous variables such as those discussed in the previous section

as well (e.g. renewable generation, load, etc.). Some examples of such ARX models include [79] and [58]. It

is straightforward to extend linear function approximation in SARIMAX models to utilize non-linear function

approximators such as tree-based methods and neural networks. The latter, often referred to as NARX models

[49, 56, 78, 95, 76, 26], have seen rapid growth in published papers in the last decade.

5The data used in this analysis was sourced from the website https://transparency.entsoe.eu/.
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In addition to automatic feature selection in ARX models [28], researchers have also investigated several

explicit feature selection algorithms. In this vein, the Heckman selection model provides a unified framework

to investigate the factors influencing the frequency and magnitude of price spikes in electricity markets [83].

Using four regional electricity markets in Australia, the authors show that load, relative air temperature, and

reserve margins can be used in such a scheme for forecasting price spikes [83]. Likewise, defining price spikes

as above $150/MWh and $200/MWh, Amjady et al. show that their “MR-IG” feature selection method can

choose a small subset of highly relevant characteristics for electricity price spike predictions in conjunction with

a probabilistic neural network (PNN) [94]. This allows for a more accurate prediction of both regular and price

spikes (when compared with eight frequently used methods on the MAPE metric). A related matter to feature

selection is feature transformation. In this regard, researchers have explored several different methods ranging

from simple min-max scaling to variance stabilizing transforms [68, 31]. While more complex transformations

have shown promise to improve forecast accuracy in general, their effect on accurately predicting price spikes

remains unclear.

Another technique that has been employed by several researchers is to first decompose the price signal

into its constituent components, and then use the components directly in the prediction pipeline, followed by

a recombination step. In this vein, the so-called “seasonal component autoregressive with exogenous factors

(SCARX)” model has been proposed by Afanasyev et al. to forecast day-ahead electricity prices, using the

day-ahead load forecast as the exogenous variable in their study [45]. The authors apply their method to four

distinct power markets and show that forecast accuracy can be improved by filtering the input time series data

6. Likewise, using data from the UK, Zafar et al. propose decomposing the price time series into different

trend series of varying frequencies, which are then forecast using a pure AR model [20]. A similar scheme is

adopted by [21], albeit in a two-step approach, and will thus be covered in a later section.

Such decompositions, even though they may improve average price prediction performance, should be

used with caution as they often end up filtering out high-frequency data, which can be critical in forecasting

price spikes or extreme events. In fact, most of these studies do not explicitly consider price spikes. Instead,

they focus on predicting an ‘expected’ outcome, often by minimizing the mean squared or absolute error. In

fact, as highlighted by Lu et al. [106], many point forecasting models only perform at a competitive level

in predicting prices when extreme observations are removed from the data. Consequently, researchers have

increasingly turned to quantile and interval price forecasts, which we discuss next.

4.2 Interval, quantile, and scenario forecast methods

As opposed to point forecasts, these methods tend to provide more information on the actual distribution of

price forecasts, which can enable their use in risk-based planning. In practice, these methods can produce

different outputs. One option is to produce the entire probability distribution. Another common approach is

to produce only a few specific quantiles, say the 10th and 90th quantiles. One final approach is to produce a

set of scenarios, along with their probability of occurrence. We discuss these methods in greater detail in this

section.

6The detected extreme values were substituted with the sample mean of prices with seasonal adjustments.
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4.2.1 Quantile forecasting

In an early study, Lu et al. propose a Bayesian model to forecast price spikes, based on data from the

Queensland electricity market [106]. This method classifies prices into five categories of spikes7, and utilizes a

wavelet and neural network-based model to make forecasts. This results in a price spike prediction along with

the level of spike and the associated confidence level. In the ensuing years, the combination of (wavelet-based)

decomposition and neural networks has been reincarnated several times to make probabilistic forecasts with

varying degrees of rigor [77, 65, 67]. While these studies show promising results, they are often conducted on

limited test periods lasting well short of the minimum recommended one-year period and are not benchmarked

against other modern methods, such as the ones we highlight next.

In the context of the Global Energy Forecasting Competition 2014 (GEFCom2014) probabilistic price

forecasting track, Dudek et al.[71] proposed a feedforward neural network to predict day-ahead electricity

prices, incorporating historical price data, zonal load, and system load as predictive factors. Notably, this

approach, combined with Bayesian regularization, demonstrated the most promising performance, particularly

in accurately forecasting price spikes. Likewise, using the GEFCom 2014 dataset, Gaillard et al. examine three

distinct quantile forecasting approaches [72]: a quantile generalized additive model, a combination of 13 pre-

dictors including autoregressive models, and a kernel-based quantile regression with Lasso penalty customized

for winter conditions. Using the average pinball score, the results indicated that the first approach showed

higher robustness to price spikes, suggesting its superiority in capturing extreme price movements and provid-

ing reliable quantile forecasts. In a subsequent study, Dudek et al. [55] introduce a method for forecasting 99

quantiles of day-ahead and imbalance electricity prices in Poland, employing the Nadaraya-Watson estimator,

a non-parametric kernel regression technique. Initially, the method generates point predictions and then ex-

tends them to quantile forecasts using historical price residual distribution. The proposed model outperforms

exponential smoothing, naive, and ARIMA models in the evaluation.

Ziel and Steinert [80, 62] proposed a method to directly model the sale and purchase curves to forecast

electricity prices, and apply it to the German and Austrian day-ahead prices. However, despite the innovative

approach, the model underestimates the occurrence of spikes. Very recently, an interesting method using

“conditional time series generative adversarial networks” (CTSGANs) has been investigated by [15] to obtain

prediction intervals for Australian spot prices. Unfortunately, the results provide no indication of whether the

proposed method is better at capturing spikes than more established methods highlighted elsewhere in the

paper.

A method that has gained in popularity recently is to combine several point forecasts to obtain the

quantiles for the predicted price [92, 74, 50, 41, 37]. The point forecast models are typically created by

utilizing a set of ARX (point forecast) models trained on similar input features (historical lags, load and

renewable generation, etc.), but applying different calibration window lengths (ranging from several weeks to

years). The different window lengths capture different information, and combining them to obtain a single-

point forecast can significantly improve predictive accuracy [28]. However, it is also possible to use the outputs

of these models to obtain quantiles using either Quantile Regression Averaging (QRA) or Quantile Regression

Machine (QRM). QRA uses the point forecasts directly to obtain the quantiles, while QRM first averages

them, and then applies quantile regression to the combined forecast. Several other variations exist as well: for

instance, [74] computes the principal components of the point forecasts and uses these as input to the QRA

7Ranges lie between [75-100], [100-150], [150-250], [250-500], [500-2000] and greater than 2000
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or QRM, as opposed to the raw point forecasts. Other mechanisms, that replace the learning algorithm (e.g.

to obtain Quantile Regression Boosting or Quantile Regression Neural Networks), have been proposed as well

[75]. Uniejewski et al. [51, 8] evaluated the ability of different quantile evaluation techniques to predict extreme

quantiles (and thus spikes), and showed that QRA-based prediction techniques significantly outperformed other

techniques.

Such methods offer two key benefits: (1) they do not require much additional machinery beyond the

requirements for point forecast (beyond a separate calibration window for the probabilistic forecasts), and (2)

they have shown promising results in terms of producing well-calibrated and sharp forecasts (these terms are

explained in greater detail in a subsequent section). However, few, if any studies, have looked at using these

methods for the recent volatility in the electricity markets.

4.2.2 Probability density function forecasting

In addition to predicting specific quantiles, researchers have also proposed methods which predict the entire

probability distribution of day-ahead prices. This can be used to better understand the risk posed by excep-

tionally high or low prices - which may be missed by individual quantiles. While some researchers have taken

this to mean predicting several, finely-spaced quantiles (e.g. the first quantile all the way to the 99th quantile),

this approach often suffers from overlapping quantiles, which has to be corrected in a post-processing step.

Other researchers have used predictive methods, which can directly output estimates of uncertainty. For in-

stance, Gao et al. utilize “autoregressive Gaussian process regression”, employing various sampling techniques

to generate multiple scenarios of probabilistic prediction of California day-ahead electricity prices, with Monte

Carlo Sampling [34]. The authors show that Contour Sampling prioritized extreme price scenarios by focusing

on the tail of the Gaussian distribution.

Other approaches have been studied as well. For instance, in their day-ahead electricity price study for the

Austrian-German market, Muniain and Zeil used autoregressive models with exogenous variables and jump-

diffusion models [43]. Likewise, Kath and Zeil have applied conformal prediction (CP) to determine interval

forecasts for the day-ahead markets, and have compared their results against previously mentioned techniques

such as QRA [27]. They show how symmetric prediction intervals can be computed by exploiting the errors

made based on point forecasts, and conclude that CP can achieve comparable performance to other, more

established methods in yielding well-calibrated predictions that can be used to predict extreme spikes.

Some studies indicate that parsimonious stochastic models struggle to capture the complex and non-linear

nature of electricity price time series [9]. To address this limitation and ensure appropriate management of

data variability before modeling [47], there is a growing adoption of deep neural network-based research for

probabilistic electricity price forecasting. Notable studies have investigated real data from diverse markets,

including California ISO, Italian, Belgian, and Singapore electricity markets [9, 47, 35]. These studies utilize

various approaches, such as “deep Gabor convolutional neural networks” that have been further developed

into a mixture density network [9], “Bayesian deep learning” [47], and “deep convolutional neural networks”

to extract features which were then fed into a decision tree to forecast the probability density function of

electricity prices [35]. Bello et al., focusing on the month-ahead probabilistic forecasting of prices on the

Spanish market, compare multilayer perceptrons with decision trees and a market equilibrium model with

logistic regression [69]. Likewise, Campos et.al utilize a hybrid neural network model to generate probabilistic

week-ahead forecasts for both the Spanish and PJM markets [54].
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4.3 Spike probability forecasting

Besides predicting the price distribution or quantiles, some researchers have adopted a two-step process: the

first step is to predict if a spike will occur, followed by the price prediction (possibly using a different model

conditioned on the spike probability). In this direction, early work by Zhao et al. [108] and Wu et al. [104]

proposed probability classification techniques to predict the occurrence of spikes using support vector machines.

The method did not misclassify non-spikes but failed to detect about half of them.

Imbalanced data (i.e. non-spikes far outnumber spikes) is a recurring challenge in predicting price spikes.

Different researchers have tried to address this using different methods. For instance, Amjadi and Keynia

proposed a hybrid data model that combines time and frequency domain information [97]. The selected inputs

from the feature selection technique, along with calendar indicators and an “Existence” feature were then

input to a Probabilistic Neural Network (PNN) model [97], which was used to predict price spike occurrences

for both the Queensland and PJM markets. Recently, borrowing from the broader field of machine learning,

researchers have addressed this imbalance issue using data augmentation techniques such as SMOTE and

borderline-SMOTE [21, 31]. The idea behind these methods is to generate additional samples in the vicinity

of observed spikes in the training data to reduce class imbalance.

To underscore the significance of load and capacity as key drivers of exceptionally high prices, in line

with prior studies, Maryniak and Weron [42] proposed utilizing the demand-to-capacity ratio to forecast the

probability of price spike occurrence in the UK market based on the curvature of the hyperbolic tangent, a

methodology developed by [100]. They concluded that the likelihood of observing a price spike increases with

an increase in the demand-to-capacity ratio, regardless of the method employed. Likewise, other researchers

have also explored the use of load to predict the likelihood and severity of spikes [93, 81]. In [81], a multivariate

self-exciting point process can accurately predict the probability of extreme prices with the benefit of including

the impact of excess capacity of interconnected regions, while in [93] an ARMA process in combination with

autoregressive conditional hazard can explain the persistence of spikes and intensity. This model improved

performance when compared against a simple benchmark logit model, including only load and temperature

variables.

Analysis in Hungary by Bajai et al. [11] concurs with Clements et al. [81] in that power exchanges

between markets are beneficial in predicting extreme prices and they have applied a logit model which takes

into account market liquidity, renewable generation, and net interchanges. Likewise, Lu et al. focus on

forecasting normal regional reference prices for Queensland using a wavelet neural network, while predicting

spike occurrence through Bayesian classification and k-closest neighbor estimation, considering demand and

supply relationships [106]. Finally, Datta et al. also account for seasonal impacts (e.g. monthly and weekly

events in the Victoria region), meter uncertainty, and past spike influences when predicting price spikes [70].

Their findings show that incorporating meter data and using the Naive-Bayes classifier significantly improves

spike prediction accuracy, outperforming Random Forest Classifiers.

Finally, researchers have also considered the effect of transmission and distribution bottlenecks in forecast

models on day-ahead prices. For instance, Galarneau et al. investigate the influence of transmission capacity

constraints between cost-effective power plants and the Long Island peninsula in the NYISO market on market

prices [3]. To do so, they employed four different techniques to forecast the probability of day-ahead minus real-

time price spikes, i.e., logistic regression, random forests, gradient boosting trees, and “feed-forward deep neural

networks” [3]. Among these, the second technique demonstrated a slight advantage. Additionally, trading
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strategies based on model-generated spike probabilities resulted in higher profits and lower risk, indicating

the economic significance of the generated signal. Likewise, researchers have explored ideas from multi-task

learning, i.e. by using the same forecast model to predict the prices in several markets simultaneously [58].

This induces cross-learning, which appears to be beneficial to the forecasting task while enabling the system

to learn about underlying bottlenecks in the system. However, the performance of such models has not been

investigated in great detail on spikes or extreme events.

4.4 Threshold and regime switching forecast methods

To effectively represent different states of electricity prices and capture short-lived spikes, several studies ad-

vocate for the implementation of regime-switching models [112, 101]. In a way, these methods are a natural

extension to the methods discussed previously on forecasting the probability of price spike occurrence. For

instance, Huisman and Mahieu propose a three-regime model using day-ahead baseload prices from the Dutch

APX market, the German LPX market, and the UK market through Kalman filter methodology [112], while

Becker et al. develop a two-state regime-switching model with time-varying probability specifically in the

Queensland electricity market [101], and find that meteorological conditions and electricity demand factors

significantly influence market regime tenacity and help to predict transitions between the two regimes. Fur-

thermore, Doering et al. highlight that the load-to-capacity ratio impacts the mean price of regimes and the

frequency of transitioning between them in a novel regression-based mixture model, enabling the analysis of

low- and high-price regimes’ average and frequency within the ERCOT ISO 8 [24]. These findings underscore

the multifaceted nature of the factors driving price dynamics and transitions, as discussed in a previous section.

On the contrary, Eichler et al. assert that parametric Markov regime-switching models cannot account for

the time-varying central moments of the spike distribution and argue that spikes are predictable and dependent

on past data, occurring in blocks with persistence [88]. This stands in contrast to previous studies like [106],

suggesting electricity price spikes are random. The authors propose and evaluate several models, including

Benchmark logit, Dynamic Hawkes logit/scobit, and Regime Switching logit/scobit, using various metrics

such as predictive log-likelihood and regression loss functions to assess predictive power over AEMO data and

conclude that certain logit models perform better in capturing the blocking and clustering characteristics of

peaks as “spikes do not only occur in clusters, i.e., that there are times of high probabilities of spikes and times

of low probabilities, but that in fact, spikes occur in blocks of varying length, i.e., that there are consecutive

prices above the threshold” [88].

5 Evaluation metrics

Electricity price (spike) forecasting algorithms have been evaluated according to several different metrics in

the literature. One fundamental difference in these metrics arises from whether the problem is posed as a

regression or a classification problem, and whether the output is a point, quantile, or entire distribution. In

this section, we describe some commonly used evaluation methods for the different forecast methodologies

highlighted previously.

8Electric Reliability Council of Texas system

19



5.1 Metrics for point forecasts

By far, the most common strategy to evaluate electricity price forecasting models remains via some variation

of comparing observed against predicted price. In fact, many studies including ones that emphasize accurate

price spike forecasting do not evaluate performance on spike prediction separately. Consequently, the most

popular choices in the regression-based category include the mean error (ME) or bias, the mean absolute error

(MAE), the mean squared error (MSE), and the root mean squared error (RMSE) [30, 46, 103, 78, 83, 13, 6,

28, 40]. Some researchers have also explored the use of variants of MAE such as weekly-weighted MAE [20,

45].

While all of these metrics compare observed and predicted prices, it is important to note the individual

idiosyncrasies of these evaluation metrics. For instance, ME provides an indication of whether the forecast is

biased towards making over- or under-predictions, while the other metrics do not. Likewise, metrics utilizing

a squared term (e.g. MSE and RMSE) give a larger weight to large errors, which can occur when prices take

on extreme values, as compared to absolute metrics (e.g. MAE). All of these metrics also depend on the

magnitude of the time series, which makes it difficult to contextualize the errors, i.e. a forecast error of 20

EUR/MWh might be considered a good result when evaluating a very high price spike, but not in regular

operating conditions. This property also makes it difficult to compare predictive accuracy across time and/or

different markets, where prices may inherently be different due to different demand or supply mix etc.

Often, to address these issues, scale-independent metrics such as mean absolute percentage error (MAPE),

R2, and adjusted R2 [96, 30, 46] are adopted as well. These metrics, however, come with their own limitations.

Most notable amongst these is that MAPE can take on undefined or very high values for prices close to 0.

Researchers have traditionally relied on weighted variants of MAPE to address this issue, but there has been

an increasing shift towards scaled and relative metrics, which instead normalize prediction accuracy by the

accuracy of a baseline method, often a seasonal naive model [5]. This has been seen for price forecasting in

several recent studies [28, 21]. Unfortunately, most of these evaluation metrics do not focus specifically on spike

forecasting. More concretely, they are averaged metrics, which do not necessarily account for rare, extreme

conditions.

5.2 Metrics for quantile and probabilistic forecasts

Evaluating interval forecasts is inherently more challenging than evaluating point forecasts. This is because

even though we observe the realized market price, we do not observe the entire distribution at each time step.

Consequently, researchers have developed alternative methods to evaluate quantile and interval forecasts. For

these forecasts, we can represent the forecast quantiles of yt, to be exceeded by probability 1− p, as Qt(p). If

G(p), defined as the proportion of times yt is less than Qt(p), is ‘reasonably close’ to p, then Qt(p) is an accurate

forecast distribution [1]. This similarity or closeness can, in turn, be evaluated using a variety of techniques

ranging from the Kolmogorov-Smirnov test to the mean absolute excess probability. The same method can

be extended to individual quantiles which can be evaluated separately in a hits-and-misses framework, which

determines whether the observed data distribution is identical to a specific quantile prediction. These metrics

however focus on reliability or calibration, i.e. whether the predicted intervals actually match observations,

using conditional and unconditional tests. Nowotarski et al. also identify sharpness as a key concern when

making interval forecasts [59], which refers to the width of the confidence intervals. Narrower, but equally
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well-calibrated, intervals should be preferred to wider ones.

In recent years, researchers have used several concrete metrics to evaluate these forecast methods, e.g.

the quantile or pinball score has been used to evaluate individual quantiles, the Winkler score has been used to

evaluate prediction intervals, as opposed to individual quantiles [121], and proper scoring rules like continuous

ranked probability score (CRPS) have been used for the whole forecast distribution, rather than particular

quantiles or prediction intervals [82]. For instance, in the context of electricity prices, the pinball loss has

been used by Marcjasz et al. and Uniejewski et al. for the Nordpool market [41, 51], Uniejewski et al. for

the German, Spanish, Nordic and PJM markets [8], Muniain and Zeil for Austrian-German market [43], and

Dudek et al. for the Polish market [55]. Likewise, Lu et al. used the Winkler score for the Australian market

[15], and Maciejowska et al. used it for the British market [74]. Finally, the CRPS is used by Janke et al.

for the German-Austrian market [37] and in the form of the Energy Score9 by [43] which is recommended due

to the strong correlation between peak and off-peak time series, distinguishing double-spike events, Lu et al.

for the Australian market [15], Moreira et al. for the Iberian market [75], Brusaferri et al. for the Italian

and Belgian markets [47], and Afrasiabi et al. for the Californian market [9]. Other methods, which are often

variations on these metrics, have been employed by researchers as well. He et al., for instance, examine the

width of prediction intervals to evaluate the performance of their forecasts [35]. Likewise, Tahmasebifar et

al. and Toubeau et al. use related metrics such as the average coverage error (ACE), coverage width-based

criterion (CWC), and the prediction interval normalized average width (PINAW) to evaluate their forecasts

[67, 44].

While the adoption and evaluation of probabilistic forecasts in the electricity price forecasting community

is still rather limited, it is on an upward trajectory [59]. A key limitation here remains that evaluating the

entire distribution of the forecasts is not straightforward in non-stationary settings. Furthermore, even well-

calibrated quantile or distribution forecasts are not necessarily sufficient to fully capture the risk posed by

extremely high or low price spikes.

5.3 Metrics for threshold and occurrence forecasts

Threshold forecasting models are trained to output discrete categories and are evaluated accordingly. In the

limit, where only spike occurrence is being forecast, the threshold forecasting problem reduces to a simple binary

classification task. As described earlier in the paper, this workflow typically follows a two-step approach and

must be evaluated as such as well. First, the accurate prediction of spike occurrence needs to be evaluated.

Second, the accurate prediction of the price spike, given the spike occurs, also needs to be determined. Treating

price spikes in this way has the potential to enable practitioners to define their risk tolerance levels when dealing

with market uncertainties.

However, there are several challenges with the evaluation phase; i.e. it might be tempting to only consider

the accuracy of spike occurrence prediction. However, this does not account for the trade-off between precision

and recall [102], as well as the fact that price spikes are rare events by definition. Consequently, most researchers

account for this in their evaluation of price forecasting algorithms, whether they consider binary categorization

or threshold forecasts. Some examples include the use of confusion matrices [103], F1 score [21, 32, 31], as

well as the related AUC-ROC (Area Under the Curve and the Receiver Operator Characteristic) metric [3, 11,

32]. Another challenge when evaluating such methods is in the creation of the bins or thresholds themselves as

9A loss function in the context of multivariate probabilistic forecasting [37]
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discussed in section 2. This is a concern, especially in non-stationary settings where the thresholds and bins

identifying spikes during the evaluation will change over time, making temporal comparisons difficult.

5.4 From metrics to tests

Despite the existence of the metrics described above, evaluating electricity price forecasting models in a stan-

dardized manner remains a formidable challenge [28]. There are a number of reasons for this:

1. Different studies consider different evaluation metrics for different markets spanning different time peri-

ods; this makes it almost impossible to compare the reported evaluation metrics;

2. Many studies do not consider recommended techniques such as time series cross-validation [5], which

raises data leakage concerns, and limits their applicability in real-world conditions;

3. The evaluation period is often limited to a few weeks, which is generally insufficient to capture seasonal

trends;

4. Many studies test a very large number of forecast models on limited evaluation datasets. Owing to the

very nature of the forecasting task, some models will perform better than others, but this will be an

artifact of finite evaluation datasets, rather than any intrinsic skill of the winning forecast models.

In light of these concerns, a final post-processing step is increasingly applied to determine whether one

forecast is better than a different one in a statistically significant manner, or if the difference is caused only due

to random chance. Some tests that have been commonly used by the electricity price forecasting community

include the Diebold-Mariano test (for comparison between two forecast models), and the Nemenyi test (for

comparison across several forecast models) [21, 20, 28]. Unfortunately, due to the rarity of price spikes, it

becomes even more challenging to draw statistically significant conclusions about the efficacy of methods.

Furthermore, these tests are less commonly found in probabilistic or threshold forecasting studies.

6 Discussion

The field of electricity price (spike) forecasting has seen considerable attention and advances in the last few

years. In this section, we discuss the most important insights drawn from the large-scale literature review

carried out in this paper, both to identify promising future research directions as well as gaps in the current

state of the art.

6.1 Defining spikes

Section 2 provided a detailed overview of the different ways in which researchers have approached defining

price spikes. However, as discussed, these methods suffer from several shortcomings. In addition to the

non-stationarity of the price time series, which was identified as a big challenge, the definitions are typically

context-independent, i.e. a single numerical threshold cannot capture whether market prices are abnormally

high, or if they are simply reflecting a well-functioning market. In this sense, we expect the field to move

increasingly towards multi-variate, context-aware definitions for electricity price spikes in the future. One

additional factor complicates the definition of thresholds in real-world markets. When applying thresholding

techniques - either static or dynamic - an additional issue arises: in most liberalized markets, the maximum and
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minimum prices are not fixed, and may change over time. This directly affects not just the data percentiles,

but also what can be realistically seen as an outlier. For instance, for the single day-ahead coupling (SDAC)

European region, ACER (Agency for the Cooperation of Energy Regulators) had capped the maximum clearing

price at +3,000 EUR/MWh and the minimum price at -500 EUR/MWh in Article 3 of the Annex I to the

Decision No 04/2017 of 14 November 2017. This upper threshold of +3000 EUR/MWh was held until April

2022, when it was raised to 4,000 EUR/MWh due to market rules.

6.2 Choice of covariates

While section 3 identified a large number of (overlapping) covariates which are important for both positive

and negative spike prediction, this does not necessarily translate to the actual studies we reviewed in this

paper. In fact, in most studies, only a limited number of features are used for spike forecasting. In certain

extreme cases, no covariates at all, except the history of the price time series, were considered. With increasing

open-source datasets (e.g. on ENTSO-E transparency platform containing EU-wide forecasts for covariates of

interest [14]), and computational resources available to train and test electricity price forecasters, this omission

is not tenable anymore. This is especially true for creating forecasters, as blind spots in influencing factors

can lead the model to fail at capturing the extreme tails of the price distribution. Several studies have already

demonstrated that feature selection techniques can be used quite effectively with large covariate sets to create

state-of-the-art forecasters.

6.3 Selection of pre-processing and forecasting methodology

As highlighted in the paper, researchers have investigated the usefulness of several forecasting technologies

and pre-processing choices. Going against the grain in energy forecasting [16], neural architectures continue

to boast state-of-the-art performance [28]. On the one hand, this is arguably due to the long tradition of

using neural networks to predict prices (at the expense of other techniques such as gradient-boosted trees

which have shown comparable or even better performance for time series forecasting). At the same time, it is

unclear if these results hold for probabilistic forecasting or forecasting extreme spikes, where cross-comparisons

of different techniques are more difficult to come by. Other open questions abound as well: do variance

stabilizing transforms, which have been shown to work well for point forecasting, also provide improvements

for predicting extreme quantiles? Likewise, detrending or deseasonalizing data before feeding it to a function

approximator has a long but chequered history. In the coming years, these questions will need to be answered

in much greater detail.

6.4 Evaluating forecasts

In addition to the metrics which have been adopted by the research community at large, there is a need for a

broader assessment of the downstream risks misforecasts pose to system operation and the utility of different

stakeholders. At the moment, only very few articles go into this direction, most limit their attention only to

the production of the forecast (rather than its use). This is perhaps also influenced by the short evaluation

periods and focus on singular markets chosen by many studies. These present the risk of spurious conclusions,

which is reflected in different papers coming to contradictory conclusions. Some methodological limitations also

persist here: there are few statistical tests for probabilistic forecasts especially in the presence of strong non-
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stationarity. This makes spike forecasting evaluation even more tricky than evaluating simple point forecasts

for expected prices.

7 Conclusion

Electricity markets serve a pivotal role in the functioning of modern society - they provide appropriate signals

for both consumers and generators to modulate their demand or generation, as well as guide long-term decisions

on investments in the energy grid. These markets are typically split into many different products, based on the

time of delivery. The focus of this paper has been on the day-ahead market, which is among the most actively

traded markets in most places with liberalized electricity markets. In doing so, the paper has carried out an

extensive review of the existing literature on electricity price spike forecasting. It shows increasing attention

has been paid to the topic of spikes in recent years, and as evidenced by recent surges in prices (and their

sticky nature), it appears that this will gain even more attention in the years to come.

Existing studies have considered electricity markets around the world, and early experiences and fears

around the influence of the fuel mix on market prices seem to have come full circle in the last few years. At the

same time, several limitations exist in published literature. The most obvious among these is the lack of an

overarching framework showing how effectively electricity price spikes can be forecast. This means there is a

lack of consensus on which forecasting techniques or pre-processing methods work best. Some researchers have

proposed filtering spikes in the data fed to the forecasters, but this can have deleterious consequences for price

spike forecasting accuracy. This lack of clarity is further exacerbated by the fact that many studies present

their results for only limited time periods (lasting well short of the recommended minimum of at least one year),

and specific quantiles without motivating this choice. Standardizing study design for price spike forecasting,

in a similar vein to that seen for point forecasting in the EPFToolbox [28] can alleviate this situation.
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